WO2023016520A1 - 协同脉冲发生电路、发生装置及其发生方法 - Google Patents

协同脉冲发生电路、发生装置及其发生方法 Download PDF

Info

Publication number
WO2023016520A1
WO2023016520A1 PCT/CN2022/111828 CN2022111828W WO2023016520A1 WO 2023016520 A1 WO2023016520 A1 WO 2023016520A1 CN 2022111828 W CN2022111828 W CN 2022111828W WO 2023016520 A1 WO2023016520 A1 WO 2023016520A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse
pulse generating
unit
control signal
cut
Prior art date
Application number
PCT/CN2022/111828
Other languages
English (en)
French (fr)
Inventor
衷兴华
汪龙
杨克
Original Assignee
杭州维纳安可医疗科技有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202110921262.1A external-priority patent/CN113616312A/zh
Priority claimed from CN202110921259.XA external-priority patent/CN113824431A/zh
Application filed by 杭州维纳安可医疗科技有限责任公司 filed Critical 杭州维纳安可医疗科技有限责任公司
Priority to KR1020247003923A priority Critical patent/KR20240029069A/ko
Priority to EP22855500.9A priority patent/EP4366166A1/en
Publication of WO2023016520A1 publication Critical patent/WO2023016520A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/02Generators characterised by the type of circuit or by the means used for producing pulses
    • H03K3/53Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback
    • H03K3/57Generators characterised by the type of circuit or by the means used for producing pulses by the use of an energy-accumulating element discharged through the load by a switching device controlled by an external signal and not incorporating positive feedback the switching device being a semiconductor device
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K3/00Circuits for generating electric pulses; Monostable, bistable or multistable circuits
    • H03K3/01Details
    • H03K3/017Adjustment of width or dutycycle of pulses

Definitions

  • the present application relates to pulse generation and medical device technology, in particular, the present application relates to a coordinated pulse generating circuit, a generating device and a generating method thereof.
  • Pulse power technology is an electrophysical technology that quickly compresses, converts, or directly releases energy with a relatively high density that is stored slowly to the load.
  • its main application fields are mainly in the military and national defense fields such as particle accelerators, electromagnetic pulse weapons, strong laser generators, and new weapon research, and it has promoted the rapid development of pulse power technology.
  • This application aims to solve at least one aspect of the above-mentioned technical problems to a certain extent, and proposes a cooperative pulse generating circuit, a generating device and a generating method for generating pulses with different width ranges and forming more pulse combinations.
  • the embodiment of the present application provides a coordinated pulse generating circuit
  • the coordinated pulse generating circuit includes a first power supply, a first pulse generating module electrically connected to the first power supply, a second power supply, and a circuit connected to the second power supply.
  • the first pulse generating module includes an n-level first pulse generating unit, the first pulse generating unit is configured to receive and store the electric energy provided by the first power supply at the first voltage, and to store the stored electric energy when receiving the first control signal release, so that x first pulse generating units receiving the first control signal are discharged to form the first pulse applied to the load, n is an integer greater than or equal to 1, and x is greater than or equal to 1 and less than or equal to n an integer of
  • the second pulse generation module includes an m-level second pulse generation unit, the second pulse generation unit is configured to receive and store the electric energy provided by the second power supply at the second voltage, and to store the stored electric energy when receiving the second control signal release, so that y second pulse generating units receiving the second control signal are discharged to form a second pulse applied to the load, m is an integer greater than or equal to 1, and y is greater than or equal to 1 and less than or equal to an integer of m;
  • the output ends of the first pulse generating module and the second pulse generating module are configured to be connected to the same load, the second voltage is greater than the first voltage, and the width of the second pulse is smaller than the width of the first pulse.
  • the embodiment of the present application provides a coordinated pulse generating device, and the coordinated pulse generating device includes:
  • the control module is electrically connected to the first pulse generating module and the second pulse generating module, and is configured to generate a first control signal and a second control signal according to input information, and transmit the first control signal to the first pulse generating module to transmit the second control signal to the second pulse generating module.
  • the embodiment of the present application provides a coordinated pulse generation method, which is used in the coordinated pulse generation circuit of the first aspect of the present application, and the method includes:
  • the n-level first pulse generating unit included in the first pulse generating module receives and stores the electric energy provided by the first power supply at the first voltage
  • the m-level second pulse generating unit included in the second pulse generating module receives the second power supply to The electric energy provided by the second voltage is stored
  • n is an integer greater than or equal to 1
  • m is an integer greater than or equal to 1
  • the second voltage is greater than the first voltage
  • x first pulse generating units receive the first control signal, and discharge under the control of the first control signal to form the first pulse, where x is an integer greater than or equal to 1 and less than or equal to n;
  • y second pulse generating units receive a second control signal, and discharge under the control of the second control signal to form a second pulse, y is an integer greater than or equal to 1 and less than or equal to m;
  • the width of the second pulse is smaller than the width of the first pulse.
  • the time when the second pulse generating unit receives the second control signal is different from the time when the first pulse generating unit receives the first control signal.
  • the coordinated pulse generating circuit, generating device and generating method provided by the embodiment of the present application can selectively form the first pulse and/or the second pulse with different widths. pulse, and the voltage of the first pulse and the second pulse can be selected, so as to achieve the purpose of applying the composite pulse to the load.
  • the synergistic pulse generating circuit, generating device and generating method of the present application are used in electroablation equipment for tumor treatment, taking tumor cells as the load as an example, the function of the composite pulse is beneficial to improve the ablation effect on tumor cells.
  • FIG. 1 is a schematic structural diagram of a cooperative pulse generating circuit provided in an embodiment of the present application
  • FIG. 2 is a schematic structural diagram of another cooperative pulse generating circuit provided in the embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another cooperative pulse generating circuit provided in the embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a cooperative pulse generating device provided in an embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a method for generating a coordinated pulse provided in an embodiment of the present application.
  • the first pulse generating module 11-the first pulse generating unit; 111-the first storage unit; 112-the first switch unit; 113-the first cut-off unit;
  • 2-the second pulse generating module 21-the second pulse generating unit; 211-the second storage unit; 212-the second switch unit; 213-the second cut-off unit;
  • U1-first power supply U2-second power supply.
  • the inventors of the present application found that when electroablation technology is used to ablate tumor cells, multiple pulses with different pulse widths are used in combination, and in some cases better ablation effects can be achieved than a single pulse.
  • microsecond pulses act on tumor cells, although they have a larger ablation area, the ablation rate for tumor cells, especially malignant tumor cells with high distortion is low; when nanosecond pulses act on tumor cells, although there is Higher ablation rate, but smaller ablation area.
  • the combined use of microsecond pulses or millisecond pulses and nanosecond pulses can significantly improve the ablation effect of tumor cells.
  • microsecond or millisecond pulses during the duration of nanosecond pulse-induced irreversible electroporation to utilize cell membrane perforation.
  • the electric field of microsecond or millisecond pulses penetrates into the cell interior and further induces apoptosis. Achieve better ablation than nanosecond, microsecond or millisecond pulses alone.
  • corresponding pulse generating means are required.
  • traditional pulse generators can only generate pulse signals of a specific width, which cannot meet the complex application requirements of pulse technology.
  • the coordinated pulse generating circuit, generating device and generating method provided by the present application aim to solve at least one aspect of the above technical problems to a certain extent.
  • the technical solution of the present application and how the technical solution of the present application solves the above technical problems will be described in detail below with specific embodiments.
  • the coordinated pulse generating circuit includes a first power supply U1, a first pulse generating module 1 electrically connected to the first power supply U1, a second power supply U2 and A second pulse generating module 2 electrically connected to the second power supply U2;
  • the first pulse generating module 1 includes an n-level first pulse generating unit 11, the first pulse generating unit 11 is configured to receive and store the electric energy provided by the first power supply U1 at the first voltage, and when receiving the first control signal The stored electric energy is released, and x first pulse generating units 11 receiving the first control signal are discharged to form the first pulse applied to the load 3, n is an integer greater than or equal to 1, x is greater than or equal to 1 and An integer less than or equal to n.
  • the second pulse generating module 2 includes an m-level second pulse generating unit 21, the second pulse generating unit 21 is configured to receive and store the electric energy provided by the second power supply U2 at the second voltage, and when receiving the second control signal The stored electric energy is released, and y second pulse generating units 21 receiving the second control signal are discharged to form a second pulse applied to the load 3, m is an integer greater than or equal to 1, and y is greater than or equal to 1 and an integer less than or equal to m;
  • the second voltage is greater than the first voltage, and the width of the second pulse is smaller than the width of the first pulse.
  • the time when the second pulse generating unit 21 receives the second control signal is different from the time when the first pulse generating unit 11 receives the first control signal.
  • the x first pulse generating units 11 that receive the first control signal are all discharged at the first voltage, but in practice, due to factors such as the equivalent impedance of each device in the pulse generating circuit
  • the discharge voltage of the first pulse generating unit 11 is slightly lower than the first voltage, but the difference from the first voltage is very small. Therefore, the voltage of the first pulse applied to the load 3 can be approximately x times the first voltage.
  • the voltage of the second pulse applied to the load 3 may be approximately y times the second voltage.
  • the actual voltage values when the first pulse generating unit 11 and the second pulse unit 21 are discharged will not be explained and illustrated, but the first voltage and the second voltage will be used for description. Based on the above description, the voltage of the first pulse and the voltage of the second pulse can be adjusted by setting the numbers of the first pulse generating units 11 and the second pulse generating units 21 that are simultaneously discharged.
  • the time when the second pulse generating unit 21 receives the second control signal is different from the time when the first pulse generating unit 11 receives the first control signal, which means that when the second pulse generating unit 21 receives the second control signal, The first pulse generating unit 11 will not receive the first control signal, and when the first pulse generating unit 11 receives the first control signal, the second pulse generating unit 21 will not receive the second control signal, that is, the first pulse and The second pulse is not formed at the same time to avoid mutual interference between the first pulse and the second pulse.
  • the pulse combination includes a plurality of first pulse groups, and there is an interval time t1 between two adjacent first pulse groups, each first pulse group includes a first pulses, and two adjacent first pulse groups Time t2 between the first pulses.
  • the pulse combination includes a plurality of second pulse groups, and there is an interval time t3 between two adjacent second pulse groups, each second pulse group includes b second pulses, and two adjacent second pulse groups The time interval between two pulses is t4.
  • the combination of pulses includes multiple first pulses and multiple second pulses, and the first pulses and the second pulses may be applied to the load 3 alternately, or after all the first pulses are applied to the load 3
  • the second pulse is applied to the load 3 again, or the second pulse is applied to the load 3 after all the second pulses are applied to the load 3.
  • these first pulses form a plurality of first pulse groups
  • these second pulses form a plurality of The second pulse group, the first pulse group and the second pulse group are alternately applied to the load 3 .
  • the coordinated pulse generating circuit in this embodiment can selectively form the first pulse and/or the second pulse with different widths, and can select the voltage of the first pulse and the second pulse, so as to realize the application of the composite pulse to the load 3 purposes.
  • the width of the first pulse and the second pulse can be controlled by setting the control signal. According to different pulse voltage requirements, those skilled in the art can configure the voltages of the first power supply and the second power supply and the number of stages of the pulse generating unit accordingly, so that the output pulse voltage meets the required voltage range.
  • the signal output by the coordinated pulse generating circuit in this application is also referred to as a coordinated pulse or a composite pulse.
  • the effect of the compound pulse is beneficial to improve the ablation effect on tumor cells.
  • the first pulse may be a millisecond pulse or a microsecond pulse;
  • the second pulse may be a nanosecond pulse.
  • the voltage of the first pulse can be set to the order of several thousand volts, while the voltage of the nanosecond pulse can be set to the order of tens of kilovolts. For example, if the voltage of the nanosecond pulse is 15KV, and the second voltage source is 750V, the output of 15KV can be realized through 20-stage pulse generating units.
  • the optional frame of the coordinated pulse generating circuit has been described.
  • the connection relationship of the pulse generating units 11, the structure of the second pulse generating units 21 of each level in the second pulse generating module 2, and the connection relationship of the second pulse generating units 21 of each level will be described in detail.
  • the first pulse generating unit 11 in the coordinated pulse generating circuit includes a first storage unit 111, a first switching unit 112, and a first cut-off unit 113
  • the second pulse generating The unit 21 includes a second storage unit 211 , a second switch unit 212 and a second cut-off unit 213 .
  • the first switch unit 112 is configured to be turned on under the control of the first control signal, so that each first storage unit 111 at the same level as the first switch unit 112 that receives the first control signal performs connected in series and discharged to form the first pulse.
  • the first cut-off unit 113 is configured to only allow current to flow from the first power supply U1 to the first pulse generating unit 11, or to flow from the first pulse generating unit 11 of the current stage to the first pulse generating unit 11 of the next stage. .
  • the first storage unit 111 in the generating unit 11 is connected in series and discharges.
  • the first storage unit 111 is equivalent to a power supply during the discharge process, and these power supplies connected in series are discharged at the first voltage at the same time. If there are x first storage units 111 in the n-level first storage units 111 that are connected in series and discharged, then The voltage of the formed first pulse is x times the first voltage.
  • the second switch unit 212 is configured to be turned on under the control of the second control signal, so that the second storage units 211 of the same level in the second switch unit 212 that receive the second control signal perform connected in series and discharge to form a second pulse;
  • the second cut-off unit 213 is configured to only allow current to flow from the second power supply U2 to the second pulse generating unit 21, or to flow from the second pulse generating unit 21 of the current stage to the second pulse generating unit 21 of the next stage. Pulse generating unit 21.
  • the second storage unit 211 in the generating unit 21 is connected in series and discharges.
  • the second storage unit 211 is equivalent to a power supply during the discharge process. These series-connected power supplies discharge at the second voltage at the same time. If the m-level second storage unit 211 If y second storage cells 211 are connected in series and discharged, the voltage of the formed second pulse is y times the second voltage.
  • the first switch unit 112 is also configured to be turned off when receiving the third control signal, so that the first storage units 111 of each level are connected in parallel to the first power supply U1 and receive power provided by the first power supply U1. and store the electric energy;
  • the second switch unit 212 is also configured to be disconnected when receiving the fourth control signal, so that the second storage units 211 of each level are connected in parallel to the second power supply U2 and receive the electric energy provided by the second power supply U2 and store it.
  • the first storage units 111 of each level are connected in parallel and the electric energy provided by the first power supply U1 is The first voltage is stored, and similarly, the second storage units 211 of each level are also connected in parallel, and the electric energy provided by the first power supply U1 is stored at the first voltage.
  • the first cut-off unit 113 includes a first cut-off device and a second cut-off device.
  • the first cut-off device of the first level is electrically connected to the first end of the first power supply U1 and the first end of the first storage unit 111 of the first level respectively, and the first cut-off device of the i-th level is respectively connected to the first storage unit of the i-1th level.
  • the first end of the unit 111, the first end of the first storage unit 111 of the i-th level, and the first cut-off device of the i-1th level are electrically connected, and the second cut-off devices of each level are respectively connected to the second cut-off device of the first storage unit 111 of the current level.
  • Terminal, the second terminal of the first switch of the current stage and the second cut-off device of the next stage are electrically connected, and i is an integer greater than or equal to 2.
  • the second cut-off unit 213 includes a third cut-off device and a fourth cut-off device.
  • the third cut-off device of the first level is electrically connected to the first end of the second power supply U2 and the first end of the second storage unit 211 of the first level respectively, and the third cut-off device of the jth level is respectively connected to the second end of the j-1th level.
  • the first terminal of the storage unit 211, the first terminal of the second storage unit 211 of the jth level, and the third cut-off device of the j-1th level are electrically connected, and the fourth cut-off devices of each level are respectively connected to the first end of the second storage unit 211 of the current level.
  • the two terminals are electrically connected to the second terminal of the second switch of the current stage and the fourth cut-off device of the next stage, and j is an integer greater than or equal to 2.
  • the two ends of the first storage units 111 of each level are electrically connected to the two ends of the first power supply U1 respectively, and the control terminals of the first switch units 112 of each level are configured to receive the first control signal,
  • the first end and the second end of the first switch unit 112 of each level are respectively electrically connected to the first end of the first storage unit 111 of the current level and the second end of the first storage unit 111 of the next level;
  • the two ends of 211 are respectively electrically connected to the two ends of the second power supply U2, the control ends of the second switch units 212 of each level are configured to receive the second control signal, and the first ends and second ends of the second switches of each level are respectively connected to The first end of the second storage unit 211 of the current level is electrically connected to the second end of the second storage unit 211 of the next level.
  • the first storage unit 111 includes a first capacitor
  • the second storage unit 211 includes a second capacitor
  • the first switching unit 212 includes a first solid-state switching device
  • the second switching unit 212 includes a second solid-state switching device
  • the first cut-off device includes a first diode
  • the second cut-off device includes a second diode
  • the third cut-off device includes a third diode
  • the fourth cut-off device includes a fourth diode. That is, a capacitor is used as a storage unit, a solid-state switching device is used as a switching unit, and a diode is used as a cut-off device.
  • the solid-state switching device can be implemented based on a metal oxide semiconductor field effect transistor (MOSFET), an insulated gate bipolar transistor (IGBT) or a transistor.
  • MOSFET metal oxide semiconductor field effect transistor
  • IGBT insulated gate bipolar transistor
  • the first pulse generating module 1 includes 4-stage first pulse generating units 11, and the second pulse generating module 2 includes 3-stage second pulse generating units 21, that is, n is equal to 4 , m is equal to 3. It should be noted that this is only an illustration, and is not intended to limit the number of stages of the first pulse generating unit 11 in the first pulse generating module 1 and the number of stages of the second pulse generating unit 21 in the second pulse generating module 2 .
  • the first switching unit 112 from the first stage to the fourth stage that is, the first solid-state switching devices from the first stage to the fourth stage are respectively a solid-state switching device S 1-1 , a solid-state switching device S 1-2 , The solid-state switching device S 1-3 and the solid-state switching device S 1-4 ; the first switch storage of the first stage to the fourth stage are respectively capacitor C 1-1 , capacitor C 1-2 , capacitor C 1-3 and capacitor C 1 -4 ; the first cut-off devices from the first level to the fourth level are diode D 1-1 , diode D 1-2 , diode D 1-3 and diode D 1-4 respectively; the second cut-off devices from the first level to the fourth level The devices are respectively diode D 2-1 , diode D 2-2 , diode D 2-3 and diode D 2-4 .
  • the second switching unit 212 from the first stage to the fourth stage that is, the second transistors from the first stage to the fourth stage are respectively solid-state switching device S 2-1 , solid-state switching device S 2-2 , solid-state switching device S 2-2 , The solid-state switching device S 2-3 and the solid-state switching device S 2-4 ;
  • the second storage units 211 of the first to fourth stages are capacitor C 2-1 , capacitor C 2-2 , capacitor C 2-3 and capacitor C 2-4 ;
  • the third cut-off devices from the first to fourth stages are diode D 3-1 , diode D 3-2 , diode D 3-3 and diode D 3-4 ;
  • the fourth from first to fourth stages The cut-off devices are diode D 4-1 , diode D 4-2 and diode D 4-3 respectively.
  • the first power supply U1 charges the first storage unit 111, that is, the capacitor C 1-1 , capacitor C 1-2 , capacitor C 1-3 and capacitor C 1-4 , the current flows through the second cut-off device, that is, the diode D 2-1 , the diode D 2-2 , the diode D 2-3 and the diode D 2-4 .
  • the second power supply U2 charges the second storage unit 211, that is, the capacitor C 2-1 , capacitor C 2-2 , and capacitor C 2-3
  • the current flows through the fourth cut-off device, that is, the diode D 4-1 and the diode D 4-2 .
  • Diode D 4-3 Diode D 4-3 .
  • the first pulse generating module 1 and the second pulse generating module 2 in the coordinated pulse generating circuit provided by this embodiment can not only realize the generation of composite pulses, but also reduce the wiring space, that is, a circuit board with a smaller area can be used as the circuit board of this embodiment. in the carrier of the synergistic pulse generation circuit.
  • both the first power supply U1 and the second power supply U2 are constant voltage power supplies, when the solid-state switching device S 1-1 , the solid-state switching device S 1-2 , the solid-state switching device S 1-3 and the solid-state switching device S
  • the solid-state switching device S 1-1 , the solid-state switching device S 1-2 , the solid-state switching device S 1-3 and the solid-state switching device S 1-4 are all in the off state, and the diode D 1-1 , diode D 1-2 , diode D 1-3 and diode D 1-4 , diode D 2-1 , diode D 2-2 and diode D 2-3 have unidirectional conduction function, so that capacitor C 1- 1.
  • Capacitor C 1-2 , capacitor C 1-3 and capacitor C 1-4 are connected in parallel and are all electrically connected to the first terminal and the second terminal of the first power supply U1, that is, they are all connected to the positive pole and the second terminal of the first power supply U1. Negative electrical connection. When the charging is completed, the potential differences between the two terminals of the capacitor C 1-1 , the capacitor C 1-2 and the capacitor C 1-3 are all the first voltage.
  • the capacitor C 2-1 , the capacitor C 2-2 , and the capacitor C 2 - 3 are connected in parallel and both are electrically connected to the first terminal and the second terminal of the second power supply U2 , that is, both are electrically connected to the positive pole and the negative pole of the second power supply U2 .
  • the potential differences between the two ends of the capacitor C 2-1 , the capacitor C 2-2 and the capacitor C 2-3 are all the second voltage.
  • the solid-state switching device S 2-1 , the solid-state switching device S 2-2 and the solid-state switching device S 2-3 all receive the second control signal
  • the solid-state switching device S 2-1 , the solid-state switching device S 2- 2 and the solid-state switching device S 2-3 are in the conduction state
  • the capacitor C 2-1 , the capacitor C 2-2 and the capacitor C 2-3 are connected in series
  • the capacitor C 2-1 , the capacitor C 2-2 and the capacitor C 2-3 discharges at the same time, and the discharge voltages are all the second voltage, so the voltage of the formed second pulse is three times the second voltage.
  • the first cut-off devices from the second to the nth stages all include a first diode
  • the second cut-off devices at each level include a second diode tube, the reverse breakdown voltage of the first diode and the reverse breakdown voltage of the second diode are both greater than the first voltage
  • the second to mth third cut-off devices all include a third diode
  • the fourth cut-off devices at all levels include a fourth diode, the reverse breakdown voltage of the third diode and the reverse breakdown voltage of the fourth diode are both greater than the second voltage
  • the first pole first The cut-off device includes s first diodes, s times of the reverse breakdown voltage of the first diode is greater than (n-1) times of the first voltage
  • the first third cut-off device includes t third two In the pole tube, s times of the reverse breakdown voltage of the third diode is greater than (m-1) times of the second voltage, s is an integer greater than or equal to 1,
  • the first pulse generating module 1 includes 4 stages of first pulse generating units 11
  • the second pulse generating module 2 includes 3 stages of second pulse generating units 21 . If the parameters of all the diodes used as cut-off devices are the same, since the first voltage is lower than the second voltage, in order to ensure that each diode can normally play a one-way cut-off function, the second voltage should be used as the basis for selection, for example, if the first If the second voltage is 1000V, the reverse breakdown voltage of each diode should be greater than 1000V.
  • the reverse breakdown voltage of each diode is 1100V.
  • the voltage at one end of the capacitor C 1-1 connected to the anode of the first power supply U1 is 800V. At this time, the voltage difference between the two ends of the diode D 1-1 is 800V, and only one diode D 1-1 is required.
  • the capacitor C 1- 1 The voltage at the end connected to the anode of the first power supply U1 is 2000V. At this time, the voltage difference between the two ends of the diode D 1-1 is 1500V, so two diodes D 1-1 should be provided.
  • the reverse breakdown voltage of each diode is 1100V. -3 are both in the conduction state, then the voltage at one end of the capacitor C 2-1 connected to the anode of the second power supply U2 is 3000V, at this time, the voltage difference between the two ends of the diode D 3-1 is 2000V, and two diodes need to be provided D 3-1 .
  • the pulse generating circuit of the embodiment of the present application may further include a first leakage module 4 and a second leakage module 5 .
  • the first leakage module 4 is electrically connected to the first pulse generation module and the ground respectively, and is configured to connect the first pulse generation module to the ground under the control of the first leakage signal so as to connect the first pulse generation module to the ground. Discharge the remaining power.
  • the second leakage module 5 is electrically connected to the second pulse generation module and the ground respectively, and is configured to connect the second pulse generation module to the ground under the control of the second leakage signal so as to connect the second pulse generation module to the ground. Discharge the remaining power.
  • the pulse generating circuit may further include a trigger unit 61 and at least a pair of electrodes 62 electrically connected to the trigger unit 61, the trigger unit 61 is electrically connected to the first pulse generating module and the second pulse generating module, and the electrodes 62 For contact with load 3.
  • the trigger unit 61 is configured to be turned on to transmit the first pulse signal and/or the second pulse signal to the electrode 62 when triggered by a trigger instruction.
  • the pulse generation circuit further includes an associated switch 63 associated with the trigger unit 61 .
  • the associated switch 63 may be a foot switch.
  • the pulse generating circuit also includes a multiplexing unit 64, which can convert one signal into multiple signals, thereby matching multiple pairs of electrodes, and each pair of electrodes 62 needs Two identical signals.
  • the pulse generation circuit further includes a monitoring module, configured to monitor the output voltage of the first pulse signal and/or the second pulse signal and/or monitor the output voltage of the first pulse signal and/or the second pulse signal The output current is monitored.
  • the monitoring module may include a resistor 7 and a first monitoring unit 81 and a second monitoring unit 82 .
  • the resistor 7 is electrically connected to the first pulse generating module, the second pulse generating module and the ground respectively, and the first pulse signal and/or the second pulse signal are applied to the resistor 7 .
  • the first monitoring unit 81 is configured to monitor the current of the first pulse signal and/or the second pulse signal; the second monitoring unit 82 is configured to apply the first pulse signal and/or the second pulse signal to the resistance 7 voltage is monitored.
  • only one of the monitoring units may be used to monitor one of the output voltage or current of the coordinated pulse signal.
  • only the first monitoring unit 81 is used, and at this time the first monitoring unit 81 can be configured as a voltage sensor or a current sensor.
  • the first monitoring unit 81 includes a first Pearson coil
  • the second monitoring unit 82 includes a second Pearson coil
  • the first Pearson coil is configured to sense the current of the first pulse signal and/or the second pulse signal
  • the second monitoring unit 82 includes a second Pearson coil.
  • the two Pearson coils are configured to sense the voltage applied to the resistor 7 by the first pulse signal and/or the second pulse signal, so as to realize the monitoring and output current of the voltage output by the first pulse signal and/or the second pulse signal monitoring.
  • the first pulse signal and the second pulse signal with certain parameters are formed, and the above-mentioned two Pearson coils can sense the corresponding current and voltage, when the induction results of the above-mentioned two Pearson coils meet
  • the parameters of the first pulse signal and the second pulse signal are determined, it is determined that the cooperative pulse generating circuit at this time is in a normal working state, and once the induction results of the above two Pearson coils deviate from the parameters of the first pulse signal and the second pulse signal , it is determined that the cooperative pulse generator is in an abnormal working state, so that the operator can find out the fault in time and take corresponding measures.
  • the coordinated pulse generating circuit in this embodiment when the coordinated pulse generating circuit in this embodiment is applied to the medical field, that is, when applied to pulse therapy equipment, it can be judged in time whether the output first pulse and/or the second pulse are normal according to the monitoring results provided by the monitoring module, Therefore, it is ensured that the output on the load 3 is coordinated with the set output parameters.
  • the embodiment of the present application also provides a coordinated pulse generating device, as shown in Figure 4, the coordinated pulse generating device includes the coordinated pulse generating circuit and the control module in the above embodiment, and the control module is connected with the first The pulse generating module 1 and the second pulse generating module 2 are electrically connected, and are configured to generate a first control signal and a second control signal according to input information, and transmit the first control signal to the first pulse generating module 1, and transmit the second The control signal is transmitted to the second pulse generating module 2 .
  • the coordinated pulse generating device provided in this embodiment includes the beneficial effects of the coordinated pulse generating circuit in the above embodiments, which will not be repeated here.
  • the coordinated pulse generating device in this embodiment can be used in electroablation equipment, which can provide coordinated output of microsecond pulses and nanosecond pulses, and can also be called micro-nanoblade equipment.
  • the first pulse is a microsecond pulse
  • the second pulse is a nanosecond pulse.
  • the combination of nanosecond pulses and microsecond pulses can be generated by using the micro-nanoknife system. By applying the combination of nanosecond pulses and microsecond pulses to tumor tissue, the ablation effect of tumor tissue can be effectively improved.
  • the embodiment of the present application also provides a coordinated pulse generation method, as shown in Figure 5, the coordinated pulse generation method includes:
  • the n-stage first pulse generating unit 11 included in the first pulse generating module 1 receives and stores the electric energy provided by the first power supply U1 at the first voltage
  • the m-stage second pulse generating unit included in the second pulse generating module 2 generates
  • the unit 21 receives and stores electric energy provided by the second power supply U2 at a second voltage, the second voltage is greater than the first voltage
  • n is an integer greater than or equal to 1
  • m is an integer greater than or equal to 1.
  • the charging process of the first pulse generating module 1 and the charging process of the second pulse generating module 2 can be carried out simultaneously, or only the first pulse generating module 1 or the second pulse generating module 2 can be charged, or The charging process of the first pulse generating module 1 and the charging process of the second pulse generating module 2 are not carried out simultaneously.
  • the n-stage first pulse generating units 11 included in the first pulse generating module 1 receive and store the electric energy provided by the first power supply U1 at the first voltage, including: each first switch unit 112 receives the third control signal is turned off at times, so that the first storage units 111 of each level are connected in parallel to the first power supply U1 to receive and store the electric energy provided by the first power supply U1.
  • the charging process of the first pulse generating module 1 is as follows: when the solid-state switching device S 1-1 , the solid-state switching device S 1-2 , the solid-state switching device S 1-3 and When the solid-state switching device S 1-4 receives the third control signal, the solid-state switching device S 1-1 , the solid-state switching device S 1-2 , the solid-state switching device S 1-3 and the solid-state switching device S 1-4 are all off state, diode D 1-1 , diode D 1-2 , diode D 1-3 and diode D 1-4 , diode D 2-1 , diode D 2-2 , diode D 2-3 and diode D 2-4 have The one-way conduction function makes the capacitor C 1-1 , capacitor C 1-2 , capacitor C 1-3 and capacitor C 1-4 in a parallel relationship and are all electrically connected to the first end and the second end of the first power supply U1, That is, both are electrically connected to the positive
  • the m-stage second pulse generating unit 21 included in the second pulse generating module 2 receives and stores the electric energy provided by the second power supply U2 at the second voltage, including: each second switch unit 212 receives the fourth control signal is turned off, so that the second storage units 211 of each level are connected in parallel to the second power supply U2 to receive and store the electric energy provided by the second power supply U2.
  • the solid-state switching device S 2-1 , the solid-state switching device S 2-2 and the solid-state switching device S 2-3 receive
  • the solid-state switching device S 2-1 , the solid-state switching device S 2-2 and the solid-state switching device S 2-3 are all in the off state
  • the diode D 3-1 , the diode D 3-2 , and the diode D 3 -3 , the diode D 3-4 , the diode D 4-1 , the diode D 4-2 and the diode D 4-3 have a one-way conduction function, so that the capacitor C 2-1 , the capacitor C 2-2 and the capacitor C 2-3 They are connected in parallel and both are electrically connected to the first terminal and the second terminal of the second power supply U2, that is, both are electrically connected to the positive pole and the negative pole of the second power supply U2.
  • both the first control signal and the second control signal are high level, while the third control signal and the fourth control signal are both low level, that is, as long as the first pulse generating module 1 does not receive
  • the first power supply U1 is in the state of charging the first capacitors of each level or maintaining the voltage difference between the two ends of the first capacitors of each level at the first voltage.
  • the second power supply U2 is in the state of charging the second capacitors of each level or maintaining the voltage difference between the two ends of the second capacitors of each level as the second voltage .
  • x first pulse generating units 11 receive the first control signal, and discharge under the control of the first control signal to form the first pulse applied to the load 3, x is an integer greater than or equal to 1 and less than or equal to n .
  • the first pulse generating unit 11 includes a first storage unit 111, a first switch unit 112, and a first cut-off unit 113.
  • the first cut-off unit 113 only allows current to flow from the first power supply U1 to the first The pulse generating unit 11, or the first pulse generating unit 11 of the current stage flows to the first pulse generating unit 11 of the next stage.
  • step S2 includes: x first switch units 112 receive the first control signal and are turned on under the control of the first control signal, so that x The first memory cells 111 are connected in series and discharged to form the first pulse.
  • the first cut-off unit 113 includes a first cut-off device and a second cut-off device.
  • the first storage unit 111 includes a first capacitor
  • the first switch unit 112 includes a first solid-state switching device
  • the first cut-off device includes a first diode
  • the second cut-off device includes a second diode.
  • the first pulse generating module 1 includes four stages of first pulse generating units 11 , that is, n is equal to four.
  • the first switching unit 112 from the first stage to the fourth stage that is, the first solid-state switching devices from the first stage to the fourth stage are respectively a solid-state switching device S 1-1 , a solid-state switching device S 1-2 , The solid-state switching device S 1-3 and the solid-state switching device S 1-4 ;
  • the first switch storage from the first level to the fourth level that is, the first capacitors from the first level to the fourth level are capacitor C 1-1 and capacitor C 1 -2 , Capacitor C 1-3 and Capacitor C 1-4 ;
  • the first cut-off devices from the first stage to the fourth stage that is, the first diodes from the first stage to the fourth stage are diode D 1-1 and diode D 1-2 , diodes D 1-3 and diodes D 1-4 ;
  • second cut-off devices from the first to fourth stages, and the second diodes from the first to fourth stages are diodes D 2-1 and diodes D 2-2 , diode D 2-3 and di
  • y second pulse generating units 21 receive the second control signal, and discharge under the control of the second control signal to form the second pulse applied to the load 3, y is greater than or equal to 1 and less than or equal to m integer, the width of the second pulse is smaller than the width of the first pulse, and the time when the second pulse generating unit 21 receives the second control signal is different from the time when the first pulse generating unit 11 receives the first control signal.
  • the second pulse generating unit 21 includes a second storage unit 211, a second switch unit 212, and a second cut-off unit 213.
  • the second cut-off unit 213 only allows current to flow from the second power supply U2 to the second The pulse generating unit 21, or the second pulse generating unit 21 of the current stage flows to the second pulse generating unit 21 of the next stage.
  • step S3 includes: y second switch units 212 receive the second control signal and conduct under the control of the second control signal, so that The y second memory cells 211 are connected in series and discharged to form the second pulse.
  • the second cut-off unit 213 includes a third cut-off device and a fourth cut-off device.
  • the second storage unit 211 includes a second capacitor; the second switch unit 212 includes a second solid-state switching device; the third cut-off device includes a third diode, and the fourth cut-off device includes a fourth diode.
  • the second pulse generating module 2 includes four stages of second pulse generating units 21 , that is, m is equal to three.
  • the second switching unit 212 from the first stage to the fourth stage that is, the second transistors from the first stage to the third stage are the solid state switching device S 2-1 , the solid state switching device S 2-2 and the solid state switching device S 2-2 respectively.
  • the solid-state switching device S 2-3 the second storage unit 211 from the first level to the third level, that is, the second capacitors from the first level to the third level are capacitor C 2-1 , capacitor C 2-2 and capacitor C 2- 3 ; the third cut-off device from the first level to the third level, that is, the third diodes from the first level to the third level are diode D 3-1 , diode D 3-2 and diode D 3-3 ; the first level The fourth cut-off devices to the third stage, that is, the fourth diodes from the first stage to the third stage are diode D 4-1 , diode D 4-2 and diode D 4-3 respectively.
  • the solid-state switching device S 2-1 , the solid-state switching device S 2-2 and the solid-state switching device S 2-3 all receive the second control signal
  • the solid-state switching device S 2-1 , the solid-state switching device S 2-2 and solid-state switching device S 2-3 are both in the conduction state
  • capacitor C 2-1 , capacitor C 2-2 and capacitor C 2-3 are connected in series
  • capacitor C 2-1 , capacitor C 2- 2 and the capacitor C 2-3 discharge at the same time
  • the discharge voltage is the second voltage, so the voltage of the second pulse formed is three times the second voltage.
  • the coordinated pulse generation method in this embodiment can selectively form the first pulse and the second pulse with different widths, and can select the voltage of the first pulse and the second pulse, so as to realize the application of the composite pulse to the load 3 Objective, taking the load 3 as an example of tumor cells, the effect of compound pulse is beneficial to improve the ablation effect on tumor cells.
  • the pulse combination includes a plurality of first pulse groups, and there is an interval time t1 between two adjacent first pulse groups, each first pulse group includes a first pulses, and two adjacent first pulse groups
  • the interval time t2 between one pulse includes only step S1 in the two steps of step S1 and step S2.
  • the pulse combination includes a plurality of second pulse groups, and there is an interval time t3 between two adjacent second pulse groups, each second pulse group includes b second pulses, and two adjacent second pulse groups The interval time t4 between two pulses includes only step S2 in the two steps of step S1 and step S2.
  • the pulse combination includes multiple first pulses and multiple second pulses, and the first pulses and the second pulses may be applied to the load 3 alternately, or after all the first pulses are applied to the load 3 The second pulse is applied to the load 3 again, or the second pulse is applied to the load 3 after all the second pulses are applied to the load 3.
  • first pulses form a plurality of first pulse groups
  • second pulses form a plurality of The second pulse group, the first pulse group and the second pulse group are alternately applied to the load 3 , that is, step S1 and step S2 are included at the same time.
  • the coordinated pulse generating circuit, generating device and generating method provided in the embodiments of the present application can selectively form the first pulse and/or the second pulse with different widths, and The voltage of the first pulse and the second pulse can be selected, so as to realize the purpose of applying the compound pulse to the load.
  • the function of the compound pulse is beneficial to improve the ablation effect on the tumor cells.
  • first and second are used for descriptive purposes only, and cannot be understood as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features. Thus, a feature defined as “first” and “second” may explicitly or implicitly include one or more of these features. In the description of the present application, unless otherwise specified, "plurality” means two or more.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. Connected, or integrally connected; it can be directly connected, or indirectly connected through an intermediary, and it can be the internal communication of two elements. Those of ordinary skill in the art can understand the specific meanings of the above terms in this application in specific situations.

Landscapes

  • Electronic Switches (AREA)
  • Generation Of Surge Voltage And Current (AREA)

Abstract

一种协同脉冲发生电路、发生装置及发生方法。协同脉冲发生电路包括第一电源、与所述第一电源电连接的第一脉冲发生模块、第二电源以及与所述第二电源电连接的第二脉冲发生模块。第一脉冲发生模块包括n级第一脉冲发生单元,第一脉冲发生单元被配置为接收第一电源提供的电能并进行存储,x个接收第一控制信号的第一脉冲发生单元进行放电以形成施加至负载的第一脉冲;第二脉冲发生模块包括m级第二脉冲发生单元,第二脉冲发生单元被配置为接收第二电源提供的电能并进行存储,y个接收到第二控制信号的第二脉冲发生单元进行放电以形成施加至负载的第二脉冲。能够选择性地形成宽度不同的第一脉冲和/或第二脉冲,并且能够对第一脉冲和第二脉冲的电压进行选择,从而实现将复合脉冲施加到负载的目的。

Description

协同脉冲发生电路、发生装置及其发生方法
相关申请的交叉引用
本申请要求申请号CN202110921259.X,名称为“协同脉冲发生电路、发生装置及其发生方法”的中国专利申请和申请号CN202110921262.1,名称为“协同脉冲发生装置、系统及发生方法”的中国专利申请和的优先权,上述专利申请的全部内容以引用的方式合并于此。
技术领域
本申请涉及脉冲发生和医疗器械技术,具体而言,本申请涉及一种协同脉冲发生电路、发生装置及其发生方法。
背景技术
脉冲功率技术是将缓慢储存起来的具有较高密度的能量,进行快速压缩,转换或者直接释放给负载的电物理技术。该技术发展起始,其主要的应用领域主要在粒子加速器、电磁脉冲武器、强激光发生器、新型武器研究等军工国防领域,并推动了脉冲功率技术的快速发展。
近年来,随着脉冲功率技术的应用向医疗、环境科学、等离体子科学、食品处理、电磁兼容检测和生物工程等领域不断扩展,对脉冲发生器的要求也不断改变。
传统的脉冲发生器通常只能发生特定宽度的脉冲信号,无法满足脉冲技术的复杂应用需求。
发明内容
本申旨在一定程度上解决上述技术问题的至少一个方面,提出一种协同脉冲发生电路、发生装置及其发生方法,用以发生不同宽度范围的脉冲 和形成更多的脉冲组合。
第一个方面,本申请实施例提供了一种协同脉冲发生电路,该协同脉冲发生电路包括第一电源、与第一电源电连接的第一脉冲发生模块、第二电源以及与第二电源电连接的第二脉冲发生模块;
第一脉冲发生模块包括n级第一脉冲发生单元,第一脉冲发生单元被配置为接收第一电源以第一电压提供的电能并进行存储,并在接收到第一控制信号时对存储的电能进行释放,以使x个接收第一控制信号的第一脉冲发生单元进行放电以形成施加至负载的第一脉冲,n为大于或等于1的整数,x为大于或等于1且小于或等于n的整数;
第二脉冲发生模块包括m级第二脉冲发生单元,第二脉冲发生单元被配置为接收第二电源以第二电压提供的电能并进行存储,并在接收到第二控制信号时对存储的电能进行释放,以使y个接收到第二控制信号的第二脉冲发生单元进行放电以形成施加至负载的第二脉冲,m为大于或等于1的整数,y为大于或等于1且小于或等于m的整数;
其中,第一脉冲发生模块和第二脉冲发生模块的输出端被配置为连接到同一负载,第二电压大于第一电压,第二脉冲的宽度小于第一脉冲的宽度。
第二个方面,本申请实施例提供了一种协同脉冲发生装置,协同脉冲发生装置包括:
根据本申请第一方面的协同脉冲发生电路;以及
控制模块,分别与第一脉冲发生模块和第二脉冲发生模块电连接,且被配置为根据输入信息生成第一控制信号和第二控制信号,并将第一控制信号传输至第一脉冲发生模块,将第二控制信号传输至第二脉冲发生模块。
第三个方面,本申请实施例提供了一种协同脉冲发生方法,用于本申请第一方面的协同脉冲发生电路,该方法包括:
第一脉冲发生模块所包括的n级第一脉冲发生单元接收第一电源以第一电压提供的电能并进行存储,第二脉冲发生模块所包括的m级第二脉冲发生单元接收第二电源以第二电压提供的电能并进行存储,n为大于 或等于1的整数,m为大于或等于1的整数,第二电压大于第一电压;
x个第一脉冲发生单元接收第一控制信号,且在第一控制信号的控制下进行放电以形成第一脉冲,x为大于或等于1且小于或等于n的整数;
y个第二脉冲发生单元接收第二控制信号,且在第二控制信号的控制下进行放电以形成第二脉冲,y为大于或等于1且小于或等于m的整数;以及
将第一脉冲和/或第二脉冲施加至负载;
其中,第二脉冲的宽度小于第一脉冲的宽度。
在一些实施例中第二脉冲发生单元接收第二控制信号的时间与第一脉冲发生单元接收第一控制信号的时间不同。
本申请实施例提供的技术方案带来的有益技术效果是:本申请实施例提供的协同脉冲发生电路、发生装置及其发生方法,能够选择性地形成宽度不同的第一脉冲和/或第二脉冲,并且能够对第一脉冲和第二脉冲的电压进行选择,从而实现将复合脉冲施加到负载的目的。当本申请的协同脉冲发生电路、发生装置及其发生方法用于肿瘤治疗的电消融设备时,以负载为肿瘤细胞为例,复合脉冲的作用有利于提升对肿瘤细胞的消融效果。
附图说明
本申请上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本申请实施例提供的一种协同脉冲发生电路的结构示意图;
图2为本申请实施例提供的另一种协同脉冲发生电路的结构示意图;
图3为本申请实施例提供的又一种协同脉冲发生电路的结构示意图;
图4为本申请实施例提供的一种协同脉冲发生装置的结构示意图;
图5为本申请实施例提供的一种协同脉冲发生方法的流程示意图。
附图标记:
1-第一脉冲发生模块;11-第一脉冲发生单元;111-第一存储单元;112-第一开关单元;113-第一截止单元;
2-第二脉冲发生模块;21-第二脉冲发生单元;211-第二存储单元;212- 第二开关单元;213-第二截止单元;
3-负载;
U1-第一电源;U2-第二电源。
具体实施方式
下面详细描述本申请,本申请的实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的部件或具有相同或类似功能的部件。此外,如果已知技术的详细描述对于示出的本申请的特征是不必要的,则将其省略。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能解释为对本申请的限制。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本申请所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
本技术领域技术人员可以理解,除非特意声明,这里使用的单数形式“一”、“一个”、“所述”和“该”也可包括复数形式。应该进一步理解的是,本申请的说明书中使用的措辞“包括”是指存在特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组合。
近年来,随着脉冲功率技术的应用向医疗、环境科学、等离体子科学、食品处理、电磁兼容检测和生物工程等领域不断扩展,对脉冲发生器的要求也不断改变。
以医学领域为例,本申请的发明人发现,在使用电消融技术进行肿瘤细胞消融时,多种不同脉宽的脉冲复合使用,一些情况下可以取得比单一脉冲更好的消融效果。例如,微秒脉冲作用于肿瘤细胞时,虽然具有较大的消融面积,但对肿瘤细胞,尤其是畸变较高的恶性肿瘤细胞的消融率较低,纳秒脉冲作用于肿瘤细胞时,虽然有较高的消融率,但消融面积较小。而将微秒脉冲或毫秒脉冲与纳秒脉冲复合使用,则能够显著提升肿瘤细胞 的消融效果。除了利用纳秒脉冲诱导的可逆电穿孔进行肿瘤细胞的消融之外,还可以进一步通过在纳秒脉冲的诱导的不可逆电穿孔的存续期间,协同施加微秒或毫秒脉冲,从而利用细胞膜的穿孔使得微秒或毫秒脉冲的电场穿透到细胞内部,进一步诱导细胞凋亡。取得比单独的纳秒脉冲、微秒脉冲或毫秒脉冲更好的消融效果。为了生成如上的协同脉冲,需要相应的脉冲发生装置。而传统的脉冲发生器通常只能发生特定宽度的脉冲信号,无法满足脉冲技术的复杂应用需求。
本申请提供的协同脉冲发生电路、发生装置及其发生方法,旨在一定程度上解决如上技术问题中的至少一个方面。下面以具体地实施例对本申请的技术方案以及本申请的技术方案如何解决上述技术问题进行详细说明。
本申请实施例提供了一种协同脉冲发生电路,如图1所示,该协同脉冲发生电路包括第一电源U1、与第一电源U1电连接的第一脉冲发生模块1、第二电源U2以及与第二电源U2电连接的第二脉冲发生模块2;
第一脉冲发生模块1包括n级第一脉冲发生单元11,第一脉冲发生单元11被配置为接收第一电源U1以第一电压提供的电能并进行存储,并在接收到第一控制信号时对存储的电能进行释放,x个接收第一控制信号的第一脉冲发生单元11进行放电以形成施加至负载3的第一脉冲,n为大于或等于1的整数,x为大于或等于1且小于或等于n的整数。
第二脉冲发生模块2包括m级第二脉冲发生单元21,第二脉冲发生单元21被配置为接收第二电源U2以第二电压提供的电能并进行存储,并在接收到第二控制信号时对存储的电能进行释放,y个接收到第二控制信号的第二脉冲发生单元21进行放电以形成施加至负载3的第二脉冲,m为大于或等于1的整数,y为大于或等于1且小于或等于m的整数;
在一些实施例中,第二电压大于第一电压,第二脉冲的宽度小于第一脉冲的宽度。在一些实施例中,第二脉冲发生单元21接收第二控制信号的时间与第一脉冲发生单元11接收第一控制信号的时间不同。
需要说明的是,理论上,x个接收到第一控制信号的第一脉冲发生单元11均是以第一电压进行放电的,但实际上,由于脉冲发生电路中各器 件的等效阻抗等因素的影响,第一脉冲发生单元11的放电电压略低于第一电压,但和第一电压的差距很小。因此,可以将施加至负载3的第一脉冲的电压近似为x倍的第一电压。类似地,可以将施加至负载3的第二脉冲的电压近似为y倍的第二电压。为了便于说明,在后续实施例中,不再对第一脉冲发生单元11和第二脉冲单元21放电时的实际电压值进行解释和说明,均以第一电压和第二电压进行描述。基于上述描述,通过对同时放电的第一脉冲发生单元11以及同时放电的第二脉冲发生单元21的个数进行设置,能够对第一脉冲的电压以及第二脉冲的电压进行调整。
需要说明的是,第二脉冲发生单元21接收第二控制信号的时间与第一脉冲发生单元11接收第一控制信号的时间不同,是指当第二脉冲发生单元21接收第二控制信号时,第一脉冲发生单元11则不会接收第一控制信号,并且第一脉冲发生单元11接收第一控制信号时,第二脉冲发生单元21则不会接收第二控制信号,也就是第一脉冲和第二脉冲不会同时形成,以避免第一脉冲和第二脉冲互相干扰。
通过第一控制信号和第二控制信号的不同设置,能够形成不同的脉冲组合。例如,一个具体的实施例中,脉冲组合包括多个第一脉冲组,相邻两个第一脉冲组之间间隔时间t1,每个第一脉冲组包括a个第一脉冲,相邻两个第一脉冲之间间隔时间t2。在另一个具体实施例中,脉冲组合包括多个第二脉冲组,相邻两个第二脉冲组之间间隔时间t3,每个第二脉冲组包括b个第二脉冲,相邻两个第二脉冲之间间隔时间t4。在又一个具体实施例中,脉冲组合包括多个第一脉冲和多个第二脉冲,可以是第一脉冲和第二脉冲交替施加至负载3,也可以是所有第一脉冲施加至负载3之后第二脉冲再施加至负载3,或所有第二脉冲施加至负载3之后第二脉冲再施加至负载3,还可以是这些第一脉冲形成多个第一脉冲组,这些第二脉冲形成多个第二脉冲组,第一脉冲组和第二脉冲组交替施加至负载3。
本实施例中的协同脉冲发生电路能够选择性地形成宽度不同的第一脉冲和/或第二脉冲,并且能够对第一脉冲和第二脉冲的电压进行选择,从而实现将复合脉冲施加到负载3的目的。可以通过控制信号的设置来控 制第一脉冲和第二脉冲的宽度。根据不同的脉冲电压需求,本领域技术人员可以相应地配置第一电源和第二电源的电压以及脉冲发生单元的级数,从而使输出的脉冲电压满足需求的电压范围。
为描述方便,本申请协同脉冲发生电路输出的信号也称为协同脉冲或者复合脉冲。
以负载3为肿瘤组织为例,复合脉冲的作用有利于提升对肿瘤细胞的消融效果。其中,第一脉冲可以为毫秒脉冲或微秒脉冲;第二脉冲可以为纳秒脉冲。以微秒脉冲和纳秒脉冲的组合为例,第一脉冲的电压可以设置为几千伏的数量级,而纳秒脉冲的电压可以设置为几十千伏的数量级。例如,纳秒脉冲的电压为15KV,第二电压源选750V,则可通过20级脉冲发生单元来实现15KV的输出。
在上述实施例中,对协同脉冲发生电路可选的框架进行了说明,在下述实施例中,将对第一脉冲发生模块1中的各级第一脉冲发生单元11的结构以及各级第一脉冲发生单元11的连接关系,第二脉冲发生模块2中的各级第二脉冲发生单元21的结构以及各级第二脉冲发生单元21的连接关系,进行详细说明。
在一个可选的实施方式中,如图2所示,协同脉冲发生电路中的第一脉冲发生单元11包括第一存储单元111、第一开关单元112以及第一截止单元113,第二脉冲发生单元21包括第二存储单元211、第二开关单元212以及第二截止单元213。
如图2所示,第一开关单元112被配置为在第一控制信号的控制下导通,以使与接收到第一控制信号的第一开关单元112同级的各第一存储单元111进行串联并进行放电以形成第一脉冲。如图2所示,第一截止单元113被配置为仅允许电流由第一电源U1流向第一脉冲发生单元11,或者由本级第一脉冲发生单元11流向下一级第一脉冲发生单元11。
具体地,在进行放电时,只有接收到第一控制信号的第一开关单元112才导通,同时,由于第一截止单元113的单向截止作用,使得接收到第一控制信号的第一脉冲发生单元11中的第一存储单元111串联并进行 放电。第一存储单元111在放电过程中相当于一个电源,这些串联的电源同时以第一电压进行放电,若n级第一存储单元111中有x个第一存储单元111进行串联并进行放电,则形成的第一脉冲的电压为x倍的第一电压。
如图2所示,第二开关单元212被配置为在第二控制信号的控制下导通,以使接收到第二控制信号的第二开关单元212中同级的各第二存储单元211进行串联并进行放电以形成第二脉冲;第二截止单元213被配置为仅允许电流由第二电源U2流向第二脉冲发生单元21,或者由本级第二脉冲发生单元21流向下一级第二脉冲发生单元21。
具体地,在进行放电时,只有接收到第二控制信号的第二开关单元212才导通,同时,由于第二截止单元213的单向截止作用,使得接收到第二控制信号的第二脉冲发生单元21中的第二存储单元211串联并进行放电,第二存储单元211在放电过程中相当于一个电源,这些串联的电源同时以第二电压进行放电,若m级第二存储单元211中有y个第二存储单元211进行串联并进行放电,则形成的第二脉冲的电压为y倍的第二电压。
如图2所示,第一开关单元112还被配置为在接收到第三控制信号时断开,以使各级第一存储单元111并联至第一电源U1而接收到第一电源U1提供的电能并进行存储;第二开关单元212还被配置为在接收到第四控制信号时断开,以使各级第二存储单元211并联至第二电源U2而接收到第二电源U2提供的电能并进行存储。
具体地,当第一开关单元112处于断开状态时,由于第一截止单元113的单向截止作用,使得各级第一存储单元111之间为并联关系并将第一电源U1提供的电能以第一电压进行存储,同理,各级第二存储单元211之间也为并联关系并将第一电源U1提供的电能以第一电压进行存储。
在一个具体的实施例中,如图3所示,该协同脉冲发生电路中,第一截止单元113包括第一截止器件和第二截止器件。第1级第一截止器件分别与第一电源U1的第一端和第1级第一存储单元111的第一端电连接,第i级第一截止器件分别与第i-1级第一存储单元111的第一端、第i级第 一存储单元111的第一端以及第i-1级第一截止器件电连接,各级第二截止器件分别与本级第一存储单元111的第二端、本级第一开关的第二端以及下一级第二截止器件电连接,i为大于或等于2的整数。
如图3所示,该协同脉冲发生电路中,第二截止单元213包括第三截止器件和第四截止器件。第1级第三截止器件分别与第二电源U2的第一端和第1级第二存储单元211的第一端电连接,第j级第三截止器件与分别与第j-1级第二存储单元211的第一端、第j级第二存储单元211的第一端以及第j-1级第三截止器件电连接,各级第四截止器件分别与本级第二存储单元211的第二端、本级第二开关的第二端以及下一级第四截止器件电连接,j为大于或等于2的整数。
进一步地,如图3所示,各级第一存储单元111的两端分别与第一电源U1的两端电连接,各级第一开关单元112的控制端被配置为接收第一控制信号,各级第一开关单元112的第一端和第二端分别与本级第一存储单元111的第一端以及下一级第一存储单元111的第二端电连接;各级第二存储单元211的两端分别与第二电源U2的两端电连接,各级第二开关单元212的控制端被配置为接收第二控制信号,各级第二开关的第一端和第二端分别与本级第二存储单元211的第一端以及下一级第二存储单元211的第二端电连接。
在一些具体实施例中,第一存储单元111包括第一电容,第二存储单元211包括第二电容;第一开单元关包括第一固态开关器件,第二开关单元212包括第二固态开关器件;第一截止器件包括第一二极管,第二截止器件包括第二二极管,第三截止器件包括第三二极管,第四截止器件包括第四二极管。也就是采用电容作为存储单元,采用固态开关器件作为开关单元,并以二极管作为截止器件。其中,固态开关器件可以基于金属氧化物半导体场效应晶体管(MOSFET)、绝缘栅双极晶体管(IGBT)或晶体三极管等实现。
请进一步参考图3,在该协同脉冲发生电路中,第一脉冲发生模块1包括4级第一脉冲发生单元11,第二脉冲发生模块2包括3级第二脉冲 发生单元21,即n等于4,m等于3。需要说明的是,这仅是示例性说明,并不用于限定第一脉冲发生模块1中第一脉冲发生单元11的级数,以及第二脉冲发生模块2中第二脉冲发生单元21的级数。
如图3所示,第1级至第4级第一开关单元112,即第1级至第4级第一固态开关器件分别为固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4;第1级至第4级第一开关存储分别为电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4;第1级至第4级第一截止器件分别为二极管D 1-1、二极管D 1-2、二极管D 1-3以及二极管D 1-4;第1级至第4级第二截止器件分别为二极管D 2-1、二极管D 2-2、二极管D 2-3以及二极管D 2-4
如图3所示,第1级至第4级第二开关单元212,即第1级至第4级第二三体管分别为固态开关器件S 2-1、固态开关器件S 2-2、固态开关器件S 2-3以及固态开关器件S 2-4;第1级至第4级第二存储单元211分别为电容C 2-1、电容C 2-2、电容C 2-3以及电容C 2-4;第1级至第4级第三截止器件分别为二极管D 3-1、二极管D 3-2、二极管D 3-3以及二极管D 3-4;第1级至第4级第四截止器件分别为二极管D 4-1、二极管D 4-2以及二极管D 4-3
如图3所示,该协同脉冲发生电路中,第一电源U1向第一存储单元111,即向电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4充电时,电流流经第二截止器件,即二极管D 2-1、二极管D 2-2、二极管D 2-3以及二极管D 2-4。而第二电源U2向第二存储单元211即向电容C 2-1、电容C 2-2、电容C 2-3充电时,电流流经第四截止器件,即二极管D 4-1、二极管D 4-2、二极管D 4-3
如图3所示,在该协同脉冲发生电路中,电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4放电时,电流流经第四截止器件,即二极管D 4-1、二极管D 4-2、二极管D 4-3。而电容C 2-1、电容C 2-2、电容C 2-3放电时,二极管D 4-1、二极管D 4-2、二极管D 4-3工作于反向截止状态。
本实施例提供的协同脉冲发生电路中第一脉冲发生模块1和第二脉冲发生模块2不仅能够实现复合脉冲的发生,而且能够缩减布线空间,即能够以面积更小的电路板作为本实施例中的协同脉冲发生电路的载体。
如图3所示,第一电源U1和第二电源U2均为恒压电源,当固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3和固态开关器件S 1-4收到第三控制信号时,固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均处于断开状态,二极管D 1-1、二极管D 1-2、二极管D 1-3以及二极管D 1-4、二极管D 2-1、二极管D 2-2以及二极管D 2-3具有单向导通功能,使得电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4为并联关系且均电连接至第一电源U1的第一端和第二端,即均与第一电源U1的正极和负极电连接。充电完成时,电容C 1-1、电容C 1-2以及电容C 1-3两端的电位差均为第一电压。
类似的,当固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3均收到第四控制信号时,电容C 2-1、电容C 2-2、以及电容C 2-3为并联关系且均电连接至第二电源U2的第一端和第二端,即均与第二电源U2的正极和负极电连接。充电完成时,电容C 2-1、电容C 2-2以及电容C 2-3两端的电位差均为第二电压。
如图3所示,当固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均收到第一控制信号时,固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均处于导通状态,由于二极管D 1-1、二极管D 1-2、二极管D 1-3以及二极管D 1-4、二极管D 2-1、二极管D 2-2、二极管D 2-3以及二极管D 2-4具有单向导通功能,则电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4为串联关系,且电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4同时进行放电,且放电电压均为第一电压,因此形成的脉冲的电压为4倍的第一电压。
类似的,当固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3均收到第二控制信号时,固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3均处于导通状态,电容C 2-1、电容C 2-2和电容C 2-3为串联关系,且电容C 2-1、电容C 2-2以及电容C 2-3同时进行放电,且放电电压均为第二电压,因此形成的第二脉冲的电压为3倍的第二电压。
进一步地,如图3所示,在该协同脉冲发生电路中,第2级至第n级 第一截止器件均包括一个第一二极管,各级第二截止器件均包括一个第二二极管,第一二极管的反向击穿电压和第二二极管的反向击穿电压均大于第一电压;第2级至第m级第三截止器件均包括一个第三二极管,各级第四截止器件均包括一个第四二极管,第三二极管的反向击穿电压和第四二极管的反向击穿电压均大于第二电压;第1极第一截止器件包括s个第一二极管,第一二极管的反向击穿电压的s倍大于第一电压的(n-1)倍,第1极第三截止器件包括t个第三二极管,第三二极管的反向击穿电压的s倍大于第二电压的(m-1)倍,s为大于或等于1的整数,t为大于或等于1的整数。
以图3所示的协同脉冲发生电路为例,第一脉冲发生模块1包括4级第一脉冲发生单元11,第二脉冲发生模块2包括3级第二脉冲发生单元21。若采用的所有作为截止器件的二极管的参数相同,由于第一电压小于第二电压,为了保证各二极管均能够正常起到单向截止作用,则应以第二电压作为选择依据,例如,若第二电压为1000V,则各二极管的反向击穿电压应大于1000V。
如图3所示,若第一电压为200V,第二电压为1000V,地电平为0V,各二极管的反向击穿电压均为1100V。在第一脉冲发送模块的放电过程中,若固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均处于导通状态,则电容C 1-1与第一电源U1的正极连接的一端的电压为800V,此时,二极管D 1-1两端的压差为800V,则设置一个二极管D 1-1即可。若第一电压为500V时,固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均处于导通状态,则电容C 1-1与第一电源U1的正极连接的一端的电压为2000V,此时,二极管D 1-1两端的压差为1500V,则应设置两个二极管D 1-1即可。
同理,若第二电压为1000V,地电平为0V,各二极管的反向击穿电压均为1100V,当固态开关器件S 2-1、固态开关器件S 2-2、固态开关器件S 2-3均处于导通状态,则电容C 2-1与第二电源U2的正极连接的一端的电压为3000V,此时,二极管D 3-1两端的压差为2000V,则需要设置两个二 极管D 3-1
参见图3,本申请实施例的脉冲发生电路还可以包括第一泄电模块4和第二泄电模块5。第一泄电模块4分别与第一脉冲发生模块和地电连接,且被配置为在第一泄电信号的控制下将第一脉冲发生模块与地导通以将第一脉冲发生模块中的残留电量进行释放。第二泄电模块5分别与第二脉冲发生模块和地电连接,且被配置为在第二泄电信号的控制下将第二脉冲发生模块与地导通以将第二脉冲发生模块中的残留电量进行释放。
在一些实施例中,脉冲发生电路还可以包括触发单元61和与触发单元61电连接的至少一对电极62,触发单元61分别与第一脉冲发生模块和第二脉冲发生模块电连接,电极62用于与负载3接触。触发单元61被配置为在被触发指令触发时导通使得第一脉冲信号和/或第二脉冲信号传输至电极62。
在一些实施例中,脉冲发生电路还包括关联开关63,关联开关63与触发单元61相关联。具体地,当本实施例中的协同脉冲发生电路应用于医疗器械,例如,应用于电消融设备时,关联开关63可以为脚踏开关。
在一些实施例中,电极62可以有多对,脉冲发生电路还包括多路转换单元64,多路转换单元64可以将一路信号转换为多路信号,从而匹配多对电极,每对电极62需要两路相同的信号。
在一些实施例中,脉冲发生电路还包括监测模块,用于对第一脉冲信号和/或第二脉冲信号输出的电压进行监测和/或对所述第一脉冲信号和/或第二脉冲信号的输出电流进行监测。监测模块可包括电阻7和第一监测单元81和第二监测单元82。电阻7分别与第一脉冲发生模块、第二脉冲发生模块以及地电连接,第一脉冲信号和/或第二脉冲信号施加到电阻7。第一监测单元81被配置为对第一脉冲信号和/或第二脉冲信号的电流进行监测;第二监测单元82被配置为对第一脉冲信号和/或第二脉冲信号施加至电阻7的电压进行监测。当然,也可以仅使用其中一个监测单元来对协同脉冲信号的输出电压或电流之一进行监测。例如,仅使用第一监测单元81,此时第一监测单元81可配置为电压传感器或者是电流传感器。
第一监测单元81包括第一皮尔森线圈,第二监测单元82包括第二皮尔森线圈,第一皮尔森线圈被配置为对第一脉冲信号和/或第二脉冲信号的电流进行感应,第二皮尔森线圈被配置为对第一脉冲信号和/或第二脉冲信号施加至电阻7的电压进行感应,从而实现对第一脉冲信号和/或第二脉冲信号输出的电压的监测和输出电流的监测。
在一个具体的实施例中,形成了具有一定参数的第一脉冲信号和第二脉冲信号,上述两个皮尔森线圈能够感应到相应的电流和电压,当上述两个皮尔森线圈的感应结果符合第一脉冲信号和第二脉冲信号的参数时,则判定此时的协同脉冲发生电路处于正常工作状态,而一旦上述两个皮尔森线圈的感应结果偏离第一脉冲信号和第二脉冲信号的参数,则判定协同脉冲发生装置处于非正常工作状态,以使操作者能够及时发现故障并采取相应的措施。
例如,当本实施例中的协同脉冲发生电路应用于医学领域时,即应用于脉冲治疗器械时,可根据监测模块提供的监测结果及时判断输出的第一脉冲和/或第二脉冲是否正常,从而保证负载3上的输出与设定的输出参数相协调。
基于同一发明构思,本申请实施例还提供了一种协同脉冲发生装置,如图4所示,该协同脉冲发生装置包括上述实施例中的协同脉冲发生电路和控制模块,控制模块分别与第一脉冲发生模块1和第二脉冲发生模块2电连接,且被配置为根据输入信息生成第一控制信号和第二控制信号,并将第一控制信号传输至第一脉冲发生模块1,将第二控制信号传输至第二脉冲发生模块2。
本实施例提供的协同脉冲发生装置包括上述实施例中的协同脉冲发生电路的有益效果,在此不再赘述。
具体地,本实施例中的协同脉冲发生装置可用于电消融设备,该设备可提供微秒脉冲和纳秒脉冲的协同输出,也可以被称为微纳刀设备。例如,第一脉冲为微秒脉冲,第二脉冲为纳秒脉冲。利用微纳刀系统,能够产生纳秒脉冲与微秒脉冲的组合,通过将纳秒脉冲与微秒脉冲的组合施加到肿 瘤组织,能够有效提升肿瘤组织的消融效果。
基于同一发明构思,本申请实施例还提供了一种协同脉冲发生方法,如图5所示,该协同脉冲发生方法包括:
S1:第一脉冲发生模块1所包括的n级第一脉冲发生单元11接收第一电源U1以第一电压提供的电能并进行存储,第二脉冲发生模块2所包括的m级第二脉冲发生单元21接收第二电源U2以第二电压提供的电能并进行存储,第二电压大于第一电压,n为大于或等于1的整数,m为大于或等于1的整数。
需要说明的是,第一脉冲发生模块1的充电过程和第二脉冲发生模块2的充电过程既可以同时进行,也可以仅对第一脉冲发生模块1或第二脉冲发生模块2进行充电,或者第一脉冲发生模块1的充电过程和第二脉冲发生模块2的充电过程不同时进行。
具体地,第一脉冲发生模块1包括的n级第一脉冲发生单元11接收第一电源U1以第一电压提供的电能并进行存储,包括:各第一开关单元112在接收到第三控制信号时断开,以使各级第一存储单元111并联至第一电源U1而接收到第一电源U1提供的电能并进行存储。
以图3所示的协同脉冲发生电路为例,当第一脉冲发生模块1的充电过程如下:当固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4收到第三控制信号时,固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均处于断开状态,二极管D 1-1、二极管D 1-2、二极管D 1-3以及二极管D 1-4、二极管D 2-1、二极管D 2-2、二极管D 2-3以及二极管D 2-4具有单向导通功能,使得电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4为并联关系且均电连接至第一电源U1的第一端和第二端,即均与第一电源U1的正极和负极电连接。直至电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4两端的电位差均为第一电压时,则第一脉冲发生模块1完成充电。
具体地,第二脉冲发生模块2包括的m级第二脉冲发生单元21接收第二电源U2以第二电压提供的电能并进行存储,包括:各第二开关单元 212在接收到第四控制信号时断开,以使各级第二存储单元211并联至第二电源U2而接收到第二电源U2提供的电能并进行存储。
以图3所示的协同脉冲发生电路为例,当第二脉冲发生模块2的充电过程如下:固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3收到第四控制信号时,固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3均处于断开状态,二极管D 3-1、二极管D 3-2、二极管D 3-3、二极管D 3-4、二极管D 4-1、二极管D 4-2以及二极管D 4-3具有单向导通功能,使得电容C 2-1、电容C 2-2以及电容C 2-3为并联关系且均电连接至第二电源U2的第一端和第二端,即均与第二电源U2的正极和负极电连接。直至电容C 2-1、电容C 2-2以及电容C 2-3两端的电位差均为第二电压时,则第二脉冲发生模块2完成充电。
在一个具体的实施例中,第一控制信号和第二控制信号均为高电平,而第三控制信号和第四控制信号均为低电平,也就是只要第一脉冲发生模块1未接收到第一控制信号,第一电源U1即处于向各级第一电容充电的状态或者维持各级第一电容两端的电压差为第一电压的状态。同理,只要第二脉冲发生模块2未接收到第二控制信号,第二电源U2即处于向各级第二电容充电的状态或者维持各级第二电容两端的电压差为第二电压的状态。
S2:x个第一脉冲发生单元11接收第一控制信号,且在第一控制信号的控制下放电以形成施加至负载3的第一脉冲,x为大于或等于1且小于或等于n的整数。
具体地,如图5所示,第一脉冲发生单元11包括第一存储单元111、第一开关单元112以及第一截止单元113,第一截止单元113仅允许电流由第一电源U1流向第一脉冲发生单元11,或者由本级第一脉冲发生单元11流向下一级第一脉冲发生单元11。此时,步骤S2包括:x个第一开关单元112接收第一控制信号且在第一控制信号的控制下导通,以使与接收到第一控制信号的第一开关单元112同级的x个第一存储单元111进行串联并进行放电以形成第一脉冲。
具体地,如图3所示,第一截止单元113包括第一截止器件和第二截止器件。第一存储单元111包括第一电容,第一开关单元112包括第一固态开关器件;第一截止器件包括第一二极管,第二截止器件包括第二二极管。在该协同脉冲发生电路中,第一脉冲发生模块1包括4级第一脉冲发生单元11,即n等于4。
如图3所示,第1级至第4级第一开关单元112,即第1级至第4级第一固态开关器件分别为固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4;第1级至第4级第一开关存储,即第1级至第4级第一电容分别为电容C 1-1、电容C 1-2、电容C 1-3和电容C 1-4;第1级至第4级第一截止器件,即第1级至第4级第一二极管分别为二极管D 1-1、二极管D 1-2、二极管D 1-3以及二极管D 1-4;第1级至第4级第二截止器件,第1级至第4级第二二极管分别为二极管D 2-1、二极管D 2-2、二极管D 2-3以及二极管D 2-4
如图3所示,当固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均收到第一控制信号时,固态开关器件S 1-1、固态开关器件S 1-2、固态开关器件S 1-3以及固态开关器件S 1-4均处于导通状态,由于二极管D 1-1、二极管D 1-2、二极管D 1-3以及二极管D 1-4、二极管D 2-1、二极管D 2-2、二极管D 2-3以及二极管D 2-4具有单向导通功能,则电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4为串联关系,且电容C 1-1、电容C 1-2、电容C 1-3以及电容C 1-4同时进行放电,且放电电压均为第一电压,因此形成的脉冲的电压为4倍的第一电压。
S3:y个第二脉冲发生单元21接收第二控制信号,且在第二控制信号的控制下进行放电以形成施加至负载3的第二脉冲,y为大于或等于1且小于或等于m的整数,第二脉冲的宽度小于第一脉冲的宽度,第二脉冲发生单元21接收第二控制信号的时间与第一脉冲发生单元11接收第一控制信号的时间不同。
具体地,如图5所示,第二脉冲发生单元21包括第二存储单元211、第二开关单元212以及第二截止单元213,第二截止单元213仅允许电流 由第二电源U2流向第二脉冲发生单元21,或者由本级第二脉冲发生单元21流向下一级第二脉冲发生单元21。此时,步骤S3包括:y个第二开关单元212接收到第二控制信号且在第二控制信号的控制下导通,以使与接收到第二控制信号的第二开关单元212同级的y个第二存储单元211进行串联并进行放电以形成第二脉冲。
具体地,如图3所示,第二截止单元213包括第三截止器件和第四截止器件。第二存储单元211包括第二电容;第二开关单元212包括第二固态开关器件;第三截止器件包括第三二极管,第四截止器件包括第四二极管。在该协同脉冲发生电路中,第二脉冲发生模块2包括4级第二脉冲发生单元21,即m等于3。
如图3所示,第1级至第4级第二开关单元212,即第1级至第3级第二三体管分别为固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3;第1级至第3级第二存储单元211,即第1级至第3级第二电容分别为电容C 2-1、电容C 2-2以及电容C 2-3;第1级至第3级第三截止器件,即第1级至第3级第三二极管分别为二极管D 3-1、二极管D 3-2以及二极管D 3-3;第1级至第3级第四截止器件,即第1级至第3级第四二极管分别为二极管D 4-1、二极管D 4-2以及二极管D 4-3
如图3所示,当固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3均收到第二控制信号时,固态开关器件S 2-1、固态开关器件S 2-2以及固态开关器件S 2-3均处于导通状态,电容C 2-1、电容C 2-2以及电容C 2-3为串联关系,且电容C 2-1、电容C 2-2以及电容C 2-3同时进行放电,且放电电压均为第二电压,因此形成的第二脉冲的电压为3倍的第二电压。
S4:将第一脉冲和/或第二脉冲施加至负载3。
本实施例中的协同脉冲发生方法能够选择性地形成宽度不同的第一脉冲和第二脉冲,并且能够对第一脉冲和第二脉冲的电压进行选择,从而实现将复合脉冲施加到负载3的目的,以负载3为肿瘤细胞为例,复合脉冲的作用有利于提升对肿瘤细胞的消融效果。
需要说明的是,本实施例提供的协同脉冲发生方法中,可以仅包括步 骤S1和步骤S2中的一个,也可以同时包括,并且步骤S1和步骤S2的顺序可以根据实际需要进行调整,即可根据实际需求输出不同的脉冲组合。在一个具体的实施例中,脉冲组合包括多个第一脉冲组,相邻两个第一脉冲组之间间隔时间t1,每个第一脉冲组包括a个第一脉冲,相邻两个第一脉冲之间间隔时间t2,即仅包括步骤S1和步骤S2这两个步骤中的步骤S1。在另一个具体实施例中,脉冲组合包括多个第二脉冲组,相邻两个第二脉冲组之间间隔时间t3,每个第二脉冲组包括b个第二脉冲,相邻两个第二脉冲之间间隔时间t4,即仅包括步骤S1和步骤S2这两个步骤中的步骤S2。在又一个具体实施例中,脉冲组合包括多个第一脉冲和多个第二脉冲,可以是第一脉冲和第二脉冲交替施加至负载3,也可以是所有第一脉冲施加至负载3之后第二脉冲再施加至负载3,或所有第二脉冲施加至负载3之后第二脉冲再施加至负载3,还可以是这些第一脉冲形成多个第一脉冲组,这些第二脉冲形成多个第二脉冲组,第一脉冲组和第二脉冲组交替施加至负载3,即同时包括步骤S1和步骤S2。
应用本申请实施例,至少能够实现如下有益效果:本申请实施例提供的协同脉冲发生电路、发生装置及其发生方法,能够选择性地形成宽度不同的第一脉冲和/或第二脉冲,并且能够对第一脉冲和第二脉冲的电压进行选择,从而实现将复合脉冲施加到负载的目的,以负载为肿瘤细胞为例,复合脉冲的作用有利于提升对肿瘤细胞的消融效果。
术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本申请的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在本申请的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或一体地连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本申请中的具体含义。
在本说明书的描述中,具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
以上仅是本申请的部分实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本申请原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本申请的保护范围。

Claims (18)

  1. 一种协同脉冲发生电路,包括:
    第一电源;
    与所述第一电源电连接的第一脉冲发生模块,所述第一脉冲发生模块包括n级第一脉冲发生单元,所述第一脉冲发生单元被配置为接收所述第一电源以第一电压提供的电能并进行存储,并在接收到第一控制信号时对存储的电能进行释放,以使x个接收所述第一控制信号的所述第一脉冲发生单元进行放电以形成施加至负载的第一脉冲,n为大于或等于1的整数,x为大于或等于1且小于或等于n的整数;
    第二电源;以及
    与所述第二电源电连接的第二脉冲发生模块,所述第二脉冲发生模块包括m级第二脉冲发生单元,所述第二脉冲发生单元被配置为接收所述第二电源以第二电压提供的电能并进行存储,并在接收到第二控制信号时对存储的电能进行释放,以使y个接收到所述第二控制信号的所述第二脉冲发生单元进行放电以形成施加至所述负载的第二脉冲,m为大于或等于1的整数,y为大于或等于1且小于或等于m的整数;其中,所述第一脉冲发生模块和第二脉冲发生模块的输出端被配置为连接到同一负载,所述第二电压大于所述第一电压,所述第二脉冲的宽度小于所述第一脉冲的宽度。
  2. 根据权利要求1所述的协同脉冲发生电路,其中,
    所述第一脉冲发生单元包括第一存储单元、第一开关单元以及第一截止单元;
    所述第一开关单元被配置为接收所述第一控制信号并在所述第一控制信号的控制下导通,以使与接收到所述第一控制信号的所述第一开关单元同级的各所述第一存储单元串联并进行放电以形成所述第一脉冲;
    所述第一截止单元被配置为仅允许充电电流由所述第一电源流向所述第一脉冲发生单元,或者由本级所述第一脉冲发生单元流向下一级所述 第一脉冲发生单元,且仅允许放电电流由本级所述第一脉冲发生单元流向下一级所述第一脉冲发生单元;
    所述第二脉冲发生单元包括第二存储单元、第二开关单元以及第二截止单元;
    所述第二开关单元被配置为接收所述第二控制信号并在所述第二控制信号的控制下导通,以使接收到所述第二控制信号的所述第二开关单元中同级的各所述第二存储单元串联并进行放电以形成所述第二脉冲;
    所述第二截止单元被配置为仅允许充电电流由所述第二电源流向所述第二脉冲发生单元,或者由本级所述第二脉冲发生单元流向下一级所述第二脉冲发生单元,且仅允许放电电流由本级所述第二脉冲发生单元流向下一级所述第二脉冲发生单元。
  3. 根据权利要求2所述的协同脉冲发生电路,其中,
    所述第一开关单元还被配置为在接收到第三控制信号时断开,以使各级所述第一存储单元并联至所述第一电源而接收到所述第一电源提供的电能并进行存储;
    所述第二开关单元还被配置为在接收到第四控制信号时断开,以使各级所述第二存储单元并联至所述第二电源而接收到所述第二电源提供的电能并进行存储。
  4. 根据权利要求2所述的协同脉冲发生电路,其中,
    所述第一截止单元包括第一截止器件和第二截止器件,第1级第一截止器件分别与所述第一电源的第一端和第1级第一存储单元的第一端电连接,第i级第一截止器件分别与第i-1级第一存储单元的第一端、第i级第一存储单元的第一端以及第i-1级第一截止器件电连接,各级第二截止器件分别与本级第一存储单元的第二端、本级第一开关的第二端以及下一级第二截止器件电连接,i为大于或等于2的整数;
    所述第二截止单元包括第三截止器件和第四截止器件,第1级第三截止器件分别与所述第二电源的第一端和第1级第二存储单元的第一端电连接,第j级第三截止器件与分别与第j-1级第二存储单元的第一端、第j 级第二存储单元的第一端以及第j-1级第三截止器件电连接,各级第四截止器件分别与本级第二存储单元的第二端、本级第二开关的第二端以及下一级第四截止器件电连接,j为大于或等于2的整数。
  5. 根据权利要求4所述的协同脉冲发生电路,其中,
    各级所述第一存储单元的两端分别与所述第一电源的两端电连接,各级所述第一开关单元的控制端被配置为接收所述第一控制信号,各级所述第一开关的第一端和第二端分别与本级所述第一存储单元的第一端以及下一级所述第一存储单元的第二端电连接;
    各级所述第二存储单元的两端分别与所述第二电源的两端电连接,各级所述第二开关单元的控制端被配置为接收所述第二控制信号,各级所述第二开关的第一端和第二端分别与本级所述第二存储单元的第一端以及下一级所述第二存储单元的第二端电连接。
  6. 根据权利要求4所述的协同脉冲发生电路,其中,
    所述第一存储单元包括第一电容,所述第二存储单元包括第二电容;
    所述第一开关单元包括第一固态开关器件,所述第二开关单元包括第二固态开关器件;
    所述第一截止器件包括第一二极管,所述第二截止器件包括第二二极管,所述第三截止器件包括第三二极管,所述第四截止器件包括第四二极管。
  7. 根据权利要求6所述的协同脉冲发生电路,其中,
    第2级至第n级所述第一截止器件均包括一个所述第一二极管,各级所述第二截止器件均包括一个所述第二二极管,所述第一二极管的反向击穿电压和所述第二二极管的反向击穿电压均大于所述第一电压;
    第2级至第m级所述第三截止器件均包括一个所述第三二极管,各级所述第四截止器件均包括一个所述第四二极管,所述第三二极管的反向击穿电压和所述第四二极管的反向击穿电压均大于所述第二电压。
  8. 根据权利要求7所述的协同脉冲发生电路,其中,
    第1极所述第一截止器件包括s个所述第一二极管,所述第一二极管 的反向击穿电压的s倍大于所述第一电压的(n-1)倍,s为大于或等于1的整数;
    第1极所述第三截止器件包括t个所述第三二极管,所述第三二极管的反向击穿电压的s倍大于所述第二电压的(m-1)倍,t为大于或等于1的整数。
  9. 根据权利要求1所述的协同脉冲发生电路,其中,所述脉冲发生电路还包括:
    第一泄电模块,分别与所述第一脉冲发生模块和地电连接,且被配置为在第一泄电信号的控制下将所述第一脉冲发生模块与地导通以将所述第一脉冲发生模块中的残留电量进行释放;以及
    第二泄电模块,分别与所述第二脉冲发生模块和地电连接,且被配置为在第二泄电信号的控制下将所述第二脉冲发生模块与地导通以将所述第二脉冲发生模块中的残留电量进行释放。
  10. 根据权利要求1所述的协同脉冲发生电路,其中,
    所述第一脉冲为毫秒脉冲或微秒脉冲;以及
    所述第二脉冲为纳秒脉冲。
  11. 根据权利要求1所述的协同脉冲发生电路,还包括:触发单元和与所述触发单元电连接的至少一对电极,其中,
    所述触发单元分别与所述第一脉冲发生模块和所述第二脉冲发生模块电连接,所述电极用于与负载连接;
    所述触发单元被配置为在被触发指令触发时导通使得第一脉冲信号和/或第二脉冲信号传输至所述电极。
  12. 根据权利要求1所述的协同脉冲发生电路,还包括:
    监测模块,配置为用于对第一脉冲信号和/或第二脉冲信号输出的电压进行监测和对所述第一脉冲信号和/或第二脉冲信号的输出电流进行监测。
  13. 一种协同脉冲发生装置,包括:
    权利要求1-12中任一项所述的协同脉冲发生电路;以及
    控制模块,分别与所述第一脉冲发生模块和所述第二脉冲发生模块电连接,且被配置为根据输入信息生成所述第一控制信号和所述第二控制信号,并将所述第一控制信号传输至所述第一脉冲发生模块,将所述第二控制信号传输至所述第二脉冲发生模块。
  14. 一种协同脉冲发生方法,用于权利要求1-12中任一项所述的协同脉冲发生电路,包括:
    第一脉冲发生模块所包括的n级第一脉冲发生单元接收第一电源以第一电压提供的电能并进行存储,第二脉冲发生模块所包括的m级第二脉冲发生单元接收第二电源以第二电压提供的电能并进行存储,n为大于或等于1的整数,m为大于或等于1的整数,所述第二电压大于所述第一电压;
    x个所述第一脉冲发生单元接收第一控制信号,且在所述第一控制信号的控制下进行放电以形成第一脉冲,x为大于或等于1且小于或等于n的整数;
    y个所述第二脉冲发生单元接收第二控制信号,且在所述第二控制信号的控制下进行放电以形成第二脉冲,y为大于或等于1且小于或等于m的整数;以及
    将所述第一脉冲和/或所述第二脉冲施加至负载;
    其中,所述第二脉冲的宽度小于所述第一脉冲的宽度。
  15. 根据权利要求14所述的协同脉冲发生方法,其中,
    所述第二脉冲发生单元接收所述第二控制信号的时间与所述第一脉冲发生单元接收所述第一控制信号的时间不同。
  16. 根据权利要求14所述的协同脉冲发生方法,其中,
    所述第一脉冲发生单元包括第一存储单元、第一开关单元以及第一截止单元,所述第一截止单元仅允许电流由所述第一电源流向所述第一脉冲发生单元,或者由本级所述第一脉冲发生单元流向下一级所述第一脉冲发生单元;
    x个所述第一脉冲发生单元接收第一控制信号,且在所述第一控制信 号的控制下进行放电以形成第一脉冲,包括:x个所述第一开关单元接收所述第一控制信号且在所述第一控制信号的控制下导通,以使与接收到所述第一控制信号的所述第一开关单元同级的x个所述第一存储单元进行串联并进行放电以形成所述第一脉冲;
    所述第二脉冲发生单元包括第二存储单元、第二开关单元以及第二截止单元,所述第二截止单元仅允许电流由所述第二电源流向所述第二脉冲发生单元,或者由本级所述第二脉冲发生单元流向下一级所述第二脉冲发生单元;
    所述y个所述第二脉冲发生单元接收第二控制信号,且在所述第二控制信号的控制下进行放电以形成第二脉冲,包括:y个所述第二开关单元接收到所述第二控制信号且在所述第二控制信号的控制下导通,以使与接收到所述第二控制信号的所述第二开关单元同级的y个第二存储单元进行串联并进行放电以形成所述第二脉冲。
  17. 根据权利要求16所述的协同脉冲发生方法,其中,
    所述第一脉冲发生模块所包括的n级第一脉冲发生单元接收第一电源以第一电压提供的电能并进行存储,包括:各所述第一开关单元在接收到第三控制信号时断开,以使各级所述第一存储单元并联至所述第一电源而接收到所述第一电源提供的电能并进行存储;
    所述第二脉冲发生模块所包括的m级第二脉冲发生单元接收第二电源以第二电压提高的电能并进行存储,包括:各所述第二开关单元在接收到第四控制信号时断开,以使各级所述第二存储单元并联至所述第二电源而接收到所述第二电源提供的电能并进行存储。
  18. 根据权利要求14所述的协同脉冲发生方法,其中,
    所述第一脉冲为毫秒脉冲或微秒脉冲;以及
    所述第二脉冲为纳秒脉冲。
PCT/CN2022/111828 2021-08-11 2022-08-11 协同脉冲发生电路、发生装置及其发生方法 WO2023016520A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247003923A KR20240029069A (ko) 2021-08-11 2022-08-11 시너지 펄스 발생 회로, 발생 장치 및 이의 발생 방법
EP22855500.9A EP4366166A1 (en) 2021-08-11 2022-08-11 Synergistic pulse generation circuit, generation apparatus, and generation method therefor

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110921262.1A CN113616312A (zh) 2021-08-11 2021-08-11 协同脉冲发生装置、系统及发生方法
CN202110921259.X 2021-08-11
CN202110921262.1 2021-08-11
CN202110921259.XA CN113824431A (zh) 2021-08-11 2021-08-11 协同脉冲发生电路、发生装置及其发生方法

Publications (1)

Publication Number Publication Date
WO2023016520A1 true WO2023016520A1 (zh) 2023-02-16

Family

ID=85199836

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/111828 WO2023016520A1 (zh) 2021-08-11 2022-08-11 协同脉冲发生电路、发生装置及其发生方法

Country Status (3)

Country Link
EP (1) EP4366166A1 (zh)
KR (1) KR20240029069A (zh)
WO (1) WO2023016520A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135947A (ja) * 2004-10-05 2006-05-25 Kumamoto Univ パルス発生回路、パルス発生装置およびパルス発生方法
CN103446667A (zh) * 2012-05-30 2013-12-18 张涛 全时段高压陡脉冲癌症治疗装置及方法
CN110071707A (zh) * 2019-04-17 2019-07-30 重庆大学 协同脉冲信号发生装置
CN211300301U (zh) * 2019-11-25 2020-08-21 杭州睿笛生物科技有限公司 一种高压复合电脉冲调制电路及消融设备
CN112540221A (zh) * 2020-11-18 2021-03-23 杭州维那泰克医疗科技有限责任公司 脉冲电压的发生方法、检测方法及对应的装置
CN113616312A (zh) * 2021-08-11 2021-11-09 杭州维纳安可医疗科技有限责任公司 协同脉冲发生装置、系统及发生方法
CN113648053A (zh) * 2021-09-01 2021-11-16 杭州维纳安可医疗科技有限责任公司 用于脉冲消融治疗的脉冲监控方法、装置及设备
CN113824431A (zh) * 2021-08-11 2021-12-21 杭州维纳安可医疗科技有限责任公司 协同脉冲发生电路、发生装置及其发生方法
CN114362725A (zh) * 2021-12-31 2022-04-15 杭州维纳安可医疗科技有限责任公司 不可逆电穿孔装置及其控制方法、存储介质

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006135947A (ja) * 2004-10-05 2006-05-25 Kumamoto Univ パルス発生回路、パルス発生装置およびパルス発生方法
CN103446667A (zh) * 2012-05-30 2013-12-18 张涛 全时段高压陡脉冲癌症治疗装置及方法
CN110071707A (zh) * 2019-04-17 2019-07-30 重庆大学 协同脉冲信号发生装置
CN211300301U (zh) * 2019-11-25 2020-08-21 杭州睿笛生物科技有限公司 一种高压复合电脉冲调制电路及消融设备
CN112540221A (zh) * 2020-11-18 2021-03-23 杭州维那泰克医疗科技有限责任公司 脉冲电压的发生方法、检测方法及对应的装置
CN113616312A (zh) * 2021-08-11 2021-11-09 杭州维纳安可医疗科技有限责任公司 协同脉冲发生装置、系统及发生方法
CN113824431A (zh) * 2021-08-11 2021-12-21 杭州维纳安可医疗科技有限责任公司 协同脉冲发生电路、发生装置及其发生方法
CN113648053A (zh) * 2021-09-01 2021-11-16 杭州维纳安可医疗科技有限责任公司 用于脉冲消融治疗的脉冲监控方法、装置及设备
CN114362725A (zh) * 2021-12-31 2022-04-15 杭州维纳安可医疗科技有限责任公司 不可逆电穿孔装置及其控制方法、存储介质

Also Published As

Publication number Publication date
EP4366166A1 (en) 2024-05-08
KR20240029069A (ko) 2024-03-05

Similar Documents

Publication Publication Date Title
CN107040244B (zh) 基于frspt和反谐振网络的全固态高电压微秒脉冲发生器
WO2019144037A1 (en) Resonant pulsed voltage multiplier and capacitor charger
Yao et al. A novel configuration of modular bipolar pulse generator topology based on Marx generator with double power charging
JP6031532B2 (ja) 電圧交番パルスの出力に用いられるデバイス及び方法
JP2015524239A (ja) 電気機械エネルギー変換のための充電/放電回路および電気機械エネルギー変換システム
US20120038224A1 (en) Circuit arrangement and method for supplying a high-power functional component with high-voltage pulses
CN108365743A (zh) 一种磁隔离型带负电压偏置的多路同步触发电路
Ma et al. MHz nanosecond rectangular pulse generator with high voltage gain and multimode
WO2023016520A1 (zh) 协同脉冲发生电路、发生装置及其发生方法
CN108462482B (zh) 一种产生双极性高压脉冲的装置和方法
CN102570441A (zh) 高压放电模块以及具备该模块的高压放电装置
CN110858755B (zh) 用于控制电流脉冲的调制器及其方法
CN204886900U (zh) 一种基于Marx电路的空间对称型高压纳秒脉冲源
Gao et al. All solid-state Marx modulator with bipolar high-voltage fast narrow pulses output
CN113824431A (zh) 协同脉冲发生电路、发生装置及其发生方法
CN115208229A (zh) 一种电感储能脉冲发生器
CN112532212A (zh) 脉冲发生电路、脉冲发生装置及方法
CN114081614A (zh) 脉冲电场组织消融装置
Jiang et al. A Solid-State Pulse Adder for High-Voltage Short Pulses and Low-Voltage Long Pulses
CN111313867A (zh) 一种全固态百纳秒方波脉冲发生器
CN109995224A (zh) 一种单外部驱动的mosfet管串联高压模块
WO2023016523A1 (zh) 协同脉冲发生装置、设备及发生方法
CN115967374B (zh) 一种基于全固态开关混联的高压脉冲发生装置
Chaugule et al. Design and hardware implementation of two stage solid state bipolar Marx generator
Dong et al. Design of bipolar pulse generator topology based on Marx supplied by double power

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855500

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022855500

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20247003923

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247003923

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 18681034

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2022855500

Country of ref document: EP

Effective date: 20240129

NENP Non-entry into the national phase

Ref country code: DE