WO2023019901A1 - 提高激光雷达分辨率的方法及装置、激光雷达 - Google Patents

提高激光雷达分辨率的方法及装置、激光雷达 Download PDF

Info

Publication number
WO2023019901A1
WO2023019901A1 PCT/CN2022/077589 CN2022077589W WO2023019901A1 WO 2023019901 A1 WO2023019901 A1 WO 2023019901A1 CN 2022077589 W CN2022077589 W CN 2022077589W WO 2023019901 A1 WO2023019901 A1 WO 2023019901A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
interpolation
actual
channels
generated
Prior art date
Application number
PCT/CN2022/077589
Other languages
English (en)
French (fr)
Inventor
叶良琛
向少卿
Original Assignee
上海禾赛科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海禾赛科技有限公司 filed Critical 上海禾赛科技有限公司
Publication of WO2023019901A1 publication Critical patent/WO2023019901A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/02Systems using the reflection of electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/66Tracking systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers

Definitions

  • the invention relates to the technical field of signal processing, in particular to a method and device for improving the resolution of a laser radar, and also to a laser radar.
  • Lidar is a radar system that emits laser beams to detect characteristic quantities such as the position and speed of targets. Its working principle is to send a detection signal (laser beam) to the target, and then compare the received signal (echo pulse signal) reflected from the target with the transmitted signal, and after proper processing, the relevant information of the target can be obtained. Such as target distance, azimuth, height, speed, attitude, and even shape and other parameters, so as to detect, track and identify the target.
  • lidar technology With the development of lidar technology, the requirements for its resolution are getting higher and higher. Whether it is mechanical rotary radar, or MEMS (Micro-Electro-Mechanical System, micro-electro-mechanical system), or flash (flash) area array radar and OPA (Optical Parametric Amplification, optical phased array) lidar, can obtain more High resolution is an important indicator to improve the performance parameters of lidar. In the prior art, there are usually two ways to improve the resolution.
  • One is to meet the high-resolution requirements by adding transceiver pairs and corresponding ADC (analog to digital converter, analog-to-digital conversion)/TDC (time to digital converter, time-to-digital converter) channels through hardware settings, This method will not only occupy more computing resources, but also greatly increase the power consumption of the device. In addition, increasing the number of transceiver pairs will also increase the possibility of crosstalk between channels, which will reduce the accuracy of detection.
  • the other is to perform methods such as deep convolutional neural network processing on the point cloud information output by the lidar, and obtain new point clouds at some positions through calculations, thereby improving the resolution.
  • the problem with neural network processing directly based on point cloud information is that the new point cloud calculated based on point cloud has no echo pulse signal that can be directly based on, and its accuracy is not high enough.
  • the embodiments of the present application provide a method and device for improving the resolution of the laser radar, which can effectively improve the resolution of the existing laser radar without increasing the hardware load.
  • the embodiments of the present application provide a laser radar, which can have a higher resolution than a laser radar with the same hardware architecture.
  • a method for improving the resolution of a laser radar wherein the laser radar has a plurality of actual channels, wherein one actual channel corresponds to a transmitting unit at a transmitting end and a detecting unit at a detecting end, the method comprising:
  • For each interpolation channel to be generated respectively determine one or more associated channels among the plurality of actual channels that are related to the interpolation channel to be generated;
  • the step of determining at least one interpolation channel to be generated further includes: determining at least one interpolation channel to be generated according to a required field angle range of interpolation.
  • At least one interpolation channel is distributed among all or part of the actual channels.
  • the step of respectively determining one or more associated channels among the plurality of actual channels related to the interpolation channel to be generated further includes: the actual channel as the associated channel of the interpolated channel.
  • the weight of the associated channel is determined according to any one or more of the following:
  • the transmitting units of the lidar and their corresponding receiving units are arranged two-dimensionally.
  • At least two actual channels are vertically adjacent, and at least two actual channels are horizontally adjacent.
  • the generating the waveform of the interpolation channel according to the waveform information of the associated channel and its weight includes: according to the first pulse waveform received by the associated channel The information and its weights generate the waveform of the interpolation channel.
  • the laser radar emits signal light multiple times in one cycle; the method further includes: after each emission of the signal light, according to the obtained waveform information of each actual channel and each interpolation channel, determine The point cloud data corresponding to this emission corresponding to each waveform information; according to all the point cloud data obtained in one cycle, determine a frame of point cloud data of the lidar.
  • a device for improving the resolution of a laser radar the laser radar has a plurality of actual channels, wherein one actual channel corresponds to a transmitting unit at a transmitting end and a detecting unit at a detecting end, and the device includes:
  • An interpolation channel determination module configured to determine at least one interpolation channel to be generated
  • An associated channel determination module configured to, for each interpolation channel to be generated, respectively determine one or more associated channels among the plurality of actual channels that are related to the interpolation channel to be generated;
  • a weight determination module configured to determine the weight of the one or more associated channels relative to the interpolation channel to be generated
  • the interpolation channel generation module is used to generate the waveform of the interpolation channel according to the waveform information of the one or more associated channels and their weights, so as to obtain the waveform information corresponding to the obtained waveform information of each actual channel and each interpolation channel.
  • the interpolation channel determining module is specifically configured to determine at least one interpolation channel to be generated according to the required field angle range of interpolation.
  • At least one interpolation channel is distributed among all or part of the actual channels.
  • the associated channel determination module is specifically configured to use an actual channel whose distance from the interpolation channel is within a set range as an associated channel of the interpolation channel.
  • the associated channel determination module determines the weight of the associated channel according to any one or more of the following:
  • the transmitting units of the lidar and their corresponding receiving units are arranged two-dimensionally.
  • At least two actual channels are vertically adjacent, and at least two actual channels are horizontally adjacent.
  • the lidar adopts multi-pulse encoding; the interpolation channel generation module is specifically configured to generate the waveform of the interpolation channel according to the first pulse waveform information received by the associated channel and its weight.
  • the lidar emits signal light multiple times in one cycle; the device further includes: a first data determination module, configured to, after each emission of the signal light, obtain each actual channel and The waveform information of each interpolation channel determines the point cloud data corresponding to this transmission corresponding to each waveform information; the second data determination module is used to determine a frame point of the lidar according to all point cloud data obtained in one cycle cloud data.
  • a first data determination module configured to, after each emission of the signal light, obtain each actual channel and The waveform information of each interpolation channel determines the point cloud data corresponding to this transmission corresponding to each waveform information
  • the second data determination module is used to determine a frame point of the lidar according to all point cloud data obtained in one cycle cloud data.
  • a laser radar including the aforementioned device for improving the resolution of the laser radar.
  • the method and device for improving the resolution of the laser radar are based on the hardware structure that an actual channel of the laser radar corresponds to a transmitting unit at the transmitting end and a detecting unit at the detecting end, without changing the hardware structure.
  • the actual channel is interpolated to generate an interpolation channel, and when the interpolation is performed, the interpolation channel is generated according to the waveform information of one or more associated channels related to the interpolation channel to be generated among the plurality of actual channels and the weight of the associated channel.
  • the point cloud data corresponding to the lidar is obtained, thereby effectively improving its resolution without increasing the load on the existing lidar hardware. That is to say, a lidar including this device can have a higher resolution than a lidar with the same hardware architecture.
  • Fig. 1 is a kind of flowchart of the method for improving the laser radar resolution of the embodiment of the present invention
  • Fig. 2 is an example of the interpolation channel in the embodiment of the present invention.
  • Fig. 3 is another example of the interpolation channel in the embodiment of the present invention.
  • Fig. 4 is another example of the interpolation channel in the embodiment of the present invention.
  • Fig. 5 is another example of the interpolation channel in the embodiment of the present invention.
  • Fig. 6 is an example of generating the waveform of the interpolation channel in the embodiment of the present invention.
  • Fig. 7 is another example of generating the waveform of the interpolation channel in the embodiment of the present invention.
  • Fig. 8 is a schematic diagram of an interpolation channel in a two-dimensionally arranged laser radar according to an embodiment of the present invention.
  • FIG. 9 is another flow chart of the method for improving the resolution of the laser radar according to the embodiment of the present invention.
  • FIG. 10 is a structural block diagram of a device for improving the resolution of lidar according to an embodiment of the present invention.
  • Fig. 11 is another structural block diagram of the device for improving the resolution of the laser radar according to the embodiment of the present invention.
  • the embodiment of the present invention provides A method and device for improving the resolution of laser radar, based on the hardware structure that one actual channel of laser radar corresponds to one transmitting unit at the transmitting end and one detecting unit at the detecting end, without changing the hardware structure, the actual channel is interpolated , generate an interpolation channel, and when performing interpolation, generate an interpolation channel according to the waveform information of one or more associated channels related to the interpolation channel to be generated among the plurality of actual channels and the weight of the associated channel. Therefore, the resolution of the existing lidar can be effectively improved without increasing the load on the existing lidar hardware.
  • the lidar has multiple actual channels, wherein one actual channel corresponds to one transmitting unit at the transmitting end and one detecting unit at the detecting end.
  • FIG. 1 it is a flow chart of the method for improving the resolution of the laser radar according to the embodiment of the present invention, including the following steps:
  • Step 101 determine at least one interpolation channel to be generated.
  • a plurality of actual channels used to generate at least one interpolation channel to be generated may be determined according to the required field angle range of interpolation, and a number of actual channels between every two adjacent actual channels may be determined according to the resolution level to be improved. The number of interpolation channels between.
  • the field of view of the laser radar has a horizontal field of view range and a vertical field of view range
  • the horizontal field of view angle and the vertical field of view angle range are used to indicate the scanning range of the laser radar in the horizontal direction and the vertical direction, respectively.
  • its horizontal field of view range is usually a complete circle, that is, the horizontal field of view is 360 degrees
  • the vertical field of view is 360 degrees.
  • the field of view range is usually determined by the transmitting unit contained in the transmitting module of the lidar itself.
  • the vertical field of view is the sum of the horizontal upward scanning angle and the horizontal downward scanning angle.
  • the upward scanning angle in the horizontal direction is 15°, while the downward scanning angle in the horizontal direction is 25°.
  • the vertical viewing angle range is 40°.
  • the horizontal field of view range and the vertical field of view range are usually determined by the scanning range of the scanning module.
  • the field of view when performing interpolation according to the present invention, it is first determined that a part or all of the field of view needs to be expanded. For example, when it is necessary to perform interpolation on the entire field of view and the resolution is expected to be doubled, it can be determined that there is an interpolation channel to be generated between every two adjacent actual channels; and for example, when the requirements include When the resolution of the field of view within ⁇ 5° within the vertical field of view is tripled, it is determined that two interpolation channels will be evenly added between every two adjacent actual channels within the field of view.
  • one or more interpolation channels may be distributed between all or part of the actual channels as required.
  • the beams of the laser radar are not evenly distributed vertically.
  • the distribution of its beam is usually dense in the middle and sparse on both sides.
  • interpolation channels can be determined within the required interpolation field of view, and these interpolation channels can be evenly distributed among the actual channels, or non-uniformly distributed among the actual channels between, and there may be no or one or more interpolation channels between two actual channels, which is not limited in this embodiment of the present invention.
  • the following example illustrates how to determine the interpolation channel.
  • the interpolation channel I_CH1 is interpolated between the actual channel CH1 and the actual channel CH2, and the interpolation channel is interpolated between the actual channel CH2 and the actual channel CH3 I_CH2, and so on.
  • the total number of channels after interpolation is 2N-1, which is basically twice the original number of actual channels.
  • two interpolation channels are obtained by interpolating between two actual channels.
  • the interpolation channel I_CH1 and the interpolation channel I_CH2 are interpolated between the actual channel CH1 and the actual channel CH2;
  • the interpolation channel I_CH3 and the interpolation channel I_CH4 are interpolated between the actual channel CH2 and the actual channel CH3;
  • the actual channel CH3 and the actual Interpolation between channels CH4 produces interpolation channel I_CH5, interpolation channel I_CH6, and so on.
  • the total number of channels after interpolation is 3N-2, which is basically three times the original actual number of channels.
  • one or more interpolation channels are interpolated between two actual channels.
  • the interpolation channel I_CH1 is interpolated between the actual channel CH1 and the actual channel CH2; the interpolation channel I_CH2 is interpolated between the actual channel CH2 and the actual channel CH3; the interpolation channel is interpolated between the actual channel CH3 and the actual channel CH4 I_CH3, interpolation channel I_CH4.
  • Step 102 for each interpolation channel to be generated, respectively determine one or more associated channels among the plurality of actual channels that are related to the interpolation channel to be generated.
  • each interpolation channel to be generated all actual channels may be used as associated channels of the interpolation channel.
  • all actual channels may be used as associated channels of the interpolation channel.
  • only the actual channel whose distance from the interpolation channel is within a set range can be used as the associated channel of the interpolation channel, which is not limited in this embodiment of the present invention.
  • Step 103 determining the weight of the one or more associated channels relative to the to-be-generated interpolation channel.
  • the actual channel whose distance from the interpolation channel is within the set range can be used as the associated channel of the interpolation channel. Since different actual channels will have different effects on the interpolation channel, therefore, the interpolation calculation , these effects need to be considered. In order to facilitate subsequent calculations, these influences can be expressed as the weights of the associated channel, that is, a corresponding weight is set for each associated channel of the interpolation channel.
  • the weight of the associated channel may be determined according to but not limited to any one or more of the following:
  • the distance between the associated channel and the interpolation channel for example, the closer the distance, the greater the distance weight
  • the signal quality of the associated channel for example, the better the signal quality, the greater the signal weight
  • the angle of view corresponding to the associated channel such as whether the angle of view is in the region of interest (ROI), when the angle of view is in the region of interest, the weight of the angle of view is larger, otherwise, the angle of view The weight is less.
  • ROI region of interest
  • respective weights can be adjusted according to the positions of the interpolation channels relative to the actual channels on both sides. For example, for the situation where the interpolation channel I_CH1 and the interpolation channel I_CH2 need to be interpolated between the actual channel CH1 and the actual channel CH2, it is assumed that the two interpolation channels I_CH1 and I_CH2 are evenly distributed between the actual channel CH1 and the actual channel CH2, and the actual channel CH1 and the actual channel CH2 are used as the associated channels of the interpolation channel I_CH1 and the interpolation channel I_CH2, then: for the interpolation channel I_CH1, the weight of its associated channel I_CH1 is 2/3, and the weight of its associated channel I_CH2 is 1/3; and for the interpolation channel For I_CH2, the weight of its associated channel I_CH1 is 1/3, and the weight of its associated channel I_CH2 is 2/3.
  • respective weights may also be determined according to the positions of the interpolation channels relative to the actual channels on both sides and the signal quality of the actual channels. For example, set the weight factor of the channel with the best signal quality as 1, its direct adjacent channel as 0.9, its second adjacent channel as 0.8, and so on.
  • the proportion of each type of weight in the total weight can be determined separately according to needs, and then according to the total weight of each associated channel relative to the interpolation channel.
  • these three types of weights can account for 1/3 of the total weight respectively; Each accounts for 1/2 of the total weight; for another example, when it is necessary to consider more the influence of signal quality on the interpolation channel, you can set the distance weight to account for 1/3 of the total weight, and the signal weight to account for 2/3, etc.
  • Those skilled in the art can set the proportion of each category weight in the total weight according to the actual situation and requirements, so as to obtain an interpolation channel with the best quality, which will not be repeated here.
  • Step 104 generate the waveform of the interpolation channel according to the waveform information of the one or more associated channels and their weights, so as to obtain the waveform corresponding to the lidar according to the obtained waveform information of each actual channel and each interpolation channel. point cloud data.
  • Wave(N) is used to represent the waveform information obtained by the actual channel.
  • the following different types of information may be included:
  • sampling waveform can be represented by multiple sampling points, or represented by a curve fitted based on the sampling points.
  • waveform pulse related information such as: leading edge point, pulse width, peak value, etc.
  • the waveform of the interpolation channel is obtained according to the waveform information of the associated channels related to the interpolation channel and in combination with the weights of each associated channel.
  • In_Wave(M) is used to represent the Mth interpolation channel.
  • all actual channels can be used as the associated channels of the interpolation channel. Therefore, the waveform of the interpolation channel can be obtained according to the following general signal synthesis formula:
  • the weight of the actual channel that is not associated with the interpolation channel, that is, the non-associated channel of the interpolation channel can be set to 0.
  • the interpolation method shown in Figure 6 is to obtain the channel CH1.5 based on the waveform information of the actual channels CH1 and CH2, that is, the waveform signal of the interpolation channel 1_CH1.
  • the calculation formula is as follows:
  • Wave(CH1.5) A 1.5,1 ⁇ Wave(CH1)+A 1.5,2 ⁇ Wave(CH2);
  • the interpolation channel I_CH1 and the interpolation channel I_CH2 need to be interpolated between the actual channel CH1 and the actual channel CH2, and the interpolation is obtained according to the waveform information of the actual channel CH1 and the actual channel CH2 through I_CH1 and interpolation Channel I_CH2, the calculation formula is as follows:
  • In_Wave(I_CH2) 1/3*Wave(CH1)+2/3*Wave(CH2).
  • the interpolation method shown in Figure 7 requires interpolation near the actual channel P, and five interpolation channels are extended in each adjacent two directions.
  • the waveform calculation of each interpolation channel is as follows:
  • In_Wave(P+5) AP +4,1 *Wave(P+4)+ AP+5,2 *Wave(P+5).
  • the signal weights of the actual channels (wl and wr) on both sides of the interpolation channel Wx are 0.8 and 0.7 respectively, and the distances between the interpolation channel Wx and the actual channels on both sides are 1/3 and 1/3 respectively; where the distance weight is The total weight accounts for 1/2, and the signal weight accounts for 1/2 of the total weight.
  • the weight of its associated channel wl is 2/3, and the weight of its associated channel I_CH2 is 1/3; and for the interpolation channel I_CH2 , the weight of its associated channel I_CH1 is 1/3, and the weight of its associated channel I_CH2 is 2/3.
  • the waveform of the interpolation channel Wx is calculated as follows:
  • the calculation of generating the waveform of the interpolation channel based on the waveform information of the associated channel and its weight can refer to the calculation method of the above-mentioned interpolation channel Wx, which will not be described one by one here.
  • the method for improving the resolution of the laser radar is based on a hardware structure such that one actual channel of the laser radar corresponds to a transmitting unit at the transmitting end and a detecting unit at the detecting end.
  • the actual channel Interpolation is performed to generate an interpolation channel, and when interpolation is performed, the interpolation channel is generated according to the waveform information of one or more associated channels related to the interpolation channel to be generated among the plurality of actual channels and the weight of the associated channel.
