WO2023016355A1 - Amplification detection device and amplification detection method - Google Patents

Amplification detection device and amplification detection method Download PDF

Info

Publication number
WO2023016355A1
WO2023016355A1 PCT/CN2022/110451 CN2022110451W WO2023016355A1 WO 2023016355 A1 WO2023016355 A1 WO 2023016355A1 CN 2022110451 W CN2022110451 W CN 2022110451W WO 2023016355 A1 WO2023016355 A1 WO 2023016355A1
Authority
WO
WIPO (PCT)
Prior art keywords
component
mounting position
target
light signal
detection device
Prior art date
Application number
PCT/CN2022/110451
Other languages
French (fr)
Inventor
Lizhong Dai
Yaping Xie
Jianshu CHEN
Kui GUAN
Original Assignee
Sansure Biotech Inc.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansure Biotech Inc. filed Critical Sansure Biotech Inc.
Publication of WO2023016355A1 publication Critical patent/WO2023016355A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01LCHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
    • B01L7/00Heating or cooling apparatus; Heat insulating devices
    • B01L7/52Heating or cooling apparatus; Heat insulating devices with provision for submitting samples to a predetermined sequence of different temperatures, e.g. for treating nucleic acid samples
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/686Polymerase chain reaction [PCR]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N2021/6463Optics
    • G01N2021/6471Special filters, filter wheel
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N2021/6491Measuring fluorescence and transmission; Correcting inner filter effect

