WO2023017818A1 - Measurement system, measurement method, and program - Google Patents

Measurement system, measurement method, and program Download PDF

Info

Publication number
WO2023017818A1
WO2023017818A1 PCT/JP2022/030373 JP2022030373W WO2023017818A1 WO 2023017818 A1 WO2023017818 A1 WO 2023017818A1 JP 2022030373 W JP2022030373 W JP 2022030373W WO 2023017818 A1 WO2023017818 A1 WO 2023017818A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement
sensor
robot
data
drive signal
Prior art date
Application number
PCT/JP2022/030373
Other languages
French (fr)
Japanese (ja)
Inventor
昭英 加藤
ゲオルギー オストロウモフ
Original Assignee
リンクウィズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by リンクウィズ株式会社 filed Critical リンクウィズ株式会社
Publication of WO2023017818A1 publication Critical patent/WO2023017818A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J13/00Controls for manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B21/00Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant

Definitions

  • the present invention relates to measurement systems, measurement methods, and programs.
  • Measurement work using such robots can be used for various measurement purposes by changing the combination of sensors and robots.
  • it is required to synchronize the measurement operation of the sensor and the operation of the robot.
  • a combination of sensors and robots was selected arbitrarily, it was not easy to construct a measurement system capable of acquiring accurate measurement data by synchronizing the motions of the sensors and robots.
  • Patent Document 1 discloses incorporating a synchronization signal into the motor drive signal output to the motor of the robot, there was a problem that it was necessary to change the program on the robot side that generates the motor drive signal.
  • the present invention was made in view of this background, and aims to more easily realize the construction of a measurement system that acquires more accurate measurement data by considering the operation timing of the sensor and robot.
  • the main invention of the present invention for solving the above problems is a measurement system that performs measurement processing based on measurement data obtained by a sensor mounted on a robot, wherein position information of the sensor mounted on the robot is obtained.
  • a robot operation receiving unit for receiving robot operation data indicating a robot operation data
  • a sensor information receiving unit for receiving the measurement data obtained by the sensor
  • a measurement result generation unit that identifies the robot motion data at a time that matches or is substantially the same as the time when the measurement data was obtained, and generates a measurement result using position information indicated by the specified robot motion data as a measurement start position; measurement system.
  • the present invention it is possible to easily construct a measurement system that acquires more accurate measurement data by considering the operation timing of the sensor and the robot.
  • 5 is a graph showing measurement data and sensor position information on the XY plane when a measurement object having a round hole is measured by the method shown in FIG. 4 in this embodiment. It is a figure which shows an example of the measurement data acquired with the measurement system of this embodiment. It is a figure which shows an example of the motion data acquired with the measuring system of this embodiment.
  • the present invention has, for example, the following configuration.
  • a measurement system that performs measurement processing based on measurement data obtained by a sensor mounted on a robot, a robot motion receiving unit that receives robot motion data indicating position information of the sensor mounted on the robot; a sensor information receiving unit that receives the measurement data obtained by the sensor; Based on the time information included in the robot motion data and the measurement data, the robot motion data matching or substantially the same time as the time when the first measurement data was obtained is specified, and the specified robot motion data is determined. and a measurement result generator that generates a measurement result using the indicated position information as a measurement start position.
  • the measurement system according to item 1 The sensor is a distance sensor that measures the distance from the sensor to the surface of the measurement object, The measurement system in which the measurement result generation unit generates the three-dimensional coordinates of the surface of the object to be measured as a measurement result based on the measurement data from the distance sensor and a preset measurement position interval from the distance sensor.
  • the measurement system according to item 1 or 2 A measurement system in which the sensor starts measurement based on a measurement start command generated by a robot control unit when the position of the sensor mounted on the robot reaches a preset measurement start position.
  • the measurement system obtaining the robot drive signal transmitted to the robot from a robot control unit that controls the robot, and starting the measurement operation of the sensor when the robot drive signal includes a measurement start command for causing the sensor to start measurement.
  • a measurement system comprising a sensor drive signal generator that generates a sensor drive signal that serves as a trigger for [Item 5]
  • the measurement method according to item 5 The sensor is a distance sensor that measures the distance from the sensor to the surface of the measurement object,
  • the measurement result generating step is a step of generating the three-dimensional coordinates of the surface of the object to be measured as a measurement result based on the measurement data from the distance sensor and a preset measurement position interval from the distance sensor.
  • the measurement method according to item 5 or 6 The measurement method further comprising the step of starting measurement based on a measurement start command generated by a robot controller when the position of the sensor mounted on the robot reaches a preset measurement start position.
  • a program for causing a computer to execute a measurement method for performing measurement processing based on measurement data obtained by a sensor mounted on a robot The program, as the measurement method, a robot motion receiving step of receiving robot motion data indicating position information of the sensor mounted on the robot; a sensor information receiving step of receiving the measurement data obtained by the sensor; a step of identifying the robot motion data that matches or is substantially the same as the time when the first measurement data is obtained, based on the time information included in the robot motion data and the measurement data, respectively; a measurement result generating step of generating a measurement result using position information indicated by the specified robot motion data as a measurement start position; A program that makes a computer run
  • FIG. 1 is a diagram showing an example of a measurement system 100 according to this embodiment.
  • the measurement system 100 of this embodiment includes terminals 1 and 10, a robot control unit 102, a sensor control unit 103, a measurement processing unit 104, and a robot 2.
  • the robot 2 is composed of, for example, an articulated robot arm in which a plurality of links are formed by a plurality of motors, and the arm 21 is provided with a sensor 23 . Any measuring device can be applied as the sensor 23, but in this embodiment, as an example, an example using a distance measuring sensor for measuring the distance to an object will be described.
  • the terminal 1 and the robot control unit 102 are connected by wire or wirelessly so that they can communicate with each other.
  • the terminal 10 and the measurement processing unit 104 are communicably connected to each other by wire or wirelessly.
  • measurement result information generated by the measurement processing unit 104 is transmitted to the terminal 10 and displayed on the display unit of the terminal. be.
  • the terminal 1 and the terminal 10 are shown separately in FIG. 1, they can be mounted on the same device.
  • the measurement processing unit 104 is further communicably connected to the robot control unit 102 and the sensor control unit 103 . Information about the robot's performance is transmitted from the robot control unit 102 to the measurement processing unit 104 .
  • the robot control unit 102 is further communicably connected to the robot 2 and the sensor control unit 103 , and a robot driving signal for driving the robot is transmitted from the robot control unit 102 to the robot 2 and the sensor control unit 103 .
  • the robot control unit sends the robot driving signal together with information about the operation command of the sensor, thereby causing the sensor to start measuring operation via the sensor control unit 103 .
  • the sensor control unit 103 transmits the motion command received from the robot control unit 102 to the sensor 23 .
  • FIG. 1 is merely an example, and is not limited to the illustrated configuration.
  • FIG. 2 is a diagram showing the function of each component of the measurement system 100 of this embodiment.
  • the robot control unit 102 includes a drive signal generation unit 1021 and a signal output unit 1022.
  • the robot drive signal generation unit 1021 transmits a robot drive signal to the robot 2 and the sensor control unit 103 upon receiving an operation start command from the terminal.
  • the robot drive signal may be a pulse signal that becomes a High signal when the motor on which the robot 2 is mounted starts to operate, or a periodic pulse signal that repeats High and Low during the motor drive period. can be
  • the robot 2 operates the arm 21 on which the sensor 23 is mounted by driving the motor according to the received robot drive signal.
  • the signal output unit receives motion data related to the actual motion results of the robot 2 and transmits the motion data to the robot drive signal generation unit 1021 and the robot motion reception unit 1041 of the measurement processing unit 104 .
  • the robot drive signal generation unit 1021 adds or superimposes the measurement start signal from the sensor to the robot drive signal. Output.
  • the sensor control unit 103 includes a signal output unit 1031 and a measurement data reception unit 1032.
  • the signal output unit 1031 transmits the sensor drive signal to the sensor 23 when the received robot drive signal includes the measurement start signal.
  • the measurement data reception unit 1032 receives measurement data measured by the sensor 23 and transmits the measurement data to the sensor information reception unit 1042 of the measurement processing unit 104 .
  • the measurement processing unit 104 includes a robot motion reception unit 1041 , a sensor information reception unit 1042 and a measurement result generation unit 1043 .
  • the robot motion reception unit 1041 transmits the robot motion data received from the robot control unit 102 to the measurement result generation unit 1043 .
  • the sensor information receiving section 1042 transmits the measurement data received from the sensor control section 103 to the measurement result generating section 1043 .
  • time information (Time Stamp) is attached to each piece of motion data and measurement data transmitted to the measurement result generation unit 1043 .
  • the measurement result generation unit 1043 Based on the time information corresponding to the measurement start data of the received measurement data, the measurement result generation unit 1043 identifies the motion data at the same time or substantially the same time as the data indicating the position coordinates of the sensor at the start of measurement. By doing so, the sensor position coordinates at the start of measurement are estimated. Furthermore, the pitch interval of the scanning positions is set in advance based on the measurement scanning frequency of the sensor and the linear motion speed of the robot. Three-dimensional measurement result data is generated by arranging the measured values of the measurement data for each pitch interval on the basis of the estimated sensor position coordinates at the start of measurement. The generated measurement result data is transmitted to the terminal 10 and displayed on the display device, or stored in the storage device of the terminal 10 .
  • FIG. 3 is a diagram showing a control flowchart of the measurement system in this embodiment.
  • FIG. 3 shows a case where the start of the flowchart is defined as the case where the robot driving signal generator 1021 receives the measurement start command from the terminal 1 and transmits the robot driving signal.
  • the robot drive signal generator 1021 generates a robot drive command when receiving a measurement start command from the terminal 1 (step 301).
  • the robot driving signal generator 1021 transmits the robot driving signal to the robot 2 and the sensor controller 103 (step 302).
  • the robot 2 drives a plurality of motors mounted on the robot according to the received robot drive signal.
  • the signal output unit 1022 of the robot control unit 102 starts acquiring motion data from the robot that has started driving (step 303).
  • the robot control unit 102 determines that the robot arm position (sensor mounting position) has reached a preset measurement start point (step 304).
  • the robot driving signal generation unit generates a measurement start command and transmits it to the sensor control unit 103.
  • the measurement operation by the sensor is started (step 305).
  • the measurement data reception unit 1032 of the sensor control unit 103 starts acquiring measurement data from the sensor that has started the measurement operation (step 306).
  • the robot control unit 102 determines that the robot arm position (sensor mounting position) has reached a preset measurement end point (step 307).
  • the robot driving signal generation unit generates a measurement end command and transmits it to the sensor control unit 103.
  • the measurement operation by the sensor ends (step 308).
  • the signal output unit 1022 of the robot control unit 102 terminates acquisition of motion data from the robot (step 309).
  • the measurement result generator 1043 identifies motion data having substantially the same time stamp based on the time information of the time stamp associated with the first measurement value of the measurement data. Then, the position coordinates indicated by the specified motion data are estimated to be the position of the sensor when the measurement is started (step 310).
  • the measurement result generation unit 1043 uses the sensor measurement scan frequency and the pitch interval of the scan positions preset based on the information on the linear movement speed of the robot, and uses the estimated sensor position coordinates at the start of measurement as the reference position. , three-dimensional measurement result data is generated by arranging the measured values of the measurement data for each pitch interval (step 311).
  • FIG. 4 is a diagram showing an example of measuring the external shape of an object to be measured by the measurement system according to the present embodiment.
  • a distance measurement sensor installed on the robot arm senses the distance to an object to be measured in the vertical direction (Z-axis direction) at predetermined intervals, and the robot arm is driven to detect the distance measurement sensor. It shows an example of measuring the three-dimensional shape of a measurement target by moving along a preset movement route (arrows in the figure) on the XY plane.
  • a dot in FIG. 4 indicates each sensing position that is periodically sensed.
  • the robot control unit starts driving the robot arm, and the distance measurement sensor is set in advance from the outside of the sensing position below the sensing start position (black dot) in Fig. 4 on the XY plane. to the selected sensing start position.
  • the sensor drive signal is output from the robot drive signal generator when the distance measurement sensor reaches the sensing start position, the sensor drive signal is input to the sensor, and scanning by the sensor is started.
  • the measurement data when the position of the round hole is sensed becomes a larger value than the measurement data of the position where the round hole is not open.
  • FIG. 5 is a schematic diagram of a graph showing measurement data and sensor position (operation data) information on the XY plane when a measurement object having a round hole is measured by the method shown in FIG. 4 in this embodiment.
  • the upper graph in FIG. 5 shows the measurement data at each time
  • the middle graph shows the sensor position in the X-axis direction at each time
  • the lower graph shows the sensor position in the Y-axis direction at each time. It is a graph showing.
  • the measurement data graph the measurement data is relatively large at the time when the position of the round hole is measured.
  • the sensor position in the X-axis direction increases stepwise as shown in the central graph of FIG.
  • the sensor position in the Y-axis direction repeats increase and decrease in a sawtooth shape as shown in the lower graph of FIG.
  • Fig. 6 shows the measurement data measured by the sensor in tabular form.
  • the measurement data consists of a plurality of pieces of scan information, each of which includes a data number, a sensor measurement value (measured distance in the Z-axis direction), and a time stamp (e.g., epoch time) and the coordinate of the direction of movement of the sensor (Y coordinate) that changes at predetermined intervals.
  • the interval between the sensor Y coordinates can be determined in advance based on the sensing frequency of the sensor and the moving speed of the robot arm.
  • FIG. 7 is a tabular representation of motion data indicating the motion results of the robot arm.
  • the motion data includes a data number, X-coordinate, Y-coordinate, and Z-coordinate of the sensor position, scan start command, and time stamp (for example, epoch time).
  • the scan start command is "0" when the scan start command is not output together with the robot drive signal, and is "1" when the scan start command is output.
  • data No. 1153 since the scan start command has changed to "1", it can be seen that the scan start command was output from the robot control unit at the epoch time "****6691".
  • FIG. 1153 since the scan start command has changed to "1", it can be seen that the scan start command was output from the robot control unit at the epoch time "****6691".
  • the epoch time of the first data of the measurement data is "****6698", so the timing of outputting the measurement start command and the timing of starting acquisition of the measurement data are different. It can be seen that there is an error in In this embodiment, the measurement result generation unit uses the measurement start time obtained from the measurement data shown in FIG. Coordinate information can be acquired.
  • motion data having substantially the same time stamp is specified. It can be estimated that the position coordinates indicated in the motion data are the positions of the sensors when the measurement is started.
  • the estimated sensor position coordinates at the start of measurement are used as the reference position, and each pitch interval
  • Example 2 In the first embodiment, an example in which a measurement start command is transmitted from the robot control unit to the sensor control unit is shown. Embodiments are described that generate and send a signal to the sensor controller. In the present embodiment, functional units denoted by the same reference numerals as those in the first embodiment perform the same operations.
  • FIG. 8 is a diagram illustrating an example of the measurement system 100 according to the second embodiment.
  • the measurement processing unit 204 further includes a signal detection unit 1044 and a sensor drive signal generation unit 1045 in addition to a robot motion reception unit 1041 , a sensor information reception unit 1042 and a measurement result generation unit 1043 .
  • the signal detection unit 1044 detects that the received robot drive signal includes a signal indicating a measurement start command, and if the signal indicating a measurement start command is included, transmits a sensor operation start signal. .
  • the sensor drive signal generator 1045 Upon receiving the sensor operation start signal, the sensor drive signal generator 1045 generates a sensor drive signal and transmits it to the sensor controller 103 .
  • the sensor drive signal may be, for example, a periodic pulse signal in which a High signal and a Low signal are repeatedly generated during the sensing operation period of the sensor 23 .
  • the sensor 23 may perform sensing at the timing of receiving the High signal, and may be configured so that the sensing cycle can be changed according to the pulse signal cycle of the sensor drive signal.
  • the sensor control section 103 has a signal output section 1031 and a measurement data reception section 1032 . The signal output unit 103 transmits the received sensor drive signal to the sensor 23 .
  • FIG. 9 is a diagram showing a control flowchart of the measurement system in this embodiment.
  • FIG. 9 shows a diagram where the start of the flowchart is defined as the case where the robot control unit 102 transmits a measurement start command together with a robot operation command.
  • the robot drive signal generator 1021 generates a robot drive command when receiving a robot operation command from the terminal 1 (step 301).
  • the robot drive signal generator 1021 transmits the robot drive signal to the robot 2 and the measurement processor 104 (step 302).
  • the robot 2 drives a plurality of motors mounted on the robot according to the received robot drive signal (step 303).
  • the signal output unit 1022 of the robot control unit 102 acquires motion data including information on the motion performance from the robot 2 (step 304).
  • the signal detection unit 1041 of the measurement processing unit 104 detects whether or not the robot drive signal received from the robot drive signal generation unit 1021 in step 302 includes a measurement start command (step 305).
  • the sensor drive signal generation unit 1045 generates a sensor drive signal and transmits it to the signal output unit of the sensor control unit 103 (step 306).
  • the sensor 23 performs sensing by driving the sensor according to the sensor driving signal received through the signal output unit 1031 (step 307).
  • the measurement data reception unit 1032 of the sensor control unit 103 acquires measurement data from the sensor 23 (step 308).
  • the robot drive signal is a signal generated by the robot drive signal generator 1021 of the robot controller 102, and has a pulse signal instructing the start of driving and a pulse signal instructing the end of driving.
  • the sensor operation start signal, sensor operation stop signal, and sensor drive signal are signals generated by the sensor drive signal generator 1045 in the measurement processor 104 .
  • the sensor operation start signal is a signal containing a pulse signal that instructs the sensor to start operating.
  • the sensor operation stop signal is a signal containing a pulse signal instructing to stop the operation of the sensor.
  • a pulse signal instructing to stop the operation of the sensor is generated as a sensor operation start signal. A slight delay time may occur from the generation of the drive start pulse signal or drive end pulse signal in the robot drive signal to the generation of the pulse signal in the sensor operation start signal or sensor operation stop signal.
  • the sensor drive signal generation unit 1045 generates a pulse signal for starting operation in the sensor operation start signal, and at the same time, generates a sensor drive signal that periodically repeats High and Low. Therefore, the rise timing of the operation start pulse signal of the sensor operation start signal and the rise timing of the pulse signal of the sensor drive signal are almost the same.
  • the High side signal of the sensor drive signal is an instruction to perform sensing operation to the sensor, and the Low side signal is a signal not to instruct the sensor to perform sensing operation. Operation execution and sensing operation stop are repeated.
  • the sensor drive signal generation section can be configured so that the pulse rises at any timing and can generate a pulse signal with any period as the sensor drive signal.
  • the pulse signal for starting the drive of the robot drive signal is received.
  • the robot control unit can synchronize the robot and the sensor. It is possible to eliminate or reduce the need to change software, etc. Furthermore, even when synchronous processing is performed for a combination of an arbitrary robot and an arbitrary sensor, if the measurement processing section that generates a command to start driving the sensors is appropriately designed, the robot control section and sensor control section No software changes need to be made or the amount of changes made can be reduced.
  • FIG. 11 is a diagram showing an example of another method of generating a sensor driving signal in the measurement processing section in this embodiment, and particularly showing an example of generating a sensor driving signal based on an encoder pulse signal.
  • FIG. 10 shows an example in which the measurement processing unit acquires a signal having a pulse signal instructing the start of driving of the robot and a pulse signal instructing the end of driving. An example of acquiring a periodic pulse signal (for example, an encoder pulse signal) in which Low is repeatedly generated will be described.
  • the signal detection unit 1041 of the measurement processing unit can detect the rise of the pulse of the robot drive signal, and the sensor drive signal generation unit can generate the sensor operation start signal. Also, in the same way as when driving is started, when driving is finished, it is possible to detect that the pulse of the robot driving signal does not appear for a predetermined time or longer, and generate a sensor operation stop signal in the sensor driving signal generation section.
  • FIG. 12 is a diagram showing the function of each component when synchronizing the sensors based on the motion data of the robot in this embodiment.
  • FIG. 2 illustrates an example in which the measurement processing unit acquires the robot driving signal transmitted from the robot control unit to the robot and generates the sensor driving signal based on the robot driving signal. An example of generating a sensor drive signal based on operation data acquired from the will be described. The parts of the modification shown in FIG. 12 that are different from those in FIG. 2 will be described below.
  • the motion data output from the robot is information related to the robot's performance record, and can be information including information related to the start of the robot's motion, for example.
  • the signal detection unit 5041 in the measurement processing unit 504 acquires the motion data, and if the motion data includes information indicating that the robot has started motion, generates a sensor motion start signal, and generates a sensor drive signal. Send to the generator.
  • motion data can be information including sensor position coordinate information.
  • the signal detection unit 5041 acquires the operation data, and if the information indicating that the position coordinate of the sensor has reached a preset position, generates a sensor operation start signal to drive the sensor. Send to the signal generator.
  • information including sensor speed information can be used.
  • the sensor speed information may be motor current or voltage or a combination thereof.
  • the signal detection unit 5041 acquires the operation data, and if the sensor speed includes information indicating that the speed of the sensor has reached a preset value, the signal detection unit 5041 generates a sensor operation start signal and a sensor drive signal. Send to the generator.
  • the sensor drive signal generation unit When the signal detection unit 5041 receives the operation data described above and generates a sensor operation start signal and transmits it to the sensor drive signal generation unit, the sensor drive signal generation unit generates a sensor drive signal and sends the sensor to the sensor control unit. Send the drive signal.
  • the signal detection section detects whether or not the received operation data satisfies a predetermined condition.
  • the period of the sensor drive signal may be changed by detecting the . For example, by detecting that the sensor position has entered an area where you want to perform sensing with higher accuracy than other areas based on the sensor's positional coordinate information, and shortening the cycle of the sensor drive signal compared to other areas, measurement can be performed. High-precision measurement can be performed for any area in the target area.
  • the position of the robot arm is detected by the positional coordinate information of the sensor in the turn-around area on the sensor's position sensing scanning route, and the period of the sensor drive signal is shortened compared to other areas. It is possible to perform highly accurate measurement of a period during which a complex motion other than a linear motion is performed. As yet another example, when the moving speed of the sensor exceeds a predetermined speed, by shortening the cycle of the sensor driving signal, it is possible to reduce variations in sensing position intervals due to changes in speed. .
  • FIG. 13 is a diagram showing an example of another control flowchart of the measurement system according to this embodiment.
  • FIG. 13 shows a diagram where the start of the flowchart is defined as the case where the robot operation command unit 1011 receives the measurement start command from the terminal 1 and transmits the robot operation command.
  • the robot driving signal generator 1021 generates a robot driving command when receiving a robot operation command (step 1301).
  • the robot driving signal generator 1021 transmits a robot driving signal to the robot 2 (step 1302).
  • the robot 2 drives a plurality of motors mounted on the robot according to the received robot drive signal (step 1303).
  • the robot 2 transmits motion data including information about the motion performance of the robot 2 to the signal detection unit 5041 of the measurement processing unit and the signal output unit 1022 of the robot control unit (step 1304). , the motion data including the information on the motion results is acquired from the robot 2 (step 1305).
  • the signal detection section 5044 of the measurement processing section 504 detects whether or not the motion data transmitted from the robot 2 in step 1304 satisfies a predetermined condition.
  • the motion data includes information indicating that the robot has started to move, or includes information indicating that the position coordinates of the sensor have reached a preset position, or the speed of the sensor is a preset value. If it contains information indicating that it has reached , it is detected (step 1306).
  • the sensor drive signal generation unit 5045 generates a sensor drive signal and transmits it to the signal output unit of the sensor control unit 103 (step 1307). ).
  • the sensor 23 performs sensing by driving the sensor according to the sensor drive signal received through the signal output unit 1031 (step 1308).
  • the measurement data reception unit 1032 of the sensor control unit 103 acquires measurement data from the sensor 23 (step 1309).
  • the measurement result generation unit 1012 acquires motion data from the signal output unit 1022 of the robot control unit 102 and measurement data from the measurement data reception unit 1032, and generates measurement result data.
  • the measurement result generation unit 1012 generates measurement result data related to the measurement target by associating the measurement start time information included in the measurement data with the action start time information included in the action data.
  • the measurement data By associating the measurement data with the motion data based on the measurement start time in this way, a plurality of detection values constituting the measurement data, position coordinate information of the sensor when the detection values were acquired, speed information, Alternatively, posture information can be associated and acquired.
  • Reference Signs List 1 10 terminal 2 robot 21 arm 23 sensor 100 measurement system 102 robot control unit 103 sensor control unit 104, 204, 504 measurement processing unit 1011 robot operation command unit 1012 measurement result generation unit 1021 robot drive signal generation unit 1022 signal output unit 1031 Signal output unit 1032 Measurement data reception unit 1041 Robot operation reception unit 1042 Sensor information reception unit 1043 Measurement result generation unit