  • the point cloud data corresponding to the lidar is obtained, thereby effectively improving its resolution without increasing the load on the existing lidar hardware. That is to say, a lidar including this device can have a higher resolution than a lidar with the same hardware architecture.
  • different detection channels i.e. actual channels
  • the adjacent channels of the interpolation channel can be adjusted accordingly according to the gate time of each actual channel. That is to say, when the gating times of the plurality of actual channels are different, for the interpolation channel to be generated, different associated channels are selected at different gating times to generate the interpolation channel. For example, it is required to generate an interpolation channel corresponding to a certain field of view.
  • the waveform information of the actual channel CH5 and CH7 can be used to generate the waveform of the interpolation channel.
  • the waveform of the actual channel CH4 can be generated.
  • CH6 waveform information to generate the waveform of the interpolation channel, etc., and the actual channels under the two modes may use different weight values.
  • the laser signal may adopt multi-pulse encoding.
  • the timing of the arrival of the second pulse is not easy to align, it can also be based on the first received by the associated channel.
  • the pulse waveform information and its weights generate the waveform of the interpolation channel.
  • the transmitting units of the lidar and their corresponding receiving units are arranged two-dimensionally.
  • interpolation can be performed on the two-dimensional receiving channel, at least two actual channels are vertically adjacent among the plurality of associated channels corresponding to the interpolation channel to be generated, and at least two The actual channels are horizontally adjacent, and the interpolation channels illustrated in Figure 8 are I_CH12, I_CH22, I_CH13, and I_CH23.
  • i and j represent the horizontal and vertical arrangement numbers of the actual channel respectively.
  • FIG. 9 it is another flow chart of the method for improving the resolution of the laser radar according to the embodiment of the present invention.
  • the lidar emits signal light multiple times in one cycle
  • the method includes the following steps:
  • Step 901 determine at least one interpolation channel to be generated.
  • Step 902 for each interpolation channel to be generated, respectively determine one or more associated channels among the plurality of actual channels that are related to the interpolation channel to be generated.
  • Step 903 determining the weight of the one or more associated channels relative to the to-be-generated interpolation channel.
  • Step 904 generating the waveform of the interpolation channel according to the waveform information of the one or more associated channels and their weights.
  • steps 901 to 904 are the same as steps 101 to 104 in FIG. 1 above, and will not be repeated here.
  • Step 905 after each emission of the signal light, according to the obtained waveform information of each actual channel and each interpolation channel, determine the point cloud data corresponding to each waveform information corresponding to this emission.
  • Step 906 Determine a frame of point cloud data of the lidar according to all point cloud data obtained in one cycle.
  • the point cloud data can be used as the output of the laser radar. Compared with the point cloud data output by the actual channel, the point cloud data based on the interpolation channel and the actual channel output can make the laser radar have a higher resolution. Effectively improve lidar performance without increasing hardware load.
  • the embodiment of the present invention also provides a device for improving the resolution of the lidar, as shown in FIG. 10 , which is a structural block diagram of the device.
  • the device includes the following modules:
  • An interpolation channel determination module configured to determine at least one interpolation channel to be generated
  • An associated channel determination module 12 configured to, for each interpolation channel to be generated, respectively determine one or more associated channels among the plurality of actual channels that are related to the interpolation channel to be generated;
  • a weight determination module 13 configured to determine the weight of the one or more associated channels relative to the interpolation channel to be generated
  • the interpolation channel generation module 14 is used to generate the waveform information of the interpolation channel according to the waveform information of the one or more associated channels and their weights, so as to obtain the waveform information corresponding to each actual channel and each interpolation channel obtained.
  • the interpolation channel determination module 11 may specifically determine at least one interpolation channel to be generated according to the required field angle range of the interpolation. Additionally, there may be at least one interpolation channel distributed between all or some of the actual channels.
  • the associated channel determining module 12 may specifically use an actual channel whose distance from the interpolation channel is within a set range as an associated channel of the interpolation channel.
  • the weight of the associated channel may be determined according to but not limited to any one or more of the following:
  • the device for improving the resolution of the laser radar is based on a hardware structure such that an actual channel of the laser radar corresponds to a transmitting unit at the transmitting end and a detecting unit at the detecting end.
  • the actual channel Interpolation is performed to generate an interpolation channel, and when interpolation is performed, the interpolation channel is generated according to the waveform information of one or more associated channels related to the interpolation channel to be generated among the plurality of actual channels and the weight of the associated channel.
  • the point cloud data corresponding to the lidar is obtained, thereby effectively improving its resolution without increasing the load on the existing lidar hardware. That is to say, a lidar including this device can have a higher resolution than a lidar with the same hardware architecture.
  • the transmitting units of the lidar and their corresponding receiving units may be arranged in two dimensions.
  • the plurality of associated channels corresponding to the interpolation channel to be generated at least two actual channels are vertically adjacent, and at least two actual channels are horizontally adjacent.
  • the lidar may employ multi-pulse encoding.
  • the interpolation channel generation module 14 can also generate the interpolation channel according to the first pulse waveform information and its weight received by the associated channel waveform.
  • the lidar may emit signal light multiple times in one cycle.
  • FIG. 11 another structural block diagram of the device for improving the resolution of the laser radar according to the embodiment of the present invention is shown.
  • the device further includes the following modules:
  • the first data determination module 15 is configured to determine the point cloud data corresponding to each waveform information corresponding to this emission according to the obtained waveform information of each actual channel and each interpolation channel after each emission of the signal light;
  • the second data determination module 16 is configured to determine a frame of point cloud data of the lidar according to all point cloud data obtained in one cycle.
  • the point cloud data can be used as the output of the lidar. Compared with the point cloud data output by only the actual channel, the point cloud data based on the interpolation channel and the actual channel output can make the lidar have a higher The resolution can effectively improve the performance of lidar without increasing the hardware load.
  • the laser radar with the above-mentioned device for improving the resolution of the laser radar can have higher resolution and scanning performance.
  • the laser radar mentioned in the embodiment of the present invention can be any structural type of laser radar, such as mechanical rotary radar, MEMS (Micro-Electro-Mechanical System, micro-electro-mechanical system) radar, or Flash (flash) area array lidar, or OPA (Optical Parametric Amplification, optical phased array) lidar, etc., this embodiment of the present invention is not limited.
  • MEMS Micro-Electro-Mechanical System, micro-electro-mechanical system
  • Flash flash area array lidar
  • OPA Optical Parametric Amplification, optical phased array lidar
  • each module/unit contained in the product may be a software module/unit, or a hardware module/unit, or may be partly a software module/unit, partly is a hardware module/unit.
  • each module/unit contained therein may be realized by hardware such as a circuit, or at least some modules/units may be realized by a software program, and the software program Running on the integrated processor inside the chip, the remaining (if any) modules/units can be realized by means of hardware such as circuits; They are all realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components of the chip module, or at least some modules/units can be realized by means of software programs,
  • the software program runs on the processor integrated in the chip module, and the remaining (if any) modules/units can be realized by hardware such as circuits; /Units can be realized by means of hardware such as circuits, and different modules/units can be located in the same component (such as chips, circuit modules, etc.) or different components in the terminal, or at least some modules/units can be implemented in the form of software programs Realization, the software program runs on
  • An embodiment of the present invention also provides a computer-readable storage medium, the computer-readable storage medium is a non-volatile storage medium or a non-transitory storage medium, and a computer program is stored thereon, and the computer program is executed by a processor During operation, the steps of the method provided by the above-mentioned embodiment corresponding to FIG. 1 or FIG. 9 are executed.
  • the embodiment of the present invention also provides another device for improving the resolution of lidar, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor runs the computer The program executes the steps of the method provided in the above embodiment corresponding to FIG. 1 or FIG. 9 .
  • An embodiment of the present invention also provides an electronic device, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes the above-mentioned Figure 1 when running the computer program.
  • FIG. 9 corresponds to the steps of the method provided by the embodiment.
  • the processor may be a central processing unit (Central Processing Unit, referred to as CPU), and the processor may also be other general-purpose processors, digital signal processors (digital signal processor, referred to as DSP), dedicated Integrated circuit (application specific integrated circuit, referred to as ASIC), off-the-shelf programmable gate array (field programmable gate array, referred to as FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (read-only memory, referred to as ROM), programmable read-only memory (programmable ROM, referred to as PROM), erasable programmable read-only memory (erasable PROM, referred to as EPROM) , Electrically Erasable Programmable Read-Only Memory (electrically EPROM, referred to as EEPROM) or flash memory.
  • the volatile memory can be random access memory (RAM), which acts as external cache memory.
  • RAM random access memory
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous Dynamic random access memory
  • SDRAM synchronous Dynamic random access memory
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM Synchronously connect dynamic random access memory
  • direct rambus RAM direct rambus RAM
  • Multiple appearing in the embodiments of the present application means two or more.
  • connection in the embodiment of the present application refers to various connection methods such as direct connection or indirect connection to realize communication between devices, which is not limited in the embodiment of the present application.

Abstract

一种提高激光雷达分辨率的方法及装置、激光雷达,激光雷达具有多个实际通道,其中,一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元,该方法包括:确定至少一个待生成的插值通道(101);对于各个待生成的插值通道,分别确定多个实际通道中与该待生成的插值通道相关的一个或多个关联通道(102);确定该一个或多个关联通道相对于待生成的插值通道的权重(103);根据一个或多个关联通道的波形信息及其权重生成插值通道的波形,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与激光雷达对应的点云数据(104)。该方案可以在不增加现有激光雷达硬件负荷的基础上,有效提高其分辨率。

Description

提高激光雷达分辨率的方法及装置、激光雷达
本申请要求于2021年8月16日提交中国专利局、申请号为202110938263.7、发明名称为“提高激光雷达分辨率的方法及装置、激光雷达”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及信号处理技术领域,具体涉及一种提高激光雷达分辨率的方法及装置,还涉及一种激光雷达。
背景技术
激光雷达是以发射激光束探测目标的位置、速度等特征量的雷达系统。其工作原理是向目标发射探测信号(激光束),然后将接收到的从目标反射回来的信号(回波脉冲信号)与发射信号进行比较,作适当处理后,就可获得目标的有关信息,如目标距离、方位、高度、速度、姿态、甚至形状等参数,从而对目标进行探测、跟踪和识别。
随着激光雷达技术的发展,对于其分辨率的要求越来越高。不论是机械旋转式雷达,还是MEMS(Micro-Electro-Mechanical System,微电子机械系统)式,或者flash(闪光)面阵雷达及OPA(Optical Parametric Amplification,光学相控阵)激光雷达,能够获得更高的分辨率都是提升激光雷达性能参数的一个重要指标。现有技术中,通常有两种方式来提高分辨率。一种是通过硬件设置,通过增加收发对、以及相应的ADC(analog to digital converter,模数转换)/TDC(time to digital converter,时间数字转换器)通道的方式来满足高分辨率的需求,这种方式不仅会占用较多的运算资源,而且会大大增加设备功耗。此外,增加收发对还会增加通道之间相互串扰的可能性,会导致 探测的精确度降低。另一种是对激光雷达输出的点云信息进行诸如深度卷积神经网络处理之类的方式,通过计算来获得一些位置上的新点云,从而提升分辨率。
但是,直接基于点云信息来进行神经网络处理的问题在于,基于点云计算得到的新点云,没有可直接依据的回波脉冲信号,其准确性并不够高。
发明内容
本申请实施例一方面提供一种提高激光雷达分辨率的方法及装置,在不增加现有激光雷达硬件负荷的基础上,有效提高其分辨率。
本申请实施例一方面提供一种激光雷达,与同样硬件架构的激光雷达相比,可以具有更高的分辨率。
为此,本发明实施例提供如下技术方案:
一种提高激光雷达分辨率的方法,所述激光雷达具有多个实际通道,其中,一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元,所述方法包括:
确定至少一个待生成的插值通道;
对于各个待生成的插值通道,分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道;
确定该一个或多个关联通道相对于所述待生成的插值通道的权重;
根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据。
可选地,所述确定至少一个待生成的插值通道的步骤进一步包括:根据所需的插值的视场角范围,确定至少一个待生成的插值通道。
可选地,至少一个插值通道分布在全部或部分实际通道之间。
可选地,所述分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道的步骤进一步包括:将与所述插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道。
可选地,所述关联通道的权重根据以下任意一项或多项确定:
-所述关联通道与所述插值通道的距离;
-所述关联通道的信号质量;
-所述关联通道对应的视场角。
可选地,所述激光雷达的发射单元及其对应的接收单元均为二维排布。
可选地,所述待生成的插值通道对应的多个关联通道中至少有两个实际通道纵向相邻,并且,至少有两个实际通道横向相邻。
可选地,当所述激光雷达采用多脉冲编码时,所述根据所述关联通道的波形信息及其权重生成所述插值通道的波形包括:根据所述关联通道接收到的第一个脉冲波形信息及其权重生成所述插值通道的波形。
可选地,所述激光雷达在一个周期内发射多次信号光;所述方法还包括:在每次发射所述信号光后,根据所获得的各个实际通道以及各个插值通道的波形信息,确定与各个波形信息对应的本次发射对应的点云数据;根据一个周期内获得的所有点云数据,确定该激光雷达的一帧点云数据。
一种提高激光雷达分辨率的装置,所述激光雷达具有多个实际通道,其中,一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元,所述装置包括:
插值通道确定模块,用于确定至少一个待生成的插值通道;
关联通道确定模块,用于对于各个待生成的插值通道,分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道;
权重确定模块,用于确定该一个或多个关联通道相对于所述待生成的插值通道的权重;
插值通道生成模块,用于根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据。
可选地,所述插值通道确定模块,具体用于根据所需的插值的视场角范围,确定至少一个待生成的插值通道。
可选地,至少一个插值通道分布在全部或部分实际通道之间。
可选地,所述关联通道确定模块,具体用于将与所述插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道。
可选地,所述关联通道确定模块根据以下任意一项或多项确定所述关联通道的权重:
-所述关联通道与所述插值通道的距离;
-所述关联通道的信号质量;
-所述关联通道对应的视场角。
可选地,所述激光雷达的发射单元及其对应的接收单元均为二维排布。
可选地,所述待生成的插值通道对应的多个关联通道中至少有两个实际通道纵向相邻,并且,至少有两个实际通道横向相邻。
可选地,所述激光雷达采用多脉冲编码;所述插值通道生成模块,具体用于根据所述关联通道接收到的第一个脉冲波形信息及其权重 生成所述插值通道的波形。
可选地,所述激光雷达在一个周期内发射多次信号光;所述装置还包括:第一数据确定模块,用于在每次发射所述信号光后,根据所获得的各个实际通道以及各个插值通道的波形信息,确定与各个波形信息对应的本次发射对应的点云数据;第二数据确定模块,用于根据一个周期内获得的所有点云数据,确定该激光雷达的一帧点云数据。
一种激光雷达,包括前面所述的提高激光雷达分辨率的装置。
本发明实施例提供的提高激光雷达分辨率的方法及装置,基于激光雷达一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元这样的硬件结构,在不改变其硬件结构的基础上,对实际通道进行插值,生成插值通道,并且在进行插值时,根据多个实际通道中与待生成的插值通道相关的一个或多个关联通道的波形信息及该关联通道的权重,生成插值通道。这样,根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据,从而在不增加现有激光雷达硬件负荷的基础上,有效提高了其分辨率,也就是说,包括该装置的激光雷达,与同样硬件架构的激光雷达相比,可以具有更高的分辨率。
附图说明
图1是本发明实施例提高激光雷达分辨率的方法的一种流程图;
图2是本发明实施例中插值通道的一种示例;
图3是本发明实施例中插值通道的另一种示例;
图4是本发明实施例中插值通道的另一种示例;
图5是本发明实施例中插值通道的另一种示例;
图6是本发明实施例中生成插值通道的波形的一种示例;
图7是本发明实施例中生成插值通道的波形的另一种示例;
图8是本发明实施例中二维排布的激光雷达中插值通道示意图;
图9是本发明实施例提高激光雷达分辨率的方法的另一种流程图;
图10是本发明实施例提高激光雷达分辨率的装置的一种结构框图;
图11是本发明实施例提高激光雷达分辨率的装置的另一种结构框图。
具体实施方式
为使本发明的上述目的、特征和有益效果能够更为明显易懂,下面结合附图对本发明的具体实施例做详细的说明。
针对现有技术中需要高分辨率的应用需求,采用增加硬件通道,即增加收发对及相应通道内其他硬件配置的方式所带来的硬件负载及设备功耗增加等问题,本发明实施例提供一种提高激光雷达分辨率的方法及装置,基于激光雷达一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元这样的硬件结构,在不改变其硬件结构的基础上,对实际通道进行插值,生成插值通道,并且在进行插值时,根据多个实际通道中与待生成的插值通道相关的一个或多个关联通道的波形信息及该关联通道的权重,生成插值通道。从而在不增加现有激光雷达硬件负荷的基础上,有效提高其分辨率。
本发明实施例中,所述激光雷达具有多个实际通道,其中,一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元。
如图1所示,是本发明实施例提高激光雷达分辨率的方法的一种流程图,包括以下步骤:
步骤101,确定至少一个待生成的插值通道。
具体地,可以根据所需的插值的视场角范围,确定用于生成至少一个待生成的插值通道的多个实际通道,并根据待提升的分辨率水 平,确定每两个相邻实际通道之间的插值通道数量。
其中,激光雷达的视场有水平视场范围和垂直视场范围,水平视场角和垂直视场角范围用于指示激光雷达分别在水平方向和垂直方向上的扫描范围。例如,如果是机械旋转激光雷达,亦即发射模块和接收模块同时由旋转机构带动旋转的激光雷达,其水平视场角范围通常为完整的一周,及即水平视场角为360度,而垂直视场角范围通常由激光雷达的发射模块本身包含的发射单元来确定。垂直视场角为水平向上的扫描角度和水平向下的扫描角度之和,比如64线的激光雷达,在水平方向向上的扫描角度为15°,而在水平方向往下扫描的角度为25°,垂直视场角范围为40°。又例如,对于发射模块和接收模块固定,而采用扫描模块来扫描视场的激光雷达来说,水平视场角范围和垂直视场角范围通常由扫描模块的扫描范围来确定。
