WO2023019432A1 - 一种资源配置方法、装置及存储介质 - Google Patents

一种资源配置方法、装置及存储介质 Download PDF

Info

Publication number
WO2023019432A1
WO2023019432A1 PCT/CN2021/113023 CN2021113023W WO2023019432A1 WO 2023019432 A1 WO2023019432 A1 WO 2023019432A1 CN 2021113023 W CN2021113023 W CN 2021113023W WO 2023019432 A1 WO2023019432 A1 WO 2023019432A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
terminal type
sending
resource
type
Prior art date
Application number
PCT/CN2021/113023
Other languages
English (en)
French (fr)
Inventor
乔雪梅
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002501.1A priority Critical patent/CN115989702A/zh
Priority to PCT/CN2021/113023 priority patent/WO2023019432A1/zh
Publication of WO2023019432A1 publication Critical patent/WO2023019432A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/02Selection of wireless resources by user or terminal

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a resource configuration method, device and storage medium.
  • V2X vehicle to everything
  • the terminal can directly perform data transmission through a direct link (sidelink) without forwarding through network equipment such as a base station, thereby reducing transmission delay and improving spectrum efficiency.
  • the time-frequency domain resources required for one or more sidelink transmissions are configured or pre-configured to terminal.
  • a sidelink bandwidth part (BWP) will be configured.
  • One or more resource pools are configured in a sidelink BWP.
  • the sending terminal can directly select from the resource pool (also known as mode 2 resource allocation method), or it can be scheduled by network equipment (also known as mode 1 resource allocation method) .
  • mode 1 resource allocation mode and mode 2 resource allocation mode share the same resource pool configuration.
  • this new terminal type is designed in 5G New Radio (NR) to cover the requirements of mid-end IoT devices.
  • this new terminal type is called a reduced capability terminal, sometimes also called a Reduced capability UE, or a Redcap terminal, or NR-lite for short.
  • Redcap terminals can directly exchange information through sidelink technology.
  • Redcap terminals use sidelinks, which can also help terminals relay information to network devices, enhance coverage, and achieve the purpose of power saving.
  • the bandwidth of the current sidelink BWP can be greater than 20MHz under FR1, and can be greater than 100MHz under FR2. But for Redcap terminals, due to the limited bandwidth capability, the maximum is 20MHz under FR1, and the maximum is 100MHz under FR2. Therefore, based on the current resource pool configuration scheme in sidelink BWP, the communication capabilities of Redcap terminals will be limited.
  • the present disclosure provides a resource configuration method, device and storage medium.
  • a resource configuration method applied to a network device including:
  • the direct connection communication resource allocation indication information is used to indicate that the sending terminal is based on Match the direct-connection communication resources of the terminal type of the receiving terminal, and perform direct-connection communication with the receiving terminal.
  • sending direct communication resource allocation indication information includes:
  • sending direct communication resource allocation indication information includes:
  • the BWP configuration information matching the terminal type of the receiving terminal includes multiple different BWP configuration information; the bit sizes of corresponding fields in the dynamic scheduling signaling corresponding to the multiple different BWP configuration information are the same or different.
  • the bit size of each field in the above dynamic scheduling signaling is aligned.
  • sending direct communication resource allocation indication information includes:
  • the sending frequency domain bandwidth matches the resource pool configuration information of the terminal type of the receiving terminal; wherein, different terminal types correspond to different frequency domain bandwidths of the resource pool.
  • the determination of the terminal type of the receiving terminal performing direct communication with the sending terminal includes:
  • the determining the terminal type of the receiving terminal based on the receiving terminal type indication information includes at least one of the following:
  • the direct connection communication information includes receiving terminal type indication information corresponding to the destination identifier.
  • the determination of the terminal type of the receiving terminal performing direct communication with the sending terminal includes:
  • the association between the source identifier and the terminal type is determined in the following manner:
  • the method further includes: sending terminal type configuration information, where the terminal type configuration information is used to indicate the terminal type corresponding to the destination identifier maintained by the direct connection communication terminal.
  • the terminal type of the sending terminal is a first terminal type; the terminal capability of the first terminal type is greater than the terminal capability of the second terminal type.
  • a resource configuration method is provided, which is applied to a sending terminal, including:
  • receiving the direct communication resource allocation indication information sent by the network device includes:
  • the BWP type indication information matching the terminal type of the receiving terminal is received, and different BWP type indication information corresponds to different terminal types.
  • receiving direct connection communication resource allocation indication information includes: receiving BWP configuration information matching the terminal type of the receiving terminal.
  • the BWP configuration information matching the terminal type of the receiving terminal includes multiple different BWP configuration information; the bit sizes of corresponding fields in the dynamic scheduling signaling corresponding to the multiple different BWP configuration information are the same or different.
  • receiving direct connection communication resource allocation indication information includes:
  • the receiving frequency domain bandwidth matches the resource pool configuration information of the terminal type of the receiving terminal; wherein, different terminal types correspond to different resource pool frequency domain bandwidths.
  • the method further includes:
  • the sending and receiving terminal type indication information includes at least one of the following:
  • the radio resource control information includes direct connection communication information
  • the direct connection communication information includes receiving terminal type indication information corresponding to the destination identifier
  • the method further includes: receiving terminal type configuration information, where the terminal type configuration information is used to indicate the terminal type corresponding to the purpose identifier maintained by the direct-connection communication terminal.
  • the terminal type of the sending terminal is a first terminal type; the terminal capability of the first terminal type is greater than the terminal capability of the second terminal type.
  • a resource configuration device which is applied to a network device, including:
  • the processing unit is configured to determine the terminal type of the receiving terminal performing direct communication with the sending terminal; the sending unit is configured to send direct communication resource allocation indication information based on the terminal type of the receiving terminal; the direct communication The resource allocation indication information is used to instruct the sending terminal to perform direct communication with the receiving terminal based on the direct communication resource matching the terminal type of the receiving terminal.
  • the sending unit is configured to: send BWP type indication information matching the terminal type of the receiving terminal; different terminal types correspond to different BWP types.
  • the sending unit is configured to: send BWP configuration information matching the terminal type of the receiving terminal; where different terminal types correspond to different BWP configuration information.
  • the BWP configuration information matching the terminal type of the receiving terminal includes multiple different BWP configuration information; the bit sizes of corresponding fields in the dynamic scheduling signaling corresponding to the multiple different BWP configuration information are the same or different.
  • the The sending unit aligns the bit size of each field in the dynamic scheduling signaling.
  • the sending unit is configured to: send resource pool configuration information of a terminal type in which the frequency domain bandwidth matches the receiving terminal; where different terminal types correspond to different frequency domain bandwidths of the resource pool.
  • the processing unit is configured to: acquire receiving terminal type indication information sent by the sending terminal, and determine a terminal type of the receiving terminal based on the receiving terminal type indication information.
  • the processing unit determines the terminal type of the receiving terminal performing direct communication with the sending terminal in at least one of the following ways:
  • the resource scheduling request includes receiving terminal type indication information; based on the buffer status report sent by the sending terminal, determine the terminal type of the receiving terminal, the buffer status report including receiving terminal type indication information; and determining the terminal type of the receiving terminal based on the direct connection communication information included in the radio resource control message sent by the sending terminal, the direct connection communication information including the receiving terminal type indication corresponding to the destination identifier information.
  • the processing unit is configured to: obtain the destination identifier sent by the sending terminal; based on the association between the source identifier and the terminal type, determine the terminal type corresponding to the source identifier consistent with the destination identifier It is the terminal type of the receiving terminal for direct communication with the sending terminal.
  • the association between the source identifier and the terminal type is determined in the following manner:
  • the sending unit is further configured to: send terminal type configuration information, where the terminal type configuration information is used to indicate the terminal type corresponding to the destination identifier maintained by the direct-connection communication terminal.
  • the terminal type of the sending terminal is a first terminal type; the terminal capability of the first terminal type is greater than the terminal capability of the second terminal type.
  • a resource configuration device which is applied to a sending terminal, including:
  • the communication unit is configured to receive direct-connection communication resource allocation indication information sent by the network device, and perform direct-connection communication with the receiving terminal based on the direct-connection communication resource matching the terminal type of the receiving terminal;
  • a processing unit configured to determine a terminal type of a receiving terminal performing direct communication with the sending terminal based on the direct communication resource allocation indication information.
  • the communication unit is configured to: receive BWP type indication information matching the terminal type of the receiving terminal, and different BWP type indication information corresponds to different terminal types.
  • the communication unit is configured to: receive BWP configuration information matching the terminal type of the receiving terminal.
  • the BWP configuration information matching the terminal type of the receiving terminal includes multiple different BWP configuration information; the bit sizes of corresponding fields in the dynamic scheduling signaling corresponding to the multiple different BWP configuration information are the same or different.
  • the communication unit is configured to: receive frequency domain bandwidth matching resource pool configuration information of a terminal type of the receiving terminal; where different terminal types correspond to different resource pool frequency domain bandwidths.
  • the communication unit is further configured to: send and receive terminal type indication information.
  • the sending and receiving terminal type indication information includes at least one of the following:
  • the radio resource control information includes direct connection communication information
  • the direct connection communication information includes receiving terminal type indication information corresponding to the destination identifier
  • the communication unit is further configured to: receive terminal type configuration information, where the terminal type configuration information is used to indicate the terminal type corresponding to the destination identifier maintained by the directly connected communication terminal.
  • the terminal type of the sending terminal is a first terminal type; the terminal capability of the first terminal type is greater than the terminal capability of the second terminal type.
  • a resource configuration device including:
  • memory for storing processor-executable instructions
  • the processor is configured to: execute the first aspect or the resource configuration method described in any one implementation manner of the first aspect.
  • a resource configuration device including:
  • memory for storing processor-executable instructions
  • the processor is configured to: execute the resource configuration method described in the second aspect or any implementation manner of the second aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the network device, the network device can execute the first aspect or the resource allocation method described in any implementation manner of the first aspect.
  • a storage medium stores instructions, and when the instructions in the storage medium are executed by the processor of the terminal, the terminal can execute the second aspect or The resource allocation method described in any one of the implementation manners of the second aspect.
  • the network device sends direct connection communication resource allocation indication information.
  • the sending terminal receives the direct connection communication resource allocation indication information sent by the network device, and based on the direct connection communication resource allocation indication information, determines the terminal type of the receiving terminal for direct communication with the sending terminal, and the direct connection based on the matching terminal type of the receiving terminal
  • Communication resources direct communication with receiving terminals enables network devices to perform resource scheduling that adapts to terminal types, and terminals can distinguish terminal types and use different direct communication resources to save resource overhead.
  • Fig. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Fig. 2 shows a flowchart of mode 1 resource allocation process.
  • Fig. 3 shows a schematic diagram of the contents of a sidelink-BSR.
  • Fig. 4 is a flow chart showing a resource configuration method according to an exemplary embodiment.
  • Fig. 5 is a flow chart showing a resource configuration method according to an exemplary embodiment.
  • Fig. 6 is a flowchart showing a method for determining a terminal type of a receiving terminal according to an exemplary embodiment.
  • Fig. 7 is a flow chart showing a resource configuration method according to an exemplary embodiment.
  • Fig. 8 is a flow chart showing a resource configuration method according to an exemplary embodiment.
  • Fig. 9 is a flow chart showing a resource allocation method according to an exemplary embodiment.
  • Fig. 10 is a flow chart showing a resource configuration method according to an exemplary embodiment.
  • Fig. 11 is a block diagram of a device for configuring resources according to an exemplary embodiment.
  • Fig. 12 is a block diagram of a device for configuring resources according to an exemplary embodiment.
  • Fig. 13 is a block diagram showing an apparatus for resource configuration according to an exemplary embodiment.
  • Fig. 14 is a block diagram showing an apparatus for resource configuration according to an exemplary embodiment.
  • the resource configuration method provided by the embodiments of the present disclosure may be applied to the direct communication system shown in FIG. 1 .
  • the network device configures various transmission parameters for data transmission for direct communication device 1 and/or direct communication device 2 .
  • the direct communication device 1 and the direct communication device 2 perform direct communication.
  • the link for communication between the network device and the direct communication device is an uplink and downlink, and the link between the direct communication device and the direct communication device is a direct link (sidelink).
  • the communication scenario of direct communication between directly connected communication devices may be a vehicle wireless communication technology (Vehicle to Everything, V2X) business scenario.
  • V represents the on-board device
  • X represents any object that interacts with the on-board device.
  • X mainly includes in-vehicle devices, handheld devices, traffic roadside infrastructure and networks.
  • the information mode of V2X interaction includes: between vehicle equipment and vehicle equipment (Vehicle to Vehicle, V2V), between vehicle equipment and roadside equipment (Vehicle to Infrastructure, V2I), between vehicle equipment and handheld equipment (Vehicle to Pedestrian, V2P), the interaction between vehicle equipment and network (Vehicle to Network, V2N).
  • 5G NR technology is used in 3GPP Rel-16 to support new V2x communication services and scenarios, such as Vehicles Platooning, Extended Sensors, advanced Driving (Advanced Driving), and remote driving (remote driving), etc.
  • V2x sidelink can provide higher communication rate, shorter communication delay, and more reliable communication quality.
  • the communication scenario of direct communication between directly connected communication devices may also be a device-to-device (Device to Device, D2D) communication scenario.
  • the direct communication devices for direct communication in the embodiments of the present disclosure may include various handheld devices with wireless communication functions, vehicle-mounted devices, wearable devices, computing devices or other processing devices connected to wireless modems, as well as various forms of user Equipment (User Equipment, UE), mobile station (Mobile station, MS), terminal (terminal), terminal equipment (Terminal Equipment) and so on.
  • UE User Equipment
  • MS mobile station
  • terminal terminal equipment
  • Terminal Equipment Terminal Equipment
  • the terminal is taken as an example of a directly connected communication device for illustration. It should be understood that the embodiment of the present disclosure does not limit the specific technology and specific device form adopted by the direct connection communication device.
  • the directly connected communication device involved in the embodiments of the present disclosure may be a traditional terminal, such as an NR terminal.
  • it can also be a new type of terminal designed in 5G NR: low-capability terminal.
  • a low-capability terminal is sometimes called a Reduced capability UE, or a Redcap terminal, or NR-lite for short.
  • the new terminal is called Redcap UE.
  • the traditional direct-connect communication device involved in the embodiments of the present disclosure is called a non-low-capability terminal (non-redcap UE).
  • non-redcap UE Due to different terminal capabilities, the system bandwidth supported by non-redcap UE and redcap UE is different.
  • the maximum is 20MHz under FR1, and the maximum is 100MHz under FR2.
  • non-redcap UE can support a larger system bandwidth than redcap UE.
  • the time-frequency domain resources required for one or more sidelink transmissions are configured or pre-configured by the network device to the terminal in the form of a sending/receiving resource pool through RRC high-level signaling.
  • the sending terminal can directly select from the resource pool (called mode 2 resource allocation mode), or it can be scheduled by the network device (mode 1 resource allocation mode) .
  • Mode 1 and mode 2 resource allocation methods share the same resource pool configuration.
  • sidelink BWP and resource pool are UE-level (UE specific) configurations.
  • multiple TX/RX resource pools can be configured for a sidelink UE, but only one sidelink BWP can be configured for it, with a maximum value of 275 PRBs.
  • a sidelink BWP of this configuration may be greater than 20MHZ in FR1, and may be greater than 100MHZ in FR2, which is greater than the terminal capability of the redcap UE, so that the redcap UE cannot work on the sidelink BWP.
  • a possible solution is to support non-redcap UEs to configure multiple sidelink BWPs , and at least one sidelink BWP is within the bandwidth capability of the redcap UE.
  • mode 1 resource allocation mode network devices centrally schedule sidelink resources, which can effectively avoid sidelink resource conflicts. Therefore, this makes it possible for the redcap UE to use mode 1 resource allocation technology when communicating on the sidelink link.
  • mode 1 resource allocation method will be described first.
  • Fig. 2 shows a flowchart of mode 1 resource allocation process.
  • the sending terminal When the sending terminal has data to send to the receiving terminal, it first applies to the network device for sidelink resources through an air interface (Uu interface) link. If there is currently no physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resource, first apply to the network device for PUSCH through the scheduling request (Scheduling Request, SR) resource configured by the network device for the sending terminal.
  • the sending terminal uses the PUSCH resource to send a sidelink buffer status report (sidelink buffer status report, SL-BSR) to inform the network device of the buffer status of the sending terminal itself.
  • FIG. 3 shows a schematic diagram of content of a sidelink-BSR. As shown in FIG.
  • a sidelink-BSR may currently need to send data to multiple UEs, so the SL-BSR may include multiple receiving terminal indexes (index).
  • the network device After receiving the SL-BSR, the network device allocates appropriate sidelink resources to the sending terminal through a downlink control information (DCI) format (format) 3-0 according to a certain scheduling policy. Therefore, the sending terminal can send sidelink data and control signaling through the resource.
  • DCI downlink control information
  • the receiving terminal will blindly detect the Physical Sidelink Shared Channel (PSCCH) on each sub-channel of the corresponding symbol in each time slot (slot) configured by the network device.
  • PSCCH Physical Sidelink Shared Channel
  • the receiving terminal successfully detects the PSCCH blindly, and decodes the second-stage direct connection control information (sidelink control information, SCI) and medium access control (Medium Access Control, MAC) sent by the sending terminal through further decoding.
  • SCI sidelink control information
  • MAC Medium Access Control
  • the destination ID (destination ID) carried by the control element (control element, CE) matches one source ID in one or more source IDs (source id) of itself, and the source ID matches one of the receiving terminal destination ID list When a destination ID matches, the receiving terminal will receive the data sent by the sending terminal through the sidelink link.
  • multiple sidelink BWPs are configured for non-redcap UE, and at least one sidelink BWP is within the bandwidth capability range of redcap UE.
  • the BWP within the bandwidth capability range of the redcap UE may be called a narrowband sidelink BWP (Narrow sidelink BWP), and may be used for data transmission by the redcap UE.
  • the BWP located within the normal bandwidth capability range of non-redcap UE can be called broadband sidelink BWP (Wide sidelink BWP), which can be used for data transmission by non-redcap UE.
  • the network device when the network device performs resource configuration, because the network device cannot know the types of the sending terminal and the receiving terminal, it cannot make a corresponding resource configuration decision, that is, it cannot determine which type or types of BWP to configure for the sidelink terminal. Furthermore, it is possible to configure Narrow sidelink BWP and Wide sidelink BWP without the need for resource configuration of Narrow sidelink BWP, resulting in waste of configuration resources; or when resource configuration of Narrow sidelink BWP is required, only Wide sidelink is performed. The configuration of BWP makes the redcap terminal unable to communicate with sidelink.
  • an embodiment of the present disclosure provides a resource configuration method.
  • a network device determines the terminal type for direct communication, and performs resource configuration based on the terminal type of the terminal for direct communication, so that the network The device can perform resource scheduling that adapts to the terminal type, saving resource overhead.
  • Fig. 4 is a flow chart showing a resource configuration method according to an exemplary embodiment. As shown in FIG. 4, the resource configuration method is used in network equipment, and includes the following steps.
  • step S11 the terminal type of the sending terminal performing direct communication is determined.
  • step S12 resource configuration is performed based on the terminal type of the sending terminal.
  • the network device may adopt the following method to determine the terminal type of the sending terminal: the network device obtains the user capability report of the terminal after the Uu interface connection is established, and displays or implicitly (through other parameters) , such as the number of antennas/bandwidth capability) reported terminal type.
  • the network device associates the terminal type of each terminal with its Cell-Radio Network Temporary Identifier (C-RNTI), PUCCH resources used to apply for SR, and the like. That is, the network device may determine the terminal type information of the sending terminal in an implicit manner based on resources such as PUCCH/PUSCH used by the sending terminal when sending SR or SL-BSR.
  • C-RNTI Cell-Radio Network Temporary Identifier
  • the terminal type involved in the embodiment of the present disclosure may be a terminal type determined based on a capability of the terminal.
  • terminals of different terminal types may have different capabilities.
  • the capabilities of the terminal may include the transceiver bandwidth, the number of transceiver antennas, the maximum number of bits in a transport block, and the processing time delay.
  • the difference in terminal capability may be one or more of the difference in the transceiver bandwidth, the number of transceiver antennas, the maximum number of bits in a transmission block, and the processing time delay.
  • any two different terminal types among different terminal types may be referred to as a first terminal type and a second terminal type.
  • the terminal of the first terminal type and the terminal of the second terminal type may have different capabilities.
  • the capabilities of the terminal may include the transceiver bandwidth, the number of transceiver antennas, the maximum number of bits in a transport block, and the processing time delay.
  • the difference in terminal capability may be one or more of the difference in the transceiver bandwidth, the number of transceiver antennas, the maximum number of bits in a transmission block, and the processing time delay.
  • the capabilities of the terminals of the first terminal type are higher than the capabilities of the terminals of the second terminal type.
  • the terminal of the first terminal type may be a non-redcap terminal
  • the terminal of the second terminal type may be a redcap terminal.
  • the network device may adopt different resource configuration modes according to whether the terminal type of the sending terminal is the first terminal type or the second terminal type.
  • the terminal type of the sending terminal is the first terminal type, for example, a non-redcap sending terminal
  • the non-redcap sending terminal can use the resource configuration of Narrow sidelink BWP, or can use the resource configuration of Wide sidelink BWP, Therefore, it is necessary to further determine the terminal type of the receiving terminal performing sidelink communication, and perform resource allocation based on the terminal type of the sending terminal and the terminal type of the receiving terminal. For example, if the terminal type of the receiving terminal is non-redcap UE, the resource configuration of Wide sidelink BWP can be used. If the terminal type of the receiving terminal is redcap UE, the resource configuration of Narrow sidelink BWP can be used.
  • the terminal type of the sending terminal is the second terminal type, for example, a redcap sending terminal. Since it can only work on the BWP with limited bandwidth, the receiving terminal that performs sidelink communication with the redcap sending terminal does not matter Whether it is a non-redcap UE or a redcap UE, the redcap sending terminal needs to use the Narrow sidelink BWP adapted to the redcap UE for sidelink communication. Therefore, in this case, when the network device configures resources, configure resources that adapt to the second terminal type That's it.
  • the network device based on the terminal types of the sending terminal and/or the receiving terminal performing sidelink communication, performs direct communication resource configuration and scheduling for adapting the terminal type to save resource overhead.
  • the network device when the terminal type of the sending terminal is the first terminal type, the network device needs to know the terminal type of the current target receiving terminal corresponding to the sending terminal, so as to be able to adapt the direct connection communication resources of the terminal type configuration.
  • the type of the receiving terminal when the network device determines the type of the receiving terminal for direct connection communication resource configuration, the type of the receiving terminal may be determined in a semi-static configuration manner.
  • a terminal supporting sidelink transmission may report direct connection communication information such as through an RRC message, and the destination ID reported in the direct connection communication information corresponds to the terminal type.
  • the terminal type corresponding to the destination ID is reported through the sidelink UE Information NR.
  • the network device may obtain the direct connection communication information included in the RRC sent by the sidelink terminal, and determine the type of the receiving terminal based on the terminal type corresponding to the destination ID included in the direct connection communication information.
  • a terminal supporting sidelink transmission may report direct connection communication information through RRC information, and the direct connection communication information includes the source ID of the sidelink terminal.
  • Terminals that support sidelink transmission can report capability information, which indicates the terminal type of the sidelink terminal and associates the source ID with the terminal type.
  • the network device acquires the source ID of the direct communication terminal based on the direct communication information included in the RRC message sent by the direct communication terminal. Based on the capability report information of the direct connection communication terminal, the terminal type of the direct connection communication terminal is obtained, and the association relationship between the source ID of the direct connection communication terminal and the terminal type is established and maintained.
  • the network device determines the terminal type of the receiving terminal
  • the network device obtains the destination ID sent by the sending terminal, and based on the association between the source ID and the terminal type, determines the terminal type corresponding to the source ID consistent with the destination ID as the terminal type corresponding to the sending terminal.
  • the terminal type of the receiving terminal for the terminal to perform direct communication.
  • the network device may perform resource configuration adapted to the terminal type based on the terminal type of the receiving terminal.
  • the resource configuration performed by the network device may include performing BWP configuration or resource pool configuration.
  • the network device after the network device configures resources adapted to the terminal type, it can perform resource scheduling based on the terminal type.
  • the non-redcap UE as the sending terminal when the non-redcap UE as the sending terminal performs data transmission to the receiving terminal, the non-redcap as the sending terminal cannot know the type of the receiving terminal, that is, it does not know the type of the receiving terminal.
  • the terminal Whether the terminal is a redcap UE or a non-redcap UE, it does not know whether to send data to the receiving terminal on the Narrow sidelink BWP or the Wide sidelink BWP.
  • an embodiment of the present disclosure provides a resource configuration method.
  • a network device determines that the terminal type of the sending terminal performing direct communication is the first terminal type. Further, the network device determines the terminal type of the receiving terminal performing direct communication with the sending terminal, and based on the determined terminal type of the receiving terminal, sends direct communication resource allocation indication information, and the direct communication resource allocation indication information is used to indicate sending The terminal performs direct communication with the receiving terminal based on the direct communication resource matching the terminal type of the receiving terminal.
  • Fig. 5 is a flow chart showing a resource allocation method according to an exemplary embodiment. As shown in Fig. 5, the resource configuration method is used in network equipment, and includes the following steps.
  • step S21 the terminal type of the receiving terminal performing direct communication with the sending terminal is determined.
  • step S22 based on the terminal type of the receiving terminal, send direct connection communication resource allocation instruction information, where the direct connection communication resource allocation instruction information is used to instruct the sending terminal to communicate with the receiving terminal based on the direct connection communication resource matching the terminal type of the receiving terminal.
  • Direct communication based on the terminal type of the receiving terminal, send direct connection communication resource allocation instruction information, where the direct connection communication resource allocation instruction information is used to instruct the sending terminal to communicate with the receiving terminal based on the direct connection communication resource matching the terminal type of the receiving terminal.
  • the network device when performing resource scheduling based on the terminal type of the receiving terminal, determines the terminal type of the receiving terminal performing direct communication with the sending terminal, and makes appropriate scheduling and indication decisions. Wherein, the network device sends direct connection communication resource allocation instruction information, and the direct connection communication resource allocation instruction information is used to instruct the sending terminal to perform direct connection communication with the receiving terminal based on the direct connection communication resource matching the terminal type of the receiving terminal, so that the sending terminal performs During direct connection communication transmission, data transmission may be performed on terminals of different terminal types through different direct connection communication resources.
  • the network device when the network device determines the terminal type of the receiving terminal for direct communication with the sending terminal to perform resource scheduling, on the one hand, when the sending terminal determines the terminal type of the receiving terminal, it may send receiving terminal type indication information to the network device .
  • the network device receives the receiving terminal type indication information sent by the sending terminal for indicating the terminal type of the receiving terminal, and determines the terminal type of the receiving terminal based on the receiving terminal type indication information.
  • Fig. 6 is a flow chart of a method for determining a terminal type of a receiving terminal according to an exemplary embodiment, and the resource configuration method may be executed alone or together with other embodiments of the present disclosure. As shown in FIG. 6, the resource configuration method is used in network equipment, and includes the following steps.
  • step S31 the receiving terminal type indication information sent by the sending terminal is acquired.
  • step S32 the terminal type of the receiving terminal is determined based on the receiving terminal type indication information.
  • the network device when the network device obtains the receiving terminal type indication information sent by the sending terminal, and determines the terminal type of the receiving terminal based on the receiving terminal type indication information, at least one of the following methods 1 and 2 may be included:
  • Method 1 Based on the SR sent by the sending terminal, determine the terminal type of the receiving terminal, and the SR includes the receiving terminal type indication information
  • the sending terminal When the sending terminal applies for scheduling, it sends an SR, and the SR includes the type indication information of the receiving terminal.
  • the terminal type of the terminal receiving the current scheduling application is indicated to the network device through different SR (time domain/frequency domain/code domain) resources. For example, SR#0 indicates that only non-redcap UEs exist in current scheduling, SR#1 indicates that both non-redcap UEs and redcap UEs exist, and SR#2 indicates that only redcap UEs exist. For another example, SR#0 is only used to receive resource applications from non-redcap UEs, and SR#1 is only used to receive resource applications from redcap UEs. If the sending terminal needs to communicate with redcap UEs and Need to communicate with non-redcap UE, then apply for resource scheduling through SR#0 and SR#1 respectively.
  • Mode 2 Based on the SL-BSR sent by the sending terminal, determine the terminal type of the receiving terminal, and the SL-BSR includes the receiving terminal type indication information
  • the sending terminal indicates through the reserved flag bit in the MAC subheader corresponding to the SL-BSR, such as "0" indicates that there is no redcap UE in the current application, and "1" indicates that there is a redcap UE in the current application UE.
  • redcap UE and non-redcap UE use different MAC CEs for buffering and reporting, and different MAC CEs can be distinguished by the reserved flag bits in the MAC subheader. For example, "0" indicates that the MAC CE is used for bearer reception
  • the terminal type of the terminal is the sidelink BSR of the non-redcap UE
  • "1" indicates that the MAC CE is used to carry the sidelink BSR of the receiving terminal whose terminal type is the redcap UE.
  • different MAC CEs can be distinguished by different locale identifiers (Locale Identifier, LCID). It is conceivable that if the current sending terminal needs to transmit data to both non-redcap UE and redcap UE, then two different MAC CEs need to be carried in one MAC protocol data unit (Protocol Data Unit, PDU). .
  • PDU Protocol Data Unit
  • an indicator bit is added after each destination index in the MAC CE, for example, a 1-bit indicator bit is added after each destination index, "0" indicates that the receiving terminal is a non-redcap UE, and "1" indicates that the receiving terminal for redcap UE and vice versa.
  • Method 3 Determine the terminal type of the receiving terminal based on the direct connection communication information included in the RRC sent by the sending terminal, and the direct connection communication information includes the receiving terminal type indication information corresponding to the destination ID.
  • a terminal that supports sidelink transmission when reporting direct communication information such as a destination ID list through an RRC message, reports the terminal type of the receiving end corresponding to the destination ID. For example, the terminal type of the receiving terminal corresponding to the destination ID is reported through the sidelink UE Information NR, and the terminal maintains the association between the destination ID and the terminal type.
  • the network device indexes the destination ID list in the above association relationship according to the destination ID index carried in the sidelink BSR, so as to obtain the current receiving terminal type that needs to communicate.
  • the sending terminal when the sending terminal sends the receiving terminal type indication information, the sending terminal first needs to know the receiving terminal type of the receiving terminal, so that it can indicate to the network device which type the receiving terminal is To assist network equipment in scheduling decisions.
  • the sending terminal can determine the type of the receiving terminal in the following way: During the establishment of the sidelink communication link, the sidelink UE broadcasts/unicasts its own UE type while broadcasting/unicasting its own application layer ID or layer-2 ID. Correspondingly, other sidelink UEs obtain the corresponding UE type while determining to use the other side's application layer ID or layer-2 ID as their own destination ID, and associate the two.
  • a terminal that supports sidelink transmission can report direct communication information through RRC information, and the direct communication information includes the source ID of the sidelink terminal.
  • Terminals that support sidelink transmission can report capability information, which indicates the terminal type of the sidelink terminal and associates the source ID with the terminal type.
  • the network device acquires the source ID of the direct communication terminal based on the direct communication information included in the RRC message sent by the direct communication terminal. Based on the capability report information of the direct connection communication terminal, the terminal type of the direct connection communication terminal is obtained, and the association relationship between the source ID of the direct connection communication terminal and the terminal type is established and maintained.
  • the network device determines the terminal type of the receiving terminal, the network device obtains the destination ID sent by the sending terminal.
  • the destination ID of the receiving terminal can be obtained through the SL-BSR sent by the sending terminal, and based on the association between the source ID and the terminal type , determine the terminal type corresponding to the source ID consistent with the destination ID as the terminal type of the receiving terminal performing direct communication with the sending terminal.
  • the network device when the network device determines the type of the receiving terminal for resource scheduling, at least one of the above methods 1, 2, 3 and 4 may be used to determine the terminal type of the receiving terminal. After determining the terminal type of the receiving terminal, the network device performs resource scheduling adapted to the receiving terminal type according to the receiving terminal type of the non-redcap UE.
  • the network device can match the index reported by the SL-BSR with the terminal type corresponding to the destination ID list, so as to obtain the terminal type of the current scheduling application, and perform adaptation based on the receiving terminal type of the non-redcap UE Receive resource scheduling of terminal type.
  • the network device obtains the destination ID sent by the sending terminal. Based on the association between the source ID and the terminal type, when there is a sidelink scheduling request, the network device combines the destination ID carried in the SL-BSR with the cached source ID. The ID set continues to compare, so as to obtain the terminal type corresponding to the destination ID, and use the receiving terminal type of the non-redcap UE to adapt the resource scheduling of the receiving terminal type.
  • both the network device and the sending terminal need to know the terminal type of the receiving terminal.
  • the sending terminal in the implementation method of determining the type of the receiving terminal based on the association relationship of the network device, the sending terminal also needs to know the terminal type of the receiving terminal, so that the sending terminal can correctly understand the direct connection communication resource allocation indication information sent by the network device.
  • the network device may send receiving terminal type indication information to the sending terminal.
  • the network device performs sidelink configuration or pre-configuration through RRC signaling, and indicates to each sidelink terminal the terminal type (redcap or non-redcap UE) corresponding to each destination ID in its destination ID list, so that the sending terminal can determine to receive The terminal type of the terminal.
  • the network device may send resource configuration indication information adapted to the receiving terminal type to the sending terminal to indicate the corresponding resource configuration.
  • the network device may send BWP type indication information matching the type of the receiving terminal to the sending terminal, so as to instruct the sending terminal to perform direct communication with the receiving terminal based on the direct communication resource matching the terminal type of the receiving terminal.
  • Fig. 7 is a flow chart showing a method for configuring resources according to an exemplary embodiment.
  • the method for configuring resources may be executed independently or together with other embodiments of the present disclosure.
  • the resource configuration method is used in a network device and includes the following steps.
  • step S41 the terminal type of the receiving terminal performing direct communication with the sending terminal is determined.
  • step S42 send BWP type indication information matching the terminal type of the receiving terminal, and different terminal types correspond to different BWP types.
  • the BWP type indication information sent by the network device may be a BWP indication field (BWP indicator field) added in DCI format 3_0. Use the BWP indicator field to indicate which type of BWP the sending terminal uses for data transmission, so as to adapt to the type of the receiving terminal.
  • BWP indicator field BWP indication field
  • the BWP types include Narrow sidelink BWP and Wide sidelink BWP.
  • the BWP indicator field may be an identifier for identifying Narrow sidelink BWP and Wide sidelink BWP, or may be a bit indicating Narrow sidelink BWP and Wide sidelink BWP through different bit values.
  • the network device may configure different BWP configuration information for different receiving terminal types through high-layer signaling.
  • the resource pool configuration performed by the network device through high-level signaling may be per BWP configuration.
  • the network device may configure different parameters such as the number of resource pools and the number of sub-channels for redcap BWP and non-redcap BWP respectively.
  • the network device when the network device instructs the sending terminal based on the direct connection communication resource matching the terminal type of the receiving terminal, it may send BWP configuration information matching the receiving terminal type; where different terminal types correspond to different BWP configuration information.
  • Fig. 8 is a flow chart showing a method for configuring resources according to an exemplary embodiment.
  • the method for configuring resources may be executed independently or together with other embodiments of the present disclosure.
  • the resource configuration method is used in a network device and includes the following steps.
  • step S51 the terminal type of the receiving terminal performing direct communication with the sending terminal is determined.
  • step S52 the BWP configuration information matching the terminal type of the receiving terminal is sent, and different terminal types correspond to different BWP configuration information.
  • the network device may indicate different BWP types through different BWP configuration information, that is, instruct the sending terminal to use the BWP that matches the terminal type for data transmission.
  • bit overhead of fields such as resource pool index.
  • the corresponding fields in the DCI related to these parameters such as resource pool index, lowest index of subchannel allocation to the initial tx, frequency resource assisgnment and other fields occupy different numbers of bits for different BWPs, so for Different BWP, the bit overhead of DCI format 3_0 is different.
  • the bit sizes of corresponding fields in the dynamic scheduling signaling corresponding to multiple different BWP configuration information may be different, that is, different BWP configuration information can be distinguished through different DCI sizes.
  • the network device may instruct the sending terminal to use the BWP of the adapted terminal type for data transmission by sending the implicit information of different DCI sizes.
  • the receiving terminal of the sending terminal has both redcap UE and non-redcap UE, when the sending terminal blindly detects DCI format 3_0, it may need to perform DCI format 3_0 with different DCI sizes due to different DCI sizes. Blind detection, which will increase the complexity of the blind detection of the sending terminal and introduce unnecessary energy consumption of the terminal.
  • the DCI fomat 3_0 size is always consistent for different BWPs, that is, the BWP configuration information corresponding to the terminal type matching the receiving terminal includes multiple different BWP configuration information, and the dynamic scheduling corresponding to different BWP configuration information
  • the bit sizes of the corresponding fields in the signaling are different, and the bit sizes of the fields in the dynamic scheduling information are aligned, that is, the bit sizes of the corresponding fields in the dynamic scheduling signaling corresponding to multiple different BWP configuration information are configured to be the same.
  • the following method can be used to configure the field Bit alignment, take the resource pool index field as an example to illustrate:
  • the number of bits occupied by the resource pool index max(ceil(log2I BWPi )), where I BWPi represents the number of resource pools sent by BWPi; for a BWPi whose ceil(log2I BWPi )) is less than the above-mentioned calculated number of bits, for The high and low bits of the corresponding fields are filled with 0.
  • the fields that may have the above problems also include fields such as Lowest index of subchannel allocation to the initial tx, Freuqency resource assignment, etc. If the other bits are related to the high-level signaling configuration, if the subsequent design is per SL-BWP configuration, the corresponding field will still use the above method for DCI size alignment. For example, for PSFCH-to-HARQ feedback timing indicator field, TDRA field, etc.
  • DCI format alignment may be performed when the terminal types of the receiving terminal that the sending terminal performs direct communication include different terminal types.
  • DCI format alignment can be performed when there are both redcap UE and non-redcap UE in the destination ID list.
  • DCI format alignment can be performed when both redcap UE and non-redcap UE are included when dynamic scheduling applies for SR, BSR, etc.
  • the BWP indicator field may not be designed in the DCI, and DCI alignment is also not required.
  • the sidelink BWP indication may be performed through the BWP indicator field.
  • the network device also needs to distinguish whether the sending terminal is a non-redcap UE or a redcap UE, so as to make different scheduling decisions, so as to determine whether to perform sidelink BWP indication through the BWP indicator field.
  • whether to add the BWP indicator field in DCI format 3_0 can be determined by the following different methods:
  • the sending terminal is a non-redcap UE, and there is no redcap UE in the destination ID list of the sending terminal, the original DCI format 3_0 is used, and the BWP indicator field is not added.
  • the destination ID list of the sending terminal includes non-redcap UE and redcap UE, add the BWP indicator field in DCI format 3_0. That is, in the embodiment of the present disclosure, the non-redcap sending terminal can judge whether to add the BWP indicator field in the DCI format 3_0 according to the terminal type corresponding to the destination ID.
  • the sending terminal is a non-redcap UE
  • the communication terminal type of the dynamic scheduling application of the sending terminal includes both redcap UE and non-redcap UE
  • the resource configuration method involved in the foregoing embodiments of the present disclosure is mainly applicable to a sidelink unicast transmission mode.
  • this method is mainly applicable to non-redcap sending terminals.
  • redcap sending terminals since it can only work on the BWP with limited bandwidth, the receiving terminal that performs sidelink communication with the redcap sending terminal does not matter whether it is non-redcap sending terminal.
  • - Redcap UE or redcap UE does not need to perform BWP switching, and thus does not need to perform BWP instructions. That is, in the embodiment of the present disclosure, the terminal type of the sending terminal is the first terminal type, and the terminal capability of the first terminal type is greater than the terminal capability of the second terminal type.
  • the resource configuration method mentioned above in the embodiments of the present disclosure may be applicable to the process of determining the BWP type of the sending terminal in the mode-1 resource allocation mode, so as to ensure that the non-redcap TX UE uses the mode-1 resource allocation type , data transmission can be performed with redcap RX UE and non-redcap RX UE respectively through different BWPs.
  • the terminal can also independently select sidelink resources in the network device configuration or pre-configured resource pool through a certain conflict avoidance mechanism, which is the mode-2 resource allocation method.
  • the network device also needs to know the terminal type of the receiving terminal to configure an appropriate sidelink BWP or sidelink resource pool.
  • the same terminal also needs to know the receiving terminal type in order to perform resource selection on the appropriate sidelink BWP/sidelink resource pool. Therefore, the above-mentioned method for the network device or the sending terminal to determine the type of the receiving terminal is also applicable to the mode-2 resource allocation method.
  • the network device in addition to applying the BWP indication manner involved in the above embodiments, may also use different resource pools of the same BWP to perform scheduling of different terminal types.
  • Fig. 9 is a flow chart showing a method for configuring resources according to an exemplary embodiment.
  • the method for configuring resources may be executed independently or together with other embodiments of the present disclosure.
  • the resource configuration method is used in a network device and includes the following steps.
  • step S61 the terminal type of the receiving terminal performing direct communication with the sending terminal is determined.
  • the network device may determine the terminal type of the receiving terminal by using any of the manners 1, 2, 3, and 4 involved in the foregoing embodiments.
  • step S62 the sending frequency domain bandwidth matches the resource pool configuration information of the terminal type of the receiving terminal, and different terminal types correspond to different resource pool frequency domain bandwidths.
  • the terminal type network device of the receiving terminal be instructed to send direct connection communication resource allocation indication information to the sending terminal through the BWP indication method, but also different terminal types can be performed by using different resource pools of the same BWP. scheduling.
  • the embodiment of the present disclosure also provides a resource configuration method applied to a sending terminal.
  • the terminal type of the sending terminal is the first terminal type. Terminal capabilities of the first terminal type are greater than terminal capabilities of the second terminal type.
  • Fig. 10 is a flow chart showing a method for configuring resources according to an exemplary embodiment.
  • the method for configuring resources may be executed independently or together with other embodiments of the present disclosure.
  • the resource configuration method is used in the sending terminal and includes the following steps.
  • step S71 direct connection communication resource allocation indication information sent by the network device is received.
  • step S72 the terminal type of the receiving terminal performing direct communication with the sending terminal is determined based on the direct communication resource allocation indication information.
  • step S73 direct communication is performed with the receiving terminal based on the direct communication resource matching the terminal type of the receiving terminal.
  • the sending terminal receives the direct communication resource allocation indication information sent by the network device.
  • it may receive the BWP type indication information matching the terminal type of the receiving terminal.
  • Different BWP type indication information corresponds to different terminal types.
  • it may be to receive BWP configuration information matching the terminal type of the receiving terminal.
  • it may be resource pool configuration information that receives frequency-domain bandwidth matching terminal type of the receiving terminal. Wherein, different terminal types correspond to different resource pool frequency domain bandwidths.
  • the BWP configuration information matching the terminal type of the receiving terminal includes multiple different BWP configuration information, and the bit sizes of the corresponding fields in the dynamic scheduling signaling corresponding to the multiple different BWP configuration information are the same or different.
  • the sending terminal determines the terminal type of the receiving terminal, and sends receiving terminal type indication information to instruct the network device to determine the terminal type of the receiving terminal.
  • the sending terminal sends the receiving terminal type indication information, including at least one of the following:
  • the network device can determine the terminal type of the receiving terminal based on the association relationship.
  • the sending terminal can receive the terminal type configuration information sent by the network device, and the terminal type configuration information is used to indicate the purpose of direct communication terminal maintenance. Identifies the corresponding terminal type.
  • the resource configuration method performed by the sending terminal in the embodiment of the present disclosure corresponds to the resource configuration method performed by the network device. Therefore, for the description of the resource configuration method performed by the sending terminal is not detailed enough, you can refer to the above-mentioned network setting execution The resource allocation method will not be described in detail here.
  • the resource configuration method provided by the embodiments of the present disclosure may be applicable to a scenario where terminals perform sidelink communication interaction and resource configuration, and is also applicable to a scenario where a terminal interacts with a network device to implement resource configuration.
  • the functions realized by the terminals and network devices involved in the specific implementation process can refer to the relevant descriptions involved in the above embodiments, and will not be described in detail here.
  • an embodiment of the present disclosure further provides a resource configuration device.
  • the resource configuration apparatus includes corresponding hardware structures and/or software modules for performing various functions.
  • the embodiments of the present disclosure can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the technical solutions of the embodiments of the present disclosure.
  • Fig. 11 is a block diagram of a device for configuring resources according to an exemplary embodiment.
  • the resource configuration apparatus 100 is applied to a network device and includes a processing unit 101 and a sending unit 102 .
  • the processing unit 101 is configured to determine a terminal type of a sending terminal performing direct communication, and perform resource allocation based on the terminal type of the sending terminal.
  • the terminal type of the receiving terminal performing sidelink communication is further determined, and resource configuration is performed based on the terminal type of the sending terminal and the terminal type of the receiving terminal.
  • resources adapted to the second terminal type are configured.
  • the processing unit 101 is configured to determine a terminal type of a receiving terminal that performs direct communication with the sending terminal.
  • the sending unit 102 is configured to send direct connection communication resource allocation indication information based on the terminal type of the receiving terminal.
  • the direct communication resource allocation instruction information is used to instruct the sending terminal to perform direct communication with the receiving terminal based on the direct communication resource matching the terminal type of the receiving terminal.
  • the sending unit 102 is configured to: send BWP type indication information matching the terminal type of the receiving terminal. Different terminal types correspond to different BWP types.
  • the sending unit 102 is configured to: send BWP configuration information matching the terminal type of the receiving terminal. Wherein, different terminal types correspond to different BWP configuration information.
  • the BWP configuration information matching the terminal type of the receiving terminal includes a plurality of different BWP configuration information. Bit sizes of corresponding fields in dynamic scheduling signaling corresponding to multiple different BWP configuration information are the same or different.
  • the sending unit 102 in response to the fact that the BWP configuration information matching the terminal type of the receiving terminal includes multiple different BWP configuration information, and the bit sizes of the corresponding fields in the dynamic scheduling signaling corresponding to different BWP configuration information are different, the sending unit 102 sends The bit size of each field in the dynamic scheduling signaling is aligned.
  • the sending unit 102 is configured to: send resource pool configuration information whose frequency domain bandwidth matches the terminal type of the receiving terminal. Wherein, different terminal types correspond to different resource pool frequency domain bandwidths.
  • the processing unit 101 is configured to: acquire the receiving terminal type indication information sent by the sending terminal, and determine the terminal type of the receiving terminal based on the receiving terminal type indication information.
  • the processing unit 101 determines the terminal type of the receiving terminal that performs direct communication with the sending terminal in at least one of the following ways:
  • the resource scheduling request includes the receiving terminal type indication information
  • the buffer status report sent by the sending terminal, determine the terminal type of the receiving terminal, and the buffer status report includes the receiving terminal type indication information
  • determine the terminal type of the receiving terminal based on the direct communication information included in the radio resource control message sent by the sending terminal, where the direct communication information includes the receiving terminal type indication information corresponding to the destination identifier.
  • the processing unit 101 is configured to: acquire the destination identifier sent by the sending terminal. Based on the association relationship between the source identifier and the terminal type, the terminal type corresponding to the source identifier consistent with the destination identifier is determined as the terminal type of the receiving terminal performing direct communication with the sending terminal.
  • the association relationship between the source identifier and the terminal type is determined in the following manner:
  • the source identifier of the direct connection communication terminal is acquired.
  • the terminal type of the direct connection communication terminal is acquired. Establish and maintain the association relationship between the source identifier of the direct-connected communication terminal and the terminal type.
  • the sending unit 102 is further configured to: send terminal type configuration information, where the terminal type configuration information is used to indicate the terminal type corresponding to the destination identifier maintained by the direct connection communication terminal.
  • the terminal type of the sending terminal is the first terminal type. Terminal capabilities of the first terminal type are greater than terminal capabilities of the second terminal type.
  • Fig. 12 is a block diagram of a device for configuring resources according to an exemplary embodiment.
  • the resource configuration apparatus 200 is applied to a sending terminal, and includes a communication unit 201 and a processing unit 202 .
  • the communication unit 201 is configured to receive direct communication resource allocation indication information sent by the network device, and perform direct communication with the receiving terminal based on the direct communication resource matching the terminal type of the receiving terminal.
  • the processing unit 202 is configured to determine the terminal type of the receiving terminal performing direct communication with the sending terminal based on the direct connection communication resource allocation indication information.
  • the communication unit 201 is configured to: receive BWP type indication information matching the terminal type of the receiving terminal, and different BWP type indication information corresponds to different terminal types.
  • the communication unit 201 is configured to: receive BWP configuration information matching the terminal type of the receiving terminal.
  • the BWP configuration information matching the terminal type of the receiving terminal includes a plurality of different BWP configuration information. Bit sizes of corresponding fields in dynamic scheduling signaling corresponding to multiple different BWP configuration information are the same or different.
  • the communication unit 201 is configured to: receive resource pool configuration information whose frequency domain bandwidth matches the terminal type of the receiving terminal. Wherein, different terminal types correspond to different resource pool frequency domain bandwidths.
  • the communication unit 201 is further configured to: send and receive terminal type indication information.
  • sending and receiving terminal type indication information includes at least one of the following:
  • the direct communication information includes receiving terminal type indication information corresponding to the destination identifier.
  • the communication unit 201 is further configured to: receive terminal type configuration information, where the terminal type configuration information is used to indicate the terminal type corresponding to the destination identifier maintained by the direct-connection communication terminal.
  • the terminal type of the sending terminal is the first terminal type. Terminal capabilities of the first terminal type are greater than terminal capabilities of the second terminal type.
  • Fig. 13 is a block diagram showing an apparatus for resource configuration according to an exemplary embodiment.
  • the apparatus 300 may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, and the like.
  • apparatus 300 may include one or more of the following components: processing component 302, memory 304, power component 306, multimedia component 308, audio component 310, input/output (I/O) interface 312, sensor component 314, and communication component 316 .
  • the processing component 302 generally controls the overall operations of the device 300, such as those associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 302 may include one or more processors 320 to execute instructions to complete all or part of the steps of the above method. Additionally, processing component 302 may include one or more modules that facilitate interaction between processing component 302 and other components. For example, processing component 302 may include a multimedia module to facilitate interaction between multimedia component 308 and processing component 302 .
  • the memory 304 is configured to store various types of data to support operations at the device 300 . Examples of such data include instructions for any application or method operating on device 300, contact data, phonebook data, messages, pictures, videos, etc.
  • the memory 304 can be implemented by any type of volatile or non-volatile storage device or their combination, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 306 provides power to various components of device 300 .
  • Power components 306 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power for device 300 .
  • the multimedia component 308 includes a screen that provides an output interface between the device 300 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense a boundary of a touch or swipe action, but also detect duration and pressure associated with the touch or swipe action.
  • the multimedia component 308 includes a front camera and/or a rear camera. When the device 300 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera can receive external multimedia data. Each front camera and rear camera can be a fixed optical lens system or have focal length and optical zoom capability.
  • the audio component 310 is configured to output and/or input audio signals.
  • the audio component 310 includes a microphone (MIC), which is configured to receive external audio signals when the device 300 is in operation modes, such as call mode, recording mode and voice recognition mode. Received audio signals may be further stored in memory 304 or sent via communication component 316 .
  • the audio component 310 also includes a speaker for outputting audio signals.
  • the I/O interface 312 provides an interface between the processing component 302 and a peripheral interface module, which may be a keyboard, a click wheel, a button, and the like. These buttons may include, but are not limited to: a home button, volume buttons, start button, and lock button.
  • Sensor assembly 314 includes one or more sensors for providing various aspects of status assessment for device 300 .
  • the sensor component 314 can detect the open/closed state of the device 300, the relative positioning of components, such as the display and keypad of the device 300, and the sensor component 314 can also detect a change in the position of the device 300 or a component of the device 300 , the presence or absence of user contact with the device 300 , the device 300 orientation or acceleration/deceleration and the temperature change of the device 300 .
  • the sensor assembly 314 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 314 may also include an optical sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 314 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor or a temperature sensor.
  • the communication component 316 is configured to facilitate wired or wireless communication between the apparatus 300 and other devices.
  • the device 300 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 316 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 316 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on Radio Frequency Identification (RFID) technology, Infrared Data Association (IrDA) technology, Ultra Wide Band (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID Radio Frequency Identification
  • IrDA Infrared Data Association
  • UWB Ultra Wide Band
  • Bluetooth Bluetooth
  • apparatus 300 may be programmed by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation for performing the methods described above.
  • a storage medium including instructions, such as the memory 304 including instructions, which can be executed by the processor 320 of the device 300 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • Fig. 14 is a block diagram showing an apparatus for resource configuration according to an exemplary embodiment.
  • apparatus 400 may be provided as a network device.
  • apparatus 400 includes processing component 422 , which further includes one or more processors, and a memory resource represented by memory 432 for storing instructions executable by processing component 422 , such as application programs.
  • the application program stored in memory 432 may include one or more modules each corresponding to a set of instructions.
  • the processing component 422 is configured to execute instructions to perform the above method.
  • Device 400 may also include a power component 426 configured to perform power management of device 400 , a wired or wireless network interface 440 configured to connect device 400 to a network, and an input-output (I/O) interface 448 .
  • the device 400 can operate based on an operating system stored in the memory 432, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a storage medium including instructions, such as a memory 432 including instructions, which can be executed by the processing component 422 of the device 400 to complete the above method.
  • the non-transitory computer readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • “plurality” in the present disclosure refers to two or more, and other quantifiers are similar thereto.
  • “And/or” describes the association relationship of associated objects, indicating that there may be three types of relationships, for example, A and/or B may indicate: A exists alone, A and B exist simultaneously, and B exists independently.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • the singular forms “a”, “said” and “the” are also intended to include the plural unless the context clearly dictates otherwise.
  • first, second, etc. are used to describe various information, but the information should not be limited to these terms. These terms are used only to distinguish information of the same type from one another, and do not imply a specific order or degree of importance. In fact, expressions such as “first” and “second” can be used interchangeably.
  • first information may also be called second information, and similarly, second information may also be called first information.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开是关于一种资源配置方法、装置及存储介质。资源配置方法,应用于网络设备,包括:确定与发送终端进行直连通信的接收终端的终端类型;基于所述接收终端的终端类型,发送直连通信资源分配指示信息;所述直连通信资源分配指示信息用于指示所述发送终端基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。通过本公开可以使网络设备能够进行适配终端类型的资源调度,并且终端能够区分终端类型采用不同的直连通信资源,节省资源开销。

Description

一种资源配置方法、装置及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及一种资源配置方法、装置及存储介质。
背景技术
在车辆到所有(vehicle to everything,V2X)技术中,直连通信(sidelink communication)被广泛应用。其中,终端可以通过直连链路(sidelink)直接进行数据传输,而无需通过基站等网络设备的转发,从而降低传输时延,提升频谱效率。对于sidelink的一次或多次传输所需的时频域资源,由网络设备通过无线资源控制(Radio Resource Control,RRC)高层信令以发送/接收资源池(resource pool)的形式配置或预配置给终端。
相关技术中,针对sidelink的资源配置,会配置一个sidelink带宽部分(bandwidth part,BWP)。在一个sidelink BWP内会配置一个或多个资源池。对于实际传输所需的时频域资源,可以由发送终端从资源池中直接进行选择(也称为mode 2资源分配方式),也可以由网络设备进行调度(也称为mode 1资源分配方式)。其中,mode 1资源分配方式与mode 2资源分配方式共享相同的资源池配置。
随着新一代5G移动通信技术的发展,在5G新空口(New Radio,NR)中设计了一种新的终端类型用以来覆盖中端物联网设备的要求。在目前的3GPP标准化中,这种新的终端类型叫做降低能力终端,有时也称为Reduced capability UE,或者称为Redcap终端,或者简称为NR-lite。
在Redcap终端中引入sidelink功能,有利于拓展Redcap终端的使用场景。例如Redcap终端直接可以通过sidelink技术进行信息互换。另外,Redcap终端使用sidelink,还可以帮助终端将信息中继到网络设备,增强覆盖,达到功率节省的目的。
目前的sidelink BWP的带宽在FR1下是可以大于20MHz,在FR2下是可以大于100MHz的。但对于Redcap终端,由于带宽能力有限,在FR1下最大为20MHz,在FR2下最大为100MHz。故,基于目前的sidelink BWP中资源池配置方案,将限制Redcap终端的通信能力。
发明内容
为克服相关技术中存在的问题,本公开提供一种资源配置方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种资源配置方法,应用于网络设备,包括:
确定与发送终端进行直连通信的接收终端的终端类型;基于所述接收终端的终端类型,发送直连通信资源分配指示信息;所述直连通信资源分配指示信息用于指示所述发送 终端基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。
一种实施方式中,发送直连通信资源分配指示信息,包括:
发送匹配接收终端的终端类型的BWP类型指示信息;不同终端类型对应不同的BWP类型。
一种实施方式中,发送直连通信资源分配指示信息,包括:
发送匹配接收终端的终端类型的BWP配置信息;其中,不同终端类型对应不同的BWP配置信息。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息;所述多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
一种实施方式中,响应于匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息,且所述不同BWP配置信息所对应的动态调度信令中相应字段的比特大小不同,将所述动态调度信令中各字段的比特大小对齐。
一种实施方式中,发送直连通信资源分配指示信息,包括:
发送频域带宽匹配接收终端的终端类型的资源池配置信息;其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,所述确定与发送终端进行直连通信的接收终端的终端类型,包括:
获取所述发送终端发送的接收终端类型指示信息,并基于所述接收终端类型指示信息确定接收终端的终端类型。
一种实施方式中,所述基于所述接收终端类型指示信息确定接收终端的终端类型,包括以下至少一种:
基于发送终端发送的资源调度请求,确定接收终端的终端类型,所述资源调度请求中包括接收终端类型指示信息;
基于发送终端发送的缓存状态报告,确定接收终端的终端类型,所述缓存状态报告中包括接收终端类型指示信息;以及
基于发送终端发送的无线资源控制消息中包括的直连通信信息,确定接收终端的终端类型,所述直连通信信息中包括目的标识对应的接收端终端类型指示信息。
一种实施方式中,所述确定与发送终端进行直连通信的接收终端的终端类型,包括:
获取发送终端发送的目的标识;基于源标识与终端类型之间的关联关系,将与所述目的标识一致的源标识对应的终端类型,确定为与发送终端进行直连通信的接收终端的终端类型。
一种实施方式中,所述源标识与终端类型之间的关联关系采用如下方式确定:
基于直连通信终端发送的无线资源控制消息中包括的直连通信信息,获取直连通信终端的源标识;基于直连通信终端的能力上报信息,获取直连通信终端的终端类型;建立并维护直连通信终端的源标识与终端类型之间的关联关系。
一种实施方式中,所述方法还包括:发送终端类型配置信息,所述终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
一种实施方式中,所述发送终端的终端类型为第一终端类型;所述第一终端类型的终端能力大于第二终端类型的终端能力。
根据本公开实施例第二方面,提供一种资源配置方法,应用于发送终端,包括:
接收网络设备发送的直连通信资源分配指示信息;基于所述直连通信资源分配指示信息,确定与所述发送终端进行直连通信的接收终端的终端类型;基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。
一种实施方式中,接收网络设备发送的直连通信资源分配指示信息,包括:
接收匹配接收终端的终端类型的BWP类型指示信息,不同的BWP类型指示信息对应不同的终端类型。
一种实施方式中,接收直连通信资源分配指示信息,包括:接收匹配接收终端的终端类型的BWP配置信息。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息;所述多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
一种实施方式中,接收直连通信资源分配指示信息,包括:
接收频域带宽匹配接收终端的终端类型的资源池配置信息;其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,所述方法还包括:
发送接收终端类型指示信息。
一种实施方式中,所述发送接收终端类型指示信息,包括以下至少一种:
发送资源调度请求,所述资源调度请求中包括接收终端类型指示信息;
发送缓存状态报告,所述缓存状态报告中包括接收终端类型指示信息;以及
发送无线资源控制消息,所述无线资源控制信息中包括直连通信信息,所述直连通信信息中包括目的标识对应的接收端终端类型指示信息。
一种实施方式中,所述方法还包括:接收终端类型配置信息,所述终端类型配置信息 用于指示直连通信终端维护的目的标识对应的终端类型。
一种实施方式中,所述发送终端的终端类型为第一终端类型;所述第一终端类型的终端能力大于第二终端类型的终端能力。
根据本公开实施例第三方面,提供一种资源配置装置,应用于网络设备,包括:
处理单元,被配置为确定与发送终端进行直连通信的接收终端的终端类型;发送单元,被配置为基于所述接收终端的终端类型,发送直连通信资源分配指示信息;所述直连通信资源分配指示信息用于指示所述发送终端基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。
一种实施方式中,发送单元被配置为:发送匹配接收终端的终端类型的BWP类型指示信息;不同终端类型对应不同的BWP类型。
一种实施方式中,发送单元被配置为:发送匹配接收终端的终端类型的BWP配置信息;其中,不同终端类型对应不同的BWP配置信息。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息;所述多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
一种实施方式中,响应于匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息,且所述不同BWP配置信息所对应的动态调度信令中相应字段的比特大小不同,所述发送单元将所述动态调度信令中各字段的比特大小对齐。
一种实施方式中,发送单元被配置为:发送频域带宽匹配接收终端的终端类型的资源池配置信息;其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,所述处理单元被配置为:获取所述发送终端发送的接收终端类型指示信息,并基于所述接收终端类型指示信息确定接收终端的终端类型。
一种实施方式中,所述处理单元采用以下至少一种方式确定与发送终端进行直连通信的接收终端的终端类型:
基于发送终端发送的资源调度请求,确定接收终端的终端类型,所述资源调度请求中包括接收终端类型指示信息;基于发送终端发送的缓存状态报告,确定接收终端的终端类型,所述缓存状态报告中包括接收终端类型指示信息;以及基于发送终端发送的无线资源控制消息中包括的直连通信信息,确定接收终端的终端类型,所述直连通信信息中包括目的标识对应的接收端终端类型指示信息。
一种实施方式中,所述处理单元被配置为:获取发送终端发送的目的标识;基于源标识与终端类型之间的关联关系,将与所述目的标识一致的源标识对应的终端类型,确定为 与发送终端进行直连通信的接收终端的终端类型。
一种实施方式中,所述源标识与终端类型之间的关联关系采用如下方式确定:
基于直连通信终端发送的无线资源控制消息中包括的直连通信信息,获取直连通信终端的源标识;基于直连通信终端的能力上报信息,获取直连通信终端的终端类型;建立并维护直连通信终端的源标识与终端类型之间的关联关系。
一种实施方式中,所述发送单元还被配置为:发送终端类型配置信息,所述终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
一种实施方式中,所述发送终端的终端类型为第一终端类型;所述第一终端类型的终端能力大于第二终端类型的终端能力。
根据本公开实施例第四方面,提供一种资源配置装置,应用于发送终端,包括:
通信单元,被配置为接收网络设备发送的直连通信资源分配指示信息,并基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信;
处理单元,被配置为基于所述直连通信资源分配指示信息,确定与所述发送终端进行直连通信的接收终端的终端类型。
一种实施方式中,通信单元被配置为:接收匹配接收终端的终端类型的BWP类型指示信息,不同的BWP类型指示信息对应不同的终端类型。
一种实施方式中,通信单元被配置为:接收匹配接收终端的终端类型的BWP配置信息。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息;所述多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
一种实施方式中,所述通信单元被配置为:接收频域带宽匹配接收终端的终端类型的资源池配置信息;其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,所述通信单元还被配置为:发送接收终端类型指示信息。
一种实施方式中,所述发送接收终端类型指示信息,包括以下至少一种:
发送资源调度请求,所述资源调度请求中包括接收终端类型指示信息;
发送缓存状态报告,所述缓存状态报告中包括接收终端类型指示信息;以及
发送无线资源控制消息,所述无线资源控制信息中包括直连通信信息,所述直连通信信息中包括目的标识对应的接收端终端类型指示信息。
一种实施方式中,所述通信单元还被配置为:接收终端类型配置信息,所述终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
一种实施方式中,所述发送终端的终端类型为第一终端类型;所述第一终端类型的终端能力大于第二终端类型的终端能力。
根据本公开实施例第五方面,提供一种资源配置装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第一方面或者第一方面任意一种实施方式中所述的资源配置方法。
根据本公开实施例第六方面,提供一种资源配置装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行第二方面或者第二方面任意一种实施方式中所述的资源配置方法。
根据本公开实施例第七方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得所述网络设备能够执行第一方面或者第一方面任意一种实施方式中所述的资源配置方法。
根据本公开实施例第八方面,提供一种存储介质,所述存储介质中存储有指令,当所述存储介质中的指令由终端的处理器执行时,使得所述终端能够执行第二方面或者第二方面任意一种实施方式中所述的资源配置方法。
本公开的实施例提供的技术方案可以包括以下有益效果:网络设备发送直连通信资源分配指示信息。发送终端接收网络设备发送的直连通信资源分配指示信息,并基于直连通信资源分配指示信息,确定与发送终端进行直连通信的接收终端的终端类型,基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信,使得网络设备能够进行适配终端类型的资源调度,并且终端能够区分终端类型采用不同的直连通信资源,节省资源开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本公开的实施例,并与说明书一起用于解释本公开的原理。
图1是根据一示例性实施例示出的一种无线通信系统示意图。
图2示出了mode 1资源分配过程流程图。
图3示出了一种sidelink-BSR的内容示意图。
图4是根据一示例性实施例示出的一种资源配置方法的流程图。
图5是根据一示例性实施例示出的一种资源配置方法的流程图。
图6是根据一示例性实施例示出的一种确定接收终端的终端类型的方法流程图。
图7是根据一示例性实施例示出的一种资源配置方法的流程图。
图8是根据一示例性实施例示出的一种资源配置方法的流程图。
图9是根据一示例性实施例示出的一种资源配置方法的流程图。
图10是根据一示例性实施例示出的一种资源配置方法的流程图。
图11是根据一示例性实施例示出的一种资源配置装置框图。
图12是根据一示例性实施例示出的一种资源配置装置框图。
图13是根据一示例性实施例示出的一种用于资源配置的装置的框图。
图14是根据一示例性实施例示出的一种用于资源配置的装置的框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。
本公开实施例提供的资源配置方法可应用于图1所示的直连通信系统。参阅图1所示,直连通信设备之间进行直连通信的场景中,网络设备为直连通信设备1和/或直连通信设备2配置各种用于数据传输的传输参数。直连通信设备1和直连通信设备2进行直连通信。网络设备与直连通信设备之间进行通信的链路为上下行链路,直连通信设备与直连通信设备之间的链路是直连链路(sidelink)。
本公开中,直连通信设备之间直接通信的通信场景可以是车用无线通信技术(Vehicle to Everything,V2X)业务场景。其中,V代表车载设备,X代表任何与车载设备交互的对象。当前X主要包含车载设备、手持设备、交通路侧基础设施和网络。V2X交互的信息模式包括:车载设备与车载设备之间(Vehicle to Vehicle,V2V)、车载设备与路边设备之间(Vehicle to Infrastructure,V2I)、车载设备与手持设备之间(Vehicle to Pedestrian,V2P)、车载设备与网络之间(Vehicle to Network,V2N)的交互。
随着新一代5G移动通信技术的发展,在3GPP Rel-16中利用5G NR技术实现了对新的V2x通信服务和场景的支持,如车队管理(Vehicles Platooning),感知扩展(Extended Sensors),先进驾驶(Advanced Driving),和远程驾驶(remote driving)等。总体来说,5G V2x sidelink能够提供更高的通信速率,更短的通信延时,更可靠的通信质量。
直连通信设备之间直接通信的通信场景也可以是终端到终端(Device to Device,D2D)的通信场景。本公开实施例中进行直接通信的直连通信设备可以包括各种具有无线通信功能的手持设备、车载设备、可穿戴设备、计算设备或连接到无线调制解调器的其它处理设备,以及各种形式的用户设备(User Equipment,UE),移动台(Mobile station,MS),终端(terminal),终端设备(Terminal Equipment)等等。为方便描述,本公开实施例中以直连通信设备为终端为例进行说明。应理解,本公开实施例对直连通信设备所采用的具体技术和具体设备形态不做限定。
本公开实施例涉及的直连通信设备一方面可以是传统的终端,例如NR终端。另一方面也可以是在5G NR中设计的新的类型终端:低能力终端。低能力终端有时也称为Reduced capability UE,或者称为Redcap终端,或者简称为NR-lite。本公开实施例中,将该新的终端称为Redcap UE。本公开实施例涉及的传统的直连通信设备称为非低能力终端(non-redcap UE)。
由于终端能力不同,non-redcap UE和redcap UE所支持的系统带宽不同。对于Redcap UE,由于带宽能力有限,在FR1下最大为20MHz,在FR2下最大为100MHz。其中non-redcap UE可以支持比redcap UE更大的系统带宽。
为了提高sidelink传输速率,当前sidelink配置中,对于sidelink的一次或多次传输所需的时频域资源,由网络设备通过RRC高层信令以发送/接收资源池的形式配置或预配置给终端。对于具体的一次实际传输所需的时频域资源,可以由发送终端从资源池中直接进行选择(称之为mode 2资源分配方式),也可以由网络设备进行调度(mode 1资源分配方式)。mode 1与mode 2资源分配方式共享相同的资源池配置。
其中,上文提到的资源池均配置在sidelink BWP上。sidelink BWP和resource pool是UE级别(UE specific)的配置。现有协议中,可以为一个sidelink UE配置多个TX/RX resource pool,但是只能为其配置一个sidelink BWP,取值最大为275个PRB。该配置的一个sidelink BWP,其在FR1可能大于20MHZ,FR2下可能大于100MHZ,大于redcap UE的终端能力,使得redcap UE无法在sidelink BWP上工作。
相关技术中,为了支持redcap UE能够使用sidelink链路既可以和redcap UE进行通信,也可以和non-redcap UE进行通信,一种可能的解决方法是,支持为non-redcap UE配置多个sidelink BWP,并且至少一个sidelink BWP在redcap UE的带宽能力范围内。
其中,mode 1资源分配方式由网络设备集中进行sidelink资源的调度,能够有效避免发生sidelink资源冲突的情况。因此,这使得redcap UE在sidelink链路上进行通信时,使用mode 1资源分配技术成为可能。以下,首先对mode 1资源分配方式进行说明。
图2示出了mode 1资源分配过程流程图。发送终端当有数据要发送给接收终端时,首先通过空口(Uu口)链路向网络设备申请sidelink资源。若当前无物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,则先通过网络设备给该发送终端配置的调度请求(Scheduling Request,SR)资源向网络设备申请PUSCH。发送终端使用PUSCH资源发送sidelink缓存状态报告(sidelink Buffer status report,SL-BSR)来向网络设备告知发送终端自身的缓存状态。其中,图3示出了一种sidelink-BSR的内容示意图。如图3所示,一个sidelink-BSR中目前可能需要向多个UE进行数据发送,所以SL-BSR中可能包含多个接收终端的索引(index)。网络设备收到SL-BSR后以一定的调度策略通过下行控制信息(downlink control information,DCI)格式(format)3-0向发送终端分配适当的sidelink资源。从而,发送终端可以从该资源上进行sidelink数据以及控制信令的发送。
其中,接收终端会在网络设备配置的每个时隙(slot)中相应符号的每个子信道上盲检物理直连共享信道(Physical Sidelink Shared Channel,PSCCH)。以单播通信为例,当接收终端盲检成功PSCCH,并通过进一步解码解出发送终端发送的第二阶段直连控制信息(sidelink control information,SCI)和媒体接入控制(Medium Access Control,MAC)控制单元(control element,CE)携带的目的标识(destination ID)和自身的一个或多个源标识(source id)中的一个source ID相匹配,且source ID和接收终端destination ID list中的其中一个destination ID相匹配时,接收终端将接收发送终端通过sidelink链路发来的数据。
其中,DCI format 3_0所包含的字段以及各个字段的含义如下表1所示。
表1
Figure PCTCN2021113023-appb-000001
Figure PCTCN2021113023-appb-000002
相关技术中,为non-redcap UE配置多个sidelink BWP,并且至少一个sidelink BWP在redcap UE的带宽能力范围内。其中,位于redcap UE的带宽能力范围内的BWP可以称为窄带sidelink BWP(Narrow sidelink BWP),可以用于redcap UE进行数据传输。位于non-redcap UE正常带宽能力范围内的BWP可以称为宽带sidelink BWP(Wide sidelink BWP),可以用于non-redcap UE进行数据传输。
然而,网络设备在进行资源配置时,由于网络设备无法获知发送终端和接收终端的类型,因此无法做出相应资源配置决策,即,无法确定为sidelink终端配置哪种或者哪几种类型的BWP,进而可能在无需进行Narrow sidelink BWP的资源配置的情况下,采用进行Narrow sidelink BWP和Wide sidelink BWP的配置,造成配置资源浪费;或者在需要进行Narrow sidelink BWP的资源配置的情况下,只进行Wide sidelink BWP的配置,造成redcap终端无法进行sidelink通信。
鉴于此,本公开实施例提供一种资源配置方法,在该资源配置方法中,网络设备确定 进行直连通信的终端类型,并基于进行直连通信的终端的终端类型,进行资源配置,使得网络设备能够进行适配终端类型的资源调度,节省资源开销。
图4是根据一示例性实施例示出的一种资源配置方法的流程图。如图4所示,资源配置方法用于网络设备中,包括以下步骤。
在步骤S11中,确定进行直连通信的发送终端的终端类型。
在步骤S12中,基于发送终端的终端类型,进行资源配置。
一种实施方式中,本公开实施例中,网络设备确定发送终端的终端类型时可以采用如下方式:网络设备获取终端在Uu口连接建立后进行用户能力上报时,显示或隐式(通过其他参数,如天线个数/带宽能力)的上报的终端类型。网络设备将每个终端的终端类型和其小区无线网络临时标识(Cell-Radio Network Temporary Identifier,C-RNTI)、用于申请SR的PUCCH资源等进行关联。即,网络设备可以基于发送终端在发送SR或者SL-BSR时所使用的PUCCH/PUSCH等资源,采用隐式的方式确定发送终端的终端类型信息。
本公开实施例中,本公开实施例中涉及的终端类型可以是基于终端的能力确定的终端类型。其中,不同终端类型的终端可以具有不同的能力。例如终端的能力可以是收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟等。终端的能力不同可以是收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项不同。
本公开实施例中为描述方便,可以将不同终端类型中任意两种不同终端类型称为第一终端类型和第二终端类型。
本公开实施例中第一终端类型的终端和第二终端类型的终端可以是具有不同的能力。例如终端的能力可以是收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟等。终端的能力不同可以是收发带宽、收发天线数量、传输块的最大比特数、以及处理时间延迟中的一项或多项不同。
一种实施方式中,第一终端类型的终端的能力高于第二终端类型的终端的能力。例如,第一终端类型的终端可以为non-redcap终端,第二终端类型的终端可以为redcap终端。
本公开实施例中,网络设备可以根据发送终端的终端类型为第一终端类型,还是第二终端类型采用不同的资源配置方式。
本公开实施例一方面,发送终端的终端类型为第一终端类型,例如为non-redcap发送终端,non-redcap发送终端可以使用Narrow sidelink BWP的资源配置,也可以使用Wide sidelink BWP的资源配置,故,需要进一步确定进行sidelink通信的接收终端的终端类型,基于发送终端的终端类型以及接收终端的终端类型进行资源配置。比如,接收终端的终端类型为non-redcap UE,则可以使用Wide sidelink BWP的资源配置。接收终端的终端类型 为redcap UE,则可以使用Narrow sidelink BWP的资源配置。
本公开实施例另一方面,发送终端的终端类型为第二终端类型,例如为redcap发送终端,由于其只能工作在带宽受限的BWP上,因此与redcap发送终端进行sidelink通信的接收终端不管是non-redcap UE还是redcap UE,redcap发送终端均需要以适应redcap UE的Narrow sidelink BWP进行sidelink通信,故,此种情况下,网络设备在进行资源配置时,配置适配第二终端类型的资源即可。
本公开实施例中,网络设备基于进行sidelink通信的发送终端和/或接收终端的终端类型,进行适配终端类型的直连通信资源配置以及调度,节省资源开销。
本公开实施例中,发送终端的终端类型为第一终端类型的情况下,网络设备需要获知发送终端所对应的当前目标接收终端的终端类型,从而才能够进行适配终端类型的直连通信资源配置。
本公开实施例中,网络设备确定用于进行直连通信资源配置的接收终端类型时,可以采用半静态配置的方式确定接收终端类型。
一种方式中,本公开实施例中,支持sidelink传输的终端,可以通过RRC消息上报等直连通信信息,并在直连通信信息中上报的destination ID与终端类型对应。如通过sidelink UE Information NR上报destination ID所对应的终端类型。网络设备可以获取sidelink终端发送的RRC中包括的直连通信信息,基于该直连通信信息中包括的destination ID对应的终端类型,确定接收终端的类型。
另一种方式中,支持sidelink传输的终端,可以通过RRC信息上报直连通信信息,直连通信信息中包括sidelink终端的source ID。支持sidelink传输的终端可以上报能力信息,该能力信息指示sidelink终端的终端类型,并关联source ID与终端类型。网络设备基于直连通信终端发送的RRC消息中包括的直连通信信息,获取直连通信终端的source ID。基于直连通信终端的能力上报信息,获取直连通信终端的终端类型,建立并维护直连通信终端的source ID与终端类型之间的关联关系。
网络设备在确定接收终端的终端类型时,网络设备获取发送终端发送的destination ID,基于source ID与终端类型之间的关联关系,将与destination ID一致的source ID对应的终端类型,确定为与发送终端进行直连通信的接收终端的终端类型。
本公开实施例中,网络设备确定了接收终端的终端类型后,可以基于该接收终端的终端类型,进行适配该终端类型的资源配置。
其中,网络设备进行的资源配置可以包括进行BWP配置或资源池的配置。
本公开实施例中,网络设备进行了适配终端类型的资源配置后,可以基于终端类型进 行资源的调度。然而,当采用上述mode 1资源分配方式进行资源分配时,当non-redcap UE作为发送终端向接收终端进行数据传输时,作为发送终端的non-redcap无法获知接收终端的类型,也就是不知道接收终端是redcap UE还是non-redcap UE,从而不知道在Narrow sidelink BWP上还是在Wide sidelink BWP向接收终端发送数据。
鉴于此,本公开实施例提供一种资源配置方法,在该资源配置方法中,网络设备确定进行直连通信的发送终端的终端类型为第一终端类型。进一步的,网络设备确定与发送终端进行直连通信的接收终端的终端类型,基于确定的接收终端的终端类型,发送直连通信资源分配指示信息,该直连通信资源分配指示信息用于指示发送终端基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信。
图5是根据一示例性实施例示出的一种资源配置方法的流程图。如图5所示,资源配置方法用于网络设备中,包括以下步骤。
在步骤S21中,确定与发送终端进行直连通信的接收终端的终端类型。
在步骤S22中,基于接收终端的终端类型,发送直连通信资源分配指示信息,直连通信资源分配指示信息用于指示发送终端基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信。
本公开实施例中,网络设备在基于接收终端的终端类型进行资源调度时,确定与发送终端进行直连通信的接收终端的终端类型,并进行恰当的调度与指示决策。其中,网络设备发送直连通信资源分配指示信息,直连通信资源分配指示信息用于指示发送终端基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信,使得发送终端进行直连通信传输时,可以通过不同的直连通信资源分别对不同终端类型的终端进行数据传输。
其中,网络设备确定与发送终端进行直连通信的接收终端的终端类型以进行资源调度时,一方面可以是在发送终端确定了接收终端的终端类型情况下,向网络设备发送接收终端类型指示信息。网络设备接收发送终端发送的用于指示接收终端的终端类型的接收终端类型指示信息,基于该接收终端类型指示信息确定接收终端的终端类型。
图6是根据一示例性实施例示出的一种确定接收终端的终端类型的方法流程图,该资源配置方法可以被单独执行,也可以与本公开中其他实施例一同执行。如图6所示,资源配置方法用于网络设备中,包括以下步骤。
在步骤S31中,获取发送终端发送的接收终端类型指示信息。
在步骤S32中,基于接收终端类型指示信息,确定接收终端的终端类型。
本公开实施例中,网络设备获取发送终端发送的接收终端类型指示信息,并基于接收终端类型指示信息确定接收终端的终端类型时,可以包括如下方式1和方式2中的至少一 种:
方式1:基于发送终端发送的SR,确定接收终端的终端类型,SR中包括接收终端类型指示信息
发送终端在进行调度申请时,发送SR,SR中包括接收终端类型指示信息。通过不同SR(时域/频域/码域)资源向网络设备指示当前调度申请的接收终端的终端类型。比如,通过SR#0表示当前调度仅存在non-redcap UE,SR#1表示既存在non-redcap UE又存在redcap UE,SR#2表示仅存在redcap UE。再比如,SR#0仅用于接收终端为non-redcap UE的资源申请,SR#1表示仅用于接收终端为redcap UE的资源申请,若当前时刻发送终端既需要与redcap UE进行通信,又需要与non-redcap UE进行通信,那么分别通过SR#0和SR#1进行资源调度申请。
方式2:基于发送终端发送的SL-BSR,确定接收终端的终端类型,SL-BSR中包括接收终端类型指示信息
一种方式中,发送终端通过SL-BSR所对应的MAC子头(subheader)中的保留标志位进行指示,如“0”表示当前申请中不存在redcap UE,“1”表示当前申请中存在redcap UE。
另一种方式中,redcap UE和non-redcap UE分别使用不同的MAC CE进行缓存上报,不同MAC CE可以通过MAC subheader中的保留标志位进行区分,如“0”表示该MAC CE用于承载接收终端的终端类型为non-redcap UE的sidelink BSR,“1”表示该MAC CE用于承载接收终端的终端类型为redcap UE的sidelink BSR。或者,不同MAC CE可以通过不同区域设置标识符(Locale Identifier,LCID)进行区分。可以想到的是,若当前发送终端既需要向non-redcap UE传输数据,又需要向redcap UE传输数据,那么需要在一个MAC协议数据单元(Protocol Data Unit,PDU)中承载两个不同的MAC CE。
又一种方式中,MAC CE中每个destination index后面增加指示标志位,比如每个destination index后面增加1比特指示位,“0”表示该接收终端为non-redcap UE,“1”表示接收终端为redcap UE,反之亦然。
方式3:基于发送终端发送的RRC中包括的直连通信信息,确定接收终端的终端类型,直连通信信息中包括destination ID对应的接收端终端类型指示信息。
其中,支持sidelink传输的终端,当通过RRC消息上报destination ID list等直连通信信息时,上报destination ID所对应接收端的终端类型。如通过sidelink UE Information NR上报destination ID所对应接收终端的终端类型,终端维护destination ID与终端类型之间的 关联关系。当发送终端发起sidelink调度请求时,网络设备根据sidelink BSR中携带的destination ID index索引上述关联关系中的destination ID list,从而可以获取当前需要通信的接收终端类型。
可以理解的是,对于方式1、2、3,发送终端发送接收终端类型指示信息的情况下,发送终端首先需要获知接收终端的接收终端类型,从而才可以向网络设备指示接收终端是哪种类型以辅助网络设备进行调度决策。发送终端可通过下述方式确定接收终端类型:在sidelink通信链路建立过程中,sidelink UE在广播/单播自己应用层ID或layer-2 ID的同时,广播/单播自身的UE type。相应地,其他sidelink UE在确定将对方的应用层ID或layer-2 ID作为自己destination ID的同时,获取相应的UE type,并将两者进行关联。
方式4:支持sidelink传输的终端,可以通过RRC信息上报直连通信信息,直连通信信息中包括sidelink终端的source ID。支持sidelink传输的终端可以上报能力信息,该能力信息指示sidelink终端的终端类型,并关联source ID与终端类型。网络设备基于直连通信终端发送的RRC消息中包括的直连通信信息,获取直连通信终端的source ID。基于直连通信终端的能力上报信息,获取直连通信终端的终端类型,建立并维护直连通信终端的source ID与终端类型之间的关联关系。
网络设备在确定接收终端的终端类型时,网络设备获取发送终端发送的destination ID,如可以通过发送终端发送的SL-BSR获取接收终端的destination ID,并基于source ID与终端类型之间的关联关系,将与destination ID一致的source ID对应的终端类型,确定为与发送终端进行直连通信的接收终端的终端类型。
本公开实施例中,网络设备在确定进行资源调度的接收终端类型时,可以采用上述方式1、方式2、方式3和方式4中的至少一种方式进行接收终端的终端类型的确定。在确定了接收终端的终端类型后,网络设备通过non-redcap UE的接收终端类型进行适配接收终端类型的资源调度。
一示例中,比如网络设备可将SL-BSR所上报的index与destination ID list所对应的终端类型进行匹配,从而获取当前调度申请的终端类型,并通过non-redcap UE的接收终端类型进行适配接收终端类型的资源调度。
另一示例中,网络设备获取发送终端发送的目的标识,基于源标识与终端类型之间的关联关系,当有sidelink调度请求时,网络设备将SL-BSR中携带的destination ID与已经缓存的source ID set继续进行比对,从而获取destination ID所对应的终端类型,并通过non-redcap UE的接收终端类型进行适配接收终端类型的资源调度。
可以理解的是,本公开实施例中网络设备和发送终端均需要获知接收终端的终端类 型。其中,对于网络设备基于关联关系,确定接收终端类型的实施方法中,发送终端同样需要获知接收终端的终端类型,以便发送终端能够正确地理解网络设备发送的直连通信资源分配指示信息。
本公开实施例中网络设备确定了接收终端的终端类型后,可以向发送终端发送接收终端类型指示信息。例如,网络设备通过RRC信令进行sidelink配置或预配置,向每个sidelink终端指示其destination ID列表中,每个destination ID所对应的终端类型(redcap或non-redcap UE),以便发送终端确定接收终端的终端类型。
本公开实施例一种实施方式中,网络设备在确定了接收终端的终端类型的情况下,可以向发送终端发送适配接收终端类型的资源配置指示信息,以指示对应的资源配置。
一种方式中,网络设备可以向发送终端发送匹配接收终端类型的BWP类型指示信息,以指示发送终端基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信。
图7是根据一示例性实施例示出的一种资源配置方法的流程图,该资源配置方法可以被单独执行,也可以与本公开中其他实施例一同执行。如图7所示,资源配置方法用于网络设备中,包括以下步骤。
在步骤S41中,确定与发送终端进行直连通信的接收终端的终端类型。
在步骤S42中,发送匹配接收终端的终端类型的BWP类型指示信息,不同终端类型对应不同的BWP类型。
其中,网络设备发送的BWP类型指示信息可以是在DCI format 3_0中增加的BWP指示字段(BWP indicator字段)。通过BWP indicator字段指示发送终端在哪种类型的BWP上进行数据传输,以适配接收终端的类型。
其中,BWP类型包括Narrow sidelink BWP和Wide sidelink BWP。BWP indicator字段可以是用于标识Narrow sidelink BWP和Wide sidelink BWP的标识,也可以是通过不同比特位取值指示Narrow sidelink BWP和Wide sidelink BWP的比特位。
本公开实施例另一种实施方式中,网络设备可以通过高层信令针对不同的接收终端类型配置不同的BWP配置信息。其中,网络设备通过高层信令进行的资源池配置可能是per BWP的配置,如网络设备可能会分别为redcap BWP和non-redcap BWP配置不同的资源池个数、子信道个数等参数。
本公开实施例中,网络设备在指示发送终端基于匹配接收终端的终端类型的直连通信资源时,可以是发送匹配接收终端类型的BWP配置信息;其中,不同终端类型对应不同的BWP配置信息。
图8是根据一示例性实施例示出的一种资源配置方法的流程图,该资源配置方法可以被单独执行,也可以与本公开中其他实施例一同执行。如图8所示,资源配置方法用于网络设备中,包括以下步骤。
在步骤S51中,确定与发送终端进行直连通信的接收终端的终端类型。
在步骤S52中,发送匹配接收终端的终端类型的BWP配置信息,不同终端类型对应不同的BWP配置信息。
本公开实施例中,网络设备可以通过不同的BWP配置信息指示不同的BWP类型,即指示发送终端使用适配终端类型的BWP进行数据传输。
其中,当网络设备为不同类型的BWP配置的带宽不同,资源池个数不同时,会影响网络设备进行调度时候的比特开销,那么直接就会影响到动态信令DCI中的频域资源分配、资源池索引等字段的比特开销。比如,对于不同的BWP,与这些参数相关的DCI中相应字段,如resource pool index,lowest index of subchannel allocation to the initial tx,frequency resource assisgnment等字段对于不同的BWP占用不同的比特个数,所以对于不同的BWP,DCI format 3_0的比特开销是不同的。即,多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小可能是不同的,也即不同的BWP配置信息可以通过不同DCI size的方式区分。本公开实施例中,网络设备可以通过发送不同DCI size这一隐式信息,指示发送终端使用适配终端类型的BWP进行数据传输。
然而,若发送终端的接收终端既存在redcap UE,又存在non-redcap UE,发送终端在盲检DCI format 3_0时,由于有不同的DCI size,可能需要以不同的DCI size分别对DCI format 3_0进行盲检,这将增加发送终端的盲检复杂度,并且会引入不必要的终端能耗。为了解决上述问题,需要保证对于不同BWP,DCI fomat 3_0 size始终一致,即,响应于匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息,且不同BWP配置信息所对应的动态调度信令中相应字段的比特大小不同,将动态调度信息中各字段的比特大小对齐,即配置多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同。
一种实施方式中,若DCI format 3_0中某个字段所占用的比特个数通过高层信令配置的相应参数决定,且若该配置为per BWP的配置,则可以使用下述方式进行该字段的比特数对齐,以resource pool index这一字段为例进行说明:
resource pool index所占用比特数=max(ceil(log2I BWPi)),其中I BWPi表示BWPi的发送resource pool个数;对于某个BWPi的ceil(log2I BWPi))小于上述所计算比特数的情况,对相应字段高位/低位补0。
可以理解的是,除resource pool index字段外,可能存在上述问题的字段还包括Lowest index of subchannel allocation to the initial tx,Freuqency resource assignment等字段。该其他比特位数与高层信令配置相关的字段,若后续设计为per SL-BWP的配置,则相应字段仍然使用上述方式进行DCI size对齐。比如,针对PSFCH-to-HARQ feedback timing indicator字段,TDRA字段等。
进一步可以理解的是,本公开实施例中可以是在发送终端进行直连通信的接收终端的终端类型包括不同终端类型的情况下,进行DCI format对齐。比如,可以是在destination ID list中既有redcap UE又有non-redcap UE的情况下进行DCI format对齐。在比如,可以是在动态调度申请SR、BSR等时,既包含redcap UE又包含non-redcap UE的情况下进行DCI format对齐。
其中,本公开实施例中针对发送终端进行直连通信的接收终端的终端类型为非不同终端类型的情况下,DCI中可以不进行BWP indicator字段的设计,同样的,也无需DCI对齐。
本公开实施例中,配置多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同的情况下,可以是通过BWP indicator字段进行sidelink BWP指示。
进一步的,本公开实施例中,对于发送终端为non-redcap UE还是redcap UE,网络设备同样需要进行区分,以进行不同的调度决策,以便确定是否需要通过BWP indicator字段进行sidelink BWP指示。
综上,本公开实施例中,是否在DCI format 3_0中增加BWP indicator字段,可以通过下述几种不同方法确定:
1.当发送终端为non-redcap UE,且发送终端的destination ID list中无redcap UE时,使用原有DCI format 3_0,不增加BWP indicator字段。当发送终端的destination ID list中包括non-redcap UE、和redcap UE时,在DCI format 3_0中增加BWP indicator字段。即,本公开实施例中可以实现non-redcap发送终端通过destination ID所对应的终端类型,来判断是否在DCI format 3_0中增加BWP indicator字段。
2.当发送终端为non-redcap UE,且发送终端的动态调度申请的通信终端类型既包含redcap UE又包含non-redcap UE时,在DCI format 3_0中增加BWP indicator字段。
可以理解的是,本公开上述实施例涉及的资源配置方法,主要适用于sidelink单播传输方式。此外,该方法主要适用于发送终端为non-redcap的发送终端,而对于redcap发送终端,由于其只能工作在带宽受限的BWP上,因此与redcap发送终端进行sidelink通信的接收终端不管是non-redcap UE还是redcap UE,都无需进行BWP的切换,进而也无 需进行BWP的指示。即,本公开实施例中发送终端的终端类型为第一终端类型,第一终端类型的终端能力大于第二终端类型的终端能力。
进一步的,本公开实施例中上述涉及的资源配置方法可以是适用于mode-1资源分配方式下,发送终端进行BWP类型确定的过程,以保证non-redcap TX UE在使用mode-1资源分配类型时,可以通过不同BWP分别与redcap RX UE和non-redcap RX UE进行数据传输。
除mode-1资源分配方式外,终端还可以通过一定的冲突避免机制自主的在网络设备配置或预配置的资源池中进行sidelink资源选择,也就是mode-2资源分配方式。对于mode-2资源分配方式,网络设备同样需要获知接收终端的终端类型以配置合适的sidelink BWP或sidelink resource pool。同样的终端也需要获知接收终端类型以便在合适的sidelink BWP/sidelink resource pool上进行资源选择。因此,上文中提到的网络设备或发送终端确定接收终端类型的方法同样适用于mode-2资源分配方式。
本公开实施例又一种实施方式中,网络设备除了应用上述实施例涉及的BWP指示方式,还可以是使用同一BWP的不同资源池来进行不同终端类型的调度。
图9是根据一示例性实施例示出的一种资源配置方法的流程图,该资源配置方法可以被单独执行,也可以与本公开中其他实施例一同执行。如图9所示,资源配置方法用于网络设备中,包括以下步骤。
在步骤S61中,确定与发送终端进行直连通信的接收终端的终端类型。
其中,本公开实施例中,网络设备确定接收终端的终端类型可以采用上述实施例涉及方式1、方式2、方式3和方式4中的任意方式进行确定。
在步骤S62中,发送频域带宽匹配接收终端的终端类型的资源池配置信息,不同终端类型对应不同的资源池频域带宽。
本公开实施例中,不仅可以通过BWP指示方式来指示接收终端的终端类型网络设备向发送终端发送直连通信资源分配指示信息,还可以是通过使用同一BWP的不同resource pool来进行不同终端类型的调度。
基于相同的构思,本公开实施例还提供一种应用于发送终端的资源配置方法。其中,该发送终端的终端类型为第一终端类型。第一终端类型的终端能力大于第二终端类型的终端能力。
图10是根据一示例性实施例示出的一种资源配置方法的流程图,该资源配置方法可以被单独执行,也可以与本公开中其他实施例一同执行。如图10所示,资源配置方法用于发送终端中,包括以下步骤。
在步骤S71中,接收网络设备发送的直连通信资源分配指示信息。
在步骤S72中,基于直连通信资源分配指示信息,确定与发送终端进行直连通信的接收终端的终端类型。
在步骤S73中,基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信。
本公开实施例中,发送终端接收网络设备发送的直连通信资源分配指示信息,一方面可以是接收匹配接收终端的终端类型的BWP类型指示信息,不同的BWP类型指示信息对应不同的终端类型。另一方面,可以是接收匹配接收终端的终端类型的BWP配置信息。又一方面,可以是接收频域带宽匹配接收终端的终端类型的资源池配置信息。其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息,多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
本公开实施例中,发送终端确定接收终端的终端类型,并发送接收终端类型指示信息,以指示网络设备确定接收终端的终端类型。
一种实施方式中,发送终端发送接收终端类型指示信息,包括以下至少一种:
发送资源调度请求,所述资源调度请求中包括接收终端类型指示信息;发送缓存状态报告,所述缓存状态报告中包括接收终端类型指示信息;以及发送RRC消息,所述RRC消息中包括直连通信信息,直连通信信息中包括目的标识对应的接收端终端类型指示信息。
本公开实施例中,网络设备可以基于关联关系确定接收终端的终端类型,此种情况下发送终端可以接收网络设备发送的终端类型配置信息,终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
可以理解的是,本公开实施例中由发送终端执行的资源配置方法,与网络设备执行资源配置方法相对应,故对于发送终端执行的资源配置方法描述不够详尽的地方,可以参阅上述网络设置执行的资源配置方法,在此不再详述。
本公开实施例提供的资源配置方法,可以适用于终端间进行sidelink通信交互,并进行资源配置的场景,也适用于终端与网络设备进行交互实现资源配置的场景。其中,具体实现过程中涉及的终端、网络设备实现的功能可以参阅上述实施例中涉及的相关描述,在此不再详述。
需要说明的是,本领域内技术人员可以理解,本公开实施例上述涉及的各种实施方式/实施例中可以配合前述的实施例使用,也可以是独立使用。无论是单独使用还是配合前述 的实施例一起使用,其实现原理类似。本公开实施中,部分实施例中是以一起使用的实施方式进行说明的。当然,本领域内技术人员可以理解,这样的举例说明并非对本公开实施例的限定。
基于相同的构思,本公开实施例还提供一种资源配置装置。
可以理解的是,本公开实施例提供的资源配置装置为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。结合本公开实施例中所公开的各示例的单元及算法步骤,本公开实施例能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。本领域技术人员可以对每个特定的应用来使用不同的方法来实现所描述的功能,但是这种实现不应认为超出本公开实施例的技术方案的范围。
图11是根据一示例性实施例示出的一种资源配置装置框图。参照图12,该资源配置装置100,应用于网络设备,包括处理单元101和发送单元102。
一种实施方式中,处理单元101被配置为确定进行直连通信的发送终端的终端类型,基于发送终端的终端类型,进行资源配置。
本公开实施例一方面,响应于发送终端的终端类型为第一终端类型,进一步确定进行sidelink通信的接收终端的终端类型,基于发送终端的终端类型以及接收终端的终端类型进行资源配置。
本公开实施例另一方面,响应于发送终端的终端类型为第二终端类型,配置适配第二终端类型的资源。
一种实施方式中,处理单元101,被配置为确定与发送终端进行直连通信的接收终端的终端类型。发送单元102,被配置为基于接收终端的终端类型,发送直连通信资源分配指示信息。其中,直连通信资源分配指示信息用于指示发送终端基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信。
一种实施方式中,发送单元102被配置为:发送匹配接收终端的终端类型的BWP类型指示信息。不同终端类型对应不同的BWP类型。
一种实施方式中,发送单元102被配置为:发送匹配接收终端的终端类型的BWP配置信息。其中,不同终端类型对应不同的BWP配置信息。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息。多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
一种实施方式中,响应于匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息,且不同BWP配置信息所对应的动态调度信令中相应字段的比特大小不同, 发送单元102将动态调度信令中各字段的比特大小对齐。
一种实施方式中,发送单元102被配置为:发送频域带宽匹配接收终端的终端类型的资源池配置信息。其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,处理单元101被配置为:获取发送终端发送的接收终端类型指示信息,并基于接收终端类型指示信息确定接收终端的终端类型。
一种实施方式中,处理单元101采用以下至少一种方式确定与发送终端进行直连通信的接收终端的终端类型:
基于发送终端发送的资源调度请求,确定接收终端的终端类型,资源调度请求中包括接收终端类型指示信息;基于发送终端发送的缓存状态报告,确定接收终端的终端类型,缓存状态报告中包括接收终端类型指示信息;以及基于发送终端发送的无线资源控制消息中包括的直连通信信息,确定接收终端的终端类型,直连通信信息中包括目的标识对应的接收端终端类型指示信息。
一种实施方式中,处理单元101被配置为:获取发送终端发送的目的标识。基于源标识与终端类型之间的关联关系,将与目的标识一致的源标识对应的终端类型,确定为与发送终端进行直连通信的接收终端的终端类型。
一种实施方式中,源标识与终端类型之间的关联关系采用如下方式确定:
基于直连通信终端发送的无线资源控制消息中包括的直连通信信息,获取直连通信终端的源标识。基于直连通信终端的能力上报信息,获取直连通信终端的终端类型。建立并维护直连通信终端的源标识与终端类型之间的关联关系。
一种实施方式中,发送单元102还被配置为:发送终端类型配置信息,终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
一种实施方式中,发送终端的终端类型为第一终端类型。第一终端类型的终端能力大于第二终端类型的终端能力。
图12是根据一示例性实施例示出的一种资源配置装置框图。参照图12,该资源配置装置200应用于发送终端,包括通信单元201和处理单元202。
通信单元201,被配置为接收网络设备发送的直连通信资源分配指示信息,并基于匹配接收终端的终端类型的直连通信资源,与接收终端进行直连通信。处理单元202,被配置为基于直连通信资源分配指示信息,确定与发送终端进行直连通信的接收终端的终端类型。
一种实施方式中,通信单元201被配置为:接收匹配接收终端的终端类型的BWP类型指示信息,不同的BWP类型指示信息对应不同的终端类型。
一种实施方式中,通信单元201被配置为:接收匹配接收终端的终端类型的BWP配置信息。
一种实施方式中,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息。多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
一种实施方式中,通信单元201被配置为:接收频域带宽匹配接收终端的终端类型的资源池配置信息。其中,不同终端类型对应不同的资源池频域带宽。
一种实施方式中,通信单元201还被配置为:发送接收终端类型指示信息。
一种实施方式中,发送接收终端类型指示信息,包括以下至少一种:
发送资源调度请求,资源调度请求中包括接收终端类型指示信息;发送缓存状态报告,缓存状态报告中包括接收终端类型指示信息;以及发送无线资源控制消息,无线资源控制信息中包括直连通信信息,直连通信信息中包括目的标识对应的接收端终端类型指示信息。
一种实施方式中,通信单元201还被配置为:接收终端类型配置信息,终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
一种实施方式中,发送终端的终端类型为第一终端类型。第一终端类型的终端能力大于第二终端类型的终端能力。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
图13是根据一示例性实施例示出的一种用于资源配置的装置的框图。例如,装置300可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图13,装置300可以包括以下一个或多个组件:处理组件302,存储器304,电力组件306,多媒体组件308,音频组件310,输入/输出(I/O)接口312,传感器组件314,以及通信组件316。
处理组件302通常控制装置300的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件302可以包括一个或多个处理器320来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件302可以包括一个或多个模块,便于处理组件302和其他组件之间的交互。例如,处理组件302可以包括多媒体模块,以方便多媒体组件308和处理组件302之间的交互。
存储器304被配置为存储各种类型的数据以支持在装置300的操作。这些数据的示例包括用于在装置300上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消 息,图片,视频等。存储器304可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件306为装置300的各种组件提供电力。电力组件306可以包括电源管理系统,一个或多个电源,及其他与为装置300生成、管理和分配电力相关联的组件。
多媒体组件308包括在所述装置300和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件308包括一个前置摄像头和/或后置摄像头。当装置300处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件310被配置为输出和/或输入音频信号。例如,音频组件310包括一个麦克风(MIC),当装置300处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器304或经由通信组件316发送。在一些实施例中,音频组件310还包括一个扬声器,用于输出音频信号。
I/O接口312为处理组件302和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件314包括一个或多个传感器,用于为装置300提供各个方面的状态评估。例如,传感器组件314可以检测到装置300的打开/关闭状态,组件的相对定位,例如所述组件为装置300的显示器和小键盘,传感器组件314还可以检测装置300或装置300一个组件的位置改变,用户与装置300接触的存在或不存在,装置300方位或加速/减速和装置300的温度变化。传感器组件314可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件314还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件314还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件316被配置为便于装置300和其他设备之间有线或无线方式的通信。装置300可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实 施例中,通信组件316经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件316还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置300可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器304,上述指令可由装置300的处理器320执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
图14是根据一示例性实施例示出的一种用于资源配置的装置的框图。例如,装置400可以被提供为一网络设备。参照图14,装置400包括处理组件422,其进一步包括一个或多个处理器,以及由存储器432所代表的存储器资源,用于存储可由处理组件422的执行的指令,例如应用程序。存储器432中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件422被配置为执行指令,以执行上述方法。
装置400还可以包括一个电源组件426被配置为执行装置400的电源管理,一个有线或无线网络接口440被配置为将装置400连接到网络,和一个输入输出(I/O)接口448。装置400可以操作基于存储在存储器432的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在示例性实施例中,还提供了一种包括指令的存储介质,例如包括指令的存储器432,上述指令可由装置400的处理组件422执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
进一步可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,术语“第一”、“第二”等用于描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开,并不表示特定的顺序或者 重要程度。实际上,“第一”、“第二”等表述完全可以互换使用。例如,在不脱离本公开范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利范围来限制。

Claims (25)

  1. 一种资源配置方法,其特征在于,应用于网络设备,包括:
    确定与发送终端进行直连通信的接收终端的终端类型;
    基于所述接收终端的终端类型,发送直连通信资源分配指示信息;
    所述直连通信资源分配指示信息用于指示所述发送终端基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。
  2. 根据权利要求1所述的资源配置方法,其特征在于,发送直连通信资源分配指示信息,包括:
    发送匹配接收终端的终端类型的BWP类型指示信息;
    不同终端类型对应不同的BWP类型。
  3. 根据权利要求1所述的资源配置方法,其特征在于,发送直连通信资源分配指示信息,包括:
    发送匹配接收终端的终端类型的BWP配置信息;
    其中,不同终端类型对应不同的BWP配置信息。
  4. 根据权利要求3所述的资源配置方法,其特征在于,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息;
    所述多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
  5. 根据权利要求3或4所述的资源配置方法,其特征在于,所述方法还包括:
    响应于匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息,且所述不同BWP配置信息所对应的动态调度信令中相应字段的比特大小不同,将所述动态调度信令中各字段的比特大小对齐。
  6. 根据权利要求1所述的资源配置方法,其特征在于,发送直连通信资源分配指示信息,包括:
    发送频域带宽匹配接收终端的终端类型的资源池配置信息;
    其中,不同终端类型对应不同的资源池频域带宽。
  7. 根据权利要求1至6中任意一项所述的资源配置方法,其特征在于,所述确定与发送终端进行直连通信的接收终端的终端类型,包括:
    获取所述发送终端发送的接收终端类型指示信息,并基于所述接收终端类型指示信息确定接收终端的终端类型。
  8. 根据权利要求7所述的资源配置方法,其特征在于,所述基于所述接收终端类型指示信息确定接收终端的终端类型,包括以下至少一种:
    基于发送终端发送的资源调度请求,确定接收终端的终端类型,所述资源调度请求中包括接收终端类型指示信息;
    基于发送终端发送的缓存状态报告,确定接收终端的终端类型,所述缓存状态报告中包括接收终端类型指示信息;以及
    基于发送终端发送的无线资源控制消息中包括的直连通信信息,确定接收终端的终端类型,所述直连通信信息中包括目的标识对应的接收端终端类型指示信息。
  9. 根据权利要求1至6中任意一项所述的资源配置方法,其特征在于,所述确定与发送终端进行直连通信的接收终端的终端类型,包括:
    获取发送终端发送的目的标识;
    基于源标识与终端类型之间的关联关系,将与所述目的标识一致的源标识对应的终端类型,确定为与发送终端进行直连通信的接收终端的终端类型。
  10. 根据权利要求9所述的资源配置方法,其特征在于,所述源标识与终端类型之间的关联关系采用如下方式确定:
    基于直连通信终端发送的无线资源控制消息中包括的直连通信信息,获取直连通信终端的源标识;
    基于直连通信终端的能力上报信息,获取直连通信终端的终端类型;
    建立并维护直连通信终端的源标识与终端类型之间的关联关系。
  11. 根据权利要求9所述的资源配置方法,其特征在于,所述方法还包括:
    发送终端类型配置信息,所述终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
  12. 根据权利要求1至11中任意一项所述的资源配置方法,其特征在于,所述发送终端的终端类型为第一终端类型;
    所述第一终端类型的终端能力大于第二终端类型的终端能力。
  13. 一种资源配置方法,其特征在于,应用于发送终端,包括:
    接收网络设备发送的直连通信资源分配指示信息;
    基于所述直连通信资源分配指示信息,确定与所述发送终端进行直连通信的接收终端的终端类型;
    基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。
  14. 根据权利要求13所述的资源配置方法,其特征在于,接收网络设备发送的直连通 信资源分配指示信息,包括:
    接收匹配接收终端的终端类型的BWP类型指示信息,不同的BWP类型指示信息对应不同的终端类型。
  15. 根据权利要求13所述的资源配置方法,其特征在于,接收直连通信资源分配指示信息,包括:
    接收匹配接收终端的终端类型的BWP配置信息。
  16. 根据权利要求15所述的资源配置方法,其特征在于,匹配接收终端的终端类型的BWP配置信息包括多个不同BWP配置信息;
    所述多个不同BWP配置信息所对应的动态调度信令中相应字段的比特大小相同或不同。
  17. 根据权利要求13所述的资源配置方法,其特征在于,接收直连通信资源分配指示信息,包括:
    接收频域带宽匹配接收终端的终端类型的资源池配置信息;
    其中,不同终端类型对应不同的资源池频域带宽。
  18. 根据权利要求13至17中任意一项所述的资源配置方法,其特征在于,所述方法还包括:
    发送接收终端类型指示信息。
  19. 根据权利要求18所述的资源配置方法,其特征在于,所述发送接收终端类型指示信息,包括以下至少一种:
    发送资源调度请求,所述资源调度请求中包括接收终端类型指示信息;
    发送缓存状态报告,所述缓存状态报告中包括接收终端类型指示信息;以及
    发送无线资源控制消息,所述无线资源控制信息中包括直连通信信息,所述直连通信信息中包括目的标识对应的接收端终端类型指示信息。
  20. 根据权利要求13至17中任意一项所述的资源配置方法,其特征在于,所述方法还包括:
    接收终端类型配置信息,所述终端类型配置信息用于指示直连通信终端维护的目的标识对应的终端类型。
  21. 根据权利要求13至20中任意一项所述的资源配置方法,其特征在于,所述发送终端的终端类型为第一终端类型;
    所述第一终端类型的终端能力大于第二终端类型的终端能力。
  22. 一种资源配置装置,其特征在于,应用于网络设备,包括:
    处理单元,被配置为确定与发送终端进行直连通信的接收终端的终端类型;
    发送单元,被配置为基于所述接收终端的终端类型,发送直连通信资源分配指示信息;
    所述直连通信资源分配指示信息用于指示所述发送终端基于匹配所述接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信。
  23. 一种资源配置装置,其特征在于,应用于发送终端,包括:
    通信单元,被配置为接收网络设备发送的直连通信资源分配指示信息,并基于匹配接收终端的终端类型的直连通信资源,与所述接收终端进行直连通信;
    处理单元,被配置为基于所述直连通信资源分配指示信息,确定与所述发送终端进行直连通信的接收终端的终端类型。
  24. 一种资源配置装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行权利要求1至12中任意一项所述的资源配置方法,或者执行权利要求13至21中任意一项所述的资源配置方法。
  25. 一种存储介质,其特征在于,所述存储介质中存储有指令,当所述存储介质中的指令由网络设备的处理器执行时,使得所述网络设备能够执行权利要求1至12中任意一项所述的资源配置方法,或者当所述存储介质中的指令由终端的处理器执行时,使得终端能够执行权利要求13至21中任意一项所述的资源配置方法。
PCT/CN2021/113023 2021-08-17 2021-08-17 一种资源配置方法、装置及存储介质 WO2023019432A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180002501.1A CN115989702A (zh) 2021-08-17 2021-08-17 一种资源配置方法、装置及存储介质
PCT/CN2021/113023 WO2023019432A1 (zh) 2021-08-17 2021-08-17 一种资源配置方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/113023 WO2023019432A1 (zh) 2021-08-17 2021-08-17 一种资源配置方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023019432A1 true WO2023019432A1 (zh) 2023-02-23

Family

ID=85239978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/113023 WO2023019432A1 (zh) 2021-08-17 2021-08-17 一种资源配置方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115989702A (zh)
WO (1) WO2023019432A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793090A (zh) * 2016-07-29 2017-05-31 北京展讯高科通信技术有限公司 D2d直接通信资源的选择方法及系统
CN110536316A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 一种路测方法及其控制方法、装置、设备、存储介质
WO2020001317A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 V2x通信方法、装置及系统
CN111034255A (zh) * 2019-09-24 2020-04-17 北京小米移动软件有限公司 资源处理方法、装置及计算机存储介质

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106793090A (zh) * 2016-07-29 2017-05-31 北京展讯高科通信技术有限公司 D2d直接通信资源的选择方法及系统
WO2020001317A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 V2x通信方法、装置及系统
CN110536316A (zh) * 2018-09-28 2019-12-03 中兴通讯股份有限公司 一种路测方法及其控制方法、装置、设备、存储介质
CN111034255A (zh) * 2019-09-24 2020-04-17 北京小米移动软件有限公司 资源处理方法、装置及计算机存储介质

Also Published As

Publication number Publication date
CN115989702A (zh) 2023-04-18

Similar Documents

Publication Publication Date Title
WO2021179263A1 (zh) 直连链路中目的地址选择方法、装置及存储介质
WO2021088009A1 (zh) 反馈方法、反馈装置及存储介质
WO2022151488A1 (zh) 一种带宽部分确定方法、带宽部分确定装置及存储介质
WO2021163936A1 (zh) 通信处理方法、装置及计算机存储介质
WO2022126556A1 (zh) 一种接入控制方法、接入控制装置及存储介质
WO2020258335A1 (zh) 控制资源配置、确定方法及装置、通信设备及存储介质
WO2021196214A1 (zh) 传输方法、装置及计算机存储介质
WO2021088010A1 (zh) 反馈方法、反馈装置及存储介质
CN110337793B (zh) 载波聚合方法、装置、通信设备及存储介质
WO2021007823A1 (zh) 信息指示、确定方法及装置、通信设备及存储介质
WO2021007786A1 (zh) 数据传输方法、装置及存储介质
WO2022261973A1 (zh) 信息传输方法、装置、通信设备和存储介质
CN110546999A (zh) 唤醒信号的变更处理、监听方法、通信设备及存储介质
WO2021030979A1 (zh) 数据处理方法及装置、通信设备及存储介质
WO2022261877A1 (zh) Drx定时器的启动方法、装置、通信设备及存储介质
WO2021102858A1 (zh) 传输块配置参数传输方法、装置、通信设备及存储介质
CN113841445A (zh) 数据传输方法、数据传输装置及存储介质
WO2021051325A1 (zh) 上行控制信息处理方法及装置、通信设备及存储介质
CN111434177A (zh) 无线网络接入方法、装置、通信设备及存储介质
WO2023184186A1 (zh) 确定传输方向的方法、装置、通信设备及存储介质
WO2023050362A1 (zh) 下行传输配置、接收方法及装置、通信设备及存储介质
WO2023065235A1 (zh) 一种直连通信方法、装置及存储介质
WO2023019432A1 (zh) 一种资源配置方法、装置及存储介质
WO2022151387A1 (zh) 信息动态指示方法及装置、网络设备、用户设备及存储介质
WO2021258371A1 (zh) 直连通信控制方法、装置及用户设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953683

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE