WO2023016569A1 - 功率控制方法及装置 - Google Patents

功率控制方法及装置 Download PDF

Info

Publication number
WO2023016569A1
WO2023016569A1 PCT/CN2022/112322 CN2022112322W WO2023016569A1 WO 2023016569 A1 WO2023016569 A1 WO 2023016569A1 CN 2022112322 W CN2022112322 W CN 2022112322W WO 2023016569 A1 WO2023016569 A1 WO 2023016569A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
power
terminal device
power control
path loss
Prior art date
Application number
PCT/CN2022/112322
Other languages
English (en)
French (fr)
Inventor
李怡然
邵家枫
余健
赵文琪
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22855549.6A priority Critical patent/EP4380249A1/en
Publication of WO2023016569A1 publication Critical patent/WO2023016569A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/06TPC algorithms
    • H04W52/14Separate analysis of uplink or downlink
    • H04W52/146Uplink power control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/24TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters
    • H04W52/242TPC being performed according to specific parameters using SIR [Signal to Interference Ratio] or other wireless path parameters taking into account path loss
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/18TPC being performed according to specific parameters
    • H04W52/28TPC being performed according to specific parameters using user profile, e.g. mobile speed, priority or network state, e.g. standby, idle or non transmission
    • H04W52/283Power depending on the position of the mobile
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/04TPC
    • H04W52/30TPC using constraints in the total amount of available transmission power
    • H04W52/36TPC using constraints in the total amount of available transmission power with a discrete range or set of values, e.g. step size, ramping or offsets
    • H04W52/367Power values between minimum and maximum limits, e.g. dynamic range

Definitions

  • the present application relates to the communication field, and in particular to a power control method and device.
  • a terminal device with a sensing function can sense the target device by sending a sensing signal with a certain transmission power and receiving the echo signal of the sensing signal, and estimate the sensing information .
  • the perception information may include the speed, distance, motion track, shape, and size of the perceived target device.
  • the present application provides a power control method and device, which can implement power control on sensing signals, thereby ensuring sensing performance of terminal equipment and improving sensing accuracy.
  • a power control method includes: the terminal device determines the first path loss, determines the transmission power of the first signal according to the first path loss, and sends the first signal according to the transmission power.
  • the first path loss is a path loss of a detection link
  • the detection link is a round-trip link between the terminal device and at least one object.
  • the terminal device determines the transmission power of the first signal based on the path loss of the detection link, the detection link is a round-trip link between the terminal device and at least one object, and the terminal device sends a signal during the target detection process Afterwards, the signal can be reflected to the terminal device through one sensing target, or the signal can be reflected to the terminal device through multiple sensing targets in sequence. In this way, determining the transmission power of the first signal based on the path loss of the detection link, and sending the first signal with the determined transmission power can ensure the sensing performance of the terminal device and improve sensing accuracy.
  • the first path loss may be determined by the terminal device according to first information, a signal sent by the terminal device, and/or a signal sent by a device other than the terminal device; wherein the first information includes the following One or more items: reference path loss information, first path loss correction value, or distance information.
  • the first information may come from a network device or other terminal devices.
  • the signal sent by the terminal device may be sent by the terminal device under one or more transmission opportunities before the current transmission opportunity.
  • the one or more transmission opportunities are one or more transmission opportunities of the sensing signal.
  • the terminal device may determine the first path loss according to received power of signals sent by devices other than the terminal device.
  • the above-mentioned first path loss is determined by the terminal device using a signal sent by the terminal device, which may include: the first signal is sent at the transmission opportunity T 0 , and the first path loss may be determined according to the transmission opportunity
  • the path loss obtained by one or more transmission opportunities before T 0 is determined, and the path loss is a path loss of a round-trip link between the terminal device and at least one object.
  • the above-mentioned determining the transmit power of the first signal according to the first path loss includes: determining the transmit power of the first signal according to the first power control indication information and the first path loss.
  • the first power control indication information may include: a first maximum transmit power, and a first expected transmit power.
  • the first maximum transmission power may be used to indicate the maximum power for sending the first signal, the first maximum transmission power is less than or equal to the maximum transmission power of the terminal device, the transmission power of the first signal is less than or equal to the first maximum transmission power, and the first desired transmission Power can be used to indicate the desired transmit power to meet the target detection needs of the end device.
  • the transmit power of the first signal can be determined under the constraint of the first maximum transmit power of the terminal device, so as to implement power control on the sensing signal, thereby ensuring the sensing performance of the terminal device.
  • the power control method provided in the first aspect may further include: receiving first indication information from a network device.
  • the first indication information may include first power control indication information.
  • the first indication information may further include second power control indication information, and the second power control indication information may be used to indicate the transmission power of the second signal.
  • the second signal can be a communication signal or a sensing signal.
  • the first power control indication information may also be used to indicate the transmission power of the second signal.
  • the power control parameters of the first signal and the second signal may be jointly indicated through the first power indication information, thereby saving resource overhead.
  • the time-domain resources of the first signal and the time-domain resources of the second signal completely or partially overlap, and on the overlapped time-domain resources, the transmission power of the first signal and the transmission power of the second signal The sum is less than or equal to the maximum transmit power of the terminal equipment. In this way, a reasonable distribution of the transmission power of the sensing signal and the communication signal can be realized.
  • the first indication information may also include first time domain resource configuration information and second indication information
  • the first time domain resource configuration information may be used to indicate the time domain resource of the first signal
  • the second indication The information may be used to indicate that the resource configuration information of the second signal is the same as the first time domain resource configuration information.
  • a power control method includes: a network device determines first indication information, and sends the first indication information to a terminal device.
  • the first indication information includes first power control indication information
  • the first power control indication information is used by the terminal device to determine the transmit power of the first signal according to the first power control indication information and the first path loss, and the first path loss is the detection
  • the path loss of the link, the detection link is a round-trip link between the terminal device and at least one object.
  • the power control method provided in the second aspect may further include: sending the first information to the terminal device.
  • the first information may include one or more of the following: reference path loss information, a first path loss correction value, or distance information.
  • the first information may be used to indicate a first path loss.
  • the first power control indication information may include a first maximum transmit power and a first expected transmit power.
  • the first maximum transmission power may be used to indicate the maximum power for sending the first signal, the first maximum transmission power is less than or equal to the maximum transmission power of the terminal device, the transmission power of the first signal is less than or equal to the first maximum transmission power, and the first desired transmission Power can be used to indicate the desired transmit power to meet the target detection needs of the end device.
  • the first indication information may further include second power control indication information, and the second power control indication information may be used to indicate the transmission power of the second signal.
  • the first power control indication information may also be used to indicate the transmission power of the second signal.
  • the first indication information may also include first time domain resource configuration information and second indication information
  • the first time domain resource configuration information may be used to indicate the time domain resource of the first signal
  • the second indication The information may be used to indicate that the resource configuration information of the second signal is the same as the first time domain resource configuration information.
  • a power control device in a third aspect, includes: a processing module and a transceiver module.
  • the processing module is configured to determine the first path loss.
  • the processing module is further configured to determine the transmit power of the first signal according to the first path loss.
  • the transceiver module is configured to send the first signal according to the transmit power.
  • the first path loss is a path loss of a detection link
  • the detection link is a round-trip link between the terminal device and at least one object.
  • the first path loss may be determined by the terminal device according to first information, a signal sent by the terminal device, and/or a signal sent by a device other than the terminal device; wherein the first information includes the following Item or items: reference path loss information, first path loss correction value, or distance information.
  • the above-mentioned first path loss is determined by the terminal device using a signal sent by the terminal device, which may include: the first signal is sent at the transmission opportunity T 0 , and the first path loss may be determined according to the transmission opportunity The path loss obtained by one or more transmission opportunities before T 0 is determined.
  • the above-mentioned determining the transmit power of the first signal according to the first path loss may include: determining the transmit power of the first signal according to the first power control indication information and the first path loss.
  • the first power control indication information may include a first maximum transmit power and a first expected transmit power.
  • the first maximum transmission power may be used to indicate the maximum power for sending the first signal, the first maximum transmission power is less than or equal to the maximum transmission power of the terminal device, the transmission power of the first signal is less than or equal to the first maximum transmission power, and the first desired transmission Power can be used to indicate the desired transmit power to meet the target detection needs of the end device.
  • the transceiver module is further configured to receive first indication information from the network device.
  • the first indication information may include first power control indication information.
  • the first indication information may further include second power control indication information, and the second power control indication information may be used to indicate the transmission power of the second signal.
  • the first power control indication information may also be used to indicate the transmission power of the second signal.
  • the time-domain resources of the first signal and the time-domain resources of the second signal completely or partially overlap, and on the overlapped time-domain resources, the transmission power of the first signal and the transmission power of the second signal The sum is less than or equal to the maximum transmit power of the terminal equipment.
  • the first indication information may also include first time domain resource configuration information and second indication information
  • the first time domain resource configuration information may be used to indicate the time domain resource of the first signal
  • the second indication The information may be used to indicate that the resource configuration information of the second signal is the same as the first time domain resource configuration information.
  • the transceiver module described in the third aspect may include a receiving module and a sending module.
  • the receiving module is used to receive data and/or signaling from the network device;
  • the sending module is used to send data and/or signaling to the network device.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the power control device may further include a storage module storing programs or instructions.
  • the processing module executes the program or instruction
  • the power control device described in the third aspect can execute the method described in the first aspect.
  • the power control device described in the third aspect may be a terminal device, or may be a chip (system) or other components or components that may be configured in the terminal device, which is not limited in this application.
  • a power control device in a fourth aspect, includes: a processing module and a transceiver module.
  • a processing module configured to determine first indication information.
  • a transceiver module configured to send the first indication information to the terminal device.
  • the first indication information includes first power control indication information
  • the first power control indication information is used by the terminal device to determine the transmit power of the first signal according to the first power control indication information and the first path loss, and the first path loss is the detection
  • the path loss of the link, the detection link is a round-trip link between the terminal device and at least one object.
  • the transceiver module is further configured to send the first information to the terminal device.
  • the first information may include one or more of the following: reference path loss information, a first path loss correction value, or distance information.
  • the first information may be used to indicate a first path loss.
  • the first power control indication information may include a first maximum transmit power and a first expected transmit power.
  • the first maximum transmission power may be used to indicate the maximum power for sending the first signal, the first maximum transmission power is less than or equal to the maximum transmission power of the terminal device, the transmission power of the first signal is less than or equal to the first maximum transmission power, and the first desired transmission Power can be used to indicate the desired transmit power to meet the target detection needs of the end device.
  • the first indication information may further include second power control indication information, and the second power control indication information may be used to indicate the transmission power of the second signal.
  • the first power control indication information may also be used to indicate the transmission power of the second signal.
  • the first indication information may also include first time domain resource configuration information and second indication information
  • the first time domain resource configuration information may be used to indicate the time domain resource of the first signal
  • the second indication The information may be used to indicate that the resource configuration information of the second signal is the same as the first time domain resource configuration information.
  • the transceiver module described in the fourth aspect may include a receiving module and a sending module.
  • the receiving module is used to receive data and/or signaling from the terminal device;
  • the sending module is used to send data and/or signaling to the terminal device.
  • This application does not specifically limit the specific implementation manner of the transceiver module.
  • the power control device may further include a storage module storing programs or instructions.
  • the processing module executes the program or instruction
  • the power control device described in the fourth aspect can execute the method described in the second aspect.
  • the power control device described in the fourth aspect may be a network device, or a chip (system) or other components or components that may be configured in the network device, which is not limited in this application.
  • a power control device in a fifth aspect, includes: a processor.
  • the processor is configured to execute the power control method described in any possible implementation manner of the first aspect to the second aspect.
  • the power control device may further include a memory.
  • the processor is coupled with a memory for storing computer programs.
  • the processor can be used to execute the computer program stored in the memory, so that the power control method described in any possible implementation manner of the first aspect to the second aspect is executed.
  • the power control device may further include a transceiver.
  • the transceiver can be a transceiver circuit or an input/output port.
  • the transceiver can be used for the power control device to communicate with other devices.
  • the input port can be used to realize the receiving function involved in the first aspect to the second aspect
  • the output port can be used to realize the sending function involved in the first aspect to the second aspect
  • the power control apparatus described in the fifth aspect may be a terminal device or a network device, or a chip or a chip system disposed inside the terminal device or the network device.
  • a communication system in a sixth aspect, includes the power control device according to the third aspect and the power control device according to the fourth aspect.
  • the communication system includes the power control device according to the third aspect for realizing the method according to the first aspect and the power control device according to the fourth aspect for realizing the method according to the second aspect.
  • the communication system may include one or more terminal devices and one or more network devices.
  • a chip system in a seventh aspect, includes a logic circuit and an input/output port.
  • the logic circuit is used to realize the processing function involved in the first aspect to the second aspect
  • the input/output port is used to realize the sending and receiving function involved in the first aspect to the second aspect.
  • the input port can be used to realize the receiving function involved in the first aspect to the second aspect
  • the output port can be used to realize the sending function involved in the first aspect to the second aspect.
  • the chip system further includes a memory, which is used for storing program instructions and data for realizing the functions involved in the first aspect to the second aspect.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • a computer-readable storage medium including: a computer program or instruction; when the computer program or instruction is run on a computer, the The power control method is implemented.
  • a ninth aspect provides a computer program product, including a computer program or instruction, when the computer program or instruction is run on a computer, the power control described in any one of the possible implementations of the first aspect to the second aspect is made method is executed.
  • FIG. 1 is a schematic diagram of the architecture of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a time-domain resource configuration of a sensing signal and a communication signal provided by an embodiment of the present application;
  • FIG. 3 is a schematic diagram of layered transmission of sensing signals and communication signals provided by an embodiment of the present application
  • FIG. 4 is a schematic diagram of another time-domain resource configuration of a sensing signal and a communication signal provided by an embodiment of the present application;
  • FIG. 5 is a schematic structural diagram of a power control device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another power control device provided by an embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a power control method provided in an embodiment of the present application.
  • FIG. 8 is a schematic flowchart of another power control method provided by an embodiment of the present application.
  • the technical solutions of the embodiments of the present application can be applied to various communication systems, such as universal mobile telecommunications system (universal mobile telecommunications system, UMTS), wireless local area network (wireless local area network, WLAN), wireless fidelity (wireless fidelity, Wi-Fi ) system, wired network, vehicle to everything (V2X) communication system, device-to-device (D2D) communication system, vehicle networking communication system, 4th generation (4th generation, 4G) mobile communication Systems, such as long term evolution (long term evolution, LTE) system, worldwide interconnection microwave access (worldwide interoperability for microwave access, WiMAX) communication system, fifth generation (5th generation, 5G) mobile communication system, such as new radio interface (new radio , NR) system, and future communication systems, such as the sixth generation (6th generation, 6G) mobile communication system, etc.
  • Universal mobile telecommunications system Universal mobile telecommunications system, UMTS
  • wireless local area network wireless local area network
  • WLAN wireless local area network
  • wireless fidelity wireless fidelity
  • the present application presents various aspects, embodiments or features in terms of a system that can include a number of devices, components, modules and the like. It is to be understood and appreciated that the various systems may include additional devices, components, modules, etc. and/or may not include all of the devices, components, modules etc. discussed in connection with the figures. In addition, combinations of these schemes can also be used.
  • a subscript such as W 1 may be a clerical error into a non-subscript form such as W1.
  • the network architecture and business scenarios described in the embodiments of the present application are for more clearly illustrating the technical solutions of the embodiments of the present application, and do not constitute limitations on the technical solutions provided by the embodiments of the present application.
  • the technical solutions provided by the embodiments of this application are also applicable to similar technical problems.
  • FIG. 1 is a schematic structural diagram of a communication system to which the power control method provided in the embodiment of the present application is applicable.
  • the communication system includes terminal equipment and network equipment.
  • the terminal device may be a terminal device with perception capability, and the number of terminal devices may be one or more.
  • the communication system may further include a sensing target, which may be referred to as a target device.
  • the communication system shown in FIG. 1 may also include common terminal devices, that is, terminal devices without perception capabilities.
  • the above-mentioned terminal equipment is a terminal equipment that accesses the above-mentioned communication system and has a wireless transceiver function, or a chip or a chip system that can be provided in the terminal equipment.
  • the terminal device may have a radar sensing function, for example, functions of sending and receiving sensing signals, and signal processing.
  • the terminal equipment may also be called sensing equipment, user equipment (user equipment, UE), user device, access terminal, subscriber unit, user station, mobile station, mobile station (mobile station, MS), remote station, remote terminal, Mobile equipment, user terminal, terminal, terminal unit, end station, terminal device, wireless communication device, user agent or user device.
  • the terminal equipment in the embodiment of the present application may be customer premise equipment (customer premise equipment, CPE), mobile phone (mobile phone), wireless data card, personal digital assistant (personal digital assistant, PDA) computer, laptop computer (laptop computer), tablet computer (Pad), computer with wireless transceiver function, machine type communication (machine type communication, MTC) terminal, virtual reality (virtual reality, VR) terminal equipment, augmented reality (augmented reality, AR) terminal Equipment, Internet of Things (IoT) terminal equipment, wireless terminals in industrial control (industrial control), wireless terminals in self driving (self driving), wireless terminals in remote medical (remote medical), smart grid Wireless terminals in (smart grid), wireless terminals in transportation safety, wireless terminals in smart city, wireless terminals in smart home (such as game consoles, smart TVs, smart Speakers, smart refrigerators and fitness equipment, etc.), vehicle-mounted terminals, and RSUs with terminal functions.
  • CPE customer premise equipment
  • mobile phone mobile phone
  • PDA personal digital assistant
  • laptop computer laptop computer
  • laptop computer
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a handset with wireless communication capabilities , computing devices or other processing devices connected to wireless modems, wearable devices, etc.
  • the client terminal equipment is larger than the general terminal and has stronger functions. It can receive the signal sent by the network equipment and send it to other terminal equipment, which is equivalent to the secondary relay of the signal sent by the network equipment.
  • the terminal device in the embodiment of the present application can be an express terminal in smart logistics (such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of goods, etc.), a wireless terminal in smart agriculture (such as a device that can collect poultry wearable devices related to livestock data, etc.), wireless terminals in smart buildings (such as smart elevators, fire monitoring equipment, and smart meters, etc.), wireless terminals in smart medical care (such as wireless terminals that can monitor the physiological status of people or animals) Wearable devices), wireless terminals in intelligent transportation (such as smart buses, smart vehicles, shared bicycles, charging pile monitoring equipment, smart traffic lights, train detectors, sensors such as gas stations, and smart monitoring and smart parking equipment, etc.), smart Wireless terminals in retail (such as vending machines, self-checkout machines, and unmanned convenience stores, etc.).
  • smart logistics such as a device that can monitor the location of cargo vehicles, a device that can monitor the temperature and humidity of goods, etc.
  • a wireless terminal in smart agriculture such as a device that
  • the terminal device of the present application may be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built into a vehicle as one or more components or units. Groups, on-board components, on-board chips, or on-board units can implement the methods provided in this application.
  • the above-mentioned network device is a device located on the network side of the above-mentioned communication system and having a wireless transceiver function or a chip or a chip system that can be provided in the device.
  • the network device may have a radar sensing function, for example, functions of sending and receiving sensing signals, and signal processing.
  • the network equipment includes but is not limited to: an access point (access point, AP) in a wireless fidelity (Wi-Fi) system, such as a home gateway, a router, a server, a switch, a bridge, etc., and an evolved node B (evolved Node B, eNB), radio network controller (radio network controller, RNC), node B (Node B, NB), base station controller (base station controller, BSC), base transceiver station (base transceiver station, BTS) , home base station (for example, home evolved NodeB, or home Node B, HNB), baseband unit (baseband unit, BBU), wireless relay node, wireless backhaul node, transmission point (transmission and reception point, TRP or transmission point, TP), etc., can also be 5G, such as gNB in NR system, or transmission point (TRP or TP), one or a group (including multiple antenna panels) antenna panels of a base station in 5G system, or, also It may be
  • the aforementioned sensing target may be any object, terminal device, person, animal, etc. that can be sensed by the sensing device.
  • perception targets can be cars, pedestrians, bricks on the road, and animals.
  • FIG. 1 is only a simplified schematic diagram for easy understanding, and the communication system may also include other network devices and/or other terminal devices, which are not shown in FIG. 1 .
  • the time domain resource refers to the number of orthogonal frequency division modulation (OFDM) symbols occupied in the time domain.
  • the minimum granularity of time-domain resources is one OFDM symbol, and may also be a mini-slot, a slot, or the like.
  • a mini-slot may include 2 or more OFDM symbols, and a slot may include 14 OFDM symbols.
  • Frequency domain resources refer to frequency resources occupied in the frequency domain.
  • the minimum granularity of frequency domain resources is resource element (RE), and the granularity of frequency domain resources can also be resource block (resource block, RB), resource block group (resource block group, RBG), etc.
  • resource block resource block, RB
  • resource block group resource block group, RBG
  • One RB includes 12 REs in the frequency domain, and one RBG may include 2, 4, 8, or 16 RBs.
  • Sensing signals can also be called radar signals, which are electromagnetic wave signals that can be used to detect objects to be sensed. They can be pulse signals or signals in wireless communication systems.
  • the signal formed after being reflected by the sensing target surface is the echo signal.
  • the echo signal may be a signal obtained after the sensing signal is reflected by a sensing target.
  • the echo signal may be a signal that the sensing signal reaches the sensing target 1 and is reflected to the terminal device.
  • the echo signal may be a signal obtained after the sensing signal is reflected by multiple sensing targets in sequence.
  • the echo signal may be a signal that the sensing signal reaches the sensing target 1, is reflected by the sensing target 1 to the sensing target 2, and then is reflected to the terminal device.
  • time-division multiplexing and space-division multiplexing of communication signals and sensing signals will be introduced below with reference to FIGS. 2-4 .
  • the terminal device For the time division multiplexing mode, the terminal device sends the sensing signal and the communication signal on different time domain symbols, that is, the sensing signal and the communication signal occupy different time domain resources for transmission.
  • the resource configuration of the sensing signal may be the same. As shown in (c) in FIG. 2, the resource configuration shown in (a) in FIG. 2 is adopted in each time slot. Alternatively, the resource configurations of the sensing signals in each time slot may be different, or the resource configurations of the sensing signals in some time slots may be different. As shown in (d) in FIG. 2, the resource configuration shown in (a) in FIG. 2 is used in some time slots, and the resource configuration shown in (b) in FIG. 2 is used in another part of the time slots.
  • signals such as a sounding reference signal (sounding reference signal, SRS) or a demodulation reference signal (demodulation reference signal, DMRS) may occupy time domain resources.
  • SRS sounding reference signal
  • DMRS demodulation reference signal
  • the resource configuration of the sensing signal in time slot n is different from that in time slot n+1.
  • Signals such as SRS or DMRS occupy one symbol in time slot n, but not in time slot n+1. Occupy sign. In this way, the sensing signal occupies different time slot positions in different time slots, which can prevent the sensing signal from colliding with signals such as SRS and DMRS.
  • the terminal device can use the method of layered transmission of the communication signal and the sensing signal for transmission, that is, the communication signal and the sensing signal occupy the same time-domain resource, and use different beams through different precoding (precoding). Perform layered transfers.
  • c[n] is a communication signal
  • s[n] is a sensing signal
  • Wc is a precoding matrix used to transmit the communication signal
  • Wr is a precoding matrix used to transmit the sensing signal.
  • the communication signal and the sensing signal are precoded and superimposed together, and are sent by sharing the antenna array at the transmitting end.
  • the communication signal and the sensing signal can be sent on the same time domain resource, and the communication signal and the sensing signal can be transmitted hierarchically on the same resource.
  • the time-domain resource configurations of the communication signal and the sensing signal may partially overlap.
  • the time-domain resource configurations of the communication signal and the sensing signal can completely overlap.
  • Communication signals can be used to transmit data between terminal devices and network devices, and sensing signals can be used by terminal devices to detect sensing targets and obtain information such as speed, distance, trajectory, shape, size, type, and location of sensing targets.
  • the layered transmission of sensing signals and communication signals can reduce sensing overhead, obtain spatial multiplexing gain, and improve spectrum utilization to a certain extent.
  • Radar is widely used in scenarios such as aerial detection, ground traffic monitoring, weather detection, security monitoring, and electromagnetic imaging.
  • ground traffic monitoring it can be used to measure vehicle speed, monitor emergency lane occupancy, and monitor illegal lane changes.
  • air detection it can be used for drone monitoring, etc.
  • a terminal device with a sensing function can sense a target device by sending a sensing signal and receiving an echo signal of the sensing signal, and estimate sensing information.
  • no specific solution for power control of sensing signals is proposed in the prior art, and the sensing performance of terminal equipment cannot be guaranteed.
  • the uplink power control scheme is applicable to the communication signal, but not to the perception signal.
  • the path loss of the uplink power control is the downlink path loss estimated by the terminal equipment.
  • the path loss of the sensing signal includes the path loss from the terminal device to at least one sensing target, and the path loss from the at least one sensing target to the echo signal of the terminal device.
  • the path loss of the sensing signal may also include the path loss between multiple sensing targets, that is, the sensing path represents the round-trip between the terminal device and at least one object link.
  • the target detection probability is an important factor to measure the performance of the perception system.
  • the target detection probability is highly sensitive to changes in the signal-to-noise ratio (SNR). If the transmission power of the perceived signal is low or the interference in the environment is severe, it may have a certain degree of impact on the accuracy of the perceived target detection. . Therefore, setting the transmission power of the sensing signal reasonably can effectively improve the target detection probability, thereby improving the sensing accuracy and ensuring the sensing performance.
  • Wireless communication systems such as 4G LTE/5G NR cellular networks not only have abundant spectrum resources, but also have the advantages of large deployment scale and wide coverage. Combining the advantages of radar detection and wireless network communication, it is an important trend to integrate the two into one design.
  • communication signals and perception signals can be transmitted in the form of space division multiplexing.
  • the transmission power required for the perception signal and the communication signal may be different.
  • the transmission power of each layer is the same, that is, the transmission power of the sensing signal and the communication signal cannot be adjusted according to different requirements of sensing and communication. That is to say, for the scenario of integrated communication and perception, the reasonable allocation of the transmission power of the sensing signal and the communication signal cannot be realized, the performance of communication and sensing cannot be guaranteed, and normal communication and sensing cannot be performed, resulting in the failure of the integrated communication and sensing system. Low reliability.
  • the layered transmission scenario of the sensing signal and the communication signal in this application means that the sensing signal and the communication signal occupy the same time domain resource for transmission.
  • the power control method and device provided in the present application determine the transmission power of the first signal based on the path loss of the detection link, and transmit the first signal with the determined transmission power, which can ensure the sensing performance of the terminal device and improve the sensing accuracy.
  • the power control method and device provided in this application can enable the terminal equipment to perform target detection with an appropriate transmission power and the evaluation index meets the requirements of the sensing system.
  • the evaluation index in this application can be signal-to-noise ratio, Target detection probability, target resolution, or target distance/velocity estimation accuracy, etc.
  • the throughput of the communication system can be maximized and the power consumption of the terminal equipment can be minimized, which can improve the performance of the integrated communication perception system.
  • Fig. 5 is a schematic structural diagram of a power control device provided by an embodiment of the present application.
  • the power control apparatus 500 may be a terminal device or a network device, and may also be a chip or other components with corresponding functions applied in the terminal device or the network device. As shown in FIG. 5 , the power control device 500 may include a processor 501 . Optionally, the power control device 500 may further include one or more of a memory 502 and a transceiver 503 . Wherein, the processor 501 may be coupled with one or more of the memory 502 and the transceiver 503, such as through a communication bus, or the processor 501 may be used alone.
  • the components of the power control device 500 will be specifically introduced below in conjunction with FIG. 5 :
  • the processor 501 is the control center of the power control device 500, and may be a single processor, or may be a general term for multiple processing elements.
  • the processor 501 is one or more central processing units (central processing unit, CPU), and may also be a specific integrated circuit ASIC, or one or more integrated circuits configured to implement the embodiments of the present application, for example: a or multiple microprocessors (digital signal processor, DSP), or, one or more field programmable gate arrays (field programmable gate array, FPGA).
  • the memory 502 is used to store computer programs and may also store data.
  • the processor 501 can execute various functions of the power control device 500 by executing computer programs stored in the memory 502 and calling data stored in the memory 502 .
  • the processor 501 may include one or more CPUs, such as CPU0 and CPU1 shown in FIG. 5 .
  • the power control apparatus 500 may also include multiple processors, for example, the processor 501 and the processor 504 shown in FIG. 5 .
  • processors can be a single-core processor (single-CPU) or a multi-core processor (multi-CPU).
  • a processor herein may refer to one or more communication devices, circuits, and/or processing cores for processing data (eg, computer program instructions).
  • the memory 502 may be a read-only memory (read-only memory, ROM) or other types of static storage communication devices that can store static information and instructions, or a random access memory (random access memory, RAM) that can store information
  • ROM read-only memory
  • RAM random access memory
  • dynamic storage communication devices and instructions it can also be electrically erasable programmable read-only memory (EEPROM), compact disc ROM (CD-ROM) or other optical disc storage , optical disc storage (including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.), magnetic disk storage media or other magnetic storage communication devices, or can be used to carry or store desired program code in the form of instructions or data structures and any other medium that can be accessed by a computer, but is not limited to.
  • EEPROM electrically erasable programmable read-only memory
  • CD-ROM compact disc ROM
  • optical disc storage including compact discs, laser discs, optical discs, digital versatile discs, Blu-ray discs, etc.
  • the memory 502 can be integrated with the processor 501, or can exist independently, and is coupled with the processor 501 through the input/output port (not shown in FIG. 5 ) of the power control device 500, which is not specifically limited in this embodiment of the present application. .
  • the input port can be used to implement the receiving function performed by the terminal device or the network device in any of the following method embodiments
  • the output port can be used to realize the receiving function performed by the terminal device or the network device in any of the following method embodiments send function.
  • the memory 502 may be used to store computer programs (or codes) for implementing the solution of the present application, and the execution is controlled by the processor 501 .
  • the processor 501 may be used to store computer programs (or codes) for implementing the solution of the present application, and the execution is controlled by the processor 501 .
  • the transceiver 503 is used for communication with other power control devices.
  • the transceiver 503 can be used to communicate with network devices.
  • the transceiver 503 may be used to communicate with the terminal device.
  • the transceiver 503 may include a receiver and a transmitter (not separately shown in FIG. 5 ). Wherein, the receiver is used to realize the receiving function, and the transmitter is used to realize the sending function.
  • the transceiver 503 can be integrated with the processor 501, or can exist independently, and is coupled with the processor 501 through the input/output port (not shown in FIG. 5 ) of the power control device 500, which is not specifically described in this embodiment of the present application. limited.
  • the structure of the power control device 500 shown in FIG. 5 does not constitute a limitation to the power control device, and the actual power control device may include more or less components than shown in the figure, or combine some components, or different component arrangements.
  • the actions of the terminal device in the following method embodiments of the present application may be executed by the processor 501 in the power control apparatus 500 shown in FIG. 5 calling the computer program stored in the memory 502 to instruct the terminal device.
  • the actions of the network device in the following method embodiments of this application can be executed by the processor 501 in the power control device 500 shown in FIG. 5 calling the computer program stored in the memory 502 to instruct the network device to execute. .
  • FIG. 6 is a schematic structural diagram of another power control device provided by an embodiment of the present application. For ease of illustration, FIG. 6 only shows the main components of the power control device.
  • the power control device 600 includes a transceiver module 601 and a processing module 602 .
  • the power control apparatus 600 may be the terminal device or network device in the foregoing method embodiments.
  • the transceiver module 601, which may also be referred to as a transceiver unit, is configured to implement a transceiver function performed by a terminal device or a network device in any of the following method embodiments.
  • the transceiver module 601 may include a receiving module and a sending module (not shown in FIG. 6 ). Wherein, the receiving module is used for receiving data and/or signaling from other devices; the sending module is used for sending data and/or signaling to other devices. This application does not specifically limit the specific implementation manner of the transceiver module.
  • the transceiver module may be composed of a transceiver circuit, a transceiver, a transceiver or a communication interface.
  • the processing module 602 may be configured to implement a processing function performed by a terminal device or a network device in any of the following method embodiments.
  • the processing module 602 may be a processor.
  • the power control device 600 is presented in the form of dividing various functional modules in an integrated manner.
  • a “module” here may refer to a specific ASIC, a circuit, a processor and a memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the functions described above.
  • the power control device 600 can take the form of the power control device 500 shown in FIG. 5 .
  • the processor 501 in the power control apparatus 500 shown in FIG. 5 may invoke the computer-executed instructions stored in the memory 502, so that the power control method in the following method embodiments is executed.
  • the functions/implementation process of the transceiver module 601 and the processing module 602 in FIG. 6 can be implemented by the processor 501 in the power control device 500 shown in FIG. 5 invoking computer-executed instructions stored in the memory 502 .
  • the function/implementation process of the processing module 602 in FIG. 6 can be implemented by the processor 501 in the power control device 500 shown in FIG.
  • the function/implementation process can be implemented by the transceiver 503 in the power control device 500 shown in FIG. 5 .
  • the power control device 600 provided in this embodiment can execute the following power control method, the technical effect it can obtain can refer to the following method embodiment, which will not be repeated here.
  • one or more of the above modules can be realized by software, hardware or a combination of both.
  • the software exists in the form of computer program instructions and is stored in the memory, and the processor can be used to execute the program instructions and realize the above method flow.
  • the processor can be built into a SoC (system on a chip) or ASIC, or it can be an independent semiconductor chip.
  • the core of the processor is used to execute software instructions for calculation or processing, and may further include necessary hardware accelerators, such as field programmable gate arrays, programmable logic devices (programmable logic device, PLD), or to implement special-purpose Logical circuits for logical operations.
  • the hardware can be CPU, microprocessor, DSP chip, microcontroller unit (microcontroller unit, MCU), artificial intelligence processor, ASIC, SoC, FPGA, PLD, special digital circuit, hardware Any one or any combination of accelerators or non-integrated discrete devices that can run the necessary software or not rely on software to perform the method flow described below.
  • FIG. 7 is a schematic flowchart of a power control method provided in an embodiment of the present application.
  • the power control method can be applied to the communication between the network device and the terminal device and between the terminal device and the sensing device as shown in FIG. 1 .
  • the method shown in FIG. 7 mainly describes the power control method for the first signal.
  • the power control method includes the following steps:
  • the terminal device determines a first path loss.
  • the terminal device determines the first path loss, which may be replaced by the terminal device obtaining the first path loss.
  • the first path loss is a path loss of a detection link
  • the detection link is a round-trip link between the terminal device and at least one object.
  • Objects can also be called perception targets.
  • the signal may be reflected to the terminal device through one sensing target, or the signal may be reflected to the terminal device through multiple sensing targets in sequence.
  • the link for the terminal device to perform target detection may be from the terminal device to the sensing target to the terminal device, such as from the terminal device to the sensing target 1 to the terminal device.
  • the present application does not limit the number of the multiple sensing targets.
  • the first path loss may be the path loss of the terminal device sending the sensing signal (such as the transmit power of the sensing signal is Pt ) and receiving the reflected echo signal (such as the echo of the received sensing signal
  • the received power of the signal is P r
  • the first path loss can be expressed as P t ⁇ P r .
  • the first path loss may include a path loss from the terminal device to the sensing target, and a path loss from the sensing target to the terminal device.
  • the echo signal is a signal obtained after the sensing signal is reflected by multiple sensing targets
  • the first path loss may also include path loss between the multiple sensing targets.
  • the first path loss is determined by the terminal device according to the first information, a signal sent by the terminal device, and/or a signal sent by a device other than the terminal device.
  • the first information may include one or more of the following: reference path loss information, distance information, or a first path loss correction value.
  • the first information may come from a network device or other terminal devices.
  • the network device or other terminal device sends the first information to the terminal device.
  • the terminal device receives the first information from the network device or other terminal devices.
  • the first information may be carried in radio resource control (radio resource control, RRC) signaling, media access control element (media access control control element, MAC CE) signaling, and downlink control information (downlink control information, DCI) )
  • RRC radio resource control
  • media access control element media access control control element
  • DCI downlink control information
  • One or more of signaling may be a field defined by RRC signaling, a field defined by MAC CE signaling, or a field defined by DCI signaling, or it may be A newly defined field in at least one signaling above.
  • the first information may also be carried in newly defined signaling.
  • the embodiment of the present application does not make a limitation.
  • the first information may be used to indicate the first path loss.
  • the reference path loss information may be used to indicate the configured path loss.
  • the first path loss may be determined by the terminal device according to reference path loss information.
  • the terminal device may determine the first path loss as a value indicated by reference path loss information. It is applicable to the scenario where the terminal device performs perception detection for the first time, and directly uses the configured reference path loss information as the initial value.
  • the reference path loss information may be determined based on the longest detection distance requirement of the terminal device.
  • the network device may configure one or more reference path loss information for the terminal device (for example, through RRC signaling), and instruct the terminal device to adopt one of the reference path loss information (for example, through DCI).
  • the network device may configure one or more reference path loss information for the terminal device (for example, through RRC signaling), and instruct the terminal device to adopt one of the reference path loss information (for example, through DCI).
  • the distance information may be used to indicate the distance that the terminal device supports detection, or the distance between the terminal device and the sensing target.
  • the first path loss may be determined by the terminal device according to distance information. It is applicable to the scenario where the terminal device performs perception detection or tracking mode perception detection for the first time.
  • the terminal device can detect based on a specific sensing target, that is, some prior information of the sensing target has been obtained before the sensing detection, such as initial distance and speed information.
  • the first path loss may be determined by the terminal device using distance information, a space signal attenuation model, and a radar cross-section (radar cross-section, RCS) of the perceived target. Specifically, the following steps a to c may be included.
  • step a the terminal device determines the path loss PL front of the forward link according to the distance information and the spatial signal attenuation model.
  • the round-trip link for the terminal device to perform target detection can be divided into a forward link and a backward link.
  • the forward link represents a path from a terminal device to at least one sensing target
  • the backward link represents a path from at least one sensing target to the terminal device.
  • the spatial signal attenuation model can be used to describe the attenuation of the propagated signal over the propagation distance, that is, it can be expressed as a function related to the signal propagation distance.
  • the spatial signal attenuation model may be indicated to the terminal device by the network device or other terminal device through the first information according to the specific detection scenario, or it may be used by the terminal device by default in the current scenario.
  • A, B and C are dependent on actual propagation scenarios (for example, rural macro station (rural macro, RMa) scene, urban macro station (Urban Macro, UMa) scene, urban micro station (Urban Micro, UMi) scene and indoor (indoor, InH) scenarios, etc.) and path types (eg, line-of-sight (LoS) paths and non-line-of-sight (NLoS) paths) configuration parameter values.
  • d 3D represents the distance information
  • f C is the carrier frequency.
  • the distance in the space signal attenuation model represents the distance information of the forward or backward link, rather than the total distance of the round-trip link.
  • the spatial signal attenuation model may be a path loss model applicable to different scenarios, or a model specially applicable to perception scenarios, which is not limited in this application.
  • Step b after determining the path loss PL of the backward link.
  • the path loss of the forward link and the backward link can be approximately considered to be equal.
  • the path loss PL rear of the backward link is equal to the path loss PL front of the forward link.
  • the path loss PL of the forward link can be determined in step b according to the path loss PL of the backward link Path loss PL ex .
  • Step c determining the first path loss based on the following formula (1).
  • the total path loss of the round-trip link (ie, the first path loss) can be approximately expressed as formula (1), or satisfy the constraints of formula (1).
  • the parameters PL before and PL after represent the path loss values calculated by the forward link and the backward link respectively, and PL total , PL before and PL after are all linear values.
  • the unit of the perception target RCS is square meter (m 2 ), which may be indicated by the first information, and may be used by default by the terminal device in the current scene.
  • represents the wavelength in meters (m), and ⁇ is an infinite non-recurring decimal.
  • the first path loss correction value may be used to adjust the path loss.
  • first path loss correction values there may be one or more first path loss correction values, and different first path loss correction values may be selected according to different application scenarios.
  • the first path loss may be determined by the terminal device according to the first path loss correction value.
  • the vehicle can be approximately regarded as moving at a constant and high speed. Furthermore, the corresponding path loss values under two adjacent sensing signal transmission opportunities may have a large difference. , the path loss correction value can further improve the perception performance.
  • the first path loss correction value may be an adjustment value for the path loss determined by the terminal device according to the longest supported detection distance.
  • the terminal device may determine the first path loss under the current transmission opportunity according to the first path loss correction value and the path loss determined by the terminal device according to the longest detection distance supported.
  • the first path loss the path loss obtained under the furthest detection distance supported by the terminal device+the first path loss correction value.
  • the first path loss correction value may represent an adjustment amount of the path loss value determined by the terminal device at the last sensing signal transmission opportunity.
  • the terminal device can determine the first path loss under the current transmission opportunity according to the first path loss correction value and the path loss determined by the terminal device under the last sensing signal transmission opportunity.
  • the first path loss the path loss value obtained in the last sensing signal transmission opportunity+the first path loss correction value.
  • the first path loss may be determined by the terminal device according to reference path loss information and the first path loss correction value.
  • the first path loss reference path loss information+first path loss correction value.
  • the reference path loss information can be regarded as a rough estimate of the path loss of the detection link, and the first path loss correction value can be regarded as a further fine estimate based on the reference path loss information. In this way, the path loss of the perceived signal under the current transmission opportunity can be determined according to the reference path loss information and the first path loss correction value.
  • the first path loss may be determined by the terminal device according to the first path loss correction value and the value PL of the forward link path loss.
  • the first path loss may be determined according to the first path loss correction value and the value PL of the backward link path loss.
  • the following step d to step e may be included.
  • step d the terminal device determines the value PL of the backward link path loss according to the first path loss correction value and the value PL of the forward link path loss.
  • the first path loss correction value ⁇ PL may be used to represent the difference between the forward link path loss before taking the value PL and the backward link path loss taking the value PL.
  • the terminal device can correct it according to the determined path loss of the forward link and the first path loss value, and adjust the path loss value of the backward link (steps d to e are described as an example); or, the terminal device can adjust the path loss and the first path loss correction value based on the determined backward link, Adjust the path loss value of the forward link (the implementation method is similar to step d to step e, and will not be repeated here), so as to realize a reasonable estimation of the path loss information corresponding to the round-trip link for the terminal device to detect the target.
  • the path loss of the forward/backward link can be determined by using the distance information mentioned above (such as the above step a), or by using signals sent by devices other than terminal devices (refer to the description below) , this application does not limit it.
  • Step e based on determining the first path loss according to the above formula (1).
  • step e For the specific implementation of step e, reference may be made to the above step c, which will not be repeated here.
  • the main difference between step d to step e and step a to step c is that in the method shown in step d to step e, the difference between the forward link path loss value before PL and the backward link path loss value PL There may be a deviation, and the deviation value is the first path loss correction value ⁇ PL .
  • the forward link path loss before the value PL and the backward link path loss after the value PL are approximately regarded as equal.
  • the first path loss may be determined according to signals sent by devices other than the terminal device.
  • the terminal device may determine the first path loss according to a reference signal receiving power (reference signal receiving power, RSRP) sent by the sensing target.
  • RSRP reference signal receiving power
  • RSRP is a value sent by the sensing target and measured by the terminal device to represent the strength of the received signal. Its value varies with the distance between the sensing target and the terminal device, which can reflect the distance between the sensing target and the terminal device.
  • the following step f to step h may be included.
  • Step f the terminal device can determine the backward link path by measuring the sounding reference signal-reference signal received power (SRS-RSRP) sent by the sensing target and the reference signal power configured by high-layer signaling After the loss takes the value PL.
  • SRS-RSRP sounding reference signal-reference signal received power
  • the path loss corresponding to the backward link (that is, the path from the sensing target to the terminal device) is calculated and obtained, that is, after PL .
  • the value of the path loss of the round-trip link can be estimated according to the solution described above.
  • step g the terminal device determines that the forward link path loss value PL is equal to the backward link path loss PL (similar to the above step b, and the specific implementation method can refer to the above step b).
  • the terminal device determines the forward link path loss value PL according to the first path loss correction value and the backward link path loss value PL (similar to the above step d, the specific implementation may refer to the above step d).
  • Step h based on determining the first path loss according to the above formula (1).
  • step h For the specific implementation of step h, reference may be made to the above step c, which will not be repeated here.
  • the first path loss may be determined by the terminal device using a signal sent by the terminal device. This can be understood as the first path loss that the terminal device can determine according to the sensing measurement results of sending sensing signals and receiving echo signals one or more times before the current transmission opportunity.
  • the sensing signal may be sent by the terminal device under one or more transmission opportunities before the current transmission opportunity.
  • the one or more transmission opportunities are one or more transmission opportunities of the sensing signal.
  • the terminal device may send the sensing signal and receive the echo signal under one or more transmission opportunities, and obtain the sensing measurement result.
  • the perception measurement result may include one or more of the following: path loss, received power of the echo signal, and speed-distance spectrum after radar processing, etc., which is not limited in the present application.
  • the terminal device can estimate the path loss of the target detection round-trip link under the current transmission opportunity by measuring the received power of the echo signal. Since the terminal device knows the transmission power of the sensing signal under the current transmission opportunity, based on the path loss calculation formula, the round-trip link
  • the terminal device sends the sensing signal and receives the echo signal under the transmission opportunity, and the sensing measurement result is the path loss.
  • the first path loss is determined by the terminal device using the signal sent by the terminal device, which may include: the first signal is sent at the transmission opportunity T 0 , and the first path loss is obtained according to one or more transmission opportunities before the transmission opportunity T 0 The path loss is determined.
  • the first signal may be a sensory signal.
  • the first signal may be a physical channel, for example, PUSCH, PUCCH, or PRACH.
  • the first signal may also be a reference signal, such as an SRS, a DMRS, a phase track reference signal (phase track reference signal, PTRS), or a signal solely used for detection, and the like.
  • a transmission opportunity before the transmission opportunity T 0 may be a previous transmission opportunity, or any transmission opportunity before the transmission opportunity T 0 , which is not limited in the present application.
  • the first path loss may be determined according to the path loss of the link where the terminal device performs target detection in the previous transmission opportunity T 0-1 .
  • the manner of determining the first path loss may include a cumulative calculation type and an absolute calculation type.
  • which specific determination method the terminal device adopts may be indicated by the network device, for example, indicated through RRC signaling.
  • PL perception (T 0-1 ) is the path loss of the target detection performed by the terminal device at the previous transmission opportunity T 0-1
  • ⁇ perception PL is the first path loss correction value.
  • the first path loss correction value may represent a modulation amount of the terminal device for the path loss value determined in the last sensing signal transmission opportunity.
  • the first path loss may be determined according to the path loss of the terminal device performing target detection in the previous transmission opportunity T 0-1 and the first path loss correction value, or the first path loss may be equal to the previous transmission opportunity T 0-1 path loss of terminal equipment for target detection.
  • the multiple transmission opportunities before the transmission opportunity T 0 may be the latest multiple transmission opportunities, or any multiple transmission opportunities before the transmission opportunity T 0 , which is not limited in this application.
  • X is an integer greater than 1
  • the first path loss may be a path obtained according to the transmission opportunities T 0-x to T 0-1 loss is determined.
  • the delta perception PL is the first path loss correction value
  • the above PL perception (T 0-x to 0-1 ) can be the average or weighted average of the path losses obtained under the transmission opportunities T 0-x to T 0-1 value, or, the above PL perception (T 0-x to 0-1 ) can be estimated according to the path loss obtained under the transmission opportunity T 0-x to T 0-1 and the movement law of the terminal device and/or the change of the propagation environment The path loss obtained under the current transmission opportunity of .
  • the terminal device may determine the distance and speed of the perceived target based on the speed-speed spectrum under one or more transmission opportunities before the transmission opportunity T0 , Then determine the distance from the terminal device to the sensing target under the current transmission opportunity according to the time interval between the transmission opportunities, and then determine the first path loss according to the distance from the terminal device to the sensing target under the current transmission opportunity.
  • the time interval between the current transmission opportunity T 0 and the previous transmission opportunity T 0-1 is long, the perceived movement of the target or changes in the surrounding environment may cause a large difference between the two actual path losses. If the path loss of the sensing signal under the previous transmission opportunity T 0-1 is used to estimate the path loss of the sensing signal under the current transmission opportunity T 0 , the estimated path loss may be inaccurate, and a sensing measurement can be added. After the increase, the added perception measurement can be regarded as the perception measurement of the previous transmission opportunity T 0-1 of the current transmission opportunity T 0 .
  • the sensing target can be simply sensed.
  • the sensing signal occupies a small amount of time-domain resources.
  • the terminal device can send the sensing signal to a specific sensing target, and perform sensing beam scanning on the specific sensing target. Obtain perceptual measurements. In this way, a more accurate first path loss can be obtained according to the sensing measurement result, which can ensure the sensing performance of the terminal device.
  • the target detection modes of terminal devices can be divided into tracking mode and blind scan mode.
  • the terminal device detects a specific sensing target, and the beam direction corresponding to the signal may be sent to the specific sensing target.
  • the terminal device sends sensing signals according to the configured scanning pattern (ie, the scanning direction of the sensing beam, scanning time, and period, etc.), and may cover multiple sensing targets within the scanning range of the terminal device.
  • the terminal device may determine the first path loss in any one or more of the foregoing manners.
  • the sensing beam can be regarded as the spatial domain representation of the sensing signal, in other words, the sensing signal can be carried on the sensing beam for transmission.
  • the processor 501 in the power control device 500 can be used to determine the first path loss.
  • the processor 501 is also configured to execute any one or more possible processing functions involved in the terminal device in S701, and the transceiver 503 may be used to execute any one or more possible processing functions involved in the terminal device in S701. Send and receive function.
  • the processing module 602 in the power control apparatus 600 may be used to determine the first path loss.
  • the processing module 602 can also be used to execute any one or more possible processing functions involved in the terminal device in S701
  • the transceiver module 601 can be used to execute any one or more possible processing functions involved in the terminal device in S701. Send and receive function.
  • the processor 501 in the power control device 500 can be used to execute any one or more possible processing functions involved in the network device in S701, and the transceiver 503 can be used to execute the network device in S701 Any one or more of the possible transceiving functions involved.
  • the processing module 602 in the power control device 600 can be used to execute any one or more possible processing functions involved in the network device in S701, and the transceiver module 601 can be used to execute the network device in S701 Any one or more of the possible transceiving functions involved.
  • the terminal device determines the transmit power of the first signal according to the first path loss.
  • the terminal device determining the transmission power of the first signal according to the first path loss may include: the terminal device determining the transmission power of the first signal according to the first power control indication information and the first path loss transmit power.
  • the first power control indication information may include parameters used to acquire the transmit power of the first signal.
  • the first power control indication information may be determined by the network device and sent to the terminal device.
  • the method provided in the embodiment of the present application may further include: S702-1.
  • the network device determines the first indication information.
  • the first indication information may include first power control indication information.
  • the method provided in the embodiment of the present application may further include: S702-2, the network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first indication information may be sent by but not limited to one or more of the following signalings: DCI, MAC signaling, and RRC signaling.
  • the network device may send the first power control indication information to the terminal device through one or more signalings.
  • the first power control indication information may include a first expected transmit power and a first maximum transmit power.
  • the quantity of the first expected transmit power determined by the network device may be one or more, and the quantity of the first maximum transmit power may be one or more.
  • the first power control indication information may be sent through DCI, MAC signaling or RRC signaling.
  • the first power control indication information may be sent through DCI, MAC signaling or RRC signaling. For example, the network device sends a first expected transmit power and a first maximum transmit power to the terminal device.
  • the first power control indication information may be sent through RRC signaling and DCI.
  • the RRC signaling includes the first expected transmit power 1, the first expected transmit power 2, the first maximum transmit power 1, and the first maximum transmit power 2, and the DCI indicates the first expected transmit power 1 and the first maximum transmit power 1.
  • the RRC signaling can be used to configure the first power control indication information, and the DCI can be used to indicate the parameter index to be used. For example, if the DCI includes the first expected transmit power 1 and the first maximum transmit power 1, or the identifier of the first expected transmit power 1 and the identifier of the first maximum transmit power 1, then the terminal device can use the first expected transmit power 1 and the identifier of the first maximum transmit power 1.
  • the first maximum transmit power 1 performs power control.
  • the first expected transmit power may be used to indicate the expected transmit power that meets the target detection requirement of the terminal device.
  • the first expected transmit power P0 represents the power of the terminal device under the condition that the sensing result (for example, signal-to-noise ratio, target detection probability, or distance/velocity estimation accuracy, etc.) of the terminal device's target detection can meet the requirements of the sensing system. Expected transmit power.
  • the sensing result for example, signal-to-noise ratio, target detection probability, or distance/velocity estimation accuracy, etc.
  • the RRC signaling may include a sense power control information element (SENSE-PowerControl IE), and the sense power control information element may be used to configure the first desired transmit power P 0 .
  • SENSE-PowerControl IE sense power control information element
  • this embodiment of the present application is not limited to the use of cognitive power control information elements, and other elements may also be used, or the name of the cognitive power control information element is not limited, which is also applicable to the cognitive power control information elements in other examples .
  • the first maximum transmit power may be used to indicate the maximum power for sending the first signal.
  • the first maximum transmit power is less than or equal to the maximum transmit power of the terminal device, and the transmit power of the first signal is less than or equal to the first maximum transmit power.
  • the transmit power P for the terminal device to send the first signal needs to be less than or equal to the set maximum power for sending the first signal (ie, the first maximum transmit power P 2 ).
  • the first maximum transmit power may be determined according to the maximum transmit power of the terminal device and a scaling factor.
  • the value of the proportional coefficient is greater than or equal to 0 and less than or equal to 1.
  • the first maximum transmit power is equal to the product of the maximum transmit power of the terminal device and the proportional coefficient.
  • the scaling factor may be configured for the terminal device through DCI, MAC signaling or RRC signaling.
  • the first maximum transmission power may be determined according to a target detection probability curve.
  • the range of SNR after radar processing that satisfies a desired target detection probability threshold (for example, greater than or equal to 90%) is obtained according to the target detection probability curve. Further, based on factors such as radar processing gain, expected detection distance, and RCS of the perceived target, estimate the value range of the transmit power corresponding to the expected target detection probability threshold, so as to configure the maximum transmit power of the first signal value.
  • a desired target detection probability threshold for example, greater than or equal to 90%
  • the terminal device determining the transmit power of the first signal according to the first power control indication information and the first path loss may include: the terminal device may determine the transmit power of the first signal according to the first expected transmit power, the first maximum transmit The power and the first path loss determine the transmit power of the first signal.
  • the first power control instruction information may further include a first power adjustment value, and/or a first path loss compensation factor ⁇ .
  • the first power adjustment value may include one or more of the following: a closed-loop power correction value of the first signal, a power adjustment amount of the first signal related to a modulation and coding scheme (modulation and coding scheme, MCS), A power adjustment amount related to occupied resources of the first signal.
  • MCS modulation and coding scheme
  • the first path loss compensation factor ⁇ represents the proportion of path loss compensation corresponding to the transmission of the first signal by the terminal device, and the value range is ⁇ [0,1].
  • the terminal device determining the transmit power of the first signal according to the first power control indication information and the first path loss may include: the terminal device may determine the transmit power of the first signal according to the first expected transmit power, the first maximum transmit The power, the first path loss and the first path loss compensation factor determine the transmit power of the first signal.
  • the power control mechanism can be divided into open loop power control and closed loop power control.
  • the terminal device determines the transmission power through its own power setting algorithm.
  • the input of the power setting algorithm may come from the internal setting of the terminal device or the measurement data of the terminal device.
  • the network device sends feedback information to the terminal device according to the received sensing result (for the sensing signal) or the strength of the communication signal (for the communication signal), and the terminal device can perform power control according to the feedback information of the network device. Adjustment.
  • the open-loop power control parameters may include, but are not limited to, one or more of the following: the first expected transmit power P 0 , the first path loss compensation factor ⁇ , the MCS-related power adjustment amount of the first signal, and the first The power adjustment amount of the signal relative to the resource occupied.
  • the closed-loop power control parameter may include a power adjustment value related to closed-loop power control (that is, a closed-loop power correction value of the first signal).
  • the first power adjustment value will be described below.
  • the first power adjustment value may comprise a closed-loop power correction value of the first signal.
  • the closed-loop power correction value of the first signal may be determined by the network device based on the sensing measurement result of the terminal device, so that the terminal device further adjusts the transmission power of the first signal, thereby further improving the accuracy of power control.
  • a transmission power control (transmission power control, TPC) command field may be used to indicate a closed-loop power correction value of the first signal.
  • TPC transmission power control
  • Table 1 The mapping relationship between the TPC command field and the closed-loop power correction value of the first signal is shown in Table 1. Similar to the determination method of the first path loss, the determination method of the closed-loop power correction value of the first signal may include cumulative calculation and absolute calculation In this way, Table 1 includes the mapping relationship between the TPC command field and the closed-loop power correction value of the first signal in the case of the cumulative calculation type and the absolute calculation type.
  • the target detection probability is highly sensitive to post-SNR changes after radar processing, for example, if the post-SNR is reduced by 1dB, the target detection probability may be reduced by 10%, thereby reducing the first signal
  • the step size of the closed-loop power correction value is changed to meet the requirements of perception accuracy.
  • the closed-loop power correction value of the first signal may be smaller than the closed-loop power correction value of the communication signal.
  • the step size of the closed-loop power correction value of the first signal is smaller than the step size (for example, 1dB) of the closed-loop power correction value of the communication signal configuration, as shown in Table 1, the closed-loop power correction value corresponding to the adjacent value of the TPC command field The difference is 0.5dB.
  • the foregoing Table 1 is only an example, and the embodiment of the present application does not limit the step size and number of closed-loop power correction values of the first signal.
  • the step size of the cumulative calculation-type closed-loop power correction value corresponding to the first signal may be different from the step size of the absolute calculation-type closed-loop power correction value.
  • fperception (T 0-1 ) is the closed-loop power correction value under the previous transmission opportunity T 0-1
  • ⁇ perception is the closed-loop power correction value determined by the terminal according to the received TPC command field under the current transmission opportunity.
  • the terminal device can determine the closed-loop power correction value of the first signal transmission under the current transmission opportunity according to the received TPC command and the closed-loop power correction value of the first signal transmission under the previous transmission opportunity T 0-1 .
  • ⁇ perception is the closed-loop power correction value determined by the terminal according to the received TPC command field under the current transmission opportunity.
  • the terminal device may directly determine the closed-loop power correction value for transmitting the first signal according to the received TPC command.
  • the manner in which the terminal determines the closed-loop power correction value of the first signal depends on the configuration of high-level signaling.
  • the closed-loop power correction value of the first signal can be determined according to the closed-loop power correction value under the previous transmission opportunity T 0-1 and the closed-loop power correction value indicated by the TPC command field under the current transmission opportunity, or only according to the current The TPC command field under the transmission opportunity indicates the determination of the closed-loop power correction value.
  • the method for determining the closed-loop power correction value of the first signal is similar to the method for determining the first path loss, and reference may be made to the above-mentioned specific implementation method for determining the first path loss, which will not be repeated here.
  • the closed-loop power correction value of the first signal may be determined according to closed-loop power correction values under one or more transmission opportunities before the transmission opportunity T0 .
  • a transmission opportunity before the transmission opportunity T 0 may be the previous transmission opportunity, or any transmission opportunity before the transmission opportunity T 0
  • multiple transmission opportunities before the transmission opportunity T 0 may be the latest multiple transmission opportunities, It may also be any multiple transmission opportunities before the transmission opportunity T 0 , which is not limited in this application.
  • the perceptual power control information element may also be used to configure a mapping relationship between the first power adjustment value or the TPC command field and the closed-loop power correction value of the perceptual power.
  • the first power adjustment value may include an MCS-related power adjustment amount of the first signal.
  • the terminal device can perform power control of the first signal by adjusting the MCS.
  • the terminal device transmits a predefined sequence, such as SRS, DMRS or other possible signals dedicated to sounding, there is no need to consider the MCS, that is, the first power control indication information for determining the transmission power of the first signal may not An MCS-related power adjustment amount of the first signal is included.
  • a predefined sequence such as SRS, DMRS or other possible signals dedicated to sounding
  • the first power adjustment value may include a power adjustment amount of the first signal related to occupied resources.
  • the terminal device can control the power of the first signal by adjusting the resources (for example, the number of RBs) occupied by the first signal.
  • the terminal device determining the transmit power of the first signal according to the first power control indication information and the first path loss may include: the terminal device may determine the transmit power of the first signal according to the first expected transmit power, the first maximum transmit The power, the first power adjustment value, and the first path loss determine the transmit power of the first signal.
  • the transmit power of the first signal min ⁇ the first maximum transmit power, the first expected transmit power+the first path loss ⁇ the first path loss compensation factor+the power adjustment amount of the first signal related to the occupied resources+the first Closed-loop power correction value of a signal + MCS-related power adjustment value of the first signal ⁇ .
  • the first power adjustment value described above may include one or more of the closed-loop power correction value of the first signal, the power adjustment amount of the first signal related to the MCS, and the power adjustment amount of the first signal related to occupied resources.
  • the power adjustment amount related to the occupied resources of the first signal can be optional
  • the closed-loop power correction value of the first signal can be optional
  • the power adjustment amount related to MCS can be optional.
  • the first path loss compensation factor may be optional.
  • the quantity of the first expected transmit power determined by the network device may be one or more, and the quantity of the first maximum transmit power may be one or more.
  • the first power control indication information may be sent through DCI, MAC signaling or RRC signaling.
  • the first power control indication information may be sent through RRC signaling and DCI.
  • the RRC signaling includes the first expected transmit power 1, the first expected transmit power 2, the first maximum transmit power 1, and the first maximum transmit power 2, and the DCI indicates the first expected transmit power 1 and the first maximum transmit power 1. That is, RRC signaling is used to configure the first power control indication information, and DCI is used to activate parameters to be used. For example, if the DCI includes the first expected transmit power 1 and the first maximum transmit power 1, or the identifier of the first expected transmit power 1 and the identifier of the first maximum transmit power 1, then the terminal device can use the first expected transmit power 1 and the identifier of the first maximum transmit power 1. The first maximum transmit power 1 performs power control.
  • the DCI may also be a group DCI (group DCI), that is, multiple terminal devices share one DCI.
  • group DCI group DCI
  • the corresponding transmit power of the first signal in the serving cell c, the carrier frequency f, the uplink bandwidth part (UL BWP) b, and the transmission opportunity i is described below.
  • the corresponding transmit power of the first signal under the transmission opportunity i can satisfy the following formula:
  • x represents the index of the open-loop power control parameter first desired transmit power P 0 and/or the first path loss compensation factor ⁇
  • y represents the index of the adjustment state of the closed-loop power control parameter.
  • P sensing,b,f,c (i,x) represents the transmission power of the terminal device under the transmission opportunity i in the serving cell c, the carrier frequency f, and the UL BWP b.
  • P sensingMAX,f,c (i) represents the first maximum transmission power.
  • P O_sensing,b,f,c (x) is the first expected transmission power, that is, the open-loop power control parameter index indicated by the terminal based on the DCI, and is obtained from the set of power parameters P 0 configured by the upper layer for sensing.
  • is a subcarrier spacing (SCS) correlation factor.
  • PL sensing (i) represents the first path loss.
  • the first path loss compensation factor ⁇ sensing,b,f,c (x) is introduced, and the corresponding first path loss may be expressed as ⁇ sensing,b,f,c (x) ⁇ PL sensing (i).
  • h sensing,b,f,c (i,y) is the closed-loop power correction value of the first signal.
  • the terminal device can dynamically adjust the transmission power of the first signal in different serving cells and different carrier frequencies, which can ensure the perception performance of the terminal device, and enable the terminal device to perform target transmission with an appropriate and lower transmission power. Probing can maximize the throughput of the system and minimize the power consumption of the terminal device on the basis of ensuring the perceived performance of the terminal device.
  • the first indication information may further include first time domain resource configuration information and first frequency domain resource configuration information.
  • the terminal device can determine the occupied time-frequency resource for sending the first signal according to the first indication information.
  • the first time domain resource configuration information may be used to indicate the time domain resource of the first signal
  • the first frequency domain resource configuration information may be used to indicate the frequency domain resource of the first signal
  • the first time domain resource configuration information may include the time domain start symbol index and symbol number of the first signal; or the time domain resource configuration information of the first signal may include the symbol index occupied by the time domain of the first signal.
  • the first time-domain resource configuration information may include a resource period and a time offset.
  • the resource period can be set as periodic, semi-persistent and aperiodic transmission, wherein the periodic and semi-persistent transmission can determine the time slot position occupied by the first signal through the configured resource transmission period and time offset, rather than periodic
  • the permanent transmission may use DCI signaling to instruct the terminal device to send the first signal each time.
  • the first frequency-domain resource configuration information may include a starting RB index, RB length, and frequency-domain resource density occupied by the frequency domain of the first signal.
  • the network device may determine the resource configuration information of the first signal according to the type of the terminal device.
  • the terminal device may report the type of the terminal device to the network device and request resource configuration information for perception.
  • the network device receives the type and request of the terminal device, and sends resource configuration information of a first signal to the terminal device, where the resource configuration information of the first signal may include first time domain resource configuration information and first frequency domain resource configuration information.
  • the first time domain resource configuration information and the first frequency domain resource configuration information may be predefined.
  • a pattern set of time-frequency resource configurations of the first signal is predefined through high-layer signaling (such as RRC signaling or MAC signaling), and the pattern set of time-frequency resource configurations includes one or more time-frequency resource patterns.
  • the network device indicates to the terminal device the index of the time-frequency resource pattern of the first signal through DCI signaling.
  • the resource configuration information of the first signal corresponding to different time slots may be the same or different.
  • a set of resource configuration information of the first signal can be configured for the terminal device.
  • multiple sets of resource configuration information of the first signal may be configured for the terminal device.
  • the method provided in the embodiment of the present application may further include: the terminal device determines the time-frequency resource of the first signal according to the first time-domain resource configuration information and the first frequency-domain resource configuration information.
  • the processor 501 in the power control apparatus 500 may be configured to determine the transmit power of the first signal according to the first path loss.
  • the processor 501 is also configured to execute any one or more possible processing functions involved in the terminal device in S702
  • the transceiver 503 may be configured to execute any one or more possible processing functions involved in the terminal device in S702. Send and receive functions.
  • the processing module 602 in the power control apparatus 600 may be configured to determine the transmit power of the first signal according to the first path loss.
  • the processing module 602 can also be used to execute any one or more possible processing functions involved in the terminal device in S702, and the transceiver module 601 can be used to execute any one or more possible processing functions involved in the terminal device in S702. Send and receive functions.
  • the processor 501 in the power control apparatus 500 may be configured to determine first indication information, and the transceiver 503 may be configured to send the first indication information to a terminal device.
  • the processor 501 may also be configured to execute any one or more possible processing functions involved in the network device in S702, and the transceiver 503 may be configured to execute any one or more possible processing functions involved in the network device in S702. Send and receive functions.
  • the processing module 602 in the power control apparatus 600 can be used to determine the first indication information, and the transceiver module 601 can be used to send the first indication information to the terminal equipment.
  • the processing module 602 may also be configured to execute any one or more possible processing functions involved in the network device in S702, and the transceiving module 601 may also be configured to execute any one or more possible transceiving functions involved in the network device in S702.
  • the terminal device sends the first signal according to the transmission power.
  • the terminal device can send the first signal based on the transmission power determined in S702, which can ensure the sensing performance of the terminal device and improve sensing accuracy.
  • the terminal device sending the first signal according to the transmission power may include: the terminal device sends the first signal on the time-frequency resource of the first signal with the determined transmission power.
  • the method provided in the embodiment of the present application may further include: S704, the terminal device acquires a perception measurement result.
  • the perception measurement results may include, but are not limited to, one or more of the following: path loss, received power of echo signals, perceived target attribute values after radar processing (or called speed-distance spectrum, such as speed, attributes such as distance and direction of motion), the signal-to-noise ratio on the resource of the first signal, and the target detection probability.
  • the above radar processing process may be executed by a terminal device or by a network device, which is not limited in this application.
  • the method provided in the embodiment of the present application may further include: S705, the terminal device sends the sensing measurement result to the network device.
  • the network device receives the sensing measurements from the end device.
  • the terminal device may send the sensing measurement result to the network device by means of physical layer reporting or high layer signaling reporting.
  • the network device may determine the first information and/or the closed-loop power correction value of the first signal under the next transmission opportunity according to the perception measurement result. In this way, in the closed-loop power control, the network device sends the first information and/or the closed-loop power correction value of the first signal to the terminal device, so that the terminal device adjusts the The transmit power of the first signal.
  • the transceiver 503 in the power control apparatus 500 may be used to send the first signal according to the transmission power.
  • the processor 501 is configured to execute any one or more possible processing functions involved in the terminal device in S703
  • the transceiver 503 may also be configured to execute any one or more possible processing functions involved in the terminal device in S703. Send and receive functions.
  • the transceiver 503 in the power control apparatus 600 may be used to send the first signal according to the transmission power.
  • the processing module 602 can be used to execute any one or more possible processing functions involved in the terminal device in S703, and the transceiver module 601 can also be used to execute any one or more possible processing functions involved in the terminal device in S703. Send and receive functions.
  • the processor 501 in the power control device 500 can be used to execute any one or more possible processing functions involved in the network device in S703, and the transceiver 503 can be used to execute the network device in S703 Any one or more of the possible transceiving functions involved.
  • the processing module 602 in the power control device 600 can be used to execute any one or more possible processing functions involved in the network device in S703, and the transceiver module 601 can be used to execute the network device in S703 Any one or more of the possible transceiving functions involved.
  • the terminal device determines the transmission power of the first signal based on the loss of the path for target detection. After the terminal device sends a signal during the target detection process, the signal can be reflected to the terminal device through a sensing target. Or the signal can be reflected to the terminal device through multiple sensing targets in sequence. In this way, the transmission power of the first signal is determined based on the loss in the target detection scene, and the transmission power of the first signal is sent with the determined transmission power, which can ensure the perception performance of the terminal device , to improve the perception accuracy.
  • FIG. 8 is a schematic flowchart of another power control method provided by the embodiment of the present application.
  • the power control method can be applied to the communication between the network device and the terminal device and between the terminal device and the sensing device as shown in FIG. 1 .
  • the method shown in FIG. 6 mainly describes the power control method for the first signal and the second signal in the integrated communication perception system.
  • the power control method includes the following steps:
  • the terminal device determines a first path loss.
  • the terminal device determines the transmission power of the first signal and the transmission power of the second signal.
  • the second signal may be a communication signal or a sensing signal.
  • the second signal is used as the communication signal for illustration, the second signal may also be a sensing signal, and multiple sensing signals may be transmitted in layers.
  • the functions related to the second signal that the terminal device can implement and the specific implementation method can refer to the first signal.
  • the method for the terminal device to determine the transmission power of the second signal can refer to the above S702. Let me repeat them one by one.
  • first signal and the second signal are transmitted hierarchically on two beams, there are X ⁇ Y possible ways to carry the first signal and the second signal, and X is the signal or channel type that supports the transmission of the first signal , Y is a signal or channel type supporting the second signal transmission.
  • the following describes a specific implementation of S802 in a scenario where the resource multiplexing mode of the first signal and the second signal is time division multiplexing.
  • the terminal device may determine the transmit power of the second signal according to the second power control indication information and the second path loss.
  • the second path loss is a path loss of the communication signal.
  • the second path loss may be a downlink loss calculated by the terminal device by using a reference signal.
  • the reference signal may be a channel state information reference signal (channel state information reference signal, CSI-RS) or the like.
  • the second power control indication information may be used to indicate the transmit power of the second signal.
  • different power control parameters may be configured for the first signal and the second signal, so as to respectively determine the transmit power of the first signal and the second signal according to different requirements of the first signal and the second signal.
  • the second power control indication information may include a second expected transmit power and a second maximum transmit power.
  • the second expected transmit power may be used to indicate the expected transmit power that meets the communication requirement.
  • the terminal device estimates the attribute of the sensing target by sending the first signal and receiving the echo signal, that is, the transmission power of the terminal device needs to experience the attenuation caused by the transmission between the terminal device and the sensing target twice. Therefore, in order to satisfy the sensing target To meet the requirements of target detection in the scenario, the minimum value of the expected transmission power set configured by the network device for perception may be greater than the minimum value of the communication signal.
  • the second maximum transmit power may be used to indicate the maximum power for sending the second signal.
  • the second maximum transmit power is less than or equal to the maximum transmit power of the terminal device, and the transmit power of the second signal is less than or equal to the second maximum transmit power. This applies to the case where the resource multiplexing mode of the first signal and the second signal is time division multiplexing.
  • the transmission power of the terminal device for sending the second signal needs to be less than or equal to the set maximum power for sending the second signal.
  • the detection of the sensing target is real-time, that is, the terminal device needs to receive the echo signal in a very short time to realize an effective estimation of the attribute of the sensing target, thereby improving the reliability of the sensing system of the terminal device. Therefore, in order to meet the timeliness and reliability of target detection and road condition information collection, the maximum transmit power of the first signal (ie, the first maximum transmit power) may need to be consistent with the maximum transmit power of the second signal (ie, the second maximum transmit power). ) take different values.
  • the terminal device determines the transmit power of the second signal according to the second expected transmit power, the second maximum transmit power and the second path loss
  • the specific implementation manner is similar to the implementation manner in which the terminal device determines the transmission power of the first signal according to the first expected transmission power, the first maximum transmission power, and the first path loss in S702 above, and details are not repeated here.
  • the second power control indication information may further include a second power adjustment value and/or a second path loss compensation factor.
  • the second power adjustment value may include one or more of the following: a closed-loop power correction value of the second signal, an MCS-related power adjustment value of the second signal, and a second The power adjustment amount of the signal relative to the resource occupied.
  • the second path loss compensation factor represents the proportion of path loss compensation corresponding to the transmission of the second signal by the terminal device, and the value of the second path loss compensation factor is greater than or equal to 0 and less than or equal to 1.
  • the second power adjustment value may include a closed-loop power correction value of the second signal.
  • the TPC command field may be used to indicate the closed-loop power correction value of the second signal.
  • the mapping relationship between the TPC command field and the closed-loop power correction value of the second signal is shown in Table 2.
  • Table 2 includes the mapping relationship between the TPC command field and the closed-loop power correction value of the second signal in the case of the cumulative calculation type and the absolute calculation type. .
  • the step size of the closed-loop power correction value of the second signal is greater than or equal to 1 dB.
  • the closed-loop power correction value of the second signal may be greater than the closed-loop power correction value of the first signal.
  • the step size of the closed-loop power correction value of the first signal may be different from the step size of the closed-loop power correction value of the second signal.
  • the specific implementation of determining the closed-loop power correction value of the second signal under the current transmission opportunity can refer to the implementation of the closed-loop power correction value of the first signal in S702 above, which will not be repeated here.
  • the second power adjustment value may include an MCS-related power adjustment amount of the second signal.
  • MCS-related power adjustment amount of the second signal For a specific implementation manner, reference may be made to the implementation manner corresponding to the first power adjustment value in S702 above, which will not be repeated here.
  • the second power adjustment value may include a power adjustment amount of the second signal related to occupied resources.
  • the determination of the transmission power of the second signal by the terminal device in S802 may include: the terminal device may adjust the value according to the second expected transmission power, the second maximum transmission power, the second power adjustment value, and the first Second, the path loss determines the transmit power of the second signal.
  • the transmit power of the second signal min ⁇ the second maximum transmit power, the second expected transmit power+the second path loss ⁇ the second path loss compensation factor+the power adjustment amount of the second signal related to the occupied resources+the second The closed-loop power correction value of the second signal+the MCS-related power adjustment value of the second signal ⁇ .
  • the above-mentioned second power adjustment value may include one or more of the closed-loop power correction value of the second signal, the power adjustment amount of the second signal related to the MCS, and the power adjustment amount of the second signal related to occupied resources.
  • the power adjustment amount of the second signal related to the occupied resources in the above formula can be optional, the closed-loop power correction value of the second signal can be optional, and the power adjustment related to the MCS of the second signal can be The amount may be optional, and the second path loss compensation factor may be optional.
  • the quantity of the second expected transmit power determined by the network device may be one or more, and the quantity of the second maximum transmit power may be one or more.
  • the specific implementation manner is similar to the first expected transmit power and the first maximum transmit power, and will not be repeated here.
  • the terminal device Taking the first signal carried on the SRS and the second signal carried on the PUSCH for layered transmission as an example, if the first signal is not sent on the scheduled PUSCH symbol, that is, the terminal device only sends the second signal at this time, the terminal device
  • the following PUSCH power control formula can be used:
  • a transmit power of the second signal is determined.
  • P PUSCH,b,f,c (i,j,q d ,l) represents the transmission power of the terminal device under the transmission opportunity i in the serving cell c, carrier frequency f, and uplink bandwidth b
  • q d is the reference signal ( reference signal (RS) resource index
  • l is the power control adjustment state index configured by the high layer
  • the parameter j configured by the high layer can take a value of ⁇ 0,1,...,J-1 ⁇ .
  • P CMAX,f,c (i) represents the maximum transmit power of the terminal equipment, and may also be replaced by the second maximum transmit power.
  • P O_PUSCH,b,f,c (j) is the second expected transmission power.
  • ⁇ b,f,c (j) represents the second path loss compensation factor
  • PL b,f,c (q d ) represents the second path loss
  • ⁇ TF,b,f,c (i) represents the MCS-related power adjustment amount of the second signal
  • f b, f, c (i, l) are closed-loop power correction values of the second signal.
  • the first indication information may further include first time domain resource configuration information and first frequency domain resource configuration information.
  • the specific implementation manner is the same as the corresponding implementation manner in S702 above, and will not be repeated here.
  • the method provided in the embodiment of the present application may further include: the terminal device determines the time-frequency resource of the first signal according to the first time-domain resource configuration information and the first frequency-domain resource configuration information.
  • the terminal device determines the time-frequency resource of the first signal according to the first time-domain resource configuration information and the first frequency-domain resource configuration information.
  • the first indication information may further include second time domain resource configuration information and second frequency domain resource configuration information.
  • the second time domain resource configuration information may be used to indicate the time domain resource of the second signal
  • the second frequency domain resource configuration information may be used to indicate the frequency domain resource of the second signal.
  • reference may be made to the first time-domain resource configuration information and the first frequency-domain resource configuration information in S702 above.
  • the method provided in the embodiment of the present application may further include: the terminal device determines the time-frequency resource of the second signal according to the second time-domain resource configuration information and the second frequency-domain resource configuration information.
  • the terminal device can determine the occupied time-frequency resource for sending the first signal according to the first indication information.
  • the above mainly explains the power control and resource allocation scheme when the sensing signal and communication signal are sent on different time domain symbols.
  • the resource configurations of the first signal and the second signal may overlap partially or completely. As shown in (a) of FIG. 4 , resource configurations of the first signal and the second signal may partially overlap. As shown in (b) of FIG. 4 , resource configurations of the first signal and the second signal may completely overlap.
  • the power control scheme and resource allocation scheme for sending the second signal on non-overlapping symbols 0 to 5 and symbols 9 to 12 can refer to the above-mentioned first signal and the first signal in S802.
  • the resource multiplexing manner of the two signals is a power control scheme and a resource allocation scheme of the second signal in a time division multiplexing scenario.
  • the power control scheme and resource allocation scheme for sending the first signal on the non-overlapping symbol 8 reference may be made to the above S702, which will not be repeated here.
  • the power control scheme and resource allocation scheme for sending the first signal and the second signal on the overlapping symbols 6 to 7 and symbol 13 reference may be made to the following schemes.
  • the power control scheme and resource allocation scheme for sending the first signal and the second signal on overlapping symbols 0 to 13 may refer to the following schemes.
  • the determination of the transmit power of the first signal by the terminal device is similar to the foregoing S702, and the terminal device may determine the transmit power of the first signal according to the first path loss.
  • the terminal device determines the transmit power of the first signal according to the first power control indication information and the first path loss.
  • the terminal device determines the transmit power of the first signal according to the first power control indication information and the first path loss.
  • the method provided in the embodiment of the present application may further include: S802-1.
  • the network device determines the first indication information. For a specific implementation manner, reference may be made to the foregoing S702-1, which will not be repeated here.
  • the method provided in the embodiment of the present application may further include: S802-2, the network device sends the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the time-domain resources of the first signal and the time-domain resources of the second signal completely or partially overlap, and on the overlapped time-domain resources, the transmission power of the first signal and the transmission power of the second signal The sum is less than or equal to the maximum transmit power of the terminal equipment.
  • the sum of the transmit power of the first signal and the transmit power of the second signal is less than or equal to a first power threshold, and the first power threshold is less than or equal to the maximum transmit power of the terminal device.
  • the first power threshold may be predefined.
  • the sum of the transmission power of the first signal and the transmission power of the second signal on the overlapping symbols 6 to 7 and symbol 13 is less than or equal to the maximum transmission power of the terminal device, so that The communication and perception performance of the terminal equipment can be guaranteed.
  • This is different from time division multiplexing.
  • the transmission power of the second signal transmitted on the non-overlapping symbols 1 to 5, and symbols 9 to 12 is less than or equal to the maximum transmission power of the terminal equipment, and in non-overlapping The transmit power for sending the first signal on the overlapping symbol 8 is less than or equal to the maximum transmit power of the terminal device.
  • the terminal device determines the transmission power of the first signal and the transmission power of the second signal may include the following steps 1 to 2.
  • Step 1 the terminal device determines the transmit power of the first signal according to the first path loss.
  • step 1 For the specific implementation manner of step 1, reference may be made to the above S702, which will not be repeated here.
  • Step 2 the terminal device determines the transmission power of the second signal according to the transmission power of the first signal and the maximum transmission power of the terminal device.
  • the transmit power of the second signal min ⁇ the maximum transmit power of the terminal equipment-the transmit power of the first signal, the second expected transmit power+the second path loss ⁇ the second path loss compensation factor+the sum of the second signal and the occupied
  • the power adjustment amount of the second signal related to occupied resources may be optional
  • the closed-loop power correction value of the second signal may be optional
  • the power adjustment amount of the second signal related to MCS may be optional Ground
  • the second path loss compensation factor may be optional.
  • the power adjustment amount related to the resources occupied by the second signal during space division multiplexing will be described.
  • the bandwidth occupied by the sensing signal and the communication signal may be different when they are transmitted in layers, that is, the number of RBs occupied by the sensing signal and the communication signal may be different.
  • the power adjustment amount related to the resource occupied by the second signal may be different from the power adjustment amount related to the resource occupied by the first signal, so that the terminal device adjusts the transmission power of each layer when performing multi-layer transmission.
  • the transmission bandwidths of communication signals and perception signals may be different.
  • Sensing signals can be sent with full bandwidth or with a large bandwidth to improve sensing accuracy, and communication signals can be sent only in part of the bandwidth.
  • the number of RBs allocated to each layer is the same, and the transmission power of each layer is the same, and the transmission power of communication signals and sensing signals cannot be adjusted.
  • the sum of the transmit power of the first signal and the transmit power of the second signal is made less than or equal to the maximum transmit power of the terminal device, so that the communication and perception performance of the terminal device can be guaranteed.
  • S802 the terminal device determines the transmission power of the first signal and the transmission power of the second signal may include the following steps 3 to 4.
  • Step 3 the terminal device determines the transmit power of the second signal.
  • the first power control indication information may also be used to indicate the transmission power of the second signal.
  • the terminal device determines the transmit power of the second signal according to the first power control indication information and the second path loss.
  • the transmit power of the first signal and the transmit power of the second signal may be determined by using the same value of the power control parameter.
  • the network device may send to the terminal device an indication that the power control parameter of the second signal is the same as that of the first signal, or that the first power control indication information can be used to indicate the transmission power of the second signal. Therefore, the terminal device can determine the transmit power of the second signal according to the first power control indication information and the second path loss.
  • step 3 reference may be made to determining the transmit power of the second signal by the terminal device in S802 according to the second power control indication information and the second path loss, which will not be repeated here.
  • Step 4 the terminal device determines the transmission power of the first signal according to the transmission power of the second signal and the maximum transmission power of the terminal device.
  • the transmit power of the first signal min ⁇ the maximum transmit power of the terminal equipment-the transmit power of the second signal, the first expected transmit power+the first path loss ⁇ the first path loss compensation factor+the value of the first signal and the occupied Resource-related power adjustment amount+closed-loop power correction value of the first signal+power adjustment amount related to MCS ⁇ .
  • the power adjustment amount related to the occupied resources of the first signal may be optional
  • the closed-loop power correction value of the first signal may be optional
  • the power adjustment amount related to the MCS may be optional
  • the first The path loss compensation factor may be optional.
  • the above two methods respectively adopt the method of first determining the transmission power of the first signal, and then determining the transmission power of the second signal, or first determining the transmission power of the second signal, and then determining the transmission power of the first signal to determine the first signal. signal and the transmit power of the second signal.
  • the terminal device determines the transmission power of the first signal and the transmission power of the second signal may include the following steps 5 to 6.
  • Step 5 the terminal device determines the transmission power of the second signal.
  • step 5 refer to the terminal device determining the transmit power of the second signal according to the first power control indication information and the second path loss in S802, which will not be repeated here.
  • step 5 reference may be made to determining the transmit power of the second signal by the terminal device in S802 according to the second power control indication information and the second path loss, which will not be repeated here.
  • Step 6 the terminal device determines the transmit power of the first signal according to the first path loss.
  • step 6 For the specific implementation manner of step 6, reference may be made to the above S702, which will not be repeated here.
  • the following S803 may be performed.
  • the required power of the first signal and the second signal can be compressed (For example, proportional compression), the first signal required compression power corresponding to the first signal required power, and the second signal required compression power corresponding to the second signal required power are respectively obtained.
  • the sum of the required compression power of the first signal and the required compression power of the second signal is less than or equal to the maximum transmit power of the terminal.
  • the final transmission power of the first signal the required compression power of the first signal
  • the final transmission power of the second signal the required compression power of the second signal.
  • the terminal device uses the above steps 1 to 2 to determine the transmission power of the first signal and the transmission power of the second signal, which can be expressed as the following formula:
  • the first indication information may further include first time domain resource configuration information and second indication information.
  • the first time domain resource configuration information may be used to indicate the time domain resource of the first signal
  • the second indication information is used to indicate that the time domain resource configuration information of the second signal is the same as the first time domain resource configuration information.
  • the resource configuration information of the second signal may not be sent to the terminal device separately, and the second indication information, such as the enable flag (enableFlag) , to indicate whether the time-frequency resource configuration information of the sensing signal needs to be indicated again, so as to save resource overhead.
  • the second indication information such as the enable flag (enableFlag)
  • the resource configuration information of the second signal and the resource configuration information of the first signal may be indicated separately, which is not limited in this application.
  • the processor 501 in the power control apparatus 500 may be configured to determine the transmission power of the first signal and the transmission power of the second signal.
  • the processor 501 is also configured to execute any one or more possible processing functions involved in the terminal device in S802
  • the transceiver 503 may be configured to execute any one or more possible processing functions involved in the terminal device in S802. Send and receive functions.
  • the processing module 602 in the power control apparatus 600 may be configured to determine the transmission power of the first signal and the transmission power of the second signal.
  • the processing module 602 can also be used to execute any one or more possible processing functions involved in the terminal device in S802, and the transceiver module 601 can be used to execute any one or more possible processing functions involved in the terminal device in S802. Send and receive functions.
  • the processor 501 in the power control device 500 can be used to execute any one or more possible processing functions involved in the network device in S802, and the transceiver 503 can be used to execute the network device in S802 Any one or more of the possible transceiving functions involved.
  • the processing module 602 in the power control device 600 can be used to execute any one or more possible processing functions involved in the network device in S802, and the transceiver module 601 can be used to execute the network device in S802 Any one or more of the possible transceiving functions involved.
  • the terminal device sends the first signal according to the transmission power of the first signal, and sends the second signal according to the transmission power of the second signal.
  • the terminal device can send the first signal and the second signal based on the transmit power determined in S802, which can ensure the perception performance and communication performance of the terminal device.
  • the above S803 may include: the terminal device sends the first signal on the time-frequency resource of the first signal at the determined transmission power, and sends the second signal on the time-frequency resource of the second signal at the determined transmission power.
  • the method provided in the embodiment of the present application may further include: S804, the terminal device acquires a perception measurement result.
  • S804 the terminal device acquires a perception measurement result.
  • the method provided in the embodiment of the present application may further include: S805, the terminal device sends the sensing measurement result to the network device.
  • the network device receives the sensing measurements from the end device.
  • the transceiver 503 in the power control apparatus 500 may be configured to transmit the first signal according to the transmission power of the first signal, and transmit the second signal according to the transmission power of the second signal.
  • the processor 501 is configured to execute any one or more possible processing functions involved in the terminal device in S803-S805, and the transceiver 503 may also be configured to execute any one or more of the processing functions involved in the terminal device in S803-S805. Multiple possible send and receive functions.
  • the transceiver 503 in the power control apparatus 600 may be configured to transmit the first signal according to the transmission power of the first signal, and transmit the second signal according to the transmission power of the second signal.
  • the processing module 602 can be used to perform any one or more possible processing functions involved in the terminal device in S803-S805, and the transceiver module 601 can also be used to perform any one or more of the possible processing functions involved in the terminal device in S803-S805. Multiple possible send and receive functions.
  • the processor 501 in the power control device 500 can be used to execute any one or more possible processing functions involved in the network device in S803, and the transceiver 503 can be used to execute the network device in S803 Any one or more of the possible transceiving functions involved.
  • the processing module 602 in the power control device 600 can be used to execute any one or more possible processing functions involved in the network device in S803, and the transceiver module 601 can be used to execute the network device in S803 Any one or more of the possible transceiving functions involved.
  • the terminal device determines the transmission power of the first signal based on the loss of the target detection path, which can improve the accuracy of the target detection of the terminal device and the performance of the integrated communication and perception system of the terminal device.
  • the transmission power of the first signal and/or the second signal is determined in a dynamic adjustment manner, and the following determines the first signal and/or the second signal in a semi-static configuration.
  • the transmission power of the second signal will be described.
  • the method provided in the embodiment of the present application may further include: the network device determining the first indication information.
  • the first indication information may include first power control indication information.
  • the method provided in the embodiments of the present application may further include: the network device sending the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the network device sending the first indication information to the terminal device.
  • the terminal device receives the first indication information from the network device.
  • the first power control indication information may include one or more items of the following: first transmit power, and a first scaling factor.
  • the first power control indication information may also include the information described in S702 above, such as the first expected transmit power, the first maximum transmit power, and the like.
  • the terminal device uses the information described in S702 when determining the transmission power in a dynamic manner, and uses the first transmission power or the first scaling factor when determining the transmission power in a semi-static configuration manner. .
  • the first expected transmit power, the first maximum transmit power, the first power adjustment value, and the first path loss compensation factor described in S702 are collectively referred to as the first power control parameter set.
  • the first power control parameter set may include a first expected transmit power and a first maximum transmit power, and may also include a first power adjustment value and/or a first path loss compensation factor.
  • the first power control indication information may include one or more of the following: a first power control parameter set, a first transmission power, and a first scaling factor.
  • the first industrial control indication information may be transmitted through one or more of DCI, MAC signaling, and RRC signaling.
  • the network device sends the first power control parameter set, the first transmit power, and the first scale factor to the terminal device through RRC signaling. After receiving, the terminal device determines to use one of the first power control parameter set, the first transmit power, and the first scale factor to determine the transmit power of the first signal.
  • the network device sends one of the first power control parameter set, the first transmit power, and the first scale factor to the terminal device through DCI, MAC signaling, or RRC signaling.
  • the terminal device determines the transmission power of the first signal after receiving it.
  • the network device sends at least two of the first power control parameter set, the first transmit power, and the first scale factor to the terminal device through RRC signaling, and sends one of these two items to the terminal device through DCI .
  • the terminal device determines the transmission power of the first signal after receiving it.
  • the network device may determine one or more first transmit powers, and one or more first scaling factors. In this way, when the number is multiple, the way of transmitting power of the first signal may be adjusted according to different application scenarios.
  • the network device may instruct the terminal device to use the first transmission power 1 to determine the power of the first signal according to the current application scenario of the terminal device, and may Further improve the perception accuracy.
  • the first power control indication information sent to the terminal device includes the first transmit power 1.
  • the first transmit power and the first scale factor are described below.
  • the first transmission power may be a value of the transmission power of the first signal.
  • the network device may configure one or more transmission powers for the terminal device through RRC signaling or MAC signaling.
  • RRC signaling or MAC signaling a new sense power list information element (SENSE-PowerList information element (IE)) is added to configure one or more first transmit powers.
  • SENSE-PowerList information element IE
  • the method provided in this embodiment of the present application may further include: the terminal device may determine the transmission power of the first signal according to the first transmission power.
  • the network device sends one or more first transmit powers to the terminal device through RRC signaling, the number of first transmit powers is multiple, and indicates to the terminal device the first transmit power corresponding to the first signal under the current transmission opportunity through DCI index, the terminal device uses the first transmit power indicated by the DCI as the transmit power of the first signal. If the quantity of the first transmit power is one, the terminal device may directly use the first transmit power as the transmit power of the first signal.
  • the transmit power of the first signal min ⁇ the first maximum transmit power, the first transmit power ⁇ .
  • the minimum value of the first transmit power and the first maximum transmit power is used as the transmit power of the first signal.
  • the first scale factor may be used to indicate the proportion of the transmit power of the first signal to the maximum transmit power of the terminal device.
  • the maximum transmission power of the terminal device may be determined according to the capability of the terminal device.
  • the method provided in the embodiments of the present application may further include: the terminal device may determine the transmit power of the first signal according to the maximum transmit power of the terminal device and the first scaling factor.
  • the maximum transmission power of the terminal device is P 1
  • the network device may indicate the value of the first scale factor through RRC signaling, DCI or MAC signaling, and the indication manner may include a bit state manner and a bitmap manner.
  • the number of bits occupied by the scaling factor ⁇ round up ⁇ log2(M) ⁇ , where M is the number of values of the scaling factor.
  • the embodiment of the present application does not limit the number of bits occupied by the scale factor, the value of the scale factor corresponding to each bit state, and the step size between adjacent scale factors in the bit state mode.
  • Table 3 is only an example.
  • the number of bits occupied by the scaling factor is greater than or equal to the number of values of the scaling factor.
  • the embodiment of the present application does not limit the number of bits occupied by the scale factor, the value of the scale factor corresponding to each bit state, and the step size between adjacent scale factors in the bit state mode.
  • Table 4 is only an example.
  • the specific implementation of obtaining the transmit power of the second signal on the overlapped time-domain resources can be the same as the above-mentioned
  • the determination of the transmission power of the second signal in step 2 is similar.
  • the difference is that the transmission power of the first signal is replaced by the transmission power of the first signal obtained in a semi-static manner.
  • the transmission power of the first signal obtained in a semi-static manner is called the semi-static first signal transmission power .
  • the transmit power of the second signal min ⁇ the maximum transmit power of the terminal device-the semi-static first signal transmit power, the second expected transmit power+the second path loss ⁇ the second path loss compensation factor+the second signal's
  • the processor 501 in the power control device 500 can be used to perform any one or more possible processing functions involved in the terminal device in the semi-static mode, and the transceiver 503 can be used to perform semi-static Any one or more possible transceiving functions involved in the terminal equipment in the mode.
  • the processing module 602 in the power control device 600 can be used to perform any one or more possible processing functions involved in the terminal device in the semi-static mode, and the transceiver module 601 can be used to perform semi-static Any one or more possible transceiving functions involved in the terminal equipment in the mode.
  • the processor 501 in the power control device 500 can be used to perform any one or more possible processing functions involved in the network device in the semi-static mode, and the transceiver 503 can be used to perform semi-static Any one or more possible sending and receiving functions involved in the network equipment in the mode.
  • the processing module 602 in the power control device 600 can be used to perform any one or more possible processing functions involved in the network device in the semi-static mode, and the transceiver module 601 can also be used to perform semi-static Any one or more possible sending and receiving functions involved in network equipment in static mode.
  • An embodiment of the present application provides a communication system.
  • the communication system includes: terminal equipment and network equipment.
  • the terminal device is used to execute the actions of the terminal device in the foregoing method embodiments, and specific execution methods and processes may refer to the foregoing method embodiments, and details are not repeated here.
  • the network device is used to execute the actions of the network device in the foregoing method embodiments.
  • An embodiment of the present application provides a chip system, and the chip system includes a logic circuit and an input/output port.
  • the logic circuit can be used to implement the processing function involved in the power control method provided by the embodiment of the present application
  • the input/output port can be used for the transceiving function involved in the power control method provided in the embodiment of the present application.
  • the input port can be used to realize the receiving function involved in the power control method provided in the embodiment of the present application
  • the output port can be used to realize the sending function involved in the power control method provided in the embodiment of the present application.
  • the processor in the power control device 500 may be used to perform, such as but not limited to, baseband related processing, and the transceiver in the power control device 500 may be used to perform, such as but not limited to, radio frequency transceiving.
  • the above-mentioned devices may be respectively arranged on independent chips, or at least partly or all of them may be arranged on the same chip.
  • processors can be further divided into analog baseband processors and digital baseband processors.
  • the analog baseband processor can be integrated with the transceiver on the same chip, and the digital baseband processor can be set on an independent chip.
  • a digital baseband processor can be combined with a variety of application processors (such as but not limited to graphics processors, multimedia processors, etc.) integrated on the same chip.
  • application processors such as but not limited to graphics processors, multimedia processors, etc.
  • Such a chip can be called a system chip (system on chip). Whether each device is independently arranged on different chips or integrated and arranged on one or more chips often depends on the specific needs of product design.
  • the embodiments of the present application do not limit the specific implementation forms of the foregoing devices.
  • the chip system further includes a memory, and the memory is used to store program instructions and data for implementing functions involved in the power control method provided by the embodiments of the present application.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • An embodiment of the present application provides a computer-readable storage medium, where the computer-readable storage medium includes a computer program or an instruction, and when the computer program or instruction is run on a computer, the power control method provided in the embodiment of the present application is executed.
  • An embodiment of the present application provides a computer program product, and the computer program product includes: a computer program or an instruction.
  • the power control method provided in the embodiment of the present application is executed.
  • processor in the embodiment of the present application may be a CPU, and the processor may also be other general-purpose processors, DSPs, application specific integrated circuits (ASICs), off-the-shelf programmable gate arrays, or other programmable Logic devices, discrete gate or transistor logic devices, discrete hardware components, etc.
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory may be read-only ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), EEPROM or flash memory.
  • Volatile memory can be random access memory, which acts as external cache memory.
  • random access memory such as static random access memory (static RAM, SRAM), dynamic random access memory (DRAM), synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection dynamic random access memory (synchlink DRAM, SLDRAM ) and direct memory bus random access memory (direct rambus RAM, DR RAM).
  • static random access memory static random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double data rate SDRAM double data rate SDRAM
  • DDR SDRAM double data rate SDRAM
  • ESDRAM enhanced synchronous dynamic random access memory
  • serial DRAM serial DRAM
  • direct memory bus random access memory direct rambus RAM, DR RAM
  • the above-mentioned embodiments may be implemented in whole or in part by software, hardware (such as circuits), firmware, or other arbitrary combinations.
  • the above-described embodiments may be implemented in whole or in part in the form of computer program products.
  • the computer program product comprises one or more computer instructions or computer programs. When the computer instruction or computer program is loaded or executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server, or data center Transmission to another website site, computer, server or data center by wired (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center that includes one or more sets of available media.
  • the available media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, DVD), or semiconductor media.
  • the semiconductor medium may be a solid state drive.
  • At least one means one or more, and “multiple” means two or more.
  • At least one of the following" or similar expressions refer to any combination of these items, including any combination of single or plural items.
  • at least one item (piece) of a, b, or c can represent: a, b, c, a-b, a-c, b-c, or a-b-c, where a, b, c can be single or multiple .
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the computer software product is stored in a storage medium and includes several instructions for Make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: various media capable of storing program codes such as U disk, mobile hard disk, ROM, RAM, magnetic disk or optical disk.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供一种功率控制方法及装置,可以实现对感知信号进行功率控制,从而可以确保终端设备的感知性能,可以提高感知精度。该方法包括:终端设备确定第一路径损耗,根据第一路径损耗,确定第一信号的发射功率,根据发射功率发送第一信号。其中,第一路径损耗为探测链路的路径损耗,探测链路为终端设备与至少一个物体的往返链路。

Description

功率控制方法及装置
本申请要求于2021年08月13日提交国家知识产权局、申请号为202110932074.9、申请名称为“功率控制方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,尤其涉及一种功率控制方法及装置。
背景技术
随着科技的进步,终端设备的功能的不断增强,具有感知功能的终端设备已经出现在人们的日常生活中,并且被广泛应用。例如在环境质量检测、噪音监控或者道路交通情况检测等场景中,具有感知功能的终端设备可以通过以一定的发射功率发送感知信号,并接收感知信号的回波信号来感知目标设备,估计感知信息。其中,感知信息可以包括被感知的目标设备的速度、距离、运动轨迹、形状、以及大小等。
现有技术中并未提出针对感知信号的功率控制的具体方案。因此,如何对感知信号进行功率控制是一个亟需解决的问题。
发明内容
本申请提供一种功率控制方法及装置,可以实现对感知信号进行功率控制,从而可以确保终端设备的感知性能,可以提高感知精度。
为达到上述目的,本申请采用如下技术方案:
第一方面,提供一种功率控制方法。该功率控制方法包括:终端设备确定第一路径损耗,根据第一路径损耗,确定第一信号的发射功率,根据发射功率发送第一信号。其中,第一路径损耗为探测链路的路径损耗,探测链路为终端设备与至少一个物体的往返链路。
基于第一方面提供的功率控制方法,终端设备基于探测链路的路径损耗确定第一信号的发射功率,探测链路为终端设备与至少一个物体的往返链路,目标探测过程中终端设备发送信号后,该信号可以经过一个感知目标反射至终端设备,或者该信号可以依次经过多个感知目标反射至终端设备。如此,基于探测链路的路径损耗确定第一信号的发射功率,并以该确定的发射功率发送第一信号,可以确保终端设备的感知性能,提高感知精度。
在一种可能的设计方式中,第一路径损耗可以是终端设备根据第一信息、终端设备发送的信号、和/或除终端设备外的设备发送的信号确定的;其中述第一信息包括如下一项或多项:参考路损信息、第一路损修正值、或距离信息。可选地,第一信息可以来自于网络设备、或者其他终端设备。
可选地,终端设备发送的信号可以是终端设备在当前传输机会之前的一次或多次传输机会下发送的。例如一次或多次传输机会是感知信号的一次或多次传输机会。
可选地,终端设备可以根据接收到的除终端设备外的设备发送的信号的功率,确定第一路径损耗。
在一种可能的设计方式中,上述第一路径损耗是终端设备使用终端设备发送的信号确定的,可以包括:第一信号是在传输机会T 0发送的,第一路径损耗可以是根据传输机会T 0之前的一次或多次传输机会获得的路径损耗确定的,路径损耗是终端设备与至少一个物体的往返链路的路径损耗。
在一种可能的设计方式中,上述根据第一路径损耗,确定第一信号的发射功率,包括:根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率。其中,第一功控指示信息可以包括:第一最大发射功率、和第一期望发射功率。第一最大发射功率可用于指示发送第一信号的最大功率,第一最大发射功率小于或等于终端设备的最大发射功率,第一信号的发射功率小于或等于第一最大发射功率,第一期望发射功率可用于指示满足终端设备的目标探测需求的期望发射功率。如此,可以在终端设备的第一最大发射功率的约束下,确定第一信号的发射功率,以实现对感知信号进行功率控制,从而可以确保终端设备的感知性能。
在一种可能的设计方式中,第一方面提供的功率控制方法,还可以包括:接收来自网络设备的第一指示信息。其中,第一指示信息可以包括第一功控指示信息。
在一种可能的设计方式中,第一指示信息还可以包括第二功控指示信息,第二功控指示信息可用于指示第二信号的发射功率。如此,可以实现对第二信号的功率控制,第二信号可以为通信信号,或感知信号。
在一种可能的设计方式中,第一功控指示信息还可用于指示第二信号的发射功率。对于空分复用中重叠的时域资源上的第一信号和第二信号,可以通过第一功指示信息联合指示第一信号和第二信号的功率控制参数,从而节省资源的开销。
在一种可能的设计方式中,第一信号的时域资源与第二信号的时域资源全部或部分重叠,在重叠的时域资源上,第一信号的发射功率与第二信号的发射功率之和小于或等于终端设备的最大发射功率。如此,可以实现感知信号和通信信号发射功率的合理分配。
在一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第二指示信息,第一时域资源配置信息可用于指示第一信号的时域资源,第二指示信息可用于指示第二信号的资源配置信息与第一时域资源配置信息相同。如此,对于第一信号的时域资源配置与第二信号的时域资源配置完全重叠的情况,可以不再单独向终端设备发送第二信号的资源配置信息,从而节省资源的开销。
第二方面,提供一种功率控制方法。该功率控制方法包括:网络设备确定第一指示信息,向终端设备发送第一指示信息。其中,第一指示信息包括第一功控指示信息,第一功控指示信息用于终端设备根据第一功控指示信息和第一路径损耗确定第一信号的发射功率,第一路径损耗为探测链路的路径损耗,探测链路为终端设备与至少一个物体的往返链路。
在一种可能的设计方式中,第二方面提供的功率控制方法,还可以包括:向终端设备发送第一信息。其中,第一信息可以包括如下一项或多项:参考路损信息、第一路损修正值、或距离信息。第一信息可用于指示第一路径损耗。
在一种可能的设计方式中,第一功控指示信息可以包括第一最大发射功率、和第一期望发射功率。第一最大发射功率可用于指示发送第一信号的最大功率,第一最大发射功率小于或等于终端设备的最大发射功率,第一信号的发射功率小于或等于第一最大发射功率,第一期望发射功率可用于指示满足终端设备的目标探测需求的期望发射功率。
在一种可能的设计方式中,第一指示信息还可以包括第二功控指示信息,第二功控指示信息可用于指示第二信号的发射功率。
在一种可能的设计方式中,第一功控指示信息还可用于指示第二信号的发射功率。
在一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第二指示信息,第一时域资源配置信息可用于指示第一信号的时域资源,第二指示信息可用于指示第二信号的资源配置信息与第一时域资源配置信息相同。
第三方面,提供一种功率控制装置。该功率控制装置包括:处理模块和收发模块。其中,处理模块,用于确定第一路径损耗。处理模块,还用于根据第一路径损耗,确定第一信号的发射功率。收发模块,用于根据发射功率发送第一信号。其中,第一路径损耗为探测链路的路径损耗,探测链路为终端设备与至少一个物体的往返链路。
在一种可能的设计方式中,第一路径损耗可以是终端设备根据第一信息、终端设备发送的信号、和/或除终端设备外的设备发送的信号确定的;其中第一信息包括如下一项或多项:参考路损信息、第一路损修正值、或距离信息。
在一种可能的设计方式中,上述第一路径损耗是终端设备使用终端设备发送的信号确定的,可以包括:第一信号是在传输机会T 0发送的,第一路径损耗可以是根据传输机会T 0之前的一次或多次传输机会获得的路径损耗确定的。
在一种可能的设计方式中,上述根据第一路径损耗,确定第一信号的发射功率,可以包括:根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率。其中,第一功控指示信息可以包括第一最大发射功率、和第一期望发射功率。第一最大发射功率可用于指示发送第一信号的最大功率,第一最大发射功率小于或等于终端设备的最大发射功率,第一信号的发射功率小于或等于第一最大发射功率,第一期望发射功率可用于指示满足终端设备的目标探测需求的期望发射功率。
在一种可能的设计方式中,收发模块,还用于接收来自网络设备的第一指示信息。其中,第一指示信息可以包括第一功控指示信息。
在一种可能的设计方式中,第一指示信息还可以包括第二功控指示信息,第二功控指示信息可用于指示第二信号的发射功率。
在一种可能的设计方式中,第一功控指示信息还可用于指示第二信号的发射功率。
在一种可能的设计方式中,第一信号的时域资源与第二信号的时域资源全部或部分重叠,在重叠的时域资源上,第一信号的发射功率与第二信号的发射功率之和小于或等于终端设备的最大发射功率。
在一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第 二指示信息,第一时域资源配置信息可用于指示第一信号的时域资源,第二指示信息可用于指示第二信号的资源配置信息与第一时域资源配置信息相同。
需要说明的是,第三方面所述的收发模块可以包括接收模块和发送模块。其中,接收模块用于接收来自网络设备的数据和/或信令;发送模块用于向网络设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,第三方面所述的功率控制装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第三方面所述的功率控制装置可以执行第一方面所述的方法。
需要说明的是,第三方面所述的功率控制装置可以是终端设备,也可以是可设置于终端设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第三方面所述的功率控制装置的技术效果可以参考第一方面中任一种可能的实现方式所述的功率控制方法的技术效果,此处不再赘述。
第四方面,提供一种功率控制装置。该功率控制装置包括:处理模块和收发模块。处理模块,用于确定第一指示信息。收发模块,用于向终端设备发送第一指示信息。其中,第一指示信息包括第一功控指示信息,第一功控指示信息用于终端设备根据第一功控指示信息和第一路径损耗确定第一信号的发射功率,第一路径损耗为探测链路的路径损耗,探测链路为终端设备与至少一个物体的往返链路。
在一种可能的设计方式中,收发模块,还用于向终端设备发送第一信息。其中,第一信息可以包括如下一项或多项:参考路损信息、第一路损修正值、或距离信息。第一信息可用于指示第一路径损耗。
在一种可能的设计方式中,第一功控指示信息可以包括第一最大发射功率、和第一期望发射功率。第一最大发射功率可用于指示发送第一信号的最大功率,第一最大发射功率小于或等于终端设备的最大发射功率,第一信号的发射功率小于或等于第一最大发射功率,第一期望发射功率可用于指示满足终端设备的目标探测需求的期望发射功率。
在一种可能的设计方式中,第一指示信息还可以包括第二功控指示信息,第二功控指示信息可用于指示第二信号的发射功率。
在一种可能的设计方式中,第一功控指示信息还可用于指示第二信号的发射功率。
在一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第二指示信息,第一时域资源配置信息可用于指示第一信号的时域资源,第二指示信息可用于指示第二信号的资源配置信息与第一时域资源配置信息相同。
需要说明的是,第四方面所述的收发模块可以包括接收模块和发送模块。其中,接收模块用于接收来自终端设备的数据和/或信令;发送模块用于向终端设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。
可选地,第四方面所述的功率控制装置还可以包括存储模块,该存储模块存储有程序或指令。当处理模块执行该程序或指令时,使得第四方面所述的功率控制装置可以执行第二方面所述的方法。
需要说明的是,第四方面所述的功率控制装置可以是网络设备,也可以是可设 置于网络设备的芯片(系统)或其他部件或组件,本申请对此不做限定。
此外,第四方面所述的功率控制装置的技术效果可以参考第二方面中任一种可能的实现方式所述的功率控制方法的技术效果,此处不再赘述。
第五方面,提供一种功率控制装置。该功率控制装置包括:处理器。该处理器,用于执行如第一方面至第二方面中任一种可能的实现方式所述的功率控制方法。
在一种可能的设计中,第五方面所述的功率控制装置还可以包括存储器。处理器与存储器耦合,存储器用于存储计算机程序。
处理器可用于执行存储器中存储的计算机程序,以使得如第一方面至第二方面中任一种可能的实现方式所述的功率控制方法被执行。
在一种可能的设计中,第五方面所述的功率控制装置还可以包括收发器。该收发器可以为收发电路或输入/输出端口。所述收发器可以用于该功率控制装置与其他设备通信。
需要说明的是,输入端口可用于实现第一方面至第二方面所涉及的接收功能,输出端口可用于实现第一方面至第二方面所涉及的发送功能。
在本申请中,第五方面所述的功率控制装置可以为终端设备、或网络设备,或者设置于终端设备、或网络设备内部的芯片或芯片系统。
此外,第五方面所述的功率控制装置的技术效果可以参考第一方面至第二方面中任一种实现方式所述的功率控制方法的技术效果,此处不再赘述。
第六方面,提供一种通信系统。该通信系统包括如第三方面所述的功率控制装置和如第四方面所述的功率控制装置。
或者,该通信系统包括如第三方面所述的用于实现如第一方面所述方法的功率控制装置和如第四方面所述的用于实现如第二方面所述方法的功率控制装置。示例性的,该通信系统可以包括一个或多个终端设备和一个或多个网络设备。
第七方面,提供了一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路用于实现第一方面至第二方面所涉及的处理功能,输入/输出端口用于实现第一方面至第二方面所涉及的收发功能。具体地,输入端口可用于实现第一方面至第二方面所涉及的接收功能,输出端口可用于实现第一方面至第二方面所涉及的发送功能。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现第一方面至第二方面所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
第八方面,提供一种计算机可读存储介质,包括:计算机程序或指令;当该计算机程序或指令在计算机上运行时,使得第一方面至第二方面中任意一种可能的实现方式所述的功率控制方法被执行。
第九方面,提供一种计算机程序产品,包括计算机程序或指令,当该计算机程序或指令在计算机上运行时,使得第一方面至第二方面中任意一种可能的实现方式所述的功率控制方法被执行。
附图说明
图1为本申请实施例提供的通信系统的架构示意图;
图2为本申请实施例提供的一种感知信号与通信信号的时域资源配置示意图;
图3为本申请实施例提供的一种感知信号与通信信号分层传输的示意图;
图4为本申请实施例提供的另一种感知信号与通信信号的时域资源配置示意图;
图5为本申请实施例提供的一种功率控制装置的结构示意图;
图6为本申请实施例提供的另一种功率控制装置的结构示意图;
图7为本申请实施例提供的一种功率控制方法的流程示意图;
图8为本申请实施例提供的另一种功率控制方法的流程示意图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例的技术方案可以应用于各种通信系统,例如通用移动通信系统(universal mobile telecommunications system,UMTS)、无线局域网(wireless local area network,WLAN)、无线保真(wireless fidelity,Wi-Fi)系统、有线网络、车到任意物体(vehicle to everything,V2X)通信系统、设备间(device-to-device,D2D)通信系统、车联网通信系统、第4代(4th generation,4G)移动通信系统,如长期演进(long term evolution,LTE)系统、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、第五代(5th generation,5G)移动通信系统,如新空口(new radio,NR)系统,以及未来的通信系统,如第六代(6th generation,6G)移动通信系统等。
本申请将围绕可包括多个设备、组件、模块等的系统来呈现各个方面、实施例或特征。应当理解和明白的是,各个系统可以包括另外的设备、组件、模块等,并且/或者可以并不包括结合附图讨论的所有设备、组件、模块等。此外,还可以使用这些方案的组合。
另外,在本申请实施例中,“示例地”、“例如”等词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或设计方案不应被解释为比其它实施例或设计方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
“的(of)”,“相应的(corresponding,relevant)”和“对应的(corresponding)”有时可以混用,应当指出的是,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例中,有时候下标如W 1可能会笔误为非下标的形式如W1,在不强调其区别时,其所要表达的含义是一致的。
本申请实施例描述的网络架构以及业务场景是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着网络架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
为便于理解本申请实施例,首先以图1中示出的通信系统为例详细说明适用于本申请实施例的通信系统。示例性地,图1为本申请实施例提供的功率控制方法所适用的一种通信系统的架构示意图。
如图1所示,该通信系统包括终端设备和网络设备。其中,该终端设备可以是具有感知能力的终端设备,终端设备的数量可以为一个或多个。可选地,该通信系统还可以包括感知目标,感知目标可以称为目标设备。可选地,图1所示的通信系统中还 可以包括普通终端设备,即不具有感知能力的终端设备。
其中,上述终端设备为接入上述通信系统,且具有无线收发功能的终端设备或可设置于该终端设备的芯片或芯片系统。终端设备可以具有雷达感知功能,例如,感知信号的发送与接收、以及信号处理等功能。该终端设备也可以称为感知设备、用户设备(user equipment,UE)、用户装置、接入终端、用户单元、用户站、移动站、移动台(mobile station,MS)、远方站、远程终端、移动设备、用户终端、终端、终端单元、终端站、终端装置、无线通信设备、用户代理或用户装置。
例如,本申请的实施例中的终端设备可以是客户终端设备(customer premise equipment,CPE)、手机(mobile phone)、无线数据卡、个人数字助理(personal digital assistant,PDA)电脑、膝上型电脑(laptop computer)、平板电脑(Pad)、带无线收发功能的电脑、机器类型通信(machine type communication,MTC)终端、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、物联网(internet of things,IoT)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端(例如游戏机、智能电视、智能音箱、智能冰箱和健身器材等)、车载终端、具有终端功能的RSU。接入终端可以是蜂窝电话(cellular phone)、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、具有无线通信功能的手持设备(handset)、计算设备或连接到无线调制解调器的其它处理设备、可穿戴设备等。其中,客户终端设备比一般终端体积大,功能更强,可以接收网络设备发出的信号再发送给其他终端设备,相当于对网络设备发出的信号进行二次中继。
又例如,本申请实施例中的终端设备可以是智慧物流中的快递终端(例如可监控货物车辆位置的设备、可监控货物温湿度的设备等)、智慧农业中的无线终端(例如可收集禽畜的相关数据的可穿戴设备等)、智慧建筑中的无线终端(例如智慧电梯、消防监测设备、以及智能电表等)、智能医疗中的无线终端(例如可监测人或动物的生理状态的可穿戴设备)、智能交通中的无线终端(例如智能公交车、智能车辆、共享单车、充电桩监测设备、智能红绿灯、火车探测器、加油站等传感器、以及智能监控以及智能停车设备等)、智能零售中的无线终端(例如自动售货机、自助结账机、以及无人便利店等)。又例如,本申请的终端设备可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请提供的方法。
其中,上述网络设备为位于上述通信系统的网络侧,且具有无线收发功能的设备或可设置于该设备的芯片或芯片系统。可选地,网络设备可以具有雷达感知功能,例如,感知信号的发送与接收、以及信号处理等功能。
该网络设备包括但不限于:无线保真(wireless fidelity,Wi-Fi)系统中的接入点(access point,AP),如家庭网关、路由器、服务器、交换机、网桥等,演进型节 点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(base station controller,BSC)、基站收发台(base transceiver station,BTS)、家庭基站(例如,home evolved NodeB,或home Node B,HNB)、基带单元(baseband unit,BBU),无线中继节点、无线回传节点、传输点(transmission and reception point,TRP或者transmission point,TP)等,还可以为5G,如,NR系统中的gNB,或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)、具有基站功能的路边单元(road side unit,RSU)等。
上述感知目标可以是任何可以被感知设备感知的物体、终端设备、人、以及动物等。例如,在智能交通场景中,感知目标可以是车、行人、道路上的砖头、以及动物等。
需要说明的是,本申请实施例提供的功率控制方法,可以适用于图1所示的任意两个节点之间,具体实现可以参考下述方法实施例,此处不再赘述。
应当指出的是,本申请实施例中的方案还可以应用于其他通信系统中,相应的名称也可以用其他通信系统中的对应功能的名称进行替代。
应理解,图1仅为便于理解而示例的简化示意图,该通信系统中还可以包括其他网络设备,和/或,其他终端设备,图1中未予以画出。
为了使得本申请实施例更加清楚,以下对与本申请实施例相关的部分内容以及概念作统一介绍。
1、时域资源
时域资源指时域上所占用的正交频分调制(orthogonal frequency division modulation,OFDM)符号数。时域资源的最小粒度为1个OFDM符号,也可以是微时隙(mini-slot)、时隙(slot)等。1个微时隙可以包括2个或多个OFDM符号,1个时隙可以包括14个OFDM符号。
2、频域资源
频域资源指在频域上所占用的频率资源。频域资源的最小粒度为资源单元(resource element,RE),频域资源的粒度也可以是资源块(resource block,RB)、资源块组(resource block group,RBG)等。一个RB在频域上包括12个RE,一个RBG可以包括2、4、8、或16个RB。
3、感知信号
感知信号也可称为雷达信号,是一种电磁波信号,可用于探测被感知对象,可以是脉冲信号,也可以是无线通信系统中的信号。
4、回波信号
感知信号到达感知目标后,由于感知目标不能完全吸收电磁波,经感知目标表面反射后形成的信号即为回波信号。
需要说明的是,回波信号可以是感知信号经一个感知目标反射后获得的信号。例如,回波信号可以是感知信号到达感知目标1然后反射至终端设备信号。或者,回波信号可以是感知信号依次经多个感知目标反射后获得的信号。例如,回波信号可以是 感知信号到达感知目标1、经感知目标1反射至感知目标2、然后再反射至终端设备信号。
5、通信信号和感知信号的时分复用和空分复用
下面结合图2-图4对通信信号和感知信号的时分复用和空分复用进行介绍。
对于时分复用方式,终端设备在不同的时域符号上发送感知信号和通信信号,即感知信号和通信信号占用不同的时域资源进行传输。
如果终端采用时分地发送感知信号和通信信号,感知资源的开销较大。如图2所示的感知信号和通信信号的时域资源配置示意图,对于一个时隙而言,如图2中的(a)所示,如果每7个符号占用1个符号等间隔发送感知信号,感知信号的开销为14.3%;如图2中的(b)所示,如果每7个符号占用两个符号发送感知信号,感知信号的开销为28.6%。
需要说明的是,每个时隙中,感知信号的资源配置可以相同。如图2中的(c)所示,每个时隙中均采用图2中的(a)所示的资源配置。或者,每个时隙中感知信号的资源配置可以不相同,或部分时隙中感知信号的资源配置不相同。如图2中的(d)所示,一部分时隙中采用图2中的(a)所示的资源配置,另一部分时隙中采用图2中的(b)所示的资源配置。
可选地,探测参考信号(sounding reference signal,SRS)或解调参考信号(demodulation reference signal,DMRS)等信号可能占用时域资源。如图2中的(e)所示,感知信号在时隙n与时隙n+1的资源配置不相同,SRS、或DMRS等信号在时隙n占用一个符号,在时隙n+1未占用符号。如此,感知信号在不同的时隙占用不同的时隙位置,可以避免感知信号与SRS、DMRS等信号发生碰撞。
对于空分复用方式,终端设备可以采用通信信号和感知信号分层传输的方法来进行传输,即通信信号和感知信号占用同一份时域资源,通过不同的预编码(precoding)以不同的波束进行分层传输。结合图3,c[n]为通信信号,s[n]为感知信号,Wc为用于传输通信信号的预编码矩阵,Wr为用于传输感知信号的预编码矩阵。通信信号和感知信号分别经过预编码后叠加到一起,共用发送端天线阵列进行发送。
如图4所示,可以在相同的时域资源上发送通信信号和感知信号,通信信号和感知信号可以在该相同的资源上进行分层传输。如图4中的(a)所示,通信信号和感知信号的时域资源配置可以部分重叠。如图4中的(b)所示,通信信号和感知信号的时域资源配置可以完全重叠。
通信信号可用于传输终端设备与网络设备之间的数据,感知信号可用于终端设备对感知目标进行探测,获取感知目标的速度、距离、运动轨迹、形状大小、种类、位置等信息。采用感知信号与通信信号分层传输的方式可以降低感知开销,获得空间复用增益,在一定程度上提高频谱利用率。
雷达广泛应用于空中探测、地面交通监测、气象探测、安全监控、和电磁成像等场景。例如,在地面交通监测中,可用于车辆测速、监测应急车道占用、监测违规变道等情况。在对空探测中,可用于无人机监测等。具有感知功能的终端设备可以通过发送感知信号,并接收感知信号的回波信号来感知目标设备,并估计感知信息。但是,现有技术中并未提出针对感知信号的功率控制的具体方案,不能保证终端设备的 感知性能。
针对通信信号,实现了对物理上行共享信道(physical uplink shared channel,PUSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理随机接入信道(physical random access channel,PRACH)三个物理信道、以及SRS的上行功率控制。但是,感知系统与通信系统的性能需求不同,同时,感知链路与通信链路的路径损耗存在差异,上行功率控制方案适用于通信信号,并不适用于感知信号。例如,上行功率控制的路径损耗是终端设备估计的下行路径损耗。不同于通信信号,感知信号的路径损耗包括终端设备到至少一个感知目标的路径损耗、和至少一个感知目标到终端设备的回波信号的路径损耗。当回波信号是感知信号依次经多个感知目标反射后获得的信号时,感知信号的路径损耗还可以包括多个感知目标之间的路径损耗,即感知路径表示终端设备与至少一个物体的往返链路。
对于感知而言,目标检测概率是衡量感知系统性能的一项重要因素。目标检测概率对信噪比(signal-to-noise ratio,SNR)变化的敏感性高,如果感知信号的发射功率较低或环境中干扰严重,可能会对感知目标检测的精度造成一定程度的影响。因此合理设置感知信号的发射功率可以有效提升目标检测概率,进而提高感知精度,保证感知的性能。
另外,随着探测需求的增加,如果单独用雷达进行覆盖范围较广的探测,雷达设备的成本较高。并且在连续覆盖的情况下,雷达间干扰较大,导致无法满足探测需求。无线通信系统如4G LTE/5G NR的蜂窝网络,除了拥有丰富的频谱资源外,还具有部署规模大和覆盖广等优势。结合雷达探测和无线网络通信的优点,将二者进行一体化设计是一个重要的趋势。
通信和感知一体化的场景中,通信信号和感知信号可以采用空分复用的方式进行传输。考虑到感知系统和通信系统的不同需求,感知信号与通信信号需要的发射功率可能不相同。但是,一些实施例中,终端设备在进行多层传输时,每层的传输功率均相同,即无法根据感知和通信的不同需求调整感知信号和通信信号的发射功率。也就是说,对于通信和感知一体化的场景,未能实现感知信号和通信信号发射功率的合理分配,无法保证通信和感知的性能,无法进行正常的通信和感知,导致通信感知一体化系统的可靠性低。需要注意的是,本申请中感知信号与通信信号分层传输场景表示感知信号与通信信号占用相同的时域资源进行传输。
因此,缺少对感知信号的功率控制方法。另外,对于感知信号与通信信号分层传输的场景,缺少对通信信号和感知信号的功率控制方法。
本申请提供的功率控制方法及装置,基于探测链路的路径损耗确定第一信号的发射功率,以该确定的发射功率发送第一信号,可以确保终端设备的感知性能,提高感知精度。并且,对于通信感知一体化系统,本申请提供的功率控制方法及装置可以使终端设备以适当且评估指标满足感知系统需求的发射功率进行目标探测,本申请中的评估指标可以是信噪比、目标检测概率、目标分辨率、或目标距离/速度的估计精度等。进一步地,可以在确保终端设备的感知性能的基础上,最大化通信系统的吞吐量和最小化终端设备的功耗,可以提升通信感知一体化系统的性能。
下面将结合图5-图6对本申请实施例提供的功率控制装置进行具体阐述。
图5为本申请实施例提供的一种功率控制装置的结构示意图。
功率控制装置500可以是终端设备、或网络设备,也可以是应用于终端设备、或网络设备中的芯片或者其他具有相应功能的部件。如图5所示,功率控制装置500可以包括处理器501。可选地,功率控制装置500还可以包括存储器502和收发器503中的一个或多个。其中,处理器501可以与存储器502和收发器503中的一个或多个耦合,如可以通过通信总线连接,处理器501也可以单独使用。
下面结合图5对功率控制装置500的各个构成部件进行具体的介绍:
处理器501是功率控制装置500的控制中心,可以是一个处理器,也可以是多个处理元件的统称。例如,处理器501是一个或多个中央处理器(central processing unit,CPU),也可以是特定集成电路ASIC,或者是被配置成实施本申请实施例的一个或多个集成电路,例如:一个或多个微处理器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(field programmable gate array,FPGA)。
存储器502用于存储计算机程序,还可以存储数据。
其中,处理器501可以通过执行存储在存储器502内的计算机程序,以及调用存储在存储器502内的数据,执行功率控制装置500的各种功能。
在具体的实现中,作为一种实施例,处理器501可以包括一个或多个CPU,例如图5中所示的CPU0和CPU1。
在具体实现中,作为一种实施例,功率控制装置500也可以包括多个处理器,例如图5中所示的处理器501和处理器504。这些处理器中的每一个可以是一个单核处理器(single-CPU),也可以是一个多核处理器(multi-CPU)。这里的处理器可以指一个或多个通信设备、电路、和/或用于处理数据(例如计算机程序指令)的处理核。
可选地,存储器502可以是只读存储器(read-only memory,ROM)或可存储静态信息和指令的其他类型的静态存储通信设备,随机存取存储器(random access memory,RAM)或者可存储信息和指令的其他类型的动态存储通信设备,也可以是电可擦可编程只读存储器(electrically erasable programmable read-only memory,EEPROM)、只读光盘(compact disc ROM,CD-ROM)或其他光盘存储、光碟存储(包括压缩光碟、激光碟、光碟、数字通用光碟、蓝光光碟等)、磁盘存储介质或者其他磁存储通信设备、或者能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。存储器502可以和处理器501集成在一起,也可以独立存在,并通过功率控制装置500的输入/输出端口(图5中未示出)与处理器501耦合,本申请实施例对此不作具体限定。
示例性地,输入端口可用于实现下述任一方法实施例中由终端设备、或网络设备执行的接收功能,输出端口可用于实现下述任一方法实施例中由终端设备、或网络设备执行的发送功能。
其中,所述存储器502可用于存储执行本申请方案的计算机程序(或代码),并由处理器501来控制执行。上述具体实现方式可以参考下述方法实施例,此处不再赘述。
可选地,收发器503,用于与其他功率控制装置之间的通信。例如,功率控制装 置500为终端设备时,收发器503可以用于与网络设备通信。又例如,功率控制装置500为网络设备时,收发器503可以用于与终端设备通信。此外,收发器503可以包括接收器和发送器(图5中未单独示出)。其中,接收器用于实现接收功能,发送器用于实现发送功能。收发器503可以和处理器501集成在一起,也可以独立存在,并通过功率控制装置500的输入/输出端口(图5中未示出)与处理器501耦合,本申请实施例对此不作具体限定。
需要说明的是,图5中示出的功率控制装置500的结构并不构成对该功率控制装置的限定,实际的功率控制装置可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
其中,本申请下述方法实施例中终端设备的动作可以由图5所示的功率控制装置500中的处理器501调用存储器502中存储的计算机程序以指令终端设备执行。
本申请下述方法实施例中网络设备的动作可以由图5所示的功率控制装置500中的处理器501调用存储器502中存储的计算机程序以指令网络设备执行,本实施例对此不作任何限制。
需要说明的是,下述方法实施例涉及的各步骤的所有相关内容均可以援引到对应功能模块的功能描述,在此不再赘述。
图6为本申请实施例提供的另一种功率控制装置的结构示意图。为了便于说明,图6仅示出了该功率控制装置的主要部件。
该功率控制装置600包括收发模块601、和处理模块602。该功率控制装置600可以是前述方法实施例中的终端设备、或网络设备。收发模块601,也可以称为收发单元,用以实现下述任一方法实施例中由终端设备、或网络设备执行的收发功能。
需要说明的是,收发模块601可以包括接收模块和发送模块(图6中未示出)。其中,接收模块用于接收来自其他设备的数据和/或信令;发送模块用于向其他设备发送数据和/或信令。本申请对于收发模块的具体实现方式,不做具体限定。该收发模块可以由收发电路、收发机、收发器或者通信接口构成。
处理模块602,可以用于实现下述任一方法实施例中由终端设备、或网络设备执行的处理功能。该处理模块602可以为处理器。
在本实施例中,该功率控制装置600以采用集成的方式划分各个功能模块的形式来呈现。这里的“模块”可以指特定ASIC,电路,执行一个或多个软件或固件程序的处理器和存储器,集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到该功率控制装置600可以采用图5所示的功率控制装置500的形式。
比如,图5所示的功率控制装置500中的处理器501可以通过调用存储器502中存储的计算机执行指令,使得下述方法实施例中的功率控制方法被执行。
具体的,图6中的收发模块601和处理模块602的功能/实现过程可以通过图5所示的功率控制装置500中的处理器501调用存储器502中存储的计算机执行指令来实现。或者,图6中的处理模块602的功能/实现过程可以通过图5所示的功率控制装置500中的处理器501调用存储器502中存储的计算机执行指令来实现,图6中的收发模块601的功能/实现过程可以通过图5中所示的功率控制装置500中的收发器 503来实现。
由于本实施例提供的功率控制装置600可执行下述功率控制方法,因此其所能获得的技术效果可参考下述方法实施例,在此不再赘述。
需要说明的是,以上模块的一个或多个可以软件、硬件或二者结合来实现。当以上任一模块以软件实现的时候,所述软件以计算机程序指令的方式存在,并被存储在存储器中,处理器可以用于执行所述程序指令并实现以上方法流程。该处理器可以内置于SoC(片上系统)或ASIC,也可是一个独立的半导体芯片。该处理器内处理用于执行软件指令以进行运算或处理的核外,还可进一步包括必要的硬件加速器,如现场可编程门阵列、可编程逻辑器件(programmable logic device,PLD)、或者实现专用逻辑运算的逻辑电路。
当以上模块以硬件实现的时候,该硬件可以是CPU、微处理器、DSP芯片、微控制单元(microcontroller unit,MCU)、人工智能处理器、ASIC、SoC、FPGA、PLD、专用数字电路、硬件加速器或非集成的分立器件中的任一个或任一组合,其可以运行必要的软件或不依赖于软件以执行下文所述的方法流程。
下面将结合图7-图8对本申请实施例提供的功率控制方法进行具体阐述。
示例性地,图7为本申请实施例提供的一种功率控制方法的流程示意图。该功率控制方法可以适用于图1所示的网络设备与终端设备之间、终端设备与感知设备之间的通信。图7所示的方法主要阐述了针对第一信号的功率控制方法。
如图7所示,该功率控制方法包括如下步骤:
S701,终端设备确定第一路径损耗。
终端设备确定第一路径损耗,可以替换为终端设备获取第一路径损耗。
在一种可能的设计方式中,第一路径损耗为探测链路的路径损耗,探测链路为终端设备与至少一个物体的往返链路。物体也可以称为感知目标。
终端设备在进行目标探测的过程中,终端设备发送信号后,信号可以经过一个感知目标反射至终端设备,或者该信号可以依次经过多个感知目标反射至终端设备。
示例性地,终端设备进行目标探测的链路可以为终端设备至感知目标至终端设备,如终端设备至感知目标1至终端设备。或者,终端设备至多个感知目标至终端设备,例如终端设备至感知目标1至感知目标2至终端设备,本申请不对多个感知目标的数量进行限定。
例如,结合图1,第一路径损耗可以为终端设备发送感知信号(如发送感知信号的发射功率为P t)、并接收反射的回波信号的路径损耗(如接收到的感知信号的回波信号的接收功率为P r),第一路径损耗可以表示为P t-P r。具体地,第一路径损耗可以包括终端设备到感知目标的路径损耗、和感知目标到终端设备的路径损耗。当回波信号是感知信号经多个感知目标反射后获得的信号时,第一路径损耗还可以包括多个感知目标之间的路径损耗。
在一种可能的设计方式中,第一路径损耗是终端设备根据第一信息、终端设备发送的信号、和/或除终端设备外的设备发送的信号确定的。
可选地,第一信息可以包括如下一项或多项:参考路损信息、距离信息、或第一路损修正值。
示例性地,第一信息可以来自于网络设备、或者其他终端设备。具体地,网络设备或者其他终端设备向所述终端设备发送第一信息。相应地,终端设备接收来自网络设备或者其他终端设备的第一信息。
示例性地,第一信息可承载于无线资源控制(radio resource control,RRC)信令、媒体访问控制元素(media access control control element,MAC CE)信令、和下行控制信息(downlink control information,DCI)信令中的一种或多种。上述第一信息包括的下一项或多项占用的一个或多个字段可以是RRC信令已定义的字段、MAC CE信令已定义的字段、或者DCI信令已定义的字段,也可以是上述至少一个信令中新定义的字段。
需要说明的是,第一信息也可以承载在新定义的信令中。对此,本申请实施例不作限制。
可选地,第一信息可用于指示第一路径损耗。
示例性地,参考路损信息可以用于指示配置的路径损耗。
一些实施例中,第一路径损耗可以是终端设备根据参考路损信息确定的。
例如,终端设备可以确定第一路径损耗为参考路损信息指示的值。可适用于终端设备首次进行感知探测的场景,直接采用配置的参考路损信息作为初始值。该参考路损信息可以是基于终端设备的最远探测距离需求确定的。
可选地,网络设备可以为终端设备配置一个或多个参考路损信息(例如通过RRC信令),并基于感知场景和感知精度的需求,指示终端设备采用其中一个参考路损信息(例如通过DCI)。
示例性地,距离信息可以用于指示终端设备支持探测的距离、或终端设备到感知目标之间的距离。
一些实施例中,第一路径损耗可以是终端设备根据距离信息确定的。可适用于终端设备首次进行感知探测、或者跟踪模式感知探测的场景。跟踪模式感知探测中终端设备可基于特定感知目标进行探测,即感知探测前已获取感知目标的一些先验信息,例如初始距离速度信息等。
可选地,第一路径损耗可以是终端设备使用距离信息、空间信号衰减模型和感知目标的雷达散射截面积(radar cross-section,RCS)确定的。具体可以包括下述步骤a至步骤c。
步骤a,终端设备根据距离信息、空间信号衰减模型,确定前向链路的路径损耗PL
可以理解的,终端设备进行目标探测的往返链路可以分为前向链路和后向链路。其中,前向链路表示终端设备到至少一个感知目标的路径,后向链路表示至少一个感知目标到终端设备的路径。
示例性地,空间信号衰减模型可用于描述传播信号在传播距离上的衰减,即可以表示为与信号传播距离相关的函数。空间信号衰减模型可以是网络设备或其他终端设备根据具体的探测场景通过第一信息向终端设备指示的,也可以是终端设备在当前场景下默认使用的。
例如,空间信号衰减模型可以表示为PL=A+B×log 10(d 3D)+C×log 10(f C),单 位为分贝(decibel,dB)。其中,A、B和C为依赖于实际传播场景(例如,乡村宏站(rural macro,RMa)场景,城市宏站(Urban Macro,UMa)场景,城市微站(Urban Micro,UMi)场景和室内(indoor,InH)场景等)和路径类型(例如,视距(line-of-sight,LoS)路径和非视距(non-line-of-sight,NLoS)路径)的配置的参数值。d 3D表示距离信息,f C为载波频率。
需要注意的是,空间信号衰减模型中的距离表示前向、或后向链路的距离信息,而非往返链路的总距离。空间信号衰减模型可以是适用于不同场景的路径损耗模型,也可以是专门适用于感知场景的模型,本申请对此不做限制。
步骤b,确定后向链路的路径损耗PL
考虑到感知系统前向链路与后向链路之间时延较小,前向链路与后向链路的路径损耗可以近似视为相等。示例性地,使后向链路的路径损耗PL 等于前向链路的路径损耗PL
需要说明的是,可以在步骤a中根据距离信息、空间信号衰减模型确定后向链路的路径损耗PL ,在步骤b中,根据后向链路的路径损耗PL 确定前向链路的路径损耗PL
步骤c,基于下述公式(1)确定第一路径损耗。
基于雷达方程中收发信号的发射功率关系,往返链路总的路径损耗(即第一路径损耗)可以近似表示为公式(1),或者满足公式(1)的约束条件。
Figure PCTCN2022112322-appb-000001
在上述公式(1),参数PL 和PL 分别表示前向链路和后向链路计算获得的路径损耗值,且PL 、PL 和PL 均为线性值。感知目标RCS的单位为平方米(m 2),其可以是通过第一信息指示的,可以是终端设备在当前场景下默认使用的。λ表示波长,单位为米(m),π是无限不循环小数。
示例性地,第一路损修正值可用于调整路径损耗。
可选地,第一路损修正值的数量可以是一个或多个,可以根据不同的应用场景选择不同的第一路损修正值。
一些实施例中,第一路径损耗可以是终端设备根据第一路损修正值确定的。
以高速公路场景下的车辆探测为例,车辆可以近似视为以恒定且高速的速度进行运动,进一步地,相邻的两次感知信号传输机会下对应的路径损耗值可能会有较大的差异,路损修正值可进一步提升感知性能。
对于终端设备首次进行感知探测的情况,第一路损修正值可以是对终端设备根据支持的最远探测距离确定的路径损耗的调整量。如此,终端设备可以根据第一路损修正值和终端设备根据支持的最远探测距离确定的路径损耗,确定当前传输机会下的第一路径损耗。例如此种情况下,第一路径损耗=终端设备支持的最远探测距离下获得的路径损耗值+第一路损修正值。
例如,第一路损修正值可以表示终端设备在上一次感知信号传输机会下确定的路径损耗取值的调整量。如此,终端设备可以根据第一路损修正值和终端设备在上一次 感知信号传输机会下确定的路径损耗,确定当前传输机会下的第一路径损耗。例如此种情况下,第一路径损耗=上一次感知信号传输机会下获得的路径损耗值+第一路损修正值。
一些实施例中,第一路径损耗可以是终端设备根据参考路损信息和第一路损修正值确定的。
示例性地,第一路径损耗=参考路损信息+第一路损修正值。
参考路损信息可以视作对探测链路路径损耗的粗估计,第一路损修正值可以视作在参考路损信息基础上的进一步精估计。如此,可以根据参考路损信息和第一路损修正值,确定当前传输机会下的感知信号的路径损耗。
一些实施例中,第一路径损耗可以是终端设备根据第一路损修正值和前向链路路径损耗取值PL 确定的。或者,第一路径损耗可以是根据第一路损修正值和后向链路路径损耗取值PL 确定的。具体可以包括下述步骤d至步骤e。
步骤d,终端设备根据第一路损修正值和前向链路路径损耗取值PL 确定后向链路路径损耗取值PL
可选地,第一路损修正值Δ PL可用于表示前向链路路径损耗取值PL 与后向链路路径损耗取值PL 的偏差。
考虑到传播环境的变化和/或感知目标的运动,前向链路与后向链路的路径损耗值可能存在差异,终端设备可以根据确定的前向链路的路径损耗和第一路损修正值,对后向链路的路径损耗值进行调整(步骤d至步骤e以此为例进行阐述);或者,终端设备可以根据确定的后向链路的路径损耗和第一路损修正值,对前向链路的路径损耗值进行调整(实现方式与步骤d至步骤e类似,此处不再赘述),从而实现对终端设备进行目标探测的往返链路对应的路径损耗信息的合理估计。
其中,前向/后向链路的路径损耗可以使用上文提到的距离信息来确定(例如上述步骤a),也可以使用除终端设备外的设备发送的信号来确定(参照下文所述),本申请对此不做限制。
步骤e,基于根据上述公式(1)确定第一路径损耗。
关于步骤e的具体实现方式可参照上述步骤c,此处不再赘述。步骤d至步骤e与步骤a至步骤c的主要区别在于,步骤d至步骤e所示的方法中,前向链路路径损耗取值PL 与后向链路路径损耗取值PL 之间可以存在偏差,偏差值为第一路损修正值Δ PL,在上述步骤a至步骤c中,将前向链路路径损耗取值PL 与后向链路路径损耗取值PL 近似视为相等。
一些实施例中,第一路径损耗可以根据除终端设备外的设备发送的信号来确定。
可选的,若感知目标为具有通信能力的设备,终端设备可以根据感知目标发送的参考信号接收功率(reference signal receiving power,RSRP)确定第一路径损耗。其中,RSRP是由感知目标发送的经由终端设备测量的一个表征接收信号强度的量值,它的值的大小随着感知目标偏离终端设备距离的不同而取值不同,可以反映感知目标到终端设备对应路径的信号衰减程度。具体可以包括下述步骤f至步骤h。
步骤f,终端设备可以通过测量感知目标发送的探测参考信号-参考信号接收功率(sounding reference signal-reference signal received power,SRS-RSRP)和高层信令 配置的参考信号功率,确定后向链路路径损耗取值PL
示例性地,基于路损估计公式PL=高层信令配置的参考信号功率-测量的SRS-RSRP,计算获得后向链路(即感知目标到终端设备的路径)对应的路径损耗,即PL
进一步地,可以根据上文描述的方案估计往返链路的路径损耗取值。
步骤g,终端设备确定前向链路路径损耗取值PL 等于后向链路的路径损耗PL (与上述步骤b类似,具体实现方式可参照上述步骤b)。或者,终端设备根据第一路损修正值和后向链路路径损耗取值PL 确定前向链路路径损耗取值PL (与上述步骤d类似,具体实现方式可参照上述步骤d)。
步骤h,基于根据上述公式(1)确定第一路径损耗。
关于步骤h的具体实现方式可参照上述步骤c,此处不再赘述。
一些实施例中,第一路径损耗可以是终端设备使用终端设备发送的信号确定的。这可以理解为终端设备可以根据当前传输机会之前的一次或多次发送感知信号并接收回波信号的感知测量结果确定的第一路径损耗。
可选地,该感知信号可以是终端设备在当前传输机会之前的一次或多次传输机会下发送的。其中,一次或多次传输机会是感知信号的一次或多次传输机会。
示例性地,在当前传输机会之前,终端设备可以在一次或多次传输机会下发送感知信号并接收回波信号,并获得感知测量结果。
可选地,感知测量结果可以包括如下一项或多项:路径损耗、回波信号的接收功率、和经过雷达处理后的速度-距离谱等,本申请对此不做限制。
例如,终端设备可以通过测量回波信号的接收功率来估计当前传输机会下目标探测往返链路的路径损耗,由于终端设备已知当前传输机会下感知信号的发射功率,基于路损计算公式,往返链路总的路损可以表示为PL =感知信号的发射功率-感知信号的接收功率,从而获得第一路径损耗。
可选地,以终端设备在传输机会下发送感知信号并接收回波信号、且感知测量结果是路径损耗为例。第一路径损耗是终端设备使用终端设备发送的信号确定的,可以包括:第一信号是在传输机会T 0发送的,第一路径损耗是根据传输机会T 0之前的一次或多次传输机会获得的路径损耗确定的。
可选地,第一信号可以为感知信号。
示例性地,第一信号可以是物理信道,例如,PUSCH、PUCCH或PRACH等。第一信号也可以是参考信号,例如SRS、DMRS、相位跟踪信号(phase track reference signal,PTRS)或单独用于探测的信号等。
例如,传输机会T 0之前的一次传输机会可以是前一次传输机会、也可以是传输机会T 0之前的任一次传输机会,本申请对此不进行限定。
示例性地,以前一次传输机会T 0-1为例,第一路径损耗可以是根据前一次传输机会T 0-1下,终端设备进行目标探测的链路的路径损耗确定的。
例如,第一路径损耗的确定方式可包括累积计算型和绝对计算型。可选地,终端设备具体采用哪种确定方式,可以由网络设备指示,例如通过RRC信令指示。
对于累积计算型,当前传输机会下的第一路径损耗可满足:PL 感知(T 0)=PL 感知(T 0- 1)+δ 感知PL。其中,PL 感知(T 0-1)为前一次传输机会T 0-1下终端设备进行目标探测的路径 损耗,δ 感知PL为第一路损修正值。例如,第一路损修正值可以表示终端设备对上一次感知信号传输机会下确定的路径损耗取值的调制量。
对于绝对计算型,当前传输机会下的第一路径损耗可以满足:PL 感知(T 0)=PL 感知(T 0-1)。
也就是说,第一路径损耗可以是根据前一次传输机会T 0-1下终端设备进行目标探测的路径损耗、和第一路损修正值确定的,或者第一路径损耗可以等于前一次传输机会T 0-1下终端设备进行目标探测的路径损耗。
例如,传输机会T 0之前的多次传输机会可以是最近多次传输机会、也可以是传输机会T 0之前的任一多次传输机会,本申请对此不进行限定。
示例性地,以最近多次传输机会T 0-x至T 0-1为例,X为大于1的整数,第一路径损耗可以是根据传输机会T 0-x至T 0-1获得的路径损耗确定的。
对于累积计算型,当前传输机会下的第一路径损耗可满足:PL 感知(T 0)=PL 感知(T 0- x至0-1)+δ 感知PL。对于绝对计算型,当前传输机会下的第一路径损耗可以满足:PL 感知(T 0)=PL 感知(T 0-x至0-1)。
其中,δ 感知PL为第一路损修正值,上述PL 感知(T 0-x至0-1)可以为传输机会T 0-x至T 0-1下获得的路径损耗的平均值或加权平均值,或者,上述PL 感知(T 0-x至0-1)可以是根据传输机会T 0-x至T 0-1下获得的路径损耗以及终端设备的运动规律和/或传播环境的变化估计的当前传输机会下获得的路径损耗。
示例性地,若感知测量结果为经过雷达处理后的速度-速度谱,终端设备可以基于传输机会T 0之前的一次或多次传输机会下的速度-速度谱,确定感知目标的距离和速度,再根据传输机会之间的时间间隔确定当前传输机会下终端设备到感知目标的距离,然后再根据当前传输机会下终端设备到感知目标的距离确定第一路径损耗。
示例性地,若当前传输机会T 0与前一次传输机会T 0-1的时间间隔较长,感知目标的运动或周围环境的变化可能使得这两次的实际路径损耗相差较大。若采用前一次传输机会T 0-1下的感知信号的路径损耗,估计当前传输机会T 0下的感知信号的路径损耗,可能会导致估计出的路径损耗不准确,可以增加一次感知测量。增加后,该增加的感知测量可以视为当前传输机会T 0的前一次传输机会T 0-1的感知测量。
在增加的感知测量阶段中,可以简单地对感知目标进行感知,例如,感知信号占用少量的时域资源,终端设备可以向特定的感知目标发送感知信号,对特定的感知目标进行感知波束扫描,获得感知测量结果。这样,根据该感知测量结果可以获得更准确的第一路径损耗,可以确保终端设备的感知性能。
在实际应用场景中,终端设备进行目标探测的模式可以分为跟踪模式和盲扫模式。示例性地,跟踪模式中,终端设备对特定的感知目标进行检测,信号对应的波束方向可以是向特定的感知目标发送的。盲扫模式中,终端设备按照配置的扫描图案(即感知波束扫描的方向、扫描时间、和周期等)发送感知信号,在终端设备扫描范围下可能覆盖多个感知目标。对于这两种模式,终端设备可以采用上述任一种或多种方式确定第一路径损耗。
其中,感知波束可以视作感知信号的空域表示形式,换句话来说,感知信号可以承载在感知波束上进行发送。
当功率控制装置500为终端设备时,功率控制装置500中的处理器501可用于确 定第一路径损耗。可选地,处理器501还用于执行S701中终端设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S701中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为终端设备时,功率控制装置600中的处理模块602可用于确定第一路径损耗。可选地,处理模块602还可用于执行S701中终端设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S701中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置500为网络设备时,功率控制装置500中的处理器501可用于执行S701中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S701中网络设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为网络设备时,功率控制装置600中的处理模块602可用于执行S701中网络设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S701中网络设备所涉及的任一种或多种可能的收发功能。
S702,终端设备根据第一路径损耗,确定第一信号的发射功率。
在一种可能的设计方式中,上述S702,终端设备根据第一路径损耗,确定第一信号的发射功率,可以包括:终端设备根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率。
可选地,第一功控指示信息可以包括用于获取第一信号的发射功率的参数。
可选地,第一功控指示信息可以是网络设备确定,并向终端设备发送的。
一些实施例中,本申请实施例提供的方法还可以包括:S702-1,网络设备确定第一指示信息。
可选地,第一指示信息可以包括第一功控指示信息。
一些实施例中,本申请实施例提供的方法还可以包括:S702-2,网络设备向终端设备发送第一指示信息。相应地,终端设备接收来自网络设备的第一指示信息。
可选地,第一指示信息可以是通过但不限于如下一项或多项信令发送的:DCI、MAC信令、和RRC信令。
也就是说,网络设备可以通过一个或多个信令向终端设备发送第一功控指示信息。
在一些实施例中,第一功控指示信息可以包括第一期望发射功率、和第一最大发射功率。
可选地,网络设备确定的第一期望发射功率的数量可以为一个或多个、第一最大发射功率的数量可以为一个或多个。
当网络设备确定一个第一期望发射功率和一个第一最大发射功率时,第一功控指示信息可以是通过DCI、MAC信令或RRC信令发送的。
当网络设备确定多个第一期望发射功率和多个第一最大发射功率时,第一功控指示信息可以是通过DCI、MAC信令或RRC信令发送的。例如,网络设备向终端设备发送一个第一期望发射功率和第一最大发射功率。
当网络设备确定多个第一期望发射功率和多个第一最大发射功率时,第一功控指示信息可以是通过RRC信令和DCI发送的。
示例性地,RRC信令包括第一期望发射功率1、第一期望发射功率2、第一最大发射功率1、第一最大发射功率2,DCI指示第一期望发射功率1和第一最大发射功率1,即可采用RRC信令配置第一功控指示信息,可采用DCI指示将要使用的参数索引。例如,DCI包括第一期望发射功率1和第一最大发射功率1、或第一期望发射功率1的标识和第一最大发射功率1的标识,则可使终端设备采用第一期望发射功率1和第一最大发射功率1进行功率控制。
可选地,第一期望发射功率可用于指示满足终端设备的目标探测需求的期望发射功率。
示例性地,第一期望发射功率P 0表示在终端设备进行目标探测的感知结果(例如,信噪比、目标检测概率或者距离/速度估计精度等)能够达到感知系统需求的情况下终端设备的期望发射功率。
以第一指示信息为RRC信令为例,RRC信令可以包括感知功率控制信息元素(SENSE-PowerControl IE),该感知功率控制信息元素可用于配置第一期望发射功率P 0
需要说明的是,本申请实施例不局限于使用感知功率控制信息元素,还可以使用其它元素,或者不对感知功率控制信息元素的名称进行限定,这同样适用于其它示例中的感知功率控制信息元素。
可选地,第一最大发射功率可用于指示发送第一信号的最大功率。
示例性地,第一最大发射功率小于或等于终端设备的最大发射功率,第一信号的发射功率小于或等于第一最大发射功率。
也就是说,终端设备发送第一信号的发射功率P需要小于或等于设置的发送第一信号的最大功率(即第一最大发射功率P 2)。
例如,第一最大发射功率可以是根据终端设备的最大发射功率和比例系数确定的。可选地,比例系数的值大于或等于0且小于或等于1。第一最大发射功率等于终端设备的最大发射功率与比例系数的乘积。
可选地,比例系数可以是通过DCI、MAC信令或RRC信令为终端设备配置的。
示例性地,第一最大发射功率可以是根据目标检测概率曲线确定的。
例如,根据目标检测概率曲线获取满足期望的目标检测概率阈值门限(例如大于或等于90%)的经过雷达处理后的SNR的范围。进一步地,再基于雷达处理增益、期望的检测距离以及感知目标的RCS等因素,估计可以满足期望的目标检测概率阈值门限对应的发射功率的取值范围,从而配置第一信号的最大发射功率的取值。
在一种可能的设计方式中,上述终端设备根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率,可以包括:终端设备可以根据第一期望发射功率、第一最大发射功率和第一路径损耗,确定第一信号的发射功率。
例如,终端设备可以根据第一期望发射功率和第一路径损耗确定一个发射功率,然后在第一最大发射功率的约束下确定最终的发射功率,具体地,第一信号的发射功率=min{第一最大发射功率,第一期望发射功率+第一路径损耗},可以动态调整第一信号的发射功率。
在一些实施例中,第一功控指示信息还可以包括第一功率调整值、和/或第一路 损补偿因子α。
可选地,第一功率调整值可以包括如下一项或多项:第一信号的闭环功率修正值、第一信号的与调制和编码方案(modulation and coding scheme,MCS)相关的功率调整量、和第一信号的与占用的资源相关的功率调整量。
可选地,第一路损补偿因子α表示对终端设备传输第一信号对应的路径损耗补偿的比例,取值范围为α∈[0,1]。
在一种可能的设计方式中,上述终端设备根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率,可以包括:终端设备可以根据第一期望发射功率、第一最大发射功率、第一路径损耗和第一路损补偿因子,确定第一信号的发射功率。
例如,终端设备可以根据第一期望发射功率、第一路径损耗和第一路损补偿因子确定一个发射功率,然后在第一最大发射功率的约束下确定最终的发射功率,具体地,第一信号的发射功率=min{第一最大发射功率,第一期望发射功率+第一路径损耗×第一路损补偿因子},可以动态调整第一信号的发射功率。一些实施例中,功率控制机制可分为开环功率控制和闭环功率控制。
示例性地,在开环功率控制中,终端设备通过自身的功率设置算法确定发射功率。其中,功率设置算法的输入可来自于终端设备的内部设置或者终端设备的测量数据。在闭环功率控制中,网络设备根据接收到的感知结果(针对感知信号)或通信信号的强弱(针对通信信号),向终端设备发送反馈信息,终端设备可以根据网络设备的反馈信息来进行功率调整。
例如,开环功率控制参数可以包括但不限于如下一项或多项:第一期望发射功率P 0、第一路损补偿因子α、第一信号的与MCS相关的功率调整量、和第一信号的与占用的资源相关的功率调整量。
例如,闭环功率控制参数可以包括与闭环功率控制相关的功率调整量(即第一信号的闭环功率修正值)。
下面对第一功率调整值进行阐述。
在一些实施例中,第一功率调整值可以包括第一信号的闭环功率修正值。
例如,第一信号的闭环功率修正值可以是网络设备基于终端设备的感知测量结果确定的,以使终端设备对第一信号的发射功率进行进一步调整,从而进一步提高功率控制的精度。
表1
Figure PCTCN2022112322-appb-000002
示例性地,可以采用发送功率控制(transmission power control,TPC)命令字段指示第一信号的闭环功率修正值。TPC命令字段到第一信号的闭环功率修正值的映射关 系如表1所示,与第一路径损耗的确定方式类似,第一信号的闭环功率修正值的确定方式可包括累积计算型和绝对计算型,如此,表1中包括累积计算型和绝对计算型情况下,TPC命令字段到第一信号的闭环功率修正值的映射关系。
考虑到目标检测概率对经过雷达处理后的信噪比(post-SNR)变化的敏感性较高,例如,post-SNR减小1dB,目标检测概率可能降低10%,从而可以减小第一信号的闭环功率修正值的变化步长,以保证感知精度的需求。
可选地,第一信号的闭环功率修正值可以小于通信信号的闭环功率修正值。
例如,第一信号的闭环功率修正值的步长小于通信信号配置的闭环功率修正值的步长(例如,1dB),如表1所示,TPC命令字段相邻取值对应的闭环功率修正值相差0.5dB。
需要说明的是,上述表1仅为一个示例,本申请实施例不对第一信号的闭环功率修正值的步长、个数进行限定。另外,第一信号对应的累积计算型的闭环功率修正值的步长和绝对计算型的闭环功率修正值的步长可以不相同。
对于累积计算型,当前传输机会下的第一信号的闭环功率修正值可以表示为:f (T 0)=f 感知(T 0-1)+δ 感知。其中,f 感知(T 0-1)为前一次传输机会T 0-1下的闭环功率修正值,δ 感知为当前传输机会下终端根据接收到的TPC命令字段确定的闭环功率修正值。
也就是说,终端设备可以根据接收到的TPC命令和前一次传输机会T 0-1下传输第一信号的闭环功率修正值,确定当前传输机会下的传输第一信号的闭环功率修正值。
对于绝对计算型,当前传输机会下的第一信号的闭环功率修正值可以表示为:f (T 0)=δ 感知。δ 感知为当前传输机会下终端根据接收到的TPC命令字段确定的闭环功率修正值。
也就是说,终端设备可以直接根据接收到的TPC命令确定传输第一信号的闭环功率修正值。
进一步地,终端确定第一信号的闭环功率修正值的方式(即采用累积计算型还是绝对计算型),取决于高层信令的配置。
也就是说,第一信号的闭环功率修正值可以是根据前一次传输机会T 0-1下的闭环功率修正值、和当前传输机会下TPC命令字段指示闭环功率修正值确定的,或者仅根据当前传输机会下TPC命令字段指示闭环功率修正值确定。
需要说明的是,第一信号的闭环功率修正值的确定方式与第一路径损耗的确定方式类似,可参照上述确定第一路径损耗的具体实现方式,此处不再赘述。示例性地,第一信号的闭环功率修正值可以是根据传输机会T 0之前的一次或多次传输机会下的闭环功率修正值确定的。例如,传输机会T 0之前的一次传输机会可以是前一次传输机会、也可以是传输机会T 0之前的任一次传输机会,传输机会T 0之前的多次传输机会可以是最近多次传输机会、也可以是传输机会T 0之前的任一多次传输机会,本申请对此不进行限定。
可选地,感知功率控制信息元素还可用于配置第一功率调整值、或TPC命令字段到感知功率的闭环功率修正值的映射关系。
在一些实施例中,第一功率调整值可以包括第一信号的与MCS相关的功率调整 量。
也就是说,终端设备可以通过调整MCS来进行第一信号的功率控制。
示例性地,若终端设备传输的是预定义的序列,例如SRS、DMRS或者其他可能的专用于探测的信号,无需考虑MCS,即确定第一信号的发射功率的第一功控指示信息可以不包括第一信号的与MCS相关的功率调整量。
在一些实施例中,第一功率调整值可以包括第一信号的与占用的资源相关的功率调整量。
也就是说,终端设备可以通过调整第一信号占用的资源(例如RB的数量)来进行第一信号的功率控制。
在一种可能的设计方式中,上述终端设备根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率,可以包括:终端设备可以根据第一期望发射功率、第一最大发射功率、第一功率调整值、和第一路径损耗,确定第一信号的发射功率。
例如,第一信号的发射功率=min{第一最大发射功率,第一期望发射功率+第一路径损耗×第一路损补偿因子+第一信号的与占用的资源相关的功率调整量+第一信号的闭环功率修正值+第一信号的与MCS相关的功率调整量}。上述已记载第一功率调整值可以包括第一信号的闭环功率修正值、第一信号的与MCS相关的功率调整量、和第一信号的与占用的资源相关的功率调整量中的一项或多项,则上述公式中第一信号的与占用的资源相关的功率调整量可以为可选地,第一信号的闭环功率修正值可以为可选地,与MCS相关的功率调整量可以为可选地,第一路损补偿因子可以为可选地。
可选地,网络设备确定的第一期望发射功率的数量可以为一个或多个、第一最大发射功率的数量可以为一个或多个。
当第一功控指示信息包括一个第一期望发射功率和一个第一最大发射功率时,第一功控指示信息可以是通过DCI、MAC信令或RRC信令发送的。
当第一功控指示信息包括多个第一期望发射功率和多个第一最大发射功率时,该第一功控指示信息可以是通过RRC信令和DCI发送的。
示例性地,RRC信令包括第一期望发射功率1、第一期望发射功率2、第一最大发射功率1、第一最大发射功率2,DCI指示第一期望发射功率1和第一最大发射功率1,即可采用RRC信令配置第一功控指示信息,采用DCI激活将要使用的参数。例如,DCI包括第一期望发射功率1和第一最大发射功率1、或第一期望发射功率1的标识和第一最大发射功率1的标识,则可使终端设备采用第一期望发射功率1和第一最大发射功率1进行功率控制。
可选地,DCI也可以是组DCI(group DCI),即多个终端设备共用一个DCI。
下面对第一信号在服务小区c、载波频率f、上行部分带宽(uplink bandwidth part,UL BWP)b内、传输机会i下的对应的发射功率进行阐述。在当前传输机会为T 0时,i=T 0
以第一信号承载在SRS信号上进行发送为例,无需考虑MCS,第一信号在传输机会i下对应的发射功率可以满足如下的公式:
Figure PCTCN2022112322-appb-000003
在上述公式中,x表示开环功率控制参数第一期望发射功率P 0和/或第一路损补偿因子α的索引,y表示闭环功率控制参数的调整状态索引。
P sensing,b,f,c(i,x)表示终端设备在服务小区c、载波频率f、UL BWP b内,传输机会i下的发送功率。
P sensingMAX,f,c(i)表示第一最大发射功率。P O_sensing,b,f,c(x)为第一期望发射功率,即终端基于DCI指示的开环功控参数索引,从高层配置的用于感知的功率参数P 0的集合中获取。
Figure PCTCN2022112322-appb-000004
表示第一信号的与占用的资源相关的功率调整量。
Figure PCTCN2022112322-appb-000005
表示终端设备在服务小区c、载波频率f、UL BWP b内,传输机会i下第一信号占用的RB的数量,μ为子载波间隔(subcarrier spacing,SCS)相关因子。
PL sensing(i)表示第一路径损耗。可选地,引入第一路损补偿因子α sensing,b,f,c(x),对应的第一路径损耗可以表示为α sensing,b,f,c(x)×PL sensing(i)。
h sensing,b,f,c(i,y)为第一信号的闭环功率修正值。
如此,终端设备可对不同服务小区、不同载波频率下的第一信号的发射功率,进行动态调整,可以确保终端设备的感知性能,并且,可以使终端设备以适当且较低的发射功率进行目标探测,可以在确保终端设备的感知性能的基础上,最大化系统的吞吐量和最小化终端设备的功耗。
在一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第一频域资源配置信息。
如此,可以使终端设备在根据第一指示信息确定发送第一信号的占用的时频资源。
可选地,第一时域资源配置信息可用于指示第一信号的时域资源,第一频域资源配置信息可用于指示第一信号的频域资源。
示例性地,第一时域资源配置信息可以包括第一信号的时域起始符号索引和符号数;或者第一信号的时域资源配置信息可以包括第一信号的时域占用的符号索引。
示例性地,第一时域资源配置信息可以包括资源周期和时间偏移。其中,资源周期可以设置为周期性、半持续和非周期性传输,其中周期性和半持续传输可通过配置的资源发送周期和时间偏移来确定第一信号占据的时隙位置,而非周期性传输可通过DCI信令指示终端设备第一信号每一次的发送。
示例性地,第一频域资源配置信息可以包括第一信号的频域占用的起始RB索引、RB长度和频域资源密度。
可选地,网络设备可以根据终端设备的类型确定第一信号的资源配置信息。
示例性地,终端设备可向网络设备上报终端设备的类型并请求用于感知的资源配置信息。网络设备接收终端设备的类型和请求,并向终端设备发送第一信号的资源配置信息,该第一信号的资源配置信息可以包括第一时域资源配置信息、第一频域资源配置信息。
在另一种可能的设计方式中,第一时域资源配置信息和第一频域资源配置信息可以是预定义的。
例如,通过高层信令(例如RRC信令、或MAC信令)预定义第一信号的时频资源配置的图案集合,该时频资源配置的图案集合包括一个或多个时频资源图案。网络设备通过DCI信令向终端设备指示第一信号的时频资源图案的索引。
可选地,不同的时隙对应的第一信号的资源配置信息可以相同或不同。
结合图2中的(c),每个时隙中第一信号的资源配置相同,则可为终端设备配置一套第一信号的资源配置信息。结合图2中的(d),每个时隙中第一信号的资源配置不相同,则可为终端设备配置多套第一信号的资源配置信息。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:终端设备根据第一时域资源配置信息和第一频域资源配置信息确定第一信号的时频资源。
当功率控制装置500为终端设备时,功率控制装置500中的处理器501可用于根据第一路径损耗,确定第一信号的发射功率。可选地,处理器501还用于执行S702中终端设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S702中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为终端设备时,功率控制装置600中的处理模块602可用于根据第一路径损耗,确定第一信号的发射功率。可选地,处理模块602还可用于执行S702中终端设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S702中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置500为网络设备时,功率控制装置500中的处理器501可用于确定第一指示信息,收发器503可用于向终端设备发送第一指示信息。可选地,处理器501还可用于执行S702中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S702中网络设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为网络设备时,功率控制装置600中的处理模块602可用于确定第一指示信息,收发模块601可用于向终端设备发送第一指示信息。处理模块602还可用于执行S702中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S702中网络设备所涉及的任一种或多种可能的收发功能。
S703,终端设备根据发射功率发送第一信号。
如此,终端设备可基于上述S702中确定的发射功率发送第一信号,可以确保终端设备的感知性能,提高感知精度。
可选地,上述S703,终端设备根据发射功率发送第一信号可以包括:终端设备以确定的发射功率在第一信号的时频资源上发送第一信号。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:S704,终端设备获取感知测量结果。
可选地,感知测量结果可以包括但不限于如下一项或多项:路径损耗、回波信号的接收功率、经过雷达处理后的感知目标属性值(或者称为速度-距离谱,例如速度、距离、运动方向等属性)、第一信号的资源上的信噪比、目标检测概率。
需要说明的是,上述雷达处理过程可以是终端设备执行的,也可以是网络设备执行的,本申请对此不做限制。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:S705,终端设备向网络设备发送感知测量结果。相应地,网络设备接收来自终端设备的感知测量结 果。
示例性地,终端设备可采用物理层上报或者高层信令上报的方式向网络设备发送感知测量结果。
可选地,网络设备可以根据感知测量结果确定下一次传输机会下的第一信息和/或第一信号的闭环功率修正值。如此,在闭环功率控制中,网络设备向终端设备发送第一信息和/或第一信号的闭环功率修正值,使终端设备根据反馈的第一信息和/或第一信号的闭环功率修正值调整第一信号的发射功率。
当功率控制装置500为终端设备时,功率控制装置500中的收发器503可用于根据发射功率发送第一信号。可选地,处理器501用于执行S703中终端设备所涉及的任一种或多种可能的处理功能,收发器503还可用于执行S703中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为终端设备时,功率控制装置600中的收发器503可用于根据发射功率发送第一信号。可选地,处理模块602可用于执行S703中终端设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S703中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置500为网络设备时,功率控制装置500中的处理器501可用于执行S703中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S703中网络设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为网络设备时,功率控制装置600中的处理模块602可用于执行S703中网络设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S703中网络设备所涉及的任一种或多种可能的收发功能。
基于图7所示的功率控制方法,终端设备基于进行目标探测的路径的损耗确定第一信号的发射功率,目标探测过程中终端设备发送信号后,该信号可以经过一个感知目标反射至终端设备,或者该信号可以依次经过多个感知目标反射至终端设备,如此,基于目标探测场景中的损耗确定第一信号的发射功率,以该确定的发射功率发送第一信号,可以确保终端设备的感知性能,提高感知精度。
示例性地,图8为本申请实施例提供的另一种功率控制方法的流程示意图。该功率控制方法可以适用于图1所示的网络设备与终端设备之间、终端设备与感知设备之间的通信。图6所示的方法主要阐述了通信感知一体化系统中,针对第一信号和第二信号的功率控制方法。
如图8所示,该功率控制方法包括如下步骤:
S801,终端设备确定第一路径损耗。
关于S801的具体实现方式可参照上述S701,此处不再赘述。
S802,终端设备确定第一信号的发射功率和第二信号的发射功率。
示例性地,第二信号可以为通信信号、或者感知信号。
需要说明的是,本申请实施例中以第二信号为通信信号进行阐述,第二信号也可以是感知信号,可以对多个感知信号进行分层传输。当第二信号是感知信号时,终端设备可实现的与第二信号相关的功能、及具体实现方式可参照第一信号,例如终端设 备确定第二信号的发射功率的方法可以参照上述S702,不一一赘述。
若在两个波束上对第一信号和第二信号进行分层传输,则可能的承载第一信号和第二信号的方式共有X×Y种,X为支持第一信号发送的信号或信道类型,Y为支持第二信号发送的信号或信道类型。
下面对第一信号与第二信号的资源复用方式为时分复用场景中上述S802的具体实现方式进行阐述。
当第一信号与第二信号的资源复用方式为时分复用时,关于S802中终端设备确定第一信号的发射功率的方法可参照上述S702,此处不再赘述。
在一种可能的设计方式中,终端设备可以根据第二功控指示信息和第二路径损耗,确定第二信号的发射功率。
可选地,第二路径损耗为通信信号的路径损耗。
例如,第二路径损耗可以是终端设备通过参考信号计算的下行链路损耗。参考信号可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)等。可选地,与第一功控指示信息类似,第二功控指示信息可用于指示第二信号的发射功率。
也就是说,可以为第一信号和第二信号配置不同的功率控制参数,以根据第一信号和第二信号的不同需求来分别确定第一信号和第二信号的发射功率。
可选地,与第二功控指示信息可以包括第二期望发射功率、和第二最大发射功率。
示例性地,第二期望发射功率可用于指示满足通信需求的期望发射功率。
对于感知而言,终端设备通过发送第一信号并接收回波信号来估计感知目标的属性,即终端设备的发射功率需要经历两次终端设备与感知目标传输带来的衰减,因此,为了满足感知场景下目标检测的需求,网络设备配置的用于感知的期望的发射功率集合的最小值可以比通信信号的最小值大。
示例性地,第二最大发射功率可用于指示发送第二信号的最大功率。
在一些实施例中,第二最大发射功率小于或等于终端设备的最大发射功率,第二信号的发射功率小于或等于第二最大发射功率。这适用于第一信号与第二信号的资源复用方式为时分复用的情况。
也就是说,第一信号与第二信号的资源复用方式为时分复用时,终端设备发送第二信号的发射功率需要小于或等于设置的发送第二信号的最大功率。
可选地,感知目标的探测具有实时性,即终端设备需要在极短的时间内通过接收回波信号,实现对感知目标属性的有效估计,从而提高终端设备的感知系统的可靠性。因此,为了满足目标探测及路况信息采集的时效性和可靠性,第一信号的最大发射功率(即第一最大发射功率)的可能需要与第二信号的最大发射功率(即第二最大发射功率)的采用不同的取值。
需要说明的是,当第一信号与第二信号的资源复用方式为时分复用时,终端设备根据第二期望发射功率、第二最大发射功率和第二路径损耗确定第二信号的发射功率的具体实现方式,与上述S702中终端设备根据第一期望发射功率、第一最大发射功率和第一路径损耗,确定第一信号的发射功率的实现方式类似,此处不再赘述。
在一些实施例中,第二功控指示信息还可以包括第二功率调整值、和/或第二路损补偿因子。
可选地,与第一功率调整值类似,第二功率调整值可以包括如下一项或多项:第二信号的闭环功率修正值、第二信号的与MCS相关的功率调整量、和第二信号的与占用的资源相关的功率调整量。
可选地,第二路损补偿因子表示对终端设备传输第二信号对应的路径损耗补偿的比例,第二路损补偿因子的取值大于或等于0且小于或等于1。
示例性地,第二功率调整值可以包括第二信号的闭环功率修正值。
示例性地,可以采用TPC命令字段指示第二信号的闭环功率修正值。TPC命令字段到第二信号的闭环功率修正值的映射关系如表2所示,表2中包括累积计算型和绝对计算型情况下,TPC命令字段到第二信号的闭环功率修正值的映射关系。
如表2所示,第二信号的闭环功率修正值的步长大于或等于1dB。如上述S702中所述,第二信号的闭环功率修正值可以大于第一信号的闭环功率修正值。
表2
Figure PCTCN2022112322-appb-000006
考虑到感知场景下,目标检测概率从0到1的变化对应的经过雷达处理后的信噪比变化范围较小,即发射功率的调整与变化对感知目标的检测精度具有较大的影响。因此,第一信号的闭环功率修正值的步长与第二信号的闭环功率修正值的步长可以不同。
对于累积计算型和绝对计算型,确定当前传输机会下的第二信号的闭环功率修正值的具体实现方式可参照上述S702中第一信号的闭环功率修正值的实现方式,此处不再赘述。
在一些实施例中,第二功率调整值可以包括第二信号的与MCS相关的功率调整量。具体实现方式可参照上述S702中第一功率调整值对应的实现方式,此处不再赘述。
在一些实施例中,第二功率调整值可以包括第二信号的与占用的资源相关的功率调整量。
在一种可能的设计方式中,上述S802中的终端设备确定第二信号的发射功率,可以包括:终端设备可以根据第二期望发射功率、第二最大发射功率、第二功率调整值、和第二路径损耗,确定第二信号的发射功率。
例如,第二信号的发射功率=min{第二最大发射功率,第二期望发射功率+第二路径损耗×第二路损补偿因子+第二信号的与占用的资源相关的功率调整量+第二信号 的闭环功率修正值+第二信号的与MCS相关的功率调整量}。上述已记载第二功率调整值可以包括第二信号的闭环功率修正值、第二信号的与MCS相关的功率调整量、和第二信号的与占用的资源相关的功率调整量中的一项或多项,则上述公式中第二信号的与占用的资源相关的功率调整量可以为可选地,第二信号的闭环功率修正值可以为可选地,第二信号的与MCS相关的功率调整量可以为可选地,第二路损补偿因子可以为可选地。
可选地,网络设备确定的第二期望发射功率的数量可以为一个或多个、第二最大发射功率的数量可以为一个或多个。具体实现方式与第一期望发射功率、第一最大发射功率类似,此处不再赘述。
以第一信号承载在SRS上,第二信号承载在PUSCH上进行分层发送为例,若调度的PUSCH符号的上没有发送第一信号,即终端设备在此时仅发送第二信号,终端设备可采用下述PUSCH功控公式:
Figure PCTCN2022112322-appb-000007
Figure PCTCN2022112322-appb-000008
确定第二信号的发射功率。
P PUSCH,b,f,c(i,j,q d,l)表示终端设备在服务小区c、载波频率f、上行部分带宽b内,传输机会i下的发送功率,q d为参考信号(reference signal,RS)资源索引,l为高层配置的功率控制调整状态索引,高层配置的参数j可以取值为{0,1,…,J-1}。
P CMAX,f,c(i)表示终端设备的最大发射功率,也可以用第二最大发射功率替代。P O_PUSCH,b,f,c(j)为第二期望发射功率。
Figure PCTCN2022112322-appb-000009
表示第二信号的与占用的资源相关的功率调整量。
Figure PCTCN2022112322-appb-000010
表示终端设备在服务小区c、载波频率f、UL BWP b内,传输机会i下第二信号占用的RB的数量,μ为SCS相关因子。
α b,f,c(j)表示第二路损补偿因子,PL b,f,c(q d)表示第二路径损耗。Δ TF,b,f,c(i)表示第二信号的与MCS相关的功率调整量。f b,f,c(i,l)为第二信号的闭环功率修正值。
在一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第一频域资源配置信息。具体实现方式与上述S702中对应的实现方式相同,此处不再赘述。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:终端设备根据第一时域资源配置信息和第一频域资源配置信息确定第一信号的时频资源。具体实现方式与上述S702中对应的实现方式相同,此处不再赘述。
在一种可能的设计方式中,第一指示信息还可以包括第二时域资源配置信息和第二频域资源配置信息。
可选地,第二时域资源配置信息可用于指示第二信号的时域资源,第二频域资源配置信息可用于指示第二信号的频域资源。具体实现方式可分别参照上述S702中的第一时域资源配置信息和第一频域资源配置信息。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:终端设备根据第二时域资源配置信息和第二频域资源配置信息确定第二信号的时频资源。
如此,可以使终端设备在根据第一指示信息确定发送第一信号的占用的时频资源。
上述主要阐述了在不同的时域符号上发送感知信号与通信信号时的功率控制和资源配置方案,下面主要针对感知信号和通信信号的时域资源有重叠时的功率控制和资源配置方案进行阐述。
第一信号与第二信号的资源配置可以部分重叠或完全重叠。如图4中的(a)所示,第一信号与第二信号的资源配置可以部分重叠。如图4中的(b)所示,第一信号与第二信号的资源配置可以完全重叠。
对于图4中的(a),在非重叠的符号0至符号5、和符号9至符号12上发送第二信号的功率控制方案和资源配置方案,可参照S802中的上述第一信号与第二信号的资源复用方式为时分复用场景中第二信号的功率控制方案和资源配置方案。在非重叠的符号8上发送第一信号的功率控制方案和资源配置方案可参照上述S702,此处不再赘述。在重叠的符号6至符号7、和符号13上发送第一信号和第二信号的功率控制方案和资源配置方案可参照下述方案。
对于图4中的(b),在重叠的符号0至符号13上发送第一信号和第二信号的功率控制方案和资源配置方案可参照下述方案。
终端设备确定第一信号的发射功率与上述S702类似,终端设备可根据第一路径损耗,确定第一信号的发射功率。可选地,终端设备根据第一功控指示信息和第一路径损耗,确定第一信号的发射功率。具体实现方式可参照上述S702中对应的实现方式,此处不再赘述。
一些实施例中,本申请实施例提供的方法还可以包括:S802-1,网络设备确定第一指示信息。具体实现方式可参照上述S702-1,此处不再赘述。
一些实施例中,本申请实施例提供的方法还可以包括:S802-2,网络设备向终端设备发送第一指示信息。相应地,终端设备接收来自网络设备的第一指示信息。具体实现方式可参照上述S702-2,此处不再赘述。
关于第一功控指示信息、第一指示信息等的实现方式可参照上述S702。
在一种可能的设计方式中,第一信号的时域资源与第二信号的时域资源全部或部分重叠,在重叠的时域资源上,第一信号的发射功率与第二信号的发射功率之和小于或等于终端设备的最大发射功率。
可选地,在重叠的时域资源上,第一信号的发射功率与第二信号的发射功率之和小于或等于第一功率阈值,第一功率阈值小于或等于终端设备的最大发射功率。第一功率阈值可以是预定义的。
结合图4中的(a),在重叠的符号6至符号7、和符号13上发送第一信号的发射功率与发送第二信号的发射功率之和小于或等于终端设备的最大发射功率,从而可以保证终端设备的通信和感知性能。这与时分复用不同。对于时分复用,结合图4中的(a),在非重叠的符号1至符号5、和符号9至符号12上发送第二信号的发射功率小于或等于终端设备的最大发射功率,在非重叠的符号8上发送第一信号的发射功率小于或等于终端设备的最大发射功率。
一些实施例中,S802,终端设备确定第一信号的发射功率和第二信号的发射功 率,可以包括下述步骤一至步骤二。
步骤一,终端设备根据第一路径损耗,确定第一信号的发射功率。
关于步骤一的具体实现方式可参照上述S702,此处不再赘述。
步骤二,终端设备根据第一信号的发射功率和终端设备的最大发射功率,确定第二信号的发射功率。
例如,第二信号的发射功率=min{终端设备的最大发射功率-第一信号的发射功率,第二期望发射功率+第二路径损耗×第二路损补偿因子+第二信号的与占用的资源相关的功率调整量+第二信号的闭环功率修正值+第二信号的与MCS相关的功率调整量}。其中,第二信号的与占用的资源相关的功率调整量可以为可选地,第二信号的闭环功率修正值可以为可选地,第二信号的与MCS相关的功率调整量可以为可选地,第二路损补偿因子可以为可选地。
对于空分复用时第二信号占用的资源相关的功率调整量进行说明。
可选地,感知信号与通信信号分层传输时所占据的带宽可以不同,即感知信号与通信信号占用的RB数可以不同。空分复用时第二信号占用的资源相关的功率调整量与第一信号占用的资源相关的功率调整量可以不相同,以使终端设备在进行多层传输时调整每层的传输功率。
例如,考虑到通信与感知的需求不同,通信信号和感知信号的传输带宽可能不同。可全带宽或采用大带宽发送感知信号,以提高感知精度,通信信号可以仅在部分带宽上进行发送。
而一些实施例中,针对同一个终端设备的PUSCH传输多层时,为每层分配的RB数是相同的,每层的传输功率是相同的,无法调整通信信号和感知信号的发射功率。
如此,在重叠的时域资源上,使第一信号的发射功率与第二信号的发射功率之和小于或等于终端设备的最大发射功率,从而可以保证终端设备的通信和感知性能。
另一些实施例中,S802,终端设备确定第一信号的发射功率和第二信号的发射功率,可以包括下述步骤三至步骤四。
步骤三,终端设备确定第二信号的发射功率。
在一种可能的设计方式中,第一功控指示信息还可以用于指示第二信号的发射功率。
可选地,终端设备根据第一功控指示信息和第二路径损耗,确定第二信号的发射功率。
也就是说,可以采用相同的功率控制参数的值确定第一信号的发射功率和第二信号的发射功率。
可选地,网络设备可以向终端设备发送第二信号的功率控制参数与第一信号的功率控制参数相同的指示、或第一功控指示信息可用于指示第二信号的发射功率的指示。从而终端设备可以根据第一功控指示信息和第二路径损耗,确定第二信号的发射功率。
或者,关于步骤三的具体实现方式可参照S802中上述终端设备根据第二功控指示信息和第二路径损耗,确定第二信号的发射功率,此处不再赘述。
关于空分复用时第二信号占用的资源相关的功率调整量的实现方式可参照上述步骤二,此处不再赘述。
步骤四,终端设备根据第二信号的发射功率和终端设备的最大发射功率,确定第一信号的发射功率。
例如,第一信号的发射功率=min{终端设备的最大发射功率-第二信号的发射功率,第一期望发射功率+第一路径损耗×第一路损补偿因子+第一信号的与占用的资源相关的功率调整量+第一信号的闭环功率修正值+与MCS相关的功率调整量}。其中,第一信号的与占用的资源相关的功率调整量可以是可选地,第一信号的闭环功率修正值可以为可选地,与MCS相关的功率调整量可以为可选地,第一路损补偿因子可以是可选地。
上述两种方式分别采用了先确定第一信号的发射功率,然后再确定第二信号的发射功率,或者先确定第二信号的发射功率,然后再确定第一信号的发射功率的方式确定第一信号和第二信号的发射功率。
又一些实施例中,S802,终端设备确定第一信号的发射功率和第二信号的发射功率,可以包括下述步骤五至步骤六。
步骤五,终端设备确定第二信号的发射功率。
关于步骤五的具体实现方式可参照S802中上述终端设备根据第一功控指示信息和第二路径损耗,确定第二信号的发射功率,此处不再赘述。
或者,关于步骤五的具体实现方式可参照S802中上述终端设备根据第二功控指示信息和第二路径损耗,确定第二信号的发射功率,此处不再赘述。
关于空分复用时第二信号占用的资源相关的功率调整量的实现方式可参照上述步骤二,此处不再赘述。
步骤六,终端设备根据第一路径损耗,确定第一信号的发射功率。
关于步骤六的具体实现方式可参照上述S702,此处不再赘述。
本申请实施例不限定步骤五与步骤六的先后顺序。
若步骤五中确定的第二信号的发射功率与步骤六中确定的第一信号的发射功率之和小于或等于终端设备的最大发射功率(或第一功率阈值),则可执行下述S803。
若步骤五中确定的第二信号需求的发射功率与步骤六中确定的第一信号需求的发射功率之和大于终端设备的最大发射功率,可以对第一信号和第二信号的需求功率进行压缩(例如等比例压缩),分别获得与第一信号需求功率对应的第一信号需求压缩功率,和与第二信号需求功率对应的第二信号需求压缩功率。
其中,第一信号需求压缩功率和第二信号需求压缩功率的和小于或等于终端的最大发射功率。最终的第一信号的发射功率=第一信号需求压缩功率,最终的第二信号的发射功率=第二信号需求压缩功率。
如此,可以保证终端设备的通信和感知性能。
示例性地,若调度的PUSCH符号上存在第一信号和第二信号,终端设备采用上述步骤一至步骤二确定第一信号的发射功率和第二信号发射功率,可以表示为如下公式:
Figure PCTCN2022112322-appb-000011
Figure PCTCN2022112322-appb-000012
其中,P CMAX,f,c(i)表示终端设备的最大发射功率。其它释义可参照上述S702中或S802中对应的阐述。一种可能的设计方式中,第一指示信息还可以包括第一时域资源配置信息和第二指示信息。第一时域资源配置信息可以用于指示第一信号的时域资源,第二指示信息用于指示第二信号的时域资源配置信息与第一时域资源配置信息相同。
如此,对于第一信号的资源配置与第二信号的资源配置完全重叠的情况,可以不再单独向终端设备发送第二信号的资源配置信息,通过第二指示信息,例如使能标志(enableFlag),来指示是否需要再指示感知信号的时频资源配置信息,从而节省资源的开销。
或者,对于第一信号的资源配置与第二信号的资源配置完全重叠的情况,可以单独指示第二信号的资源配置信息和第一信号的资源配置信息,本申请对此不进行限定。
当功率控制装置500为终端设备时,功率控制装置500中的处理器501可用于确定第一信号的发射功率和第二信号的发射功率。可选地,处理器501还用于执行S802中终端设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S802中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为终端设备时,功率控制装置600中的处理模块602可用于确定第一信号的发射功率和第二信号的发射功率。可选地,处理模块602还可用于执行S802中终端设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S802中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置500为网络设备时,功率控制装置500中的处理器501可用于执行S802中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S802中网络设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为网络设备时,功率控制装置600中的处理模块602可用于执行S802中网络设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S802中网络设备所涉及的任一种或多种可能的收发功能。
S803,终端设备根据第一信号的发射功率发送第一信号,根据第二信号的发射功率发送第二信号。
如此,终端设备可基于上述S802中确定的发射功率发送第一信号和第二信号,可以确保终端设备的感知性能和通信性能。
可选地,上述S803,可以包括:终端设备以确定的发射功率在第一信号的时频资源上发送第一信号,以确定的发射功率在第二信号的时频资源上发送第二信号。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:S804,终端设备获取感知测量结果。具体实现方式可参照上述S704,此处不再赘述。
在一种可能的设计方式中,本申请实施例提供的方法还可以包括:S805,终端设备向网络设备发送感知测量结果。相应地,网络设备接收来自终端设备的感知测量结 果。具体实现方式可参照上述S705,此处不再赘述。
当功率控制装置500为终端设备时,功率控制装置500中的收发器503可用于根据第一信号的发射功率发送第一信号,根据第二信号的发射功率发送第二信号。可选地,处理器501用于执行S803-S805中终端设备所涉及的任一种或多种可能的处理功能,收发器503还可用于执行S803-S805中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为终端设备时,功率控制装置600中的收发器503可用于根据第一信号的发射功率发送第一信号,根据第二信号的发射功率发送第二信号。可选地,处理模块602可用于执行S803-S805中终端设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行S803-S805中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置500为网络设备时,功率控制装置500中的处理器501可用于执行S803中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行S803中网络设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为网络设备时,功率控制装置600中的处理模块602可用于执行S803中网络设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行S803中网络设备所涉及的任一种或多种可能的收发功能。
图8所示的方法,终端设备基于进行目标探测的路径的损耗确定第一信号的发射功率,可以提升终端设备目标检测的精度和终端设备通信感知一体化系统的性能。
需要说明的是,上述图7和图8所示的方法中以动态调整方式确定第一信号和/或第二信号的发射功率,下面对以半静态配置的方式确定第一信号和/或第二信号的发射功率进行阐述。
一些实施例中,本申请实施例提供的方法还可以包括:网络设备确定第一指示信息。
可选地,第一指示信息可以包括第一功控指示信息。
一些实施例中,本申请实施例提供的方法还可以包括:网络设备向终端设备发送第一指示信息。相应地,终端设备接收来自网络设备的第一指示信息。具体实现方式可参照上述S702-2。关于第一指示信息的具体实现方式可参照上述S702-2。
在一些实施例中,第一功控指示信息可以包括如下一项或多项:第一发射功率、和第一比例因子。
需要说明的是,第一功控指示信息还可以包括上述S702所述的信息,例如第一期望发射功率、和第一最大发射功率等。如此,终端设备接收第一功控指示信息后,在采用动态方式确定发射功率时使用上述S702所述的信息,在采用半静态配置方式确定发射功率时使用第一发射功率、或者第一比例因子。
为了便于描述,下述将上述S702所述的第一期望发射功率、第一最大发射功率、第一功率调整值、和第一路损补偿因子等统称为第一功率控制参数集合。可以理解为,第一功率控制参数集合可以包括第一期望发射功率、和第一最大发射功率,还可以包括第一功率调整值、和/或第一路损补偿因子。第一功控指示信息可以包括如下一项或多项:第一功率控制参数集合、第一发射功率、和第一比例因子。
在一些实施例中,第一工控指示信息可以是通过DCI、MAC信令、和RRC信令一个或多个传输的。
例如,网络设备通过RRC信令向终端设备发送第一功率控制参数集合、第一发射功率、和第一比例因子。终端设备接收后,确定采用第一功率控制参数集合、第一发射功率、和第一比例因子中的一个确定第一信号的发射功率。
又例如,网络设备通过DCI、MAC信令或RRC信令向终端设备发送第一功率控制参数集合、第一发射功率、和第一比例因子中的一个。终端设备接收后确定第一信号的发射功率。
又例如,网络设备通过RRC信令向终端设备发送第一功率控制参数集合、第一发射功率、和第一比例因子中的至少两项,并通过DCI向终端设备发送这两项中的一项。终端设备接收后确定第一信号的发射功率。本申请实施例不一一赘述。
可选地,网络设备可以确定一个或多个第一发射功率、和一个或多个第一比例因子。如此,当数量为多个时,可以根据不同的应用场景调整第一信号的发射功率的方式。
以多个第一发射功率为例。假设多个第一发射功率包括第一发射功率1和第一发射功率2,网络设备可以根据终端设备当前所处的应用场景,指示终端设备采用第一发射功率1确定第一信号的功率,可以进一步提高感知精度。例如,向终端设备发送的第一功控指示信息中包括第一发射功率1。
下面对第一发射功率、第一比例因子进行阐述。
示例性地,第一发射功率可以为第一信号的发射功率的取值。
例如,网络设备可以通过RRC信令或MAC信令为终端设备配置一个或多个发射功率。如,在RRC信令或MAC信令中,新增感知功率列表信息元素(SENSE-PowerList information element(IE))配置一个或多个第一发射功率。
一些实施例中,本申请实施例提供的方法还可以包括:终端设备可以根据第一发射功率确定第一信号的发射功率。
例如,网络设备通过RRC信令向终端设备发送一个或多个第一发射功率,第一发射功率的数量为多个,通DCI向终端设备指示当前传输机会下第一信号对应的第一发射功率的索引,终端设备将DCI指示的第一发射功率作为第一信号的发射功率。若第一发射功率的数量为一个,终端设备可直接将该第一发射功率作为第一信号的发射功率。
可选地,第一信号的发射功率=min{第一最大发射功率,第一发射功率}。
也就是说,将第一发射功率和第一最大发射功率中的最小值作为第一信号的发射功率。
关于第一最大发射功率的具体实现方式可参照上述S702,此处不再赘述。
可选地,第一比例因子可用于指示第一信号的发射功率占终端设备的最大发射功率的比例。
示例性地,终端设备的最大发射功率可以是根据终端设备的能力确定的。
又一些实施例中,本申请实施例提供的方法还可以包括:终端设备可以根据终端设备的最大发射功率和第一比例因子,确定第一信号的发射功率。
例如,终端设备的最大发射功率为P 1,第一比例因子β的取值大于或等于0且小于或等于1,即0≤β≤1,则第一信号的发射功率为P=β×P 1
例如,网络设备可以通过RRC信令、DCI或MAC信令指示第一比例因子的取值,指示方式可以包括比特状态方式和比特位图方式。
在比特状态方式中,比特状态与比例因子的映射关系可参见表3。表3中以比例因子占用3个比特位置、相邻比例因子之间的步长为0.2为例进行阐述。
表3
比特状态 000 001 010 011 100 101 110 111
比例因子 0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
示例性地,比例因子占用的比特数≥向上取整{log2(M)},其中,M为比例因子取值的数量。
需要说明的是,本申请实施例不限定比特状态方式中,比例因子占用的比特数、各个比特状态对应的比例因子的值、相邻比例因子之间的步长,表3仅为一个示例。
在比特状态方式中,比特状态与比例因子的映射关系可参见表4。表4中以比例因子占用5个比特位置、相邻比例因子之间的步长为0.2为例进行阐述。
表4
比特状态 000001 000010 000100 001000 010000 100000
比例因子 0 0.2 0.4 0.6 0.8 1.0
示例性地,比例因子占用的比特数大于或等于比例因子取值的数量。
需要说明的是,本申请实施例不限定比特状态方式中,比例因子占用的比特数、各个比特状态对应的比例因子的值、相邻比例因子之间的步长,表4仅为一个示例。
关于第一最大发射功率的具体实现方式可参照上述S702,此处不再赘述。
在半静态配置方式中,若第一信号的时域资源与第二信号的时域资源全部或部分重叠,在重叠的时域资源上,获得第二信号的发射功率的具体实现方式可与上述步骤二中确定第二信号的发射功率类似。区别为将第一信号的发射功率替换为采用半静态方式获得的第一信号的发射功率,为了便于描述,将采用半静态方式获得的第一信号的发射功率称为半静态第一信号发射功率。
示例性地,第二信号的发射功率=min{终端设备的最大发射功率-半静态第一信号发射功率,第二期望发射功率+第二路径损耗×第二路损补偿因子+第二信号的与占用的资源相关的功率调整量+第二信号的闭环功率修正值+第二信号的与MCS相关的功率调整量}。该公式以及公式中参数的具体实现方式可参照上述S802,此处不再赘述。
当功率控制装置500为终端设备时,功率控制装置500中的处理器501可用于执行半静态方式中终端设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行半静态方式中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为终端设备时,功率控制装置600中的处理模块602可用于执行半静态方式中终端设备所涉及的任一种或多种可能的处理功能,收发模块601可用于执行半静态方式中终端设备所涉及的任一种或多种可能的收发功能。
当功率控制装置500为网络设备时,功率控制装置500中的处理器501可用于执行半静态方式中网络设备所涉及的任一种或多种可能的处理功能,收发器503可用于执行半静态方式中网络设备所涉及的任一种或多种可能的收发功能。
当功率控制装置600为网络设备时,功率控制装置600中的处理模块602可用于执行半静态方式中网络设备所涉及的任一种或多种可能的处理功能,收发模块601还可用于执行半静态方式中网络设备所涉及的任一种或多种可能的收发功能。
本申请实施例提供一种通信系统。该通信系统包括:终端设备和网络设备。其中,终端设备用于执行上述方法实施例中终端设备的动作,具体执行方法和过程可参照上述方法实施例,此处不再赘述。
网络设备用于执行上述方法实施例中网络设备的动作,具体执行方法和过程可参照上述方法实施例,此处不再赘述。
本申请实施例提供一种芯片系统,该芯片系统包括逻辑电路和输入/输出端口。其中,逻辑电路可用于实现本申请实施例提供的功率控制方法所涉及的处理功能,输入/输出端口可用于本申请实施例提供的功率控制方法所涉及的收发功能。
示例性地,输入端口可用于实现本申请实施例提供的功率控制方法所涉及的接收功能,输出端口可用于实现本申请实施例提供的功率控制方法所涉及的发送功能。
示例性的,功率控制装置500中的处理器可用于进行,例如但不限于,基带相关处理,功率控制装置500中的收发器可用于进行,例如但不限于,射频收发。上述器件可以分别设置在彼此独立的芯片上,也可以至少部分的或者全部的设置在同一块芯片上。例如,处理器可以进一步划分为模拟基带处理器和数字基带处理器。其中,模拟基带处理器可以与收发器集成在同一块芯片上,数字基带处理器可以设置在独立的芯片上。随着集成电路技术的不断发展,可以在同一块芯片上集成的器件越来越多,例如,数字基带处理器可以与多种应用处理器(例如但不限于图形处理器,多媒体处理器等)集成在同一块芯片之上。这样的芯片可以称为系统芯片(system on chip)。将各个器件独立设置在不同的芯片上,还是整合设置在一个或者多个芯片上,往往取决于产品设计的具体需要。本申请实施例对上述器件的具体实现形式不做限定。
在一种可能的设计中,该芯片系统还包括存储器,该存储器用于存储实现本申请实施例提供的功率控制方法所涉及功能的程序指令和数据。
该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质包括计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的功率控制方法被执行。
本申请实施例提供一种计算机程序产品,该计算机程序产品包括:计算机程序或指令,当计算机程序或指令在计算机上运行时,使得本申请实施例提供的功率控制方法被执行。
应理解,在本申请实施例中的处理器可以是CPU,该处理器还可以是其他通用处理器、DSP、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、EEPROM或闪存。易失性存储器可以是随机存取存储器,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的随机存取存储器可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。
上述实施例,可以全部或部分地通过软件、硬件(如电路)、固件或其他任意组合来实现。当使用软件实现时,上述实施例可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令或计算机程序。在计算机上加载或执行所述计算机指令或计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以为通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集合的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质。半导体介质可以是固态硬盘。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况,其中A,B可以是单数或者复数。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系,但也可能表示的是一种“和/或”的关系,具体可参考前后文进行理解。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实 现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (20)

  1. 一种功率控制方法,其特征在于,包括:
    终端设备确定第一路径损耗;其中,所述第一路径损耗为探测链路的路径损耗,所述探测链路为所述终端设备与至少一个物体的往返链路;
    根据所述第一路径损耗,确定第一信号的发射功率;
    根据所述发射功率发送所述第一信号。
  2. 根据权利要求1所述的功率控制方法,其特征在于,所述第一路径损耗是所述终端设备根据第一信息、所述终端设备发送的信号、和/或除所述终端设备外的设备发送的信号确定的;其中,所述第一信息包括如下一项或多项:参考路损信息、第一路损修正值、或距离信息。
  3. 根据权利要求2所述的功率控制方法,其特征在于,所述第一路径损耗是所述终端设备使用所述终端设备发送的信号确定的,包括:
    所述第一信号是在传输机会T 0发送的,所述第一路径损耗是根据所述传输机会T 0之前的一次或多次传输机会获得的路径损耗确定的。
  4. 根据权利要求1-3中任一项所述的功率控制方法,其特征在于,所述根据所述第一路径损耗,确定所述第一信号的发射功率,包括:
    根据第一功控指示信息和所述第一路径损耗,确定所述第一信号的发射功率;其中,所述第一功控指示信息包括第一最大发射功率、和第一期望发射功率;所述第一最大发射功率用于指示发送所述第一信号的最大功率,所述第一最大发射功率小于或等于所述终端设备的最大发射功率,所述第一信号的发射功率小于或等于所述第一最大发射功率,所述第一期望发射功率用于指示满足所述终端设备的目标探测需求的期望发射功率。
  5. 根据权利要求4所述的功率控制方法,其特征在于,所述方法还包括:
    接收来自所述网络设备的第一指示信息;其中,所述第一指示信息包括所述第一功控指示信息。
  6. 根据权利要求5所述的功率控制方法,其特征在于,所述第一指示信息还包括第二功控指示信息,所述第二功控指示信息用于指示第二信号的发射功率。
  7. 根据权利要求4或5所述的功率控制方法,其特征在于,所述第一功控指示信息还用于指示第二信号的发射功率。
  8. 根据权利要求6或7所述的功率控制方法,其特征在于,所述第一信号的时域资源与所述第二信号的时域资源全部或部分重叠,在所述重叠的时域资源上,所述第一信号的发射功率与所述第二信号的发射功率之和小于或等于所述终端设备的最大发射功率。
  9. 根据权利要求5-8中任一项所述的功率控制方法,其特征在于,所述第一指示信息还包括第一时域资源配置信息和第二指示信息,所述第一时域资源配置信息用于指示所述第一信号的时域资源,所述第二指示信息用于指示第二信号的资源配置信息与所述第一时域资源配置信息相同。
  10. 一种功率控制方法,其特征在于,包括:
    网络设备确定第一指示信息;其中,所述第一指示信息包括第一功控指示信息, 所述第一功控指示信息用于终端设备根据所述第一功控指示信息和第一路径损耗确定第一信号的发射功率,所述第一路径损耗为探测链路的路径损耗,所述探测链路为所述终端设备与至少一个物体的往返链路;
    向所述终端设备发送所述第一指示信息。
  11. 根据权利要求10所述的功率控制方法,其特征在于,所述方法还包括:
    向所述终端设备发送第一信息;其中,所述第一信息包括如下一项或多项:参考路损信息、第一路损修正值、或距离信息;所述第一信息用于指示所述第一路径损耗。
  12. 根据权利要求10或11所述的功率控制方法,其特征在于,所述第一功控指示信息包括第一最大发射功率、和第一期望发射功率;所述第一最大发射功率用于指示发送所述第一信号的最大功率,所述第一最大发射功率小于或等于所述终端设备的最大发射功率,所述第一信号的发射功率小于或等于所述第一最大发射功率,所述第一期望发射功率用于指示满足所述终端设备的目标探测需求的期望发射功率。
  13. 根据权利要求10-12中任一项所述的功率控制方法,其特征在于,所述第一指示信息还包括第二功控指示信息,所述第二功控指示信息用于指示第二信号的发射功率。
  14. 根据权利要求10-12中任一项所述的功率控制方法,其特征在于,所述第一功控指示信息还用于指示所述第二信号的发射功率。
  15. 根据权利要求13或14所述的功率控制方法,其特征在于,所述第一指示信息还包括第一时域资源配置信息和第二指示信息,所述第一时域资源配置信息用于指示所述第一信号的时域资源,所述第二指示信息用于指示所述第二信号的资源配置信息与所述第一时域资源配置信息相同。
  16. 一种功率控制装置,其特征在于,所述功率控制装置包括用于执行如权利要求1至9中任一项所述方法的单元或模块。
  17. 一种功率控制装置,其特征在于,所述功率控制装置包括用于执行如权利要求10至15中任一项所述方法的单元或模块。
  18. 一种功率控制装置,其特征在于,所述功率控制装置包括:处理器;所述处理器,用于执行如权利要求1-15中任一项所述的功率控制方法。
  19. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质包括计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-15中任一项所述的功率控制方法被执行。
  20. 一种计算机程序产品,其特征在于,所述计算机程序产品包括:计算机程序或指令,当所述计算机程序或指令在计算机上运行时,使得如权利要求1-15中任一项所述的功率控制方法被执行。
PCT/CN2022/112322 2021-08-13 2022-08-12 功率控制方法及装置 WO2023016569A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22855549.6A EP4380249A1 (en) 2021-08-13 2022-08-12 Power control method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110932074.9A CN115707076A (zh) 2021-08-13 2021-08-13 功率控制方法及装置
CN202110932074.9 2021-08-13

Publications (1)

Publication Number Publication Date
WO2023016569A1 true WO2023016569A1 (zh) 2023-02-16

Family

ID=85180671

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/112322 WO2023016569A1 (zh) 2021-08-13 2022-08-12 功率控制方法及装置

Country Status (3)

Country Link
EP (1) EP4380249A1 (zh)
CN (1) CN115707076A (zh)
WO (1) WO2023016569A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349437A (zh) * 2013-08-09 2015-02-11 上海贝尔股份有限公司 用于抑制干扰的方法和用户设备
CN111867033A (zh) * 2019-04-28 2020-10-30 大唐移动通信设备有限公司 一种发射功率确定方法、装置及通信设备
CN112020131A (zh) * 2019-05-31 2020-12-01 大唐移动通信设备有限公司 一种发射功率确定方法、信息传输方法及通信设备
CN113156389A (zh) * 2021-03-05 2021-07-23 西安电子科技大学 自适应ofdm雷达通信一体化信号生成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104349437A (zh) * 2013-08-09 2015-02-11 上海贝尔股份有限公司 用于抑制干扰的方法和用户设备
CN111867033A (zh) * 2019-04-28 2020-10-30 大唐移动通信设备有限公司 一种发射功率确定方法、装置及通信设备
CN112020131A (zh) * 2019-05-31 2020-12-01 大唐移动通信设备有限公司 一种发射功率确定方法、信息传输方法及通信设备
CN113156389A (zh) * 2021-03-05 2021-07-23 西安电子科技大学 自适应ofdm雷达通信一体化信号生成方法

Also Published As

Publication number Publication date
CN115707076A (zh) 2023-02-17
EP4380249A1 (en) 2024-06-05

Similar Documents

Publication Publication Date Title
US20220225121A1 (en) Joint communication and sensing aided beam management for nr
US20220399917A1 (en) Apparatus and method for sidelink beam operation in wireless communication system
KR20220112704A (ko) 무선 통신 시스템에서의 감지
CN105577291B (zh) 一种用于无线通信系统中的空闲信道检测方法和系统
US11765663B2 (en) Method and device for controlling transmission power in wireless communication system
CN110291731A (zh) Its状态指示
Bel et al. An energy consumption model for IEEE 802.11 ah WLANs
US20230379739A1 (en) Method for transmitting and receiving channel state information and device for same in wireless communication system
CN117917159A (zh) 用于无线通信系统中的通信和感测的功率控制和波束管理
TW202239230A (zh) 通訊方法以及通訊裝置
US20180367266A1 (en) Methods used in serving radio node and control node, and associated devices
US20220030441A1 (en) Cooperative full-duplex techniques for sidelink communications
US20220365167A1 (en) Cooperative vehicular radar sensing
WO2021204113A1 (zh) 通信方法及装置
AU2020472170B2 (en) Method of fast beam refinement and tracking for high mobility wireless communication device
WO2022082706A1 (en) Design of sensing gap for wireless sensing
CN117499979A (zh) 一种相控阵天线的目标探测方法及装置
WO2023016569A1 (zh) 功率控制方法及装置
CN117220725A (zh) 一种多相控阵天线的探测误差修正方法及装置
WO2022001973A1 (en) Apparatus and method of wireless communication
WO2024040469A1 (en) Methods, system, and apparatus for collaborative sensing
WO2024140622A1 (zh) 通信方法及装置
US11815615B2 (en) Cooperative radar sensing in wireless communications
WO2024092729A1 (en) Beam measurement and report accuracy enhancement
US20230100617A1 (en) Joint communication-ranging channel estimation in sidelink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855549

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022855549

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022855549

Country of ref document: EP

Effective date: 20240226

NENP Non-entry into the national phase

Ref country code: DE