Abstract

[Problem] In measurement work using a sensor mounted at a distal end of a robot arm, synchronization of a measurement operation of the sensor with an operation of the robot is required to improve the measurement accuracy of the measurement work. However, if a combination of a sensor and a robot is arbitrarily selected, it is not easy to build a measurement system for synchronizing the operations of the sensor and the robot. [Solution] A measurement system for performing a measurement process on the basis of measurement data obtained by a sensor mounted on a robot, the measurement system comprising: a robot operation receiving unit that receives robot operation data indicating location information about the sensor mounted on the robot; a sensor information receiving unit that receives the measurement data obtained by the sensor; and a measurement result generation unit that, on the basis of time information contained in each of the robot operation data and the measurement data, identifies the robot operation data corresponding to a time equal to or substantially same as a time at which first measurement data was obtained, and generates a measurement result using the location information indicated by the identified robot operation data as a measurement start position.

Description

計測システム、計測方法、プログラムMeasurement system, measurement method, program
 本発明は、計測システム、計測方法、プログラムに関する。 The present invention relates to measurement systems, measurement methods, and programs.
 従来から、ロボットに装着されたセンサーを利用した計測作業が行われていた(例えば、特許文献1を参照)。 Conventionally, measurement work has been performed using sensors attached to robots (see Patent Document 1, for example).
特開2016-203273号公報JP 2016-203273 A
 このようなロボットを用いた計測作業は、センサーとロボットの組み合わせを変更することで様々な計測用途に用いることが可能である。一方で、計測作業の計測精度を向上させるには、センサーの計測動作とロボットの動作を同期させることが求められる。しかし、センサーとロボットの組み合わせを任意に選択する場合には、センサーとロボットの動作を同期させて正確な計測データを取得可能な計測システムを構築することは容易ではなかった。 Measurement work using such robots can be used for various measurement purposes by changing the combination of sensors and robots. On the other hand, in order to improve the measurement accuracy of measurement work, it is required to synchronize the measurement operation of the sensor and the operation of the robot. However, when a combination of sensors and robots was selected arbitrarily, it was not easy to construct a measurement system capable of acquiring accurate measurement data by synchronizing the motions of the sensors and robots.
 特許文献1では、ロボットのモーターへ出力するモーター駆動信号に同期信号を組み込むことが開示されているものの、モーター駆動信号を生成するロボット側のプログラム変更が必要となるという課題があった。 Although Patent Document 1 discloses incorporating a synchronization signal into the motor drive signal output to the motor of the robot, there was a problem that it was necessary to change the program on the robot side that generates the motor drive signal.
 本発明はこのような背景を鑑みてなされたものであり、センサーとロボットの動作タイミングを考慮してより正確な計測データを取得する計測システムの構築をより容易に実現することを目的とする。 The present invention was made in view of this background, and aims to more easily realize the construction of a measurement system that acquires more accurate measurement data by considering the operation timing of the sensor and robot.
 上記課題を解決するための本発明の主たる発明は、ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測システムであって、前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信部と、前記センサーにより得られる前記計測データを受信するセンサー情報受信部と、前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定し、特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成部と、を備える計測システムである。
 
The main invention of the present invention for solving the above problems is a measurement system that performs measurement processing based on measurement data obtained by a sensor mounted on a robot, wherein position information of the sensor mounted on the robot is obtained. a robot operation receiving unit for receiving robot operation data indicating a robot operation data; a sensor information receiving unit for receiving the measurement data obtained by the sensor; a measurement result generation unit that identifies the robot motion data at a time that matches or is substantially the same as the time when the measurement data was obtained, and generates a measurement result using position information indicated by the specified robot motion data as a measurement start position; measurement system.
 その他本願が開示する課題やその解決方法については、発明の実施形態の欄及び図面により明らかにされる。 Other problems disclosed by the present application and their solutions will be clarified in the section of the embodiment of the invention and the drawings.
 本発明によれば、センサーとロボットの動作タイミングを考慮してより正確な計測データを取得する計測システムの構築を容易に実現することができる。 According to the present invention, it is possible to easily construct a measurement system that acquires more accurate measurement data by considering the operation timing of the sensor and the robot.
本実施形態の計測システム100の一例を示す図である。It is a figure showing an example of measurement system 100 of this embodiment. 本実施形態の計測システム100の各構成要素の機能を示す図である。It is a figure which shows the function of each component of the measurement system 100 of this embodiment. 本実施形態の計測システムの制御フローチャートを示す図である。It is a figure which shows the control flowchart of the measurement system of this embodiment. 本実施形態における計測システムで計測対象の外観形状を計測する場合の一例を示す図である。It is a figure which shows an example in the case of measuring the external shape of a measuring object with the measuring system in this embodiment. 本実施形態において図4に示す方法で丸穴が空いた計測対象物を計測した場合の計測データとXY平面上におけるセンサー位置の情報を示すグラフである。5 is a graph showing measurement data and sensor position information on the XY plane when a measurement object having a round hole is measured by the method shown in FIG. 4 in this embodiment. 本実施形態の計測システムで取得する計測データの一例を示す図である。It is a figure which shows an example of the measurement data acquired with the measurement system of this embodiment. 本実施形態の計測システムで取得する動作データの一例を示す図である。It is a figure which shows an example of the motion data acquired with the measuring system of this embodiment. 本実施形態の実施例2における計測システム100の一例を示す図である。It is a figure which shows an example of the measurement system 100 in Example 2 of this embodiment. 本実施形態の実施例2における計測システム100の各構成要素の機能を示す図である。It is a figure which shows the function of each component of the measurement system 100 in Example 2 of this embodiment. 本実施形態において計測処理部でセンサー駆動信号を生成する方法の一例を示す図である。It is a figure which shows an example of the method of producing|generating a sensor drive signal in a measurement process part in this embodiment. 本実施形態において計測処理部でセンサー駆動信号を生成する他の方法の一例を示す図である。It is a figure which shows an example of the other method which produces|generates a sensor drive signal in a measurement process part in this embodiment. 本実施形態の実施例3における計測システム100の一例を示す図である。It is a figure which shows an example of the measurement system 100 in Example 3 of this embodiment. 本実施形態の実施例3における計測システム100の各構成要素の機能を示す図である。It is a figure which shows the function of each component of the measurement system 100 in Example 3 of this embodiment.
 本発明の実施形態の内容を列記して説明する。本発明は、たとえば以下のような構成を備える。 The contents of the embodiments of the present invention will be listed and explained. The present invention has, for example, the following configuration.
[項目1]  
 ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測システムであって、
 前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信部と、
前記センサーにより得られる前記計測データを受信するセンサー情報受信部と、
前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定し、特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成部と、を備える計測システム。
[項目2] 
項目1に記載の計測システムであって、
前記センサーは、センサーから計測対象物の表面までの距離を計測する距離センサーであり、
前記計測結果生成部は、前記距離センサーによる計測データと、予め設定された前記距離センサーによる計測位置間隔に基づいて計測対象物の表面の三次元座標を計測結果として生成する計測システム。
[項目3] 
項目1又は2に記載の計測システムであって、
前記センサーは、前記ロボットに搭載された前記センサーの位置が予め設定された計測開始位置に到達した場合にロボット制御部により生成される計測開始指令に基づいて計測を開始する計測システム。
[項目4] 
 項目1に記載の計測システムであって、
 前記ロボットを制御するロボット制御部からロボットに送信される前記ロボット駆動信号を取得し、前記ロボット駆動信号に前記センサーに計測を開始させる計測開始指令が含まれる場合に、前記センサーの計測動作を開始させるトリガとなるセンサー駆動信号を生成するセンサー駆動信号生成部を備える計測システム。
[項目5] 
 ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測方法であって、
 前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信ステップと、
前記センサーにより得られる前記計測データを受信するセンサー情報受信ステップと、
前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定するステップと、
特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成ステップと、を備える計測方法。
[項目6] 
項目5に記載の計測方法であって、
前記センサーは、センサーから計測対象物の表面までの距離を計測する距離センサーであり、
前記計測結果生成ステップは、前記距離センサーによる計測データと、予め設定された前記距離センサーによる計測位置間隔に基づいて計測対象物の表面の三次元座標を計測結果として生成するステップである計測方法。
[項目7]
項目5又は6に記載の計測方法であって、
前記ロボットに搭載された前記センサーの位置が予め設定された計測開始位置に到達した場合にロボット制御部により生成される計測開始指令に基づいて計測を開始するステップを更に備える計測方法。
[項目8]
項目5に記載の計測方法であって、
 前記ロボットを制御するロボット制御部からロボットに送信される前記ロボット駆動信号を取得するステップと、
前記ロボット駆動信号に前記センサーに計測を開始させる計測開始指令が含まれる場合に、前記センサーの計測動作を開始させるトリガとなるセンサー駆動信号を生成するステップと、を備える計測方法。
[項目9]
 ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測方法をコンピュータに実行させるためのプログラムであって、
 前記プログラムは、前記計測方法として、
 前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信ステップと、
前記センサーにより得られる前記計測データを受信するセンサー情報受信ステップと、
前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定するステップと、
特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成ステップと、
をコンピュータに実行させるプログラム。
 
 
[Item 1]
A measurement system that performs measurement processing based on measurement data obtained by a sensor mounted on a robot,
a robot motion receiving unit that receives robot motion data indicating position information of the sensor mounted on the robot;
a sensor information receiving unit that receives the measurement data obtained by the sensor;
Based on the time information included in the robot motion data and the measurement data, the robot motion data matching or substantially the same time as the time when the first measurement data was obtained is specified, and the specified robot motion data is determined. and a measurement result generator that generates a measurement result using the indicated position information as a measurement start position.
[Item 2]
The measurement system according to item 1,
The sensor is a distance sensor that measures the distance from the sensor to the surface of the measurement object,
The measurement system in which the measurement result generation unit generates the three-dimensional coordinates of the surface of the object to be measured as a measurement result based on the measurement data from the distance sensor and a preset measurement position interval from the distance sensor.
[Item 3]
The measurement system according to item 1 or 2,
A measurement system in which the sensor starts measurement based on a measurement start command generated by a robot control unit when the position of the sensor mounted on the robot reaches a preset measurement start position.
[Item 4]
The measurement system according to item 1,
Obtaining the robot drive signal transmitted to the robot from a robot control unit that controls the robot, and starting the measurement operation of the sensor when the robot drive signal includes a measurement start command for causing the sensor to start measurement. A measurement system comprising a sensor drive signal generator that generates a sensor drive signal that serves as a trigger for
[Item 5]
A measurement method for performing measurement processing based on measurement data obtained by a sensor mounted on a robot,
a robot motion receiving step of receiving robot motion data indicating position information of the sensor mounted on the robot;
a sensor information receiving step of receiving the measurement data obtained by the sensor;
a step of identifying the robot motion data that matches or is substantially the same as the time when the first measurement data is obtained, based on the time information included in the robot motion data and the measurement data, respectively;
and a measurement result generation step of generating a measurement result using position information indicated by the identified robot motion data as a measurement start position.
[Item 6]
The measurement method according to item 5,
The sensor is a distance sensor that measures the distance from the sensor to the surface of the measurement object,
The measurement result generating step is a step of generating the three-dimensional coordinates of the surface of the object to be measured as a measurement result based on the measurement data from the distance sensor and a preset measurement position interval from the distance sensor.
[Item 7]
The measurement method according to item 5 or 6,
The measurement method further comprising the step of starting measurement based on a measurement start command generated by a robot controller when the position of the sensor mounted on the robot reaches a preset measurement start position.
[Item 8]
The measurement method according to item 5,
a step of acquiring the robot drive signal transmitted to the robot from a robot control unit that controls the robot;
and generating a sensor drive signal that serves as a trigger for starting a measurement operation of the sensor when the robot drive signal includes a measurement start command for causing the sensor to start measurement.
[Item 9]
A program for causing a computer to execute a measurement method for performing measurement processing based on measurement data obtained by a sensor mounted on a robot,
The program, as the measurement method,
a robot motion receiving step of receiving robot motion data indicating position information of the sensor mounted on the robot;
a sensor information receiving step of receiving the measurement data obtained by the sensor;
a step of identifying the robot motion data that matches or is substantially the same as the time when the first measurement data is obtained, based on the time information included in the robot motion data and the measurement data, respectively;
a measurement result generating step of generating a measurement result using position information indicated by the specified robot motion data as a measurement start position;
A program that makes a computer run

<実施の形態の詳細>
 本発明の一実施形態に係る情報処理システム100の具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、特許請求の範囲によって示され、特許請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。以下の説明では、添付図面において、同一または類似の要素には同一または類似の参照符号及び名称が付され、各実施形態の説明において同一または類似の要素に関する重複する説明は省略することがある。また、各実施形態で示される特徴は、互いに矛盾しない限り他の実施形態にも適用可能である。
<Details of Embodiment>
A specific example of an information processing system 100 according to an embodiment of the present invention will be described below with reference to the drawings. The present invention is not limited to these examples, but is indicated by the scope of the claims, and is intended to include all modifications within the scope and meaning equivalent to the scope of the claims. In the following description, the same or similar elements in the accompanying drawings are given the same or similar reference numerals and names, and duplicate descriptions of the same or similar elements may be omitted in the description of each embodiment. Also, the features shown in each embodiment can be applied to other embodiments as long as they are not mutually contradictory.
<実施例1>
<計測システムの全体構成>
 図1は、本実施形態の計測システム100の一例を示す図である。図1に示されるように、本実施形態の計測システム100では、端末1、10、ロボット制御装部102、センサー制御部103、計測処理部104、ロボット2を有している。ロボット2は、例えば、複数のモーターにより複数リンクが構成される多関節ロボットアームで構成されており、アーム21にはセンサー23が設けられる。センサー23としては、あらゆる計測装置が適用可能であるが、本実施形態では、一例として対象物のとの距離を計測する距離計測センサーを用いた例を説明する。
<Example 1>
<Overall configuration of measurement system>
FIG. 1 is a diagram showing an example of a measurement system 100 according to this embodiment. As shown in FIG. 1, the measurement system 100 of this embodiment includes terminals 1 and 10, a robot control unit 102, a sensor control unit 103, a measurement processing unit 104, and a robot 2. FIG. The robot 2 is composed of, for example, an articulated robot arm in which a plurality of links are formed by a plurality of motors, and the arm 21 is provided with a sensor 23 . Any measuring device can be applied as the sensor 23, but in this embodiment, as an example, an example using a distance measuring sensor for measuring the distance to an object will be described.
端末1とロボット制御部102は、有線または無線により互いに通信可能に接続され、例えば端末1の入力部を介してユーザが入力した計測開始指令がロボット制御部102に送信される。また、端末10と計測処理部104は、有線または無線により互いに通信可能に接続され、例えば計測処理部104により生成された計測結果の情報は、端末10に送信されて端末の表示部に表示される。ここで、図1では端末1と端末10を分けて記載しているが、これらは同一の装置に実装することも可能である。計測処理部104は、更にロボット制御部102とセンサー制御部103にそれぞれ通信可能に接続されている。ロボット制御部102から計測処理部104にロボットの動作実績に関する情報が送信される。またセンサー制御部103から計測処理部104には、センサー23で検出された計測データに関する情報が送信される。ロボット制御部102は、更にロボット2とセンサー制御部103と通信可能に接続されており、ロボットを駆動させるためのロボット駆動信号がロボット制御部102からロボット2及びセンサー制御部103に送信される。ロボット制御部はロボット駆動信号にセンサーの動作指令に関する情報を併せて送信することによりセンサー制御部103を介してセンサーによる計測動作を開始させる。センサー制御部103はロボット制御部102から受信した動作指令をセンサー23に送信する。なお、図1は例示にすぎず、図示の構成に限定されない。 The terminal 1 and the robot control unit 102 are connected by wire or wirelessly so that they can communicate with each other. In addition, the terminal 10 and the measurement processing unit 104 are communicably connected to each other by wire or wirelessly. For example, measurement result information generated by the measurement processing unit 104 is transmitted to the terminal 10 and displayed on the display unit of the terminal. be. Here, although the terminal 1 and the terminal 10 are shown separately in FIG. 1, they can be mounted on the same device. The measurement processing unit 104 is further communicably connected to the robot control unit 102 and the sensor control unit 103 . Information about the robot's performance is transmitted from the robot control unit 102 to the measurement processing unit 104 . Further, information on measurement data detected by the sensor 23 is transmitted from the sensor control unit 103 to the measurement processing unit 104 . The robot control unit 102 is further communicably connected to the robot 2 and the sensor control unit 103 , and a robot driving signal for driving the robot is transmitted from the robot control unit 102 to the robot 2 and the sensor control unit 103 . The robot control unit sends the robot driving signal together with information about the operation command of the sensor, thereby causing the sensor to start measuring operation via the sensor control unit 103 . The sensor control unit 103 transmits the motion command received from the robot control unit 102 to the sensor 23 . It should be noted that FIG. 1 is merely an example, and is not limited to the illustrated configuration.
 図1に示す、端末1、10、ロボット制御装部102、センサー制御部103、計測処理部104は、例えば、プロセッサ、メモリ、送受信部等のハードウェアを有する汎用コンピュータで構成してもよいし、或いはクラウド・コンピューティングによって論理的に実現されてもよい。 The terminals 1 and 10, the robot control unit 102, the sensor control unit 103, and the measurement processing unit 104 shown in FIG. , or may be logically implemented by cloud computing.
<計測システムの機能>
 図2は、本実施形態の計測システム100の各構成要素の機能を示す図である。
<Measurement system functions>
FIG. 2 is a diagram showing the function of each component of the measurement system 100 of this embodiment.
 ロボット制御部102は、駆動信号生成部1021と信号出力部1022を備えている。ロボット駆動信号生成部1021は、端末から動作開始指令を受信するとロボット駆動信号をロボット2及びセンサー制御部103に送信する。ここで、ロボット駆動信号は、ロボット2を搭載されたモーターの動作開始時にHigh信号となるパルス信号で合っても良いし、モーターの駆動期間中にHighとLowが繰り返し発生する周期的なパルス信号であっても良い。ロボット2は、受信したロボット駆動信号に従って、モーターを駆動することにより、センサー23が搭載されたアーム21を動作させる。 The robot control unit 102 includes a drive signal generation unit 1021 and a signal output unit 1022. The robot drive signal generation unit 1021 transmits a robot drive signal to the robot 2 and the sensor control unit 103 upon receiving an operation start command from the terminal. Here, the robot drive signal may be a pulse signal that becomes a High signal when the motor on which the robot 2 is mounted starts to operate, or a periodic pulse signal that repeats High and Low during the motor drive period. can be The robot 2 operates the arm 21 on which the sensor 23 is mounted by driving the motor according to the received robot drive signal.
信号出力部は、ロボット2が動作した実績に関する動作データを受信して、動作データをロボット駆動信号生成部1021と計測処理部104のロボット動作受信部1041に送信する。また、ロボット駆動信号生成部1021は信号出力部1022から受信した動作データが予め設定された計測開始位置に到達したことを示す場合に、ロボット駆動信号にセンサーによる計測開始信号を追加又は重畳して出力する。 The signal output unit receives motion data related to the actual motion results of the robot 2 and transmits the motion data to the robot drive signal generation unit 1021 and the robot motion reception unit 1041 of the measurement processing unit 104 . When the motion data received from the signal output unit 1022 indicates that the measurement start position has been reached in advance, the robot drive signal generation unit 1021 adds or superimposes the measurement start signal from the sensor to the robot drive signal. Output.
 センサー制御部103は、信号出力部1031と計測データ受信部1032を備えている。信号出力部1031は、受信したロボット駆動信号に計測開始信号が含まれている場合にセンサー駆動信号をセンサー23に送信する。計測データ受信部1032は、センサー23により計測された計測データを受信して計測処理部104のセンサ情報受信部1042に送信する。 The sensor control unit 103 includes a signal output unit 1031 and a measurement data reception unit 1032. The signal output unit 1031 transmits the sensor drive signal to the sensor 23 when the received robot drive signal includes the measurement start signal. The measurement data reception unit 1032 receives measurement data measured by the sensor 23 and transmits the measurement data to the sensor information reception unit 1042 of the measurement processing unit 104 .
計測処理部104は、ロボット動作受信部1041とセンサ情報受信部1042と計測結果生成部1043を備えている。ロボット動作受信部1041は、ロボット制御部102から受信したロボットの動作データを計測結果生成部1043に送信する。センサ情報受信部1042は、センサー制御部103から受信した計測データを計測結果生成部1043に送信する。ここで、計測結果生成部1043に送信される動作データと計測データには各データに対して時刻情報(Time Stamp)が付されている。 The measurement processing unit 104 includes a robot motion reception unit 1041 , a sensor information reception unit 1042 and a measurement result generation unit 1043 . The robot motion reception unit 1041 transmits the robot motion data received from the robot control unit 102 to the measurement result generation unit 1043 . The sensor information receiving section 1042 transmits the measurement data received from the sensor control section 103 to the measurement result generating section 1043 . Here, time information (Time Stamp) is attached to each piece of motion data and measurement data transmitted to the measurement result generation unit 1043 .
計測結果生成部1043は、受信した計測データの計測開始データに対応する時刻情報に基づいて、当該時刻と同時刻又は略同一時刻の動作データを計測開始時におけるセンサーの位置座標を示すデータとして特定することにより、計測開始された際のセンサー位置座標を推定する。さらに、センサーの計測スキャン周波数とロボットの直線動作速度の情報に基づいて、スキャン位置のピッチ間隔が予め設定されている。推定した計測開始された際のセンサー位置座標を基準として、ピッチ間隔毎に計測データの計測値を並べることにより三次元の計測結果データが生成される。生成された計測結果データは、端末10に送信されて表示装置に表示される、または端末10の記憶装置に記憶される。 Based on the time information corresponding to the measurement start data of the received measurement data, the measurement result generation unit 1043 identifies the motion data at the same time or substantially the same time as the data indicating the position coordinates of the sensor at the start of measurement. By doing so, the sensor position coordinates at the start of measurement are estimated. Furthermore, the pitch interval of the scanning positions is set in advance based on the measurement scanning frequency of the sensor and the linear motion speed of the robot. Three-dimensional measurement result data is generated by arranging the measured values of the measurement data for each pitch interval on the basis of the estimated sensor position coordinates at the start of measurement. The generated measurement result data is transmitted to the terminal 10 and displayed on the display device, or stored in the storage device of the terminal 10 .
<計測システムの制御フローチャート>
 図3は、本実施形態における計測システムの制御フローチャートを示す図である。図3は、端末1から計測開始指令を受信したロボット駆動信号生成部1021がロボット駆動信号を送信する場合を、フローチャートのスタートと定義した場合の図を示している。ロボット駆動信号生成部1021は、端末1から計測開始指令を受信した場合に、ロボット駆動指令を生成する(ステップ301)。次に、ロボット駆動信号生成部1021は、ロボット駆動信号をロボット2及びセンサー制御部103に送信する(ステップ302)。ロボット2は受信したロボット駆動信号に従いロボットに搭載された複数のモーターを駆動する。ロボット制御部102の信号出力部1022は、駆動を開始したロボットから動作データの取得を開始する(ステップ303)。ステップ302でロボットの駆動が開始された後、ロボット制御部102は、ロボットのアーム位置(センサの装着位置)が予め設定された計測開始地点に到達したことを判断する(ステップ304)。ロボットのアーム位置(センサの装着位置)が予め設定された計測開始地点に到達したと判断した場合には、ロボット駆動信号生成部は計測開始指令を生成してセンサー制御部103に送信することで、センサーによる計測動作を開始する(ステップ305)。センサー制御部103の計測データ受信部1032は、計測動作を開始したセンサーから計測データの取得を開始する(ステップ306)。
<Control flow chart of measurement system>
FIG. 3 is a diagram showing a control flowchart of the measurement system in this embodiment. FIG. 3 shows a case where the start of the flowchart is defined as the case where the robot driving signal generator 1021 receives the measurement start command from the terminal 1 and transmits the robot driving signal. The robot drive signal generator 1021 generates a robot drive command when receiving a measurement start command from the terminal 1 (step 301). Next, the robot driving signal generator 1021 transmits the robot driving signal to the robot 2 and the sensor controller 103 (step 302). The robot 2 drives a plurality of motors mounted on the robot according to the received robot drive signal. The signal output unit 1022 of the robot control unit 102 starts acquiring motion data from the robot that has started driving (step 303). After the robot starts to be driven in step 302, the robot control unit 102 determines that the robot arm position (sensor mounting position) has reached a preset measurement start point (step 304). When it is determined that the arm position of the robot (sensor mounting position) has reached a preset measurement start point, the robot driving signal generation unit generates a measurement start command and transmits it to the sensor control unit 103. , the measurement operation by the sensor is started (step 305). The measurement data reception unit 1032 of the sensor control unit 103 starts acquiring measurement data from the sensor that has started the measurement operation (step 306).
 ステップ305でセンサーによる計測動作が開始された後、ロボット制御部102は、ロボットのアーム位置(センサの装着位置)が予め設定された計測終了地点に到達したことを判断する(ステップ307)。ロボットのアーム位置(センサの装着位置)が予め設定された計測終了地点に到達したと判断した場合には、ロボット駆動信号生成部は計測終了指令を生成してセンサー制御部103に送信することで、センサーによる計測動作を終了する(ステップ308)。ロボット制御部102の信号出力部1022は、ロボットから動作データの取得を終了する(ステップ309)。 After the measurement operation by the sensor is started in step 305, the robot control unit 102 determines that the robot arm position (sensor mounting position) has reached a preset measurement end point (step 307). When it is determined that the robot arm position (sensor mounting position) has reached a preset measurement end point, the robot driving signal generation unit generates a measurement end command and transmits it to the sensor control unit 103. , the measurement operation by the sensor ends (step 308). The signal output unit 1022 of the robot control unit 102 terminates acquisition of motion data from the robot (step 309).
次に、計測結果生成部1043は、計測データの最初の計測値に対応付けられたタイムスタンプの時刻情報に基づいて、略同一時刻のタイムスタンプを有する動作データを特定する。そして当該特定した動作データに示される位置座標を計測開始された際のセンサーの位置であると推定する(ステップ310)。計測結果生成部1043は、センサーの計測スキャン周波数とロボットの直線動作速度の情報に基づいて予め設定されているスキャン位置のピッチ間隔を用いて、推定した計測開始時のセンサー位置座標を基準位置として、ピッチ間隔毎に計測データの計測値を並べることにより三次元の計測結果データを生成する(ステップ311)。このように計測開始時刻に基づいて計測データと動作データの対応付けを行うことにより、計測データを構成する複数の検出値と、当該検出値を取得したときのセンサーの位置座標情報、速度情報、もしくは姿勢の情報を対応付けて取得することができ、計測対象のより正確な三次元形状を計測することが可能となる。 Next, the measurement result generator 1043 identifies motion data having substantially the same time stamp based on the time information of the time stamp associated with the first measurement value of the measurement data. Then, the position coordinates indicated by the specified motion data are estimated to be the position of the sensor when the measurement is started (step 310). The measurement result generation unit 1043 uses the sensor measurement scan frequency and the pitch interval of the scan positions preset based on the information on the linear movement speed of the robot, and uses the estimated sensor position coordinates at the start of measurement as the reference position. , three-dimensional measurement result data is generated by arranging the measured values of the measurement data for each pitch interval (step 311). By associating the measurement data with the motion data based on the measurement start time in this way, a plurality of detection values constituting the measurement data, position coordinate information of the sensor when the detection values were acquired, speed information, Alternatively, orientation information can be associated and acquired, making it possible to measure a more accurate three-dimensional shape of the object to be measured.
<計測方法>
 図4は、本実施形態における計測システムで計測対象の外観形状を計測する場合の一例を示す図である。図4に示す例では、ロボットアームに設置された距離計測センサーで鉛直方向(Z軸方向)下方の計測対象物までの距離を所定周期でセンシングしながら、ロボットアームを駆動して距離計測センサーを予め設定されたXY平面上の移動ルート(図中の矢印)に沿って移動させることで、計測対象の3次元形状を計測する例を示している。図4における点は周期的にセンシングされる各センシング位置を示している。
<Measurement method>
FIG. 4 is a diagram showing an example of measuring the external shape of an object to be measured by the measurement system according to the present embodiment. In the example shown in Fig. 4, a distance measurement sensor installed on the robot arm senses the distance to an object to be measured in the vertical direction (Z-axis direction) at predetermined intervals, and the robot arm is driven to detect the distance measurement sensor. It shows an example of measuring the three-dimensional shape of a measurement target by moving along a preset movement route (arrows in the figure) on the XY plane. A dot in FIG. 4 indicates each sensing position that is periodically sensed.
計測を開始する際、ロボット制御部によりロボットアームの駆動を開始して、距離計測センサーをXY平面上で図4のセンシング開始位置(黒色の点)よりも下側のセンシング位置の外側から予め設定されたセンシング開始位置に移動させる。距離計測センサーがセンシング開始位置に到達したときに、ロボット駆動信号生成部からセンサー駆動信号が出力されるとセンサー駆動信号がセンサーに入力されて、センサーによるスキャンが開始される。図4に示す例では、中央部に丸穴が空いた計測対象物を計測しているため、丸穴の位置をセンシングした場合の計測データ(Z軸方向のセンサーと計測対象物間の距離)は、丸穴が空いていない位置の計測データよりも大きな値となる。センシング走査ルートの終点までセンシング動作を実行することで、各センシング位置における計測データを取得することができるため、図4に示す通り、丸穴が空いている領域と空いていない領域を特定することができ、更にこれらの情報に基づいて、丸穴の中心座標値を演算により得ることが可能である。 When starting measurement, the robot control unit starts driving the robot arm, and the distance measurement sensor is set in advance from the outside of the sensing position below the sensing start position (black dot) in Fig. 4 on the XY plane. to the selected sensing start position. When the sensor drive signal is output from the robot drive signal generator when the distance measurement sensor reaches the sensing start position, the sensor drive signal is input to the sensor, and scanning by the sensor is started. In the example shown in Fig. 4, since the measurement object with a round hole in the center is measured, the measurement data when the position of the round hole is sensed (the distance between the sensor in the Z-axis direction and the measurement object) becomes a larger value than the measurement data of the position where the round hole is not open. By executing the sensing operation to the end point of the sensing scanning route, it is possible to acquire the measurement data at each sensing position. Therefore, as shown in FIG. Furthermore, based on these pieces of information, it is possible to obtain the central coordinate values of the round hole by calculation.
<計測データと動作データ>
 図5は、本実施形態において図4に示す方法で丸穴が空いた計測対象物を計測した場合の計測データとXY平面上におけるセンサー位置(動作データ)の情報を示すグラフの模式図である。図5の上段のグラフは、各時刻における計測データを示すグラフ、中央のグラフは、各時刻におけるX軸方向のセンサー位置を示すグラフ、下段のグラフは、各時刻におけるY軸方向のセンサー位置を示すグラフである。計測データのグラフにおいて、丸穴の位置を計測した時刻では、計測データが相対的に大きくなっている。また、センサーが図4に示すようなセンシング走査ルートを移動する場合には、X軸方向のセンサー位置は、図5中央のグラフに示す通り階段状に増加する。また、Y軸方向のセンサー位置は図5下段のグラフに示す通りノコギリ状に増減を繰り返す。
<Measurement data and operation data>
FIG. 5 is a schematic diagram of a graph showing measurement data and sensor position (operation data) information on the XY plane when a measurement object having a round hole is measured by the method shown in FIG. 4 in this embodiment. . The upper graph in FIG. 5 shows the measurement data at each time, the middle graph shows the sensor position in the X-axis direction at each time, and the lower graph shows the sensor position in the Y-axis direction at each time. It is a graph showing. In the measurement data graph, the measurement data is relatively large at the time when the position of the round hole is measured. Also, when the sensor moves along the sensing scanning route as shown in FIG. 4, the sensor position in the X-axis direction increases stepwise as shown in the central graph of FIG. Further, the sensor position in the Y-axis direction repeats increase and decrease in a sawtooth shape as shown in the lower graph of FIG.
 図6は、センサーにより計測された計測データを表形式で示したものである。図6に示す通り、計測データは、複数のスキャン情報で構成されており、各スキャン情報は、データナンバー、センサーの計測値(Z軸方向の計測距離)、時刻情報であるタイムスタンプ(例えばエポック時間)及び予め定められてた間隔で変化するセンサーの移動方向の座標(Y座標)を含んでる。ここで、センサーY座標の間隔は、センサーのセンシング周波数とロボットアームの移動速度に基づいて予め定めることができる。 Fig. 6 shows the measurement data measured by the sensor in tabular form. As shown in FIG. 6, the measurement data consists of a plurality of pieces of scan information, each of which includes a data number, a sensor measurement value (measured distance in the Z-axis direction), and a time stamp (e.g., epoch time) and the coordinate of the direction of movement of the sensor (Y coordinate) that changes at predetermined intervals. Here, the interval between the sensor Y coordinates can be determined in advance based on the sensing frequency of the sensor and the moving speed of the robot arm.
図7は、ロボットアームの動作実績を示す動作データを表形式で示したものである。動作データは、データナンバー、センサー位置のX座標、Y座標、Z座標、スキャン開始指令、及び時刻情報であるタイムスタンプ(例えばエポック時間)を含んでいる。ここで、スキャン開始指令は、ロボット駆動信号と共にスキャン開始指令が出力されていない場合に「0」となり、スキャン開始指令が出力された場合に「1」となる。データNo1153において、スキャン開始指令が「1」に変化しているため、エポック時刻「****6691」でスキャン開始指令がロボット制御部から出力されたことが分かる。一方で、図6に示す通り、計測データの最初のデータのエポック時刻は「****6698」となっているため、計測開始指令の出力を行うタイミングと、計測データの取得開始のタイミングには誤差が生じていることが分かる。本実施形態においては計測結果生成部において、図6に示す計測データから得られる計測開始時刻を利用して図7に示す動作データから同時刻(または略同一時刻)におけるセンサー位置のXYZの三次元座標情報を取得することができる。 FIG. 7 is a tabular representation of motion data indicating the motion results of the robot arm. The motion data includes a data number, X-coordinate, Y-coordinate, and Z-coordinate of the sensor position, scan start command, and time stamp (for example, epoch time). Here, the scan start command is "0" when the scan start command is not output together with the robot drive signal, and is "1" when the scan start command is output. In data No. 1153, since the scan start command has changed to "1", it can be seen that the scan start command was output from the robot control unit at the epoch time "****6691". On the other hand, as shown in FIG. 6, the epoch time of the first data of the measurement data is "****6698", so the timing of outputting the measurement start command and the timing of starting acquisition of the measurement data are different. It can be seen that there is an error in In this embodiment, the measurement result generation unit uses the measurement start time obtained from the measurement data shown in FIG. Coordinate information can be acquired.
上述したように、本実施形態では、計測データの最初の計測値に対応付けられたタイムスタンプの時刻情報に基づいて、略同一時刻のタイムスタンプを有する動作データを特定することで、特定した当該動作データに示される位置座標を計測開始された際のセンサーの位置であると推定することができる。また、センサーの計測スキャン周波数とロボットの直線動作速度の情報に基づいて予め設定されているスキャン位置のピッチ間隔を用いて、推定した計測開始時のセンサー位置座標を基準位置として、ピッチ間隔毎に計測データの計測値を並べることにより、計算コストを掛けずに正確な三次元の計測結果データを生成することができる。 As described above, in the present embodiment, based on the time information of the time stamp associated with the first measurement value of the measurement data, motion data having substantially the same time stamp is specified. It can be estimated that the position coordinates indicated in the motion data are the positions of the sensors when the measurement is started. In addition, using the pitch interval of the scan positions that are preset based on the measurement scan frequency of the sensor and the information on the linear movement speed of the robot, the estimated sensor position coordinates at the start of measurement are used as the reference position, and each pitch interval By arranging the measured values of the measurement data, it is possible to generate accurate three-dimensional measurement result data without incurring calculation costs.
<実施例2>
実施例1では、ロボット制御部からセンサー制御部へ計測開始指令を送信する例を示したが、本実施形態では、計測処理部204がロボット制御部から計測開始指令を受信した場合に、センサー駆動信号を生成してセンサー制御部へ送信する実施形態を説明する。本実施例において実施例1と同じ符号で表記される機能部は、同一動作を行うものとする。
<Example 2>
In the first embodiment, an example in which a measurement start command is transmitted from the robot control unit to the sensor control unit is shown. Embodiments are described that generate and send a signal to the sensor controller. In the present embodiment, functional units denoted by the same reference numerals as those in the first embodiment perform the same operations.
<計測システムの全体構成>
 図8は、実施例2の計測システム100の一例を示す図である。図8に示されるように、計測処理部204は、ロボット動作受信部1041、センサ情報受信部1042、計測結果生成部1043に加えて、更に信号検出部1044、センサー駆動信号生成部1045を備える。
<Overall configuration of measurement system>
FIG. 8 is a diagram illustrating an example of the measurement system 100 according to the second embodiment. As shown in FIG. 8 , the measurement processing unit 204 further includes a signal detection unit 1044 and a sensor drive signal generation unit 1045 in addition to a robot motion reception unit 1041 , a sensor information reception unit 1042 and a measurement result generation unit 1043 .
信号検出部1044は、受信したロボット駆動信号に計測開始指令を示す信号が含まれていることを検出し、計測開始指令を示す信号が含まれている場合には、センサー動作開始信号を送信する。センサー駆動信号生成部1045は、センサー動作開始信号を受信すると、センサー駆動信号を生成してセンサー制御部103に送信する。ここで、センサー駆動信号は、例えば、センサー23のセンシング動作期間中にHigh信号とLow信号が繰り返し発生する周期的なパルス信号であっても良い。この場合、センサー23は、High信号を受信したタイミングでセンシングを行い、センサー駆動信号のパルス信号周期に従って、センシング周期が変更可能となるように構成しても良い。センサー制御部103は、信号出力部1031と計測データ受信部1032を備えている。信号出力部103は、受信したセンサー駆動信号をセンサー23に送信する。 The signal detection unit 1044 detects that the received robot drive signal includes a signal indicating a measurement start command, and if the signal indicating a measurement start command is included, transmits a sensor operation start signal. . Upon receiving the sensor operation start signal, the sensor drive signal generator 1045 generates a sensor drive signal and transmits it to the sensor controller 103 . Here, the sensor drive signal may be, for example, a periodic pulse signal in which a High signal and a Low signal are repeatedly generated during the sensing operation period of the sensor 23 . In this case, the sensor 23 may perform sensing at the timing of receiving the High signal, and may be configured so that the sensing cycle can be changed according to the pulse signal cycle of the sensor drive signal. The sensor control section 103 has a signal output section 1031 and a measurement data reception section 1032 . The signal output unit 103 transmits the received sensor drive signal to the sensor 23 .
<計測システムの制御フローチャート>
 図9は、本実施形態における計測システムの制御フローチャートを示す図である。図9は、ロボット制御部102がロボット動作指令と共に計測開始指令を送信する場合を、フローチャートのスタートと定義した場合の図を示している。ロボット駆動信号生成部1021は、端末1からロボット動作指令を受信した場合に、ロボット駆動指令を生成する(ステップ301)。次に、ロボット駆動信号生成部1021は、ロボット駆動信号をロボット2及び計測処理部104に送信する(ステップ302)。ロボット2は受信したロボット駆動信号に従いロボットに搭載された複数のモーターを駆動する(ステップ303)。ロボット制御部102の信号出力部1022は、ロボット2から動作実績に関する情報を含む動作データを取得する(ステップ304)。
<Control flow chart of measurement system>
FIG. 9 is a diagram showing a control flowchart of the measurement system in this embodiment. FIG. 9 shows a diagram where the start of the flowchart is defined as the case where the robot control unit 102 transmits a measurement start command together with a robot operation command. The robot drive signal generator 1021 generates a robot drive command when receiving a robot operation command from the terminal 1 (step 301). Next, the robot drive signal generator 1021 transmits the robot drive signal to the robot 2 and the measurement processor 104 (step 302). The robot 2 drives a plurality of motors mounted on the robot according to the received robot drive signal (step 303). The signal output unit 1022 of the robot control unit 102 acquires motion data including information on the motion performance from the robot 2 (step 304).
 計測処理部104の信号検出部1041は、ステップ302においてロボット駆動信号生成部1021から受信したロボット駆動信号に計測開始指令が含まれているか否かを検出する(ステップ305)。信号検出部1044が上記指令がロボット駆動信号に含まれていると判断した場合に、センサー駆動信号生成部1045はセンサー駆動信号を生成して、センサー制御部103の信号出力部に送信する(ステップ306)。センサー23は、信号出力部1031を介して受信したセンサー駆動信号に従ってセンサーを駆動してセンシングを実施する(ステップ307)。センサー制御部103の計測データ受信部1032は、センサー23から計測データを取得する(ステップ308)。
<センサー駆動信号の生成方法>
 図10は、本実施形態において計測処理部で生成されるセンサー駆動信号の一例を示す図である。図10の上段からロボット駆動信号、センサー動作開始信号、センサー動作停止信号、センサー駆動信号、センサーの実動作をそれぞれ示している。ロボット駆動信号はロボット制御部102のロボット駆動信号生成部1021で生成される信号であり、駆動開始を指示するパルス信号と駆動終了を指示するパルス信号を有する信号である。
The signal detection unit 1041 of the measurement processing unit 104 detects whether or not the robot drive signal received from the robot drive signal generation unit 1021 in step 302 includes a measurement start command (step 305). When the signal detection unit 1044 determines that the command is included in the robot drive signal, the sensor drive signal generation unit 1045 generates a sensor drive signal and transmits it to the signal output unit of the sensor control unit 103 (step 306). The sensor 23 performs sensing by driving the sensor according to the sensor driving signal received through the signal output unit 1031 (step 307). The measurement data reception unit 1032 of the sensor control unit 103 acquires measurement data from the sensor 23 (step 308).
<How to generate a sensor drive signal>
FIG. 10 is a diagram showing an example of a sensor drive signal generated by the measurement processing section in this embodiment. From the top of FIG. 10, the robot drive signal, the sensor operation start signal, the sensor operation stop signal, the sensor drive signal, and the actual operation of the sensor are shown. The robot drive signal is a signal generated by the robot drive signal generator 1021 of the robot controller 102, and has a pulse signal instructing the start of driving and a pulse signal instructing the end of driving.
センサー動作開始信号とセンサー動作停止信号とセンサー駆動信号は、計測処理部104内のセンサー駆動信号生成部1045で生成される信号である。センサー動作開始信号は、センサーの動作開始を指示するパルス信号を含む信号であり、計測処理部内の信号検出部が取得したロボット駆動信号内に駆動開始のパルス信号を検出すると、即座にセンサー動作開始信号としてセンサーの動作開始を指示するパルス信号が生成される。同様に、センサー動作停止信号は、センサーの動作停止を指示するパルス信号を含む信号であり、計測処理部内の信号検出部が取得したロボット駆動信号内に駆動終了のパルス信号を検出すると、即座にセンサー動作開始信号としてセンサーの動作停止を指示するパルス信号が生成される。ロボット駆動信号内に駆動開始パルス信号や駆動終了パルス信号が発生してからセンサー動作開始信号やセンサー動作停止信号にパルス信号が生成されるまでには若干の遅延時間が生じることがある。 The sensor operation start signal, sensor operation stop signal, and sensor drive signal are signals generated by the sensor drive signal generator 1045 in the measurement processor 104 . The sensor operation start signal is a signal containing a pulse signal that instructs the sensor to start operating. When the signal detection unit in the measurement processing unit detects the drive start pulse signal in the robot drive signal acquired, the sensor operation starts immediately. A pulse signal is generated as a signal to instruct the start of operation of the sensor. Similarly, the sensor operation stop signal is a signal containing a pulse signal instructing to stop the operation of the sensor. A pulse signal instructing to stop the operation of the sensor is generated as a sensor operation start signal. A slight delay time may occur from the generation of the drive start pulse signal or drive end pulse signal in the robot drive signal to the generation of the pulse signal in the sensor operation start signal or sensor operation stop signal.
 センサー駆動信号生成部1045は、センサー動作開始信号に動作開始のパルス信号を生成すると同時に、HighとLowを周期的に繰り返すセンサー駆動信号を生成する。そのため、センサー動作開始信号の動作開始パルス信号の立ち上がりタイミングと、センサー駆動信号のパルス信号の立ち上がりタイミングはほぼ同時となる。センサー駆動信号のHigh側信号はセンサーにセンシング動作を行う指示であり、Low側信号はセンサーにセンシング動作を指示しない信号であるため、センサーの実動作はセンサー駆動信号のHighとLowのタイミングでセンシング動作実行とセンシング動作停止を繰り返し実施することになる。 The sensor drive signal generation unit 1045 generates a pulse signal for starting operation in the sensor operation start signal, and at the same time, generates a sensor drive signal that periodically repeats High and Low. Therefore, the rise timing of the operation start pulse signal of the sensor operation start signal and the rise timing of the pulse signal of the sensor drive signal are almost the same. The High side signal of the sensor drive signal is an instruction to perform sensing operation to the sensor, and the Low side signal is a signal not to instruct the sensor to perform sensing operation. Operation execution and sensing operation stop are repeated.
 なお、センサー駆動信号生成部は、任意のタイミングでパルスが立ち上がり、かつ任意の周期のパルス信号をセンサー駆動信号として生成できるように構成することができる。つまり、内部クロックと同期した基準パルス信号を予め準備しておいて当該基準パルス信号のパルス立ち上がりのタイミングでセンサー駆動信号のパルスを立ち上げるのではなく、ロボット駆動信号の駆動開始のパルス信号を受信した際に即座に立ち上がるパルス信号を生成することにより、ロボット駆動信号の駆動開始信号立ち上がりからセンサー駆動信号の立ち上がりまでの遅延時間のばらつきを低減することができ、また演算処理能力の十分に高いハードウェアを用いる場合には、パルス生成の処理時間に起因する遅延時間を無視できるレベルまで低減して実質ゼロにすることも可能である。 It should be noted that the sensor drive signal generation section can be configured so that the pulse rises at any timing and can generate a pulse signal with any period as the sensor drive signal. In other words, instead of preparing in advance a reference pulse signal synchronized with the internal clock and raising the pulse of the sensor drive signal at the pulse rising timing of the reference pulse signal, the pulse signal for starting the drive of the robot drive signal is received. By generating a pulse signal that rises immediately when the robot drive signal is detected, it is possible to reduce variations in the delay time from the rise of the drive start signal of the robot drive signal to the rise of the sensor drive signal. When using wear, it is also possible to reduce the delay time due to the processing time of pulse generation to a negligible level and make it substantially zero.
 上述したように、ロボットを駆動させるための信号を取得してセンサーが駆動を開始するトリガとなる信号を生成する計測処理部を備えることにより、ロボットとセンサーの同期を行うために、ロボット制御部のソフトウェア等の変更を不要もしくは少なくすることができる。更には、任意のロボットと任意のセンサーの組み合わせに対して同期処理を行う際にも、センサーの駆動開始に関する指令を生成する計測処理部を適切に設計すれば、ロボット制御部やセンサー制御部のソフトウェア変更を加える必要なくなる、又は加える変更の量を少なくすることが可能となる。 As described above, by providing a measurement processing unit that acquires a signal for driving the robot and generates a signal that triggers the sensor to start driving, the robot control unit can synchronize the robot and the sensor. It is possible to eliminate or reduce the need to change software, etc. Furthermore, even when synchronous processing is performed for a combination of an arbitrary robot and an arbitrary sensor, if the measurement processing section that generates a command to start driving the sensors is appropriately designed, the robot control section and sensor control section No software changes need to be made or the amount of changes made can be reduced.
 図11は、本実施形態において計測処理部でセンサー駆動信号を生成する他の方法の一例を示す図であり、特にエンコーダパルス信号に基づいてセンサー駆動信号を生成する例を示す図である。図10では、計測処理部が、ロボットの駆動開始を指示するパルス信号と駆動終了を指示するパルス信号を有する信号を取得する例を示したが、図7では、モーターの駆動期間中にHighとLowが繰り返し発生する周期的なパルス信号(例えばエンコーダパルス信号)を取得する例を説明する。この場合、計測処理部の信号検出部1041は、ロボット駆動信号のパルスの立ち上がりを検出して、センサー駆動信号生成部でセンサー動作開始信号を生成することができる。また、駆動開始時と同様に、駆動終了時においても、ロボット駆動信号のパルスが所定時間以上出現しないことを検出して、センサー駆動信号生成部でセンサー動作停止信号を生成することができる。 FIG. 11 is a diagram showing an example of another method of generating a sensor driving signal in the measurement processing section in this embodiment, and particularly showing an example of generating a sensor driving signal based on an encoder pulse signal. FIG. 10 shows an example in which the measurement processing unit acquires a signal having a pulse signal instructing the start of driving of the robot and a pulse signal instructing the end of driving. An example of acquiring a periodic pulse signal (for example, an encoder pulse signal) in which Low is repeatedly generated will be described. In this case, the signal detection unit 1041 of the measurement processing unit can detect the rise of the pulse of the robot drive signal, and the sensor drive signal generation unit can generate the sensor operation start signal. Also, in the same way as when driving is started, when driving is finished, it is possible to detect that the pulse of the robot driving signal does not appear for a predetermined time or longer, and generate a sensor operation stop signal in the sensor driving signal generation section.
<実施例3>
 図12は、本実施形態においてロボットの動作データに基づいてセンサーを同期させる場合の各構成要素の機能を示す図である。図2では、計測処理部が、ロボット制御部からロボットに送信されるロボット駆動信号を取得して、当該ロボット駆動信号に基づいてセンサー駆動信号を生成する例を説明したが、図12では、ロボットから取得した動作データに基づいて、センサー駆動信号を生成する例を説明する。以下に、図12に示す変形例の図2とは異なる部分について説明する。
<Example 3>
FIG. 12 is a diagram showing the function of each component when synchronizing the sensors based on the motion data of the robot in this embodiment. FIG. 2 illustrates an example in which the measurement processing unit acquires the robot driving signal transmitted from the robot control unit to the robot and generates the sensor driving signal based on the robot driving signal. An example of generating a sensor drive signal based on operation data acquired from the will be described. The parts of the modification shown in FIG. 12 that are different from those in FIG. 2 will be described below.
 ロボットから出力される動作データは、ロボットの動作実績に関する情報であって、例えば、ロボットの動作開始に関する情報を含む情報とすることができる。この場合には、計測処理部504内の信号検出部5041は、動作データを取得して、ロボットが動作を開始したことを示す情報を含む場合に、センサー動作開始信号を生成してセンサー駆動信号生成部に送信する。 The motion data output from the robot is information related to the robot's performance record, and can be information including information related to the start of the robot's motion, for example. In this case, the signal detection unit 5041 in the measurement processing unit 504 acquires the motion data, and if the motion data includes information indicating that the robot has started motion, generates a sensor motion start signal, and generates a sensor drive signal. Send to the generator.
 動作データの他の例として、センサーの位置座標情報を含む情報とすることができる。この場合には、信号検出部5041は、動作データを取得して、センサーの位置座標が事前に設定した位置に達したことを示す情報を含む場合に、センサー動作開始信号を生成してセンサー駆動信号生成部に送信する。 Another example of motion data can be information including sensor position coordinate information. In this case, the signal detection unit 5041 acquires the operation data, and if the information indicating that the position coordinate of the sensor has reached a preset position, generates a sensor operation start signal to drive the sensor. Send to the signal generator.
 動作データの更に他の例として、センサーの速度情報を含む情報とすることができる。センサーの速度情報としては、モーターの電流又は電圧又はこれらの組合せの情報であっても良い。この場合には、信号検出部5041は、動作データを取得して、センサーの速度が事前に設定した値に達したことを示す情報を含む場合に、センサー動作開始信号を生成してセンサー駆動信号生成部に送信する。 As yet another example of motion data, information including sensor speed information can be used. The sensor speed information may be motor current or voltage or a combination thereof. In this case, the signal detection unit 5041 acquires the operation data, and if the sensor speed includes information indicating that the speed of the sensor has reached a preset value, the signal detection unit 5041 generates a sensor operation start signal and a sensor drive signal. Send to the generator.
 上記した動作データを受信して、信号検出部5041がセンサー動作開始信号を生成してセンサー駆動信号生成部に送信すると、センサー駆動信号生成部はセンサー駆動信号を生成して、センサー制御部にセンサー駆動信号を送信する。 When the signal detection unit 5041 receives the operation data described above and generates a sensor operation start signal and transmits it to the sensor drive signal generation unit, the sensor drive signal generation unit generates a sensor drive signal and sends the sensor to the sensor control unit. Send the drive signal.
 また、センサー駆動信号の周期を任意の値に変更することができるようにセンサー駆動信号生成部を構成する場合には、受信した動作データが予め定められた条件を満たすか否かを信号検出部で検出することにより、センサー駆動信号の周期を変更するようにしても良い。例えば、センサーの位置が、他エリアよりも高い精度でセンシングを行いたいエリアに進入したことをセンサーの位置座標情報により検出して、他エリアよりもセンサー駆動信号の周期を短くすることで、計測対象エリアの中で任意のエリアについて高精度な計測を行うことが可能となる。また、他の例として、センサーの位置センシング走査ルート上の折り返しエリアに位置することをセンサーの位置座標情報により検出して、他エリアよりもセンサー駆動信号の周期を短くすることで、ロボットアームが直線動作ではない複雑な動作を行う期間について高精度な計測を行うことが可能となる。更に他の例として、センサーの移動速度が、所定速度よりも高くなった場合に、センサー駆動信号の周期を短くすることで、速度変化によるセンシングの位置間隔のばらつきを低減することが可能となる。 Further, when the sensor drive signal generation section is configured so that the cycle of the sensor drive signal can be changed to an arbitrary value, the signal detection section detects whether or not the received operation data satisfies a predetermined condition. The period of the sensor drive signal may be changed by detecting the . For example, by detecting that the sensor position has entered an area where you want to perform sensing with higher accuracy than other areas based on the sensor's positional coordinate information, and shortening the cycle of the sensor drive signal compared to other areas, measurement can be performed. High-precision measurement can be performed for any area in the target area. As another example, the position of the robot arm is detected by the positional coordinate information of the sensor in the turn-around area on the sensor's position sensing scanning route, and the period of the sensor drive signal is shortened compared to other areas. It is possible to perform highly accurate measurement of a period during which a complex motion other than a linear motion is performed. As yet another example, when the moving speed of the sensor exceeds a predetermined speed, by shortening the cycle of the sensor driving signal, it is possible to reduce variations in sensing position intervals due to changes in speed. .
 図13は、本実施形態における計測システムの他の制御フローチャートの一例を示す図である。図13は、端末1から計測開始指令を受信したロボット動作指令部1011がロボット動作指令を送信する場合を、フローチャートのスタートと定義した場合の図を示している。ロボット駆動信号生成部1021は、ロボット動作指令を受信した場合に、ロボット駆動指令を生成する(ステップ1301)。次に、ロボット駆動信号生成部1021は、ロボット駆動信号をロボット2に送信する(ステップ1302)。ロボット2は受信したロボット駆動信号に従いロボットに搭載された複数のモーターを駆動する(ステップ1303)。ロボット2は、ロボット2の動作実績に関する情報を含む動作データを計測処理部の信号検出部5041及びロボット制御部の信号出力部1022に送信する(ステップ1304)ロボット制御部102の信号出力部1022は、ロボット2から動作実績に関する情報を含む動作データを取得する(ステップ1305)。 FIG. 13 is a diagram showing an example of another control flowchart of the measurement system according to this embodiment. FIG. 13 shows a diagram where the start of the flowchart is defined as the case where the robot operation command unit 1011 receives the measurement start command from the terminal 1 and transmits the robot operation command. The robot driving signal generator 1021 generates a robot driving command when receiving a robot operation command (step 1301). Next, the robot driving signal generator 1021 transmits a robot driving signal to the robot 2 (step 1302). The robot 2 drives a plurality of motors mounted on the robot according to the received robot drive signal (step 1303). The robot 2 transmits motion data including information about the motion performance of the robot 2 to the signal detection unit 5041 of the measurement processing unit and the signal output unit 1022 of the robot control unit (step 1304). , the motion data including the information on the motion results is acquired from the robot 2 (step 1305).
計測処理部504の信号検出部5044は、ステップ1304においてロボット2から送信された動作データが所定の条件を満たしているか否かを検出する。例えば、動作データがロボットの動作が開始されたことを示す情報を含む、又はセンサーの位置座標が事前に設定した位置に達したことを示す情報を含む、又はセンサーの速度が事前に設定した値に達したことを示す情報を含む場合には、これを検出する(ステップ1306)。信号検出部5044により動作データが所定の条件を満たしていると判断した場合に、センサー駆動信号生成部5045はセンサー駆動信号を生成して、センサー制御部103の信号出力部に送信する(ステップ1307)。センサー23は、信号出力部1031を介して受信したセンサー駆動信号に従ってセンサーを駆動してセンシングを実施する(ステップ1308)。センサー制御部103の計測データ受信部1032は、センサー23から計測データを取得する(ステップ1309)。 The signal detection section 5044 of the measurement processing section 504 detects whether or not the motion data transmitted from the robot 2 in step 1304 satisfies a predetermined condition. For example, the motion data includes information indicating that the robot has started to move, or includes information indicating that the position coordinates of the sensor have reached a preset position, or the speed of the sensor is a preset value. If it contains information indicating that it has reached , it is detected (step 1306). When the signal detection unit 5044 determines that the motion data satisfies the predetermined condition, the sensor drive signal generation unit 5045 generates a sensor drive signal and transmits it to the signal output unit of the sensor control unit 103 (step 1307). ). The sensor 23 performs sensing by driving the sensor according to the sensor drive signal received through the signal output unit 1031 (step 1308). The measurement data reception unit 1032 of the sensor control unit 103 acquires measurement data from the sensor 23 (step 1309).
 計測結果生成部1012は、ロボット制御部102の信号出力部1022から動作データを、計測データ受信部1032から計測データをそれぞれ取得して、計測結果データを生成する。ここで、計測結果生成部1012は、計測データに含まれる計測開始時刻の情報と、動作データに含まれる動作開始時刻の情報を対応づけることにより、計測対象に関する計測結果データを生成する。このように計測開始時刻に基づいて計測データと動作データの対応付けを行うことにより、計測データを構成する複数の検出値と、当該検出値を取得したときのセンサーの位置座標情報、速度情報、もしくは姿勢の情報を対応付けて取得することができる。 The measurement result generation unit 1012 acquires motion data from the signal output unit 1022 of the robot control unit 102 and measurement data from the measurement data reception unit 1032, and generates measurement result data. Here, the measurement result generation unit 1012 generates measurement result data related to the measurement target by associating the measurement start time information included in the measurement data with the action start time information included in the action data. By associating the measurement data with the motion data based on the measurement start time in this way, a plurality of detection values constituting the measurement data, position coordinate information of the sensor when the detection values were acquired, speed information, Alternatively, posture information can be associated and acquired.
 以上、本実施形態について説明したが、上記実施形態は本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更、改良され得ると共に、本発明にはその等価物も含まれる。 Although the present embodiment has been described above, the above embodiment is intended to facilitate understanding of the present invention, and is not intended to limit and interpret the present invention. The present invention can be modified and improved without departing from its spirit, and the present invention also includes equivalents thereof.
  1、10    端末
  2    ロボット
  21   アーム
  23   センサー
  100  計測システム
  102  ロボット制御部
  103  センサー制御部
  104、204、504  計測処理部
  1011 ロボット動作指令部
  1012 計測結果生成部
  1021 ロボット駆動信号生成部
  1022 信号出力部
  1031 信号出力部
  1032 計測データ受信部
  1041 ロボット動作受信部
  1042 センサ情報受信部
  1043 計測結果生成部
Reference Signs List 1, 10 terminal 2 robot 21 arm 23 sensor 100 measurement system 102 robot control unit 103 sensor control unit 104, 204, 504 measurement processing unit 1011 robot operation command unit 1012 measurement result generation unit 1021 robot drive signal generation unit 1022 signal output unit 1031 Signal output unit 1032 Measurement data reception unit 1041 Robot operation reception unit 1042 Sensor information reception unit 1043 Measurement result generation unit

Claims (9)

  1.  ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測システムであって、
     前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信部と、
    前記センサーにより得られる前記計測データを受信するセンサー情報受信部と、
    前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定し、特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成部と、を備える計測システム。
    A measurement system that performs measurement processing based on measurement data obtained by a sensor mounted on a robot,
    a robot motion receiving unit that receives robot motion data indicating position information of the sensor mounted on the robot;
    a sensor information receiving unit that receives the measurement data obtained by the sensor;
    Based on the time information included in the robot motion data and the measurement data, the robot motion data matching or substantially the same time as the time when the first measurement data was obtained is specified, and the specified robot motion data is determined. and a measurement result generator that generates a measurement result using the indicated position information as a measurement start position.
  2. 請求項1に記載の計測システムであって、
    前記センサーは、センサーから計測対象物の表面までの距離を計測する距離センサーであり、
    前記計測結果生成部は、前記距離センサーによる計測データと、予め設定された前記距離センサーによる計測位置間隔に基づいて計測対象物の表面の三次元座標を計測結果として生成する計測システム。
    The measurement system according to claim 1,
    The sensor is a distance sensor that measures the distance from the sensor to the surface of the measurement object,
    The measurement system in which the measurement result generation unit generates the three-dimensional coordinates of the surface of the object to be measured as a measurement result based on the measurement data from the distance sensor and a preset measurement position interval from the distance sensor.
  3. 請求項1又は2に記載の計測システムであって、
    前記センサーは、前記ロボットに搭載された前記センサーの位置が予め設定された計測開始位置に到達した場合にロボット制御部により生成される計測開始指令に基づいて計測を開始する計測システム。
    The measurement system according to claim 1 or 2,
    A measurement system in which the sensor starts measurement based on a measurement start command generated by a robot control unit when the position of the sensor mounted on the robot reaches a preset measurement start position.
  4.  請求項1に記載の計測システムであって、
     前記ロボットを制御するロボット制御部からロボットに送信される前記ロボット駆動信号を取得し、前記ロボット駆動信号に前記センサーに計測を開始させる計測開始指令が含まれる場合に、前記センサーの計測動作を開始させるトリガとなるセンサー駆動信号を生成するセンサー駆動信号生成部を備える計測システム。
    The measurement system according to claim 1,
    Obtaining the robot drive signal transmitted to the robot from a robot control unit that controls the robot, and starting the measurement operation of the sensor when the robot drive signal includes a measurement start command for causing the sensor to start measurement. A measurement system comprising a sensor drive signal generator that generates a sensor drive signal that serves as a trigger for
  5.  ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測方法であって、
     前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信ステップと、
    前記センサーにより得られる前記計測データを受信するセンサー情報受信ステップと、
    前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定するステップと、
    特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成ステップと、を備える計測方法。
    A measurement method for performing measurement processing based on measurement data obtained by a sensor mounted on a robot,
    a robot motion receiving step of receiving robot motion data indicating position information of the sensor mounted on the robot;
    a sensor information receiving step of receiving the measurement data obtained by the sensor;
    a step of identifying the robot motion data that matches or is substantially the same as the time when the first measurement data is obtained, based on the time information included in the robot motion data and the measurement data, respectively;
    and a measurement result generation step of generating a measurement result using position information indicated by the identified robot motion data as a measurement start position.
  6. 請求項5に記載の計測方法であって、
    前記センサーは、センサーから計測対象物の表面までの距離を計測する距離センサーであり、
    前記計測結果生成ステップは、前記距離センサーによる計測データと、予め設定された前記距離センサーによる計測位置間隔に基づいて計測対象物の表面の三次元座標を計測結果として生成するステップである計測方法。
    The measuring method according to claim 5,
    The sensor is a distance sensor that measures the distance from the sensor to the surface of the measurement object,
    The measurement result generating step is a step of generating the three-dimensional coordinates of the surface of the object to be measured as a measurement result based on the measurement data from the distance sensor and a preset measurement position interval from the distance sensor.
  7. 請求項5又は6に記載の計測方法であって、
    前記ロボットに搭載された前記センサーの位置が予め設定された計測開始位置に到達した場合にロボット制御部により生成される計測開始指令に基づいて計測を開始するステップを更に備える計測方法。
    The measuring method according to claim 5 or 6,
    The measurement method further comprising the step of starting measurement based on a measurement start command generated by a robot controller when the position of the sensor mounted on the robot reaches a preset measurement start position.
  8. 請求項5に記載の計測方法であって、
     前記ロボットを制御するロボット制御部からロボットに送信される前記ロボット駆動信号を取得するステップと、
    前記ロボット駆動信号に前記センサーに計測を開始させる計測開始指令が含まれる場合に、前記センサーの計測動作を開始させるトリガとなるセンサー駆動信号を生成するステップと、を備える計測方法。
    The measuring method according to claim 5,
    a step of acquiring the robot drive signal transmitted to the robot from a robot control unit that controls the robot;
    and generating a sensor drive signal that serves as a trigger for starting a measurement operation of the sensor when the robot drive signal includes a measurement start command for causing the sensor to start measurement.
  9.  ロボットに搭載されたセンサーにより得られる計測データに基づいて計測処理を行う計測方法をコンピュータに実行させるためのプログラムであって、
     前記プログラムは、前記計測方法として、
     前記ロボットに搭載された前記センサーの位置情報を示すロボット動作データを受信するロボット動作受信ステップと、
    前記センサーにより得られる前記計測データを受信するセンサー情報受信ステップと、
    前記ロボット動作データおよび前記計測データにそれぞれ含まれる時刻情報に基づいて、最初の計測データが得られた時刻と一致する又は略同一時刻の前記ロボット動作データを特定するステップと、
    特定した前記ロボット動作データの示す位置情報を計測開始位置として計測結果を生成する計測結果生成ステップと、
    をコンピュータに実行させるプログラム。
     
     
     
    A program for causing a computer to execute a measurement method for performing measurement processing based on measurement data obtained by a sensor mounted on a robot,
    The program, as the measurement method,
    a robot motion receiving step of receiving robot motion data indicating position information of the sensor mounted on the robot;
    a sensor information receiving step of receiving the measurement data obtained by the sensor;
    a step of identifying the robot motion data that matches or is substantially the same as the time when the first measurement data is obtained, based on the time information included in the robot motion data and the measurement data, respectively;
    a measurement result generating step of generating a measurement result using position information indicated by the specified robot motion data as a measurement start position;
    A program that makes a computer run


PCT/JP2022/030373 2021-08-10 2022-08-09 Measurement system, measurement method, and program WO2023017818A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021130610A JP6964917B1 (en) 2021-08-10 2021-08-10 Measurement system, measurement method, program
JP2021-130610 2021-08-10

Publications (1)

Publication Number Publication Date
WO2023017818A1 true WO2023017818A1 (en) 2023-02-16

Family

ID=78466235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/030373 WO2023017818A1 (en) 2021-08-10 2022-08-09 Measurement system, measurement method, and program

Country Status (2)

Country Link
JP (2) JP6964917B1 (en)
WO (1) WO2023017818A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024920A (en) * 2003-04-28 2012-02-09 3D Scanners Ltd Cmm arm with exoskeleton
JP2019007983A (en) * 2018-09-26 2019-01-17 キヤノン株式会社 Measurement device, processing device, and article manufacturing method
JP2021062978A (en) * 2018-10-30 2021-04-22 株式会社Mujin Robotic system with automatic package scan and registration mechanism, and method of operating the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012024920A (en) * 2003-04-28 2012-02-09 3D Scanners Ltd Cmm arm with exoskeleton
JP2019007983A (en) * 2018-09-26 2019-01-17 キヤノン株式会社 Measurement device, processing device, and article manufacturing method
JP2021062978A (en) * 2018-10-30 2021-04-22 株式会社Mujin Robotic system with automatic package scan and registration mechanism, and method of operating the same

Also Published As

Publication number Publication date
JP2023025396A (en) 2023-02-22
JP6964917B1 (en) 2021-11-10
JP2023025638A (en) 2023-02-22

Similar Documents

Publication Publication Date Title
JP5311294B2 (en) Robot contact position detector
JP5670416B2 (en) Robot system display device
AU2011302331B2 (en) Method and apparatus for controlling a surface scanning coordinate measuring machine
US20190061150A1 (en) Robot system
JP2019119027A (en) Method of controlling robot system, and robot system
CN108021089B (en) Control system, control method thereof, and computer-readable storage medium
CN111844087A (en) Vibration display device, operation program creation device, and system
WO2023017818A1 (en) Measurement system, measurement method, and program
EP3112895A1 (en) Optical probe and measuring apparatus
WO2022201967A1 (en) Measurement system, measurement method, and program
JP4876141B2 (en) Work guide system, work guide method, and recording medium recording the work guide method
US10705503B2 (en) Control system, and control method and program for control system
US20180120805A1 (en) Control system, and control method and program for control system
JP2020069614A (en) Robot system
US10480933B2 (en) Control system, and control method and program for control system
EP3315899A1 (en) Control system, control method and program for control system
JP2019158385A (en) measuring device
JP2008122173A (en) Apparatus, method and program for specifying movement direction, and electronic equipment
JP2000237980A (en) Work position detecting method of robot

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855880

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE