WO2023018350A1 - Réacteur nucléaire avec caloporteur à base de métal liquide lourd - Google Patents
Réacteur nucléaire avec caloporteur à base de métal liquide lourd Download PDFInfo
- Publication number
- WO2023018350A1 WO2023018350A1 PCT/RU2021/000420 RU2021000420W WO2023018350A1 WO 2023018350 A1 WO2023018350 A1 WO 2023018350A1 RU 2021000420 W RU2021000420 W RU 2021000420W WO 2023018350 A1 WO2023018350 A1 WO 2023018350A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- holes
- filter
- coolant
- plate
- nuclear reactor
- Prior art date
Links
- 239000002826 coolant Substances 0.000 title claims abstract description 63
- 229910001338 liquidmetal Inorganic materials 0.000 title claims abstract description 11
- 239000012535 impurity Substances 0.000 claims abstract description 15
- 239000002245 particle Substances 0.000 claims description 35
- 239000011521 glass Substances 0.000 claims description 14
- 229910045601 alloy Inorganic materials 0.000 abstract description 2
- 239000000956 alloy Substances 0.000 abstract description 2
- 229910052797 bismuth Inorganic materials 0.000 abstract description 2
- JCXGWMGPZLAOME-UHFFFAOYSA-N bismuth atom Chemical compound [Bi] JCXGWMGPZLAOME-UHFFFAOYSA-N 0.000 abstract description 2
- 239000000446 fuel Substances 0.000 description 14
- 238000013461 design Methods 0.000 description 8
- 238000001816 cooling Methods 0.000 description 6
- 230000015572 biosynthetic process Effects 0.000 description 4
- 230000000903 blocking effect Effects 0.000 description 4
- 238000004140 cleaning Methods 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 239000000356 contaminant Substances 0.000 description 3
- 238000000746 purification Methods 0.000 description 3
- 239000007787 solid Substances 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910052708 sodium Inorganic materials 0.000 description 2
- 239000011734 sodium Substances 0.000 description 2
- 238000011144 upstream manufacturing Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 238000009825 accumulation Methods 0.000 description 1
- 229910052783 alkali metal Inorganic materials 0.000 description 1
- 150000001340 alkali metals Chemical class 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- 230000000712 assembly Effects 0.000 description 1
- 238000000429 assembly Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 239000003153 chemical reaction reagent Substances 0.000 description 1
- 238000005336 cracking Methods 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 125000004435 hydrogen atom Chemical class [H]* 0.000 description 1
- 229910000464 lead oxide Inorganic materials 0.000 description 1
- 239000006148 magnetic separator Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 230000007257 malfunction Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 230000035699 permeability Effects 0.000 description 1
- 230000002265 prevention Effects 0.000 description 1
- 238000005086 pumping Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 239000013049 sediment Substances 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G21—NUCLEAR PHYSICS; NUCLEAR ENGINEERING
- G21C—NUCLEAR REACTORS
- G21C19/00—Arrangements for treating, for handling, or for facilitating the handling of, fuel or other materials which are used within the reactor, e.g. within its pressure vessel
- G21C19/28—Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core
- G21C19/30—Arrangements for introducing fluent material into the reactor core; Arrangements for removing fluent material from the reactor core with continuous purification of circulating fluent material, e.g. by extraction of fission products deterioration or corrosion products, impurities, e.g. by cold traps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E30/00—Energy generation of nuclear origin
- Y02E30/30—Nuclear fission reactors
Definitions
- the invention relates to nuclear power, in particular, to ensuring the safety of nuclear reactors (NR), primarily with a heavy liquid metal coolant (HLMC) based on lead or alloys based on lead and bismuth.
- NR nuclear reactors
- HLMC heavy liquid metal coolant
- a feature of all liquid-metal coolants used in reactor plants is the potential for the formation of insoluble impurities as a result of malfunctions in the operation of systems that maintain the required quality of the coolant, or the ingress of other working media into the coolant.
- the ingress of oil from the bearings of circulation pumps leads to its cracking and the formation of solid particles that are insoluble both in HLMC and in alkali metals.
- the ingress of air into the gas system of HLMC circuits leads to the formation of an excess amount of lead oxides, which can either be deposited on surfaces or be present in the coolant in the form of solid particles.
- a possible solution to the problem described above is to install a full-flow filter at the core inlet, which cleans the entire coolant flow going to cool the core from insoluble impurities.
- the problem does not have a simple solution, since clogging of the filter can also cause an accident with loss of core cooling.
- traditional filter designs as a rule, have a sufficiently large hydraulic resistance, which leads to an increase in the cost of pumping the coolant and can significantly reduce the level of natural circulation, worsening safety characteristics.
- a cold trap is used to clean a liquid metal coolant from oxygen and hydrogen dissolved in it, which can lead to the formation of particles.
- the German patent DE1813822 discloses the purification of a heat transfer medium, including one containing lead, by heating it slightly above the saturation point in a recuperative heat exchanger. Next, the coolant enters the cooler, in which, in addition (in addition to the deposition of impurities on the walls), a cyclone separator is installed.
- RF patent RU2632814 mentions the possibility of using mechanical filters for the coolant.
- the use of porous membranes for mechanical cleaning of the coolant is proposed in German patents DE1583891 and DE1758953.
- CN111739671 it is proposed to use a magnetic separator to clean lead-based coolant from impurities.
- a fast neutron nuclear reactor with a liquid metal coolant can be selected according to RF patent RU2608596.
- Hot traps are placed in the core of a nuclear reactor formed by fuel assemblies (FA).
- the body of the hot trap is made identical to the body of the fuel assembly, and inside the body there is a cartridge with a material (getter) designed to absorb impurities in the sodium liquid metal coolant.
- This well-known technical solution makes it possible to simplify the design of the reactor and its operation, improve the reliability of the reactor pressure vessel, and eliminate the need for additional process equipment.
- the objective of the invention is to eliminate the noted disadvantages of analogues and improve the safety of the nuclear reactor.
- the technical result of the invention is to increase the degree of purification of the coolant from particles with a slight decrease in the level of natural circulation of the coolant.
- a filter with holes located at different heights of the filter in a nuclear reactor at the entrance to the core to allow the coolant to pass through them and trap impurity particles.
- the size of the holes does not exceed the characteristic size of the minimum flow area in the core.
- the holes are spaced along the height of the filter in such a way that none of the impurity particles can simultaneously cover the holes located at different heights.
- the size of the particles trapped by the filter must be greater than the minimum size of the flow area between the fuel rods and must be a structure with holes of the above characteristic sizes. Then the particles that can potentially block the flow area through the coolant between the fuel rods will be trapped, and the particles that do not pose a threat of blocking the flow area in the core will be passed through the filter. In other words, the filter only traps those particles that pose an immediate threat to core cooling.
- the filter can be made in the form of a first plate with holes and contain a plurality of cups with bottoms placed essentially perpendicular to the first plate and protruding from the first plate with their bottoms downstream of the coolant flow. At the same time, holes are made in the bottoms.
- the coolant flow is divided into two: one part passes through the holes downstream through the glasses with bottoms, in which there are holes; the second part of the flow passes through the holes in the upstream first plate, and the holes in the first plate preferably have a larger diameter than the holes in the bottoms.
- the filter contains a second plate located on the side of the first plate opposite to the location of the bottoms.
- the coolant flow with larger particles, passing through the first plate enters the chamber formed between the first plate and the second plate and the glasses passing through them.
- the glasses can be provided with holes in the area between the first plate and the second plate, located mainly in the lower part of the glasses, closer to the first plate. The size of these holes, as well as the size of the holes in the bottoms of the cups, preferably not more than the minimum flow area in the core. Then the larger particles that have fallen into the cavity of the specified chamber between the first and second plates and glasses, either crushed as a result of collisions with structural elements, or get stuck in this chamber.
- the holes for the outlet of the coolant are located in the lower part of the chamber, the accumulation of particles in the upper part of the chamber does not create obstacles for the flow of the coolant until these holes are blocked.
- the shape of the holes in the first plate and the glasses may be round.
- all or part of the holes of the minimum characteristic size can be made in the form of longitudinal slots, in which the characteristic minimum dimension is the width of the slit. In this case, the slotted holes, obviously, provide the achievement of the above technical results, but due to the increase in flow sections, they further reduce the hydraulic resistance of the filter.
- the filter of which contains a second plate air vents can be placed in the second plate to remove gas when a removable block is installed in a nuclear reactor.
- the nuclear reactor may contain a means for mixing the coolant placed before the filter downstream of the coolant.
- FIG. 1 schematically shows a block of a removable nuclear reactor with a filter.
- FIG. 2 shows an embodiment of the filter with a first plate and a second plate.
- FIG. 3 is an enlarged view of area A of the filter embodiment of FIG. 2.
- FIG. 4a shows a cross section of 1-1 cups from FIG. 3.
- FIG. 4b shows a cross section of 2-2 cups from FIG. 3.
- the arrows conditionally show the movement of the coolant.
- a nuclear reactor contains a reactor vessel, a core, a control and protection system, at least one circulation pump, at least one heat exchanger, and other components well known to a person skilled in the art. Since these components are not the subject of the protection of the present invention, they are not explained in detail.
- the active zone of the NR is determined by a removable block, which is also a well-known component of the NR and is schematically shown in Fig. 1.
- the removable block contains a support grid 1, TVS 2, covers 3 of the control and protection system (CPS), elements 4 of the side reflector and other components.
- CPS control and protection system
- a design feature of a nuclear reactor according to the invention is the placement under the active zone, in particular, under the support grid 1, of a filter 5 designed to filter particles in the liquid metal coolant flow.
- Filter 5 is a mechanical filter in which particles are filtered through holes made in filter 5 design elements: when the coolant passes through the holes, particles whose characteristic size exceeds the characteristic size of the holes are retained in filter 5 and do not enter the nuclear reactor core.
- the filter 5 Since the filter 5, on the one hand, must provide effective filtration of particles, and on the other hand, provide low resistance to the flow of the coolant, in the present invention it is proposed to make the filter 5 in such a way that the holes are located at different heights, at least at two different heights.
- the holes are spaced along the height of the filter in such a way that none of the impurity particles can simultaneously cover the holes located at different heights.
- the size of the holes (or the characteristic size of the holes, if they are made of a complex shape, for example, elongated) should not exceed the characteristic size of the minimum flow area in the core, for example, the distance between adjacent fuel elements in the fuel assembly 2.
- the filter 5 is designed to protect the core from mechanical particles larger than 2.5 mm, which is smaller than the size of the inter-fuel cell, as well as to equalize the coolant flow at the core inlet.
- the filter 5 is an assembly unit consisting of a cylindrical filter housing 6, inside of which the first plate 7.1 is fixed by welding. Additionally, but not necessarily, a second plate 7.2 can also be fixed inside the body 6, spaced from the first plate 7.1.
- Filter cups 8 are fixed (for example, by welding) on the first plate 7.1.
- the filter 5 also contains a second plate 7.2
- part of the cups 8 is welded to only one of these plates, for example, to the second plate 7.2, and the other part of the cups 8 is welded to both the first plate 7.1 and the second plate 7.2 for ensuring sufficient rigidity of the filter design 5.
- air vents 9 can be installed to remove gas when installing the removable block in the NR.
- Cups 8 have cup bottoms 10 with bottom holes 11 made in them (FIGS. 3, 4a).
- the coolant flow towards the active zone is filtered, passing through these holes 11, as well as holes 12 made in the first plate 7.1 (Fig. 3).
- holes 11 and holes 12 are located at different heights of the filter 5, as shown in FIG. 3.
- the coolant flow is divided into two parts: one part of the coolant flow passes through the holes 11 downstream through the cups 8 with bottoms 10. The second part of the coolant flow passes through the holes 12 in the upstream first plate 7.1.
- the size of the holes 11 should not exceed the characteristic size of the minimum flow area in the core, for example, the distance between adjacent fuel elements in the fuel assembly 2. In this case, it is preferable if the diameter the holes 12 in the first plate 7.1 are larger than the diameter of the holes 11 in the bottoms 10.
- the filter 5 also includes the second plate 7.2, in the middle part of the cup 8, holes 13 of the cup (see Fig. 3, 4b) are preferably made for the passage of the coolant through the filter 5 in case of blocking the passage section in the lower part of the cups 8. The filtered particles can linger between the first plate 7.1 and the second plate 7.2.
- the size of the holes 13, as well as the size of the holes 11 in the bottoms of the cups 8, preferably not more than the minimum flow area in the core. Then larger particles that have fallen into the cavity between the first plate 7.1 and the second plate 7.2 and cups 8 are either crushed as a result of collisions with structural elements or get stuck in this cavity.
- the shape of the holes 11, 12, 13 in the first plate 7.1 and/or cups 8 may be round. Alternatively, all or part of these holes can be made in the form of longitudinal slots, in which the characteristic (minimum) size is the width of the slot. At the same time, the slotted holes reduce the hydraulic resistance of the filter 5 due to the increase in flow sections.
- the claimed invention provides an increase in the safety of the operation of a nuclear reactor, as well as an increase in the degree of purification of the coolant from particles with an insignificant decrease in the level of natural circulation of the coolant.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- General Engineering & Computer Science (AREA)
- High Energy & Nuclear Physics (AREA)
- Filtering Materials (AREA)
- Structure Of Emergency Protection For Nuclear Reactors (AREA)
Abstract
L'invention se rapporte au génie nucléaire et concerne notamment la sécurité de réacteurs nucléaires, notamment ceux avec un caloporteur en métal liquide lourd à base de plomb ou d'alliages à base de plomb et de bismuth.
Le réacteur comprend, à l'entrée de la zone active, un filtre (5) avec des ouvertures (11, 12) disposées à différentes hauteurs du filtre (5) pour le passage du caloporteur dans celles-ci et piéger les particules d'impuretés. La taille des ouvertures (11) ne dépasse pas la taille caractéristique de la section de passage minimale dans la zone active, et les ouvertures (11, 12) sont décalées sur la hauteur du filtre (5) de sorte qu'aucune des particules d'impureté puissent obstruer les ouvertures situées à des hauteurs différentes. Le résultat technique consiste en une augmentation du taux de purification du caloporteur en ce qui concerne les particules tout en réduisant de façon insignifiante le taux de circulation naturelle du caloporteur.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202180101003.2A CN117716446A (zh) | 2021-08-11 | 2021-10-04 | 使用重液态金属冷却剂的核反应堆 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
RU2021123913 | 2021-08-11 | ||
RU2021123913A RU2775269C1 (ru) | 2021-08-11 | Ядерный реактор с тяжелым жидкометаллическим теплоносителем |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023018350A1 true WO2023018350A1 (fr) | 2023-02-16 |
Family
ID=85200887
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/RU2021/000420 WO2023018350A1 (fr) | 2021-08-11 | 2021-10-04 | Réacteur nucléaire avec caloporteur à base de métal liquide lourd |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117716446A (fr) |
WO (1) | WO2023018350A1 (fr) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2521863C1 (ru) * | 2012-11-26 | 2014-07-10 | Открытое Акционерное Общество "Акмэ-Инжиниринг" | Ядерный реактор с жидкометаллическим теплоносителем (варианты) |
RU2595310C2 (ru) * | 2014-12-19 | 2016-08-27 | Открытое Акционерное Общество "Акмэ-Инжиниринг" | Устройство для очистки жидкометаллической среды от взвешенных примесей |
RU2608596C1 (ru) * | 2015-10-06 | 2017-01-23 | Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") | Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем |
RU2680836C1 (ru) * | 2018-04-25 | 2019-02-28 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем |
RU2713222C1 (ru) * | 2019-05-21 | 2020-02-04 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Ядерный реактор на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем |
CN111739671A (zh) * | 2020-05-29 | 2020-10-02 | 中国原子能科学研究院 | 一种铅及铅基合金装置用磁性净化器 |
-
2021
- 2021-10-04 CN CN202180101003.2A patent/CN117716446A/zh active Pending
- 2021-10-04 WO PCT/RU2021/000420 patent/WO2023018350A1/fr active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
RU2521863C1 (ru) * | 2012-11-26 | 2014-07-10 | Открытое Акционерное Общество "Акмэ-Инжиниринг" | Ядерный реактор с жидкометаллическим теплоносителем (варианты) |
RU2595310C2 (ru) * | 2014-12-19 | 2016-08-27 | Открытое Акционерное Общество "Акмэ-Инжиниринг" | Устройство для очистки жидкометаллической среды от взвешенных примесей |
RU2608596C1 (ru) * | 2015-10-06 | 2017-01-23 | Акционерное общество "Опытное Конструкторское Бюро Машиностроения имени И.И. Африкантова" (АО "ОКБМ Африкантов") | Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем |
RU2680836C1 (ru) * | 2018-04-25 | 2019-02-28 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Ядерный реактор на быстрых нейтронах с жидкометаллическим теплоносителем |
RU2713222C1 (ru) * | 2019-05-21 | 2020-02-04 | Российская Федерация, от имени которой выступает Государственная корпорация по атомной энергии "Росатом" | Ядерный реактор на быстрых нейтронах с тяжелым жидкометаллическим теплоносителем |
CN111739671A (zh) * | 2020-05-29 | 2020-10-02 | 中国原子能科学研究院 | 一种铅及铅基合金装置用磁性净化器 |
Also Published As
Publication number | Publication date |
---|---|
CN117716446A (zh) | 2024-03-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1868208B1 (fr) | Ensemble d'entretoisement de barreaux de combustible nucléaire avec guide de débris | |
JP5778883B2 (ja) | 核燃料バンドル中の上部タイプレート用のデブリシールドおよびデブリをフィルタにかける方法 | |
JP6414719B2 (ja) | 対流性乾式格納容器フィルタベント系 | |
KR101025706B1 (ko) | 여과관을 포함하는 스트레이너 여과장치 | |
JP2006071626A (ja) | 原子炉の燃料集合体、及び核燃料集合体用のグリッド | |
JPS6153094B2 (fr) | ||
US9997264B2 (en) | Enhanced nuclear sump strainer system | |
CN103081022A (zh) | 核电站减压方法、核电站减压系统以及相应的核电站 | |
EP2487690B1 (fr) | Dispositif d'exclusion et de rétention de débris pour un assemblage combustible | |
RU2687434C1 (ru) | Активный фильтр бака-приямка атомной электростанции | |
RU2775269C1 (ru) | Ядерный реактор с тяжелым жидкометаллическим теплоносителем | |
WO2023018350A1 (fr) | Réacteur nucléaire avec caloporteur à base de métal liquide lourd | |
EP3336853A1 (fr) | Appareil pour filtrer des matières radioactives | |
EA042344B1 (ru) | Ядерный реактор с тяжелым жидкометаллическим теплоносителем | |
JP2019529892A (ja) | 燃料集合体 | |
JP6777758B2 (ja) | Vver緊急冷却システムの汚水槽保護装置、およびそのフィルターモジュール | |
JP2993744B2 (ja) | 原子炉格納容器減圧装置 | |
CN113304535B (zh) | 用于铅铋冷却反应堆净化装置的过滤组件 | |
EP3501027B1 (fr) | Centrale nucléaire comprenant un système de ventilation de confinement filtré | |
CN113314247A (zh) | 用于铅铋冷却反应堆的净化装置及净化方法 | |
EP2937867A1 (fr) | Système d'évacuation filtrée de confinement utilisé pour une centrale nucléaire | |
CN216418468U (zh) | 一种过滤装置 | |
CN114496323A (zh) | 用于反应堆的净化装置 | |
JPH1039080A (ja) | 原子炉格納容器の冷却設備 | |
JPS6138642Y2 (fr) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21953577 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202180101003.2 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21953577 Country of ref document: EP Kind code of ref document: A1 |