WO2023019784A1 - 一种磁流体密封轴 - Google Patents

一种磁流体密封轴 Download PDF

Info

Publication number
WO2023019784A1
WO2023019784A1 PCT/CN2021/132019 CN2021132019W WO2023019784A1 WO 2023019784 A1 WO2023019784 A1 WO 2023019784A1 CN 2021132019 W CN2021132019 W CN 2021132019W WO 2023019784 A1 WO2023019784 A1 WO 2023019784A1
Authority
WO
WIPO (PCT)
Prior art keywords
shaft
shaft body
fluid
chamber
magnetic fluid
Prior art date
Application number
PCT/CN2021/132019
Other languages
English (en)
French (fr)
Inventor
高强
王铖熠
张怀东
胡冬冬
程实然
刘海洋
郭颂
许开东
Original Assignee
江苏鲁汶仪器有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏鲁汶仪器有限公司 filed Critical 江苏鲁汶仪器有限公司
Publication of WO2023019784A1 publication Critical patent/WO2023019784A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C3/00Shafts; Axles; Cranks; Eccentrics
    • F16C3/02Shafts; Axles
    • F16C3/03Shafts; Axles telescopic
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/16Sealings between relatively-moving surfaces
    • F16J15/40Sealings between relatively-moving surfaces by means of fluid
    • F16J15/43Sealings between relatively-moving surfaces by means of fluid kept in sealing position by magnetic force
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/50Sealings between relatively-movable members, by means of a sealing without relatively-moving surfaces, e.g. fluid-tight sealings for transmitting motion through a wall
    • F16J15/52Sealings between relatively-movable members, by means of a sealing without relatively-moving surfaces, e.g. fluid-tight sealings for transmitting motion through a wall by means of sealing bellows or diaphragms

Definitions

  • the present application relates to the technical field of semiconductor processing equipment, in particular to a magnetic fluid sealed shaft.
  • the conventional ferrofluid seal shaft can only realize the rotary seal. However, in some specific scenarios, it is also desired that the ferrofluid seal shaft can output linear displacement. If a drive mechanism is directly added to the ferrofluid seal shaft, it will affect the performance of the rotary seal. reliability.
  • the purpose of this application is to provide a magnetic fluid seal shaft that can output linear displacement while realizing rotary sealing.
  • the present application provides a magnetic fluid seal shaft, including a shaft sleeve and a shaft body, the shaft body is installed on the shaft sleeve, and the shaft body can rotate relative to the shaft sleeve, the A magnetic fluid is arranged between the shaft body and the shaft sleeve for sealing; it also includes a telescopic part, the telescopic part includes a telescopic shaft, and the telescopic shaft is built into the shaft body and can be extended relative to the shaft body Or retract.
  • the telescopic shaft and the shaft body are independent of each other.
  • the shaft body is used to cooperate with the shaft sleeve to achieve rotary sealing, while the telescopic shaft is used to output linear displacement, so that the shaft body does not need to participate in the output of linear displacement.
  • the shaft The rotary seal between the body and the shaft sleeve will not be affected, and the introduction of the telescopic shaft can complement the defect that the conventional magnetic fluid seal shaft cannot output linear displacement; at the same time, the telescopic shaft is designed to be built into the shaft body to avoid damage to The outer space occupied by the magnetic fluid seal shaft can reduce the volume of the equipment and improve the integration of the equipment.
  • the shaft body is provided with a slot extending from one end in the axial direction to the other end in the axial direction but not penetrating through, the slot includes a bottom wall of the slot and a peripheral wall of the slot, and a piston is mounted on the outer casing of the telescopic shaft,
  • the piston is slidably sealed with the peripheral wall of the groove; it also includes a cover, a first seal and a fluid supply and recovery component, the cover seal is arranged at the notch of the groove, and the cover A through hole is provided, the telescopic shaft protrudes from the slot through the through hole, the first seal can seal the gap between the through hole and the telescopic shaft, and the piston and the seal A first chamber is formed between the covers, a second chamber is formed between the piston and the bottom wall of the groove, and at least one of the first chamber and the second chamber is connected with the fluid supply and recovery part One is connected.
  • the bottom wall of the groove is provided with a groove, and the telescopic shaft is inserted into the groove.
  • the first sealing member is a bellows
  • the bellows is sleeved on the telescopic shaft, one end of the bellows is connected to the cover, and the other end of the bellows is connected to the The pistons are connected.
  • a stepped surface is provided at the notch of the groove, the cover is installed on the stepped surface, and a second sealing member is provided between the cover and the stepped surface.
  • an adapter sleeve is also included, the adapter sleeve is fixedly arranged and is rotatably sealed with the shaft body, the adapter sleeve is provided with a first flow port and a second flow port, and the first flow port
  • the fluid supply and recovery components are connected to the second communication port;
  • the shaft body is provided with a first fluid channel and a second fluid channel, and the first fluid channel is used to communicate with the first chamber and the The first communication port and the second fluid channel are used to communicate with the second chamber and the second communication port.
  • a third sealing member is provided between the adapter sleeve and the shaft body, and the first communication port and the second communication port are located between two adjacent third sealing members .
  • a first annular flow channel and a second annular flow channel spaced apart in the axial direction are arranged between the shaft body and the adapter sleeve, and the first flow port passes through the first annular flow channel It communicates with the first fluid passage, and the second communication port communicates with the second fluid passage through the second annular flow passage.
  • two spaced bearings are arranged between the bushing and the shaft body, and the magnetic fluid is arranged between the two bearings.
  • the telescopic shaft is arranged coaxially with the shaft body.
  • Fig. 1 is a three-dimensional structure diagram of a specific embodiment of a magnetic fluid seal shaft provided by the present application (without an adapter sleeve);
  • Fig. 2 is a cross-sectional view of a specific embodiment (equipped with an adapter sleeve) of a magnetic fluid seal shaft provided by the present application;
  • Fig. 3 is a schematic structural view of a specific embodiment of the magnetic fluid seal shaft provided by the present application when the rotating shaft is in a retracted state;
  • Fig. 4 is a schematic structural view of a specific embodiment of the magnetic fluid seal shaft provided by the present application when the rotating shaft is in an extended state.
  • Words such as “first” and “second” mentioned in this article are only for the convenience of describing two or more structures or components with the same or similar structure and/or function, and do not represent any order and/or importance. some special limit.
  • Figure 1 is a three-dimensional structure diagram of a specific embodiment of the magnetic fluid seal shaft provided by the application (without an adapter sleeve)
  • Figure 2 is a perspective view of the magnetic fluid seal shaft provided by the application A cross-sectional view of a specific embodiment (configured with an adapter sleeve)
  • Figure 3 is a schematic structural view of a specific embodiment of the magnetic fluid seal shaft provided by the application when the rotating shaft is in a retracted state
  • Figure 4 is a schematic diagram of the structure provided by the application A schematic structural view of a specific embodiment of the magnetic fluid seal shaft when the rotating shaft is in an extended state.
  • the application provides a magnetic fluid seal shaft, including a shaft sleeve 1 and a shaft body 2, the shaft body 2 is installed on the shaft sleeve 1, and the shaft body 2 can rotate relative to the shaft sleeve 1, the shaft A magnetic fluid 11 is provided between the body 2 and the sleeve 1 for sealing.
  • Magnetic fluid also known as magnetic liquid or ferrofluid, is a colloidal material composed of solid and liquid phases.
  • the solid phase mainly refers to magnetic solid nanoparticles
  • the liquid phase refers to the liquid that can carry solid magnetic nanoparticles.
  • Magnetic fluid has The fluidity, lubricity, and sealing of the liquid carrier also have the strong magnetism and other characteristics of solid nanoparticles.
  • the magnetic fluid seal is to use permanent magnets to fix the magnetic fluid around the shaft body 2. Since the gap between the shaft body 2 and the shaft sleeve 1 is very small, and its magnetic field strength is particularly large, it can withstand a large force along the axial direction. Thrust to achieve the sealing effect.
  • two spaced bearings 12 can be arranged between the bushing 1 and the shaft body 2, and the bearings 12 can be ball bearings, roller bearings, etc., for realizing the relative rotation between the bushing 1 and the shaft body 2 , the magnetic fluid 11 can be arranged in the area between the two bearings 12 .
  • the magnetic fluid 11 can be arranged in only one path, or multiple paths can be arranged. When there are multiple paths, each path of the magnetic fluid 11 can also be spaced along the axial direction; in the embodiment of FIG. 2 , there are two paths of the magnetic fluid 11 .
  • the shaft sleeve 1 can be provided with a flange connection part 13, which can be specifically arranged at one axial end of the shaft sleeve 1, and of course, can also be arranged at other positions in the axial direction of the shaft sleeve 1.
  • a connection hole may be provided on the upper surface, which is used to connect with other components in the form of screws or bolts, so as to fix the shaft sleeve 1 .
  • the shaft sleeve 1 does not rotate, but the shaft body 2 can rotate.
  • the magnetic fluid seal shaft provided in the present application may also include a telescopic part 3 , the telescopic part 3 includes a telescopic shaft 31 , and the telescopic shaft 31 is built in the shaft body 2 and can be extended or retracted relative to the shaft body 2 .
  • the extension or retraction here refers to a state of "extending” or “retracting” relative to the shaft body 2 due to the fact that the telescopic shaft 31 can move relative to the shaft body 2, and does not refer to the telescopic shaft 31 itself.
  • the length can be extended or shortened.
  • the telescopic shaft 31 and the shaft body 2 are independent of each other, the shaft body 2 is used to cooperate with the shaft sleeve 1 to achieve rotary sealing, and the telescopic shaft 31 is used to output linear displacement, so that the shaft body 2 can not participate in the linear displacement
  • the rotary seal between the shaft body 2 and the shaft sleeve 1 will not be affected, and the introduction of the telescopic shaft 31 can supplement and improve the defect that the conventional magnetic fluid seal shaft cannot output linear displacement; at the same time, the telescopic shaft 31 adopts The design built into the shaft body 2 can avoid occupying the outer space of the magnetic fluid seal shaft, thereby reducing the volume of the device and improving the integration of the device.
  • the telescopic shaft 31 and the shaft body 2 can be arranged coaxially. At this time, if the shaft body 2 rotates, the telescopic shaft 31 can also rotate around its own axis. Or, the telescopic shaft 31 and the shaft body 2 can also be arranged in different axes, that is, there can be a certain amount of eccentricity between the central axis of the telescopic shaft 31 and the central axis of the shaft body 2. At this time, if the shaft body 2 rotates, the telescopic The shaft 31 can revolve around the central axis of the shaft body 2 . In practice, both of the above two solutions can be adopted, and those skilled in the art can make flexible choices according to needs.
  • the axial direction of the telescopic shaft 31 and the axial direction of the shaft body 2 can also be set at an angle, which is also possible.
  • the installation forms of the telescopic shaft 31 relative to the shaft body 2 can be various, and can be specifically set according to actual needs.
  • the telescopic component 3 may also include a power component, which is used to provide power for the telescopic shaft 31 to drive the telescopic shaft 31 to complete axial displacement.
  • the power part can be a power element in the form of a cylinder, a hydraulic cylinder, etc.
  • the telescopic shaft 31 can be equivalent to the piston rod of the power cylinder, and can directly output linear displacement; or, the power part can also include a motor, etc. form of power components, but since the displacement directly output by this form of power components is rotational displacement, it is also necessary to configure a power conversion structure in the form of a rack and pinion structure or a screw structure to directly output the power components The rotational displacement is converted into the required linear displacement of the telescoping shaft 31 .
  • a power element in the form of an air cylinder or a hydraulic cylinder may be used to reduce the number of parts and simplify the structure.
  • the shaft body 2 can be provided with a slot 21 extending from one end in the axial direction to the other end in the axial direction but not penetrating through it.
  • the slot 21 includes the bottom wall and the peripheral wall of the slot.
  • the overcoat is equipped with a piston 32 which can slide and seal with the groove wall of the groove 21 . That is, the piston 32 can be in close contact with the groove wall of the groove 21, which can prevent the fluid on both sides of the piston 32 from communicating through the gap between the piston 32 and the groove wall. Axial sliding.
  • a cover 22 may also be included, and the cover 22 may be sealingly arranged at the notch of the slot 21. At this time, the cover 22 and the inner wall of the slot 21 may enclose to form a cylinder cavity.
  • the piston 32 can divide the cylinder cavity into two parts in the axial direction.
  • the space between the piston 32 and the cover 22 can be called the first chamber 21a, and the space between the piston 32 and the bottom wall of the groove can be called as the first chamber 21a.
  • the space is called the second chamber 21b.
  • the cover 22 and the shaft body 2 may be connected by means of connecting pieces such as screws.
  • a step surface (not marked in the figure) may be provided at the notch of the slot 21, the cover 22 may be installed on the step surface, and a second sealing member 23 may be provided between the cover 22 and the step surface, To seal the gap between the cover 22 and the stepped surface; the type of the second sealing member 23 can be a rubber ring or the like.
  • the above-mentioned stepped surface may not be provided, and at this time, the cover 22 may be directly butted and assembled with the axial end surface of the shaft body 2 .
  • the cover 22 may be provided with a through hole (not marked in the figure), and the telescopic shaft 31 may protrude from the slot 21 through the through hole to output a linear displacement to the outside.
  • a first sealing member 33 may also be included, and the first sealing member 33 can seal the radial gap between the via hole and the telescopic shaft 31 (hereinafter referred to as the hole shaft gap), so as to prevent the first chamber 21a from passing through the above-mentioned
  • the gap between the holes and shafts of the first chamber 21a is connected with the outside world, thereby ensuring the sealing performance of the first chamber 21a.
  • the first sealing member 33 is not limited here, as long as the above sealing effect can be achieved.
  • the first sealing member 33 can be a bellows, the bellows can be installed on the telescopic shaft 31, one end of the bellows can be connected with the cover 22, and the other end of the bellows can be It is connected with the piston 32, and then can isolate the first chamber 21a and the above-mentioned gap between the hole and the shaft; this arrangement can not only realize the sealing isolation at the gap between the above-mentioned hole and the shaft, but also avoid the impact on the first seal 33 during the operation of the telescopic shaft 31.
  • the wear is also beneficial to ensure the service life of the first sealing member 33 during long-term use.
  • the fluid supply and recovery component may also include a fluid supply and recovery component, and the fluid supply and recovery component communicates with at least one of the first chamber 21a and the second chamber 21b, and then may be the first chamber 21a or the second chamber 21b provides fluid, or fluid can be drawn from the first chamber 21a or the second chamber 21b to change the pressure on both sides of the piston 32 in the axial direction, thereby driving the telescopic rod 31 to displace in the axial direction.
  • the fluid supplied by the fluid supply and recovery component may be gas or liquid, and the specific types of gas and liquid are not limited here.
  • the first chamber 21a and the second chamber 21b may both communicate with fluid supply and recovery components. So arranged, when filling fluid into the first chamber 21a, the fluid in the second chamber 21b needs to be drawn out, so that the piston 32 and the telescopic shaft 31 can move toward the direction of compressing the second chamber 21b (in the accompanying drawings For downward displacement, as shown in Figure 3); and when filling fluid in the second chamber 21b, the fluid in the first chamber 21a needs to be drawn out, so that the piston 32 and the telescopic shaft 31 can compress the first chamber
  • the direction of the chamber 21a is displaced (upward displacement in the drawing, as shown in FIG. 4 ). That is to say, when both the first chamber 21a and the second chamber 21b are connected with fluid supply and recovery components, the operations of extracting fluid and filling fluid in the two chambers are opposite.
  • the number of fluid supply and recovery components can be two, and the two fluid supply and recovery components can be connected to the first chamber 21a and the second chamber 21b in one-to-one correspondence, and then perform the two chambers respectively. operation; or, there may be only one fluid supply and recovery component, which may include a supply part and a recovery part, both of which may be connected with the first chamber 21a and the second chamber 21b with a certain valve body and pipelines , when the supply part supplies flow to the first chamber 21a, the recovery part can recycle the fluid in the second chamber 21b, and when the supply part supplies flow to the second chamber 21b, the recovery part can recycle the fluid in the second chamber 21b.
  • the fluid in a chamber 21a is recovered.
  • first chamber 21a and the second chamber 21b may communicate with the fluid supply and recovery component.
  • first chamber 21a is connected with the fluid supply and recovery components as an example for illustration, and a certain amount of compressible fluid (such as gas) can be reserved in the second chamber 21b or an elastic member can be preset ;
  • a certain amount of compressible fluid such as gas
  • the pressure in the first chamber 21a can increase, can drive the piston 32 to move toward the direction that compresses the second chamber 21b together with the telescoping rod 31, the second chamber
  • the compressible fluid or elastic member in the chamber 21b can be in a compressed state to accumulate energy; and when the fluid in the first chamber 21a is pumped, the energy accumulated in the compressible fluid or elastic member in the second chamber 21b can be released , to push the piston 32 together with the telescopic rod 31 to move toward the direction of compressing the first chamber 21a.
  • the elastic member can be various forms of elastic elements such as springs and tension ropes, and is not limited here
  • an adapter sleeve 4 may also be included, the adapter sleeve 4 may be fixedly arranged, and may be rotatably sealed with the shaft body 2, the adapter sleeve 4 may be provided with a first flow port 41 and a second flow port 42, the first flow port Both the port 41 and the second flow port 42 can be connected with fluid supply and recovery components, the number and connection methods of the fluid supply and recovery components can refer to the foregoing description; the shaft body 2 can be provided with a first fluid channel 24 and a second fluid channel 25 , the first fluid channel 24 is used to communicate with the first chamber 21 a and the first communication port 41 , and the second fluid channel 25 is used to communicate with the second chamber 21 b and the second communication port 42 .
  • the adapter sleeve 4 does not rotate, and the connection pipeline between the fluid supply and recovery components and the adapter sleeve 4 does not twist, which is more conducive to ensuring the reliability of the connection.
  • the inner ends of the first flow port 41 and the second flow port 42 can communicate with an annular flow channel, and the annular flow channel can be arranged on the inner wall surface and/or the shaft body of the adapter sleeve 4 2 on the outer wall.
  • the annular flow channel connected with the first flow port 41 may be referred to as the first annular flow channel
  • the annular flow channel connected with the second flow port 42 may be referred to as the second annular flow channel.
  • the flow port 41 can communicate with the first fluid channel 24 through the first annular flow channel, and the second flow port 42 can communicate with the second fluid channel 25 through the second annular flow channel; so set, even if the shaft body 2 is relatively transferred The rotation of the sleeve 4 will not affect the normal communication between the first communication port 41 and the first fluid channel 24 and the normal communication between the second communication port 42 and the second fluid channel 25 .
  • a third seal 43 may also be provided between the adapter sleeve 4 and the shaft body 2, and the first flow port 41 and the second flow port 42 are both located between two adjacent third seals 43 to protect the first flow port.
  • the gaps between the adapter sleeve 4 and the shaft body 2 on both axial sides of the port 41 and on the axial sides of the second flow port 42 are sealed.
  • the third sealing member 43 may be a sealing element in the form of a rubber ring or the like. Alternatively, the third sealing member 43 may also adopt a magnetic fluid sealing structure similar to that between the sleeve 1 and the shaft body 2 .
  • the groove bottom wall of the slot 21 can also be provided with a groove portion 211 , and the telescopic shaft 31 can be inserted into the groove portion 211 for avoiding the movement of the telescopic shaft 31 so that the piston 32 can have a larger displacement space.
  • the shape and size of the groove portion 211 can also be designed so that the axial section of the groove portion 211 can match the axial section of the telescopic shaft 31, so that when the telescopic shaft 31 is inserted into the groove portion 211, It is also possible to guide the displacement of the telescopic shaft 31 .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Sealing Devices (AREA)
  • Sealing Using Fluids, Sealing Without Contact, And Removal Of Oil (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Pens And Brushes (AREA)

Abstract

一种磁流体密封轴,包括轴套和轴体,所述轴体安装于所述轴套,且所述轴体能够相对所述轴套进行转动,所述轴体与所述轴套之间设置有磁流体进行密封;还包括伸缩部件,所述伸缩部件包括伸缩轴,所述伸缩轴内置于所述轴体,并能够相对所述轴体进行伸出或者缩回。伸缩轴和轴体相互独立,轴体用于和轴套相配合以实现旋转密封,而伸缩轴则用于输出直线位移,使得轴体可以不参与直线位移的输出,这样,轴体与轴套之间的旋转密封不至于受到影响,而伸缩轴的引入则可以补充完善常规磁流体密封轴无法输出直线位移的缺陷;同时,伸缩轴采用内置于轴体的设计,可以避免对磁流体密封轴外部空间的占用,能够缩减设备的体积,并可提高设备的集成度。

Description

一种磁流体密封轴
本申请要求于2021年08月16日提交中国专利局、申请号为202110939002.7、发明名称为“一种磁流体密封轴”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及半导体加工设备技术领域,具体涉及一种磁流体密封轴。
背景技术
常规的磁流体密封轴仅能够实现旋转密封,但是,在某些特定的场景中,还希望磁流体密封轴能够输出直线位移,若直接为磁流体密封轴增设驱动机构,则会影响旋转密封的可靠性。
发明内容
本申请的目的是提供一种磁流体密封轴,可以在实现旋转密封的同时输出直线位移。
为解决上述技术问题,本申请提供一种磁流体密封轴,包括轴套和轴体,所述轴体安装于所述轴套,且所述轴体能够相对所述轴套进行转动,所述轴体与所述轴套之间设置有磁流体进行密封;还包括伸缩部件,所述伸缩部件包括伸缩轴,所述伸缩轴内置于所述轴体,并能够相对所述轴体进行伸出或者缩回。
采用上述结构,伸缩轴和轴体相互独立,轴体用于和轴套相配合以实现旋转密封,而伸缩轴则用于输出直线位移,使得轴体可以不参与直线位移的输出,这样,轴体与轴套之间的旋转密封不至于受到影响,而伸缩轴的引入则可以补充完善常规磁流体密封轴无法输出直线位移的缺陷;同时,伸缩轴采用内置于轴体的设计,可以避免对磁流体密封轴外部空间的占用,进而能够缩减设备的体积,并可提高设备的集成度。
可选地,所述轴体设置有自其轴向一端面向轴向另一端面延伸但未贯 穿的开槽,所述开槽包括槽底壁和槽周壁,所述伸缩轴外套安装有活塞,所述活塞与所述开槽的槽周壁滑动密封;还包括封盖、第一密封件和流体供给及回收部件,所述封盖密封设置于所述开槽的槽口位置,所述封盖设置有过孔,所述伸缩轴自所述过孔伸出所述开槽,所述第一密封件能够密封所述过孔和所述伸缩轴之间的间隙,所述活塞与所述封盖之间形成第一腔室,所述活塞与所述槽底壁之间形成第二腔室,所述流体供给及回收部件与所述第一腔室、所述第二腔室中的至少一者相连通。
可选地,所述槽底壁设置有槽部,所述伸缩轴插接于所述槽部。
可选地,所述第一密封件为波纹管,所述波纹管外套于所述伸缩轴,所述波纹管的一个端部与所述封盖相连,所述波纹管的另一个端部与所述活塞相连。
可选地,所述开槽的槽口位置设置有台阶面,所述封盖安装于所述台阶面,且所述封盖与所述台阶面之间设置有第二密封件。
可选地,还包括转接套,所述转接套固定设置,并与所述轴体转动密封,所述转接套设置有第一流通口和第二流通口,所述第一流通口和所述第二流通口均连接有所述流体供给及回收部件;所述轴体设置有第一流体通道和第二流体通道,所述第一流体通道用于连通所述第一腔室和所述第一流通口,所述第二流体通道用于连通所述第二腔室和所述第二流通口。
可选地,所述转接套与所述轴体之间设置有第三密封件,所述第一流通口、所述第二流通口均位于相邻的两所述第三密封件之间。
可选地,所述轴体和所述转接套之间设置有沿轴向间隔设置的第一环形流道和第二环形流道,所述第一流通口通过所述第一环形流道与所述第一流体通道相连通,所述第二流通口通过所述第二环形流道与所述第二流体通道相连通。
可选地,所述轴套和所述轴体之间设置有相间隔的两轴承,所述磁流体布置在两所述轴承之间。
可选地,所述伸缩轴与所述轴体同轴布置。
附图说明
图1为本申请所提供磁流体密封轴的一种具体实施方式(未配置转接套)的立体结构图;
图2为本申请所提供磁流体密封轴的一种具体实施方式(配置有转接套)的剖视图;
图3为本申请所提供磁流体密封轴的一种具体实施方式在旋转轴处于缩回状态时的结构示意图;
图4为本申请所提供磁流体密封轴的一种具体实施方式在旋转轴处于伸出状态时的结构示意图。
图1-图4中的附图标记说明如下:
1轴套、11磁流体、12轴承、13法兰连接部;
2轴体、21开槽、211槽部、21a第一腔室、21b第二腔室、22封盖、23第二密封件、24第一流体通道、25第二流体通道;
3伸缩部件、31伸缩轴、32活塞、33第一密封件;
4转接套、41第一流通口、42第二流通口、43第三密封件。
具体实施方式
为了使本领域的技术人员更好地理解本申请的技术方案,下面结合附图和具体实施例对本申请作进一步的详细说明。
本文中所述“第一”、“第二”等词,仅是为了便于描述结构和/或功能相同或者相类似的两个以上的结构或者部件,并不表示对于顺序和/或重要性的某种特殊限定。
请参考图1-图4,图1为本申请所提供磁流体密封轴的一种具体实施方式(未配置转接套)的立体结构图,图2为本申请所提供磁流体密封轴的一种具体实施方式(配置有转接套)的剖视图,图3为本申请所提供磁流体密封轴的一种具体实施方式在旋转轴处于缩回状态时的结构示意图,图4为本申请所提供磁流体密封轴的一种具体实施方式在旋转轴处于伸出状态时的结构示意图。
如图1、图2所示,本申请提供一种磁流体密封轴,包括轴套1和轴 体2,轴体2安装于轴套1,且轴体2能够相对轴套1进行转动,轴体2与轴套1之间设置有磁流体11进行密封。
磁流体又称为磁性液体或铁磁流体,其是一种固液两相组成的胶体材料,固相主要指磁性固体纳米颗粒,液相是指能够承载固体磁性纳米颗粒的液体,磁流体具有液态载体的流动性、润滑性、密封性,同时具有固体纳米颗粒的强磁性及其它特性。
磁流体密封就是用永久磁铁将磁流体固定在轴体2的周围,由于轴体2与轴套1之间的空隙很小,且其磁场强度特别大,从而能承受较大的沿轴线方向的推力,以达到密封的效果。
详细的说明,轴套1和轴体2之间可以设置有相间隔的两轴承12,轴承12可以为滚珠轴承、滚轴轴承等,用于实现轴套1和轴体2之间的相对转动,磁流体11可以布置在两轴承12之间的区域。磁流体11可以仅布置一道,也可以布置多道,当布置多道时,各道磁流体11也可以沿轴向间隔分布;在图2实施例中,磁流体11存在两道。
轴套1可以设有法兰连接部13,该法兰连接部13具体可以是设置在轴套1的一个轴向端部,当然,也可以是设置在轴套1的轴向其他位置,其上可以设有连接孔,用于配合螺钉或者螺栓等形式的连接件和其他部件进行连接,进而可以对轴套1进行固定。在具体实践中,轴套1不转动,而轴体2可以转动。
进一步地,本申请所提供磁流体密封轴还可以包括伸缩部件3,伸缩部件3包括伸缩轴31,伸缩轴31内置于轴体2,并能够相对轴体2进行伸出或者缩回。需要说明,这里的伸出或者缩回是由于伸缩轴31能够相对轴体2进行动作而产生的相对轴体2“伸出”或者“缩回”的一种状态,并非是指伸缩轴31自身的长度可以伸长或者缩短。
采用上述结构,伸缩轴31和轴体2相互独立,轴体2用于和轴套1相配合以实现旋转密封,而伸缩轴31则用于输出直线位移,使得轴体2可以不参与直线位移的输出,这样,轴体2与轴套1之间的旋转密封不至于受到影响,而伸缩轴31的引入则可以补充完善常规磁流体密封轴无法输出直线位移的缺陷;同时,伸缩轴31采用内置于轴体2的设计,可以避免对磁流体密封轴外部空间的占用,进而能够缩减设备的体积,并可提高设 备的集成度。
伸缩轴31与轴体2可以同轴设置,此时,如果轴体2进行转动,伸缩轴31也可以绕自身轴线进行转动。或者,伸缩轴31与轴体2也可以不同轴设置,即伸缩轴31的中轴线与轴体2的中轴线之间可以存在一定的偏心量,此时,如果轴体2进行转动,伸缩轴31可以相对轴体2的中轴线进行公转。在具体实践中,上述的两种方案均可以采用,本领域技术人员可以根据需要进行灵活选择。
实际上,伸缩轴31的轴向与轴体2的轴向也可以呈角度设置,这样也是可以的。换而言之,伸缩轴31相对轴体2的安装形式可以是多样的,具体可以结合实际需要进行设定。
伸缩部件3还可以包括动力部件,动力部件用于为伸缩轴31提供动力,以驱使伸缩轴31完成轴向上的位移。
上述动力部件的结构形式可以存在较多的选择。例如,该动力部件可以采用气缸、液压缸等动力缸形式的动力元件,此时,伸缩轴31可以相当于动力缸的活塞杆,能够直接输出直线位移;或者,该动力部件也可以包括电机等形式的动力元件,但由于这种形式的动力元件所直接输出的位移形式为旋转位移,因此,还需要配置齿轮齿条结构或者丝杠结构等形式的动力转换结构,以将动力元件直接输出的旋转位移转换为伸缩轴31所需的直线位移。
具体到本申请实施例中,可以采用类似气缸或者液压缸等形式的动力元件,以减少零部件数量,并简化结构。
如图2、图3所示,轴体2可以设置有自其轴向一端面向轴向另一端面延伸但未贯穿的开槽21,开槽21包括槽底壁和槽周壁,伸缩轴31可以外套安装有活塞32,活塞32可以与开槽21的槽周壁滑动密封。即活塞32与开槽21的槽周壁可以为紧密接触,能够避免活塞32轴向两侧的流体通过活塞32与槽周壁之间的缝隙进行连通,同时,活塞32又可以在开槽21内进行轴向滑动。
进一步地,还可以包括封盖22,封盖22可以密封设置于开槽21的槽口位置,此时,封盖22与开槽21的槽内壁面可以围合形成缸内腔。活塞32可以将缸内腔沿轴向分隔为两部分,为便于描述,可以将活塞32与封 盖22之间的空间称之为第一腔室21a,并将活塞32与槽底壁之间的空间称之为第二腔室21b。
封盖22与轴体2之间可以是借助螺钉等形式的连接件进行连接。具体而言,开槽21的槽口位置可以设置有台阶面(图中未标注),封盖22可以安装于台阶面,且封盖22与台阶面之间可以设置有第二密封件23,以对封盖22和台阶面之间的间隙进行密封处理;第二密封件23的种类可以为橡胶圈等。当然,上述的台阶面也可以不设置,此时,封盖22可以直接与轴体2的轴向端面进行对接装配。
封盖22可以设置有过孔(图中未标注),伸缩轴31可以自过孔伸出开槽21,以对外输出直线位移。
进一步地,还可以包括第一密封件33,第一密封件33能够密封过孔和伸缩轴31之间的径向间隙(以下称之为孔轴间隙),以避免第一腔室21a通过上述的孔轴间隙与外界相连通,进而可以保证第一腔室21a的密封性能。
第一密封件33的种类在此不做限定,只要能够实现上述的密封效果即可。在一种示例性的方案中,第一密封件33可以为波纹管,波纹管可以外套安装于伸缩轴31,波纹管的一个端部可以与封盖22相连,波纹管的另一个端部可以与活塞32相连,进而可以隔离第一腔室21a和上述的孔轴间隙;如此设置,不仅可以实现上述孔轴间隙处的密封隔离,还可以避免伸缩轴31动作过程中对第一密封件33造成磨损,还有利于保证第一密封件33在长期使用过程中的使用寿命。
进一步地,还可以包括流体供给及回收部件,流体供给及回收部件与第一腔室21a、第二腔室21b中的至少一者相连通,进而可以为第一腔室21a或者第二腔室21b提供流体,或者,可以从第一腔室21a或者第二腔室21b抽取流体,以改变活塞32轴向两侧的压力,从而驱使伸缩杆31沿轴向进行位移。流体供给及回收部件所供给的流体可以为气体,也可以为液体,具体的气体以及液体的种类在此不做限定。
第一腔室21a、第二腔室21b可以均连通有流体供给及回收部件。如此设置,当向第一腔室21a内填充流体时,第二腔室21b内的流体需要被抽出,使得活塞32以及伸缩轴31可以朝向压缩第二腔室21b的方向进行 位移(附图中为向下位移,如图3所示);而当向第二腔室21b内填充流体时,第一腔室21a内的流体需要被抽出,使得活塞32以及伸缩轴31可以朝向压缩第一腔室21a的方向进行位移(附图中为向上位移,如图4所示)。也就是说,在第一腔室21a和第二腔室21b均连通有流体供给及回收部件时,两腔室内的抽取流体和填充流体的操作是相反的。
针对这种方案,流体供给及回收部件的数量可以为两个,两流体供给及回收部件可以一一对应地与第一腔室21a、第二腔室21b相连通,进而分别对两腔室进行操作;或者,流体供给及回收部件也可以仅存在一个,其可以包括供给部和回收部,二者可以搭配一定的阀体和管路均与第一腔室21a、第二腔室21b相连通,当供给部对第一腔室21a进行供流时、回收部可以对第二腔室21b内的流体进行回收,而当供给部对第二腔室21b进行供流时、回收部可以对第一腔室21a内的流体进行回收。
或者,第一腔室21a、第二腔室21b中也可以仅存在一者与流体供给及回收部件相连通。为简化描述,这里仅以第一腔室21a与流体供给及回收部件相连通为例进行说明,第二腔室21b内可以预留一定量的可压缩流体(如气体)或者可以预设弹性件;这样,当向第一腔室21a内填充流体时,第一腔室21a内的压力可以增大,能够驱使活塞32连同伸缩杆31朝向压缩第二腔室21b的方向进行位移,第二腔室21b内的可压缩流体或者弹性件可以处于压缩状态,以积聚能量;而当抽取第一腔室21a内的流体时,第二腔室21b内可压缩流体或者弹性件所积聚的能量可以释放,以推动活塞32连同伸缩杆31朝向压缩第一腔室21a的方向进行位移。弹性件可以为弹簧、拉力绳等各种形式的弹性元件,在此不做限定;以弹簧为例,其可以外套安装于伸缩轴31。
进一步地,还可以包括转接套4,转接套4可以固定设置,并可以与轴体2转动密封,转接套4可以设置有第一流通口41和第二流通口42,第一流通口41和第二流通口42均可以连接有流体供给及回收部件,流体供给及回收部件的数量以及连接方式可以参见前述的描述;轴体2可以设置有第一流体通道24和第二流体通道25,第一流体通道24用于连通第一腔室21a和第一流通口41,第二流体通道25用于连通第二腔室21b和第二流通口42。
采用这种结构,转接套4不发生转动,流体供给及回收部件与转接套4的连接管路不会发生扭转,更有利于保证连接的可靠性。
更为详细的说明,第一流通口41和第二流通口42的内端部均可以与一个环形流道相连通,该环形流道可以设置于转接套4的内壁面和/或轴体2的外壁面。为便于描述,可以将与第一流通口41相连通的环形流道称之为第一环形流道、与第二流通口42相连通的环形流道称之为第二环形流道,第一流通口41可以通过第一环形流道与第一流体通道24相连通,第二流通口42可以通过第二环形流道与第二流体通道25相连通;如此设置,即便轴体2相对转接套4发生转动,也不会影响第一流通口41和第一流体通道24之间的正常连通以及第二连通口42和第二流体通道25之间的正常连通。
转接套4与轴体2之间还可以设置有第三密封件43,第一流通口41、第二流通口42均位于相邻的两第三密封件43之间,以对第一流通口41轴向两侧的、第二流通口42轴向两侧的转接套4和轴体2之间的缝隙进行封堵。
第三密封件43可以为橡胶圈等形式的密封元件。或者,第三密封件43也可以采用和轴套1与轴体2之间相类似的磁流体密封结构。
开槽21的槽底壁还可以设置有槽部211,伸缩轴31可以插接于该槽部211,用于对伸缩轴31的动作进行避让,使得活塞32可以具有更大的位移空间。进一步地,也可以对槽部211的形状和尺寸进行设计,使得槽部211的轴向截面可以与伸缩轴31的轴向截面相匹配,这样,在伸缩轴31插接于槽部211时,还可以对伸缩轴31的位移进行导向。
以上仅是本申请的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (10)

  1. 一种磁流体密封轴,其特征在于,包括轴套(1)和轴体(2),所述轴体(2)安装于所述轴套(1),且所述轴体(2)能够相对所述轴套(1)进行转动,所述轴体(2)与所述轴套(1)之间设置有磁流体(11)进行密封;
    还包括伸缩部件(3),所述伸缩部件(3)包括伸缩轴(31),所述伸缩轴(31)内置于所述轴体(2),并能够相对所述轴体(2)进行伸出或者缩回。
  2. 根据权利要求1所述磁流体密封轴,其特征在于,所述轴体(2)设置有自其轴向一端面向轴向另一端面延伸但未贯穿的开槽(21),所述开槽(21)包括槽底壁和槽周壁,所述伸缩轴(31)外套安装有活塞(32),所述活塞(32)与所述开槽(21)的槽周壁滑动密封;
    还包括封盖(22)、第一密封件(33)和流体供给及回收部件,所述封盖(22)密封设置于所述开槽(21)的槽口位置,所述封盖(22)设置有过孔,所述伸缩轴(31)自所述过孔伸出所述开槽(21),所述第一密封件(33)能够密封所述过孔和所述伸缩轴(31)之间的间隙,所述活塞(32)与所述封盖(22)之间形成第一腔室(21a),所述活塞(32)与所述槽底壁之间形成第二腔室(21b),所述流体供给及回收部件与所述第一腔室(21a)、所述第二腔室(21b)中的至少一者相连通。
  3. 根据权利要求2所述磁流体密封轴,其特征在于,所述槽底壁设置有槽部(211),所述伸缩轴(31)插接于所述槽部(211)。
  4. 根据权利要求2所述磁流体密封轴,其特征在于,所述第一密封件(33)为波纹管,所述波纹管外套于所述伸缩轴(31),所述波纹管的一个端部与所述封盖(22)相连,所述波纹管的另一个端部与所述活塞(32)相连。
  5. 根据权利要求2所述磁流体密封轴,其特征在于,所述开槽(21)的槽口位置设置有台阶面,所述封盖(22)安装于所述台阶面,且所述封盖(22)与所述台阶面之间设置有第二密封件(23)。
  6. 根据权利要求2所述磁流体密封轴,其特征在于,还包括转接套(4), 所述转接套(4)固定设置,并与所述轴体(2)转动密封,所述转接套(4)设置有第一流通口(41)和第二流通口(42),所述第一流通口(41)和所述第二流通口(42)均连接有所述流体供给及回收部件;
    所述轴体(2)设置有第一流体通道(24)和第二流体通道(25),所述第一流体通道(24)用于连通所述第一腔室(21a)和所述第一流通口(41),所述第二流体通道(25)用于连通所述第二腔室(21b)和所述第二流通口(42)。
  7. 根据权利要求6所述磁流体密封轴,其特征在于,所述转接套(4)与所述轴体(2)之间设置有第三密封件(43),所述第一流通口(41)、所述第二流通口(42)均位于相邻的两所述第三密封件(43)之间。
  8. 根据权利要求6所述磁流体密封轴,其特征在于,所述轴体(2)和所述转接套(4)之间设置有沿轴向间隔设置的第一环形流道和第二环形流道,所述第一流通口(41)通过所述第一环形流道与所述第一流体通道(24)相连通,所述第二流通口(42)通过所述第二环形流道与所述第二流体通道(25)相连通。
  9. 根据权利要求1-8中任一项所述磁流体密封轴,其特征在于,所述轴套(1)和所述轴体(2)之间设置有相间隔的两轴承(12),所述磁流体(11)布置在两所述轴承(12)之间。
  10. 根据权利要求1-8中任一项所述磁流体密封轴,其特征在于,所述伸缩轴(31)与所述轴体(2)同轴布置。
PCT/CN2021/132019 2021-08-16 2021-11-22 一种磁流体密封轴 WO2023019784A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110939002.7 2021-08-16
CN202110939002.7A CN115704475A (zh) 2021-08-16 2021-08-16 一种磁流体密封轴

Publications (1)

Publication Number Publication Date
WO2023019784A1 true WO2023019784A1 (zh) 2023-02-23

Family

ID=85181276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/132019 WO2023019784A1 (zh) 2021-08-16 2021-11-22 一种磁流体密封轴

Country Status (3)

Country Link
CN (1) CN115704475A (zh)
TW (1) TWI809608B (zh)
WO (1) WO2023019784A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669362A (en) * 1983-11-04 1987-06-02 Kabushiki Kaisha Kitagawa Tekkosho Rotary fluid pressure cylinder device for operating chucks for machine tools
DE3632677A1 (de) * 1986-09-26 1988-04-07 Berg & Co Gmbh Umlaufender hohlspannzylinder
US20080282878A1 (en) * 2007-05-16 2008-11-20 Cheng-Chung Chai Pneumatic rotary actuator
CN201218375Y (zh) * 2008-07-18 2009-04-08 佛山市南海力丰机床有限公司 一种高压旋转接头
CN202561338U (zh) * 2012-04-01 2012-11-28 东莞市惠众液压机械有限公司 一种旋转接头及带有旋转接头的油缸
JP2012237341A (ja) * 2011-05-10 2012-12-06 Daikin Industries Ltd 油冷却器、油冷却装置および工作機械
CN105979989A (zh) * 2014-02-03 2016-09-28 诺和诺德股份有限公司 伸缩驱动布置
CN107725785A (zh) * 2017-10-30 2018-02-23 广西科技大学 一种新型的阶梯式磁流体密封装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE50102009D1 (de) * 2000-10-09 2004-05-19 Siemens Ag Einrichtung mit rotor und magnetlager zur berührungslosen lagerung des rotors
JP5207657B2 (ja) * 2007-04-23 2013-06-12 Ntn株式会社 動圧軸受装置の製造方法
TWI558929B (zh) * 2014-09-02 2016-11-21 應用奈米科技股份有限公司 可擺動及位移之密封軸承組件
JP6712278B2 (ja) * 2015-11-11 2020-06-17 イーグルブルグマンジャパン株式会社 磁性流体シール
JP7196073B2 (ja) * 2017-07-18 2022-12-26 イーグル工業株式会社 軸封装置
CN211778983U (zh) * 2019-12-11 2020-10-27 杭州大和热磁电子有限公司 一种带导向机构的磁性流体密封装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4669362A (en) * 1983-11-04 1987-06-02 Kabushiki Kaisha Kitagawa Tekkosho Rotary fluid pressure cylinder device for operating chucks for machine tools
DE3632677A1 (de) * 1986-09-26 1988-04-07 Berg & Co Gmbh Umlaufender hohlspannzylinder
US20080282878A1 (en) * 2007-05-16 2008-11-20 Cheng-Chung Chai Pneumatic rotary actuator
CN201218375Y (zh) * 2008-07-18 2009-04-08 佛山市南海力丰机床有限公司 一种高压旋转接头
JP2012237341A (ja) * 2011-05-10 2012-12-06 Daikin Industries Ltd 油冷却器、油冷却装置および工作機械
CN202561338U (zh) * 2012-04-01 2012-11-28 东莞市惠众液压机械有限公司 一种旋转接头及带有旋转接头的油缸
CN105979989A (zh) * 2014-02-03 2016-09-28 诺和诺德股份有限公司 伸缩驱动布置
CN107725785A (zh) * 2017-10-30 2018-02-23 广西科技大学 一种新型的阶梯式磁流体密封装置

Also Published As

Publication number Publication date
CN115704475A (zh) 2023-02-17
TWI809608B (zh) 2023-07-21
TW202309414A (zh) 2023-03-01

Similar Documents

Publication Publication Date Title
US9273703B2 (en) Universal orientation electro-hydraulic actuator
US10302218B2 (en) Drill stem safety valve actuator
CN105909897B (zh) 一种自动补偿式高压回转接头
CN104279386B (zh) 活塞平衡补偿型高速高压旋转接头
CN203770641U (zh) 一种用于球磨机的双端面波纹管密封装置
CN107725357B (zh) 一种适用于水液压传动的内啮合齿轮泵
CN106931262B (zh) 一种旋转供液装置
WO2023019784A1 (zh) 一种磁流体密封轴
CN110424925A (zh) 一种电控磁耦合井下安全阀
CN102661462A (zh) 高速旋转接头
CN201092987Y (zh) 内导向抗扭转伸缩式活塞缸
CN206562977U (zh) 二维轴向柱塞泵
CN211924155U (zh) 内喷雾式可伸缩截割机构及掘进机
CN105546114B (zh) 一种多级冗余的主轴密封方法
CN106762935A (zh) 摆动式液压缸内外泄露组合密封设计
CN209638074U (zh) 一种离心泵密封结构
CN105508618B (zh) 一种多级冗余的主轴密封系统
CN217080809U (zh) 一种微型磁力泵
CN103423154A (zh) 一种立式电机直驱螺杆泵驱动装置上的密封结构
CN107023566B (zh) 转叶式舵机静压油封
CN219654910U (zh) 一种深井泵
CN109931263A (zh) 一种干式屏蔽真空泵
CN110242242A (zh) 随动型旋转环形防喷器
CN104149025B (zh) 一种用于磨削内孔的空气电主轴
CN203516742U (zh) 泵用水冷机械密封结构

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21954019

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE