WO2023019401A1 - 电化学装置以及电子装置 - Google Patents

电化学装置以及电子装置 Download PDF

Info

Publication number
WO2023019401A1
WO2023019401A1 PCT/CN2021/112819 CN2021112819W WO2023019401A1 WO 2023019401 A1 WO2023019401 A1 WO 2023019401A1 CN 2021112819 W CN2021112819 W CN 2021112819W WO 2023019401 A1 WO2023019401 A1 WO 2023019401A1
Authority
WO
WIPO (PCT)
Prior art keywords
pole piece
insulating layer
electrochemical device
active material
current collector
Prior art date
Application number
PCT/CN2021/112819
Other languages
English (en)
French (fr)
Inventor
李学成
Original Assignee
宁德新能源科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 宁德新能源科技有限公司 filed Critical 宁德新能源科技有限公司
Priority to PCT/CN2021/112819 priority Critical patent/WO2023019401A1/zh
Priority to CN202180014803.0A priority patent/CN115152088A/zh
Publication of WO2023019401A1 publication Critical patent/WO2023019401A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/572Means for preventing undesired use or discharge
    • H01M50/584Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries
    • H01M50/59Means for preventing undesired use or discharge for preventing incorrect connections inside or outside the batteries characterised by the protection means
    • H01M50/593Spacers; Insulating plates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Definitions

  • the present application relates to the technical field of energy storage, and in particular to an electrochemical device and an electronic device.
  • An electrochemical device is a device that converts external energy into electrical energy and stores it inside, so as to supply power to external electronic devices (such as portable electronic devices, etc.) when needed.
  • electrochemical devices are widely used in electronic devices such as drones, mobile phones, tablets, and notebook computers.
  • the electrochemical device includes an electrode assembly, and the electrode assembly includes a first pole piece, a first diaphragm and a second pole piece.
  • the first pole piece and the second pole piece have opposite polarities, and the first diaphragm is spaced between the first pole piece and the second pole piece.
  • the first diaphragm spaced between the first pole piece and the second pole piece shrinks, it is easy to cause the first pole piece and the second pole piece to contact and short circuit.
  • the embodiment of the present application aims to provide an electrochemical device and an electronic device to solve the problem of the first pole piece and the second pole piece when the first diaphragm spaced between the first pole piece and the second pole piece shrinks in the prior art.
  • the problem that the chip is easy to contact and short circuit.
  • an electrochemical device includes an electrode assembly.
  • the electrode assembly includes a first pole piece, a first diaphragm and a second pole piece stacked in sequence.
  • the first pole piece includes a first current collector, a first active material layer and a first insulating layer, the first active material layer is stacked on one surface of the first current collector, and the first insulating layer is stacked on the back of the first active material facing the first the first surface of the current collector.
  • the first pole piece has a first end and a second end, at least one of the first end or the second end is connected to the first tab, and the first insulating layer is located at the first end .
  • the width w1 of the first insulating layer satisfies: 2mm ⁇ w1 ⁇ 10mm.
  • the first insulating layer By arranging the first insulating layer at the first end of the first pole piece, and limiting the width of the first insulating layer to not less than 2 mm, when the first diaphragm shrinks, the first insulating layer is spaced from the first pole piece and the second pole between the plates, reducing the risk of contact shorting between the first pole piece and the second pole piece.
  • the width of the first insulating layer By limiting the width of the first insulating layer to not more than 10 mm, the impact on the interface performance of the first pole piece due to the setting of the first insulating layer is reduced, thereby reducing the impact on the first pole piece due to the setting of the first insulating layer.
  • the overall performance of the electrochemical device is excellent due to the influence of the migration of lithium ions between the electrode and the second pole piece.
  • the first pole piece, the first diaphragm and the second pole piece are sequentially stacked along the second direction, and the first direction is perpendicular to the second direction.
  • the second direction is referred to as the thickness direction of the electrochemical device.
  • the first tab is connected to the first current collector, and the first tab extends out of the first current collector along a first direction, so as to facilitate the connection of the electrochemical device to an external circuit.
  • first end and the second end are two opposite ends of the first pole piece along the direction in which the first tab extends out of the first current collector, that is, the first The end portion and the second end portion are two opposite end portions of the first pole piece along the first direction.
  • the edge of the first current collector away from the second end is flush with the edge of the first active material layer away from the second end, that is, the first current collector faces the first diaphragm If the first active material layer is provided on one surface of the first current collector, the first current collector is fully utilized, thereby increasing the energy density of the electrochemical device.
  • the first current collector is far away from the edge of the second end, beyond the first active material layer, away from the second end
  • the edge of the part is set, and the size of the protruding part is not greater than 1mm.
  • the first surface includes a first region and a second region, the first region is located at the first end, the first insulating layer is stacked on the first region, and the first insulating layer faces away from the first region. If one surface is flush with the second region, then the interface of the first pole piece facing the first diaphragm is smooth, thereby facilitating the migration of lithium ions between the first pole piece and the second pole piece.
  • the width w1 of the first insulating layer satisfies: 3mm ⁇ w1 ⁇ 5mm.
  • the first pole piece further includes a second insulating layer, the second insulating layer is stacked on the first surface, and the second insulating layer is located at the second end.
  • the width w2 of the second insulating layer satisfies: 2mm ⁇ w2 ⁇ 10mm.
  • the second insulating layer By arranging the second insulating layer at the second end of the first pole piece, and limiting the width of the second insulating layer to not less than 2 mm, when the first diaphragm shrinks, the second insulating layer is spaced from the first pole piece and the second pole between the plates, reducing the risk of contact shorting between the first pole piece and the second pole piece.
  • the width of the second insulating layer By limiting the width of the second insulating layer to not more than 10mm, the influence on the interface performance of the first pole piece due to the setting of the second insulating layer can be reduced, and the impact on the first pole piece due to the setting of the second insulating layer can be reduced.
  • the overall performance of the electrochemical device is excellent due to the influence of lithium ion migration between the pole piece and the second pole piece.
  • the first surface further includes a third region, the third region is located at the second end, a surface of the second insulating layer facing away from the third region is flush with the second region, and the first pole The interface of the sheet facing the first separator is flat, thereby facilitating the migration of lithium ions between the first pole piece and the second pole piece.
  • the width w2 of the second insulating layer satisfies: 3mm ⁇ w2 ⁇ 5mm.
  • the first pole piece further includes a second active material layer, and the second active material layer is stacked on the other surface of the first current collector.
  • the first pole piece further includes a third insulating layer, the third insulating layer is stacked on the second surface of the second active material layer facing away from the first current collector, and the third insulating layer is located at the first end.
  • the width w3 of the third insulating layer satisfies: 2mm ⁇ w3 ⁇ 10mm.
  • the third insulating layer is disposed opposite to the first insulating layer at the first end.
  • the width w3 of the third insulating layer satisfies: 3mm ⁇ w3 ⁇ 5mm.
  • the first pole piece further includes a fourth insulating layer, the fourth insulating layer is stacked on the second surface, and the fourth insulating layer is located at the second end.
  • the width w4 of the fourth insulating layer satisfies: 2mm ⁇ w4 ⁇ 10mm.
  • the fourth insulating layer and the second insulating layer are disposed opposite to each other at the second end.
  • the width w4 of the fourth insulating layer satisfies: 3mm ⁇ w4 ⁇ 5mm.
  • the first pole piece further includes a first layer, and the first layer is stacked between the first current collector and the first active material layer.
  • the first layer bonds the first current collector and the first active material layer, thereby reducing the risk of the first active material layer falling off from the first current collector, and reducing the first insulating layer and the second insulating layer disposed on the first active material layer.
  • the first layer includes a binder and a conductive agent.
  • the first pole piece, the first separator and the second pole piece are wound together into a winding structure, and the winding center axis of the winding structure is arranged along the first direction.
  • the outermost circle of the first pole piece is closer to the winding central axis than the outermost circle of the second pole piece.
  • the first insulating layer extends from the winding ending end of the first pole piece to the winding starting end of the first pole piece, and the first insulating layer is arranged around the side of the outermost circle of the first pole piece away from the winding central axis.
  • the outermost ring of the first diaphragm shrinks severely at the first end or the second end, the first insulating layer is located at the first end, and the first insulating layer is formed from the first
  • the winding ending end of the pole piece extends toward the winding start end of the first pole piece, and the first insulating layer is arranged around the outermost circle of the first pole piece, so the first insulating layer has an effect on the first pole piece and the second pole piece.
  • the spacer effect reduces the risk of short circuit between the first pole piece and the second pole piece due to the contraction of the first diaphragm.
  • the first insulating layer extends from the winding ending end of the first pole piece to the winding starting end of the first pole piece, thereby strengthening the first insulating layer against the first pole piece and the second pole piece. slice spacing.
  • the electrode assembly further includes a second diaphragm, a third pole piece, a third diaphragm, and a fourth pole piece stacked in sequence, the second diaphragm is stacked on the first pole piece, and the second diaphragm is spaced apart from Between the first pole piece and the third pole piece.
  • the number of the second diaphragm, the third pole piece, the third diaphragm and the fourth pole piece is multiple groups, and the multiple groups of the second diaphragm, the third pole piece, the third diaphragm and the fourth pole piece are stacked along the second direction, Thereby increasing the ability of the electrochemical device to charge and discharge externally.
  • an electronic device including a load and any one of the above electrochemical devices, and the electrochemical device supplies power to the load.
  • the beneficial effects of the embodiments of the present application include that by arranging the first insulating layer at the first end of the first pole piece and limiting the width of the first insulating layer to not less than 2mm, when the first diaphragm shrinks, the distance between the first insulating layer Between the first pole piece and the second pole piece, the risk of contact short circuit between the first pole piece and the second pole piece is reduced.
  • the width of the first insulating layer to not more than 10 mm, the impact on the interface performance of the first pole piece due to the setting of the first insulating layer is reduced, thereby reducing the impact on the first pole piece due to the setting of the first insulating layer.
  • the overall performance of the electrochemical device is excellent due to the influence of the migration of lithium ions between the electrode and the second pole piece.
  • FIG. 1 is a schematic perspective view of an electrochemical device provided in an embodiment of the present application
  • Fig. 2 is a cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application;
  • Fig. 3 is a cross-sectional view along line B-B in Fig. 1 provided by the embodiment of the present application;
  • Fig. 4 is a cross-sectional view along line C-C in Fig. 1 provided by the embodiment of the present application;
  • Fig. 5 is an enlarged view of part D1 in Fig. 2 provided by the embodiment of the present application;
  • Fig. 6 is another cross-sectional view along line B-B in Fig. 1 provided by the embodiment of the present application;
  • Fig. 7 is another cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application;
  • Fig. 8 is an enlarged view of part D2 in Fig. 7 provided by the embodiment of the present application.
  • Fig. 9 is another cross-sectional view along line C-C in Fig. 1 provided by the embodiment of the present application.
  • Fig. 10 is another cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application;
  • Fig. 11 is another cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application;
  • Figure 12 is an enlarged view of part D3 in Figure 11 provided by the embodiment of the present application.
  • Fig. 13 is an enlarged view of part D4 in Fig. 11 provided by the embodiment of the present application;
  • Fig. 14 is another cross-sectional view along line B-B in Fig. 1 provided by the embodiment of the present application;
  • Fig. 15 is another cross-sectional view along line B-B in Fig. 1 provided by the embodiment of the present application;
  • Fig. 16 is another cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application;
  • Fig. 17 is another second cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application.
  • FIG. 1 is a schematic perspective view of an electrochemical device provided in an embodiment of the present application.
  • Fig. 2 is a cross-sectional view along line A-A in Fig. 1 provided by the embodiment of the present application.
  • the electrochemical device 100 includes an electrode assembly 1 , which is a charging and discharging element in the electrochemical device 100 .
  • the electrochemical device 100 further includes a packaging case 2 , a first tab 3 and a second tab 4 , and the electrode assembly 1 is accommodated in the packaging case 2 .
  • the first tab 3 and the second tab 4 are respectively connected to the electrode assembly 1, and the first tab 3 and the second tab 4 protrude from the package case 2 to realize power supply to external electronic equipment, and the electrode assembly 1 When the energy is insufficient, the electrode assembly 1 is charged.
  • the electrode assembly 1 includes a first pole piece 11 , a first separator 12 and a second pole piece 13 .
  • the first pole piece 11 , the first diaphragm 12 and the second pole piece 13 are stacked in sequence.
  • the first pole piece 11 , the first diaphragm 12 and the second pole piece 13 are stacked in sequence along the second direction L2 .
  • the second direction L2 is the thickness direction of the electrochemical device 100 .
  • the electrode assembly 1 when the first pole piece 11, the first separator 12 and the second pole piece 13 are only stacked in sequence but not wound, the electrode assembly 1 is a laminated structure, as shown in FIG. 2 , at this time, the figure The electrode assembly 1 in the electrochemical device 100 in 1 is a laminated sheet structure.
  • the electrode assembly 1 when the first pole piece 11, the first diaphragm 12, and the second pole piece 13 are stacked and wound in sequence, the electrode assembly 1 forms a wound structure, as shown in FIG. As an example, a cross-sectional view along line B-B in FIG. 1 is provided. At this time, the electrode assembly 1 in the electrochemical device 100 in FIG. 1 is a wound structure.
  • FIG. 4 is a cross-sectional view along line C-C in FIG. 1 provided by the embodiment of the present application.
  • the first pole piece 11 has a first end portion 111s and a second end portion 112s.
  • the first direction L1 is the extending direction of the first tab 3 or the second tab 4
  • the first direction L1 is perpendicular to the second direction L2 .
  • the first direction L1 may be the length direction of the electrochemical device 100 .
  • the first tab 3 is connected to the first end portion 111s, and the first tab 3 extends out of the first end portion 111s along the first direction L1.
  • the first tab 3 is connected to the second end portion 112s, and the first tab 3 extends out of the second end portion 112s along the first direction L1. That is, the first end portion 111s and the second end portion 112s are two opposite ends of the first pole piece 11 along the direction in which the first tab 3 extends out of the first current collector 111 , that is, the first end portion 111s and the second end portion 112s are two opposite end portions of the first pole piece 11 along the first direction L1.
  • the first pole piece 11 includes a first current collector 111 , a first active material layer 112 and a first insulating layer 113 .
  • the first active material layer 112 is stacked on a surface of the first current collector 111 facing the first diaphragm 12 .
  • the first current collector 111 is connected to the first tab 3 of the electrochemical device 100 .
  • the first tab 3 is connected to the first current collector 111 , and the first tab 3 extends out of the first current collector 111 along the first direction L1 to facilitate the connection of the electrochemical device 100 to an external circuit.
  • the first tab 3 is connected to the first current collector 111 to electrically connect the first current collector 111 to an external circuit.
  • the first tab 3 and the first current collector 111 may be connected by welding or conductive glue.
  • the first tab 3 and the first current collector 111 may be integrated, that is, the first tab 3 extends from the first current collector 111 .
  • the first insulating layer 113 is stacked on the first surface 1121 of the first active material layer 112 facing the first diaphragm 12 , and the first insulating layer 113 is located at the first end portion 111s.
  • FIG. 5 is an enlarged view of part D1 in FIG. 2 provided by the embodiment of the present application.
  • the width w1 of the first insulating layer 113 satisfies: 2mm ⁇ w1 ⁇ 10mm.
  • the width w1 of the first insulating layer 113 satisfies: 3mm ⁇ w1 ⁇ 5mm.
  • the first insulating layer 113 By setting the first insulating layer 113 at the first end 111s of the first pole piece 11, and limiting the width of the first insulating layer 113 to not less than 2mm, when the first diaphragm 12 shrinks at the first end 111s, the first insulating The layer 113 is spaced between the first pole piece 11 and the second pole piece 13 , reducing the risk of contact short circuit between the first pole piece 11 and the second pole piece 13 .
  • the width of the first insulating layer 113 to not more than 10 mm, the impact on the interface performance of the first pole piece 11 due to the setting of the first insulating layer 113 is reduced, thereby reducing the impact on the interface performance of the first pole piece 11 due to the setting of the first insulating layer 113.
  • the overall performance of the electrochemical device 100 is excellent due to the influence of lithium ion migration between the first pole piece 11 and the second pole piece 13 .
  • the first insulating layer 113 extends from the edge of the first pole piece 11 away from the second end portion 112s toward the second end portion 112s.
  • the dimension of the first insulating layer 113 extending from the edge of the first pole piece 11 away from the second end portion 112s to the second end portion 112s is the width w1 of the first insulating layer 113 .
  • the edge of the first current collector 111 away from the second end 112s is flush with the edge of the first active material layer 112 away from the second end 112s, or, the first current collector 111
  • the size of the portion of the edge of the first active material layer 112 away from the second end 112s beyond the edge of the second end 112s is no greater than 1mm. Since the width w1 of the first insulating layer 113 is not less than 2 mm, the first insulating layer 113 is at least partially located on the first active material layer 112 .
  • the first insulating layer 113 is entirely located at the first active material layer 112 In the material layer 112, along the first direction L1, when the size of the part of the first current collector 111 away from the edge of the second end 112s beyond the edge of the first active material layer 112 away from the second end 112s is not greater than 1mm, the first A part of the insulating layer 113 is located on the first active material layer 112 , and another part of the first insulating layer 113 is located on the exposed first current collector 111 .
  • the width of the first insulating layer 113 By limiting the width of the first insulating layer 113 to not less than 2mm, along the first direction L1, regardless of whether the edge of the first current collector 111 away from the second end 112s exceeds the distance of the first active material layer 112 away from the second end 112s.
  • the setting of the edge and the first insulating layer 113 can reduce the risk of contact short circuit between the first active material layer 112 and the second pole piece 13 , thereby reducing the risk of contact short circuit between the first pole piece 11 and the second pole piece 13 .
  • the structure and function of the second end portion 112s can refer to the first end portion 111s, which will not be repeated here.
  • the first insulating layer 113 includes an inorganic material.
  • the inorganic material includes a ceramic material.
  • ceramic materials include titanium dioxide, alumina, boehmite, zirconia, lithium fluoride, silicon oxide, calcium oxide, magnesium oxide, tantalum oxide, silicon nitride, cubic boron nitride, aluminum nitride, At least one of chromium nitride, titanium nitride, silicon carbide, boron carbide, titanium carbide and chromium carbide
  • first insulating layer 113 is also applicable to the electrode assembly 1 with a laminated structure or the electrode assembly 1 with a wound structure.
  • the first insulating layer 113 extends from the third end 113s of the first pole piece 11 to the fourth end 114s .
  • the third direction L3 is perpendicular to the first direction L1
  • the third direction L3 is perpendicular to the second direction L2.
  • the third direction L3 is referred to as a width direction of the electrochemical device 100 .
  • the third end portion 113s and the fourth end portion 114s are two opposite end portions of the first pole piece 11 arranged along the third direction L3.
  • the first end portion 111s, the third end portion 113s, the second end portion 112s and the fourth end portion 114s are sequentially connected, or , the first end portion 111s, the fourth end portion 114s, the second end portion 112s and the third end portion 113s are sequentially connected.
  • the first insulating layer 113 is from the winding end of the first pole piece 11 toward the first pole.
  • the winding starting end of the sheet 11 extends, and the first insulating layer 113 is arranged around the surface of the outermost circle of the first pole sheet 11 that is away from the winding central axis C1.
  • the winding starting end of the first pole piece 11 is located at the winding starting end of the electrode assembly 1 in the wound structure, and the winding ending end of the first pole piece 11 is located at the winding end of the electrode assembly 1 in the wound structure.
  • the ends are possible to be a winding structure.
  • FIG. 6 is another cross-sectional view along the line B-B in FIG. 1 provided by the embodiment of the present application.
  • the electrode assembly 1 in the electrochemical device 100 in FIG. 1 is Winding structure.
  • the first insulating layer 113 extends from the winding ending end of the first pole piece 11 to the winding starting end of the first pole piece 11 .
  • the first pole piece 11 is provided with the first tab 3 at the starting end of the winding, and along the direction opposite to the winding direction C2, the first insulating layer 113 starts from the first pole piece 11. The winding end extends to the first tab 3 .
  • the electrode assembly 1 is a wound structure.
  • the outermost circle of the first pole piece 11 is closer to the winding central axis C1 than the outermost circle of the second pole piece 13 .
  • the outermost ring of the first diaphragm 12 shrinks severely at the first end 111s or the second end 112s
  • the first insulating layer 113 is located at the first end 111s
  • the second An insulating layer 113 extends from the winding ending end of the first pole piece 11 towards the winding starting end of the first pole piece 11, and the first insulating layer 113 is arranged around the outermost circle of the first pole piece 11, then the first insulating layer 113 acts as a distance between the first pole piece 11 and the second pole piece 13 , reducing the risk of a short circuit caused by the contraction of the first diaphragm 12 between the first pole piece 11 and the second pole piece 13 .
  • a circle refers to starting from a certain point on the winding cell as the starting end, and reaching another point along the winding direction as the ending end, the ending end and the starting end, and the length of the circle.
  • the center is on a straight line, the starting end is between the ending end and the center of the circle, and half a circle is half of the above-mentioned circle.
  • the first surface 1121 of the first active material layer 112 facing the first membrane 12 includes a first region 1121a and a second region 1121b, the first region 1121a is located at the first end 111s, and the first region 1121a is located at the first end 111s.
  • An insulating layer 113 is stacked on the first region 1121a, and a surface of the first insulating layer 113 facing away from the first region 1121a is flush with the second region 1121b, so that the interface of the first pole piece 11 close to the first diaphragm 12 is flat, thereby It is beneficial to the migration of lithium ions between the first pole piece 11 and the second pole piece 12 .
  • the first region 1121 a is formed by recessing the first surface 1121 toward the first current collector 111 .
  • the preparation method of the first pole piece 11 is to coat the first active material on the first current collector 111 to form the first active material layer 112, and then stack the first insulating layer 113 In the first region 1121a, the product is then pressed through rollers to form the first pole piece 11 with a flat interface.
  • the flatness described in this application means that the surface of the first insulating layer 113 facing away from the first region 1121a and the surface of the second region 1121b together form a relatively flat interface, which can be understood as being provided with a first
  • the part of the insulating layer 113 and the part not provided with the first insulating layer 113 show that the thickness of the material layer provided on the first current collector 111 is relatively uniform.
  • FIG. 7 is another cross-sectional view along the line A-A in FIG. 1 provided by the embodiment of the present application, and FIG. Zoom in on the graph.
  • the first pole piece 11 also includes a second insulating layer 114, which is arranged on the first pole piece 11. The second end 112s.
  • the second insulating layer 114 is stacked on the first surface 1121, and the second insulating layer 114 is located at the second end 112s.
  • the width w2 of the second insulating layer 114 satisfies: 2mm ⁇ w2 ⁇ 10mm.
  • the width w2 of the second insulating layer 114 satisfies: 3mm ⁇ w2 ⁇ 5mm.
  • the width of the second insulating layer 114 is no greater than 10mm, the impact on the interface performance of the first pole piece 11 due to the setting of the second insulating layer 114 is reduced, thereby reducing the impact on the interface performance of the first pole piece 11 due to the setting of the second insulating layer 114.
  • the overall performance of the electrochemical device 100 is excellent due to the influence of lithium ion migration between the first pole piece 11 and the second pole piece 13 .
  • the above-mentioned limitations on the second insulating layer 114 are also applicable to the electrode assembly 1 with a laminated structure or the electrode assembly 1 with a wound structure.
  • FIG. 9 is another cross-sectional view along line C-C in FIG. 1 provided by the embodiment of the present application.
  • the second insulating layer 114 extends from the third end portion 113s to the fourth end portion 114s of the first pole piece 11 .
  • the second insulating layer 114 is from the winding end of the first pole piece 11 toward the winding of the first pole piece 11.
  • the starting end extends, and the second insulating layer 114 is arranged around the surface of the outermost circle of the first pole piece 11 away from the winding central axis C1.
  • the second insulating layer 114 extends from the winding end of the first pole piece 11 to the winding start end of the first pole piece 11 . It is worth noting that, in some embodiments, the first pole piece 11 is provided with the first tab 3 at the winding start end, and the second insulating layer 114 is formed from the first pole piece 11 in the direction opposite to the winding direction C2. The winding end extends to the first tab 3 .
  • the second insulating layer 114 may have the same material and function as the first insulating layer 113 , which will not be repeated here.
  • FIG. 10 is another cross-sectional view along line A-A in FIG. 1 provided by an embodiment of the present application.
  • a first layer 118 is interposed between the first current collector 111 and the first active material layer 112 of the first pole piece 11, the first layer 118 includes a binder and a conductive agent, and the first layer 118 bonds the first current collector 111 and the first active material layer 112, thereby reducing the risk of the first active material layer 112 falling off from the first current collector 111, reducing the above-mentioned first insulating layer 113 and the second insulating layer disposed on the first active material layer 112 114, and the risk of the first active material layer 112 falling off from the first current collector 111 at the same time, so that when the first diaphragm 12 shrinks, there is a first insulating layer 113 and/or between the first pole piece 11 and the second pole piece 13 Or the second insulating layer 114 is separated.
  • the binder includes a polymer.
  • the polymer includes polyethylene oxide, polypropylene oxide, polydimethylsiloxane, polymethyl methacrylate, polyvinyl chloride, polyvinylidene fluoride, polyethyleneimine , polyphenylene terephthalamide, polymethoxypolyethylene glycol methacrylate, poly2-methoxyethyl glycidyl ether, polyvinylidene fluoride, polyvinylidene fluoride-hexafluoropropylene copolymer At least one of polyacrylonitrile, polyvinyl carbonate, polytrimethylene carbonate or polypropylene carbonate.
  • the conductive agent includes at least one of conductive carbon black, conductive graphite, acetylene black, Ketjen black, porous carbon, graphene, conductive carbon fibers, or carbon nanotubes.
  • the first pole piece 11 is a negative electrode.
  • the first active material layer 112 is used for delithiation or lithium intercalation, and the first active material layer 112 intercalates lithium.
  • the thickness of the first active material layer 112 increases, and when the first active material layer 112 delithiates, the thickness of the first active material layer 112 decreases, and the first active material layer 112 delithiates or intercalates lithium.
  • the first active material layer 112 is easy to fall off from the first current collector 111, and by providing the first layer 118, the first layer 118 bonds the first active material layer 112 and the first current collector 111, thereby reducing the first active material layer 118.
  • the material layer 112 delithiates or intercalates lithium, the risk of the first active material layer 112 falling off from the first current collector 111, so that the setting of the first layer 118 ensures that the first insulating layer 113 and/or the second insulating layer 114 are The spacing between the first pole piece 11 and the second pole piece 13 plays a role.
  • the first surface 1121 of the first active material layer 112 facing the first diaphragm 12 includes a third region 1121c in addition to the first region 1121a and the second region 1121b,
  • the third region 1121c is located at the second end 112s, the second insulating layer 114 is stacked on the third region 1121c, a surface of the second insulating layer 114 facing away from the third region 1121c is flush with the second region 1121b, and the first pole
  • the interface of the sheet 11 close to the first separator 12 is flat, so as to facilitate the migration of lithium ions between the first pole piece 11 and the second pole piece 12 .
  • the third region 1121c is formed by the first surface 1121 being recessed toward the first current collector 111 .
  • the preparation method of the first pole piece 11 is to coat the first active material on the first current collector 111 to form the first active material layer 112, and then stack the first insulating layer 113 In the first region 1121a, the second insulating layer 114 is stacked on the third region 1121c, and then the product is pressed by rollers to form the first pole piece 11 with a flat interface.
  • Figure 11 is another cross-sectional view along the A-A line in Figure 1 provided by the embodiment of the present application
  • Figure 12 is a section of D3 in Figure 11 provided by the embodiment of the present application
  • Fig. 13 is an enlarged view of part D4 in Fig. 11 provided by the embodiment of the present application.
  • the first pole piece 11 also includes a second active material layer 115 .
  • the second active material layer 115 is stacked on a surface of the first current collector 111 facing away from the first diaphragm 12, that is, the first active material layer 112 and the second active material layer 115 are respectively arranged on two opposite sides of the first current collector 111. surface.
  • the first pole piece 11 further includes a third insulating layer 116 and/or a fourth insulating layer 117 .
  • Both the third insulating layer 116 and the fourth insulating layer 117 are stacked on the second surface 1151 of the second active material layer 115 facing away from the first diaphragm 12, the third insulating layer 116 is located at the first end 111s, and the fourth insulating layer 117 Located at the second end portion 112s, that is, along the first direction L1, the third insulating layer 116 and the first insulating layer 113 are disposed opposite to the first end portion 111s, and the fourth insulating layer 117 and the second insulating layer 114 are disposed opposite to the second end portion 111s.
  • the width w3 of the third insulating layer 116 satisfies: 2mm ⁇ w3 ⁇ 10mm. In some embodiments, the width w3 of the third insulating layer 116 satisfies: 3mm ⁇ w3 ⁇ 5mm.
  • the width w4 of the fourth insulating layer 117 satisfies: 2mm ⁇ w4 ⁇ 10mm. In some embodiments, the width w4 of the fourth insulating layer 117 satisfies: 3mm ⁇ w4 ⁇ 5mm.
  • the above-mentioned limitations on the third insulating layer 116 or the fourth insulating layer 117 are also applicable to the electrode assembly 1 of the laminated structure or the electrode assembly 1 of the winding structure.
  • the third insulating layer 116 can extend from the third end 113s of the first pole piece 11 to the fourth end 114s, and the fourth insulating The layer 117 may extend from the third end 113s to the fourth end 114s of the first pole piece 11,
  • FIG. 14 is another cross-sectional view along line B-B in FIG. 1 provided by the embodiment of the present application.
  • the third insulating layer 116 extends from the winding ending end of the first pole piece 11 toward the winding starting end of the first pole piece 11, and the third insulating layer 116 surrounds the first pole piece 11
  • the outermost ring of the coil is set on a side facing away from the winding central axis C1.
  • the fourth insulating layer 117 can also extend from the winding ending end of the first pole piece 11 toward the winding starting end of the first pole piece 11, the fourth insulating layer 117 is arranged around the side of the outermost circle of the first pole piece 11 away from the winding central axis C1.
  • FIG. 15 is another cross-sectional view along line B-B in FIG. 1 provided by the embodiment of the present application.
  • the third insulating layer 116 extends from the winding ending end of the first pole piece 11 to the winding starting end of the first pole piece 11 .
  • the first pole piece 11 is provided with the first tab 3 at the starting end of the winding, and the third insulating layer 116 is formed from the first pole piece 11 in the direction opposite to the winding direction C2. The winding end extends to the first tab 3 .
  • the fourth insulating layer 117 extends from the winding ending end of the first pole piece 11 to the winding starting end of the first pole piece 11 .
  • the electrode assembly 1 When the electrode assembly 1 is in a wound structure, by disposing the third insulating layer 116 at the first end 111s and disposing the fourth insulating layer 117 at the second end 112s, when the penultimate circle of the first separator 12 shrinks, the third The insulating layer 116 and the fourth insulating layer 117 are spaced between the outermost circle of the first pole piece 11 and the penultimate circle of the second pole piece 13, reducing the risk of contact short circuit between the first pole piece 11 and the second pole piece 13 , to reduce the risk of short circuit inside the electrode assembly 1 .
  • the penultimate ring of the first diaphragm 12 is connected to the outermost ring of the first diaphragm 12 .
  • the penultimate turn of the first pole piece 11 is connected to the outermost turn of the first pole piece 11 .
  • the third insulating layer 116 and/or the fourth insulating layer 117 may have the same material and function as the first insulating layer 113 , which will not be repeated here.
  • the second surface 1151 of the second active material layer 115 facing away from the first membrane 12 includes a first region 1151 a , a second region 1151 b and a third region 1151 c.
  • the first zone 1151a is located at the first end portion 111s
  • the third zone 1151c is located at the second end portion 112s.
  • the third insulating layer 116 overlaps the first region 1151a.
  • the fourth insulating layer 117 overlaps the third region 1151c.
  • a surface of the third insulating layer 116 facing away from the first region 1151a is flush with the second region 1151b, and/or, a surface of the fourth insulating layer 117 facing away from the third region 1151c is flush with the second region 1151b, then the first The interface of a pole piece 11 facing away from the first diaphragm 12 is flat.
  • first region 1151a is formed by the second surface 1151 being recessed toward the first current collector 111
  • third region 1151c is formed by the second surface 1151 being recessed toward the first current collector 111 .
  • the first pole piece 11 is prepared by coating the first active material on the opposite sides of the first current collector 111 to form the first active material layer 112, and the second active material The second active material layer 115 is formed, and then the first insulating layer 113 is stacked on the first region 1121a, the second insulating layer 114 is stacked on the third region 1121c, and the third insulating layer 116 is stacked on the first region 1151a , the fourth insulating layer 117 is stacked on the third region 1151c, and then the product is pressed by a roller to form the first pole piece 11 with a flat interface.
  • FIG. 16 is another cross-sectional view along line A-A in FIG. 1 provided by the embodiment of the present application.
  • a second layer 119 is interposed between the first current collector 111 and the second active material layer 115 of the first pole piece 11, the second layer 119 includes a binder and a conductive agent, and the second layer 119 bonds the first current collector 111 and the second active material layer 115, thereby reducing the risk of the second active material layer 115 falling off from the first current collector 111, reducing the above-mentioned third insulating layer 116 and the fourth insulating layer disposed on the second active material layer 115 117, and the risk of the second active material layer 115 falling off from the first current collector 111 at the same time.
  • the second layer 119 may have the same material, structure and function as the first layer 118, which will not be repeated here.
  • the polarity of the second pole piece 13 is opposite to that of the first pole piece 11, for example, the first pole piece 11 is a negative pole, and the second pole piece 13 is a positive pole, or the second pole piece 13 is a positive pole.
  • One pole piece 11 is a positive pole, and the second pole piece 13 is a negative pole.
  • the second pole piece 13 can have the same structure and function as the first pole piece 11, for example, the second pole piece 13 includes a second current collector 131, a third active material layer 132 and a fourth active material layer (not shown in the figure)
  • the third active material layer 132 and the fourth active material layer are respectively arranged on two opposite surfaces of the second pole piece 13, or the second pole piece 13 includes the second current collector 131 and the third active material layer 132, or , the second pole piece 13 includes a second current collector 131 .
  • the structure of the first pole piece 11 and the structure of the second pole piece 13 can form any combination.
  • the first pole piece 11 includes a first current collector 111, a first active material layer 112 and a second active material layer 115.
  • the diode sheet 13 includes a second current collector 131 and a third active material layer 132 .
  • the first pole piece 11 includes a first current collector 111 and a first active material layer 112
  • the second pole piece 13 includes a second current collector 131 and a third active material layer 132.
  • the second pole piece 13 and the first pole piece 11 can have the same structure and function, but the polarity of the second pole piece 13 is opposite to that of the first pole piece 11, The materials of the second pole piece 13 and the first pole piece 11 are different.
  • the first current collector 111 of the first pole piece 11 includes copper foil, and the first active material layer 112 and the second active material layer 115 of the first pole piece 11 include graphite.
  • the second current collector 131 of the second pole piece 13 includes aluminum foil, and the third active material layer 132 and the fourth active material layer of the second pole piece 13 include lithium cobaltate.
  • FIG. 17 is another two cross-sectional views along line A-A in FIG. 1 provided by the embodiment of the present application.
  • the electrode assembly 1 also includes a second diaphragm 14, a third pole piece 15, a third diaphragm 16 and a fourth pole piece 17 stacked in sequence along the second direction L2, the second diaphragm 14 is stacked on the first pole piece 11, the second pole piece 11 The two diaphragms 14 are separated from the first pole piece 11 and the third pole piece 15 .
  • the polarity of the third pole piece 15 is the same as that of the second pole piece 13
  • the polarity of the fourth pole piece 17 is the same as that of the first pole piece 11 .
  • the third pole piece 15 may have the same structure as the second pole piece 13 , and the material of the third pole piece 15 may also be the same as that of the second pole piece 13 .
  • the fourth pole piece 17 may have the same structure as the first pole piece 11 , and the material of the fourth pole piece 17 may be the same as that of the first pole piece 11 .
  • the third insulating layer 116 and the fourth insulating layer 117 is spaced between the first pole piece 11 and the third pole piece 15 to reduce the risk of contact short circuit between the first pole piece 11 and the third pole piece 15 and reduce the risk of internal short circuit of the electrode assembly 1 .
  • the electrode assembly 1 further includes the second diaphragm 14, the third pole piece 15, the third diaphragm 16 and the fourth pole piece 17, in some embodiments, in the first direction L1, the second pole piece Compared with the first pole piece 11 , 13 is arranged closer to the packaging case 2 for accommodating the electrochemical device 111 .
  • the first diaphragm 12 shrinks severely at the first end 111s or the second end 112s, the first insulating layer 1 is located at the first end 111s, and the first insulating layer 1 The first pole piece 11 and the second pole piece 13 are separated to reduce the short circuit caused by the contraction of the first diaphragm 12 between the first pole piece 11 and the second pole piece 13 .
  • the electrode assembly 1 further includes the second diaphragm 14, the third pole piece 15, the third diaphragm 16 and the fourth pole piece 17, when the third insulating layer 116 is provided, and/or the fourth insulating layer 117 , and the interface of the first pole piece 11 facing away from the first diaphragm 12 is flat, which is beneficial to the migration of lithium ions between the first pole piece 11 and the third pole piece 15 .
  • the second pole piece 13 when the second pole piece 13 is disposed close to the package case 2, the second pole piece 13 includes a second current collector 131 and a third active material layer 132, and the third active material layer 132 is stacked. On a surface of the second current collector 131 facing the first diaphragm 12 , a surface of the second recording carrier 131 facing the package case 2 does not need to be provided with a fourth active material layer. Please refer to FIG. 17 , when the fourth pole piece 17 is arranged next to the package case 2 , the side of the fourth pole piece 17 facing away from the third diaphragm 16 does not need to be provided with an active material layer.
  • the second diaphragm 14 is used to space the first pole piece 11 and the third pole piece 15, and the first diaphragm 12 is used to space the first pole piece 11 and the second pole piece 13, then the first pole piece 11 includes The first current collector 111, the first active material layer 112 and the second active material layer 115, the second pole piece 13 includes the second current collector 131 and the third active material layer 132, wherein the third active material layer 132 is stacked A surface of the second current collector 131 facing the first diaphragm 12 is placed.
  • the number of the second diaphragm 14, the third pole piece 15, the third diaphragm 16 and the fourth pole piece 17 is multiple groups, and the multiple sets of the second diaphragm 14, the third pole piece 15 , the third separator 16 and the fourth pole piece 17 are stacked in a direction opposite to the second direction L2, so as to increase the external charging and discharging capability of the electrochemical device 100 .
  • the second diaphragm 14 and the third diaphragm 16 may have the same material and structure as the first diaphragm 12 .
  • Example 1 For the convenience of readers to understand the inventive concept of the present application, the following list 8 specific electrochemical devices provided by the present application as examples, Example 1, Example 2, Example 3, Example 4, Example 5, Example 6. Example 7 and Example 8 are for reference.
  • the same structure of Examples 1-8, Comparative Example 1 and Comparative Example 2 is that the electrochemical device includes an electrode assembly, and the electrode assembly is a wound structure.
  • the dimensions of the electrochemical device along the first direction, the second direction and the third direction are 90 mm, 4.8 mm and 66 mm, respectively.
  • the different structures of Examples 1-8, Comparative Example 1 and Comparative Example 2 are that the first pole piece of the electrode assembly in Example 1-8 and Comparative Example 2 also includes a first insulating layer and a second insulating layer. layer.
  • the width w1 of the first insulating layer is equal to the width w2 of the second insulating layer.
  • the first insulating layer extends from the winding ending end of the first pole piece toward the winding starting end of the first pole piece, and the outermost circle of the first insulating layer surrounding the first pole piece is away from the coil Set around one side of the central axis
  • the second insulating layer extends from the winding ending end of the first pole piece toward the winding starting end of the first pole piece, and the outermost circle of the second insulating layer surrounding the first pole piece is away from the winding center One side of the axis is set.
  • Examples 1-8 and Comparative Example 2 are that in Examples 1-8, along the first direction, that is, along the length direction of the electrochemical device, the value of the width w1 of the first insulating layer is: 2mm ⁇ w1 ⁇ 10mm, the value of the width w2 of the second insulating layer is: 2mm ⁇ w2 ⁇ 10mm.
  • the width w1 of the first insulating layer is 12 mm, and the width w2 of the second insulating layer is 12 mm.
  • Examples 1-8, Comparative Example 1 and Comparative Example 2 were all subjected to a drop test.
  • the drop test was to freely drop the electrochemical device from a height of 1.8 meters onto the surface of the steel plate for 3 rounds, 6 times per round. Including along the thickness direction of the electrochemical device, the two surfaces of the electrochemical device are respectively dropped towards the steel plate and the four corners of the electrochemical device are respectively dropped towards the steel plate. Among them, the drop test was performed on the 10 electrochemical devices of each example or Comparative Example 1 or Comparative Example 2 respectively. After the drop test, the voltage drop failure rate of the electrochemical devices of Examples 1-8 or Comparative Example 1 or Comparative Example 2 was tested.
  • the value of the width w1 of the first insulating layer is: 2mm ⁇ w1 ⁇ 10mm; along the first direction, the value of the width w2 of the second insulating layer is When the value is: 2mm ⁇ w2 ⁇ 10mm, the voltage drop failure ratio of the electrochemical device provided by the embodiment of the present application is lower than that of the electrochemical device in Comparative Example 1 without the first insulating layer or the second insulating layer, indicating that it passes
  • the arrangement of the first insulating layer and the second insulating layer can effectively reduce the voltage drop failure ratio of the electrochemical device, that is, reduce the risk of internal short circuit of the electrode assembly.
  • the value of the width w1 of the first insulating layer is: 3mm ⁇ w1 ⁇ 10mm.
  • the value of the width w2 of the second insulating layer is: 3mm ⁇ w2 ⁇ 10mm
  • the voltage drop failure ratio of the electrochemical device provided by the embodiment of the present application is zero.
  • the value of the width w1 of the first insulating layer is: 2mm ⁇ w1 ⁇ 10mm; along the first direction, the value of the width w2 of the second insulating layer is When the value is: 2mm ⁇ w2 ⁇ 10mm, compared with Comparative Example 1 in which the first insulating layer or the second insulating layer is not provided, the interface performance of the electrochemical device provided by the embodiment of the present application is basically not affected by the first insulating layer and the second insulating layer. The influence of the setting of the second insulating layer.
  • the width w1 of the first insulating layer takes a value of 12 mm
  • the width w2 of the second insulating layer takes a value of 12 mm
  • the interface performance of the electrochemical device is severely deteriorated, indicating that the width w1 of the first insulating layer
  • the width w2 of the second insulating layer is 12mm, it may affect the adhesion between the first pole piece and the first diaphragm, and then affect the electrical performance of the electrochemical device.
  • the value of the width w1 of the first insulating layer is: 2mm ⁇ w1 ⁇ 10mm
  • the value of the width w2 of the second insulating layer is: 2mm ⁇ w2 ⁇ 10mm
  • the electrochemical device 100 includes an electrode assembly 1 , and the electrode assembly 1 includes a first pole piece 11 , a first diaphragm 12 and a second pole piece 13 stacked in sequence.
  • the first pole piece 11 includes a first current collector 111, a first active material layer 112, and a first insulating layer 113.
  • the first active material layer 112 is stacked on a surface of the first current collector 111 facing the first diaphragm 12.
  • An insulating layer 113 is stacked on the first surface 1121 of the first active material layer 112 facing the first membrane 12 .
  • the first pole piece 11 has a first end portion 111s and a second end portion 112s, the first end portion 111s or the second end portion 112s is connected to the first tab 3, and the first insulating layer 113 is located on the second end portion 112s.
  • the first insulating layer 113 By setting the first insulating layer 113 at the first end 111s of the first pole piece 11, and limiting the width of the first insulating layer 113 to not less than 2 mm, when the first diaphragm 12 shrinks, the first insulating layer 113 is spaced from the first Between the pole piece 11 and the second pole piece 13, the risk of contact short circuit between the first pole piece 11 and the second pole piece 13 is reduced. In addition, by limiting the width of the first insulating layer 113 to not more than 10 mm, the impact on the interface performance of the first pole piece 11 due to the setting of the first insulating layer 113 is reduced, thereby reducing the impact on the interface performance of the first pole piece 11 due to the setting of the first insulating layer 113. The overall performance of the electrochemical device 100 is excellent due to the influence of lithium ion migration between the first pole piece 11 and the second pole piece 13 .
  • the embodiment of the present application also provides an electronic device, which includes a load and the aforementioned electrochemical device 100 .
  • the electrochemical device 100 is connected to a load, and the electrochemical device 100 is used to supply power to the load.
  • Electronic devices can be energy storage products, mobile phones, tablets, drones, electric vehicles with one or more wheels, or electric cleaning tools, etc.
  • the electrochemical device 100 is mounted on the drone, and the electrochemical device 100 is used to supply power to the loads on the drone, including the flight system, control system and camera system.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

本申请提出一种电化学装置以及电子设备,电化学装置包括电极组件,电极组件包括依次叠置的第一极片、第一隔膜和第二极片。第一极片包括第一集流体、第一活性物质层和第一绝缘层,第一活性物质层叠置于第一集流体,第一绝缘层叠置于第一活性物质层背向第一集流体的第一表面;沿第一方向,第一极片具有第一端部和第二端部,第一端部或第二端部中的至少一者与第一极耳连接,第一绝缘层位于第一端部;第一绝缘层的宽度w1满足:2mm≤w1≤10mm。通过在第一活性层表面设置第一绝缘层,且限定第一绝缘层的宽度,降低因第一隔膜收缩导致第一极片和第二极片接触短路的风险,也可以维持第一极片和第一隔膜之间较好的界面,满足对电化学性能的需求。

Description

电化学装置以及电子装置 技术领域
本申请涉及储能技术领域,尤其涉及一种电化学装置以及电子装置。
背景技术
电化学装置是一种将外界的能量转化为电能并储存于其内部,以在需要的时刻对外部电子装置(例如便携式电子装置等)供电的装置。目前,电化学装置广泛地运用于无人机、手机、平板、笔记本电脑等电子装置中。一般的,,电化学装置包括电极组件,电极组件包括第一极片、第一隔膜和第二极片。其中,第一极片和第二极片极性相反,第一隔膜间隔于第一极片和第二极片之间。目前,间隔于第一极片和第二极片之间的第一隔膜收缩时,容易使得第一极片和第二极片接触短路。
申请内容
本申请实施例旨在提供一种电化学装置以及电子装置,以解决现有技术中间隔于第一极片和第二极片之间的第一隔膜收缩时,第一极片和第二极片容易接触短路的问题。
根据本申请实施例的一个方面,提供了一种电化学装置,电化学装置包括电极组件。电极组件包括依次叠置的第一极片、第一隔膜和第二极片。第一极片包括第一集流体、第一活性物质层和第一绝缘层,第一活性物质层叠置于第一集流体的一表面,第一绝缘层叠置于第一活性物质背面向第一集流体的第一表面。沿第一方向,第一极片具有第一端部和第二端部,第一端部或第二端部中的至少一者与第一极耳连接,第一绝缘层位于第一端部。沿第一方向,第一绝缘层的宽度w1满足:2mm≤w1≤10mm。
通过在第一极片的第一端部设置第一绝缘层,且限定第一绝缘层的宽度不小于2mm,则第一隔膜收缩时,第一绝缘层间隔于第一极片和第二极片之间,降低第一极片和第二极片接触短路的风险。另外,通过限定第一绝缘层的宽度不大于10mm,则降低因为第一绝缘层的设置而对第一极片的界面性能的影响,进而降低因为第一绝缘层的设置而对第一极片和第二极片之间的锂离子迁移的影响,电化学装置整体的性能优良。
在一种可选的方式中,第一极片、第一隔膜和第二极片沿第二方向依次叠置,第一方向与第二方向垂直。其中,在一些实施例中,第二方向被称为电化学装置的厚度方向。
在一种可选的方式中,第一极耳与第一集流体连接,且第一极耳沿第一方向延伸出第一集流体,以便于电化学装置与外部电路连接。
在一种可选的方式中,第一端部和第二端部是第一极片沿着第一极耳延伸出第一集流体的方向上的两个相对的端部,即,第一端部和第二端部是第一极片沿着第一方向上的两个相对的端部。
在一种可选的方式中,沿第一方向,第一集流体远离第二端部的边缘与第一活性物质层远离第二端部的边缘齐平,即第一集流体面向第一隔膜的一表面均设置有第一活性物质层,则第一集流体被充分利用,从而提高电化学装置的能量密度。
在一种可选的方式中,由于形成第一极片的加工工艺的限制等原因,沿第一方向,第一集流体远离第二端部的边缘,超出第一活性物质层远离第二端部的边缘设置,且超出部分的尺寸不大于1mm。
在一种可选的方式中,第一表面包括第一区域和第二区域,第一区域位于第一端部,第一绝缘层叠置于第一区域,第一绝缘层背向第一区域的一表面与第二区域平齐,则第一极片面向第一隔膜的界面平整,从而有利于第一极片和第二极片之间的锂离子的迁移。在一种可选的方式中,第一绝缘层的宽度w1满足:3mm≤w1≤5mm。
在一种可选的方式中,第一极片还包括第二绝缘层,第二绝缘层叠置于第一表面,第二绝缘层位于第二端部。在一种可选的方式中,沿第一方向,第二绝缘层的宽度w2满足:2mm≤w2≤10mm。
通过在第一极片的第二端部设置第二绝缘层,且限定第二绝缘层的宽度不小于2mm,则第一隔膜收缩时,第二绝缘层间隔于第一极片和第二极片之间,降低第一极片和第二极片接触短路的风险。另外,通过限定第二绝缘层的宽度不大于10mm,则可以降低因为第二绝缘层的设置而对第一极片的界面性能的影响,进而可以降低因为第二绝缘层的设置而对第一极片和第二极片之间的锂离子迁移的影响,电化学装置整体的性能优良。
在一种可选的方式中,第一表面还包括第三区域,第三区域位于第二端部,第二绝缘层背向第三区域的一表面与第二区域平齐,则第一极片面向第一隔膜的界面平整,从而有利于第一极片和第二极片之间的锂离子的迁移。在一种可选的方式中,沿第一方向,第二绝缘层的宽度w2满足:3mm≤w2≤5mm。
在一种可选的方式中,第一极片还包括第二活性物质层,第二活性物质层叠置于第一集流体的另一表面。第一极片还包括第三绝缘层,第三绝缘层叠置于第二活性物质层背向第一集流体的第二表面,第三绝缘层位于第一端部。在一种可选的方式中,沿第一方向,第三绝缘层的宽度w3满足:2mm≤w3≤10mm。通过第三绝缘层的设置,进一步降低电极组件内部短路的风险。
在一种可选的方式中,沿第一方向,第三绝缘层和第一绝缘层相对设置于第一端部。在一种可选的方式中,沿第一方向,第三绝缘层的宽度w3满足:3mm≤w3≤5mm。
在一种可选的方式中,第一极片还包括第四绝缘层,第四绝缘层叠置于第二表面,第四绝缘层位于第二端部。在一种可选的方式中,沿第一方向,第四绝缘层的宽度w4满足:2mm≤w4≤10mm。通过第四绝缘层的设置,进一步降低电极组件内部短路的风险。
在一种可选的方式中,沿第一方向,第四绝缘层和第二绝缘层相对设置于第二端部。在一种可选的方式中,沿第一方向,第四绝缘层的宽度w4满足:3mm≤w4≤5mm。
在一种可选的方式中,第一极片还包括第一层,第一层叠置于第一集流体和第一活性物质层之间。第一层粘结第一集流体和第一活性物质层,从而,减少第一活性物质层从第一集流体脱落的风险,减少设置于第一活性物质层上的第一绝缘层和第二绝缘层,以及第一活性物质层同时从第一集流体脱落的风险,以使第一隔膜收缩时,第一极片和第二极片之间有第一绝缘层和/或第二绝缘层间隔。在一种可选的方式中,第一层包括粘结剂和导电剂。
在一种可选的方式中,第一极片、第一隔膜和第二极片共同卷绕成卷绕结构,卷绕结构的卷绕中心轴沿第一方向设置。第一极片的最外圈相较于第二极片的最外圈靠近卷绕中心轴。第一绝缘层自第一极片的卷绕收尾端朝向第一极片的卷绕起始端延伸,第一绝缘层环绕第一极片的最外圈背离卷绕中心轴的一面设置。在电化学装置因跌落等原因受损时,第一隔膜的最外圈在第一端部或者第二端部处收缩严重,第一绝缘层位于第一端部,第一绝缘层自第一极片的卷绕收尾端朝向第一极片的卷绕起始端延伸,第一绝缘层环绕第一极片的最外圈设置,则第一绝缘层对第一极片和第二极片起间隔作用,降低第一极片和第二极片因第一隔膜收缩而引起短路的风险。
在一种可选的方式中,第一绝缘层自第一极片的卷绕收尾端延伸至第一极片的卷绕起始端,从而加强第一绝缘层对第一极片和第二极片的 间隔作用。
在一种可选的方式中,电极组件还包括依次叠置的第二隔膜、第三极片、第三隔膜和第四极片,第二隔膜叠置于第一极片,第二隔膜间隔于第一极片和第三极片之间。第二隔膜、第三极片、第三隔膜和第四极片的数量为多组,多组第二隔膜、第三极片、第三隔膜和第四极片沿第二方向方向叠置,从而增加电化学装置对外充放电的能力。
根据本申请实施例的一个方面,提供了一种电子装置,包括负载和上述任一项的电化学装置,电化学装置向负载供电。
本申请实施例的有益效果包括,通过在第一极片的第一端部设置第一绝缘层,且限定第一绝缘层的宽度不小于2mm,则第一隔膜收缩时,第一绝缘层间隔于第一极片和第二极片之间,降低第一极片和第二极片接触短路的风险。另外,通过限定第一绝缘层的宽度不大于10mm,则降低因为第一绝缘层的设置而对第一极片的界面性能的影响,进而降低因为第一绝缘层的设置而对第一极片和第二极片之间的锂离子迁移的影响,电化学装置整体的性能优良。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本申请实施例提供的电化学装置的立体示意图;
图2是本申请实施例提供的沿图1中A-A线的一种剖视图;
图3是本申请实施例提供的沿图1中B-B线的一种剖视图;
图4是本申请实施例提供的沿图1中C-C线的一种剖视图;
图5是本申请实施例提供的图2中D1部的放大图;
图6是本申请实施例提供的沿图1中B-B线的另一种剖视图;
图7是本申请实施例提供的沿图1中A-A线的另一种剖视图;
图8是本申请实施例提供的图7中D2部的放大图;
图9是本申请实施例提供的沿图1中C-C线的另一种剖视图;
图10是本申请实施例提供的沿图1中A-A线的还一种剖视图;
图11是本申请实施例提供的沿图1中A-A线的又一种剖视图;
图12是本申请实施例提供的图11中D3部的放大图;
图13是本申请实施例提供的图11中D4部的放大图;
图14是本申请实施例提供的沿图1中B-B线的还一种剖视图;
图15是本申请实施例提供的沿图1中B-B线的又一种剖视图;
图16是本申请实施例提供的沿图1中A-A线的再一种剖视图;
图17是本申请实施例提供的沿图1中A-A线的再二种剖视图。
具体实施方式
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。应当理解,此处所描述的具体实施例仅用以解释本申请,并不用于限定本申请。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
需要说明的是,当元件被表述“固定于”另一个元件,它可以直接在另一个元件上、或者其间可以存在一个或多个居中的元件。当一个元件被表述“连接”另一个元件,它可以是直接连接到另一个元件、或者其间可以存在一个或多个居中的元件。本说明书所使用的术语“垂直的”、“水平的”、“左”、“右”以及类似的表述只是为了说明的目的。
此外,下面所描述的本申请各个实施例中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1和图2,图1是本申请实施例提供的电化学装置的立体示意图。图2是本申请实施例提供的沿图1中A-A线的一种剖视图。电化学装置100包括电极组件1,电极组件1是电化学装置100中的充放电元件。
在一些实施例中,电化学装置100还包括封装壳2、第一极耳3和第二极耳4,电极组件1收容于封装壳2。第一极耳3和第二极耳4分别与电极组件1连接,第一极耳3和第二极耳4分别从封装壳2伸出,以实现对外部电子设备供电,以及在电极组件1的能量不足时,为电极组件1充电。
对于上述电极组件1,请参阅图2,图2中示出了电极组件1的部分结构。电极组件1包括第一极片11、第一隔膜12和第二极片13。第一极片11、第一隔膜12和第二极片13依次叠置。第一极片11、第一隔膜12和第二极片13沿第二方向L2依次叠置。其中,第二方向L2为电化学装置100的厚度方向。
在一些实施方式中,第一极片11、第一隔膜12和第二极片13仅仅依次叠置但不卷绕时,电极组件1为叠片结构,如图2所示,此时,图1中的电化学装置100中的电极组件1为叠片结构。
在一些实施方式中,第一极片11、第一隔膜12和第二极片13依次叠置且卷绕时,电极组件1形成卷绕结构,如图3所示,图3是本申请实施例提供的沿图1中B-B线的一种剖视图,此时,图1中的电化学装置100中的电极组件1为卷绕结构。
对于上述第一极片11,无论电极组件1为叠片结构还是卷绕结构,第一极片11的以下结构和功能都适用。请参阅图4,图4是本申请实施例提供的沿图1中C-C线的一种剖视图。沿第一方向L1,第一极片11具有第一端部111s和第二端部112s。其中,第一方向L1为第一极耳3或第二极耳4的延伸方向,第一方向L1与第二方向L2垂直。在一些实施例中,第一方向L1可以为电化学装置100的长度方向。第一极耳3与第一端部111s连接,且第一极耳3沿第一方向L1延伸出第一端部111s。或者,第一极耳3与第二端部112s连接,且第一极耳3沿第一方向L1延伸出第二端部112s。即,第一端部111s和第二端部112s是第一极片11沿着第一极耳3延伸出第一集流体111的方向上的两个相对的端部,即,第一端部111s和第二端部112s是第一极片11沿着第一方向L1上的两个相对的端部。
请参阅图2或图3,第一极片11包括第一集流体111、第一活性物质层112和第一绝缘层113。
其中,第一活性物质层112叠置于第一集流体111面向第一隔膜12的一表面。
其中,请参阅图4,第一集流体111与电化学装置100的第一极耳3连接。在一些实施例中,第一极耳3与第一集流体111连接,且第一极耳3沿第一方向L1延伸出第一集流体111,以便于电化学装置100与外部电路连接。第一极耳3与第一集流体111连接,将第一集流体111与外电路进行电连接。在一些实施方式中,第一极耳3与第一集流体111的连接方式可以为焊接或导电胶连接。在一些实施方式中,第一极耳3与第一集流体111可以为一体的结构,即第一极耳3从第一集流体111延伸出。
其中,请参阅图2或者图3,第一绝缘层113叠置于第一活性物质层112面向第一隔膜12的第一表面1121,第一绝缘层113位于第一端部111s。请参阅图5,图5是本申请实施例提供的图2中D1部的放大图。沿第一方向L1,第一绝缘层113的宽度w1满足:2mm≤w1≤10mm。 在一些实施例中,沿第一方向L1,第一绝缘层113的宽度w1满足:3mm≤w1≤5mm。通过在第一极片11的第一端部111s设置第一绝缘层113,且限定第一绝缘层113的宽度不小于2mm,则第一隔膜12于第一端部111s收缩时,第一绝缘层113间隔于第一极片11和第二极片13之间,降低第一极片11和第二极片13接触短路的风险。另外,通过限定第一绝缘层113的宽度不大于10mm,则降低因为第一绝缘层113的设置而对第一极片11的界面性能的影响,进而降低因为第一绝缘层113的设置而对第一极片11和第二极片13之间的锂离子迁移的影响,电化学装置100整体的性能优良。
需要说明的是,在第一方向L1上,第一绝缘层113自第一极片11远离第二端部112s的边缘起,朝向第二端部112s延伸。第一绝缘层113自第一极片11远离第二端部112s的边缘起,朝向第二端部112s延伸的尺寸为上述第一绝缘层113的宽度w1。
在一些实施例中,沿第一方向L1,第一集流体111远离第二端部112s的边缘与第一活性物质层112远离第二端部112s的边缘齐平,或者,第一集流体111远离第二端部112s的边缘超出第一活性物质层112远离第二端部112s的边缘的部分的尺寸不大于1mm。由于第一绝缘层113的宽度w1不小于2mm,则第一绝缘层113至少部分位于第一活性物质层112。即,沿第一方向L1,第一集流体111远离第二端部112s的边缘,与第一活性物质层112远离第二端部112s的边缘齐平时,第一绝缘层113全部位于第一活性物质层112,沿第一方向L1,第一集流体111远离第二端部112s的边缘,超出第一活性物质层112远离第二端部112s的边缘的部分的尺寸不大于1mm时,第一绝缘层113的一部分位于第一活性物质层112,第一绝缘层113的另一部分位于裸露的第一集流体111。通过限定第一绝缘层113的宽度不小于2mm,则沿第一方向L1,无论第一集流体111远离第二端部112s的边缘,是否超出第一活性物质层112远离第二端部112s的边缘,第一绝缘层113的设置均可降低第一活性物质层112与第二极片13接触短路的风险,从而降低第一极片11与第二极片13接触短路的风险。
值得说明的是,第二端部112s的结构和功能可参考第一端部111s,此处不再赘述。
在一些实施例中,第一绝缘层113包括无机材料。在一些实施例中,无机材料包括陶瓷材料。在一些实施例中,陶瓷材料包括二氧化钛、氧化铝、勃姆石、氧化锆、氟化锂、氧化硅、氧化钙、氧化镁、氧化钽、氮化硅、立方氮化硼、氮化铝、氮化铬、氮化钛、碳化硅、碳化硼、碳 化钛和碳化铬中的至少一种
值得说明的是,上述对第一绝缘层113的限定对叠片结构的电极组件1或者卷绕结构的电极组件1同样适用。
电极组件1为叠片结构时,在一些实施例中,请参阅图4,沿第三方向L3,第一绝缘层113从第一极片11的第三端部113s延伸至第四端部114s。其中,第三方向L3与第一方向L1垂直,第三方向L3与第二方向L2垂直。在一些实施例中,第三方向L3被称为电化学装置100的宽度方向。其中,第三端部113s和第四端部114s为第一极片11沿第三方向L3相对设置的两个端部。其中,沿第二方向L2观察第一极片11,第一极片11为矩形时,第一端部111s、第三端部113s、第二端部112s和第四端部114s依次连接,或者,第一端部111s、第四端部114s、第二端部112s和第三端部113s依次连接。
电极组件1为卷绕结构时,在一些实施例中,请参阅图3,沿与卷绕方向C2相反的方向,第一绝缘层113自第一极片11的卷绕收尾端朝向第一极片11的卷绕起始端延伸,第一绝缘层113环绕第一极片11的最外圈的背离卷绕中心轴C1的面设置。在一些实施例中,第一极片11的卷绕起始端位于卷绕结构的电极组件1的卷绕起始端,第一极片11的卷绕收尾端位于卷绕结构的电极组件1的卷绕收尾端。
在另一些实施例中,请参阅图6,图6是本申请实施例提供的沿图1中B-B线的另一种剖视图,此时,图1中的电化学装置100中的电极组件1为卷绕结构。沿与卷绕方向C2相反的方向,第一绝缘层113自第一极片11的卷绕收尾端延伸至第一极片11的卷绕起始端。值得说明的是,在一些实施例中,第一极片11的卷绕起始端设置第一极耳3,沿与卷绕方向C2相反的方向,第一绝缘层113自第一极片11的卷绕收尾端延伸至第一极耳3。
值得说明的是,电极组件1为卷绕结构,在一些实施例中,第一极片11的最外圈,相较于第二极片13的最外圈,靠近卷绕中心轴C1。在电化学装置100因跌落等原因受冲击时,第一隔膜12的最外圈在第一端部111s或者第二端部112s处收缩严重,第一绝缘层113位于第一端部111s,第一绝缘层113自第一极片11的卷绕收尾端朝向第一极片11的卷绕起始端延伸,第一绝缘层113环绕第一极片11的最外圈设置,则第一绝缘层113对第一极片11和第二极片13起间隔作用,降低第一极片11和第二极片13因第一隔膜12收缩而引起短路的风险。其中,第一隔膜12的最外圈为卷绕结构中,第一隔膜12离卷绕中心轴C1最远的一圈。
本申请中,一圈指的是从卷绕式电芯上的某个点作为起始端开始计算,沿着卷绕方向一周到达另一个点定为结束端,结束端与起始端以及此圈的中心在一条直线上,起始端在结束端与此圈中心之间,半圈即为上述一圈的一半。
在一些实施例中,请参阅图5,第一活性物质层112面向第一隔膜12的第一表面1121包括第一区域1121a和第二区域1121b,第一区域1121a位于第一端部111s,第一绝缘层113叠置于第一区域1121a,第一绝缘层113背向第一区域1121a的一表面与第二区域1121b平齐,则第一极片11靠近第一隔膜12的界面平整,从而有利于第一极片11和第二极片12之间锂离子的迁移。
值得说明的是,在一些实施例中,第一区域1121a是第一表面1121朝向第一集流体111凹陷形成的。
值得说明的是,在一些实施例中,第一极片11的制备方法为在第一集流体111上涂布第一活性物质形成第一活性物质层112,然后将第一绝缘层113叠置于第一区域1121a,然后将该产品通过辊筒挤压从而形成界面平整的第一极片11。
应该理解的是,本申请所描述的平齐指的是第一绝缘层113背向第一区域1121a的一表面与第二区域1121b的表面一起形成比较平整的界面,可以理解为设置有第一绝缘层113的部分与没有设置第一绝缘层113的部分表现出第一集流体111上设置的物质层的厚度比较均匀。
在一些实施例中,请参阅图7和图8,图7是本申请实施例提供的沿图1中A-A线的另一种剖视图,图8是本申请实施例提供的图7中D2部的放大图。第一极片11除了包括上述第一集流体111、第一活性物质层112和第一绝缘层113之外,还包括第二绝缘层114,第二绝缘层114设置于第一极片11的第二端部112s。第二绝缘层114叠置于第一表面1121,第二绝缘层114位于第二端部112s,沿第一方向L1,第二绝缘层114的宽度w2满足:2mm≤w2≤10mm。在一些实施例中,沿第一方向L1,第二绝缘层114的宽度w2满足:3mm≤w2≤5mm。通过在第一极片11的第二端部112s设置第二绝缘层114,且限定第二绝缘层114的宽度不小于2mm,则第一隔膜12于第二端部112s收缩时,第二绝缘层114间隔于第一极片11和第二极片13之间,降低第一极片11和第二极片13接触短路的风险。另外,通过限定第二绝缘层114的宽度不大于10mm,则降低因为第二绝缘层114的设置而对第一极片11的界面性能的影响,进而降低因为第二绝缘层114的设置而对第一极片11和第二极片13之间的锂离子迁移的影响,电化学装置100整体的性能优良。
值得说明的是,上述对第二绝缘层114的限定对叠片结构的电极组件1或者卷绕结构的电极组件1同样适用。
电极组件1为叠片结构时,请参阅图9,图9是本申请实施例提供的沿图1中C-C线的另一种剖视图。在一些实施例中,沿第三方向L3,第二绝缘层114从第一极片11的第三端部113s延伸至第四端部114s。
电极组件1为卷绕结构时,在一些实施例中,沿与卷绕方向C2相反的方向,第二绝缘层114自第一极片11的卷绕收尾端朝向第一极片11的卷绕起始端延伸,第二绝缘层114环绕第一极片11的最外圈背离卷绕中心轴C1的面设置。
在另一些实施例中,沿与卷绕方向C2相反的方向,第二绝缘层114自第一极片11的卷绕收尾端延伸至第一极片11的卷绕起始端。值得说明的是,在一些实施例中,第一极片11的卷绕起始端设置第一极耳3,沿与卷绕方向C2相反的方向,第二绝缘层114自第一极片11的卷绕收尾端延伸至第一极耳3。
第二绝缘层114可与第一绝缘层113具有相同的材质和功能,此处不再赘述。通过在第一端部111s设置第一绝缘层113,第二端部112s设置第二绝缘层114,则第一隔膜12收缩时,第一绝缘层113和第二绝缘层114间隔于第一极片11和第二极片13之间,降低第一极片11和第二极片13接触短路的风险。
在一些实施例中,请参阅图10,图10是本申请实施例提供的沿图1中A-A线的还一种剖视图。第一极片11的第一集流体111和第一活性物质层112之间还夹设第一层118,第一层118包括粘结剂和导电剂,第一层118粘结第一集流体111和第一活性物质层112,从而,减少第一活性物质层112从第一集流体111脱落的风险,减少设置于第一活性物质层112上的上述第一绝缘层113和第二绝缘层114,以及第一活性物质层112同时从第一集流体111脱落的风险,以使第一隔膜12收缩时,第一极片11和第二极片13之间有第一绝缘层113和/或第二绝缘层114间隔。
在一些实施例中,粘结剂包括聚合物。在一些实施例中,聚合物包括聚环氧乙烷、聚环氧丙烷、聚二甲基硅氧烷、聚甲基丙烯酸甲酯、聚氯乙烯、聚二偏氟乙烯、聚乙撑亚胺、聚对苯二甲酰苯二胺、聚甲氧基聚乙二醇甲基丙烯酸酯、聚2-甲氧基乙基缩水甘油醚、聚偏氟乙烯、聚偏氟乙烯-六氟丙烯共聚物、聚丙烯腈、聚碳酸乙烯酯、聚三亚甲基碳酸酯或聚碳酸丙烯酯中的至少一种。
在一些实施例中,导电剂包括导电炭黑、导电石墨、乙炔黑、科琴 黑、多孔碳、石墨烯、导电碳纤维或碳纳米管中的至少一种。
值得说明的是,在一些实施例中,第一极片11为负极,在电化学装置100充放电时,第一活性物质层112用于脱锂或者嵌锂,第一活性物质层112嵌锂时,沿第一方向L1,第一活性物质层112的厚度增加,第一活性物质层112脱锂时,第一活性物质层112的厚度减小,第一活性物质层112脱锂或者嵌锂时,第一活性物质层112容易从第一集流体111脱落,通过设置第一层118,第一层118粘结第一活性物质层112和第一集流体111,从而可减小第一活性物质层112脱锂或者嵌锂时,第一活性物质层112从第一集流体111脱落的风险,从而通过第一层118的设置,保障第一绝缘层113和/或第二绝缘层114对第一极片11和第二极片13的间隔作用。
在一些实施例中,请参阅图5和图8,第一活性物质层112面向第一隔膜12的第一表面1121除了包括第一区域1121a和第二区域1121b外,还包括第三区域1121c,第三区域1121c位于第二端部112s,第二绝缘层114叠置于第三区域1121c,第二绝缘层114背向第三区域1121c的一表面与第二区域1121b平齐,则第一极片11靠近第一隔膜12的界面平整,从而有利于第一极片11和第二极片12之间锂离子的迁移。
值得说明的是,第三区域1121c是第一表面1121朝向第一集流体111凹陷形成的。
值得说明的是,在一些实施例中,第一极片11的制备方法为在第一集流体111上涂布第一活性物质形成第一活性物质层112,然后将第一绝缘层113叠置于第一区域1121a,将第二绝缘层114叠置于第三区域1121c,然后将该产品通过辊筒挤压从而形成界面平整的第一极片11。
在一些实施例中,请参阅图11-图13,图11是本申请实施例提供的沿图1中A-A线的又一种剖视图,图12是本申请实施例提供的图11中D3部的放大图,图13是本申请实施例提供的图11中D4部的放大图。第一极片11除了包括上述第一集流体111、第一活性物质层112和第一绝缘层113之外,还包括第二活性物质层115。第二活性物质层115叠置于第一集流体111背向第一隔膜12的一表面,即第一活性物质层112和第二活性物质层115分别设置于第一集流体111相对的两个表面。
请参阅图11-图13,第一极片11还包括第三绝缘层116和/或第四绝缘层117。第三绝缘层116和第四绝缘层117均叠置于第二活性物质层115背向第一隔膜12的第二表面1151,第三绝缘层116位于第一端部111s,第四绝缘层117位于第二端部112s,即沿第一方向L1,第三绝缘层116和第一绝缘层113相对设置于第一端部111s,第四绝缘层 117和第二绝缘层114相对设置于第二端部112s。沿第一方向L1,第三绝缘层116的宽度w3满足:2mm≤w3≤10mm。在一些实施例中,第三绝缘层116的宽度w3满足:3mm≤w3≤5mm。沿第一方向L1,第四绝缘层117的宽度w4满足:2mm≤w4≤10mm。在一些实施例中,第四绝缘层117的宽度w4满足:3mm≤w4≤5mm。
值得说明的是,上述对第三绝缘层116或者第四绝缘层117的限定对叠片结构的电极组件1或者卷绕结构的电极组件1同样适用。
电极组件1为叠片结构时,在一些实施例中,沿第三方向L3,第三绝缘层116可从第一极片11的第三端部113s延伸至第四端部114s,第四绝缘层117可从第一极片11的第三端部113s延伸至第四端部114s,
电极组件1为卷绕结构时,在一些实施例中,请参阅图14,图14是本申请实施例提供的沿图1中B-B线的还一种剖视图。沿与卷绕方向C2相反的方向,第三绝缘层116自第一极片11的卷绕收尾端朝向第一极片11的卷绕起始端延伸,第三绝缘层116环绕第一极片11的最外圈背离卷绕中心轴C1的一面设置。
可以理解的是,沿与卷绕方向C2相反的方向,第四绝缘层117也可自第一极片11的卷绕收尾端朝向第一极片11的卷绕起始端延伸,第四绝缘层117环绕第一极片11的最外圈背离卷绕中心轴C1的一面设置。
在另一些实施例中,请参阅图15,图15是本申请实施例提供的沿图1中B-B线的又一种剖视图。沿与卷绕方向C2相反的方向,第三绝缘层116自第一极片11的卷绕收尾端延伸至第一极片11的卷绕起始端。值得说明的是,在一些实施例中,第一极片11的卷绕起始端设置第一极耳3,沿与卷绕方向C2相反的方向,第三绝缘层116自第一极片11的卷绕收尾端延伸至第一极耳3。
可以理解的是,沿与卷绕方向C2相反的方向,第四绝缘层117自第一极片11的卷绕收尾端延伸至第一极片11的卷绕起始端。
电极组件1为卷绕结构时,通过在第一端部111s设置第三绝缘层116,第二端部112s设置第四绝缘层117,则第一隔膜12的倒数第二圈收缩时,第三绝缘层116和第四绝缘层117间隔于第一极片11的最外圈和第二极片13的倒数第二圈之间,降低第一极片11和第二极片13接触短路的风险,降低电极组件1内部短路的风险。其中,第一隔膜12的倒数第二圈连接第一隔膜12的最外圈。第一极片11的倒数第二圈连接第一极片11的最外圈。
需要说明的是,第三绝缘层116和/或第四绝缘层117可与第一绝缘层113具有相同的材质和功能,此处不再赘述。
在一些实施例中,请参阅图12和图13,第二活性物质层115背向第一隔膜12的第二表面1151包括第一区1151a、第二区1151b和第三区1151c。第一区1151a位于第一端部111s,第三区1151c位于第二端部112s。第三绝缘层116叠置于第一区1151a。第四绝缘层117叠置于第三区1151c。第三绝缘层116背向第一区1151a的一表面与第二区1151b平齐,和/或,第四绝缘层117背向第三区1151c的一表面与第二区1151b平齐,则第一极片11背向第一隔膜12的界面平整。
值得说明的是,第一区1151a是第二表面1151朝向第一集流体111凹陷形成的,第三区1151c是第二表面1151朝向第一集流体111凹陷形成的。
值得说明的是,在一些实施例中,第一极片11的制备方法为在第一集流体111相对的两面上分别涂布第一活性物质形成第一活性物质层112,以及第二活性物质形成第二活性物质层115,然后将第一绝缘层113叠置于第一区域1121a,将第二绝缘层114叠置于第三区域1121c,将第三绝缘层116叠置于第一区1151a,将第四绝缘层117叠置于第三区1151c,然后将该产品通过滚筒挤压从而形成界面平整的第一极片11。
在一些实施例中,请参阅图16,图16是本申请实施例提供的沿图1中A-A线的再一种剖视图。第一极片11的第一集流体111和第二活性物质层115之间还夹设第二层119,第二层119包括粘结剂和导电剂,第二层119粘结第一集流体111和第二活性物质层115,从而,减少第二活性物质层115从第一集流体111脱落的风险,减少设置于第二活性物质层115上的上述第三绝缘层116和第四绝缘层117,以及第二活性物质层115同时从第一集流体111脱落的风险。第二层119可以和第一层118具有相同的材质、结构和功能,此处不再赘述。
对于上述第二极片13,请参阅图2,第二极片13与第一极片11的极性相反,例如,第一极片11为负极,第二极片13为正极,或者,第一极片11为正极,第二极片13为负极。第二极片13可与第一极片11具有相同的结构和功能,例如,第二极片13包括第二集流体131、第三活性物质层132和第四活性物质层(图未示),第三活性物质层132和第四活性物质层分别设置于第二极片13的两个相对的表面,或者,第二极片13包括第二集流体131和第三活性物质层132,或者,第二极片13包括第二集流体131。第一极片11的结构和第二极片13的结构可组成任意的组合,例如,第一极片11包括第一集流体111、第一活性物质层112和第二活性物质层115,第二极片13包括第二集流体131和第三活性物质层132。例如,第一极片11包括第一集流体111和第一活性物 质层112,第二极片13包括第二集流体131和第三活性物质层132。对于第二极片13的结构和功能可参考第一极片11,此处不再赘述。
对于上述第一极片11和第二极片13,第二极片13和第一极片11可具有相同的结构和功能,但第二极片13与第一极片11的极性相反,第二极片13和第一极片11的材质不同。在一些实施例中,第一极片11的第一集流体111包括铜箔,第一极片11的第一活性物质层112和第二活性物质层115包括石墨。在一些实施例中,第二极片13的第二集流体131包括铝箔,第二极片13的第三活性物质层132和第四活性物质层包括钴酸锂。
在一些实施例中,请参阅图17,图17是本申请实施例提供的沿图1中A-A线的再二种剖视图。电极组件1还包括沿第二方向L2依次叠置的第二隔膜14、第三极片15、第三隔膜16和第四极片17,第二隔膜14叠置于第一极片11,第二隔膜14间隔于第一极片11和第三极片15。其中,第三极片15与第二极片13的极性相同,第四极片17与第一极片11的极性相同。其中,第三极片15可与第二极片13具有相同的结构,第三极片15的材质也可与第二极片13相同。其中,第四极片17可与第一极片11具有相同的结构,第四极片17的材质可与第一极片11相同。
当在第一极片11的第一端部111s设置第三绝缘层116,第二端部112s设置第四绝缘层117,则第二隔膜14收缩时,第三绝缘层116和第四绝缘层117间隔于第一极片11和第三极片15之间,降低第一极片11和第三极片15接触短路的风险,降低电极组件1内部短路的风险。
值得说明的是,电极组件1还包括第二隔膜14、第三极片15、第三隔膜16和第四极片17时,在一些实施例中,在第一方向L1上,第二极片13相较于第一极片11,更靠近收容电化学装置111的封装壳2设置。在电化学装置100因跌落等原因受损时,第一隔膜12在第一端部111s或者第二端部112s处收缩严重,第一绝缘层1位于第一端部111s,第一绝缘层1对第一极片11和第二极片13起间隔作用,减少第一极片11和第二极片13因第一隔膜12收缩而引起短路。
值得说明的是,电极组件1还包括第二隔膜14、第三极片15、第三隔膜16和第四极片17时,当设置了第三绝缘层116,和/或,第四绝缘层117,且第一极片11背向第一隔膜12的界面平整,则有利于第一极片11和第三极片15之间锂离子的迁移。
值得说明的是,请参阅图2,当第二极片13靠近封装壳2设置时,第二极片13包括第二集流体131和第三活性物质层132,第三活性物质 层132叠置于第二集流体131面向第一隔膜12的一表面,第二记录提131面向封装壳2的一表面不需要设置第四活性物质层。请参阅图17,当第四极片17挨着封装壳2设置时,第四极片17背向第三隔膜16的一面不需要设置活性物质层。
可以理解的是,第二隔膜14用于间隔第一极片11和第三极片15,第一隔膜12用于间隔第一极片11和第二极片13,则第一极片11包括上述第一集流体111、第一活性物质层112和第二活性物质层115,第二极片13包括上述第二集流体131和第三活性物质层132,其中,第三活性物质层132叠置于第二集流体131面向第一隔膜12的一表面。
值得说明的是,在一些实施例中,第二隔膜14、第三极片15、第三隔膜16和第四极片17的数量为多组,多组第二隔膜14、第三极片15、第三隔膜16和第四极片17沿与第二方向L2相反的方向叠置,从而增加电化学装置100对外充放电的能力。
值得说明的是,第二隔膜14、第三隔膜16可以和第一隔膜12具有相同的材质和结构。
为了方便读者理解本申请的发明构思,以下列举出8个本申请提供的具体的电化学装置作为实施例,实施例1、实施例2、实施例3、实施例4、实施例5、实施例6、实施例7和实施例8以供参考,以下列举出2个现有技术中的电化学装置作为对比例1和对比例2,对实施例和对比例进行性能测试,实施例和对比例的相关参数以及性能测试的结果显示在下表1中。
其中,实施例1-8、对比例1和对比例2具有的相同的结构为电化学装置包括电极组件,电极组件为卷绕结构。电化学装置沿第一方向、第二方向和第三方向的尺寸分别为90mm、4.8mm和66mm。
其中,实施例1-8、对比例1和对比例2具有的不相同的结构为实施例1-8和对比例2中的电极组件的第一极片还包括第一绝缘层和第二绝缘层。沿第一方向,即沿电化学装置的长度方向,第一绝缘层的宽度w1和第二绝缘层的宽度w2相等。沿与卷绕方向相反的方向,第一绝缘层自第一极片的卷绕收尾端朝向第一极片的卷绕起始端延伸,第一绝缘层环绕第一极片的最外圈背离卷绕中心轴的一面设置,第二绝缘层自第一极片的卷绕收尾端朝向第一极片的卷绕起始端延伸,第二绝缘层环绕第一极片的最外圈背离卷绕中心轴的一面设置。
实施例1-8和对比例2具有的不相同的结构为,实施例1-8中,沿第一方向,即沿电化学装置的长度方向,第一绝缘层的宽度w1的取值 为:2mm≤w1≤10mm,第二绝缘层的宽度w2的取值为:2mm≤w2≤10mm。对比例2中,沿第一方向,即沿电化学装置的长度方向,第一绝缘层的宽度w1的取值为12mm,第二绝缘层的宽度w2的取值为12mm。
对实施例1-8、对比例1和对比例2均进行跌落实验,跌落实验为将电化学装置从高度为1.8米的位置自由跌落到钢板表面,跌落3轮,每1轮跌6次,包括沿电化学装置的厚度方向,电化学装置的两个面分别朝向钢板跌落以及电化学装置的4个角位分别朝向钢板跌落。其中,对每一实施例或对比例1或对比例2的10个电化学装置分别进行跌落实验。在跌落实验结束后,测试实施例1-8或对比例1或对比例2的电化学装置的电压降失效比例。在跌落实验结束后,检测电化学装置中第一极片的界面性能,例如,观察有无紫斑点、析锂等现象,或者,例如统计第一极片的短路点的数量,从而对电化学装置的界面性能进行评估,检测结果记录在表1。
表1
Figure PCTCN2021112819-appb-000001
由表1,沿第一方向,即沿电化学装置的长度方向,第一绝缘层的宽度w1的取值为:2mm≤w1≤10mm,沿第一方向,第二绝缘层的宽度w2的取值为:2mm≤w2≤10mm时,本申请实施例提供的电化学装置的电压降失效比例均低于不设置第一绝缘层或第二绝缘层的对比例1中的电化学装置,说明通过设置第一绝缘层和第二绝缘层可有效减低电化学装置的电压降失效比例,即降低电极组件内部短路风险。当沿第一方向,第一绝缘层的宽度w1的取值为:3mm≤w1≤10mm。沿第一方向,第二绝缘层的宽度w2的取值为:3mm≤w2≤10mm时,本申请实施例提供的电化学 装置的电压降失效比例为零。
由表1,沿第一方向,即沿电化学装置的长度方向,第一绝缘层的宽度w1的取值为:2mm≤w1≤10mm,沿第一方向,第二绝缘层的宽度w2的取值为:2mm≤w2≤10mm时,与不设置第一绝缘层或者第二绝缘层的对比例1相比,本申请实施例提供的电化学装置的界面性能基本不受第一绝缘层和第二绝缘层的设置的影响。沿第一方向,第一绝缘层的宽度w1的取值为12mm,第二绝缘层的宽度w2的取值为12mm时,电化学装置的界面性能为严重恶化,说明第一绝缘层的宽度w1的取值为12mm,第二绝缘层的宽度w2的取值为12mm时,可能影响第一极片与第一隔膜之间的粘结性,进而影响电化学装置的电学性能。
综上,沿第一方向,第一绝缘层的宽度w1的取值为:2mm≤w1≤10mm,沿第一方向,第二绝缘层的宽度w2的取值为:2mm≤w2≤10mm时,本申请实施例提供的电化学装置的整体性能优良。当设置3mm≤w1≤5mm时,电化学装置具有良好的安全性能、电化学性能和能量密度。
在本申请实施例中,电化学装置100包括电极组件1,电极组件1包括依次叠置的第一极片11、第一隔膜12和第二极片13。第一极片11包括第一集流体111、和第一活性物质层112和第一绝缘层113,第一活性物质层112叠置于第一集流体111面向第一隔膜12的一表面,第一绝缘层113叠置于第一活性物质层112面向第一隔膜12的第一表面1121。沿第一方向L1,第一极片11具有第一端部111s和第二端部112s,第一端部111s或者第二端部112s与第一极耳3连接,第一绝缘层113位于第一端部111s;沿第一方向L1,第一绝缘层113的宽度w1满足:2mm≤w1≤10mm。通过在第一极片11的第一端部111s设置第一绝缘层113,且限定第一绝缘层113的宽度不小于2mm,则第一隔膜12收缩时,第一绝缘层113间隔于第一极片11和第二极片13之间,降低第一极片11和第二极片13接触短路的风险。另外,通过限定第一绝缘层113的宽度不大于10mm,则降低因为第一绝缘层113的设置而对第一极片11的界面性能的影响,进而降低因为第一绝缘层113的设置而对第一极片11和第二极片13之间的锂离子迁移的影响,电化学装置100整体的性能优良。
本申请实施例还提供了一种电子装置,电子装置包括负载和上述电化学装置100。电化学装置100和负载连接,电化学装置100用于对负载供电。
电子装置可以是储能产品、手机、平板、无人机、独轮或两轮以上的电动车辆,或电动清洁工具等。
例如,对于上述无人机,电化学装置100搭载在无人机上,电化学装置100用于对无人机上包括飞行系统、控制系统和摄像系统等在内的负载进行供电。
需要说明的是,本申请的说明书及其附图中给出了本申请的较佳的实施例,但是,本申请可以通过许多不同的形式来实现,并不限于本说明书所描述的实施例,这些实施例不作为对本申请内容的额外限制,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。并且,上述各技术特征继续相互组合,形成未在上面列举的各种实施例,均视为本申请说明书记载的范围;进一步地,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,而所有这些改进和变换都应属于本申请所附权利要求的保护范围。

Claims (13)

  1. 一种电化学装置,包括电极组件,所述电极组件包括依次叠置的第一极片、第一隔膜和第二极片;所述第一极片包括第一集流体和第一活性物质层,所述第一活性物质层叠置于所述第一集流体的一表面,其特征在于,
    所述第一极片还包括第一绝缘层,所述第一绝缘层叠置于所述第一活性物质层背向所述第一集流体的第一表面;
    沿第一方向,所述第一极片具有第一端部和第二端部,所述第一端部或所述第二端部中的至少一者与所述第一极耳连接,所述第一绝缘层位于所述第一端部;
    沿所述第一方向,所述第一绝缘层的宽度w1满足:2mm≤w1≤10mm。
  2. 根据权利要求1所述的电化学装置,其特征在于,所述第一绝缘层的宽度w1满足:3mm≤w1≤5mm。
  3. 根据权利要求1所述的电化学装置,其特征在于,所述第一表面包括第一区域和第二区域,所述第一区域位于所述第一端部,所述第一绝缘层叠置于所述第一区域,所述第一绝缘层背向所述第一区域的表面与所述第二区域平齐。
  4. 根据权利要求3所述的电化学装置,其特征在于,
    所述第一极片还包括第二绝缘层,所述第二绝缘层叠置于所述第一表面,所述第二绝缘层位于所述第二端部。
  5. 根据权利要求4所述的电化学装置,其特征在于,所述第一表面还包括第三区域,所述第三区域位于所述第二端部,所述第二绝缘层背向所述第三区域的表面与所述第二区域平齐。
  6. 根据权利要求1-5任意一项所述的电化学装置,其特征在于,
    所述第一极片还包括第二活性物质层,所述第二活性物质层叠置于所述第一集流体的另一表面;
    所述第一极片还包括第三绝缘层,所述第三绝缘层叠置于所述第二活性物质层背向所述第一集流体的第二表面,所述第三绝缘层位于所述 第一端部。
  7. 根据权利要求6所述的电化学装置,其特征在于,
    所述第一极片还包括第四绝缘层,所述第四绝缘层叠置于所述第二表面,所述第四绝缘层位于所述第二端部。
  8. 根据权利要求1-5任意一项所述的电化学装置,其特征在于,所述第一极片还包括第一层,所述第一层叠置于所述第一集流体和第一活性物质层之间。
  9. 根据权利要求8所述的电化学装置,其特征在于,所述第一层包括粘结剂和导电剂。
  10. 根据权利要求1-5任意一项所述的电化学装置,其特征在于,
    所述第一极片、第一隔膜和第二极片共同卷绕成卷绕结构,所述卷绕结构的卷绕中心轴沿所述第一方向设置;
    所述第一极片的最外圈相较于所述第二极片的最外圈靠近所述卷绕中心轴;
    所述第一绝缘层自所述第一极片的卷绕收尾端朝向所述第一极片的卷绕起始端延伸,所述第一绝缘层环绕所述第一极片的最外圈背离所述卷绕中心轴的面设置。
  11. 根据权利要求10所述的电化学装置,其特征在于,所述第一绝缘层自所述第一极片的卷绕收尾端延伸至所述第一极片的卷绕起始端。
  12. 根据权利要求1-5任意一项所述的电化学装置,其特征在于,
    所述电极组件还包括依次叠置的第二隔膜、第三极片、第三隔膜和第四极片,所述第二隔膜叠置于所述第一极片,所述第二隔膜间隔于所述第一极片和第三极片之间。
  13. 一种电子装置,其特征在于,包括负载和如权利要求1-12任意一项所述的电化学装置,所述电化学装置用于向所述负载供电。
PCT/CN2021/112819 2021-08-16 2021-08-16 电化学装置以及电子装置 WO2023019401A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/112819 WO2023019401A1 (zh) 2021-08-16 2021-08-16 电化学装置以及电子装置
CN202180014803.0A CN115152088A (zh) 2021-08-16 2021-08-16 电化学装置以及电子装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/112819 WO2023019401A1 (zh) 2021-08-16 2021-08-16 电化学装置以及电子装置

Publications (1)

Publication Number Publication Date
WO2023019401A1 true WO2023019401A1 (zh) 2023-02-23

Family

ID=83405374

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/112819 WO2023019401A1 (zh) 2021-08-16 2021-08-16 电化学装置以及电子装置

Country Status (2)

Country Link
CN (1) CN115152088A (zh)
WO (1) WO2023019401A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359729A (zh) * 2007-07-31 2009-02-04 比亚迪股份有限公司 一种锂离子二次电池隔膜及其制备方法及锂离子电池
CN105244456A (zh) * 2015-09-10 2016-01-13 中航锂电(洛阳)有限公司 一种含有氟化钙的绝缘涂料及其制备方法,绝缘涂层,电池极片和锂离子电池
CN205723770U (zh) * 2016-06-30 2016-11-23 横店集团东磁股份有限公司 一种电池的电极及锂离子电池
CN112186195A (zh) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 一种正极极片和电化学装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101519074B1 (ko) * 2011-01-05 2015-05-11 주식회사 엘지화학 전극조립체의 제조방법
CN206250284U (zh) * 2016-12-02 2017-06-13 东莞新能源科技有限公司 一种阳极极片及其电芯
WO2020162598A1 (ja) * 2019-02-07 2020-08-13 積水化学工業株式会社 リチウムイオン二次電池用電極、及びリチウムイオン二次電池
CN213782213U (zh) * 2020-12-02 2021-07-23 北京小米移动软件有限公司 电芯结构及电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101359729A (zh) * 2007-07-31 2009-02-04 比亚迪股份有限公司 一种锂离子二次电池隔膜及其制备方法及锂离子电池
CN105244456A (zh) * 2015-09-10 2016-01-13 中航锂电(洛阳)有限公司 一种含有氟化钙的绝缘涂料及其制备方法,绝缘涂层,电池极片和锂离子电池
CN205723770U (zh) * 2016-06-30 2016-11-23 横店集团东磁股份有限公司 一种电池的电极及锂离子电池
CN112186195A (zh) * 2019-07-01 2021-01-05 宁德时代新能源科技股份有限公司 一种正极极片和电化学装置

Also Published As

Publication number Publication date
CN115152088A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP7213567B2 (ja) ナノ多孔性セパレータ層を利用するリチウム電池
US11038226B2 (en) Secondary battery module
JP5956583B2 (ja) 新規な構造の電池セル
KR101407772B1 (ko) 전극조립체 및 그를 이용한 이차전지
KR20130118716A (ko) 전극 조립체, 이를 포함하는 전지셀 및 디바이스
US9692027B2 (en) Electrode assembly and lithium secondary battery including the same
KR101799570B1 (ko) 양 방향으로 권취되어 있는 전극조립체 및 이를 포함하는 리튬 이차전지
KR101332282B1 (ko) 신규한 구조의 전극조립체 및 이를 포함하는 전지셀
JPH07122252A (ja) 組電池
KR101750239B1 (ko) Srs 분리막을 포함하는 전극조립체
WO2023019401A1 (zh) 电化学装置以及电子装置
KR20130131843A (ko) 신규한 이차전지용 전극 분리막 조립체 및 이의 제조방법
KR102256438B1 (ko) 2종의 분리막을 포함하는 스택-폴딩형 전극조립체
US9437898B2 (en) Secondary battery including plurality of electrode assemblies
WO2020111595A1 (ko) 압전 소자 및 열전 소자를 포함하는 원통형 이차 전지
KR101709527B1 (ko) 안전성이 향상된 전지셀
US20230155219A1 (en) Secondary Battery with Anti-Corrosion Layer on Inner Surface of Battery Case
KR20180080495A (ko) 향상된 기계적 강도의 단면 전극을 포함하고 있는 전극조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953655

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021953655

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021953655

Country of ref document: EP

Effective date: 20240318