WO2023017560A1 - Evaluation system and evaluation program for evaluating machined surface quality - Google Patents
Evaluation system and evaluation program for evaluating machined surface quality Download PDFInfo
- Publication number
- WO2023017560A1 WO2023017560A1 PCT/JP2021/029508 JP2021029508W WO2023017560A1 WO 2023017560 A1 WO2023017560 A1 WO 2023017560A1 JP 2021029508 W JP2021029508 W JP 2021029508W WO 2023017560 A1 WO2023017560 A1 WO 2023017560A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- machined surface
- machined
- result
- analysis
- difference
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims abstract description 47
- 238000004458 analytical method Methods 0.000 claims abstract description 81
- 238000004364 calculation method Methods 0.000 claims abstract description 39
- 238000004441 surface measurement Methods 0.000 claims abstract description 28
- 238000003754 machining Methods 0.000 claims abstract description 21
- 238000005211 surface analysis Methods 0.000 claims abstract description 20
- 238000005259 measurement Methods 0.000 claims abstract description 14
- 238000004088 simulation Methods 0.000 claims abstract description 14
- 238000000034 method Methods 0.000 claims description 18
- 238000005520 cutting process Methods 0.000 claims description 15
- 230000002457 bidirectional effect Effects 0.000 claims description 7
- 238000005315 distribution function Methods 0.000 claims description 7
- 238000012545 processing Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 238000007689 inspection Methods 0.000 description 6
- 238000013441 quality evaluation Methods 0.000 description 3
- 238000010801 machine learning Methods 0.000 description 2
- 230000015654 memory Effects 0.000 description 2
- 101000740205 Homo sapiens Sal-like protein 1 Proteins 0.000 description 1
- 102100037204 Sal-like protein 1 Human genes 0.000 description 1
- 102100037205 Sal-like protein 2 Human genes 0.000 description 1
- 101710192308 Sal-like protein 2 Proteins 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 230000002950 deficient Effects 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B21/00—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant
- G01B21/30—Measuring arrangements or details thereof, where the measuring technique is not covered by the other groups of this subclass, unspecified or not relevant for measuring roughness or irregularity of surfaces
Definitions
- the present invention relates to an evaluation system and evaluation program for evaluating machined surface quality, and more particularly to an evaluation system and evaluation program for evaluating the machined surface quality of a workpiece machined by a machine tool.
- Patent Document 1 A machined surface quality evaluation device capable of quantifying an evaluation index of a non-defective work is described in Patent Document 1, for example.
- Patent Literature 1 describes that a machined surface quality evaluation device determines an evaluation result of the machined surface quality of a work by an observer based on the inspection result of the machined surface quality of the work by an inspection device. Then, in Patent Document 1, the machined surface quality evaluation device includes a machine learning device that learns the evaluation result of the machined surface quality of the workpiece by the observer corresponding to the inspection result by the inspection device, and the machine learning device is the inspection device.
- a state observation unit that observes the result of inspection of the quality of the machined surface of the workpiece as a state variable
- a label data acquisition unit that acquires label data indicating the evaluation result of the quality of the machined surface of the workpiece by the observer
- a state variable that learns by associating with
- a support device includes a state information acquisition unit that acquires grinding conditions including setting states of a plurality of operation command data as state information, and an evaluation result of an evaluation object obtained under the grinding conditions, such as a grinding An evaluation result acquisition unit that acquires the grinding quality of the workpiece after processing, a reward calculation unit that calculates a reward for the state information based on the evaluation result, and a reinforcement learning based on the state information and the reward, generated in the state information.
- a policy storage unit for storing a policy regarding adjustment of the operation command data according to the state information and the policy, and operation command data to be adjusted and an adjustment amount of the operation command data from among a plurality of candidates for the operation command data that can be adjusted based on the state information and the policy. and an action information output unit capable of outputting the content of the decision made by the action decision unit to the control device as action information.
- a first aspect of the present disclosure utilizes position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool to obtain a machining result
- a machined surface simulator that simulates the machined surface of a machined surface analysis unit that outputs a first analysis result in which the state of the machined surface is quantified based on the result of the machined surface simulation by the machined surface simulator unit; a machined surface measurement analysis unit that outputs a second analysis result in which the state of the machined surface is quantified based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information; a difference calculation unit that calculates the difference between the first analysis result and the second analysis result; is a rating system with
- a second aspect of the present disclosure provides a computer with: A process of simulating a machined surface of a machining result using position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool; A process of outputting a first analysis result in which the state of the machined surface is digitized based on the result of the simulation of the machined surface; A process of outputting a second analysis result in which the state of the machined surface is digitized based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information; a process of calculating a difference between the first analysis result and the second analysis result; is an evaluation program that executes
- FIG. 1 is a block diagram showing a configuration example of an evaluation system according to an embodiment of the present disclosure
- FIG. 10 is a diagram showing a first display example of an image displayed on the display screen of the result display section of the evaluation system
- FIG. 11 is a diagram showing a second display example of an image displayed on the display screen of the result display section of the evaluation system
- 4 is a flow chart showing the operation of the evaluation system according to one embodiment of the present disclosure
- FIG. 1 is a block diagram showing one configuration example of an evaluation system according to one embodiment of the present disclosure.
- the evaluation system 10 for evaluating the machined surface quality of the present embodiment includes a machined surface simulator 11, a machined surface analysis unit 12, a machined surface measurement analysis unit 13, a difference calculation unit 14, and a result display unit 15. , and a display setting unit 16 .
- FIG. 1 also shows a workpiece 30, a machining surface measuring device 20 for measuring the machining surface of the machining workpiece 30, and a machine tool 40 for producing the machining workpiece 30.
- FIG. 1 shows a machined surface simulator 11, a machined surface analysis unit 12, a machined surface measurement analysis unit 13, a difference calculation unit 14, and a result display unit 15.
- FIG. 1 also shows a workpiece 30, a machining surface measuring device 20 for measuring the machining surface of the machining workpiece 30, and a machine tool 40 for producing the machining workpiece 30.
- the machined surface simulator 11 calculates a portion of the machined surface to be machined based on tool information having a feature amount including at least the shape of the cutting tool and position information for machining the workpiece using the cutting tool, and performs a machined surface simulation.
- the tool information is, for example, the type of cutting tool such as a ball end mill, and the shape of the tool such as the ball radius.
- the position information is, for example, trajectory data of a machining program, trajectory data after processing such as interpolation and acceleration/deceleration by a computer numerical controller (CNC), trajectory data of servo feedback of a servo control device that controls a motor, or Tool movement trajectory data such as scale feedback trajectory data of a linear scale attached to a machine.
- CNC computer numerical controller
- the machined surface analysis unit 12 Based on the machining simulation results output from the machined surface simulator 11, the machined surface analysis unit 12 obtains a first surface texture parameter, which is a first analysis result of analyzing the state of the machined surface, and calculates a difference calculation unit 14. output to The first surface quality parameter is the analysis result of the ideal machined surface.
- Surface texture parameters are parameters for evaluating surface roughness, for example, parameters defined in ISO 25178, arithmetic mean height Sa, maximum height Sz, surface texture aspect ratio (autocorrelation) Str, minimum autocorrelation length Sal, root mean square slope Sdq, and the like can be used.
- the machined surface measurement analysis unit 13 obtains a second surface texture parameter, which is a second analysis result, from the measured surface data (measurement result) input from the machined surface measurement device 20, and outputs the second surface texture parameter to the difference calculation unit 14. Output.
- the second surface quality parameter is an analysis result of the measured processed surface based on the measured surface data.
- height data is required.
- the height data may be graphed height data.
- the machined surface measuring device 20 measures the machined workpiece 30 machined by the machine tool 40 based on the position information, and inputs height data, which is actually measured surface data, to the machined surface measurement analysis unit 13 .
- the difference calculator 14 calculates the difference between the first surface texture parameter output from the machined surface analysis unit 12 and the second surface texture parameter output from the machined surface measurement analysis unit 13 .
- the first surface texture parameters output from the machined surface analysis unit 12 include an arithmetic mean height Sa1, a maximum height Sz1, a surface texture aspect ratio (autocorrelation) Str1, a minimum autocorrelation length Sal1, and a root mean square Let be the square root slope Sdq1.
- the second surface texture parameters output from the machined surface measurement analysis unit 13 are the arithmetic mean height Sa2, the maximum height Sz2, the surface texture aspect ratio (autocorrelation) Str2, the minimum autocorrelation length Sal2, and the square Suppose that the root-mean-square slope is Sdq2.
- ) of the arithmetic mean height Sa, the difference ⁇ Sz ( ⁇ Sz
- ) of the maximum height Sz, and the aspect ratio of the surface texture ( Autocorrelation) Str difference ⁇ Str ( ⁇ Str
- ), minimum autocorrelation length Sal difference ⁇ Sal ( ⁇ Sal
- ) and root mean square slope Sdq difference ⁇ Sdq ( ⁇ Sdq
- the difference calculation unit 14 outputs the obtained difference ⁇ Sa, difference ⁇ Sz, difference ⁇ Str, difference ⁇ Sal, and difference ⁇ Sdq to the result display unit 15 .
- the difference calculation unit 14 outputs the obtained differences together with the first and second surface texture parameters corresponding to each difference to the result display unit 15 .
- the difference in the surface texture parameters output from the difference calculation unit 14 may not be all of the difference ⁇ Sa, the difference ⁇ Sz, the difference ⁇ Str, the difference ⁇ Sal, and the difference ⁇ Sdq, and may be one or more of these differences. Alternatively, it may be a value obtained by weighting and adding a plurality of these differences.
- the information output from the difference calculation unit 14 only needs to include the difference in the surface texture parameters, and the information other than the difference is appropriately determined according to the information displayed on the result display unit 15.
- the difference calculation unit 14 displays the difference between the first surface texture parameter and the second surface texture parameter. may be output to the result display unit 15.
- the result display unit 15 may select and display information to be displayed from the information output from the difference calculation unit 14 based on display items set by the display setting unit 16, which will be described later.
- Table 1 is a table showing five differences and the first and second surface texture parameters corresponding to each difference, which are output from the difference calculation section 14 .
- the ideal surface texture parameter represents the first surface texture parameter
- the measured surface texture parameter represents the second surface texture parameter
- the difference surface texture parameter represents the first surface texture parameter. The difference from the second surface texture parameter is shown.
- the result display unit 15 uses the display setting unit 16 to display the difference between the first and second surface texture parameters output from the difference calculation unit 14 and the first and second surface texture parameters corresponding to each difference. Display with the set display method.
- the display setting unit 16 sets display items and a display format to be displayed on the result display unit 15 .
- the display setting unit 16 sets, as display items, a first surface texture parameter that is an ideal surface texture parameter, a second surface texture parameter that is an actually measured surface texture parameter, and a first surface texture parameter and a second surface texture parameter. Set the difference from the property parameter, and set the radar chart as the display format.
- the first and second surface texture parameters are respectively arithmetic mean height Sa, maximum height Sz, surface texture aspect ratio (autocorrelation) Str, minimum autocorrelation length Sal, and root mean square slope Sdq is.
- the result display unit 15 generates an image to be displayed on the display screen based on the display items and the display format set by the display setting unit 16, and displays the image on the display screen.
- FIG. 2 is a diagram showing a first display example of an image displayed on the display screen of the result display section.
- the thick solid line indicates the first surface texture parameter, which is the ideal surface texture parameter
- the thick dashed line indicates the second surface texture parameter, which is the measured surface texture parameter.
- the arithmetic mean height Sa, the maximum height Sz, the surface texture aspect ratio (autocorrelation) Str, the minimum autocorrelation length Sal, and the root mean square Slope Sdq is shown.
- the differences between the ideal surface texture parameters and the measured surface texture parameters are the difference ⁇ Sa in the arithmetic mean height Sa, the difference ⁇ Sz in the maximum height Sz, and the difference in aspect ratio (autocorrelation) Str of the surface texture.
- ⁇ Str, the difference ⁇ Sal of the minimum autocorrelation length Sal, and the difference ⁇ Sdq of the root-mean-square slope Sdq are shown.
- FIG. 2 shows the measured surface texture parameter values when the ideal surface texture parameter value is “1” and the difference between the ideal surface texture parameter values and the measured surface texture parameter values. ing.
- the arithmetic mean height Sa and the maximum height Sz are surfaces in which the actually measured surface texture parameters are smaller than the ideal surface texture parameters and the peaks or valleys are low. From FIG. 2, it can be seen that the root-mean-square slope Sdq of the actually measured surface texture parameter is larger than the ideal surface texture parameter, and that the actually measured surface is steeper with greater undulations than the ideal surface.
- the display setting unit 16 sets, as display items, a first surface texture parameter that is an ideal surface texture parameter, a second surface texture parameter that is an actually measured surface texture parameter, and a first surface texture parameter and a second surface texture parameter.
- a difference from the property parameter is set, and a table and a vertical bar graph are set as the display format.
- the first and second surface texture parameters are the arithmetic mean height Sa, the maximum height Sz, the surface texture aspect ratio (autocorrelation) Str, the minimum autocorrelation length Sal, and the squared is the root-mean-square slope Sdq.
- FIG. 3 is a diagram showing a second display example of an image displayed on the display screen of the result display section.
- the table shown in FIG. 3 is the same as Table 1 described above.
- ideal a second surface texture parameter that is a measured surface texture parameter, and a difference between the first surface texture parameter and the second surface texture parameter.
- the value of the ideal surface texture parameter is set to "1"
- the value of the actually measured surface texture parameter, and the value of the ideal surface texture parameter and the value of the measured surface texture parameter. are shown.
- the numerical value of the first surface texture parameter which is the ideal surface texture parameter, the actually measured surface texture parameter, and the difference between the first surface texture parameter and the second surface texture parameter.
- the arithmetic mean height Sa and the maximum height Sz indicate that the measured surface texture parameters are smaller than the ideal surface texture parameters, and that the surface has low peaks or valleys. I understand.
- the root-mean-square slope Sdq indicates that the actually measured surface texture parameter is larger than the ideal surface texture parameter, and that the actually measured surface has greater undulations and is steeper than the ideal surface. It can be seen that the surface is smooth.
- the evaluation system 10 includes an arithmetic processing unit such as a CPU (Central Processing Unit).
- the evaluation system 10 also includes an auxiliary storage device such as a HDD (Hard Disk Drive) that stores various programs such as applications or an OS (Operating System), and an arithmetic processing unit that is temporarily necessary for executing the program. It has a main storage device such as RAM (Random Access Memory) that stores data to be processed.
- arithmetic processing unit such as a CPU (Central Processing Unit).
- the evaluation system 10 also includes an auxiliary storage device such as a HDD (Hard Disk Drive) that stores various programs such as applications or an OS (Operating System), and an arithmetic processing unit that is temporarily necessary for executing the program. It has a main storage device such as RAM (Random Access Memory) that stores data to be processed.
- RAM Random Access Memory
- the arithmetic processing unit reads the application or OS from the auxiliary storage device, and performs arithmetic processing based on the application or OS while deploying the read application or OS in the main storage device. Further, the arithmetic processing unit controls various hardware provided in each device based on the result of this arithmetic operation.
- This implements the functional blocks of the evaluation system 10 in this embodiment. In other words, this embodiment can be realized by cooperation of hardware and software.
- step S11 the evaluation system 10 determines whether either the tool information and the position information or the measurement information, which is the measurement result, has been input, or whether neither of the information has been input.
- the evaluation system 10 proceeds to step S12 when tool information and position information are input, proceeds to step S14 when measurement information is input, and repeats the determination of step S11 when neither information is input. conduct.
- the specific contents of the tool information, position information, and measurement information are as described above.
- step S12 the machined surface simulator 11 calculates the portion of the machined surface to be removed based on the tool information and position information, and performs a machined surface simulation.
- step S13 the machined surface analysis unit 12 obtains a first surface texture parameter, which is a first analysis result of analyzing the state of the machined surface, based on the machining simulation results output from the machined surface simulator 11, Output to the difference calculation unit 14 .
- step S14 the machined surface measurement analysis unit 13 obtains a second surface texture parameter as a second analysis result from the measured surface data (measurement result) input from the machined surface measurement device 20, and calculates the difference Output to the calculation unit 14 .
- the specific contents of the first and second surface texture parameters in steps S13 and S14 are as described above.
- step S15 the difference calculation unit 14 determines whether or not the first and second analysis results (two analysis results) have been input. If two analysis results have been input, the difference calculation unit 14 proceeds to step S16. If two analysis results have not been input, the difference calculation unit 14 makes the determination of step S15 again.
- step S ⁇ b>16 the difference calculation unit 14 calculates the difference between the first analysis result and the second analysis result, and outputs the difference to the result display unit 15 .
- step S ⁇ b>17 the result display unit 15 displays the difference between the first and second surface texture parameters output from the difference calculation unit 14 in the display method set by the display setting unit 16 .
- the present embodiment it is possible to determine how far the machined surface of the workpiece to be machined is from the ideal machined surface based on the magnitude of the difference, making it possible to more easily compare machined surface qualities. .
- the machined surface analysis unit 12 obtains the first surface texture parameter as the first analysis result from the machined surface simulation result of the machined surface simulator 11, outputs the first surface texture parameter to the difference calculation unit 20, and
- the measurement analysis unit 13 obtains a second surface texture parameter, which is a second analysis result, from the measured surface data (measurement result) input from the machined surface measurement device 20, and outputs the second surface texture parameter to the difference calculation unit 14.
- the first and second analysis results are not particularly limited as long as they can represent the state of the machined surface.
- the machined surface analysis unit 12 uses height data, analytical values of height data (including surface texture parameters), graphed height data, or graphed An analytical value (including a surface texture parameter) of the height data can be obtained and output to the difference calculation unit 20 .
- the processed surface analysis unit 12 obtains, from the results of the processed surface simulation by the processed surface simulator 11, image data of photographs or moving images, analysis values of the image data, bidirectional reflectance distribution function (BRDF) data of the processed surface ( BRDF data hereinafter), an analysis value of the BRDF data, graphed BRDF data, or an analysis value of the graphed BRDF data can be obtained and output to the difference calculation unit 14 .
- the bidirectional reflectance distribution function (BRDF) is a function that indicates the angular distribution characteristics of reflected light when light is incident from a specific angle.
- the image data can be created by any of the following methods. .
- the height difference of the machined surface is represented by the size of the pixel value.
- (2) Simulate the reflection when light is applied from a position other than directly above the processing surface, and express the magnitude of the reflected light by the magnitude of the pixel value.
- a histogram feature quantity which is an analysis value, is calculated from the pixel values of the created image data.
- the histogram feature amount is, for example, the average value of pixel values, the variance value, the contrast, the skewness, the kurtosis, the energy, the entropy, and the like.
- the machined surface measurement analysis unit 13 obtains a second analysis result of the same kind as the first analysis result from the measured surface data using the machined surface measurement device 20 and outputs the second analysis result to the difference calculation unit 14 .
- the machined surface measurement analysis unit 13 obtains a second surface texture parameter from surface data actually measured using the machined surface measurement device 20 and outputs the second surface texture parameter to the difference calculation unit 14 .
- the machined surface measurement analysis unit 13 may use surface data actually measured using the machined surface measuring device 20 as image data, obtain an analysis value of the pixel value, and output it to the difference calculation unit 14 .
- a microscope, a digital camera, or the like, for example, is used as the machined surface measuring device 20 to obtain image data.
- the image data may be photograph data or video data.
- the machined surface measurement analysis unit 13 may obtain a bidirectional reflectance distribution function (BRDF) of the machined surface using surface data actually measured using the machined surface measurement device 20, and output the bidirectional reflectance distribution function (BRDF) to the difference calculator 14. .
- BRDF bidirectional reflectance distribution function
- a goniophotometer or the like is used as the processed surface measuring device 20 for measuring the spectral angle or the diffraction angle in order to obtain the bidirectional reflectance distribution function.
- the BRDF data of the machined surface may be graphed data.
- the evaluation system 10 includes the machined surface simulator 11, the machined surface analysis unit 12, the machined surface measurement analysis unit 13, the difference calculation unit 14, the result display unit 15, and the display setting unit 16. showing.
- the result display unit 15 and the display setting unit 16 may be separately provided outside the evaluation system 10.
- the evaluation system 10 includes the machined surface simulator 11, the machined surface analysis unit 12, the machined surface measurement analysis unit 13 and a difference calculation unit 14 .
- Some or all of the components of evaluation system 10 may be provided within the machine tool.
- the machined surface simulator 11 and the machined surface analysis unit 12 can be provided in the machine tool, and the analysis results can be input to the difference calculation unit 14 outside the machine tool.
- the machined surface measurement analysis unit 13 can be provided in the machined surface measuring device 20 .
- the evaluation system 10 may be shared by multiple machine tools. By operating a plurality of machine tools with the same machining program to fabricate workpieces and comparing the machined surface quality using the evaluation system 10, the user can evaluate the performance of the plurality of machine tools.
- the embodiments described above can be realized by hardware, software, or a combination thereof.
- “implemented by software” means implemented by a computer reading and executing a program.
- integrated circuits such as LSI (Large Scale Integrated circuit), ASIC (Application Specific Integrated Circuit), gate array, FPGA (Field Programmable Gate Array) ( IC).
- a hard disk, ROM, or other storage that stores a program describing all or part of the operation of the evaluation system shown in the flow chart
- a computer composed of a unit, a DRAM that stores data necessary for calculation, a CPU, and a bus that connects each unit, information necessary for calculation is stored in the DRAM, and the program is executed by the CPU. can be done.
- Computer readable media includes various types of tangible storage media.
- Computer-readable media include, for example, magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/Ws, semiconductor memories (eg, mask ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, or RAM (random access memory)).
- the evaluation system and evaluation program for evaluating machined surface quality according to the present disclosure can take various embodiments having the following configurations, including the embodiments described above.
- a machined surface simulator that simulates a machined surface as a result of machining, using position information for machining a workpiece using a cutting tool and tool information having feature quantities including at least the shape of the cutting tool.
- a part for example, a machined surface simulator 11
- a machined surface analysis unit for example, a machined surface analysis unit 12
- a machined surface measurement analysis unit for example, a machined surface measurement analysis unit 13
- a difference calculation unit for example, difference calculation unit 14
- the above (1) comprising a result display unit (for example, the result display unit 15) that displays the difference, and a display setting unit (for example, the display setting unit 16) that sets the display method of the difference.
- a result display unit for example, the result display unit 15
- a display setting unit for example, the display setting unit 16
- An evaluation program that runs According to this evaluation program it is possible to easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. can.
- evaluation system 11 machined surface simulator 12 machined surface analysis unit 13 machined surface measurement analysis unit 14 difference calculation unit 15 result display unit 16 display setting unit 20 machined surface measurement device 30 machined workpiece 40 machine tool
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Numerical Control (AREA)
Abstract
Provided is an evaluation system with which it is possible to easily evaluate machined surface quality pertaining to a machined surface of a machined workpiece. This evaluation system comprises: a machined surface simulator unit for simulating a machined surface that is the result of machining by using position information and tool information; a machined surface analysis unit for outputting a first analysis result, in which the state of a machined surface is quantified, on the basis of the result of the machined-surface simulation carried out by the machined surface simulator unit; a machined surface measurement analysis unit for outputting a second analysis result, in which the state of the machined surface is quantified, on the basis of a measurement result obtained by measuring a machined surface of a machined workpiece that is actually machined by a work machine using the position information; and a difference calculation unit for calculating the difference between the first analysis result and the second analysis result.
Description
本発明は、加工面品位を評価する評価システム及び評価用プログラムに関し、特に、工作機械で加工するワークの加工面品位を評価する評価システム及び評価用プログラムに関する。
The present invention relates to an evaluation system and evaluation program for evaluating machined surface quality, and more particularly to an evaluation system and evaluation program for evaluating the machined surface quality of a workpiece machined by a machine tool.
良品ワークの評価指標を定量化することが可能な加工面品位評価装置が、例えば特許文献1に記載されている。
特許文献1には、加工面品位評価装置が、検査装置によるワークの加工面品位の検査結果に基づいて、観察者によるワークの加工面品位の評価結果を判定することが記載されている。そして、特許文献1には、加工面品位評価装置が、検査装置による検査結果に対応する観察者によるワークの加工面品位の評価結果を学習する機械学習装置を備え、機械学習装置が、検査装置によるワークの加工面品位の検査結果を状態変数として観測する状態観測部と、観察者によるワークの加工面品位の評価結果を示すラベルデータを取得するラベルデータ取得部と、状態変数と、ラベルデータとを関連付けて学習する学習部と、を備えることが記載されている。 A machined surface quality evaluation device capable of quantifying an evaluation index of a non-defective work is described inPatent Document 1, for example.
Patent Literature 1 describes that a machined surface quality evaluation device determines an evaluation result of the machined surface quality of a work by an observer based on the inspection result of the machined surface quality of the work by an inspection device. Then, in Patent Document 1, the machined surface quality evaluation device includes a machine learning device that learns the evaluation result of the machined surface quality of the workpiece by the observer corresponding to the inspection result by the inspection device, and the machine learning device is the inspection device. A state observation unit that observes the result of inspection of the quality of the machined surface of the workpiece as a state variable, a label data acquisition unit that acquires label data indicating the evaluation result of the quality of the machined surface of the workpiece by the observer, a state variable, and the label data and a learning unit that learns by associating with.
特許文献1には、加工面品位評価装置が、検査装置によるワークの加工面品位の検査結果に基づいて、観察者によるワークの加工面品位の評価結果を判定することが記載されている。そして、特許文献1には、加工面品位評価装置が、検査装置による検査結果に対応する観察者によるワークの加工面品位の評価結果を学習する機械学習装置を備え、機械学習装置が、検査装置によるワークの加工面品位の検査結果を状態変数として観測する状態観測部と、観察者によるワークの加工面品位の評価結果を示すラベルデータを取得するラベルデータ取得部と、状態変数と、ラベルデータとを関連付けて学習する学習部と、を備えることが記載されている。 A machined surface quality evaluation device capable of quantifying an evaluation index of a non-defective work is described in
工作物の研削条件を最適化するための支援を行う研削盤の支援装置及び支援方法が特許文献2に記載されている。
特許文献2には、支援装置が、複数の動作指令データの設定状態を含む研削条件を状態情報として取得する状態情報取得部と、当該研削条件の下で得られる評価対象の評価結果、例えば研削加工後の工作物の研削品質を取得する評価結果取得部と、評価結果に基づいて状態情報に対する報酬を算出する報酬算出部と、状態情報と報酬とに基づく強化学習において生成され、状態情報に応じた動作指令データの調整に関する政策を記憶する政策記憶部と、状態情報及び政策に基づき、調整可能な複数の動作指令データの候補の中から、調整する動作指令データ及び動作指令データの調整量を決定する行動決定部と、行動決定部による決定内容を、行動情報として制御装置に出力可能な行動情報出力部と、を備えることが記載されている。 Japanese Patent Laid-Open Publication No. 2002-300003 describes a grinding machine assisting device and assisting method for assisting in optimizing the grinding conditions of a workpiece.
InPatent Document 2, a support device includes a state information acquisition unit that acquires grinding conditions including setting states of a plurality of operation command data as state information, and an evaluation result of an evaluation object obtained under the grinding conditions, such as a grinding An evaluation result acquisition unit that acquires the grinding quality of the workpiece after processing, a reward calculation unit that calculates a reward for the state information based on the evaluation result, and a reinforcement learning based on the state information and the reward, generated in the state information. A policy storage unit for storing a policy regarding adjustment of the operation command data according to the state information and the policy, and operation command data to be adjusted and an adjustment amount of the operation command data from among a plurality of candidates for the operation command data that can be adjusted based on the state information and the policy. and an action information output unit capable of outputting the content of the decision made by the action decision unit to the control device as action information.
特許文献2には、支援装置が、複数の動作指令データの設定状態を含む研削条件を状態情報として取得する状態情報取得部と、当該研削条件の下で得られる評価対象の評価結果、例えば研削加工後の工作物の研削品質を取得する評価結果取得部と、評価結果に基づいて状態情報に対する報酬を算出する報酬算出部と、状態情報と報酬とに基づく強化学習において生成され、状態情報に応じた動作指令データの調整に関する政策を記憶する政策記憶部と、状態情報及び政策に基づき、調整可能な複数の動作指令データの候補の中から、調整する動作指令データ及び動作指令データの調整量を決定する行動決定部と、行動決定部による決定内容を、行動情報として制御装置に出力可能な行動情報出力部と、を備えることが記載されている。 Japanese Patent Laid-Open Publication No. 2002-300003 describes a grinding machine assisting device and assisting method for assisting in optimizing the grinding conditions of a workpiece.
In
工作機械で加工を行った際に、加工ワークの加工面の加工面品位が理想的な加工面の加工面品位に対してどの程度離れているかを評価するのは簡単ではなかった。
よって、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価できる、評価システム及び評価用プログラムが求められていた。 It is not easy to evaluate how far the machined surface quality of the machined surface of the workpiece differs from the ideal machined surface quality when machining with a machine tool.
Therefore, an evaluation system and an evaluation program that can easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. was wanted.
よって、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価できる、評価システム及び評価用プログラムが求められていた。 It is not easy to evaluate how far the machined surface quality of the machined surface of the workpiece differs from the ideal machined surface quality when machining with a machine tool.
Therefore, an evaluation system and an evaluation program that can easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. was wanted.
(1) 本開示の第1の態様は、切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする加工面シミュレーター部と、
前記加工面シミュレーター部による加工面シミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する加工面分析部と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する加工面計測分析部と、
前記第1の分析結果と前記第2の分析結果との差分を計算する差分計算部と、
を備えた評価システムである。 (1) A first aspect of the present disclosure utilizes position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool to obtain a machining result A machined surface simulator that simulates the machined surface of
a machined surface analysis unit that outputs a first analysis result in which the state of the machined surface is quantified based on the result of the machined surface simulation by the machined surface simulator unit;
a machined surface measurement analysis unit that outputs a second analysis result in which the state of the machined surface is quantified based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a difference calculation unit that calculates the difference between the first analysis result and the second analysis result;
is a rating system with
前記加工面シミュレーター部による加工面シミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する加工面分析部と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する加工面計測分析部と、
前記第1の分析結果と前記第2の分析結果との差分を計算する差分計算部と、
を備えた評価システムである。 (1) A first aspect of the present disclosure utilizes position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool to obtain a machining result A machined surface simulator that simulates the machined surface of
a machined surface analysis unit that outputs a first analysis result in which the state of the machined surface is quantified based on the result of the machined surface simulation by the machined surface simulator unit;
a machined surface measurement analysis unit that outputs a second analysis result in which the state of the machined surface is quantified based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a difference calculation unit that calculates the difference between the first analysis result and the second analysis result;
is a rating system with
(2) 本開示の第2の態様は、コンピュータに、
切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする処理と、
前記加工面のシミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する処理と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する処理と、
前記第1の分析結果と前記第2の分析結果との差分を計算する処理と、
を実行させる評価用プログラムである。 (2) A second aspect of the present disclosure provides a computer with:
A process of simulating a machined surface of a machining result using position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool;
A process of outputting a first analysis result in which the state of the machined surface is digitized based on the result of the simulation of the machined surface;
A process of outputting a second analysis result in which the state of the machined surface is digitized based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a process of calculating a difference between the first analysis result and the second analysis result;
is an evaluation program that executes
切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする処理と、
前記加工面のシミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する処理と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する処理と、
前記第1の分析結果と前記第2の分析結果との差分を計算する処理と、
を実行させる評価用プログラムである。 (2) A second aspect of the present disclosure provides a computer with:
A process of simulating a machined surface of a machining result using position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool;
A process of outputting a first analysis result in which the state of the machined surface is digitized based on the result of the simulation of the machined surface;
A process of outputting a second analysis result in which the state of the machined surface is digitized based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a process of calculating a difference between the first analysis result and the second analysis result;
is an evaluation program that executes
本開示の各態様によれば、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価することができる。
According to each aspect of the present disclosure, it is possible to easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece and the machined surface quality of the ideal machined surface. can be done.
以下、本発明の実施形態について図面を用いて詳細に説明する。
図1は本開示の一実施形態の評価システムの一構成例を示すブロック図である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing one configuration example of an evaluation system according to one embodiment of the present disclosure.
図1は本開示の一実施形態の評価システムの一構成例を示すブロック図である。 BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
FIG. 1 is a block diagram showing one configuration example of an evaluation system according to one embodiment of the present disclosure.
図1に示すように、本実施形態の、加工面品位を評価する評価システム10は、加工面シミュレーター11、加工面分析部12、加工面計測分析部13、差分計算部14、結果表示部15、及び表示設定部16を備えている。図1においては、評価システム10の他に、加工ワーク30、加工ワーク30の加工面を計測する加工面計測機器20、及び加工ワーク30を作製する工作機械40も示している。
As shown in FIG. 1, the evaluation system 10 for evaluating the machined surface quality of the present embodiment includes a machined surface simulator 11, a machined surface analysis unit 12, a machined surface measurement analysis unit 13, a difference calculation unit 14, and a result display unit 15. , and a display setting unit 16 . In addition to the evaluation system 10, FIG. 1 also shows a workpiece 30, a machining surface measuring device 20 for measuring the machining surface of the machining workpiece 30, and a machine tool 40 for producing the machining workpiece 30. FIG.
加工面シミュレーター11は、切削工具の少なくとも形状を含む特徴量を有する工具情報及び切削工具を使用してワークを加工するための位置情報に基づいて加工面の削り取られる部分を計算し、加工面シミュレーションを行う。工具情報は、例えばボールエンドミル等の切削工具の種類、及びボール半径等の工具の形状である。位置情報は、例えば、加工プログラムの軌跡データ、コンピュータ数値制御装置(CNC)で補間、加減速等の処理を行った後の軌跡データ、モータを制御するサーボ制御装置のサーボフィードバックの軌跡データ、又は機械に取り付けられたリニアスケールのスケールフィードバックの軌跡データ等の工具移動軌跡データである。
The machined surface simulator 11 calculates a portion of the machined surface to be machined based on tool information having a feature amount including at least the shape of the cutting tool and position information for machining the workpiece using the cutting tool, and performs a machined surface simulation. I do. The tool information is, for example, the type of cutting tool such as a ball end mill, and the shape of the tool such as the ball radius. The position information is, for example, trajectory data of a machining program, trajectory data after processing such as interpolation and acceleration/deceleration by a computer numerical controller (CNC), trajectory data of servo feedback of a servo control device that controls a motor, or Tool movement trajectory data such as scale feedback trajectory data of a linear scale attached to a machine.
加工面分析部12は、加工面シミュレーター11から出力される加工シミュレーション結果に基づいて、加工面の状態を分析した第1の分析結果となる第1の表面性状パラメータを求めて、差分計算部14に出力する。第1の表面性状パラメータは、理想の加工面の分析結果となる。
表面性状パラメータは表面粗さを評価するパラメータ、例えばISO 25178で規定されるパラメータであり、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdq等を用いることができる。 Based on the machining simulation results output from themachined surface simulator 11, the machined surface analysis unit 12 obtains a first surface texture parameter, which is a first analysis result of analyzing the state of the machined surface, and calculates a difference calculation unit 14. output to The first surface quality parameter is the analysis result of the ideal machined surface.
Surface texture parameters are parameters for evaluating surface roughness, for example, parameters defined in ISO 25178, arithmetic mean height Sa, maximum height Sz, surface texture aspect ratio (autocorrelation) Str, minimum autocorrelation length Sal, root mean square slope Sdq, and the like can be used.
表面性状パラメータは表面粗さを評価するパラメータ、例えばISO 25178で規定されるパラメータであり、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdq等を用いることができる。 Based on the machining simulation results output from the
Surface texture parameters are parameters for evaluating surface roughness, for example, parameters defined in ISO 25178, arithmetic mean height Sa, maximum height Sz, surface texture aspect ratio (autocorrelation) Str, minimum autocorrelation length Sal, root mean square slope Sdq, and the like can be used.
加工面計測分析部13は、加工面計測機器20から入力される実測表面データ(計測結果となる)から、第2の分析結果となる第2の表面性状パラメータを求めて、差分計算部14に出力する。第2の表面性状パラメータは、実測の表面データに基づく、実測の加工面の分析結果である。
なお、加工面分析部12と加工面計測分析部13とは別々に設けられているが、1つの分析部で共用してもよく、この場合、当該1つの分析部が、加工面分析部12及び加工面計測分析部13として機能する。 The machined surfacemeasurement analysis unit 13 obtains a second surface texture parameter, which is a second analysis result, from the measured surface data (measurement result) input from the machined surface measurement device 20, and outputs the second surface texture parameter to the difference calculation unit 14. Output. The second surface quality parameter is an analysis result of the measured processed surface based on the measured surface data.
Although the machinedsurface analysis unit 12 and the machined surface measurement analysis unit 13 are provided separately, they may be shared by one analysis unit. and a machined surface measurement analysis unit 13.
なお、加工面分析部12と加工面計測分析部13とは別々に設けられているが、1つの分析部で共用してもよく、この場合、当該1つの分析部が、加工面分析部12及び加工面計測分析部13として機能する。 The machined surface
Although the machined
なお、例えば、第2の表面性状パラメータとして算術平均高さSa又は最大高さSzを求める場合、高さデータが必要となる。高さデータを求めるために、加工面計測機器20として、例えばレーザ顕微鏡、又は白色干渉顕微鏡等が用いられる。高さデータはグラフ化した高さデータであってもよい。加工面計測機器20は、位置情報に基づいて工作機械40によって加工された加工ワーク30を計測し、実測の表面データとなる高さデータを加工面計測分析部13に入力する。
It should be noted that, for example, when obtaining the arithmetic mean height Sa or the maximum height Sz as the second surface texture parameter, height data is required. A laser microscope, a white interference microscope, or the like, for example, is used as the machined surface measuring device 20 to obtain height data. The height data may be graphed height data. The machined surface measuring device 20 measures the machined workpiece 30 machined by the machine tool 40 based on the position information, and inputs height data, which is actually measured surface data, to the machined surface measurement analysis unit 13 .
差分計算部14は、加工面分析部12から出力される、第1の表面性状パラメータと、加工面計測分析部13から出力される、第2の表面性状パラメータとの差を計算する。
例えば、加工面分析部12から出力される第1の表面性状パラメータが、算術平均高さSa1、最大高さSz1、表面性状のアスペクト比(自己相関)Str1、最小自己相関長さSal1及び二乗平均平方根傾斜Sdq1であるとする。そして、加工面計測分析部13から出力される第2の表面性状パラメータが、算術平均高さSa2、最大高さSz2、表面性状のアスペクト比(自己相関)Str2、最小自己相関長さSal2及び二乗平均平方根傾斜Sdq2であるとする。その場合、差分計算部14は、算術平均高さSaの差分ΔSa(ΔSa=|Sa1-Sa2|)、最大高さSzの差分ΔSz(ΔSz=|Sz1-Sz2|)、表面性状のアスペクト比(自己相関)Strの差分ΔStr(ΔStr=|Str1-Str2|)、最小自己相関長さSalの差分ΔSal(ΔSal=|Sal1-Sal2|)及び二乗平均平方根傾斜Sdqの差分ΔSdq(ΔSdq=|Sdq1-Sdq2|)を求める。そして、差分計算部14は、求めた差分ΔSa、差分ΔSz、差分ΔStr、差分ΔSal及び差分ΔSdqを、結果表示部15に出力する。
差分計算部14は、求めた各差分とともに、各差分に対応する第1及び第2の表面性状パラメータを結果表示部15に出力する。 Thedifference calculator 14 calculates the difference between the first surface texture parameter output from the machined surface analysis unit 12 and the second surface texture parameter output from the machined surface measurement analysis unit 13 .
For example, the first surface texture parameters output from the machinedsurface analysis unit 12 include an arithmetic mean height Sa1, a maximum height Sz1, a surface texture aspect ratio (autocorrelation) Str1, a minimum autocorrelation length Sal1, and a root mean square Let be the square root slope Sdq1. Then, the second surface texture parameters output from the machined surface measurement analysis unit 13 are the arithmetic mean height Sa2, the maximum height Sz2, the surface texture aspect ratio (autocorrelation) Str2, the minimum autocorrelation length Sal2, and the square Suppose that the root-mean-square slope is Sdq2. In that case, the difference calculation unit 14 calculates the difference ΔSa (ΔSa=|Sa1−Sa2|) of the arithmetic mean height Sa, the difference ΔSz (ΔSz=|Sz1−Sz2|) of the maximum height Sz, and the aspect ratio of the surface texture ( Autocorrelation) Str difference ΔStr (ΔStr=|Str1-Str2|), minimum autocorrelation length Sal difference ΔSal (ΔSal=|Sal1-Sal2|) and root mean square slope Sdq difference ΔSdq (ΔSdq=|Sdq1- Sdq2|). Then, the difference calculation unit 14 outputs the obtained difference ΔSa, difference ΔSz, difference ΔStr, difference ΔSal, and difference ΔSdq to the result display unit 15 .
Thedifference calculation unit 14 outputs the obtained differences together with the first and second surface texture parameters corresponding to each difference to the result display unit 15 .
例えば、加工面分析部12から出力される第1の表面性状パラメータが、算術平均高さSa1、最大高さSz1、表面性状のアスペクト比(自己相関)Str1、最小自己相関長さSal1及び二乗平均平方根傾斜Sdq1であるとする。そして、加工面計測分析部13から出力される第2の表面性状パラメータが、算術平均高さSa2、最大高さSz2、表面性状のアスペクト比(自己相関)Str2、最小自己相関長さSal2及び二乗平均平方根傾斜Sdq2であるとする。その場合、差分計算部14は、算術平均高さSaの差分ΔSa(ΔSa=|Sa1-Sa2|)、最大高さSzの差分ΔSz(ΔSz=|Sz1-Sz2|)、表面性状のアスペクト比(自己相関)Strの差分ΔStr(ΔStr=|Str1-Str2|)、最小自己相関長さSalの差分ΔSal(ΔSal=|Sal1-Sal2|)及び二乗平均平方根傾斜Sdqの差分ΔSdq(ΔSdq=|Sdq1-Sdq2|)を求める。そして、差分計算部14は、求めた差分ΔSa、差分ΔSz、差分ΔStr、差分ΔSal及び差分ΔSdqを、結果表示部15に出力する。
差分計算部14は、求めた各差分とともに、各差分に対応する第1及び第2の表面性状パラメータを結果表示部15に出力する。 The
For example, the first surface texture parameters output from the machined
The
なお、差分計算部14から出力される表面性状パラメータの差分は、差分ΔSa、差分ΔSz、差分ΔStr、差分ΔSal及び差分ΔSdqの全てでなくともよく、これらの差分の一つ又は複数であってもよく、又はこれらの差分の複数を重みづけして加算した値であってもよい。
Note that the difference in the surface texture parameters output from the difference calculation unit 14 may not be all of the difference ΔSa, the difference ΔSz, the difference ΔStr, the difference ΔSal, and the difference ΔSdq, and may be one or more of these differences. Alternatively, it may be a value obtained by weighting and adding a plurality of these differences.
差分計算部14から出力される情報は、表面性状パラメータの差分を含んでいればよく、差分以外の情報は結果表示部15で表示される情報によって適宜決められる。結果表示部15で、第1の表面性状パラメータと第2の表面性状パラメータとの差分のみを表示する場合には、差分計算部14は、第1の表面性状パラメータと第2の表面性状パラメータとの差分のみを結果表示部15に出力してもよい。結果表示部15は、後述する表示設定部16で設定された表示項目に基づいて、差分計算部14から出力される情報から表示する情報を選択して表示してもよい。
The information output from the difference calculation unit 14 only needs to include the difference in the surface texture parameters, and the information other than the difference is appropriately determined according to the information displayed on the result display unit 15. When the result display unit 15 displays only the difference between the first surface texture parameter and the second surface texture parameter, the difference calculation unit 14 displays the difference between the first surface texture parameter and the second surface texture parameter. may be output to the result display unit 15. The result display unit 15 may select and display information to be displayed from the information output from the difference calculation unit 14 based on display items set by the display setting unit 16, which will be described later.
表1は、差分計算部14から出力される、5つの差分と、各差分に対応する第1及び第2の表面性状パラメータとを示す表である。表1において、理想の表面性状パラメータは、第1の表面性状パラメータを示し、実測の表面性状パラメータは、第2の表面性状パラメータを示し、差分の表面性状パラメータは、第1の表面性状パラメータと第2の表面性状パラメータとの差分を示す。
Table 1 is a table showing five differences and the first and second surface texture parameters corresponding to each difference, which are output from the difference calculation section 14 . In Table 1, the ideal surface texture parameter represents the first surface texture parameter, the measured surface texture parameter represents the second surface texture parameter, and the difference surface texture parameter represents the first surface texture parameter. The difference from the second surface texture parameter is shown.
結果表示部15は、差分計算部14から出力された、第1及び第2の表面性状パラメータの差分と、各差分に対応する第1及び第2の表面性状パラメータとを、表示設定部16で設定された表示方法で表示する。
表示設定部16は、結果表示部15で表示する表示項目及び表示形式を設定する。 Theresult display unit 15 uses the display setting unit 16 to display the difference between the first and second surface texture parameters output from the difference calculation unit 14 and the first and second surface texture parameters corresponding to each difference. Display with the set display method.
Thedisplay setting unit 16 sets display items and a display format to be displayed on the result display unit 15 .
表示設定部16は、結果表示部15で表示する表示項目及び表示形式を設定する。 The
The
(第1表示例)
表示設定部16は、表示項目として、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータである第2の表面性状パラメータ、及び第1の表面性状パラメータと第2の表面性状パラメータとの差分を設定し、表示形式として、レーダチャートを設定する。ここでは、第1及び第2の表面性状パラメータはそれぞれ、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqである。 (First display example)
Thedisplay setting unit 16 sets, as display items, a first surface texture parameter that is an ideal surface texture parameter, a second surface texture parameter that is an actually measured surface texture parameter, and a first surface texture parameter and a second surface texture parameter. Set the difference from the property parameter, and set the radar chart as the display format. Here, the first and second surface texture parameters are respectively arithmetic mean height Sa, maximum height Sz, surface texture aspect ratio (autocorrelation) Str, minimum autocorrelation length Sal, and root mean square slope Sdq is.
表示設定部16は、表示項目として、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータである第2の表面性状パラメータ、及び第1の表面性状パラメータと第2の表面性状パラメータとの差分を設定し、表示形式として、レーダチャートを設定する。ここでは、第1及び第2の表面性状パラメータはそれぞれ、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqである。 (First display example)
The
結果表示部15は、表示設定部16で設定された表示項目及び表示形式に基づいて表示画面に表示する画像を生成し、表示画面に表示する。
図2は結果表示部の表示画面に表示される画像の第1表示例を示す図である。
図2において、太い実線は、理想の表面性状パラメータである第1の表面性状パラメータを示し、太い破線は、実測の表面性状パラメータである第2の表面性状パラメータを示す。
図2では、理想の表面性状パラメータ及び実測の表面性状パラメータとして、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqが示される。また図2では、理想の表面性状パラメータと実測の表面性状パラメータとの差分として、算術平均高さSaの差分ΔSa、最大高さSzの差分ΔSz、表面性状のアスペクト比(自己相関)Strの差分ΔStr、最小自己相関長さSalの差分ΔSal、及び二乗平均平方根傾斜Sdqの差分ΔSdqが示される。
図2では、理想の表面性状パラメータの値を「1」としたときの、実測の表面性状パラメータの値、及び理想の表面性状パラメータの値と実測の表面性状パラメータの値との差分が示されている。 Theresult display unit 15 generates an image to be displayed on the display screen based on the display items and the display format set by the display setting unit 16, and displays the image on the display screen.
FIG. 2 is a diagram showing a first display example of an image displayed on the display screen of the result display section.
In FIG. 2, the thick solid line indicates the first surface texture parameter, which is the ideal surface texture parameter, and the thick dashed line indicates the second surface texture parameter, which is the measured surface texture parameter.
In FIG. 2, as the ideal surface texture parameters and the measured surface texture parameters, the arithmetic mean height Sa, the maximum height Sz, the surface texture aspect ratio (autocorrelation) Str, the minimum autocorrelation length Sal, and the root mean square Slope Sdq is shown. In FIG. 2, the differences between the ideal surface texture parameters and the measured surface texture parameters are the difference ΔSa in the arithmetic mean height Sa, the difference ΔSz in the maximum height Sz, and the difference in aspect ratio (autocorrelation) Str of the surface texture. ΔStr, the difference ΔSal of the minimum autocorrelation length Sal, and the difference ΔSdq of the root-mean-square slope Sdq are shown.
FIG. 2 shows the measured surface texture parameter values when the ideal surface texture parameter value is “1” and the difference between the ideal surface texture parameter values and the measured surface texture parameter values. ing.
図2は結果表示部の表示画面に表示される画像の第1表示例を示す図である。
図2において、太い実線は、理想の表面性状パラメータである第1の表面性状パラメータを示し、太い破線は、実測の表面性状パラメータである第2の表面性状パラメータを示す。
図2では、理想の表面性状パラメータ及び実測の表面性状パラメータとして、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqが示される。また図2では、理想の表面性状パラメータと実測の表面性状パラメータとの差分として、算術平均高さSaの差分ΔSa、最大高さSzの差分ΔSz、表面性状のアスペクト比(自己相関)Strの差分ΔStr、最小自己相関長さSalの差分ΔSal、及び二乗平均平方根傾斜Sdqの差分ΔSdqが示される。
図2では、理想の表面性状パラメータの値を「1」としたときの、実測の表面性状パラメータの値、及び理想の表面性状パラメータの値と実測の表面性状パラメータの値との差分が示されている。 The
FIG. 2 is a diagram showing a first display example of an image displayed on the display screen of the result display section.
In FIG. 2, the thick solid line indicates the first surface texture parameter, which is the ideal surface texture parameter, and the thick dashed line indicates the second surface texture parameter, which is the measured surface texture parameter.
In FIG. 2, as the ideal surface texture parameters and the measured surface texture parameters, the arithmetic mean height Sa, the maximum height Sz, the surface texture aspect ratio (autocorrelation) Str, the minimum autocorrelation length Sal, and the root mean square Slope Sdq is shown. In FIG. 2, the differences between the ideal surface texture parameters and the measured surface texture parameters are the difference ΔSa in the arithmetic mean height Sa, the difference ΔSz in the maximum height Sz, and the difference in aspect ratio (autocorrelation) Str of the surface texture. ΔStr, the difference ΔSal of the minimum autocorrelation length Sal, and the difference ΔSdq of the root-mean-square slope Sdq are shown.
FIG. 2 shows the measured surface texture parameter values when the ideal surface texture parameter value is “1” and the difference between the ideal surface texture parameter values and the measured surface texture parameter values. ing.
図2から、算術平均高さSa及び最大高さSzは、実測の表面性状パラメータが理想の表面性状パラメータより小さく、山又は谷が低い面であることが分かる。また図2から、二乗平均平方根傾斜Sdqは、実測の表面性状パラメータが理想の表面性状パラメータより大きく、実測の表面が理想の表面より、起伏が大きく急峻な表面であることが分かる。
From FIG. 2, it can be seen that the arithmetic mean height Sa and the maximum height Sz are surfaces in which the actually measured surface texture parameters are smaller than the ideal surface texture parameters and the peaks or valleys are low. From FIG. 2, it can be seen that the root-mean-square slope Sdq of the actually measured surface texture parameter is larger than the ideal surface texture parameter, and that the actually measured surface is steeper with greater undulations than the ideal surface.
(第2表示例)
表示設定部16は、表示項目として、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータである第2の表面性状パラメータ、及び第1の表面性状パラメータと第2の表面性状パラメータとの差分を設定し、表示形式として、表と縦棒グラフとを設定する。
第1表示例と同様に、第1及び第2の表面性状パラメータは、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqである。 (Second display example)
Thedisplay setting unit 16 sets, as display items, a first surface texture parameter that is an ideal surface texture parameter, a second surface texture parameter that is an actually measured surface texture parameter, and a first surface texture parameter and a second surface texture parameter. A difference from the property parameter is set, and a table and a vertical bar graph are set as the display format.
As in the first display example, the first and second surface texture parameters are the arithmetic mean height Sa, the maximum height Sz, the surface texture aspect ratio (autocorrelation) Str, the minimum autocorrelation length Sal, and the squared is the root-mean-square slope Sdq.
表示設定部16は、表示項目として、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータである第2の表面性状パラメータ、及び第1の表面性状パラメータと第2の表面性状パラメータとの差分を設定し、表示形式として、表と縦棒グラフとを設定する。
第1表示例と同様に、第1及び第2の表面性状パラメータは、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqである。 (Second display example)
The
As in the first display example, the first and second surface texture parameters are the arithmetic mean height Sa, the maximum height Sz, the surface texture aspect ratio (autocorrelation) Str, the minimum autocorrelation length Sal, and the squared is the root-mean-square slope Sdq.
結果表示部15は、結果表示部15で設定された表示項目及び表示形式に基づいて表示画面に表示する画像を生成し、表示画面に表示する。
図3は結果表示部の表示画面に表示される画像の第2表示例を示す図である。
図3に示される表は前述した表1と同じである。図3に示される縦棒グラフには、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqのそれぞれについて、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータである第2の表面性状パラメータ、及び第1の表面性状パラメータと第2の表面性状パラメータとの差分が示される。図3でも、図2と同様に、理想の表面性状パラメータの値を「1」としたときの、実測の表面性状パラメータの値、及び理想の表面性状パラメータの値と実測の表面性状パラメータの値との差分が示されている。 Theresult display unit 15 generates an image to be displayed on the display screen based on the display items and the display format set by the result display unit 15, and displays the image on the display screen.
FIG. 3 is a diagram showing a second display example of an image displayed on the display screen of the result display section.
The table shown in FIG. 3 is the same as Table 1 described above. In the vertical bar graph shown in FIG. 3, ideal , a second surface texture parameter that is a measured surface texture parameter, and a difference between the first surface texture parameter and the second surface texture parameter. In FIG. 3, similarly to FIG. 2, when the value of the ideal surface texture parameter is set to "1", the value of the actually measured surface texture parameter, and the value of the ideal surface texture parameter and the value of the measured surface texture parameter. are shown.
図3は結果表示部の表示画面に表示される画像の第2表示例を示す図である。
図3に示される表は前述した表1と同じである。図3に示される縦棒グラフには、算術平均高さSa、最大高さSz、表面性状のアスペクト比(自己相関)Str、最小自己相関長さSal、及び二乗平均平方根傾斜Sdqのそれぞれについて、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータである第2の表面性状パラメータ、及び第1の表面性状パラメータと第2の表面性状パラメータとの差分が示される。図3でも、図2と同様に、理想の表面性状パラメータの値を「1」としたときの、実測の表面性状パラメータの値、及び理想の表面性状パラメータの値と実測の表面性状パラメータの値との差分が示されている。 The
FIG. 3 is a diagram showing a second display example of an image displayed on the display screen of the result display section.
The table shown in FIG. 3 is the same as Table 1 described above. In the vertical bar graph shown in FIG. 3, ideal , a second surface texture parameter that is a measured surface texture parameter, and a difference between the first surface texture parameter and the second surface texture parameter. In FIG. 3, similarly to FIG. 2, when the value of the ideal surface texture parameter is set to "1", the value of the actually measured surface texture parameter, and the value of the ideal surface texture parameter and the value of the measured surface texture parameter. are shown.
図3の表から、理想の表面性状パラメータである第1の表面性状パラメータ、実測の表面性状パラメータ、及び及び第1の表面性状パラメータと第2の表面性状パラメータとの差分の数値が分かる。図3の縦棒グラフから、第1表示例と同様に、算術平均高さSa及び最大高さSzは、実測の表面性状パラメータが理想の表面性状パラメータより小さく、山又は谷が低い面であることが分かる。また図3の縦棒グラフから、第1表示例と同様に、二乗平均平方根傾斜Sdqは、実測の表面性状パラメータが理想の表面性状パラメータより大きく、実測の表面が理想の表面より、起伏が大きく急峻な表面であることが分かる。
From the table in FIG. 3, the numerical value of the first surface texture parameter, which is the ideal surface texture parameter, the actually measured surface texture parameter, and the difference between the first surface texture parameter and the second surface texture parameter. From the vertical bar graph in FIG. 3, similarly to the first display example, the arithmetic mean height Sa and the maximum height Sz indicate that the measured surface texture parameters are smaller than the ideal surface texture parameters, and that the surface has low peaks or valleys. I understand. Further, from the vertical bar graph in FIG. 3, as in the first display example, the root-mean-square slope Sdq indicates that the actually measured surface texture parameter is larger than the ideal surface texture parameter, and that the actually measured surface has greater undulations and is steeper than the ideal surface. It can be seen that the surface is smooth.
以上、評価システム10の機能ブロックについて説明した。これらの機能ブロックを実現するために、評価システム10は、CPU(Central Processing Unit)等の演算処理装置を備える。また、評価システム10は、アプリケーション又はOS(Operating System)等の各種のプログラムを格納したHDD(Hard Disk Drive)等の補助記憶装置、及び演算処理装置がプログラムを実行する上で一時的に必要とされるデータを格納するRAM(Random Access Memory)等の主記憶装置を備える。
The functional blocks of the evaluation system 10 have been described above. In order to implement these functional blocks, the evaluation system 10 includes an arithmetic processing unit such as a CPU (Central Processing Unit). The evaluation system 10 also includes an auxiliary storage device such as a HDD (Hard Disk Drive) that stores various programs such as applications or an OS (Operating System), and an arithmetic processing unit that is temporarily necessary for executing the program. It has a main storage device such as RAM (Random Access Memory) that stores data to be processed.
そして、評価システム10では、演算処理装置が補助記憶装置からアプリケーション又はOSを読み込み、読み込んだアプリケーション又はOSを主記憶装置に展開させながら、これらのアプリケーション又はOSに基づいた演算処理を行う。また、演算処理装置は、この演算結果に基づいて、各装置が備える各種のハードウェアを制御する。これにより、本実施形態における評価システム10の機能ブロックは実現される。つまり、本実施形態は、ハードウェアとソフトウェアが協働することにより実現することができる。
Then, in the evaluation system 10, the arithmetic processing unit reads the application or OS from the auxiliary storage device, and performs arithmetic processing based on the application or OS while deploying the read application or OS in the main storage device. Further, the arithmetic processing unit controls various hardware provided in each device based on the result of this arithmetic operation. This implements the functional blocks of the evaluation system 10 in this embodiment. In other words, this embodiment can be realized by cooperation of hardware and software.
次に、本実施形態における評価システム10の動作について図4のフローチャートを参照して説明を行う。以下の説明では、第1の表面性状パラメータと第2の表面性状パラメータとの差分のみを表示する場合の動作について説明する。
ステップS11において、評価システム10は、工具情報と位置情報か、計測結果である計測情報かのいずれかが入力されたか、いずれの情報も入力されていないかを判断する。評価システム10は、工具情報と位置情報が入力された場合はステップS12に移り、計測情報が入力された場合はステップS14に移り、いずれの情報も入力されていない場合は再度ステップS11の判断を行う。
工具情報、位置情報、及び計測情報の具体的な内容は上述した通りである。 Next, the operation of theevaluation system 10 according to this embodiment will be described with reference to the flowchart of FIG. In the following description, the operation for displaying only the difference between the first surface texture parameter and the second surface texture parameter will be described.
In step S11, theevaluation system 10 determines whether either the tool information and the position information or the measurement information, which is the measurement result, has been input, or whether neither of the information has been input. The evaluation system 10 proceeds to step S12 when tool information and position information are input, proceeds to step S14 when measurement information is input, and repeats the determination of step S11 when neither information is input. conduct.
The specific contents of the tool information, position information, and measurement information are as described above.
ステップS11において、評価システム10は、工具情報と位置情報か、計測結果である計測情報かのいずれかが入力されたか、いずれの情報も入力されていないかを判断する。評価システム10は、工具情報と位置情報が入力された場合はステップS12に移り、計測情報が入力された場合はステップS14に移り、いずれの情報も入力されていない場合は再度ステップS11の判断を行う。
工具情報、位置情報、及び計測情報の具体的な内容は上述した通りである。 Next, the operation of the
In step S11, the
The specific contents of the tool information, position information, and measurement information are as described above.
ステップS12において、加工面シミュレーター11は、工具情報及び位置情報に基づいて加工面の削り取られる部分を計算し、加工面シミュレーションを行う。
In step S12, the machined surface simulator 11 calculates the portion of the machined surface to be removed based on the tool information and position information, and performs a machined surface simulation.
ステップS13において、加工面分析部12は、加工面シミュレーター11から出力される加工シミュレーション結果に基づいて、加工面の状態を分析した第1の分析結果となる第1の表面性状パラメータを求めて、差分計算部14に出力する。
In step S13, the machined surface analysis unit 12 obtains a first surface texture parameter, which is a first analysis result of analyzing the state of the machined surface, based on the machining simulation results output from the machined surface simulator 11, Output to the difference calculation unit 14 .
ステップS14において、加工面計測分析部13は、加工面計測機器20から入力される実測表面データ(計測結果となる)から、第2の分析結果となる第2の表面性状パラメータを求めて、差分計算部14に出力する。
ステップS13及びステップS14における第1及び第2の表面性状パラメータの具体的な内容は上述した通りである。 In step S14, the machined surfacemeasurement analysis unit 13 obtains a second surface texture parameter as a second analysis result from the measured surface data (measurement result) input from the machined surface measurement device 20, and calculates the difference Output to the calculation unit 14 .
The specific contents of the first and second surface texture parameters in steps S13 and S14 are as described above.
ステップS13及びステップS14における第1及び第2の表面性状パラメータの具体的な内容は上述した通りである。 In step S14, the machined surface
The specific contents of the first and second surface texture parameters in steps S13 and S14 are as described above.
ステップS15において、差分計算部14は第1及び第2の分析結果(2つの分析結果)が入力されたか否かを判断する。差分計算部14は、2つの分析結果が入力されている場合にはステップS16に移り、2つの分析結果が入力されていない場合には再度ステップS15の判断を行う。
In step S15, the difference calculation unit 14 determines whether or not the first and second analysis results (two analysis results) have been input. If two analysis results have been input, the difference calculation unit 14 proceeds to step S16. If two analysis results have not been input, the difference calculation unit 14 makes the determination of step S15 again.
ステップS16において、差分計算部14は、第1の分析結果と第2の分析結果との差分を計算して、その差分を結果表示部15に出力する。
In step S<b>16 , the difference calculation unit 14 calculates the difference between the first analysis result and the second analysis result, and outputs the difference to the result display unit 15 .
ステップS17において、結果表示部15は、差分計算部14から出力された、第1及び第2の表面性状パラメータの差分を、表示設定部16で設定された表示方法で表示する。
In step S<b>17 , the result display unit 15 displays the difference between the first and second surface texture parameters output from the difference calculation unit 14 in the display method set by the display setting unit 16 .
本実施形態によれば、差分の大きさによって、加工ワークの加工面が理想の加工面からどの程度離れているかどうかを判断することができ、加工面品位の比較をより簡単に行うことができる。
According to the present embodiment, it is possible to determine how far the machined surface of the workpiece to be machined is from the ideal machined surface based on the magnitude of the difference, making it possible to more easily compare machined surface qualities. .
<加工面分析の他の例>
以上の説明では、加工面分析部12が、加工面シミュレーター11の加工面シミュレーションの結果から、第1の分析結果となる第1の表面性状パラメータを求めて差分計算部20に出力し、加工面計測分析部13が加工面計測機器20から入力される実測表面データ(計測結果となる)から、第2の分析結果となる第2の表面性状パラメータを求めて、差分計算部14に出力する例について説明したが、第1及び第2の分析結果は、加工面の状態を表せるものであれば特に限定しない。 <Another example of machined surface analysis>
In the above description, the machinedsurface analysis unit 12 obtains the first surface texture parameter as the first analysis result from the machined surface simulation result of the machined surface simulator 11, outputs the first surface texture parameter to the difference calculation unit 20, and An example in which the measurement analysis unit 13 obtains a second surface texture parameter, which is a second analysis result, from the measured surface data (measurement result) input from the machined surface measurement device 20, and outputs the second surface texture parameter to the difference calculation unit 14. However, the first and second analysis results are not particularly limited as long as they can represent the state of the machined surface.
以上の説明では、加工面分析部12が、加工面シミュレーター11の加工面シミュレーションの結果から、第1の分析結果となる第1の表面性状パラメータを求めて差分計算部20に出力し、加工面計測分析部13が加工面計測機器20から入力される実測表面データ(計測結果となる)から、第2の分析結果となる第2の表面性状パラメータを求めて、差分計算部14に出力する例について説明したが、第1及び第2の分析結果は、加工面の状態を表せるものであれば特に限定しない。 <Another example of machined surface analysis>
In the above description, the machined
例えば、加工面分析部12は、加工面シミュレーター11の加工面シミュレーションの結果から、高さデータ、高さデータの分析値(表面性状パラメータを含む)、グラフ化した高さデータ、又はグラフ化した高さデータの分析値(表面性状パラメータを含む)を求めて、差分計算部20に出力することができる。また、加工面分析部12は、加工面シミュレーター11の加工面シミュレーションの結果から、写真若しくは動画の画像データ、その画像データの分析値、加工面の双方向反射率分布関数(BRDF)のデータ(以下、BRDFデータという)、BRDFデータの分析値、グラフ化したBRDFデータ、又はグラフ化したBRDFデータの分析値を求めて、差分計算部14に出力することができる。ここで、双方向反射率分布関数(BRDF)とは、ある特定の角度から光を入射した時の反射光の角度分布特性を示す関数である。
For example, the machined surface analysis unit 12 uses height data, analytical values of height data (including surface texture parameters), graphed height data, or graphed An analytical value (including a surface texture parameter) of the height data can be obtained and output to the difference calculation unit 20 . In addition, the processed surface analysis unit 12 obtains, from the results of the processed surface simulation by the processed surface simulator 11, image data of photographs or moving images, analysis values of the image data, bidirectional reflectance distribution function (BRDF) data of the processed surface ( BRDF data hereinafter), an analysis value of the BRDF data, graphed BRDF data, or an analysis value of the graphed BRDF data can be obtained and output to the difference calculation unit 14 . Here, the bidirectional reflectance distribution function (BRDF) is a function that indicates the angular distribution characteristics of reflected light when light is incident from a specific angle.
加工面分析部12は、加工面シミュレーションの結果を画像データとし、画素値の分析値を求めて差分計算部20に出力する場合、画像データは、下記のいずれかの方法で作成することができる。
(1) 加工面の高低差を画素値の大小で表現する。
(2) 加工面の真上以外の確度から光を当てた際の反射をシミュレーションし、反射光の大きさを画素値の大小で表現する。
作成された画像データの画素値から、分析値となるヒストグラム特徴量を算出する。ヒストグラム特徴量は、例えば、画素値の平均値、分散値、コントラスト、歪度、尖度、エネルギー、エントロピー等である。 When the machinedsurface analysis unit 12 uses the result of the machined surface simulation as image data, obtains the analysis value of the pixel value, and outputs it to the difference calculation unit 20, the image data can be created by any of the following methods. .
(1) The height difference of the machined surface is represented by the size of the pixel value.
(2) Simulate the reflection when light is applied from a position other than directly above the processing surface, and express the magnitude of the reflected light by the magnitude of the pixel value.
A histogram feature quantity, which is an analysis value, is calculated from the pixel values of the created image data. The histogram feature amount is, for example, the average value of pixel values, the variance value, the contrast, the skewness, the kurtosis, the energy, the entropy, and the like.
(1) 加工面の高低差を画素値の大小で表現する。
(2) 加工面の真上以外の確度から光を当てた際の反射をシミュレーションし、反射光の大きさを画素値の大小で表現する。
作成された画像データの画素値から、分析値となるヒストグラム特徴量を算出する。ヒストグラム特徴量は、例えば、画素値の平均値、分散値、コントラスト、歪度、尖度、エネルギー、エントロピー等である。 When the machined
(1) The height difference of the machined surface is represented by the size of the pixel value.
(2) Simulate the reflection when light is applied from a position other than directly above the processing surface, and express the magnitude of the reflected light by the magnitude of the pixel value.
A histogram feature quantity, which is an analysis value, is calculated from the pixel values of the created image data. The histogram feature amount is, for example, the average value of pixel values, the variance value, the contrast, the skewness, the kurtosis, the energy, the entropy, and the like.
加工面計測分析部13は、加工面計測機器20を用いた実測表面データから、第1の分析結果と同種の第2の分析結果を求めて差分計算部14に出力する。
例えば、加工面計測分析部13は、加工面計測機器20を用いた実測表面データから、第2の表面性状パラメータを求めて差分計算部14に出力する。 The machined surfacemeasurement analysis unit 13 obtains a second analysis result of the same kind as the first analysis result from the measured surface data using the machined surface measurement device 20 and outputs the second analysis result to the difference calculation unit 14 .
For example, the machined surfacemeasurement analysis unit 13 obtains a second surface texture parameter from surface data actually measured using the machined surface measurement device 20 and outputs the second surface texture parameter to the difference calculation unit 14 .
例えば、加工面計測分析部13は、加工面計測機器20を用いた実測表面データから、第2の表面性状パラメータを求めて差分計算部14に出力する。 The machined surface
For example, the machined surface
また、加工面計測分析部13は、加工面計測機器20を用いた実測表面データを画像データとし、画素値の分析値を求めて差分計算部14に出力してもよい。画像データを求めるために、加工面計測機器20として、例えばマイクロスコープ、又はデジタルカメラ等が用いられる。画像データは写真であっても動画データであってもよい。
Further, the machined surface measurement analysis unit 13 may use surface data actually measured using the machined surface measuring device 20 as image data, obtain an analysis value of the pixel value, and output it to the difference calculation unit 14 . A microscope, a digital camera, or the like, for example, is used as the machined surface measuring device 20 to obtain image data. The image data may be photograph data or video data.
さらに、加工面計測分析部13は、加工面計測機器20を用いた実測表面データを用いて、加工面の双方向反射率分布関数(BRDF)を求め、差分計算部14に出力してもよい。双方向反射率分布関数を求めるために、分光角又は回折角を測定する、加工面計測機器20として、例えばゴニオフォトメータ等が用いられる。加工面のBRDFデータはグラフ化したデータであってもよい。
Furthermore, the machined surface measurement analysis unit 13 may obtain a bidirectional reflectance distribution function (BRDF) of the machined surface using surface data actually measured using the machined surface measurement device 20, and output the bidirectional reflectance distribution function (BRDF) to the difference calculator 14. . For example, a goniophotometer or the like is used as the processed surface measuring device 20 for measuring the spectral angle or the diffraction angle in order to obtain the bidirectional reflectance distribution function. The BRDF data of the machined surface may be graphed data.
上述した実施形態は、本発明の好適な実施形態ではあるが、上述した各実施形態のみに本発明の範囲を限定するものではなく、本発明の要旨を逸脱しない範囲において種々の変更を施した形態での実施が可能である。例えば、以下に記載するような変更を施した形態での実施が可能である。
Although the above-described embodiments are preferred embodiments of the present invention, the scope of the present invention is not limited to only the above-described embodiments, and various modifications have been made without departing from the gist of the present invention. Any form of implementation is possible. For example, it is possible to implement in a modified form as described below.
<評価システムの構成の変形例>
上述した実施形態では、評価システム10が、加工面シミュレーター11、加工面分析部12、加工面計測分析部13、差分計算部14、結果表示部15、及び表示設定部16から構成された例を示している。
しかし、結果表示部15及び表示設定部16は評価システム10の外に分離して設けてもよく、この場合、評価システム10は、加工面シミュレーター11、加工面分析部12、加工面計測分析部13、及び差分計算部14から構成される。
評価システム10の構成部の一部又は全部を工作機械内に設けてもよい。例えば、加工面シミュレーター11及び加工面分析部12を工作機械内に設けることができ、分析結果を工作機械外の差分計算部14に入力することができる。また、加工面計測分析部13を加工面計測機器20内に設けることができる。 <Modified example of configuration of evaluation system>
In the above-described embodiment, theevaluation system 10 includes the machined surface simulator 11, the machined surface analysis unit 12, the machined surface measurement analysis unit 13, the difference calculation unit 14, the result display unit 15, and the display setting unit 16. showing.
However, theresult display unit 15 and the display setting unit 16 may be separately provided outside the evaluation system 10. In this case, the evaluation system 10 includes the machined surface simulator 11, the machined surface analysis unit 12, the machined surface measurement analysis unit 13 and a difference calculation unit 14 .
Some or all of the components ofevaluation system 10 may be provided within the machine tool. For example, the machined surface simulator 11 and the machined surface analysis unit 12 can be provided in the machine tool, and the analysis results can be input to the difference calculation unit 14 outside the machine tool. Also, the machined surface measurement analysis unit 13 can be provided in the machined surface measuring device 20 .
上述した実施形態では、評価システム10が、加工面シミュレーター11、加工面分析部12、加工面計測分析部13、差分計算部14、結果表示部15、及び表示設定部16から構成された例を示している。
しかし、結果表示部15及び表示設定部16は評価システム10の外に分離して設けてもよく、この場合、評価システム10は、加工面シミュレーター11、加工面分析部12、加工面計測分析部13、及び差分計算部14から構成される。
評価システム10の構成部の一部又は全部を工作機械内に設けてもよい。例えば、加工面シミュレーター11及び加工面分析部12を工作機械内に設けることができ、分析結果を工作機械外の差分計算部14に入力することができる。また、加工面計測分析部13を加工面計測機器20内に設けることができる。 <Modified example of configuration of evaluation system>
In the above-described embodiment, the
However, the
Some or all of the components of
評価システム10は、複数の工作機械で共用してもよい。同じ加工プログラムで複数の工作機械を動作させて加工ワークを作製し、ユーザが評価システム10を用いて加工面品位を比較することで、複数の工作機械の性能評価を行うことができる。
The evaluation system 10 may be shared by multiple machine tools. By operating a plurality of machine tools with the same machining program to fabricate workpieces and comparing the machined surface quality using the evaluation system 10, the user can evaluate the performance of the plurality of machine tools.
また、以上説明した実施形態は、ハードウェア、ソフトウェア又はこれらの組み合わせにより実現することができる。ここで、ソフトウェアによって実現されるとは、コンピュータがプログラムを読み込んで実行することにより実現されることを意味する。ハードウェアで構成する場合、各実施形態の一部又は全部を、例えば、LSI(Large Scale Integrated circuit)、ASIC(Application Specific Integrated Circuit)、ゲートアレイ、FPGA(Field Programmable Gate Array)等の集積回路(IC)で構成することができる。
Also, the embodiments described above can be realized by hardware, software, or a combination thereof. Here, "implemented by software" means implemented by a computer reading and executing a program. When configured by hardware, part or all of each embodiment, for example, integrated circuits such as LSI (Large Scale Integrated circuit), ASIC (Application Specific Integrated Circuit), gate array, FPGA (Field Programmable Gate Array) ( IC).
また、上述した実施形態の一部又は全部をソフトウェアとハードウェアの組み合わせで構成する場合、フローチャートで示される評価システムの動作の全部又は一部を記述したプログラムを記憶した、ハードディスク、ROM等の記憶部、演算に必要なデータを記憶するDRAM、CPU、及び各部を接続するバスで構成されたコンピュータにおいて、演算に必要な情報をDRAMに記憶し、CPUで当該プログラムを動作させることで実現することができる。
In addition, when part or all of the above-described embodiments are configured by a combination of software and hardware, a hard disk, ROM, or other storage that stores a program describing all or part of the operation of the evaluation system shown in the flow chart In a computer composed of a unit, a DRAM that stores data necessary for calculation, a CPU, and a bus that connects each unit, information necessary for calculation is stored in the DRAM, and the program is executed by the CPU. can be done.
プログラムは、様々なタイプのコンピュータ可読媒体(computer readable medium)を用いて格納され、コンピュータに供給することができる。コンピュータ可読媒体は、様々なタイプの実体のある記録媒体(tangible storage medium)を含む。コンピュータ可読媒体は、例えば、磁気記録媒体(例えば、ハードディスクドライブ)、光磁気記録媒体(例えば、光磁気ディスク)、CD-ROM(Read Only Memory)、CD-R、CD-R/W、半導体メモリ(例えば、マスクROM、PROM(Programmable ROM)、EPROM(Erasable PROM)、フラッシュROM、又はRAM(random access memory))である。
Programs can be stored and supplied to computers using various types of computer readable media. Computer readable media includes various types of tangible storage media. Computer-readable media include, for example, magnetic recording media (e.g., hard disk drives), magneto-optical recording media (e.g., magneto-optical discs), CD-ROMs (Read Only Memory), CD-Rs, CD-R/Ws, semiconductor memories (eg, mask ROM, PROM (programmable ROM), EPROM (erasable PROM), flash ROM, or RAM (random access memory)).
本開示による、加工面品位を評価する評価システム及び評価用プログラムは、上述した実施形態を含め、次のような構成を有する各種各様の実施形態を取ることができる。
The evaluation system and evaluation program for evaluating machined surface quality according to the present disclosure can take various embodiments having the following configurations, including the embodiments described above.
(1) 切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする加工面シミュレーター部(例えば、加工面シミュレーター11)と、
前記加工面シミュレーター部による加工面シミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する加工面分析部(例えば、加工面分析部12)と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する加工面計測分析部(例えば、加工面計測分析部13)と、
前記第1の分析結果と前記第2の分析結果との差分を計算する差分計算部(例えば、差分計算部14)と、
を備えた評価システム。
この評価システムによれば、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価することができる。 (1) A machined surface simulator that simulates a machined surface as a result of machining, using position information for machining a workpiece using a cutting tool and tool information having feature quantities including at least the shape of the cutting tool. a part (for example, a machined surface simulator 11);
A machined surface analysis unit (for example, a machined surface analysis unit 12) that outputs a first analysis result in which the state of the machined surface is quantified based on the result of the machined surface simulation by the machined surface simulator unit;
A machined surface measurement analysis unit (for example, a machined surface measurement analysis unit 13);
a difference calculation unit (for example, difference calculation unit 14) that calculates the difference between the first analysis result and the second analysis result;
A rating system with
According to this evaluation system, it is possible to easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. .
前記加工面シミュレーター部による加工面シミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する加工面分析部(例えば、加工面分析部12)と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する加工面計測分析部(例えば、加工面計測分析部13)と、
前記第1の分析結果と前記第2の分析結果との差分を計算する差分計算部(例えば、差分計算部14)と、
を備えた評価システム。
この評価システムによれば、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価することができる。 (1) A machined surface simulator that simulates a machined surface as a result of machining, using position information for machining a workpiece using a cutting tool and tool information having feature quantities including at least the shape of the cutting tool. a part (for example, a machined surface simulator 11);
A machined surface analysis unit (for example, a machined surface analysis unit 12) that outputs a first analysis result in which the state of the machined surface is quantified based on the result of the machined surface simulation by the machined surface simulator unit;
A machined surface measurement analysis unit (for example, a machined surface measurement analysis unit 13);
a difference calculation unit (for example, difference calculation unit 14) that calculates the difference between the first analysis result and the second analysis result;
A rating system with
According to this evaluation system, it is possible to easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. .
(2) 前記差分を表示する結果表示部(例えば、結果表示部15)と、前記差分の表示方法を設定する表示設定部(例えば、表示設定部16)と、を備えた、上記(1)に記載の評価システム。
(2) The above (1) comprising a result display unit (for example, the result display unit 15) that displays the difference, and a display setting unit (for example, the display setting unit 16) that sets the display method of the difference. The rating system described in .
(3) 前記第1及び第2の分析結果は、表面性状パラメータである、上記(1)又は(2)に記載の評価システム。
(3) The evaluation system according to (1) or (2) above, wherein the first and second analysis results are surface texture parameters.
(4) 前記第1及び第2の分析結果は、ヒストグラム特徴量である、上記(1)又は(2)に記載の評価システム。
(4) The evaluation system according to (1) or (2) above, wherein the first and second analysis results are histogram feature quantities.
(5) 前記第1及び第2の分析結果は、加工面の双方向反射率分布関数のデータである、上記(1)又は(2)に記載の評価システム。
(5) The evaluation system according to (1) or (2) above, wherein the first and second analysis results are bidirectional reflectance distribution function data of the processed surface.
(6) コンピュータに、
切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする処理と、
前記加工面のシミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する処理と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する処理と、
前記第1の分析結果と前記第2の分析結果との差分を計算する処理と、
を実行させる評価用プログラム。
この評価用プログラムによれば、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価することができる。 (6) to the computer,
A process of simulating a machined surface of a machining result using position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool;
A process of outputting a first analysis result in which the state of the machined surface is digitized based on the result of the simulation of the machined surface;
A process of outputting a second analysis result in which the state of the machined surface is digitized based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a process of calculating a difference between the first analysis result and the second analysis result;
An evaluation program that runs
According to this evaluation program, it is possible to easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. can.
切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする処理と、
前記加工面のシミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する処理と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する処理と、
前記第1の分析結果と前記第2の分析結果との差分を計算する処理と、
を実行させる評価用プログラム。
この評価用プログラムによれば、加工ワークの加工面の加工面品位と、理想的な加工面の加工面品位とを比較して、加工ワークの加工面の加工面品位を簡単に評価することができる。 (6) to the computer,
A process of simulating a machined surface of a machining result using position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool;
A process of outputting a first analysis result in which the state of the machined surface is digitized based on the result of the simulation of the machined surface;
A process of outputting a second analysis result in which the state of the machined surface is digitized based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a process of calculating a difference between the first analysis result and the second analysis result;
An evaluation program that runs
According to this evaluation program, it is possible to easily evaluate the machined surface quality of the machined surface of the machined workpiece by comparing the machined surface quality of the machined surface of the machined workpiece with the machined surface quality of the ideal machined surface. can.
10 評価システム
11 加工面シミュレーター
12 加工面分析部
13 加工面計測分析部
14 差分計算部
15 結果表示部
16 表示設定部
20 加工面計測機器
30 加工ワーク
40 工作機械 10evaluation system 11 machined surface simulator 12 machined surface analysis unit 13 machined surface measurement analysis unit 14 difference calculation unit 15 result display unit 16 display setting unit 20 machined surface measurement device 30 machined workpiece 40 machine tool
11 加工面シミュレーター
12 加工面分析部
13 加工面計測分析部
14 差分計算部
15 結果表示部
16 表示設定部
20 加工面計測機器
30 加工ワーク
40 工作機械 10
Claims (6)
- 切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする加工面シミュレーター部と、
前記加工面シミュレーター部による加工面シミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する加工面分析部と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する加工面計測分析部と、
前記第1の分析結果と前記第2の分析結果との差分を計算する差分計算部と、
を備えた評価システム。 a machined surface simulator section for simulating a machined surface as a result of machining using position information for machining a workpiece using a cutting tool and tool information having feature amounts including at least the shape of the cutting tool;
a machined surface analysis unit that outputs a first analysis result in which the state of the machined surface is quantified based on the result of the machined surface simulation by the machined surface simulator unit;
a machined surface measurement analysis unit that outputs a second analysis result in which the state of the machined surface is quantified based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a difference calculation unit that calculates the difference between the first analysis result and the second analysis result;
A rating system with - 前記差分を表示する結果表示部と、前記差分の表示方法を設定する表示設定部と、を備えた、請求項1に記載の評価システム。 The evaluation system according to claim 1, comprising a result display section for displaying the difference, and a display setting section for setting a display method of the difference.
- 前記第1及び第2の分析結果は、表面性状パラメータである、請求項1又は請求項2に記載の評価システム。 The evaluation system according to claim 1 or claim 2, wherein the first and second analysis results are surface texture parameters.
- 前記第1及び第2の分析結果は、ヒストグラム特徴量である、請求項1又は請求項2に記載の評価システム。 The evaluation system according to claim 1 or 2, wherein the first and second analysis results are histogram feature quantities.
- 前記第1及び第2の分析結果は、加工面の双方向反射率分布関数のデータである、請求項1又は請求項2に記載の評価システム。 The evaluation system according to claim 1 or 2, wherein the first and second analysis results are bidirectional reflectance distribution function data of the processed surface.
- コンピュータに、
切削工具を使用してワークを加工するための位置情報と、前記切削工具の少なくとも形状を含む特徴量を有する工具情報とを利用して、加工結果の加工面をシミュレーションする処理と、
前記加工面のシミュレーションの結果に基づいて加工面の状態を数値化した第1の分析結果を出力する処理と、
前記位置情報を用いて工作機械で実際に加工した加工ワークの加工面を計測した計測結果に基づいて加工面の状態を数値化した第2の分析結果を出力する処理と、
前記第1の分析結果と前記第2の分析結果との差分を計算する処理と、
を実行させる評価用プログラム。 to the computer,
A process of simulating a machined surface of a machining result using position information for machining a workpiece using a cutting tool and tool information having a feature amount including at least the shape of the cutting tool;
A process of outputting a first analysis result in which the state of the machined surface is digitized based on the result of the simulation of the machined surface;
A process of outputting a second analysis result in which the state of the machined surface is digitized based on the measurement result of measuring the machined surface of the workpiece actually machined by the machine tool using the position information;
a process of calculating a difference between the first analysis result and the second analysis result;
An evaluation program that runs
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/029508 WO2023017560A1 (en) | 2021-08-10 | 2021-08-10 | Evaluation system and evaluation program for evaluating machined surface quality |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2021/029508 WO2023017560A1 (en) | 2021-08-10 | 2021-08-10 | Evaluation system and evaluation program for evaluating machined surface quality |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023017560A1 true WO2023017560A1 (en) | 2023-02-16 |
Family
ID=85200658
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/029508 WO2023017560A1 (en) | 2021-08-10 | 2021-08-10 | Evaluation system and evaluation program for evaluating machined surface quality |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023017560A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003017017A1 (en) * | 2001-08-16 | 2003-02-27 | Riken | Ultra-precision machining method and device for heterogeneous material |
JP2003100721A (en) * | 2001-09-27 | 2003-04-04 | Matsushita Electric Ind Co Ltd | Plasma processing apparatus |
JP2004153229A (en) * | 2002-03-14 | 2004-05-27 | Nikon Corp | Methods to predict working shape, to determine working condition, and to predict working amount, systems to predict working shape, and to determine working condition, working system, computer programs to predict working shape, and to determine working condition, program recording medium, and manufacturing method of semiconductor device |
JP2019082451A (en) * | 2017-10-31 | 2019-05-30 | キヤノン株式会社 | Reflection characteristic measuring apparatus, processing system, reflection characteristic measuring method and object processing method |
JP2021072012A (en) * | 2019-11-01 | 2021-05-06 | ファナック株式会社 | Display device |
-
2021
- 2021-08-10 WO PCT/JP2021/029508 patent/WO2023017560A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2003017017A1 (en) * | 2001-08-16 | 2003-02-27 | Riken | Ultra-precision machining method and device for heterogeneous material |
JP2003100721A (en) * | 2001-09-27 | 2003-04-04 | Matsushita Electric Ind Co Ltd | Plasma processing apparatus |
JP2004153229A (en) * | 2002-03-14 | 2004-05-27 | Nikon Corp | Methods to predict working shape, to determine working condition, and to predict working amount, systems to predict working shape, and to determine working condition, working system, computer programs to predict working shape, and to determine working condition, program recording medium, and manufacturing method of semiconductor device |
JP2019082451A (en) * | 2017-10-31 | 2019-05-30 | キヤノン株式会社 | Reflection characteristic measuring apparatus, processing system, reflection characteristic measuring method and object processing method |
JP2021072012A (en) * | 2019-11-01 | 2021-05-06 | ファナック株式会社 | Display device |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6871842B2 (en) | Machining simulation condition optimization method, machining simulation equipment, machining simulation system and program | |
Carr et al. | Self‐decomposability and option pricing | |
Balcaen et al. | Stereo-DIC calibration and speckle image generator based on FE formulations | |
CN109949305A (en) | Method for detecting surface defects of products, device and computer equipment | |
US11966209B2 (en) | Simulator, numerical control device, and simulation method | |
Kirkegaard | A unifying approach to incentive compatibility in moral hazard problems | |
JP5751611B2 (en) | Machine tool, method and program for determining number and arrangement of temperature measuring parts of machine tool | |
CN107111871A (en) | Local quality measurement is determined from body image record | |
JP2007249354A (en) | Index estimation device, index estimation method and index estimation program | |
JP2017156170A (en) | Object surface correction method and working method of workpiece | |
US8311320B2 (en) | Computer readable recording medium storing difference emphasizing program, difference emphasizing method, and difference emphasizing apparatus | |
Fontanari et al. | From concentration profiles to concentration maps. New tools for the study of loss distributions | |
Hotař | Fractal geometry for industrial data evaluation | |
WO2023017560A1 (en) | Evaluation system and evaluation program for evaluating machined surface quality | |
JP6330665B2 (en) | Visualization device, visualization method, and visualization program | |
Schunk et al. | Enhancing lithic analysis: Introducing 3D-EdgeAngle as a semi-automated 3D digital method to systematically quantify stone tool edge angle and design | |
JP6555164B2 (en) | Particle size distribution measuring apparatus, data processing method, and data processing program | |
Cheung et al. | A framework of a virtual machining and inspection system for diamond turning of precision optics | |
JP2016003872A (en) | Three-dimensional shape measuring device, measurement data processing unit, measurement data processing method, and computer program | |
WO2019130856A1 (en) | Particle image display device, particle image display program, particle image display method, and particle measurement system | |
Daemi et al. | High precision 3D evaluation method for Vickers hardness measurement | |
Kracker et al. | Automatic analysis of crash simulations with dimensionality reduction algorithms such as PCA and t-SNE | |
Ulrich et al. | Implied volatility surfaces: a comprehensive analysis using half a billion option prices | |
WO2023012964A1 (en) | Machine learning device, system for evaluating machined surface quality, and machine learning program | |
Lu et al. | A Robust Image Processing Algorithm for Optical-Based Stress–Strain Curve Corrections after Necking |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21953457 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21953457 Country of ref document: EP Kind code of ref document: A1 |