亦即,当根据本发明进行插值时,首先确定需要扩展视场的部分或全部视场范围。例如,当需要对全视场角范围整体进行插值,且希望分辨率提升一倍时,可以确定每两个相邻的实际通道中间均有一个待生成的插值通道;;又例如,当需求包括对垂直视场角范围内±5°的视场范围的分辨率加密至三倍时,则确定在该视场范围内的每两个相邻实际通道之间会均匀增加两个插值通道。
当然,本领域技术人员可以理解,也可以根据待检测目标的大小、高度等信息选择所述垂直视场角内的某个范围作为所需插值的视场角范围,在该视场角范围内确定至少一个待生成的插值通道。
另外,根据需要,可以有一个或多个插值通道分布在全部或部分实际通道之间。
继续以前面提到的64线的激光雷达为例,理想情况下,通常假定激光光束的分布是均匀的,则该64线的激光雷达角度分辨率为40°/64=0.625°。但在有些应用中,激光雷达的光束并不是垂直均匀分布的,比如,对于无人驾驶应用中用于地面车辆检测的激光雷达,为了达到既检测到障碍物,同时又能将激光束集中到中间感兴趣的车 辆,其光束的分布通常为中间密,两边稀疏的分布。
因此,在实际应用中,可以在所需的插值的视场角范围内,确定有多个插值通道,这些插值通道可以是均匀地分布在实际通道之间,也可以是非均匀地分布在实际通道之间,而且,在两个实际通道之间可以没有、或者有一个或多个插值通道,对此本发明实施例不做限定。
下面举例说明确定插值通道的方式。
例如,当每两个实际通道中间插值出一个插值通道,如图2所示,则实际通道CH1和实际通道CH2之间插值出插值通道I_CH1,实际通道CH2和实际通道CH3之间插值出插值通道I_CH2,依此类推。如果实际通道有N个,则插值后总通道数(即实际通道数+插值通道数)为2N-1,基本上是原先实际通道数的2倍。
再例如,在两个实际通道之间插值出两个插值通道。如图3所示,在实际通道CH1和实际通道CH2之间插值出插值通道I_CH1、插值通道I_CH2;实际通道CH2和实际通道CH3之间插值出插值通道I_CH3、插值通道I_CH4;实际通道CH3和实际通道CH4之间插值出插值通道I_CH5、插值通道I_CH6,依此类推。如果实际通道有N个,则插值后总通道数为3N-2,基本上是原先实际通道数的3倍。
再例如,在两个实际通道之间插值出一个或多个插值通道。如图4所示,在实际通道CH1和实际通道CH2之间插值出插值通道I_CH1;实际通道CH2和实际通道CH3之间插值出插值通道I_CH2;实际通道CH3和实际通道CH4之间插值出插值通道I_CH3、插值通道I_CH4。
再例如,还可以只在某些实际通道附近插值,如图5所示,仅对垂直视场中部的上下5°范围内的实际通道进行插值,以提高该视场区域的分辨率。
步骤102,对于各个待生成的插值通道,分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道。
具体地,对于每个待生成的插值通道,可以将所有的实际通道作为该插值通道的关联通道。当然,为了减轻后续进行插值时的运算量,还可以只将与该插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道,对此本发明实施例不做限定。
步骤103,确定该一个或多个关联通道相对于所述待生成的插值通道的权重。
前面提到,可以将与该插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道,由于不同的实际通道对该插值通道会有不同的影响,因此,在进行插值计算时,需要考虑这些影响。为了便于后续的计算,可以将这些影响表示为该关联通道的权重,也就是说,为该插值通道的每个关联通道设置相应的权重。
在实际应用中,所述关联通道的权重可以根据但不限于以下任意一项或多项来确定:
-所述关联通道与所述插值通道的距离,比如距离越近,距离权重越大;
-所述关联通道的信号质量,比如信号质量越好,信号权重越大;
-所述关联通道对应的视场角,比如视场角是否在感兴趣区域内(ROI),当视场角在感兴趣区域内,则其视场角权重较大,反之,其视场角权重较小。
比如,在两个实际通道CH1和CH2中间插值出一个插值通道时,将这两个相邻的实际通道作为该插值通道的关联通道,每个关联通道的权重为0.5。
在两个实际通道间插值出多个插值通道时,可根据该插值通道相对于两侧实际通道的位置调整各自的权重。比如,对于实际通道CH1和实际通道CH2之间需要插值出插值通道I_CH1和插值通道I_CH2的情况,假定两个插值通道I_CH1和I_CH2均匀分布于实际通道CH1和实际通道CH2之间,并将实际通道CH1和实际通道CH2作为插值 通道I_CH1和插值通道I_CH2的关联通道,则:对于插值通道I_CH1,其关联通道I_CH1的权重为2/3,其关联通道I_CH2的权重为1/3;而对于插值通道I_CH2,其关联通道I_CH1的权重为1/3,其关联通道I_CH2的权重为2/3。
在两个实际通道间插值出多个插值通道时,还可以根据该插值通道相对于两侧实际通道的位置及所述实际通道的信号质量确定各自的权重。例如,设定信号质量最好的通道权重影响因素为1,其直接相邻通道为0.9,次相邻通道为0.8,以此类推。
当采用多种类型的权重来确定各个关联通道的总权重时,可根据需要,分别确定各个类型的权重在总权重中的占比,进而根据各个关联通道相对于插值通道的总权重。
例如,当需要考虑前述距离权重、信号权重以及视场角权重时,该三类权重可分别占总权重的1/3;又例如,当仅考虑距离权重和信号权重时,该两类权重可分别占总权重的1/2;再例如,当需要更多考虑信号质量对于插值通道的影响时,可设置距离权重占总权重1/3,信号权重占2/3等。本领域技术人员可根据实际情况和需求来设置各个类别权重在总权重中的占比,以获得最优质量的插值通道,在此不再赘述。
步骤104,根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据。
对于现有的N个实际通道,设定每个通道的信号为Wave(N)。Wave(N)用于表示实际通道获得的波形信息。具体地,可以包括如下不同种类的信息:
1)具体的采样波形;其中,采样波形可以用多个采样点来表征,或者,基于采样点拟合得到的曲线来表征。
2)常用的波形脉冲相关信息,比如:前沿点、脉宽、峰值等。
进行插值时,根据与该插值通道相关的关联通道的波形信息,并结合各个关联通道的权重,来获得该插值通道的波形。
用In_Wave(M)来表征第M个插值通道,前面提到,对于每个待生成的插值通道,可以将所有的实际通道作为该插值通道的关联通道。因此,可以按照以下通用的信号合成公式得到插值通道的波形:
In_Wave(M)=A M,1×Wave(1)+A M,2×Wave(2)+……+A M,N×Wave(N);
其中,A M,i(i=1,2,3,…,N)为各个实际通道的权重信息,用于表征各个实际探测通道相对于In_Wave(M)的影响大小,A M,1+A M, 2+……+A M,N=1。
根据该通用公式,可以将其中与该插值通道没有关联的实际通道,即该插值通道的非关联通道,的权重设为0。
当然,在计算时,也可以只选择该插值通道的关联通道的波形信息及所述关联通道的权重进行计算,对此本发明实施例不做限定。
比如,图6所示的插值方式,以根据实际通道CH1和CH2的波形信息得到CH1.5通道,即插值通道1_CH1的波形信号,计算公式如下:
Wave(CH1.5)=A 1.5,1×Wave(CH1)+A 1.5,2×Wave(CH2);
当1.5通道位于通道CH1和CH2的中间位置时,可以取A 1.5,1=A 1.5,2=0.5。
再比如,前面图3所示的插值方式,在实际通道CH1和实际通道CH2之间需要插值出插值通道I_CH1和插值通道I_CH2,根据实际通道CH1和实际通道CH2的波形信息得到插值通过I_CH1和插值通道I_CH2,计算公式如下:
In_Wave(I_CH1)=2/3*Wave(CH1)+1/3*Wave(CH2);
In_Wave(I_CH2)=1/3*Wave(CH1)+2/3*Wave(CH2)。
再比如,图7所示的插值方式,需要在实际通道P附近做插值,各相邻两个方向均扩展五个插值通道,各插值通道的波形计算如下:
In_Wave(P-5)=A P-5,1*Wave(P-5)+A N+1,2*Wave(P-4);
In_Wave(P-4)=A P-4,1*Wave(P-4)+A N+2,2*Wave(P-3);
……
In_Wave(P+5)=A P+4,1*Wave(P+4)+A P+5,2*Wave(P+5)。
再比如,假设插值通道Wx的两侧实际通道(wl和wr)信号权重分别为0.8和0.7,插值通道Wx与两侧实际通道的距离分别为1/3和1/3;其中,距离权重在总权重中占比1/2,信号权重在总权重中占比1/2。将实际通道wl和实际通道wr作为插值通道Wx的关联通道,则:对于插值通道Wx,其关联通道wl的权重为2/3,其关联通道I_CH2的权重为1/3;而对于插值通道I_CH2,其关联通道I_CH1的权重为1/3,其关联通道I_CH2的权重为2/3。则插值通道Wx的波形计算如下:
Figure PCTCN2022077589-appb-000001
需要说明的是,在考虑多种类型权重的情况下,基于关联通道的波形信息及其权重生成插值通道的波形的计算可参照上述插值通道Wx的计算方式,在此不再一一举例说明。
本发明实施例提供的提高激光雷达分辨率的方法,基于激光雷达一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元这样的硬件结构,在不改变其硬件结构的基础上,对实际通道进行插值,生成插值通道,并且在进行插值时,根据多个实际通道中与待生成的插值通道相关的一个或多个关联通道的波形信息及该关联通道的权重,生成插值通道。这样,根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据,从而在不增加现有激光雷达硬件负荷的基础上,有效提高了其分辨率,也就是说,包括该装置的激光雷达,与同样硬件架构的激光雷达相比,可以具有更高的分辨率。
需要说明的是,在实际应用中,有些激光雷达中,不同的探测通道(即实际通道)存在不同的选通时间,针对这种情况,在确定每个插值通道的关联通道及其权重时,可根据各实际通道的选通时间,相应地调整所述插值通道的相邻通道。也就是说,当所述多个实际通道的选通时间不同时,对于待生成的插值通道,在不同的选通时间,分别选择不同的关联通道以生成该插值通道。例如,要求生成与某一视场角对应的插值通道,在选通模式1下可以由实际通道CH5、CH7的波形信息来生成该插值通道的波形,在选通模式2下可以由实际通道CH4、CH6的波形信息来生成该插值通道的波形等等,并且两种模式下面的实际通道可能采用不同的权重值。
进一步地,在有些激光雷达中,激光信号可能会采用多脉冲编码,针对多脉冲编码的情况,由于第二个脉冲到来的时序不易对齐,因此也可根据所述关联通道接收到的第一个脉冲波形信息及其权重生成所述插值通道的波形。
进一步地,在有些激光雷达中,激光雷达的发射单元及其对应的接收单元均为二维排布。如图8所示,针对这种情况,可以针对二维的接收通道进行插值,所述待生成的插值通道对应的多个关联通道中至少有两个实际通道纵向相邻,并且,至少有两个实际通道横向相邻,图8中示例的插值通道为I_CH12、I_CH22、I_CH13、I_CH23。
针对这种二维通道,其插值通道可以按照以下公式来得到:
In_Wave(i,j)=A i,j-1*Wave(i,j-1)+A i+1,j-1*Wave(i+1,j-1)+A i+1,j*Wave(i+1,j)+A i+1,j*Wave(i+1,j);
其中,i、j分别表示实际通道的横向和纵向排布序号。
如图9所示,是本发明实施例提高激光雷达分辨率的方法的另一种流程图。
在该实施例中,所述激光雷达在一个周期内发射多次信号光,该方法包括以下步骤:
步骤901,确定至少一个待生成的插值通道。
步骤902,对于各个待生成的插值通道,分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道。
步骤903,确定该一个或多个关联通道相对于所述待生成的插值通道的权重。
步骤904,根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形。
上述步骤901至步骤904与前面图1中步骤101至步骤104相同,在此不再赘述。
步骤905,在每次发射信号光后,根据所获得的各个实际通道以及各个插值通道的波形信息,确定与各个波形信息对应的本次发射对应的点云数据。
步骤906,根据一个周期内获得的所有点云数据,确定该激光雷达的一帧点云数据。
所述点云数据可以作为所述激光雷达的输出,相对于只有实际通道输出的点云数据,基于插值通道及实际通道输出的点云数据可以使所述激光雷达具有更高的分辨率,在不增加硬件负载的情况下,有效提升激光雷达性能。
相应地,本发明实施例还提供一种提高激光雷达分辨率的装置,如图10所示,是该装置的一种结构框图。
在该实施例中,所述装置包括以下各模块:
插值通道确定模块11,用于确定至少一个待生成的插值通道;
关联通道确定模块12,用于对于各个待生成的插值通道,分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道;
权重确定模块13,用于确定该一个或多个关联通道相对于所述待生成的插值通道的权重;
插值通道生成模块14,用于根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形信息,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据。
其中,所述插值通道确定模块11具体可以根据所需的插值的视场角范围,确定至少一个待生成的插值通道。另外,可以有至少一个插值通道分布在全部或部分实际通道之间。
其中,所述关联通道确定模块12具体可以将与所述插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道。当然,关联通道的权重的影响因素可以有多种,比如,可以根据但不限于以下任意一项或多项确定所述关联通道的权重:
-所述关联通道与所述插值通道的距离;
-所述关联通道的信号质量;
-所述关联通道对应的视场角。
所述插值通道生成模块14根据一个或多个关联通道的波形信息及其权重生成插值通道的波形的具体计算方式在前面本发明方法的描述中已有详细说明,在此不再赘述。
本发明实施例提供的提高激光雷达分辨率的装置,基于激光雷达一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元这样的硬件结构,在不改变其硬件结构的基础上,对实际通道进行插值,生成插值通道,并且在进行插值时,根据多个实际通道中与待生成的插值通道相关的一个或多个关联通道的波形信息及该关联通道的权重,生成插值通道。这样,根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据,从而在不增加现有激光雷达硬件负荷的基础上,有效提高了其分辨率,也 就是说,包括该装置的激光雷达,与同样硬件架构的激光雷达相比,可以具有更高的分辨率。
需要说明的是,在有些激光雷达中,激光雷达的发射单元及其对应的接收单元可以采用二维排布的形式。相应地,所述待生成的插值通道对应的多个关联通道中至少有两个实际通道纵向相邻,并且,至少有两个实际通道横向相邻。
在一些非限制性示例中,所述激光雷达可以采用多脉冲编码。针对多脉冲编码的情况,由于第二个脉冲到来的时序不易对齐,因此所述插值通道生成模块14也可以根据所述关联通道接收到的第一个脉冲波形信息及其权重生成所述插值通道的波形。
在一些非限制性示例中,所述激光雷达在一个周期内可以发射多次信号光。相应地,如图11所示,示出了本发明实施例提高激光雷达分辨率的装置的另一种结构框图。
与图10所示实施例的区别在于,在该实施例中,所述装置还包括以下各模块:
第一数据确定模块15,用于在每次发射所述信号光后,根据所获得的各个实际通道以及各个插值通道的波形信息,确定与各个波形信息对应的本次发射对应的点云数据;
第二数据确定模块16,用于根据一个周期内获得的所有点云数据,确定该激光雷达的一帧点云数据。
需要说明的是,所述点云数据可以作为所述激光雷达的输出,相对于只有实际通道输出的点云数据,基于插值通道及实际通道输出的点云数据可以使所述激光雷达具有更高的分辨率,在不增加硬件负载的情况下,有效提升激光雷达性能。
具有上述提高激光雷达分辨率的装置的激光雷达,相对于同样通道数量的现有激光雷达,可以具有更高的分辨率和扫描性能。
需要说明的是,本发明实施例中所提到的激光雷达,可以是任意结构类型的激光雷达,比如机械旋转式雷达,MEMS(Micro-Electro-Mechanical System,微电子机械系统)式雷达,或者flash(闪光)面阵激光雷达,或者OPA(Optical Parametric Amplification,光学相控阵)激光雷达等,对此本发明实施例不做限定。
在具体实施中,关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。
例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
本发明实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质为非易失性存储介质或非瞬态存储介质,其上存储有计算机程序,所述计算机程序被处理器运行时执行上述图1或图9对应实施例提供的方法的步骤。
本发明实施例还提供了另一种提高激光雷达分辨率的装置,包括 存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图1或图9对应实施例所提供的方法的步骤。
本发明实施例还提供了一种电子设备,包括存储器和处理器,所述存储器上存储有可在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述图1或图9对应实施例所提供的方法的步骤。
在本发明实施例中,所述处理器可以为中央处理单元(central processing unit,简称CPU),该处理器还可以是其他通用处理器、数字信号处理器(digital signal processor,简称DSP)、专用集成电路(application specific integrated circuit,简称ASIC)、现成可编程门阵列(field programmable gate array,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,简称ROM)、可编程只读存储器(programmable ROM,简称PROM)、可擦除可编程只读存储器(erasable PROM,简称EPROM)、电可擦除可编程只读存储器(electrically EPROM,简称EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,简称RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器(random access memory,简称RAM)可用,例如静态随机存取存储器(static RAM,简称SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,简称SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,简称DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,简称ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,简称SLDRAM)和直接内存总线随机存取存 储器(direct rambus RAM,简称DR RAM)。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,表示前后关联对象是一种“或”的关系。
本申请实施例中出现的“多个”是指两个或两个以上。
本申请实施例中出现的第一、第二等描述,仅作示意与区分描述对象之用,没有次序之分,也不表示本申请实施例中对设备个数的特别限定,不能构成对本申请实施例的任何限制。
本申请实施例中出现的“连接”是指直接连接或者间接连接等各种连接方式,以实现设备间的通信,本申请实施例对此不做任何限定。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (19)

  1. 一种提高激光雷达分辨率的方法,所述激光雷达具有多个实际通道,其中,一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元,其特征在于,所述方法包括:
    确定至少一个待生成的插值通道;
    对于各个待生成的插值通道,分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道;
    确定该一个或多个关联通道相对于所述待生成的插值通道的权重;
    根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据。
  2. 根据权利要求1所述的方法,其特征在于,所述确定至少一个待生成的插值通道的步骤进一步包括:
    根据所需的插值的视场角范围,确定至少一个待生成的插值通道。
  3. 根据权利要求1所述的方法,其特征在于,至少一个插值通道分布在全部或部分实际通道之间。
  4. 根据权利要求1所述的方法,其特征在于,所述分别确定所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道的步骤进一步包括:
    将与所述插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道。
  5. 根据权利要求1所述的方法,其特征在于,所述关联通道的权重根据以下任意一项或多项确定:
    -所述关联通道与所述插值通道的距离;
    -所述关联通道的信号质量;
    -所述关联通道对应的视场角。
  6. 根据权利要求1所述的方法,其特征在于,所述激光雷达的发射单元及其对应的接收单元均为二维排布。
  7. 根据权利要求6所述的方法,其特征在于,所述待生成的插值通道对应的多个关联通道中至少有两个实际通道纵向相邻,并且,至少有两个实际通道横向相邻。
  8. 根据权利要求1至6任一项所述的方法,其特征在于,当所述激光雷达采用多脉冲编码时,所述根据所述关联通道的波形信息及其权重生成所述插值通道的波形包括:
    根据所述关联通道接收到的第一个脉冲波形信息及其权重生成所述插值通道的波形。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,所述激光雷达在一个周期内发射多次信号光;所述方法还包括:
    在每次发射所述信号光后,根据所获得的各个实际通道以及各个插值通道的波形信息,确定与各个波形信息对应的本次发射对应的点云数据;
    根据一个周期内获得的所有点云数据,确定该激光雷达的一帧点云数据。
  10. 一种提高激光雷达分辨率的装置,所述激光雷达具有多个实际通道,其中,一个实际通道对应发射端的一个发射单元以及探测端的一个探测单元,其特征在于,所述装置包括:
    插值通道确定模块,用于确定至少一个待生成的插值通道;
    关联通道确定模块,用于对于各个待生成的插值通道,分别确定 所述多个实际通道中与该待生成的插值通道相关的一个或多个关联通道;
    权重确定模块,用于确定该一个或多个关联通道相对于所述待生成的插值通道的权重;
    插值通道生成模块,用于根据所述一个或多个关联通道的波形信息及其权重生成所述插值通道的波形,以根据所获得的各个实际通道以及各个插值通道的波形信息,获得与所述激光雷达对应的点云数据。
  11. 根据权利要求10所述的装置,其特征在于,
    所述插值通道确定模块,具体用于根据所需的插值的视场角范围,确定至少一个待生成的插值通道。
  12. 根据权利要求10所述的装置,其特征在于,至少一个插值通道分布在全部或部分实际通道之间。
  13. 根据权利要求10所述的装置,其特征在于,
    所述关联通道确定模块,具体用于将与所述插值通道的距离在设定范围内的实际通道作为所述插值通道的关联通道。
  14. 根据权利要求10所述的装置,其特征在于,所述关联通道确定模块根据以下任意一项或多项确定所述关联通道的权重:
    -所述关联通道与所述插值通道的距离;
    -所述关联通道的信号质量;
    -所述关联通道对应的视场角。
  15. 根据权利要求10所述的装置,其特征在于,所述激光雷达的发射单元及其对应的接收单元均为二维排布。
  16. 根据权利要求15所述的装置,其特征在于,所述待生成的插值通道对应的多个关联通道中至少有两个实际通道纵向相邻,并 且,至少有两个实际通道横向相邻。
  17. 根据权利要求10至16任一项所述的装置,其特征在于,所述激光雷达采用多脉冲编码;
    所述插值通道生成模块,具体用于根据所述关联通道接收到的第一个脉冲波形信息及其权重生成所述插值通道的波形。
  18. 根据权利要求10至16任一项所述的装置,其特征在于,所述激光雷达在一个周期内发射多次信号光;所述装置还包括:
    第一数据确定模块,用于在每次发射所述信号光后,根据所获得的各个实际通道以及各个插值通道的波形信息,确定与各个波形信息对应的本次发射对应的点云数据;
    第二数据确定模块,用于根据一个周期内获得的所有点云数据,确定该激光雷达的一帧点云数据。
  19. 一种激光雷达,包括如权利要求10至18任一项所述的提高激光雷达分辨率的装置
PCT/CN2022/077589 2021-08-16 2022-02-24 提高激光雷达分辨率的方法及装置、激光雷达 WO2023019901A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110938263.7 2021-08-16
CN202110938263.7A CN115704887A (zh) 2021-08-16 2021-08-16 提高激光雷达分辨率的方法及装置、激光雷达

Publications (1)

Publication Number Publication Date
WO2023019901A1 true WO2023019901A1 (zh) 2023-02-23

Family

ID=85180373

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/077589 WO2023019901A1 (zh) 2021-08-16 2022-02-24 提高激光雷达分辨率的方法及装置、激光雷达

Country Status (2)

Country Link
CN (1) CN115704887A (zh)
WO (1) WO2023019901A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597096A (zh) * 2018-12-01 2019-04-09 北醒(北京)光子科技有限公司 一种激光雷达点云处理系统及方法
DE102019200733A1 (de) * 2019-01-22 2020-07-23 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung von mindestens einer räumlichen Position und Orientierung mindestens einer getrackten Messvorrichtung
CN111541015A (zh) * 2020-04-07 2020-08-14 南京市德赛西威汽车电子有限公司 一种改善天线角度分辨率的方法及天线
CN111708038A (zh) * 2020-06-23 2020-09-25 上海埃威航空电子有限公司 基于姿态传感器和gnss的无人船激光雷达点云数据校正方法
CN112230198A (zh) * 2019-07-15 2021-01-15 天津大学 一种基于梯度窗宽权重修正的激光雷达回波波形去噪方法
CN112313534A (zh) * 2019-05-31 2021-02-02 深圳市大疆创新科技有限公司 一种多通道激光雷达点云插值的方法和测距装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109597096A (zh) * 2018-12-01 2019-04-09 北醒(北京)光子科技有限公司 一种激光雷达点云处理系统及方法
DE102019200733A1 (de) * 2019-01-22 2020-07-23 Carl Zeiss Industrielle Messtechnik Gmbh Verfahren und Vorrichtung zur Bestimmung von mindestens einer räumlichen Position und Orientierung mindestens einer getrackten Messvorrichtung
CN112313534A (zh) * 2019-05-31 2021-02-02 深圳市大疆创新科技有限公司 一种多通道激光雷达点云插值的方法和测距装置
CN112230198A (zh) * 2019-07-15 2021-01-15 天津大学 一种基于梯度窗宽权重修正的激光雷达回波波形去噪方法
CN111541015A (zh) * 2020-04-07 2020-08-14 南京市德赛西威汽车电子有限公司 一种改善天线角度分辨率的方法及天线
CN111708038A (zh) * 2020-06-23 2020-09-25 上海埃威航空电子有限公司 基于姿态传感器和gnss的无人船激光雷达点云数据校正方法

Also Published As

Publication number Publication date
CN115704887A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN106842210B (zh) 一种新的多子阵合成孔径声纳快速成像算法
WO2021062914A1 (zh) 一种基于mimo体制的提高雷达角度分辨率的布局及方法
CN108490443B (zh) 基于解析解及NUFFT的多子阵合成孔径声纳ωk成像算法
CN106772326B (zh) 一种多子阵合成孔径声纳相位误差分析方法
EP4109131A1 (en) Laser radar parameter calibration method and apparatus
CN103033816A (zh) 基于圆弧扫描转换的合成孔径聚焦超声成像实现方法
CN109298417B (zh) 一种基于雷达信号处理的建筑物内部结构探测方法及装置
CN111352105B (zh) 用于目标跟踪的测角方法
US20170269206A1 (en) Radar apparatus, observing method and non-transitory computer readable medium
WO2021189439A1 (zh) 基于连续波测距的补偿方法、装置和激光雷达
CN108020834B (zh) 基于改进edpca的运动目标检测方法、装置及电子设备
WO2023019901A1 (zh) 提高激光雷达分辨率的方法及装置、激光雷达
US20170269194A1 (en) Signal processing device, radar apparatus and signal processing method
WO2021056434A1 (zh) 一种探测对象的检测方法、探测设备及毫米波雷达
US20210323560A1 (en) Vehicle speed calculation method, system, device, and storage medium
WO2021170133A1 (zh) 提升目标探测精度的方法、集成电路、无线电器件及电子设备
CN116500626B (zh) 一种多接收阵元数据收发合置转换方法
JP2024009334A (ja) レーダーシステム
AU2010297455B2 (en) Method and device for measuring a profile of the ground
CN106918809B (zh) 快速干涉合成孔径声纳原始回波时域仿真方法
US20220284543A1 (en) Signal processing apparatus and signal processing method
CN115015874A (zh) 激光雷达串扰点云处理方法、装置、电子设备和介质
RU2366971C1 (ru) Способ измерения угловых координат целей
CN110244285B (zh) 一种合成孔径成像声呐斜距向非均匀分段补偿方法及系统
CN114184256A (zh) 一种多目标背景下的水位测量方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22857222

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022857222

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022857222

Country of ref document: EP

Effective date: 20240318