Definitions

  • primers added during amplification are usually labeled with isotopes or fluorescein.
  • isotopes or fluorescein As the primers are combined with the DNA template for amplification, changes of a fluorescence signal are detected during the amplification reaction process. As such, the total amount of product after each cycle can be obtained.
  • the above-mentioned amplification detection device can selectively integrate the fluorescence detection component and/or the chromogenic detection component, so the usage mode is more flexible. Users can purchase the amplification detection device with only the fluorescence detection component mounted, or only the chromogenic detection component mounted, or both the fluorescence detection component and the chromogenic detection component mounted, as required.
  • the chromogenic detection refers to adding a substance used for labelling and a chromogenic solution during the amplification process of the sample to obtain a corresponding signal, and finally performing detection and analysis through the chromogenic detection component 170 and the light signal receiving component 180. Due to the simple configuration and low cost of the chromogenic detection component 170, in a qualitative screening process, the chromogenic detection component 170 can be used for detection, and the fluorescence detection component 150 can be used for fluorescence detection when the requirement of the detection precision is high, so that the detection cost can be reduced while guaranteeing the detection accuracy.
  • the lower base 112 is provided with a lower central mounting groove 1121, a first lower mounting groove 1122, a second lower mounting groove 1123, and a third lower mounting groove 1124.
  • the lower central mounting groove 1121 is located at the center of the lower base 112.
  • a cross section of the lower central mounting groove 1121 in a direction perpendicular to the first direction is substantially circular.
  • One end of the first lower mounting groove 1122 is in communication with the lower central mounting groove 1121, and the other end of the first lower mounting groove 1122 extends linearly in a direction away from the lower central mounting groove 1121 along the second direction.
  • a cross section of the first lower mounting groove 1122 in the direction perpendicular to the first direction is substantially semicircular.
  • the upper base 114 is provided with an upper central mounting groove, a first upper mounting groove, a second upper mounting groove, and a third upper mounting groove.
  • the upper central mounting groove is located at the center of the lower base 112, and extends through the upper base 114 in the first direction.
  • a cross section of the upper central mounting groove in the direction perpendicular to the first direction is substantially circular.
  • One end of the first upper mounting groove is in communication with the upper central mounting groove, and the other end of the first upper mounting groove extends linearly in a direction away from the upper central mounting groove along the second direction.
  • a cross section of the first upper mounting groove in the direction perpendicular to the second direction is substantially semicircular.
  • inner sidewalls of the first mounting position, the second mounting position, and the third mounting position are further provided with annular limiting grooves, so as to limit the fluorescence detection component 150, the chromogenic detection component 170, and the light signal receiving component 180.
  • a first communication hole, a second communication hole, and a third communication hole that are in communication with the heating cavity 1361 are formed to extend through a sidewall of the heat-conducting cylinder 136.
  • the first communication hole is disposed corresponding to the first mounting position.
  • the second communication hole is disposed corresponding to the second mounting position.
  • the third communication hole is disposed corresponding to the third mounting position.
  • the fluorescence detection component 150 includes a fluorescence detection light source 152, a first filter module 154, and a first focusing module 156, which are sequentially spaced in the second direction.
  • the first focusing module 156 is located at a side of the first filter module 154 close to the main mounting cavity.
  • the fluorescence detection light source 152 is located at a side of the first filter module 154 away from the main mounting cavity.
  • the fluorescence detection light source 152 is a light emitting diode, which is used to emit a light signal.
  • the first filter module 154 is a filter, which is used to filter unnecessary interference light in the light signal.
  • the first focusing module 156 is a focusing lens, which is used to focus scattered light.
  • the fluorescence detection light source 152, the first filter module 154, and the first focusing module 156 are arranged in sequence in the first mounting position, and the light signal emitted by the light source is filtered by the first filter module 154 and is focused by the first focusing module 156, and then enters the heating cavity 1361.
  • the combination of the first filter module 154 and the first focusing module 156 can effectively reduce the requirements on the light source.
  • the chromogenic detection component 170 includes a chromogenic detection light source.
  • the chromogenic detection light source is mounted at the third mounting position.
  • the chromogenic detection light source is a light emitting diode, which is used to emit a light signal.
  • the light signal passes through a filter tube in the heating component 130 to reach the light signal receiving component 180 to form a photoelectric signal.
  • the light signal emitted by the sample in the reagent tube 200 is focused by the second focusing module 1541 and filtered by the second filter module 1543, and then reaches the light signal sensing module 185 to form the photoelectric signal.
  • the amplification detection device 100 further includes a display module.
  • the display module is communicated with the control module, for displaying the amplification detection results of the amplification detection device 100.
  • the display module includes indicator lamps of three colors, and the colors can be white, orange, and blue, respectively.
  • the blue lamp is always on.
  • the blue lamp flashes.
  • the white lamp is always on.
  • the orange lamp is always on.
  • the three lamps flash simultaneously.
  • the assembling process of the amplification detection device 100 with the fluorescence detection component 150 mounted is as follows.
  • the temperature sensing module 190 is inserted into the heat-conducting cylinder 136, and a fast-setting heat-conducting adhesive is applied to fix the temperature sensing module 190. Then, the heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 in which the temperature sensing module 190 is inserted are stacked in sequence from bottom to top, and are mounted at the lower central mounting groove 1121 of the lower base 112.
  • the first focusing module 152, the first filter module 154, and the fluorescence detection light source 156 of the fluorescence detection component 150 are embedded into the first lower mounting groove 1122 in sequence.
  • the second focusing module 181 and the second filter module 183 of the light signal receiving component 180 are embedded in the second lower mounting groove 1123.
  • the upper base 114 is covered on the lower base 112.
  • the upper base 114 and the lower base 112 are fixed to each other by fasteners such as bolts.
  • the light signal sensing module 185 is inserted into the second mounting position and fixed by fasteners such as bolts, to complete the assembling of the amplification detection device 100.
  • the assembling process of the amplification detection device 100 with the chromogenic detection component 170 mounted is as follows.
  • the temperature sensing module 190 is inserted into the heat-conducting cylinder 136, and a fast-setting heat-conducting adhesive is applied to fix the temperature sensing module 190. Then, the heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 in which the temperature sensing module 190 is inserted are stacked in sequence from bottom to top, and are mounted at the lower central mounting groove 1121 of the lower base 112.
  • the chromogenic detection component 170 is mounted in the third lower mounting groove 1124, and the second focusing module 181 and the second filter module 183 of the light signal receiving component 180 are embedded in the second lower mounting groove 1123.
  • the upper base 114 is covered on the lower base 112.
  • the upper base 114 and the lower base 112 are fixed to each other by fasteners such as bolts.
  • the light signal sensing module 185 is inserted into the second mounting position and fixed by fasteners such as bolts, to complete the assembling of the amplification detection device 100.
  • the assembling process of the amplification detection device 100 with both the fluorescence detection component 150 and the chromogenic detection component 170 mounted is as follows.
  • the temperature sensing module 190 is inserted into the heat-conducting cylinder 136, and a fast-setting heat-conducting adhesive is applied to fix the temperature sensing module 190. Then, the heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 in which the temperature sensing module 190 is inserted are stacked in sequence from bottom to top, and are mounted at the lower central mounting groove 1121 of the lower base 112.
  • the first focusing module 152, the first filter module 154, and the fluorescence detection light source 156 of the fluorescence detection component 150 are embedded into the first lower mounting groove 1122 in sequence.
  • the chromogenic detection component 170 is mounted in the third lower mounting groove 1124, and the second focusing module 181 and the second filter module 183 of the light signal receiving component 180 are embedded into the second lower mounting groove 1123.
  • the upper base 114 is covered on the lower base 112.
  • the upper base 114 and the lower base 112 are fixed to each other by fasteners such as bolts.
  • the above-mentioned amplification detection device 100 integrates the fluorescence detection component 150 and the chromogenic detection component 170 that are switchable, fluorescence detection and chromogenic detection can be performed as required, thereby increasing the application range of the amplification detection device 100. Moreover, since the fluorescence detection component 150 and the chromogenic detection component 170 share some components, there is no need to separately configure structural components for the fluorescence detection component 150 and the chromogenic detection component 170, thereby reducing the production cost of the amplification detection device 100, and effectively shortening the product development cycle.
  • the present application further provides an amplification detection method using the above amplification detection device.
  • amplification detection method it is possible to quickly and accurately determine whether the sample is positive or negative according to the photoelectric signal of the light signal receiving component 180, thereby improving the accuracy of the detection result, and improving the convenience of use of the amplification detection device.
  • the amplification detection method includes the following steps S110 to S130.
  • step S110 after a sample is placed, target parameters collected for N times after a target timing are obtained.
  • the target timing is a timing when a first predetermined duration has elapsed since the timing when the sample is placed.
  • the first predetermined duration is 7 minutes
  • the target parameter is a value outputted by an analog-to-digital converter (ADC) (which is referred as to ADC value hereinafter) , initially collected by the light signal receiving component 180.
  • ADC analog-to-digital converter
  • N first parameters are determined according to the target parameters collected for N times.
  • step S120 includes the following steps S1211 to S1213.
  • step S1211 the target parameters within a second predetermined duration before the target timing are obtained.
  • the ADC values of the light signal receiving component 180 within 3 min to 7 min after the sample is placed are obtained.
  • a linear fitting is performed using the target parameters within the second predetermined duration before the target timing, to obtain a linear fitting equation.
  • the first parameters are obtained according to the linear fitting equation and the target parameters.
  • each x is substituted into the linear equation to obtain a corresponding theoretical ADC value, and then a difference value ⁇ y between the theoretical ADC value and the corresponding ADC value obtained after the sample is placed for 7 minutes is calculated.
  • the first parameters are values of ⁇ y/b.
  • step S120 includes the following steps S1221 to S1222.
  • step S1221 an average value of the target parameters within the second predetermined duration before the target timing, or the target parameter at the target timing is obtained.
  • the ADC values of the light signal receiving component 180 within 3 min to 7 min after the sample is placed are obtained, and then the average value of the ADC values are calculated. Or, the ADC value of the light signal receiving component 180 when 7 min is elapsed since the sample is placed, is obtained.
  • difference values between the target parameters collected for N times after the target timing and the average value, or between the target parameters collected for N times after the target timing and the target parameter at the target timing are calculated as the first parameters.
  • the difference values between the ADC values when 7 min is elapsed since the sample is placed and the average value, or between the ADC values when 7 min is elapsed since the sample is placed and the target parameter at the target timing are calculated as the first parameters.
  • the first parameter is determined to be equal to the target parameter
  • a threshold is the difference value between the mean and the standard deviation of the ADC values within 3 min to 7 min after the sample is placed, or 90%of the mean.
  • N is 5, and the time interval for each collecting of target parameter is 2s. It can be understood that, in some other embodiments, the specific value of N is not limited to herein, and the time interval for each collecting of the target parameter can also be set as required.
  • the above amplification detection method compares the ADC value collected by the light signal receiving component 180 with the threshold value, to accurately and quickly determine whether the sample is positive or negative, and can accurately identify weak positive cases that are difficult to be identified with the naked eye, improving the accuracy of the detection results, thus providing convenience for home nucleic acid testing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Biochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Wood Science & Technology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Biotechnology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Clinical Laboratory Science (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

The present application relates to an amplification detection device and an amplification detection method. The amplification detection device includes: a base component; a heating component mounted at the base component, and wherein the heating component includes a heating cavity; a fluorescence detection component configured to generate a fluorescence detection light path, detachably mounted at the base component; a chromogenic detection component configured to generate a chromogenic detection light path, detachably mounted at the base component; a light signal receiving component mounted at the base component. At least one of the fluorescence detection component or the chromogenic detection component is mounted at the base component. The fluorescence detection light path passes through the heating cavity and reaches the light signal receiving component; or the chromogenic detection light path passes through the heating cavity and reaches the light signal receiving component. The above amplification detection device integrates the fluorescence detection component and the chromogenic detection component, and the usage mode is more flexible. It is possible to purchase the amplification detection device with only the fluorescence detection component mounted, or only the chromogenic detection component mounted, or both the fluorescence detection component and the chromogenic detection component mounted, as required.

Description

AMPLIFICATION DETECTION DEVICE AND AMPLIFICATION DETECTION METHOD TECHNICAL FIELD
The present application relates to the technical field of biological detection, in particular, to an amplification detection device and an amplification detection method.
BACKGROUND
A polymerase chain reaction (PCR) technology is a molecular biology technology that amplifies specific deoxyribonucleic acid (DNA) sequences in vitro. The PCR technology has the characteristics of strong specificity, high sensitivity, low purity requirements, simplicity and rapidity, and thus is widely used in molecular biology detection and analysis.
In order to perform real-time detection of an amplification reaction process, primers added during amplification are usually labeled with isotopes or fluorescein. As the primers are combined with the DNA template for amplification, changes of a fluorescence signal are detected during the amplification reaction process. As such, the total amount of product after each cycle can be obtained.
Due to the development of the Coronavirus (COVID-19) epidemic, nucleic acid molecular testing has been widely recognized, and the home nucleic acid testing market has ushered in an opportunity for development. Therefore, the miniaturization and home-use of nucleic acid testing systems are an inevitable trend in the development of technology applications. On the one hand, especially in the prevention and control of the epidemic, miniaturized point-of-care testing (POCT) equipment is in great demand in the fields of customs, border control, even food, etc. On the other hand, with the development of the economic level, the health awareness in the society is increasing day by day, and the demand for home testing is also increasing. All of these require simple nucleic acid testing operations, miniaturized (portable) equipment, shorter testing cycles, and more accurate and easy-to-read results.
At present, a fluorescence detection structure is usually used to collect fluorescence signals. The existing fluorescence detection structure usually includes a light source, two sets of filters, two sets of lenses, and a detector. The excitation light emitted by the light source is filtered by the filters and focused by the lenses, and then is irradiated onto the sample, to excite the sample to emit fluorescence. As such, the fluorescence signal reaches the detector after being filtered by the filters and focused by the lenses, and a data analysis device analyzes and processes the fluorescence signal detected by the detector. It can be learned that the fluorescence detection structure in the prior art has a complex configuration, high requirements on the specifications of the light source LED, and high cost, which cannot meet the requirements of the nucleic acid testing system for miniaturization, household use or disposable use. Moreover, only the detection method of fluorescence detection can be realized, the application range is narrow, and the experimental cost is high.
SUMMARY
Accordingly, it is necessary to provide an amplification detection device and an amplification detection method to address problems of complex structure, high cost, and single detection method of the existing amplification detection device. The amplification detection device and  the amplification detection method can effectively reduce the cost of the device, and reduce a size of the device, to meet the needs of the amplification detection system for miniaturization, household or disposable use.
According to an aspect of the present application, an amplification detection device is provided, and includes:
a base component;
a heating component mounted at the base component, and wherein the heating component includes a heating cavity with an open end;
a light signal receiving component mounted at the base component; and
at least one of a fluorescence detection component configured to generate a fluorescence detection light path, or a chromogenic detection component configured to generate a chromogenic detection light path. The fluorescence detection light path passes through the heating cavity and reaches the light signal receiving component; and the chromogenic detection light path passes through the heating cavity and reaches the light signal receiving component.
In one of the embodiments, the base component includes a main mounting cavity with an open end, a first mounting position, a second mounting position, and a third mounting position. The first mounting position, the second mounting position, and the third mounting position are in communication with the main mounting cavity, respectively.
The heating component is detachably limited in the main mounting cavity. The fluorescence detection component is detachably mounted at the first mounting position. The light signal receiving component is detachably mounted at the second mounting position. The chromogenic detection component is detachably mounted at the third mounting position.
In one of the embodiments, the second mounting position and the third mounting position are respectively located on opposite sides of the main mounting cavity in a radial direction of the main mounting cavity. In a circumferential direction of the main mounting cavity, the first mounting position is located between the second mounting position and the third mounting position.
In one of the embodiments, the fluorescence detection component includes a fluorescence detection light source, a first filter module, and a first focusing module that are sequentially spaced in a radial direction of the main mounting cavity. The first focusing module is located at a side of the first filter module facing the main mounting cavity. The fluorescence detection light source is located at a side of the first filter module away from the main mounting cavity.
In one of the embodiments, the chromogenic detection component includes a chromogenic detection light source. The chromogenic detection light source is mounted at the third mounting position.
In one of the embodiments, the light signal receiving component includes a second focusing module, a second filter module, and a light signal sensing module that are spaced in a radial direction of the main mounting cavity. The second focusing module is located at a side of the second filter module facing the main mounting cavity. The light signal sensing module is located on a side of the second filter module away from the main mounting cavity.
In one of the embodiments, the heating component includes a heating piece and a heat-conducting cylinder. The heating cavity is formed in the heat-conducting cylinder. The heating piece is located on a side of the heat-conducting cylinder away from the open end of the heating cavity.
The heat-conducting cylinder is provided with a first communication hole, a second communication hole, and a third communication hole that are in communication with the heating cavity.  The first communication hole is disposed corresponding to the first mounting position. The second communication hole is disposed corresponding to the second mounting position. The third communication hole is disposed corresponding to the third mounting position.
In one of the embodiments, the amplification detection device further includes a temperature sensing module. One end of the temperature sensing module is inserted into the heating component, and the other end of the temperature sensing module extends out of the base component.
In one of the embodiments, the amplification detection device further includes a control module. The control module is communicated with the light signal receiving component, to obtain detection results of the light signal receiving component.
In one of the embodiments, the amplification detection device further includes a display module. The display module is communicated with the control module.
According to another aspect of the present application, an amplification detection method using the amplification detection device as described above is provided, and includes:
after a sample is placed, obtaining target parameters collected for N times after a target timing; wherein the target timing is a timing when a first predetermined duration has elapsed since a timing when the sample is placed;
determining N first parameters according to the target parameters collected for N times;
comparing the N first parameters with a predetermined threshold value; and
determining the sample to be positive when the N first parameters are less than the predetermined threshold value.
In one of the embodiments, the target parameter is a value outputted by an analog-to-digital converter, ADC, of the light signal receiving component.
In one of the embodiments, the determining the N first parameters according to the target parameters collected for N times includes:
obtaining the target parameters within a second predetermined duration before the target timing;
performing a linear fitting using the target parameters within the second predetermined duration before the target timing, to obtain a linear fitting equation; and
obtaining the first parameters according to the linear fitting equation and the target parameters.
In one of the embodiments, the determining the N first parameters according to the target parameters collected for N times includes:
determining the first parameter to be equal to the target parameter.
In one of the embodiments, the determining the N first parameters according to the target parameters collected for N times includes:
obtaining an average value of the target parameters within a second predetermined duration before the target timing, or a target parameter at the target timing; and
calculating difference values between the target parameters collected for N times after the target timing and the average value, or between the target parameters collected for N times after the target timing and the target parameter at the target timing, as the first parameters.
The present application achieves the following technical effects.
1. The structure of the device is simplified, the use of expensive lenses and filters is reduced, and the requirements on the specifications of the light source LED are low, which effectively  reduces the cost of the device, reduces the size of the device, and meets the needs of the nucleic acid testing system for miniaturization, household or disposable use.
2. The above-mentioned amplification detection device can selectively integrate the fluorescence detection component and/or the chromogenic detection component, so the usage mode is more flexible. Users can purchase the amplification detection device with only the fluorescence detection component mounted, or only the chromogenic detection component mounted, or both the fluorescence detection component and the chromogenic detection component mounted, as required.
3. The fluorescence detection component and the chromogenic detection component share the base component, the heating component, and the light signal receiving component, thus shortening the product development cycle and reducing the production cost.
4. The photoelectric signal is used to quickly and accurately determine whether the sample is positive or negative, which can accurately identify weak positive cases that are difficult to be identified with the naked eye, thereby improving the accuracy of the detection results, and improving the convenience of the usage of the amplification detection device.
BRIEF DESCRIPTION OF THE DRAWINGS
FIG. 1 is a schematic view of an amplification detection device according to an embodiment of the present application.
FIG. 2 is an exploded schematic view of the amplification detection device shown in FIG. 1.
FIG. 3 is a schematic view of a lower base of the amplification detection device shown in FIG. 1.
FIG. 4 is a schematic view of the lower base shown in FIG. 3, assembling with a heating component and a fluorescence detection component.
FIG. 5 is a schematic view of the lower base shown in FIG. 3, assembling with a chromogenic detection component.
Illustration for reference signs:
100-amplification detection device; 110-base component; 112-lower base; 1121-lower central mounting groove; 1122-first lower mounting groove; 1123-second lower mounting groove; 1124-third lower mounting groove; 114-upper base; 130-heating component; 132-heat-insulating piece; 134-heating piece; 136-heat-conducting cylinder; 1361-heating cavity; 150-fluorescence detection component; 152-fluorescence detection light source; 154-first filter module; 156-first focusing module; 170-chromogenic detection component; 180-light signal receiving component; 181-second focusing module; 183-second filter module; 185-light signal sensing module; 190-temperature sensing module; 200-reagent tube.
DETAILED DESCRIPTION OF THE EMBODIMENTS
In order to enable the above objects, features and advantages of the present application more obvious and understandable, the specific embodiments of the present application will be described in detail below with reference to the accompanying drawings. In the following description, many specific details are illustrated in order to aid in understanding of the present application. However, the present  application can be implemented in many other ways different from those described herein, and those skilled in the art can make similar improvements without departing from the connotation of the present application. Therefore, the present application is not limited by the specific embodiments disclosed below.
In the description of the present application, it should be understood that orientation or positional conditions indicated by terms “center” , “longitudinal” , “transverse” , “length” , “width” , “thickness” , “upper” , “lower” , “front” , “rear” , “left” , “right” , “vertical” , “horizontal” , “top” , “bottom” , “inner” , “outer” , “clockwise” , “counterclockwise” , “axial” , “radial” , “circumferential” etc. are based on orientation or positional relationships shown in the drawings, which are merely to facilitate the description of the present application and simplify the description, not to indicate or imply that the device or elements should have a particular orientation, be constructed and operated in a particular orientation, and therefore cannot be construed as a limitation on the present application.
In addition, the terms “first” and “second” are used for description only, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of technical features indicated. Thus, the features defined with “first” and “second” may include at least one of the features explicitly or implicitly. In the description of the present application, the meaning of “plurality” is at least two, for example, two, three or the like, unless explicitly and specifically defined otherwise.
In the present application, unless explicitly specified and defined otherwise, terms “mounting” , “connecting” , “connected” , and “fixing” should be understood in a broad sense. For example, it may be a fixed connection or a detachable connection, or an integration; may be a mechanical connection or electrical connection; may be a direct connection, or may be a connection through an intermediate medium, may be the communication between two elements or the interaction between two elements, unless explicitly defined otherwise. The specific meanings of the above terms in the present application can be understood by one of those ordinary skills in the art according to specific circumstances.
In the present application, unless expressly specified and defined otherwise, a first feature being “on” or “below” a second feature may mean that the first feature is in direct contact with the second feature, or may mean that the first feature is in indirect contact with the second feature through an intermediate medium. Moreover, the first feature being “above” , “on top of” and “upside” the second feature may mean that the first feature is directly above or obliquely above the second feature, or simply mean that the level of the first feature is higher than that of the second feature. The first feature being “below” , “under” and “beneath” the second feature may mean that the first feature is directly below or obliquely below the second feature, or simply mean that the level of the first feature is smaller than that of the second feature.
It should be noted that when an element is referred to as being “fixed to” or “provided on” another element, it can be directly on another element or there may be an intermediate element therebetween. When an element is considered to be “connected to” another element, it can be directly connected to another element or there may be an intermediate element therebetween at the same time. The terms “vertical” , “horizontal” , “upper” , “lower” , “left” , “right” , and the like used herein are for illustrative purposes only and are not intended to be the only embodiments.
Referring to FIGS. 1 and 2, an embodiment of the present application provides an amplification detection device 100. The amplification detection device 100 is used to heat a reagent tube 200 containing a sample at a constant temperature, so that the sample is subjected to an  amplification reaction in the reagent tube 200, and in this case, fluorescence detection or chromogenic detection is performed on the sample in the amplification reaction.
The amplification detection device 100 includes a control module, a base component 110, a heating component 130, a light signal receiving component 180, and at least one of a fluorescence detection component 150 or a chromogenic detection component 170. The control module, the heating component 130, the fluorescence detection component 150, the chromogenic detection component 170, and the light signal receiving component 180 are respectively detachably mounted on the base component 110. Under the control of the control module, the heating component 130 is used to heat the sample in the reagent tube 200, the fluorescence detection component 150 is used to generate a fluorescence detection light path, the chromogenic detection component 170 is used to generate a chromogenic detection light path, and the light signal receiving component 180 is used to receive light signals to obtain detection results.
When only the fluorescence detection component 150 is mounted on the base component 110, the amplification detection device 100 can perform fluorescence detection on the sample. When only the chromogenic detection component 170 is mounted on the base component 110, the amplification detection device 100 can perform chromogenic detection on the sample. When both the fluorescence detection component 150 and the chromogenic detection component 170 are mounted on the base component 110, the amplification detection device 100 can selectively perform fluorescence detection or chromogenic detection on the sample.
In this way, the above-mentioned amplification detection device 100 can selectively integrate the fluorescence detection component 150 and/or the chromogenic detection component 170, so the usage mode of the amplification detection device 100 is more flexible. The user can purchase the amplification detection device 100 with only the fluorescence detection component 150 mounted, or only the chromogenic detection component 170 mounted, or both the fluorescence detection component 150 and the chromogenic detection component 170 mounted, as required, thereby reducing the purchase cost. Since the fluorescence detection component 150 and the chromogenic detection component 170 share the base component 110, the heating component 130, and the light signal receiving component 180, the product development cycle is shortened and the production cost is reduced.
The chromogenic detection refers to adding a substance used for labelling and a chromogenic solution during the amplification process of the sample to obtain a corresponding signal, and finally performing detection and analysis through the chromogenic detection component 170 and the light signal receiving component 180. Due to the simple configuration and low cost of the chromogenic detection component 170, in a qualitative screening process, the chromogenic detection component 170 can be used for detection, and the fluorescence detection component 150 can be used for fluorescence detection when the requirement of the detection precision is high, so that the detection cost can be reduced while guaranteeing the detection accuracy.
Referring to FIGS. 1 and 2, the base component 110 includes a lower base 112 and an upper base 114. The lower base 112 and the upper base 114 are arranged opposite to each other in a first direction, to jointly define a main mounting cavity, a first mounting position, a second mounting position, and a third mounting position. The main mounting cavity is located at the center of the base component 110. The second mounting position and the third mounting position are respectively located on opposite sides of the main mounting cavity in a radial direction of the main mounting cavity. In a circumferential direction of the main mounting cavity, the first mounting position is located between the second mounting position and the third mounting position. As a preferred embodiment, the first  mounting position extends in a second direction, the second mounting position and the third mounting position extend opposite to each other in a third direction. The second direction, the third direction, and the first direction are perpendicular to each other.
The heating component 130 is limited in the main mounting cavity. The fluorescence detection component 150 is detachably mounted at the first mounting position. The light signal receiving component 180 is mounted at the second mounting position. The chromogenic detection component 170 is detachably mounted at the third mounting position.
In this way, the excitation light emitted by the fluorescence detection component 150 reaches the heating component 130, and the fluorescence emitted by the sample in the reagent tube 200 in the heating component 130 is received by the light signal receiving component 180. The light emitted by the chromogenic detection component 170 reaches the heating component 130. The light emitted by the sample in the reagent tube 200 in the heating component 130 is received by the light signal receiving component 180.
Referring to FIGS. 3, 4, and 5, in an embodiment, the lower base 112 is provided with a lower central mounting groove 1121, a first lower mounting groove 1122, a second lower mounting groove 1123, and a third lower mounting groove 1124. The lower central mounting groove 1121 is located at the center of the lower base 112. A cross section of the lower central mounting groove 1121 in a direction perpendicular to the first direction is substantially circular. One end of the first lower mounting groove 1122 is in communication with the lower central mounting groove 1121, and the other end of the first lower mounting groove 1122 extends linearly in a direction away from the lower central mounting groove 1121 along the second direction. A cross section of the first lower mounting groove 1122 in the direction perpendicular to the first direction is substantially semicircular. One end of the second lower mounting groove 1123 is in communication with the lower central mounting groove 1121, and the other end of the second lower mounting groove 1123 extends linearly in the direction away from the lower central mounting groove 1121 along the third direction. A cross section of the second lower mounting groove 1123 in a direction perpendicular to the third direction is substantially semicircular. One end of the third lower mounting groove 1124 is in communication with the lower central mounting groove 1121, and the other end of the third lower mounting groove 1124 extends linearly in the direction away from the lower central mounting groove 1121 along the third direction. A cross section of the third lower mounting groove 1124 in the direction perpendicular to the third direction is substantially semicircular.
The upper base 114 is provided with an upper central mounting groove, a first upper mounting groove, a second upper mounting groove, and a third upper mounting groove. The upper central mounting groove is located at the center of the lower base 112, and extends through the upper base 114 in the first direction. A cross section of the upper central mounting groove in the direction perpendicular to the first direction is substantially circular. One end of the first upper mounting groove is in communication with the upper central mounting groove, and the other end of the first upper mounting groove extends linearly in a direction away from the upper central mounting groove along the second direction. A cross section of the first upper mounting groove in the direction perpendicular to the second direction is substantially semicircular. One end of the second upper mounting groove is in communication with the upper central mounting groove, and the other end of the second upper mounting groove extends linearly in the direction away from the upper central mounting groove along the third direction. A cross section of the second upper mounting groove in the direction perpendicular to the third direction is substantially semicircular. One end of the third upper mounting groove is in communication with the upper central mounting groove, and the other end of the third upper mounting  groove extends linearly in the direction away from the upper central mounting groove along the third direction. A cross section of the third upper mounting groove in the direction perpendicular to the third direction is substantially semicircular.
In this way, the lower central mounting groove 1121 and the upper central mounting groove together define the main mounting cavity. The main mounting cavity has an open end away from the lower base 112 in the first direction to be in communication with outside. The first upper mounting groove and the first lower mounting groove 1122 are correspondingly disposed to jointly form the first mounting position with a substantially circular cross-section. The second upper mounting groove and the second lower mounting groove 1123 are correspondingly disposed to jointly form the second mounting position with a substantially circular cross-section. The third upper mounting groove and the third lower mounting groove 1124 are correspondingly disposed to jointly form the third mounting position with a substantially circular cross-section. It can be understood that the shapes of the main mounting cavity, the first mounting position, the second mounting position, and the third mounting position are not limited to herein, and can be set as required.
Further, inner sidewalls of the first mounting position, the second mounting position, and the third mounting position are further provided with annular limiting grooves, so as to limit the fluorescence detection component 150, the chromogenic detection component 170, and the light signal receiving component 180.
The heating component 130 includes a heat-insulating piece 132, a heating piece 134, and a heat-conducting cylinder 136. The heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 are stacked in the first direction. The heat-conducting cylinder 136 includes a heating cavity 1361 with an open end. The open end of the heating cavity 1361 faces the open end of the main mounting cavity to be in communication with the outside. The reagent tube 200 can be inserted into the heating cavity 1361 from the open end of the heating cavity 1361. The heating piece 134 is formed of a ceramic material, and is located on a side of the heat-conducting cylinder 136 away from the open end of the main mounting cavity. The heat-insulating piece 132 is formed of a material such as heat-insulating cotton, and is located on a side of the heating piece 134 away from the heat-conducting cylinder 136.
In this way, the heat-insulating piece 132 is used to prevent the heat of the heating piece 134 from being transferred to the base component 110, the heating piece 134 is used to generate heat to heat the heat-conducting cylinder 136, and the heat-conducting cylinder 136 conducts the heat generated by the heating piece 134 to the reagent tube 200, such that the reagent tube 200 is heated at a constant temperature.
Further, a first communication hole, a second communication hole, and a third communication hole that are in communication with the heating cavity 1361 are formed to extend through a sidewall of the heat-conducting cylinder 136. The first communication hole is disposed corresponding to the first mounting position. The second communication hole is disposed corresponding to the second mounting position. The third communication hole is disposed corresponding to the third mounting position.
In this way, the light signal emitted by the fluorescence detection component 150 mounted at the first mounting position can enter the heating cavity 1361 through the first communication hole. The fluorescence signal generated by the sample in the reagent tube 200 can reach the light signal receiving component 180 mounted at the second mounting position through the second communication hole. The light signal emitted by the chromogenic detection component 170 mounted at the third mounting  position can enter the heating cavity 1361 through the third communication hole. The light signal generated by the sample in the reagent tube 200 can reach the light signal receiving component 180 mounted at the second mounting position through the second communication hole.
In some embodiments, the amplification detection device 100 further includes a temperature sensing module 190. One end of the temperature sensing module 190 is inserted into the heat-conducting cylinder 136 of the heating component 130, and the other end of the temperature sensing module 190 extends out of the base component 110. Thus, the temperature in the heating cavity 1361 can be obtained in real time, so as to realize precise control of the heating temperature.
In some embodiments, the fluorescence detection component 150 includes a fluorescence detection light source 152, a first filter module 154, and a first focusing module 156, which are sequentially spaced in the second direction. The first focusing module 156 is located at a side of the first filter module 154 close to the main mounting cavity. The fluorescence detection light source 152 is located at a side of the first filter module 154 away from the main mounting cavity. Specifically, the fluorescence detection light source 152 is a light emitting diode, which is used to emit a light signal. The first filter module 154 is a filter, which is used to filter unnecessary interference light in the light signal. The first focusing module 156 is a focusing lens, which is used to focus scattered light. In this way, the fluorescence detection light source 152, the first filter module 154, and the first focusing module 156 are arranged in sequence in the first mounting position, and the light signal emitted by the light source is filtered by the first filter module 154 and is focused by the first focusing module 156, and then enters the heating cavity 1361. The combination of the first filter module 154 and the first focusing module 156 can effectively reduce the requirements on the light source.
The chromogenic detection component 170 includes a chromogenic detection light source. The chromogenic detection light source is mounted at the third mounting position. Specifically, the chromogenic detection light source is a light emitting diode, which is used to emit a light signal. The light signal passes through a filter tube in the heating component 130 to reach the light signal receiving component 180 to form a photoelectric signal.
The light signal receiving component 180 includes a second focusing module 181, a second filter module 183, and a light signal sensing module 185, which are spaced in the third direction. The second focusing module 181 is located at a side of the second filter module 183 facing the main mounting cavity. The light signal sensing module 185 is located on a side of the second filter module 183 away from the main mounting cavity. Specifically, the second focusing module 181 is a focusing lens, which is used to focus the scattered light. The second filter module 183 is a filter, which is used to filter unnecessary interference light in the light signal. The light signal sensing module 185 is a light signal sensor, which is used to convert the received light signal into a photoelectric signal. The control module can determine whether the sample is positive or negative according to the photoelectric signal.
In this way, the light signal emitted by the sample in the reagent tube 200 is focused by the second focusing module 1541 and filtered by the second filter module 1543, and then reaches the light signal sensing module 185 to form the photoelectric signal.
In some embodiments, the amplification detection device 100 further includes a display module. The display module is communicated with the control module, for displaying the amplification detection results of the amplification detection device 100.
Specifically, in an embodiment, the display module includes indicator lamps of three colors, and the colors can be white, orange, and blue, respectively. When the amplification detection device 100 is in a power supply standby state, the blue lamp is always on. When the amplification detection  device 100 is in a normal detection state, the blue lamp flashes. When the amplification detection device 100 ends the experiment and the result is negative, the white lamp is always on. When the amplification detection device 100 ends the experiment and the detection result is positive, the orange lamp is always on. When the amplification detection device 100 is in a fault state, the three lamps flash simultaneously.
The assembling process of the amplification detection device 100 with the fluorescence detection component 150 mounted is as follows.
Firstly, the temperature sensing module 190 is inserted into the heat-conducting cylinder 136, and a fast-setting heat-conducting adhesive is applied to fix the temperature sensing module 190. Then, the heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 in which the temperature sensing module 190 is inserted are stacked in sequence from bottom to top, and are mounted at the lower central mounting groove 1121 of the lower base 112.
Then, the first focusing module 152, the first filter module 154, and the fluorescence detection light source 156 of the fluorescence detection component 150 are embedded into the first lower mounting groove 1122 in sequence. The second focusing module 181 and the second filter module 183 of the light signal receiving component 180 are embedded in the second lower mounting groove 1123.
Thereafter, the upper base 114 is covered on the lower base 112. The upper base 114 and the lower base 112 are fixed to each other by fasteners such as bolts.
Finally, the light signal sensing module 185 is inserted into the second mounting position and fixed by fasteners such as bolts, to complete the assembling of the amplification detection device 100.
The assembling process of the amplification detection device 100 with the chromogenic detection component 170 mounted is as follows.
Firstly, the temperature sensing module 190 is inserted into the heat-conducting cylinder 136, and a fast-setting heat-conducting adhesive is applied to fix the temperature sensing module 190. Then, the heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 in which the temperature sensing module 190 is inserted are stacked in sequence from bottom to top, and are mounted at the lower central mounting groove 1121 of the lower base 112.
Then, the chromogenic detection component 170 is mounted in the third lower mounting groove 1124, and the second focusing module 181 and the second filter module 183 of the light signal receiving component 180 are embedded in the second lower mounting groove 1123.
Thereafter, the upper base 114 is covered on the lower base 112. The upper base 114 and the lower base 112 are fixed to each other by fasteners such as bolts.
Finally, the light signal sensing module 185 is inserted into the second mounting position and fixed by fasteners such as bolts, to complete the assembling of the amplification detection device 100.
The assembling process of the amplification detection device 100 with both the fluorescence detection component 150 and the chromogenic detection component 170 mounted is as follows.
Firstly, the temperature sensing module 190 is inserted into the heat-conducting cylinder 136, and a fast-setting heat-conducting adhesive is applied to fix the temperature sensing module 190. Then, the heat-insulating piece 132, the heating piece 134, and the heat-conducting cylinder 136 in which the temperature sensing module 190 is inserted are stacked in sequence from bottom to top, and are mounted at the lower central mounting groove 1121 of the lower base 112.
Then, the first focusing module 152, the first filter module 154, and the fluorescence detection light source 156 of the fluorescence detection component 150 are embedded into the first lower mounting groove 1122 in sequence. The chromogenic detection component 170 is mounted in the third  lower mounting groove 1124, and the second focusing module 181 and the second filter module 183 of the light signal receiving component 180 are embedded into the second lower mounting groove 1123.
Thereafter, the upper base 114 is covered on the lower base 112. The upper base 114 and the lower base 112 are fixed to each other by fasteners such as bolts.
Finally, the light signal sensing module 185 is inserted into the second mounting position and fixed by fasteners such as bolts, to complete the assembling of the amplification detection device 100.
Since the above-mentioned amplification detection device 100 integrates the fluorescence detection component 150 and the chromogenic detection component 170 that are switchable, fluorescence detection and chromogenic detection can be performed as required, thereby increasing the application range of the amplification detection device 100. Moreover, since the fluorescence detection component 150 and the chromogenic detection component 170 share some components, there is no need to separately configure structural components for the fluorescence detection component 150 and the chromogenic detection component 170, thereby reducing the production cost of the amplification detection device 100, and effectively shortening the product development cycle.
The present application further provides an amplification detection method using the above amplification detection device. Using the amplification detection method, it is possible to quickly and accurately determine whether the sample is positive or negative according to the photoelectric signal of the light signal receiving component 180, thereby improving the accuracy of the detection result, and improving the convenience of use of the amplification detection device.
Specifically, the amplification detection method includes the following steps S110 to S130.
At step S110, after a sample is placed, target parameters collected for N times after a target timing are obtained. The target timing is a timing when a first predetermined duration has elapsed since the timing when the sample is placed.
Specifically, the first predetermined duration is 7 minutes, and the target parameter is a value outputted by an analog-to-digital converter (ADC) (which is referred as to ADC value hereinafter) , initially collected by the light signal receiving component 180.
At step S120, N first parameters are determined according to the target parameters collected for N times.
Specifically, in an embodiment, step S120 includes the following steps S1211 to S1213.
At step S1211, the target parameters within a second predetermined duration before the target timing are obtained.
Specifically, the ADC values of the light signal receiving component 180 within 3 min to 7 min after the sample is placed are obtained.
At step S1212, a linear fitting is performed using the target parameters within the second predetermined duration before the target timing, to obtain a linear fitting equation.
Specifically, a linear equation y=kx+b is obtained by performing linear fitting using the ADC values of the light signal receiving component 180 within 3 min to 7 min after the sample is placed, where y is a theoretical ADC value, x is the time, and k and b are both constant.
At step S1213, the first parameters are obtained according to the linear fitting equation and the target parameters.
Specifically, using the linear equation y=kx+b, each x is substituted into the linear equation to obtain a corresponding theoretical ADC value, and then a difference value Δy between the theoretical ADC value and the corresponding ADC value obtained after the sample is placed for 7 minutes is  calculated. The first parameters are values of Δy/b.
Specifically, in another embodiment, step S120 includes the following steps S1221 to S1222.
At step S1221, an average value of the target parameters within the second predetermined duration before the target timing, or the target parameter at the target timing is obtained.
Specifically, the ADC values of the light signal receiving component 180 within 3 min to 7 min after the sample is placed are obtained, and then the average value of the ADC values are calculated. Or, the ADC value of the light signal receiving component 180 when 7 min is elapsed since the sample is placed, is obtained.
At step S1222, difference values between the target parameters collected for N times after the target timing and the average value, or between the target parameters collected for N times after the target timing and the target parameter at the target timing are calculated as the first parameters.
Specifically, the difference values between the ADC values when 7 min is elapsed since the sample is placed and the average value, or between the ADC values when 7 min is elapsed since the sample is placed and the target parameter at the target timing are calculated as the first parameters.
In other embodiments, the first parameter is determined to be equal to the target parameter, and a threshold is the difference value between the mean and the standard deviation of the ADC values within 3 min to 7 min after the sample is placed, or 90%of the mean.
In the above embodiments, N is 5, and the time interval for each collecting of target parameter is 2s. It can be understood that, in some other embodiments, the specific value of N is not limited to herein, and the time interval for each collecting of the target parameter can also be set as required.
The above amplification detection method compares the ADC value collected by the light signal receiving component 180 with the threshold value, to accurately and quickly determine whether the sample is positive or negative, and can accurately identify weak positive cases that are difficult to be identified with the naked eye, improving the accuracy of the detection results, thus providing convenience for home nucleic acid testing.
The technical features of the above-described embodiments can be combined arbitrarily. To simplify the description, not all possible combinations of the technical features in the above embodiments are described. However, all of the combinations of these technical features should be considered as being fallen within the scope of the present application, as long as such combinations do not contradict with each other.
The foregoing embodiments merely illustrate some embodiments of the present application, and descriptions thereof are relatively specific and detailed. However, it should not be understood as a limitation to the patent scope of the present application. It should be noted that, a person of ordinary skill in the art may further make some variations and improvements without departing from the concept of the present application, and the variations and improvements falls in the protection scope of the present application. Therefore, the protection scope of the present application shall be subject to the appended claims.

Claims (15)

  1. An amplification detection device, comprising:
    a base component;
    a heating component mounted at the base component, and wherein the heating component comprises a heating cavity with an open end;
    a light signal receiving component mounted at the base component; and
    at least one of a fluorescence detection component configured to generate a fluorescence detection light path, or a chromogenic detection component configured to generate a chromogenic detection light path; wherein the fluorescence detection light path passes through the heating cavity and reaches the light signal receiving component; and the chromogenic detection light path passes through the heating cavity and reaches the light signal receiving component.
  2. The amplification detection device according to claim 1, wherein the base component comprises a main mounting cavity with an open end, a first mounting position, a second mounting position, and a third mounting position; and wherein the first mounting position, the second mounting position, and the third mounting position are in communication with the main mounting cavity, respectively;
    the heating component is detachably limited in the main mounting cavity; the fluorescence detection component is detachably mounted at the first mounting position; the light signal receiving component is detachably mounted at the second mounting position; and the chromogenic detection component is detachably mounted at the third mounting position.
  3. The amplification detection device according to claim 2, wherein the second mounting position and the third mounting position are respectively located on opposite sides of the main mounting cavity in a radial direction of the main mounting cavity; in a circumferential direction of the main mounting cavity, the first mounting position is located between the second mounting position and the third mounting position.
  4. The amplification detection device according to claim 2, wherein the fluorescence detection component comprises a fluorescence detection light source, a first filter module, and a first focusing module that are sequentially spaced in a radial direction of the main mounting cavity; the first focusing module is located at a side of the first filter module facing the main mounting cavity; and the fluorescence detection light source is located at a side of the first filter module away from the main mounting cavity.
  5. The amplification detection device according to claim 2, wherein the chromogenic detection component comprises a chromogenic detection light source; and wherein the chromogenic detection light source is mounted at the third mounting position.
  6. The amplification detection device according to claim 2, wherein the light signal receiving component comprises a second focusing module, a second filter module, and an light signal sensing module that are spaced in a radial direction of the main mounting cavity; and wherein the second focusing module is located at a side of the second filter module facing the main mounting cavity; the light signal sensing module is located on a side of the second filter module away from the main mounting cavity.
  7. The amplification detection device according to claim 2, wherein the heating component comprises a heating piece and a heat-conducting cylinder; and wherein the heating cavity is formed in the heat-conducting cylinder; and the heating piece is located on a side of the heat-conducting cylinder away from the open end of the heating cavity;
    the heat-conducting cylinder is provided with a first communication hole, a second communication hole, and a third communication hole that are in communication with the heating cavity; the first communication hole is disposed corresponding to the first mounting position; the second communication hole is disposed corresponding to the second mounting position; and the third communication hole is disposed corresponding to the third mounting position.
  8. The amplification detection device according to claim 1, further comprising a temperature sensing module; and wherein one end of the temperature sensing module is inserted into the heating component, and the other end of the temperature sensing module extends out of the base component.
  9. The amplification detection device according to claim 1, further comprising a control module; and wherein the control module is communicated with the light signal receiving component, to obtain detection results of the light signal receiving component.
  10. The amplification detection device according to claim 9, further comprising a display module; and wherein the display module is communicated with the control module.
  11. An amplification detection method using the amplification detection device according to any one of claims 1 to 10, comprising:
    after a sample is placed, obtaining target parameters collected for N times after a target timing; wherein  the target timing is a timing when a first predetermined duration has elapsed since a timing when the sample is placed;
    determining N first parameters according to the target parameters collected for N times;
    comparing the N first parameters with a predetermined threshold value; and
    determining the sample to be positive when the N first parameters are less than the predetermined threshold value.
  12. The amplification detection method according to claim 11, wherein the target parameter is a value outputted by an analog-to-digital converter, ADC, of the light signal receiving component.
  13. The amplification detection method according to claim 11, wherein the determining the N first parameters according to the target parameters collected for N times comprises:
    obtaining the target parameters within a second predetermined duration before the target timing;
    performing a linear fitting using the target parameters within the second predetermined duration before the target timing, to obtain a linear fitting equation; and
    obtaining the first parameters according to the linear fitting equation and the target parameters.
  14. The amplification detection method according to claim 11, wherein the determining the N first parameters according to the target parameters collected for N times comprises:
    determining the first parameter to be equal to the target parameter.
  15. The amplification detection method according to claim 11, wherein the determining the N first parameters according to the target parameters collected for N times comprises:
    obtaining an average value of the target parameters within a second predetermined duration before the target timing, or a target parameter at the target timing; and
    calculating difference values between the target parameters collected for N times after the target timing and the average value, or between the target parameters collected for N times after the target timing and the target parameter at the target timing, as the first parameters.
PCT/CN2022/110451 2021-08-09 2022-08-05 Amplification detection device and amplification detection method WO2023016355A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110907448.1 2021-08-09
CN202110907448.1A CN113604328B (en) 2021-08-09 2021-08-09 Amplification detection device and amplification detection method

Publications (1)

Publication Number Publication Date
WO2023016355A1 true WO2023016355A1 (en) 2023-02-16

Family

ID=78307602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/110451 WO2023016355A1 (en) 2021-08-09 2022-08-05 Amplification detection device and amplification detection method

Country Status (2)

Country Link
CN (1) CN113604328B (en)
WO (1) WO2023016355A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114606123B (en) * 2022-05-12 2022-08-09 上海简逸生物科技有限公司 Self-service nucleic acid detection device and matched preparation

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157498A1 (en) * 2002-02-12 2003-08-21 Eyre David J. Multi-test analysis of real-time nucleic acid amplification
JP2005331319A (en) * 2004-05-19 2005-12-02 Hitachi High-Technologies Corp Spectrofluorometer and sample cell
US9096892B1 (en) * 2011-02-04 2015-08-04 K2 Biomicrosystems, LLC Nucleic acid amplification and monitoring apparatus
KR20160106898A (en) * 2015-03-03 2016-09-13 한국생명공학연구원 Light detecting apparatus for realtime molecular diagnosis
WO2018188655A1 (en) * 2017-04-13 2018-10-18 Riche Biotech Inc. Photothermal reaction analyzer
CN109971643A (en) * 2019-05-08 2019-07-05 中国人民解放军军事科学院军事医学研究院 Portable constant temperature augmentation detection instrument
US20190376900A1 (en) * 2013-08-26 2019-12-12 Diagenetix, Inc. Hardware And Mobile Software For Operation Of Portable Instruments For Nucleic Acid Amplification

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003144193A (en) * 2001-11-09 2003-05-20 Mitsubishi Heavy Ind Ltd Method for detecting microorganism and device for the same
JP5909420B2 (en) * 2012-07-25 2016-04-26 株式会社日立ハイテクノロジーズ Genetic testing device, genetic testing reagent, and genetic testing method
CN106140338B (en) * 2016-06-21 2019-08-16 中国科学院电子学研究所 The method of micro-fluidic chip system and the application system progress isothermal duplication and detection
WO2018119848A1 (en) * 2016-12-29 2018-07-05 湖南圣湘生物科技有限公司 Pcr fluorescence detector
CN111269970A (en) * 2018-12-05 2020-06-12 浙江大学 Simple and rapid DNA field visual detection device and method
CN109811038B (en) * 2019-01-17 2021-02-26 浙江大学 Portable instrument for bottom-lighting type nucleic acid isothermal amplification detection
CN112226350A (en) * 2020-10-28 2021-01-15 北京贝泰科技有限公司 Centrifugal nuclear extraction and amplification integrated system and detection method

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030157498A1 (en) * 2002-02-12 2003-08-21 Eyre David J. Multi-test analysis of real-time nucleic acid amplification
JP2005331319A (en) * 2004-05-19 2005-12-02 Hitachi High-Technologies Corp Spectrofluorometer and sample cell
US9096892B1 (en) * 2011-02-04 2015-08-04 K2 Biomicrosystems, LLC Nucleic acid amplification and monitoring apparatus
US20190376900A1 (en) * 2013-08-26 2019-12-12 Diagenetix, Inc. Hardware And Mobile Software For Operation Of Portable Instruments For Nucleic Acid Amplification
KR20160106898A (en) * 2015-03-03 2016-09-13 한국생명공학연구원 Light detecting apparatus for realtime molecular diagnosis
WO2018188655A1 (en) * 2017-04-13 2018-10-18 Riche Biotech Inc. Photothermal reaction analyzer
CN109971643A (en) * 2019-05-08 2019-07-05 中国人民解放军军事科学院军事医学研究院 Portable constant temperature augmentation detection instrument

Also Published As

Publication number Publication date
CN113604328A (en) 2021-11-05
CN113604328B (en) 2024-04-09

Similar Documents

Publication Publication Date Title
JP7352525B2 (en) Apparatus for detecting signal emissions from multiple fluorescent sources
CN102292450B (en) Device and method for detection of humidity-compromised urine test strips
Dasgupta et al. Light emitting diode-based detectors: Absorbance, fluorescence and spectroelectrochemical measurements in a planar flow-through cell
US6713297B2 (en) Apparatus for quantitative analysis of a nucleic acid amplification reaction
US11035869B2 (en) Automated liquid-phase immunoassay apparatus
KR101705602B1 (en) Optical sensor for fluorescence detection based on a smartphone camera
JP2020034562A (en) Microfluidic detection system and microfluidic cartridge
JP6442543B2 (en) Equipment for thermal convection polymerase chain reaction
WO2023016355A1 (en) Amplification detection device and amplification detection method
CN101275925A (en) Electrochemical biosensor and biosensor measuring device
JP2020106546A (en) Methods and systems for fluorescence detection
RU2002132617A (en) TEST STRIPES HAVING A LOT OF REACTION ZONES AND WAYS OF THEIR APPLICATION AND MANUFACTURE
EP2905607A1 (en) Analyte detection methods and devices
WO2017025984A1 (en) Smartphone integrated real - time molecular diagnostic device
KR20190094189A (en) Microorganism testing method and device
JP2016502670A (en) Optical survey device
CN104471375A (en) Use of a fluorescent material to detect failure or deteriorated performance of a fluorometer
EP3687689A1 (en) Mobile biosensing instrument capable of multiple detection modalities
CN112011455A (en) Temperature field and light path double-channel detection device for real-time fluorescence quantitative PCR instrument
Visedo et al. A portable device for miRNAs detection based on a gold-nanoparticle ratiometric colorimetric strategy
JP2019194622A (en) Point-of-care coagulation assay method and system by optical detection
CN212655797U (en) Temperature field and light path double-channel detection device for real-time fluorescence quantitative PCR instrument
CN214115577U (en) Temperature optical detection device for detecting fluorescent quantitative PCR instrument
CN204882371U (en) Digital photoelectricity biosensor
CN212410623U (en) Detection chip, detection equipment and detection system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22765400

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE