WO2023016294A1 - 信息传输的方法和装置 - Google Patents

信息传输的方法和装置 Download PDF

Info

Publication number
WO2023016294A1
WO2023016294A1 PCT/CN2022/109575 CN2022109575W WO2023016294A1 WO 2023016294 A1 WO2023016294 A1 WO 2023016294A1 CN 2022109575 W CN2022109575 W CN 2022109575W WO 2023016294 A1 WO2023016294 A1 WO 2023016294A1
Authority
WO
WIPO (PCT)
Prior art keywords
duration
time
time unit
period
communication device
Prior art date
Application number
PCT/CN2022/109575
Other languages
English (en)
French (fr)
Inventor
张彦清
李雪茹
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202111196366.7A external-priority patent/CN115843112A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22855277.4A priority Critical patent/EP4380281A1/en
Publication of WO2023016294A1 publication Critical patent/WO2023016294A1/zh
Priority to US18/436,403 priority patent/US20240179710A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the field of communications, and more particularly, to methods and devices for information transmission.
  • the real-time broadband communication (RTBC) scenario in the future communication system aims to support large bandwidth and low interaction delay.
  • the goal is to increase the bandwidth by 10 times under the given delay and certain reliability requirements, creating Immersive experience when a person interacts with a virtual world.
  • the extended reality professional (XR Pro) service with ultra-high bandwidth and ultra-low latency requirements poses a more severe challenge to the fifth generation (5G) mobile communication technology.
  • XR mainly includes virtual reality (VR), augmented reality (augmented reality, AR) and mixed reality (mixed reality, MR) and other virtual and reality interaction technologies.
  • the XR content of the server will generate data content at a fixed frequency (for example, 60 Hz or 120 Hz), and transmit it to the XR terminal equipment by the base station side.
  • a fixed frequency for example, 60 Hz or 120 Hz
  • devices such as AR and MR need built-in cameras to collect and continuously upload current scene images at a specific frequency (for example, 60Hz).
  • DRX discontinuous reception
  • PDCCH physical downlink control channel
  • HARQ hybrid auto repeat request
  • this wake-up method may interrupt the sleep state of the receiving end, especially when the retransmission of a transport block (transport block, TB) that exceeds the transmission time requirement of the air interface may not help the current data transmission.
  • the wake-up method is not beneficial to the user experience of the receiving end, but will cause additional power consumption overhead; semi-static scheduling has the characteristics of one-time configuration and multiple use, that is, after configuring the parameters once, subsequent transmissions will use the configured parameters.
  • the receiving end since the receiving end cannot know the specific time slot for retransmission, it can only monitor the PDCCH within a fixed time, which not only increases the delay of data transmission, but also may interrupt the sleep state of the receiving end. Increase the power consumption overhead of the receiving end.
  • the present application provides a method and device for information transmission, which can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • a method for information transmission including: receiving first configuration information, the first configuration information includes a first duration, a second duration, and a first cycle, the first duration is less than the first cycle, and the first duration is within The start time of a first cycle is started, and the second duration is used to indicate the expected minimum duration between the first communication device reporting the response information at the first time and receiving the retransmitted scheduling control information corresponding to the response information, or, The second duration is used to indicate the estimated minimum duration between the first communication device transmitting the uplink/sidelink data at the second moment and receiving the retransmission scheduling control information corresponding to the uplink/sidelink data; when the first duration ends, the When the corresponding time unit is not later than the corresponding time unit at the end of the second duration, and the response information is a non-confirmation response NACK, the next time unit of the corresponding time unit at the end of the second duration does not monitor the response information corresponding Scheduling control information for retransmissions.
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • the above method further includes: before the time unit corresponding to the end of the first period and adjacent to the time unit corresponding to the end of the first period Continuous time units monitor the retransmitted scheduling control information corresponding to the response information.
  • the above method when the time unit corresponding to the end of the first duration is not later than the time unit corresponding to the end of the second duration, and the response information is NACK, the above method It also includes: extending the end position of the second duration within the first period to the start moment of K adjacent consecutive time units corresponding to the time unit at the end of the first period.
  • the first configuration information is further used to configure a third duration
  • the third duration is used to indicate the time unit corresponding to the first communication device when the second duration ends.
  • the maximum duration between the next time unit and the retransmitted scheduling control information corresponding to the response information; or, the third duration is used to indicate the next time of the time unit corresponding to the first communication device at the end of the second duration. The maximum duration from when a unit receives a scheduling grant for uplink/sidelink data.
  • the K consecutive time units are based on the response information that the time unit corresponding to the end of the first duration is no later than the time unit corresponding to the end of the second duration Determined for the number of HARQ processes for NACK; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is also used to indicate a fourth duration
  • the fourth duration is used to indicate the duration for which the first communication device monitors the control information
  • the above method further includes: determining The fifth duration, the first communication device monitors the control information within the fifth duration, and the starting position of the fifth duration in the first cycle is determined by shifting the starting position of the fourth duration forward by K consecutive time units of.
  • the next time unit of the time unit corresponding to the fifth duration at the end of the first cycle is the start of the fourth duration of the next adjacent first cycle
  • the time unit corresponding to the beginning; or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration takes effect only within the first period.
  • a method for information transmission including: sending first configuration information, where the first configuration information includes a first duration, a second duration, and a first period, the first duration is less than the first period, and the first duration is within The start time of a first period is started, and the second duration is used to indicate the minimum duration between the second communication device receiving the response information at the first moment and sending the retransmission scheduling control information corresponding to the response information, or, the second The duration is used to indicate the minimum duration between the second communication device receiving the uplink/sidelink data and sending the retransmission scheduling control information corresponding to the uplink/sidelink data at the second moment; the corresponding time unit when the first duration ends No later than the time unit corresponding to the end of the second time length, and when the response information is a non-acknowledgment response NACK, the next time unit corresponding to the time unit at the end of the second time length does not send the retransmission schedule corresponding to the response information control information.
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • the above method further includes: before the time unit corresponding to the end of the first period and adjacent to the time unit corresponding to the end of the first period The retransmission scheduling control information corresponding to the response information is sent in consecutive time units.
  • the first configuration information is further used to configure a third duration
  • the third duration is used to indicate the time unit corresponding to the second communication device when the second duration ends.
  • the maximum duration between the next time unit and the retransmitted scheduling control information corresponding to the response information; or, the third duration is used to indicate the next time unit of the time unit corresponding to the second communication device at the end of the second duration The maximum duration until scheduling grants for sending uplink/sidelink data.
  • the above K consecutive time units are based on the response that the time unit corresponding to the end of the first duration is no later than the time unit corresponding to the end of the second duration
  • the information is determined by the number of NACK HARQ processes; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is also used to indicate a fourth time period
  • the second communication device sends data scheduling control information within the fourth time period
  • the above method further includes: determining The fifth time length, the second communication device sends the scheduling control information of the data within the fifth time length, and the starting position of the fifth time length in the first cycle is obtained by shifting the starting position of the fourth time length forward by K consecutive The time unit is fixed.
  • the next time unit of the time unit corresponding to the end of the fifth duration in the first cycle is the start of the fourth duration of the next adjacent first cycle or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration takes effect only within the first period.
  • a method for information transmission including: receiving first configuration information, the first configuration information includes a first duration, a second duration, and a first cycle, the first duration is less than the first cycle, and the first duration is within The start time of the first period is started, and the second duration is used to indicate the estimated minimum duration between the first communication device reporting the response information at the first moment and receiving the retransmitted scheduling control information corresponding to the response information, or, the second period
  • the second duration is used to indicate the estimated minimum duration between the first communication device transmitting the uplink/sidelink data at the second moment and receiving the retransmission scheduling control information corresponding to the uplink/sidelink data
  • the first configuration information also includes the third The duration, the third duration is used to indicate the maximum duration between the next time unit of the time unit corresponding to the first communication device at the end of the second duration and the receipt of the retransmission scheduling control information corresponding to the corresponding information; or, The third duration is used to indicate the maximum duration from the first communication device receiving the scheduling grant for the uplink
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • the above method further includes: before the time unit corresponding to the end of the first period and adjacent to the time unit corresponding to the end of the first period Continuous time units monitor the retransmitted scheduling control information corresponding to the response information.
  • the K consecutive time units are based on the next time unit of the corresponding time unit when the first duration ends, and the HARQ when the third duration does not end
  • the number of processes is determined; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is also used to indicate a fourth duration
  • the fourth duration is used to indicate the duration for the first communication device to monitor the control information
  • the above method further includes: determining The fifth duration, the first communication device monitors the control information within the fifth duration, and the starting position of the fifth duration in the first cycle is determined by shifting the starting position of the fourth duration forward by K consecutive time units of.
  • the next time unit of the time unit corresponding to the fifth duration at the end of the first cycle is the fourth duration of the next adjacent first cycle.
  • the time unit corresponding to the beginning; or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration takes effect only within the first period.
  • a method for information transmission including: sending first configuration information, where the first configuration information includes a first duration, a second duration, and a first cycle, the first duration is shorter than the first cycle, and the first duration is between The start time of the first cycle is started, and the second duration is used to indicate the minimum duration between the first communication device receiving the response information at the first moment and sending the retransmission scheduling control information corresponding to the response information, or the second duration It is used to instruct the second communication device to receive the uplink/sidelink data at the second moment and to send the retransmission scheduling control information corresponding to the uplink/sidelink data; the first configuration information also includes a third duration, the third The duration is used to indicate the maximum duration between the next time unit corresponding to the time unit at the end of the second duration and sending the retransmission scheduling control information corresponding to the information that should be received by the second communication device; or, the third duration is used for Instructing the second communication device the maximum duration from the next time unit corresponding to the time unit at the
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • the above method further includes: before the time unit corresponding to the end of the first period and adjacent to the time unit corresponding to the end of the first period The retransmission scheduling control information corresponding to the response information is sent in consecutive time units.
  • the K consecutive time units are based on the next time unit of the corresponding time unit when the first duration ends, and the HARQ when the third duration does not end
  • the number of processes is determined; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission .
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is also used to indicate a fourth duration
  • the second communication device sends data scheduling control information within the fourth duration
  • the above method further includes: determining The fifth time length, the second communication device sends the scheduling control information of the data within the fifth time length, and the starting position of the fifth time length in the first cycle is obtained by shifting the starting position of the fourth time length forward by K consecutive The time unit is fixed.
  • the next time unit of the time unit corresponding to the end of the fifth duration in the first cycle is the start of the fourth duration of the next adjacent first cycle or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the fifth duration only takes effect within the first period.
  • an information transmission device including: a transceiver unit, configured to receive first configuration information, the first configuration information includes a first duration, a second duration, and a first period, and the first duration is shorter than the first period , the first duration is started at the beginning of a first period, and the second duration is used to indicate the estimated time between the first communication device reporting the response information at the first moment and receiving the retransmitted scheduling control information corresponding to the response information
  • the minimum duration, or the second duration is used to indicate the estimated minimum duration between the first communication device transmitting the uplink/sidelink data at the second moment and receiving the retransmission scheduling control information corresponding to the uplink/sidelink data; the processing unit , for when the time unit corresponding to the end of the first duration is not later than the time unit corresponding to the end of the second duration, and the response information is a non-acknowledgment response NACK, the time unit corresponding to the end of the second duration The next time unit does not monitor the retransmitted scheduling control information corresponding
  • the above-mentioned processing unit is also used for K consecutive time units monitor the retransmitted scheduling control information corresponding to the response information.
  • the above processing The unit is also used to extend the end position of the second duration within the first period to the start moment of the first K consecutive time units adjacent to the corresponding time unit at the end of the first period.
  • the first configuration information is further used to configure a third duration
  • the third duration is used to indicate the time unit corresponding to the first communication device when the second duration ends.
  • the maximum duration between the next time unit and the retransmitted scheduling control information corresponding to the response information; or, the third duration is used to indicate the next time of the time unit corresponding to the first communication device at the end of the second duration. The maximum duration from when a unit receives a scheduling grant for uplink/sidelink data.
  • the K consecutive time units are based on the response information that the time unit corresponding to the end of the first duration is no later than the time unit corresponding to the end of the second duration Determined for the number of HARQ processes for NACK; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is further used to indicate a fourth duration
  • the fourth duration is used to indicate the duration for the first communication device to monitor the control information
  • the above processing unit further uses After determining the fifth duration, the first communication device monitors the control information within the fifth duration, and the starting position of the fifth duration in the first period is shifted forward by K consecutive times from the starting position of the fourth duration Unit determined.
  • the next time unit of the time unit corresponding to the end of the fifth duration in the first period is the beginning of the fourth duration of the next adjacent first period.
  • the time unit corresponding to the beginning; or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration only takes effect within the first period.
  • an information transmission device including: a transceiver unit, configured to send first configuration information, the first configuration information includes a first duration, a second duration, and a first cycle, and the first duration is shorter than the first cycle , the first duration is started at the beginning of a first period, and the second duration is used to indicate the minimum duration between when the second communication device receives the response information at the first moment and sends the retransmitted scheduling control information corresponding to the response information , or, the second duration is used to indicate the minimum duration between the second communication device receiving the uplink/sidelink data and sending the retransmission scheduling control information corresponding to the uplink/sidelink data at the second moment; the transceiver unit, further When the time unit corresponding to the end of the first duration is not later than the time unit corresponding to the end of the second duration, and the response information is a non-acknowledgment response NACK, the time unit corresponding to the end of the second duration The retransmission scheduling control information corresponding to the response information is
  • the above-mentioned transceiver unit is also used for Retransmission scheduling control information corresponding to the response information is sent in the first K consecutive time units.
  • the first configuration information is further used to configure a third duration
  • the third duration is used to indicate the time unit corresponding to the second communication device at the end of the second duration.
  • the maximum duration between the next time unit and the retransmitted scheduling control information corresponding to the response information; or, the third duration is used to indicate the next time unit of the time unit corresponding to the second communication device at the end of the second duration The maximum duration until scheduling grants for sending uplink/sidelink data.
  • the K consecutive time units are based on the response that the time unit corresponding to the end of the first duration is no later than the time unit corresponding to the end of the second duration
  • the information is determined by the number of NACK HARQ processes; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is also used to indicate a fourth time length
  • the second communication device sends data scheduling control information within the fourth time length
  • the above-mentioned transceiver unit also uses After determining the fifth time length, the second communication device sends the scheduling control information of the data within the fifth time length, and the starting position of the fifth time length in the first cycle is shifted forward K by the starting position of the fourth time length Consecutive units of time are determined.
  • the next time unit of the time unit corresponding to the end of the fifth duration in the first period is the start of the fourth duration of the next adjacent first period or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration takes effect only within the first period.
  • an information transmission device including: a transceiver unit, configured to receive first configuration information, the first configuration information includes a first duration, a second duration, and a first cycle, and the first duration is shorter than the first cycle , the first duration is started at the beginning of the first period, and the second duration is used to indicate the expected minimum time between the first communication device reporting the response information at the first moment and receiving the retransmitted scheduling control information corresponding to the response information.
  • the duration, or the second duration is used to indicate the estimated minimum duration between the first communication device transmitting the uplink/sidelink data at the second moment and receiving the retransmission scheduling control information corresponding to the uplink/sidelink data; the first configuration
  • the information also includes a third duration, and the third duration is used to indicate the period between the next time unit of the time unit corresponding to the first communication device at the end of the second duration and the receipt of the retransmission scheduling control information corresponding to the due information.
  • the maximum duration; or, the third duration is used to indicate the maximum duration from when the first communication device receives the scheduling grant for the uplink/sidelink data to the next time unit corresponding to the time unit when the second duration ends.
  • the processing unit is configured to not monitor the retransmitted scheduling control information corresponding to the response information in the remaining time range of the third time length when the next time unit corresponding to the time unit ends when the first time length ends, and the third time length does not end.
  • the above-mentioned processing unit is also used for K consecutive time units monitor the retransmitted scheduling control information corresponding to the response information.
  • the K consecutive time units are based on the next time unit of the corresponding time unit when the first duration ends, and the HARQ when the third duration does not end
  • the number of processes is determined; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is further used to indicate a fourth duration
  • the fourth duration is used to indicate the duration for the first communication device to monitor the control information
  • the above processing unit further uses After determining the fifth duration, the first communication device monitors the control information within the fifth duration, and the starting position of the fifth duration in the first period is shifted forward by K consecutive times from the starting position of the fourth duration Unit determined.
  • the next time unit of the time unit corresponding to the fifth duration at the end of the first cycle is the fourth duration of the next adjacent first cycle.
  • the time unit corresponding to the beginning; or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration takes effect only in the first period.
  • an information transmission device including: a transceiver unit, configured to send first configuration information, the first configuration information includes a first duration, a second duration, and a first cycle, and the first duration is shorter than the first period, the first duration is started at the beginning of the first period, and the second duration is used to indicate the minimum duration between the first communication device receiving the response information at the first moment and sending the retransmission scheduling control information corresponding to the response information , or, the second duration is used to indicate the minimum duration between the second communication device receiving the uplink/sidelink data and sending the retransmission scheduling control information corresponding to the uplink/sidelink data at the second moment; the first configuration information also includes The third duration, the third duration is used to indicate the maximum duration between the next time unit of the time unit corresponding to the end of the second duration and the sending of the retransmission scheduling control information corresponding to the information that should be received by the second communication device; or The third duration is used to indicate the maximum duration from the next time unit of the time unit corresponding to the
  • the transceiver unit is also used for scheduling control of retransmission corresponding to the response information not sent in the remaining time range of the third time length when the next time unit corresponding to the time unit ends at the end of the first time length and the third time length is not over information.
  • the above-mentioned transceiver unit is also used for The retransmission scheduling control information corresponding to the response information is sent in K consecutive time units.
  • the K consecutive time units are based on the next time unit of the corresponding time unit when the first duration ends, and the HARQ when the third duration does not end
  • the number of processes is determined; and/or, determined according to the decoding capability of the first communication device; and/or, determined according to the third duration; and/or, configured by the first configuration information.
  • the first cycle is a long cycle of discontinuous reception DRX; or, the first cycle is a short cycle of DRX; or, the first cycle is a cycle of semi-static transmission ; Or, the first cycle is a service transmission cycle.
  • the response information is response information of a hybrid automatic repeat request (HARQ) process.
  • HARQ hybrid automatic repeat request
  • the first configuration information is also used to indicate a fourth time length
  • the second communication device sends data scheduling control information within the fourth time length
  • the above-mentioned transceiver unit also uses After determining the fifth time length, the second communication device sends the scheduling control information of the data within the fifth time length, and the starting position of the fifth time length in the first cycle is shifted forward K by the starting position of the fourth time length Consecutive units of time are determined.
  • the next time unit of the time unit corresponding to the end of the fifth duration in the first period is the start of the fourth duration of the next adjacent first period or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration takes effect only within the first period.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in any possible implementation manner of the aforementioned first aspect or third aspect through a logic circuit or executing code instructions.
  • a communication device including a processor and an interface circuit, and the interface circuit is used to receive signals from other communication devices other than the communication device and transmit them to the processor or send signals from the processor
  • the processor implements the method in any possible implementation manner of the aforementioned second aspect or fourth aspect through a logic circuit or executing code instructions.
  • a computer-readable storage medium is provided, and a computer program or instruction is stored in the computer-readable storage medium.
  • the computer program or instruction is executed, any of the aforementioned first to fourth aspects can be realized. method in a possible implementation.
  • a computer program product including instructions is provided, and when the instructions are executed, the methods in any possible implementation manners of the aforementioned first aspect to the fourth aspect are implemented.
  • a computer program in a thirteenth aspect, includes codes or instructions, and when the codes or instructions are executed, the methods in any possible implementation manners of the aforementioned first aspect to the fourth aspect are implemented.
  • a chip system in a fourteenth aspect, includes a processor, and further includes a memory, configured to implement the method in any possible implementation manners of the aforementioned first aspect to the fourth aspect.
  • the system-on-a-chip consists of chips and also includes chips and other discrete devices.
  • a fifteenth aspect provides a communication system, including a first communication device and a second communication device.
  • the first communication device is configured to implement the method in the above first aspect or each implementation manner in the third aspect
  • the second communication device is configured to implement the method in the above second aspect or each implementation manner in the fourth aspect.
  • the communication system further includes other devices that interact with the first communication device or the second communication device in the solutions provided in the embodiments of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 to which the present application applies.
  • FIG. 2 is an example of a video coding scheme for information transmission applicable to this application.
  • FIG. 3 is a schematic diagram of an example of a semi-static transmission method applicable to the present application.
  • FIG. 4 is a schematic diagram of an example of DRX applicable to the present application.
  • FIG. 5 is a schematic diagram of another example of DRX applicable to the present application.
  • Fig. 6 is a schematic diagram of DRX long cycle and short cycle applicable to this application.
  • FIG. 7 is a schematic diagram of an example of information retransmission under the existing DXR mechanism.
  • FIG. 8 is a schematic diagram of an example of information retransmission under the existing semi-static transmission mechanism.
  • FIG. 9 is a schematic flowchart of an example of the information transmission method of the present application.
  • Fig. 10 is a schematic flowchart of another example of the information transmission method of the present application.
  • FIG. 11 is a schematic diagram of a specific example of the information transmission method of the present application.
  • Fig. 12 is a schematic diagram of another example of a specific example of the information transmission method of the present application.
  • Fig. 13 is another schematic diagram of a specific example of the information transmission method of the present application.
  • Fig. 14 is a schematic flowchart of another example of the information transmission method of the present application.
  • Fig. 15 is another schematic diagram of a specific example of the information transmission method of the present application.
  • FIG. 16 is a schematic diagram of an example of activating the first duration using control information in the present application.
  • Fig. 17 is a schematic structural diagram of an example of the information transmission device of the present application.
  • Fig. 18 is a schematic block diagram of an example of the information transmission device of the present application.
  • FIG. 1 is a schematic diagram of a communication system 100 applicable to an embodiment of the present application.
  • the communication system 100 may include one or more network devices, for example, the network device 101 shown in FIG. 1 .
  • the communication system 100 may further include one or more terminal devices (also called user equipment (user equipment, UE)), for example, the terminal device 102, the terminal device 103, and the terminal device 104 shown in FIG. 1 .
  • the communication system 100 may support a sidelink communication technology, for example, sidelink communication between the terminal device 102 and the terminal device 103, sidelink communication between the terminal device 102 and the terminal device 104, and the like.
  • FIG. 1 is only a schematic diagram, and the communication system may also include other network devices, such as the core network device 105 and wireless relay devices and wireless backhaul devices not shown in FIG. 1 .
  • the embodiments of the present application do not limit the number of network devices and terminal devices included in the mobile communication system.
  • the terminal equipment in the embodiment of the present application may refer to user equipment, access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, wireless communication device, user agent or user device .
  • the terminal in the embodiment of the present application may be a mobile phone (mobile phone), a tablet computer (pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal, an augmented reality (augmented reality, AR) terminal, an industrial Wireless terminals in industrial control, wireless terminals in self driving, wireless terminals in remote medical, wireless terminals in smart grid, transportation safety Wireless terminals in smart cities, wireless terminals in smart cities, wireless terminals in smart homes, cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop ( wireless local loop (WLL) station, personal digital assistant (personal digital assistant, PDA), handheld device with wireless communication function, computing device or other processing device connected to a wireless modem, vehicle-mounted device, wearable device, 5G network A terminal or
  • wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a portable device that is worn directly on the body or integrated into the user's clothing or accessories.
  • Wearable devices are not only a hardware device, but also achieve powerful functions through software support, data interaction, and cloud interaction.
  • Generalized wearable smart devices include full-featured, large-sized, complete or partial functions without relying on smart phones, such as smart watches or smart glasses, etc., and only focus on a certain type of application functions, and need to cooperate with other devices such as smart phones Use, such as various smart bracelets and smart jewelry for physical sign monitoring.
  • the terminal device may also be a terminal device in an Internet of Things (internet of things, IoT) system.
  • IoT Internet of things
  • the technical feature of IoT is to connect objects to the network through communication technology, so as to realize the intelligent network of man-machine interconnection and object interconnection.
  • the present application does not limit the specific form of the terminal device.
  • the terminal device may be a device for realizing the function of the terminal device, or may be a device capable of supporting the terminal device to realize the function, such as a chip system, and the device may be installed in the terminal.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the network device in this embodiment of the present application may be any device with a wireless transceiver function.
  • the equipment includes but is not limited to: evolved node B (evolved Node B, eNB), home base station (for example, home evolved nodeB, or home node B, HNB), base band unit (base band unit, BBU), wireless fidelity ( Access point (access point, AP), wireless relay node, wireless backhaul node, transmission point (transmission point, TP) or transmission and reception point (transmission and reception point, TRP) in wireless fidelity (WIFI) system, etc.
  • 5G fifth generation
  • 5G fifth generation
  • 5G fifth generation
  • a next generation base station node B, gNB
  • new generation wireless communication system new radio, NR
  • TRP or TP transmission point
  • One or a group (including multiple antenna panels) antenna panels of the base station in the 5G system or it can also be a network node that constitutes a gNB or a transmission point, such
  • a gNB may include a centralized unit (CU) and a DU.
  • the CU implements some functions of the gNB, and the DU implements some functions of the gNB.
  • the CU is responsible for processing non-real-time protocols and services, and realizes the functions of radio resource control (radio resource control, RRC) and packet data convergence protocol (packet data convergence protocol, PDCP) layer.
  • the DU is responsible for processing physical layer protocols and real-time services, realizing the functions of the radio link control (radio link control, RLC) layer, media access control (media access control, MAC) layer and physical (physical, PHY) layer.
  • the gNB may also include an active antenna unit (active antenna unit, AAU for short).
  • the AAU implements some physical layer processing functions, radio frequency processing and related functions of active antennas. Since the information of the RRC layer will eventually become the information of the PHY layer, or be transformed from the information of the PHY layer, under this architecture, high-level signaling, such as RRC layer signaling, can also be considered to be sent by the DU , or, sent by DU+AAU.
  • the network device may be a device including one or more of a CU node, a DU node, and an AAU node.
  • the CU can be divided into network devices in an access network (radio access network, RAN), and the CU can also be divided into network devices in a core network (core network, CN), which is not limited in this application.
  • the network device may be a device for realizing the function of the network device, or may be a device capable of supporting the network device to realize the function, such as a chip system, and the device may be installed in the network device.
  • LTE frequency division duplex frequency division duplex, FDD
  • LTE time division duplex time division duplex, TDD
  • 5G car to other equipment
  • V2X can include vehicle to network (vehicle to network, V2N), vehicle to vehicle (vehicle to vehicle, V2V), vehicle to infrastructure (vehicle to infrastructure, V2I), vehicle to Pedestrians (vehicle to pedestrian, V2P), etc.
  • long term evolution-vehicle (LTE-V) vehicle networking
  • machine type communication machine type communication
  • MTC Internet of things
  • IoT Internet of things
  • LTE-M long-term evolution-machine
  • M2M machine-to-machine
  • D2D device-to-device
  • future evolution communication systems such as the 6th generation (6G) system.
  • the real-time broadband communication (RTBC) scenario in the future communication system aims to support large bandwidth and low interaction delay.
  • the goal is to increase the bandwidth by 10 times under the given delay and certain reliability requirements, creating Immersive experience when a person interacts with a virtual world.
  • the extended reality professional (XR Pro) service with ultra-high bandwidth and ultra-low latency requirements poses a more severe challenge to the fifth generation (5G) mobile communication technology.
  • XR mainly includes virtual reality (VR), augmented reality (augmented reality, AR) and mixed reality (mixed reality, MR) and other virtual and reality interaction technologies.
  • the XR content of the server will generate data content at a fixed frequency (for example, 60 Hz or 120 Hz), and transmit it to the XR terminal equipment by the base station side.
  • a fixed frequency for example, 60 Hz or 120 Hz
  • devices such as AR and MR need built-in cameras to collect and continuously upload current scene images at a specific frequency (for example, 60Hz).
  • DRX discontinuous reception
  • PDCCH physical downlink control channel
  • this wake-up method may interrupt the sleep state of the receiving end, especially when the retransmission of a transport block (transport block, TB) that exceeds the transmission time requirement of the air interface may not help the current data transmission.
  • the wake-up method is not beneficial to the user experience of the receiving end, but will cause additional power consumption overhead; semi-static scheduling has the characteristics of one-time configuration and multiple use, that is, after configuring the parameters once, subsequent transmissions will use the configured parameters.
  • the receiving end since the receiving end cannot know the specific time slot for retransmission, it can only monitor the PDCCH within a fixed time, which not only increases the delay of data transmission, but also may interrupt the sleep state of the receiving end. Increase the power consumption overhead of the receiving end.
  • Figure 2 shows a video coding scheme currently used in XR service transmission, in which each video sequence is divided into multiple image groups (group of picture, GOP) of the same size, and the video frames in each GOP Intra or inter coding.
  • the first coded frame in each GOP is recorded as an I frame, which can be independently coded and decoded
  • the subsequent coded frame is recorded as a P frame, which needs to be coded based on the previously coded I or P frame, thereby improving the coding and compression performance , but this encoding method also introduces error transmission. For example, if an error occurs in the transmission of the I frame in Figure 2, the subsequent P frames cannot be decoded correctly.
  • data scheduling can generally be divided into dynamic scheduling and semi-persistent scheduling.
  • semi-persistent scheduling includes configuration grant scheduling and semi-persistent scheduling.
  • uplink scheduling is divided into two types: dynamic scheduling transmission and configured grant (CG) scheduling-free transmission, and CG scheduling-free transmission is hereinafter referred to as CG transmission.
  • CG dynamic scheduling transmission and configured grant
  • CG scheduling-free transmission is hereinafter referred to as CG transmission.
  • the UE sends a transmission request to the base station and reports the amount of data to be transmitted.
  • the base station allocates corresponding transmission resources for the UE according to the information reported by the UE.
  • Dynamic scheduling can configure different parameters for each transmission to adapt to channel state changes.
  • dynamic scheduling requires blind detection of control information at the receiving end, which increases power consumption at the receiving end.
  • the uplink scheduling-free transmission includes type1 and type2.
  • the uplink scheduling-free transmission configuration is all completed through RRC signaling.
  • the uplink scheduling-free transmission configuration is first configured by the base station through RRC signaling, and then the base station activates uplink transmission through downlink control information (DCI) signaling.
  • DCI downlink control information
  • the receiving end does not need to blindly detect control information.
  • the configuration parameters transmitted by the CG change, reactivation or reconfiguration is required, which still requires blind detection of control information at the receiving end, resulting in power consumption overhead.
  • the uplink scheduling-free transmission scheme is divided into two types: type1 and type2.
  • Type 1 uplink scheduling-free transmission configuration is completed through RRC signaling
  • type 2 uplink scheduling-free transmission configuration is completed through RRC signaling and DCI activation signaling.
  • the network device for example, base station
  • the network device first configures periodic transmission resources for the terminal device through RRC signaling, and the terminal device can directly transmit on the configured resources when it needs to transmit uplink data.
  • scheduling-free transmission saves time for scheduling requests and data scheduling. All parameters involved in Type1 scheduling-free transmission are configured through RRC.
  • the network device For type2 uplink scheduling-free data transmission, the network device (for example, base station) first configures through RRC signaling, and then the network device (for example, base station) schedules the wireless network temporary identifier (configured scheduling radio network temporary identifier, CS- RNTI) scrambled physical downlink control channel (physical downlink control channel, PDCCH) activation signaling activates uplink transmission.
  • Type2 scheduling-free transmission resource period is configured through RRC signaling, specific time-frequency resource configuration, modulation and coding strategy (modulation and coding scheme, MCS) level and multiple-input multiple-output system (multi-input multi-output, MIMO) parameters, etc. Both are indicated in the activation DCI signaling.
  • the terminal device According to the cycle and offset configured by RRC, the terminal device can directly transmit in the configured transmission cycle after receiving the DCI activation signaling.
  • NR also provides two scheduling methods, that is, semi-persistent scheduling (SPS) transmission for dynamic scheduling and pre-configured authorization.
  • SPS semi-persistent scheduling
  • the terminal needs to monitor (monitor) the PDCCH, and determine the scheduling signaling for the terminal through the CS-RNTI information carried by the PDCCH.
  • the blind detection power consumption of the UE is also relatively large.
  • the base station configures the downlink SPS resource period through RRC signaling, but does not activate the SPS at this time. As shown in Figure 3(b), SPS is similar to the type2 process of uplink transmission.
  • the base station sends PDCCH scrambled by CS-RNTI to activate or deactivate SPS, and indicates the resources used for the first transmission of SPS.
  • the UE determines whether the downlink SPS is activated and the resource location of the subsequent SPS by monitoring the PDCCH. After the downlink SPS is activated, the UE will receive downlink transmission on the pre-configured resource position.
  • an energy-saving method is discontinuous reception (DRX).
  • This method can make the receiving end device (such as a terminal device) periodically enter the sleep state (sleep mode) at certain times, no longer monitor the PDCCH subframe, and wake up from the sleep state (wake up) when monitoring is required. ), so that the terminal can achieve the purpose of power saving.
  • this increases the delay of data transmission to a certain extent, if the delay does not affect user experience, executing this method will reduce the power consumption of the terminal.
  • the DRX described below refers specifically to the DRX used when the terminal is in the connected state, that is, C-DRX (Connected DRX).
  • Fig. 4(a) shows a schematic diagram of a typical DRX cycle.
  • the period marked “On Duration (On Duration)” is the time interval for the terminal to monitor the PDCCH.
  • the terminal is in the wake-up state and belongs to the "Activation Period”
  • the period marked “Sleep Time (Opportunity for DRX) )” is the sleep time in the DRX cycle, that is, the time when the terminal goes to sleep without monitoring the PDCCH in order to save power, which belongs to the "sleep period”.
  • the sleep time in a DRX cycle is longer, the power consumption of the terminal is lower, and correspondingly, the delay of service transmission will also increase accordingly.
  • the “activation period” includes not only the duration (On Duration), but also the idle time (Inactivity Time) and the retransmission time (Retransmission Time), that is, as shown in Figure 4(b), when the terminal is in the OnDuration Timer period , when the idle time timer drx-InactivityTimer is running, or the retransmission timer drx-RetransmissionTimer is running, the terminal is always in the "activation period".
  • subframe 0 is the last subframe of On Duration. At this time, there is just a large byte of data to be sent to the terminal on the network side, and these data cannot be transmitted in subframe 0. All sent.
  • the terminal will enter the DRX sleep state in the No. 1 subframe (ie, the first subframe after the No. 0 subframe), and will no longer monitor the PDCCH.
  • the network side can only wait until the end of the DRX cycle, and continue to send uncompleted data to the terminal when the next On Duration (On Duration) moment arrives. Therefore, as shown in Figure 4(b), an idle time timer drx-InactivityTimer is added to the DRX mechanism.
  • the terminal still needs to continue to monitor the PDCCH until the idle time timer drx-InactivityTimer times out. In this way, by adding the idle time timer drx-InactivityTimer mechanism, the data processing delay is reduced.
  • the principle of the idle time timer drx-InactivityTimer mechanism is: within the duration (On Duration) of the terminal entering the DRX activation period, when the terminal performs uplink or downlink data transmission scheduling, the base station will start or restart the idle time timer drx -InactivityTimer, and the terminal will remain in the "activation period" until the timer expires, as shown in Figure 5(a). If the idle time timer drx-InactivityTimer is running, even if the originally configured On Duration Timer has ended, the terminal still needs to continue to monitor the PDCCH until the idle time timer drx-InactivityTimer times out.
  • the Hybrid Automatic Repeat Request HARQ round-trip time (RTT) timer HARQ RTT Timer HARQ RTT Timer.
  • the terminal can assume that the HARQ round-trip delay timer drx-HARQ-RTT after reporting the HARQ response information -TimerDL will be retransmitted, so as shown in Figure 5(b), when the hybrid automatic repeat request round-trip delay timer drx-HARQ-RTT-TimerDL is running, the terminal may not monitor the PDCCH.
  • the terminal When the hybrid automatic repeat request round-trip delay timer drx-HARQ-RTT-TimerDL times out and the data received by the corresponding HARQ process is not successfully decoded, the terminal will start a retransmission process timer drx-RetransmissionTimer for the HARQ process .
  • the retransmission timer drx-RetransmissionTimer may indicate the longest time for the terminal to monitor the PDCCH scheduled for retransmission.
  • the terminal When the retransmission timer drx-RetransmissionTimer is running, the terminal will continue to monitor and schedule the PDCCH corresponding to the HARQ process within the timer time until it detects the PDCCH scheduling corresponding to the HARQ process or the retransmission timer drx-RetransmissionTimer times out.
  • the voice codec when performing voice over internet protocol (VoIP) services based on network protocol transmission, the voice codec usually sends a VoIP packet in 20ms, so a DRX short cycle with a length of 20ms can be configured; There will be a longer silent period, and the DRX long period can be configured.
  • the terminal uses the long cycle by default. If the idle time timer drx-inactivityTimer is triggered, it proves that there is data to be transmitted, and there may be continuous data transmission in the future.
  • the terminal can enter DRX has a short cycle to reduce service transmission delay. After the terminal enters the short cycle, it will start the short cycle timer drx-ShortCycleTimer. When the short cycle timer drx-ShortCycleTimer times out, that is to say, after the PDCCH is not detected in consecutive DRX short cycles, the terminal will enter the DRX long cycle to achieve the purpose of power saving for the terminal.
  • the terminal triggers the idle time timer drx-InactivityTimer after detecting the PDCCH within the on-time of the duration timer drx-onDurationTimer, and starts the DRX short cycle timer drx-shortCycleTimer after the idle time timer drx-InactivityTimer expires,
  • the short cycle timer drx-shortCycleTimer is used to indicate the times of the DRX short cycle drx-shortCycle, for example, 2 times. If the PDCCH is detected in the DRX short cycle drx-shortCycle, the short cycle timer drx-shortCycleTimer is reset.
  • the terminal After the short cycle timer drx-shortCycleTimer expires, the terminal enters the DRX long cycle drx-longCycle cycle.
  • the terminal when the terminal does not receive or send any data within a period of time (for example, 4ms), the terminal can enter a sleep state to achieve the purpose of saving power consumption.
  • a period of time for example, 4ms
  • the DRX cycle can be matched with the XR cycle, so that the XR data transmission cycle can be within the duration drx-onDuration as much as possible. , in order to reduce the delay of data transmission.
  • the retransmission mechanism may not help improve user experience, but instead interrupts the terminal from entering a sleep state and increases power consumption overhead. For example, the time corresponding to the retransmission of the data of a certain XR frame exceeds the transmission time requirement of the air interface, so the XR frame is too late to be displayed, and the terminal may not be able to enter the sleep state. Considering the error transmission between XR frames in Figure 2, the data of this XR frame still contributes to the decoding of the next XR frame, so in order to improve user experience, this data still needs to be transmitted. Exemplarily, FIG.
  • FIG. 7 shows a scenario of downlink transmission of two adjacent XR frames, XR frame 1 and XR frame 2, wherein the sub-carrier spacing (sub-carrier spacing, SCS) is 30k Hz (Hertz, Hz ), the time division duplex TDD uplink and downlink time slot ratio is 8:2 (that is, every 10 time slots is a cycle, which includes 8 downlink time slots and 2 uplink time slots).
  • the sub-carrier spacing sub-carrier spacing, SCS
  • SCS sub-carrier spacing
  • SCS sub-carrier spacing
  • TDD uplink and downlink time slot ratio is 8:2 (that is, every 10 time slots is a cycle, which includes 8 downlink time slots and 2 uplink time slots).
  • D represents a downlink time slot
  • U represents an uplink time slot.
  • D and U in FIG. 8, FIG. 10, FIG. 11, FIG. 12, FIG. 14, and FIG. 15 are the same as those in FIG.
  • the data of XR frame 1 includes the transmission of 11 downlink time slots starting from D00
  • the transmission of XR frame 2 includes the transmission of 9 downlink time slots starting from D33
  • their transmission interval is about 16.5ms (60Hz )
  • the corresponding DRX cycle is also 16.5ms
  • the air interface delay budget (packet delay budget, PDB) of the XR frame is 10ms.
  • the terminal starts the hybrid automatic retransmission request round-trip delay time
  • the device drx-HARQ-RTT-TimerDL.
  • the downlink retransmission process timer drx-retransmissionTimerDL timer is started because the data decoding of D11 fails.
  • the terminal will wake up and monitor the PDCCH for retransmission data.
  • the base station can configure DRX parameters for the terminal through the DRX-config signaling in the RRC signaling, such as drx-longCycle, drx-shortCycle, drx-HARQ-RTT-TimerDL and drx-retransmissionTimerDL and other parameters, but These parameters are usually static parameters, so the above methods cannot be realized by modifying the value of the parameters.
  • DRX is not configured for data transmission
  • semi-persistent scheduling such as semi-persistent scheduling (SPS)
  • SPS semi-persistent scheduling
  • Fig. 8 shows a schematic diagram of an SPS transmitting two adjacent XR frames, also using the case where the SCS is 30 kHz and the ratio of TDD uplink and downlink time slots is 8:2. Wherein, it is assumed that the period of the SPS has already matched the period of the XR frame. Among them, a certain TB transmission error in XR frame 1, after transmitting the HARQ response information in the uplink time slot, the base station adopts DCI scheduling with authorized scheduling-radio network temporary identity (CS-RNTI) scrambling Retransmission.
  • CS-RNTI authorized scheduling-radio network temporary identity
  • the terminal since the terminal is not sure of the specific time slot where the retransmission data occurs, it can only continuously monitor the PDCCH within a certain period, so this method may cause the terminal to continuously blindly check the control information and aggravate the power failure. The problem of spending money.
  • the SPS scheduling since the time slot corresponding to the retransmitted data may have exceeded the air interface transmission time of the XR frame, the SPS scheduling may also have the same problem as in the above-mentioned DRX mechanism, that is, the retransmitted TB is not beneficial to improve user experience, and may It will interrupt the terminal to enter the sleep state, resulting in excessive power consumption of the terminal.
  • this application proposes a method and device for information transmission, in order to reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, and to ensure reliable data transmission.
  • FIG. 9 shows a schematic flow chart of an example of the method for information transmission of the present application.
  • the first communication device receives first configuration information, where the first configuration information includes a first duration, a second duration, and a first period.
  • the first duration is shorter than the first cycle, the first duration is started at the beginning of a first cycle, and the second duration is used to instruct the first communication device to receive the response message corresponding to the first time after the response message is reported at the first time.
  • the expected minimum duration between the transmitted scheduling control information, or the second duration is used to instruct the first communication device to transmit the uplink/sidelink data at the second moment and receive the corresponding retransmission scheduling control information of the uplink/sidelink data The expected minimum hours between.
  • the duration may be determined by a timer, for example, the first duration may be determined by a first timer, which is not limited in this application.
  • the first period is a long period of discontinuous reception DRX; or, the first period is a short period of DRX; or, the first period is a period of semi-static transmission; or, the first period is a transmission period of a service.
  • the above response information is response information of a Hybrid Automatic Repeat Request (HARQ) process.
  • HARQ Hybrid Automatic Repeat Request
  • the above-mentioned first configuration information is also used to configure a third time period, and the third time period is used to indicate that the first communication device corresponds to the next time unit of the time unit at the end of the second time period to the time period corresponding to the receipt of the response information.
  • the maximum duration between retransmitted scheduling control information; or, the third duration is used to indicate the scheduling of the first communication device from the next time unit corresponding to the time unit at the end of the second duration to receiving uplink/sidelink data
  • the maximum duration of authorization is also used to configure a third time period, and the third time period is used to indicate that the first communication device corresponds to the next time unit of the time unit at the end of the second time period to the time period corresponding to the receipt of the response information.
  • the corresponding time unit of the first communication device at the end of the second time period does not monitor the retransmitted scheduling control information corresponding to the response information.
  • the above method further includes: the first communication device monitors the response information corresponding to K consecutive time units before and adjacent to the time unit corresponding to the end of the first period. Scheduling control information for retransmissions.
  • the above method further includes: the first communication device extends the second duration by From the end position in the first period to the start moment of the preceding K consecutive time units corresponding to the time unit at the end of the first period.
  • the K consecutive time units are determined according to the number of HARQ processes whose response information is NACK for the time unit corresponding to the end of the first duration no later than the time unit corresponding to the end of the second duration; and/or , determined according to the decoding capability of the first communication device; and/or determined according to the third duration; and/or configured by the first configuration information.
  • the first configuration information is also used to indicate a fourth duration
  • the fourth duration is used to indicate the duration for the first communication device to monitor the control information.
  • the above method further includes: determining a fifth duration, the first communication device The control information is monitored within the first cycle, and the starting position of the fifth duration in the first cycle is determined by shifting the starting position of the fourth duration forward by K consecutive time units.
  • next time unit corresponding to the time unit at the end of the fifth duration in the first cycle is the time unit corresponding to the start of the fourth duration of the next adjacent first cycle; or the fifth duration
  • the time unit corresponding to the end of the first period is the time unit corresponding to the end of the fourth duration of the next adjacent first period.
  • the above-mentioned fifth duration only takes effect within the first cycle.
  • the above-mentioned first configuration information further includes first indication information, and the first indication information is used to indicate the offset of the start time of the first duration relative to the start time of the first cycle.
  • indicating in the embodiments of the present application may indicate explicitly and/or implicitly.
  • an implicit indication may be based on the location and/or resources used for transmission; an explicit indication may be based on one or more parameters, and/or one or more indices, and/or one or more bit pattern.
  • “indicate” may also mean “include”, for example, the first indication information is used to indicate the offset of the start time of the first duration relative to the start time of the first period, and may also be expressed as: the first indication information Contains the offset of the start time of the first duration relative to the start time of the first period.
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • Fig. 10 shows another schematic interaction diagram of the information transmission method of the present application.
  • the first communication device receives first configuration information, where the first configuration information includes a first duration, a second duration, and a first cycle.
  • the first duration is shorter than the first cycle, the first duration is started at the beginning of a first cycle, and the second duration is used to instruct the first communication device to receive the response message corresponding to the first time after the response message is reported at the first time.
  • the expected minimum duration between the transmitted scheduling control information, or the second duration is used to instruct the first communication device to transmit the uplink/sidelink data at the second moment and receive the corresponding retransmission scheduling control information of the uplink/sidelink data The expected minimum hours between.
  • the duration may be determined by a timer, for example, the first duration may be determined by a first timer.
  • the first period is a long period of discontinuous reception DRX; or, the first period is a short period of DRX; or, the first period is a period of semi-static transmission; or, the first period is a transmission period of a service.
  • the first communication device reports response information, where the response information is response information of a HARQ process.
  • the corresponding time unit of the first communication device at the end of the second time period does not monitor the retransmitted scheduling control information corresponding to the response information.
  • the first communication device receives the retransmission data in the middle of the transmission of XR frame 0 and frame 1 (that is, two consecutive XR frames), so that the first communication device cannot Going to sleep causes additional power consumption.
  • the first communication device may delay the retransmission data of XR frame 0 to several time slots before the transmission of XR frame 1 for transmission, specifically in the following two ways.
  • the first communication device extends the end position of the second duration within the first period to the start moment of the preceding K consecutive time units corresponding to the time unit at the end of the first period.
  • the K consecutive time units are determined according to the number of HARQ processes whose response information is NACK for the time unit corresponding to the end of the first duration no later than the time unit corresponding to the end of the second duration; and/or , determined according to the decoding capability of the first communication device; and/or determined according to the third duration; and/or configured by the first configuration information.
  • the above-mentioned first configuration information is also used to configure the third time length
  • the third time length is used to indicate that the first communication device receives the retransmission corresponding to the response information from the next time unit corresponding to the time unit when the second time length ends.
  • the maximum duration between the scheduling control information; or, the third duration is used to indicate the time from the next time unit of the time unit corresponding to the first communication device at the end of the second duration to receiving the scheduling grant for uplink/sidelink data Maximum duration.
  • the method further includes determining a fifth time period, and the first communication device monitors the control information within the fifth time period.
  • the fifth duration can be determined in multiple ways, which is not limited in this application.
  • the fifth duration is determined according to the aforementioned K continuous time units, that is, the fifth duration may be based on that the corresponding time slot at the end of the second duration of the HARQ process is not earlier than the corresponding time slot at the end of the first duration of the HARQ process, and the HARQ The response information is determined by the number of NACKs. For example, if the time slots corresponding to the end of the second duration of the four HARQ processes are not earlier than the corresponding time slots at the end of the first duration, but the response information of one of the HARQ processes is NACK, it can be considered that K is 1, That is, the fifth duration is 1 time unit.
  • the fifth duration may be determined according to the third duration, for example, the fifth duration may be determined according to signaling (such as drx-retransmissionTimerDL) used to determine the third duration in the DRX configuration information.
  • the fifth duration may also be configured independently by the first configuration information drx-config. It should be noted that, in each DRX cycle, there may be more than one fifth duration. For example, when the fifth duration is determined by the third duration, each HARQ process may have its own fifth duration.
  • each The DRX cycle may have a fifth duration.
  • each DRX cycle may have a fifth duration, or each HARQ process may have its own fifth duration. This application does not limit it.
  • the first communication device does not turn on the third time period when the second time period ends, but starts monitoring the control information at the beginning of the fifth time period.
  • the third duration is used to indicate the maximum duration between the next time unit of the time unit corresponding to the first communication device at the end of the second duration and the receipt of the retransmission scheduling control information corresponding to the due information; or, The third duration is used to indicate the maximum duration from the next time unit corresponding to the time unit at the end of the second duration until the first communication device receives the scheduling grant for uplink/sidelink data.
  • the fifth duration is used for the first communication device to monitor the control information.
  • the starting position of the fifth duration in the first cycle is determined by shifting the starting position of the fourth duration forward by K consecutive time units.
  • the fifth duration is valid only in the first cycle, and the next time unit corresponding to the time unit when the fifth duration ends in the first cycle is the time at the beginning of the fourth duration of the next adjacent first cycle.
  • the corresponding time unit; or the time unit corresponding to the end of the fifth duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle. It should be understood that the manner of determining the K consecutive time units is the same as that in S1040, and will not be repeated here.
  • the fourth duration may be determined by the above-mentioned first configuration information, and the fourth duration is used to indicate the duration for the first communication device to monitor the control information in the next adjacent first cycle.
  • the first communication device monitors the scheduling control of retransmission corresponding to the response information for K consecutive time units before and adjacent to the time unit corresponding to the end of the first cycle. information.
  • the fifth duration may be K consecutive time units before the time unit corresponding to the end of the first cycle and adjacent to the time unit corresponding to the end of the first cycle.
  • the number of time slots required by the data, Y is the number of time slots that overlap the X time slots occupied by the retransmission of the above data before the next frame and the uplink time slots.
  • FIG. 11 shows a schematic diagram of a specific example of the information transmission method of the present application.
  • the technical solution of the embodiment of this application can be applied to XR transmission under DRX configuration, by extending drx-HARQ-RTT-TimerDL, that is, by the method in method 1 in Figure 10, the retransmission data is delayed until the next XR frame is transmitted several time slots.
  • the technical solution of this application can add the first timer delayBudgetTimer parameter in the DRX configuration DRX-config (that is, the first configuration information), and the first timer delayBudgetTimer can be used to determine the first duration, and the first duration is used for the first
  • the communication device for example, terminal equipment
  • the air interface delay budget PDB that is, the expected transmission delay budget of the service.
  • the first duration (that is, the first timer delayBudgetTimer) is periodic, and its period may be the same as or different from the DRX period, which is not limited in this application.
  • the period of the first duration is the same as the first period, or the period of the first duration is the first period.
  • the data XR frame data exceeding the air interface delay budget PDB is too late to be displayed to the user on the terminal side. Failure to complete the transmission within the first duration does not mean that it is useless to receive the remaining XR frame data.
  • the successful decoding of an I frame also helps to refer to the P frame of its codec. decoding. Since the remaining XR frames exceeding the first duration are too late to be displayed, receiving retransmitted data between two frames not only does not help decoding the XR frame, but also reduces the probability of the first communication device going to sleep.
  • delaying the retransmitted data so that the first communication device receives the retransmitted data before the transmission of the next XR frame, can ensure the integrity of the frame, that is, facilitate the decoding of the next frame, and will not interrupt the first XR frame.
  • a communication device enters a sleep state.
  • Figure 11 shows an example of the transmission of two consecutive XR frames (XR frame 1 and XR frame 2) under the condition that the carrier spacing SCS is 30kHz and the time division duplex TDD uplink and downlink time slot ratio is 8:2 Scenes.
  • the transmission of XR frame 1 starts at D00, including 11 downlink time slots
  • the transmission of XR frame 2 starts at D33, including 9 downlink time slots.
  • the transmission interval of two XR frames is about 16.5 ms
  • the cycle of DRX is also 16.5 ms
  • the cycle of the XR frame or the cycle of DRX can be used to determine the first cycle.
  • the duration timer drx-onDuraitonTimer is counted from D00 and D33 at the beginning of the DRX cycle, and the duration timer drx-onDuraitonTimer is used to determine the fourth duration.
  • the DRX cycle may be a DRX long cycle or a DRX short cycle, which is not limited in this application.
  • the delay budget timer drx-delayBudgetTimer is started at the starting position of the DRX cycle, and the delay budget timer drx-delayBudgetTimer is used to determine the first duration.
  • the starting position of the first duration is the same as the starting position of the fourth duration (that is, the duration timer drx-onDuraitonTimer), both of which are the starting positions of the DRX cycle, that is, D00 and D33.
  • the first duration (or may be called drx-delayBudgetTimer) may be shown in bold font as follows in the DRX configuration:
  • configuration values of the above parameters may be time units such as milliseconds, time slots, and symbols, or the number of monitoring control information, which is not limited in this application.
  • the first communication device After U10 reports the NACK information of D11, the first communication device starts counting the second duration (that is, starts the second timer Drx-HARQ-RTT-TimerDL), and the first communication device can Control information (eg, DCI) is not monitored internally.
  • the second duration ends (that is, the second timer Drx-HARQ-RTT-TimerDL expires)
  • the first communication device starts the third timer drx-retransmissionTimerDL, and the third timer drx-retransmissionTimerDL can be used to determine the third duration
  • the first telecommunications device may monitor for control information for a duration of a third time period.
  • the time slot corresponding to the end of the second duration of the HARQ process corresponding to the data at D11 is not earlier than the time slot at the end of the first duration
  • slot Frame2 is the first time slot where XR frame 2 appears, as shown in Figure 10 D33, optionally, it can be DRX
  • the duration of drx-onDuration is the start time slot
  • slot U-HARQ is the uplink time slot for reporting HARQ, such as U10 shown in Figure 11
  • X is the time slot corresponding to the end of the second retransmission duration exceeding the first duration
  • the number of time slots required for the data of the HARQ process whose response information is NACK in the HARQ process corresponding to the time slot at the end, as shown in Figure 11, only the data on D11 needs to be retransmitted, so X is 1;
  • Y may appear in X time slots.
  • uplink time slots because in FIG. 11 there is no case where the downlink time slot occupied by delayed retransmission data overlaps with the uplink time slot, so Y is 0.
  • the value of K may be X+Y.
  • X can be set to 4 .
  • Y is 2, that is, when X is 4, the second communication device (for example, a base station) schedules retransmission on time slots D27 and D30 to D32, and the first communication device
  • the decoding delay of the application layer may also be considered.
  • the second duration may be slot Frame2 -slot U-HARQ -XYZ-1.
  • the transmission delay from the physical layer to the application layer can also be considered.
  • the second duration can be slot Frame2 -slot U-HARQ -XY-(ZW)-1, and when Z is less than or equal to W, then the second duration is still slot Frame2 -slot U-HARQ -XY-1.
  • the value of K should be X+Y+(ZW). It should be understood that the interpretations of X and Y are the same as those described above and will not be repeated here.
  • the embodiments in this application mostly use time slots as the time unit. It should be understood that the time unit in the above embodiments can be any time unit, such as milliseconds, time slots, symbols, etc., and the time of each duration Units can be different.
  • K may be used to determine the fifth duration, and the fifth duration may be determined in various ways, which are not limited in this application.
  • the fifth duration may be determined according to that the time slot corresponding to the end of the second duration of the HARQ process is not earlier than the corresponding time slot at the end of the first duration of the HARQ process, and the HARQ response information is determined by the number of NACKs. For example, if the time slots corresponding to the end of the second duration of the four HARQ processes are not earlier than the corresponding time slots at the end of the first duration, but the response information of one of the HARQ processes is NACK, it can be considered that K is 1.
  • the fifth duration may be determined according to the third duration, for example, the fifth duration may be determined according to signaling (such as drx-retransmissionTimerDL) used to determine the third duration in the DRX configuration information.
  • the fifth duration may also be configured independently by the first configuration information drx-config. It should be noted that, in each DRX cycle, there may be more than one fifth duration. For example, when the fifth duration is determined by the third duration, each HARQ process may have its own fifth duration.
  • each The DRX cycle may have a fifth duration.
  • each DRX cycle may have a fifth duration, or each HARQ process may have its own fifth duration. This application does not limit it.
  • the timing of the second duration is calculated from the first symbol after the transmission of the UL time slot where HARQ is located and each HARQ process has its own second duration, so there may be more than one second duration Need to extend.
  • the start position and end position of the corresponding second duration will also be different.
  • the second duration with the smallest increase among the plurality of second durations takes effect, while other second durations do not take effect.
  • the second duration opened at U11 has the shortest second duration, so the second duration opened at U11 is used; or, the latest second duration can also be stipulated to take effect,
  • the second duration calculated at U10 may be different from the second duration calculated at U11, and the second duration at U11 may be used as the final duration (or timer). Therefore, the coexistence of multiple second durations does not affect the technical solution of the present application. It should be understood that, considering that when U10 reports NACK, there is only one NACK, and when U11 reports NACK, there are 2 NACKs.
  • the length of the HARQ process for reporting response information at U11 calculated according to the above embodiment should be smaller than that at U10
  • the first configuration information may configure a sixth duration for the first communication device, which is used to indicate an extension of the second duration.
  • the sixth timing is started Drx-HARQ-RTT-ExtTimerDL
  • the sixth timer drx-HARQ-RTT-ExtTimerDL can be used to determine the sixth duration, at this time, the sixth duration can be regarded as the extension of the second duration, the first communication device in The control information may not be monitored within the sixth period of time.
  • the sixth duration may be called drx-HARQ-RTT-ExtTimerDL in the DRX configuration, as shown in bold font below:
  • configuration values of the above parameters may be time units such as milliseconds, time slots, symbols, etc., which are not limited in this application.
  • the first configuration information may configure a seventh timer for the first communication device, which is used to determine the seventh duration.
  • the first/second communication device predicts that the time slot corresponding to the end of the second time length will not be later than the time slot corresponding to the end of the first time length, the second time length is replaced by the seventh time length.
  • the first/second communication device estimates that the second duration of a certain HARQ process (that is, the second timer drx-HARQ-RTT-TimerDL) ends, the corresponding time slot will be no later than the first For the time slot corresponding to the end of a period, after the response information is reported by the corresponding HARQ process, the second timer is not started, but the seventh timer drx-HARQ-RTT-TimerDL-r18 is started.
  • the seventh timer drx - HARQ-RTT-TimerDL-r18 can be used to determine the seventh duration. At this time, the seventh time period may replace the second time period, and the first communication device may not monitor the control information within the seventh time period.
  • the fifth duration may be a third duration, that is, the fifth duration may be determined by a third timer.
  • the fifth duration may be determined according to the third duration, which is not limited in this application.
  • the seventh duration may be called drx-HARQ-RTT-TimerDL-r18 in the DRX configuration, as shown in bold font below:
  • configuration values of the above parameters may be time units such as milliseconds, time slots, symbols, etc., which are not limited in this application.
  • the duration can be determined by a timer. Therefore, determining the first duration above can also be expressed as determining the first timer; extending the second duration can also be expressed as extending the second timer. Whether it is expressed as a duration or a timer, it will not have an additional impact on the technical solution of this application. For the convenience of description, this application is collectively referred to as duration, but it should not be used as a limitation. Those skilled in the art can Obtaining the duration by means of timers, timers, timing marks, etc., should fall within the scope of protection of this application.
  • FIG. 12 shows another schematic diagram of a specific example of the information transmission method of the present application.
  • the technical solution of this application can be applied to XR transmission under DRX configuration, by waking up the first communication device in advance before the next duration drx-onDuration, or the arrival of the next XR frame, that is, in Figure 10 Method 2 is used to achieve the purpose of receiving retransmitted data before the next XR frame.
  • the technical solution of the present application can add the first timer drx-delayBudgetTimer parameter in the DRX configuration DRX-config (that is, the first configuration information), and the first timer drx-delayBudgetTimer can be used After determining the first duration, the first duration is used for timing the air interface delay budget PDB by the first communication device (for example, terminal equipment).
  • the first duration (that is, the first timer delayBudgetTimer) is periodic, and its period may be the same as or different from the DRX period, which is not limited in this application.
  • the data XR frame data exceeding the air interface delay budget is too late to be displayed to the user on the device side. Therefore, delaying the retransmitted data, so that the first communication device receives the retransmitted data before the transmission of the next XR frame, can ensure the integrity of the frame, that is, facilitate the decoding of the next frame, and will not interrupt the first XR frame.
  • a communication device enters a sleep state. For example, for some fields of the first duration in the DRX configuration, reference may be made to the introduction in FIG. 11 , which will not be repeated here.
  • Fig. 12 shows an example of two consecutive XR frames (XR frame 1 and XR frame 1 and XR Yet another implementation method during frame 2) transmission.
  • the data transmission of XR frame 1 at D11 fails, and after the HARQ response information reported at U10, the position corresponding to the end of the second duration (such as D22) exceeds the position corresponding to the end of the first duration (U11) .
  • the first communication device will not start counting the third time period (turn on the third timer drx-retransmissionTimerDL) after the second time period ends, that is, the first communication device will not start counting the data at D11 after the second time period ends.
  • the retransmission control information corresponding to the HARQ process monitor wakes up to receive the retransmission at the fifth time before the next XR frame, that is, XR frame 2 (or the duration on-duration of the next DRX cycle or the start of the next DRX cycle). transfer data.
  • K can be used to determine the fifth duration
  • the fifth duration can be determined in various ways, which is not limited in this application, and can be referred to above for details, and will not be repeated here.
  • the length of the first duration (that is, the first timer delayBudgetTimer) is 10 ms and the starting position is D00, so its ending position is U11.
  • the TB transmitted by XR frame 1 at D11 has an error, and after the corresponding HARQ response information is reported at U10, the first communication device starts the second duration (ie, the second timer drx-HARQ-RTT-TimerDL).
  • the actual time slot and the end time slot are D32, that is, the length of the fifth duration only includes the time slot D32.
  • the fifth duration does not change the next DRX cycle, that is, it does not affect the starting positions of the first duration and the fourth duration of the next DRX cycle.
  • the time unit for the start of the next DRX cycle is still D33
  • the first duration is restarted at D33 (that is, the first timer drx-DelayBudgetTimer is restarted at D33)
  • the first communication device indicates that the fifth time before D33
  • the duration wakes up in advance and receives the control information for monitoring and scheduling retransmission within the fifth duration.
  • the fifth time length may be determined by the number of HARQ processes whose response information is NACK in the HARQ process whose time slot corresponding to the end of the second time length is not later than the time slot corresponding to the end of the first time length. At this time, the There may be only one fifth duration in the DRX cycle.
  • the end slot of the fifth duration may also be the end slot of the fourth duration, that is, the fifth duration includes the fourth duration, where the fourth duration may be the next DRX cycle
  • the first communication device monitors the control information within the fourth time period.
  • the fifth duration can also be obtained by advancing the fourth duration by K time slots. At the same time, when the fourth time length is advanced by K time slots, the fourth time length will be correspondingly extended by K time slots.
  • the fifth duration of one cycle may be obtained by extending the fourth duration of the next adjacent cycle forward by K time slots. It should be noted that the fifth duration obtained by advancing the fourth duration by K time slots takes effect only in this DRX cycle, and does not affect the next DRX cycle.
  • DRX0 there are three DRX cycles, namely DRX0, DRX1, and DRX2, respectively corresponding to the start times of the on-duration DRX-onDuration of the first communication device being 0 ms, 10 ms, and 20 ms.
  • the overtime retransmission data in DRX0 affects the start moment of DRX1-onDuration, the duration of DRX1-onDuration (that is, the first communication device may wake up before 10 ms), but will not affect the first communication
  • the start time of DRX2-onDuration (still 20ms) for the duration of DRX2 being turned on by the device.
  • the starting moment of DRX2-onDuration of DRX2 may be changed due to the retransmission of DRX1. It should be noted that the starting time of the first duration of DRX0, DRX1 and DRX2 will not change (still 0ms, 10ms and 20ms).
  • the decoding delay of the application layer and the transmission delay from the physical layer to the application layer can also be considered. For the specific method, refer to Fig. The description in 11 will not be repeated here.
  • the technical solution of this application can also be applied to the semi-static transmission scenario, for example, in the downlink scenario, the semi-persistent scheduling SPS is used for XR transmission, and the retransmission data is delayed until the next SPS transmission The way before the opportunity increases the probability of the terminal entering sleep, so as to achieve the purpose of reducing the power consumption of the terminal.
  • the second communication device In the existing SPS transmission process, if there is an error in data transmission, after the first communication device (for example, terminal equipment) reports HARQ response information, the second communication device (for example, base station) will pass CS -
  • the RNTI scrambled control information (such as DCI) schedules retransmission data for the first communication device, so the first communication device (eg, terminal equipment) is required to monitor the control information in order to receive the retransmission data.
  • the time slot for scheduling SPS retransmission by the second communication device depends on the PDCCH monitoring period configured by the second communication device for the first communication device. Specifically, the monitoring period is not directly related to the SPS period and can be configured independently.
  • the first communication The device can only monitor control information at D00, D01, D10, D11, D20, D21, etc. as shown in Figure 8, and the second communication device can only schedule retransmissions in the time slots mentioned above. Slot monitoring retransmission control information. In this way, since the first communication device does not know the specific time slot for the second communication device to schedule the retransmission, it needs to always blindly check the scheduling control information to receive the retransmission.
  • Fig. 13(a) shows an embodiment of receiving retransmitted data in an SPS scenario.
  • the first timer delayBudgetTimer parameter can be added to the SPS configuration SPS-config (that is, the first configuration information), and the first timer delayBudgetTimer functions with the first timer delayBudgetTimer in the above-mentioned DRX configuration Similarly, it can be used to determine the first duration, and the first duration is used for timing the air interface delay budget PDB by the first communication apparatus (for example, terminal equipment).
  • the first duration (that is, the first timer delayBudgetTimer) is periodic, and its period may be the same as or different from the SPS period, which is not limited in this application.
  • a second timer retransmissionProcessingTimer can also be added to the SPS configuration SPS-config.
  • the second timer retransmissionProcessingTimer has the same function as the second timer drx-HARQ-RTT-TimerDL in the above DRX configuration, and can be used to determine the first Two hours.
  • the second duration is used to indicate the estimated minimum duration between the first communication device reporting the response information at the first moment and receiving the retransmitted scheduling control information corresponding to the response information.
  • the second duration can assist the first communication device to determine and monitor the retransmission scheduling control information.
  • each HARQ process in the SPS data can have its own second duration (ie, the second timer retransmissionProcessingTimer). After the second time length ends, if the response information of the second time length corresponding to the HARQ process is NACK, start counting the third time length (that is, open the third timer slotMonitoringTimer), and the third timer slotMonitoringTimer can be used to determine the third time length.
  • the first telecommunications device may monitor control information (eg, DCI) for a duration of a third duration.
  • control information eg, DCI
  • some fields of an SPS configuration may be as follows, wherein the first duration, the second duration and the third duration may be called drx-delayBudgetTimer, retransmissionProcessingTimer and slotMonitoringTimer respectively, as shown in bold font below:
  • the optional value of delayBudgetTimer is in milliseconds (ms), such as ms1 means that the duration of delayBudgetTimer is 1ms, the optional value of retransmissionProcessingTimer is in symbols, and the value of slotMonitoringTimer is in units of time slots, such as sl4 Indicates that the duration of slotMonitoringTimer is 4 slots.
  • the above-mentioned time units of the first duration i.e. the first timer delayBudgetTimer
  • the second duration i.e. the second timer retransmissionProcessingTimer
  • the third duration i.e. the third timer slotMonitoringTimer
  • Milliseconds, symbols or time slots, etc. are not limited in this application.
  • Fig. 13(b) shows an example of the transmission of two consecutive XR frames (XR frame 1 and XR frame 2) under the SCS of 30 kHz and TDD uplink and downlink time slot ratio 8:2.
  • the transmission of XR frame 1 starts at D00 and includes 11 downlink time slots.
  • the transmission of XR frame 2 starts at D33 and includes 9 downlink time slots.
  • the XR frame transmission period is 16.5ms
  • the SPS period is also 16.5ms, that is, the period from D00-D32 is the first SPS.
  • the first duration is 10 ms
  • timing starts from the start position of each SPS cycle or the start position of the XR service cycle, that is, D00 and D33.
  • the data transmission at D11 in XR frame 1 fails, and the response information of the corresponding HARQ process is reported by the first communication device to the second communication device at U10, and the second timing is started after the report retransmissionProcessingTimer, the second timer retransmissionProcessingTimer can be used to determine the second duration.
  • the time slot corresponding to the end of the second duration is D22.
  • the third timer slotMonitoringTimer is started at one symbol after D22, and the third timer slotMonitoringTimer is used to determine the third duration. Monitor and control information within the third period of time. Assume that the position at the end of the second timer is just the last symbol in D22, so start the third timer at D23 and start monitoring the control information.
  • the retransmission corresponding to the data transmitted at D11 is not conducive to improving user experience, and may Interrupting or preventing the first telecommunications device from entering the sleep state results in additional power consumption overhead. Therefore, in the implementation method shown in FIG. 13(b), in order not to interrupt the first communication device from going to sleep, after the second duration ends, it does not enter the third duration (that is, does not start the third timer slotMonitoringTimer).
  • a communication device does not monitor the control information after the second time period ends, but starts to receive retransmission data at the fifth time period before the next SPS transmission opportunity.
  • the fifth duration may include K time slots, and the definition of K refers to the description in FIG. 11 , which will not be repeated here.
  • the decoding delay of the application layer and the transmission delay from the physical layer to the application layer can also be considered.
  • the specific method refer to Fig. The description in 11 will not be repeated here.
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • FIG. 14 shows another schematic flow chart of the method for information transmission in this application.
  • the first communication device receives first configuration information, where the first configuration information includes a first duration, a second duration, and a first period, and the first configuration information further includes a third duration.
  • the first duration is shorter than the first cycle, the first duration is started at the beginning of a first cycle, and the second duration is used to instruct the first communication device to receive the response message corresponding to the first time after the response message is reported at the first time.
  • the expected minimum duration between the transmitted scheduling control information, or the second duration is used to instruct the first communication device to transmit the uplink/sidelink data at the second moment and receive the corresponding retransmission scheduling control information of the uplink/sidelink data
  • the estimated minimum duration; the third duration is used to indicate the time between the next time unit of the time unit corresponding to the first communication device at the end of the second duration and the receipt of the retransmission scheduling control information corresponding to the due information
  • the maximum duration; or, the third duration is used to indicate the maximum duration from when the first communication device receives the scheduling grant for the uplink/sidelink data to the next time unit corresponding to the time unit when the second duration ends.
  • the first period is a long period of discontinuous reception DRX; or, the first period is a short period of DRX; or, the first period is a period of semi-static transmission; or, the first period is a transmission period of a service.
  • the above response information is response information of a Hybrid Automatic Repeat Request (HARQ) process.
  • HARQ Hybrid Automatic Repeat Request
  • the first communication device does not monitor the retransmitted scheduling control information corresponding to the response information within the remaining time range of the third time period.
  • the above method further includes: the first communication device monitors the response information corresponding to K consecutive time units before and adjacent to the time unit corresponding to the end of the first period. Scheduling control information for retransmissions.
  • the X consecutive time units are determined according to the number of HARQ processes when the third time length does not end in the next time unit of the corresponding time unit when the first time length ends; and/or, according to Determined by the decoding capability of the first communication device; and/or determined according to the third duration; and/or configured by the first configuration information.
  • the above-mentioned first configuration information is also used to indicate a fourth duration
  • the fourth duration is used to indicate the duration for the first communication device to monitor the control information.
  • the method further includes: the first communication device determines the fifth duration, and the first communication device The control information is monitored within the fifth time period, and the starting position of the fifth time period in the first period is determined by shifting forward the starting position of the fourth time period by X consecutive time units.
  • next time unit corresponding to the time unit at the end of the fifth duration in the first cycle is the time unit corresponding to the start of the fourth duration of the next adjacent first cycle; or, the fifth The time unit corresponding to the end of the duration in the first cycle is the time unit corresponding to the end of the fourth duration of the next adjacent first cycle.
  • the above-mentioned fifth duration only takes effect within the first cycle.
  • the above-mentioned first configuration information further includes first indication information, and the first indication information is used to indicate the offset of the start time of the first duration relative to the start time of the first cycle.
  • the technical solution of the present application can not only reduce the power consumption overhead caused by interrupting sleep at the receiving end due to receiving retransmitted data, but also ensure reliable data transmission.
  • FIG. 15 shows another schematic diagram of a specific example of the information transmission method of the present application.
  • the subcarrier spacing SCS is 30 kHz
  • the time division duplex TDD uplink and downlink time slot ratio is 8:2. Transmission scenarios of XR frames (XR frame 1 and XR frame 2).
  • the transmission of XR frame 1 starts at D00, including 11 downlink time slots
  • the transmission of XR frame 2 starts at D33, including 9 downlink time slots.
  • the transmission interval of two XR frames is about 16.5 ms
  • the cycle of DRX is also 16.5 ms
  • the cycle of the XR frame or the cycle of DRX can be used to determine the first cycle.
  • the duration timer drx-onDuraitonTimer is counted from D00 and D33 at the beginning of the DRX cycle, and the duration timer drx-onDuraitonTimer is used to determine the fourth duration.
  • the DRX cycle may be a DRX long cycle or a DRX short cycle, which is not limited in this application.
  • the delay budget timer drx-delayBudgetTimer is started at the starting position of the DRX cycle, and the delay budget timer drx-delayBudgetTimer is used to determine the first duration.
  • the starting position of the first duration is the same as the starting position of the fourth duration (that is, the duration timer drx-onDuraitonTimer), both of which are the starting positions of the DRX cycle, that is, D00 and D33.
  • the first duration (or may be called drx-delayBudgetTimer) in the DRX configuration may refer to the description in FIG. 11 , which will not be repeated here.
  • the first communication device After U10 reports the NACK response information of D11, the first communication device starts counting the second duration corresponding to the HARQ process (that is, starts the second timer Drx-HARQ-RTT-TimerDL), and the first communication device Control information (eg, DCI) may not be monitored for a second time period. After the second duration ends (that is, the second timer Drx-HARQ-RTT-TimerDL expires), the first communication device starts the third timer drx-retransmissionTimerDL, and the third timer drx-retransmissionTimerDL can be used to determine the third duration, The first telecommunications device may monitor for control information for a duration of a third time period.
  • the time slot ( D26 ) corresponding to the end of the third duration has exceeded the time slot ( D23 ) corresponding to the end of the first duration. Therefore, if the time slot corresponding to the time slot corresponding to the end of the first time period ends, and the third time period has not ended, monitoring control information in the remaining third time period cannot improve user experience, and it will affect the first communication device to go to sleep, resulting in Additional power overhead. Therefore, in this embodiment, when the time slot next to the time slot corresponding to the first time length ends, and the third time length has not ended, the first communication device will no longer monitor the HARQ process corresponding to the third time length within the remaining third time length retransmission scheduling control information.
  • the first communication device will no longer monitor the scheduling control information of the HARQ process within the remaining third duration (D24-D26).
  • the third time period is ended. And wake up to receive retransmission data at the fifth time before the next XR frame, that is, XR frame 2 (or the on-duration of the next DRX cycle or the start of the next DRX cycle).
  • X is the next time of the time unit corresponding to the retransmission at the end of the first duration.
  • X is 1
  • Y is the number of X time slots occupied by the retransmission of the above data before XR frame 2 and the number of time slots overlapping with the uplink time slots.
  • Y may appear in X time slots. uplink time slots. Because there is no overlap between the downlink time slot and the uplink time slot occupied by delayed retransmission data in FIG. 15 , Y is 0.
  • the value of K may be X+Y.
  • the first configuration information includes or itself is DRX configuration or SPS configuration.
  • the first configuration information may also be a separate configuration parameter set.
  • the first configuration information may be delay budget configuration delayBudget-config, and some fields of the configuration may be as follows:
  • the first timer delayBudgetTimer has the same function as the first timer delayBudgetTimer in the above-mentioned DRX or SPS configuration, and can be used to determine the first duration, and the first duration is used for the first communication device (for example, terminal equipment) to time the air interface Extended Budget PDB.
  • the first configuration information includes the periodicity of the first duration (or called the first timer), including the first duration (or called the first timer) delayBudgetTimer, and the first duration is The starting position of each cycle of delayBudget takes effect.
  • the first configuration information also includes a second timer retransmissionProcessingTimer, the second timer retransmissionProcessingTimer is used to determine the second duration, and the second duration is used to indicate that the response information corresponds to the time between the response information is reported at the first moment and the response information is received.
  • the second duration may be based on the HARQ process, that is, each HARQ process may have a corresponding second duration.
  • the first configuration information may also include a third timer slotMonitoringTimer, where the third timer slotMonitoringTimer is used to determine a third duration, and the third duration is used to indicate the time unit corresponding to the first communication device at the end of the second duration.
  • the third duration may be based on the HARQ process, that is, each HARQ process may have a corresponding third duration.
  • the first communication device monitors the control information corresponding to the HARQ process within the third duration. Specifically, when the first communication device receives the control information corresponding to the HARQ process within the third time period, the third time period corresponding to the HARQ process may end.
  • the above-mentioned first duration, second duration and third duration may be time units such as several milliseconds, time slots, symbols, etc., or may be the number of monitoring control information, which is not limited in this application.
  • the first configuration information may further include an identifier delayFlag, and the identifier delayFlag may be a Boolean number, that is, '1' or '0'.
  • '1' represents if the time unit corresponding to the end of the second duration is not earlier than the time unit corresponding to the end of the first duration, or if the next time of the corresponding time unit when the first duration ends unit, when the third time period has not ended, it can refer to the methods described in Figure 11, Figure 12, Figure 13 and Figure 15, and delay the retransmission exceeding the first time length until the first time before the start of the next first timer delayBudgetTimer Five hours, the specific way can be to extend the second duration, that is, to extend the second timer retransmissionProcessingTimer (similar to the extension of the second timer drx-HARQ-RTT-TimerDL shown in Figure 11, including setting the sixth timer drx-HARQ -RTT-ExtTimerDL), or turn on the seventh time
  • an implementation of the above delay budget configuration delayBudget-config can be configured in the DRX configuration, which can be shown in bold font as follows:
  • delayBudget-config for the meaning of the relevant parameters in delayBudget-config, please refer to the introduction in the previous article, and will not repeat them here.
  • the DRX configuration drx-config and the delay budget configuration delayBudget-config can have their own periods respectively.
  • the shift parameter that is, drx-LongCycleStartOffset
  • drx-LongCycleStartOffset can also be the cycle in the delay budget configuration delayBudget-config; or the DRX configuration drx-config and the delay budget configuration delayBudget-config use their own cycles respectively.
  • the air interface delay budget has Its own cycle, which may be different from the first cycle (that is, the cycle configured by drx-config).
  • the above delay budget configuration delayBudget-config may also be used in an SPS scenario.
  • the delay budget configuration delayBudget-config parameter can be placed in the SPS configuration according to the following blackened part, as shown below:
  • the parameter set can be jointly configured with DRX or SPS by separately configuring the parameter set, which increases configuration flexibility.
  • the triggering time of the first duration is related to the DRX cycle or the SPS cycle, that is, the first duration (or the first timer) is started at the beginning of each drx cycle delayBudgetTimer), or start the first duration (or the first timer delayBudgetTimer) at the starting position of each SPS transmission moment.
  • the first duration may not be associated with the cycle of DRX or SPS.
  • the first duration (or the first timer delayBudgetTimer) may start timing after receiving the first data when drx-onDurationTimer is turned on, or start timing after receiving the first data at each SPS transmission moment.
  • a db-slotOffset parameter may be added to drx-config, sps-config or delayBudget-config, which is used to indicate the start time offset of the first duration (or the first delayBudgetTimer) of the first communication device.
  • the offset may be an offset relative to the start position (such as time slot, symbol, etc.) of each cycle of DRX or SPS, or an offset relative to the moment when RRC signaling is received, which is not covered by the present application Do limit.
  • some fields of the delay budget configuration delayBudget-config may be as follows, where the offset parameter may be as shown in bold font as follows:
  • configuration values of the above parameters may be milliseconds, and time units such as time slots and symbols may also be the number of monitoring control information, which is not limited in this application. In this way, the configuration of the first duration can be made more flexible by adding an offset parameter.
  • the first duration (that is, the first timer delayBudgetTimer) is a configured fixed value.
  • multiple candidate values can be configured for the first duration (that is, the first timer delayBudgetTimer), and one of the candidate values can be activated through control information .
  • Figure 16 shows an example of the transmission of two consecutive XR frames (XR frame 1 and XR frame 2) under the SCS of 30 kHz and TDD uplink and downlink time slot ratio 8:2.
  • the transmission of XR frame 1 starts at D00 and includes 11 downlink time slots.
  • the transmission of XR frame 2 starts at D33, including 9 downlink time slots, and the transmission interval between two frames is 16.5ms.
  • DRX is configured, and the cycle of DRX is also 16.5 ms, that is, from D00 to D32 is the first DRX cycle.
  • the second communication device sends physical shared channel (physical downlink shared channel, PDSCH) data indicated by DCI-X1 at D00, wherein DCI-X1 can be DCI in any format, and the DCI-X1 includes a db-timer field, which is used to enable the first timer delayBudgetTimer.
  • PDSCH physical downlink shared channel
  • the first communication device After receiving DCI-X1, the first communication device (for example, a terminal device) starts the corresponding first timing from multiple first duration candidates in the first configuration information according to the content of the db-timer field in DCI-XI Drx-delayBudgetTimer, the specific activation time can be the time slot when DCI-X1 is received, or the next time slot after receiving DCI-X1, or the time slot where the PDSCH indicated by DCI-X1 is located, or DCI - the next adjacent time slot of the time slot where the physical shared channel PDSCH indicated by X1 is located, and details will not be described here.
  • some fields of the DRX configuration drx-config may be as follows, wherein the candidate first duration (that is, the first timer delayBudgetTimer) may be shown in black font as follows:
  • the unit of timing of the first duration is the number of time slots, such as n8 represents that the first duration (that is, the first timer drx-delayBudgetTimer) counts 8 time slots, that is, in The first duration (that is, the first timer drx-delayBudgetTimer) is turned off after 8 time slots after it is turned on.
  • the time slots include uplink time slots and downlink time slots, may only include downlink time slots or only uplink time slots, or may only include time slots containing DCI.
  • the specific drx-delayBudgetTimer size can be indicated by adding a 2-bit field to the DCI (for example, adding a 2-bit db-timer field to the DCI).
  • the above-mentioned first duration (that is, the first timer drx-delayBudgetTimer) may also be in milliseconds, as shown in bold font in the following fields:
  • ms10 means that the delayBudgetTimer lasts for 10ms after it is turned on, that is, it turns off after 10ms after it is turned on.
  • the implementation manner may be the same as that described above. For example, 3 bits are included in the DCI field (because ms1, ms2, .
  • the first communication device After receiving the DCI, the first communication device starts the corresponding drx-delayBudgetTimer in the DRX-config according to the db-timer field.
  • the above method of identifying the first duration (namely the first timer drx-delayBudgetTimer) is only an example, which should not limit the present application, and other methods of identifying the first duration also belong to the protection scope of the present application. It should be understood that the configuration values of the above parameters may be milliseconds, and time units such as time slots and symbols may also be the number of monitoring control information, which is not limited in this application.
  • the first configuration information may include multiple candidates for the first duration
  • one of the candidates may be activated through the control information to determine the first duration (ie, the first timer delayBudgetTimer).
  • the downlink time slots at D00-D12 can use DCI-X1 to indicate the corresponding PDSCH, but multiple DCI-X1 will not repeatedly start the first duration (that is, the first timer delayBudgetTimer), that is, only one first duration (ie, the first timer delayBudgetTimer) takes effect in each DRX cycle.
  • the start time of the first duration (that is, the first timer delayBudgetTimer) in the DRX cycle depends on the first DCI-X1 received in the DRX cycle.
  • the second communication device may dynamically indicate the starting position of the first duration through DCI-X2.
  • DCI-X1 and DCI-X2 may be the same DCI type, or may be different DCI types.
  • the first duration (that is, the first timer delayBudgetTimer) may also be activated by means of media access control (media access control, MAC) control signaling (control element, CE).
  • media access control media access control, MAC
  • CE control signaling
  • the drx-delayBudgetTimer parameter can be added to DRX-config to determine the first duration, and then activated through the MAC CE, and the MAC CE can be obtained through the logical channel identity (LCID) of the MAC layer header.
  • the MAC CE can be called a delayBudgetTimer MAC CE, and the MAC CE can be one-time, that is, the UE starts a delayBudgetTimer after receiving the MAC CE, and the duration depends on drx-delayBudgetTimer in drx-config.
  • the sender needs to send the delayBudgetTimer MAC CE for each drx-cycle.
  • the delayBudgetTimer MAC CE can activate the delayBudgetTimer for a period of time.
  • the MAC CE may include an activation signaling DB-Activation MAC CE and a deactivation signaling DB-Deactivation MAC CE.
  • DB-Activation MAC CE is used to activate drx-delayBudgetTimer, that is, after UE receives the MAC CE, each drx-cycle (can be long-cycle or short-cycle), reset and start drx-delayBudgetTimer, For the specific turn-on time, refer to the aforementioned methods, such as the onDuration position of the DRX cycle, or the DCI indication.
  • the drx-delayBudgetTimer will be deactivated.
  • the technical solution of the present application is described in detail in the above-mentioned embodiment by taking the downlink transmission as an example.
  • the technical solution of the present application can also be applied to uplink transmission and sidelink transmission.
  • the first communication device may be a base station
  • the second communication device may be a terminal device.
  • the first communication device and the second communication device may both be terminal devices, and the specific form of the message may refer to the existing technology, which is not limited in this application.
  • each device includes a corresponding hardware structure and/or software module for performing each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software. Whether a certain function is executed by hardware or computer software drives hardware depends on the specific application and design constraints of the technical solution. Those skilled in the art may use different methods to implement the described functions for each specific application, but such implementation should not be regarded as exceeding the scope of the present application.
  • sequence numbers of the above processes do not mean the order of execution, and the execution order of each process should be determined by its functions and internal logic, and should not constitute any limitation on the implementation process of the embodiment of the present application.
  • the method implemented by the communication device may also be implemented by a component (such as a chip or a circuit) that can be configured inside the communication device.
  • the embodiment of the present application can divide the functional modules of the transmitting end device or the receiving end device according to the above method example, for example, each functional module can be divided corresponding to each function, or two or more functions can be integrated into one processing module middle.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules. It should be noted that the division of modules in the embodiment of the present application is schematic, and is only a logical function division, and there may be other division methods in actual implementation. In the following, description will be made by taking the division of each functional module corresponding to each function as an example.
  • Fig. 17 is a schematic block diagram of an example of an information transmission device 1700 provided by this application. Any device involved in any one of the methods 900 to 1600 above, such as the first communication device and the second communication device, etc., can be implemented by the information transmission device shown in FIG. 17 .
  • the information transmission device 1700 may be a physical device, or a component of the physical device (for example, an integrated circuit, a chip, etc.), or a functional module in the physical device.
  • the information transmission device 1700 includes: one or more processors 1710 .
  • the processor 1710 may call an interface to implement receiving and sending functions.
  • the interface may be a logical interface or a physical interface, which is not limited.
  • the interface may be a transceiver circuit, an input-output interface, or an interface circuit.
  • the transceiver circuits, input and output interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit or interface circuit can be used for signal transmission or transfer.
  • the interface can be implemented through a transceiver.
  • the information transmission device 1700 may further include a transceiver 1730 .
  • the transceiver 1730 may also be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to realize a transceiver function.
  • the information transmission device 1700 may further include a memory 1720 .
  • the embodiment of the present application does not specifically limit the specific deployment location of the memory 1720, and the memory may be integrated in the processor or independent of the processor.
  • the information transmission apparatus 1700 does not include a memory, it is sufficient that the information transmission device 1700 has a processing function, and the memory can be deployed in other locations (eg, a cloud system).
  • the processor 1710, the memory 1720, and the transceiver 1730 communicate with each other through internal connection paths, and transmit control and/or data signals.
  • the information transmission device 1700 may also include other devices, such as an input device, an output device, a battery, and the like.
  • the memory 1720 may store execution instructions for executing the methods of the embodiments of the present application.
  • the processor 1710 can execute the instructions stored in the memory 1720 in conjunction with other hardware (such as the transceiver 1730 ) to complete the steps performed by the method shown below.
  • other hardware such as the transceiver 1730
  • the method disclosed in the embodiment of the present application may be applied to the processor 1710 or implemented by the processor 1710 .
  • the processor 1710 may be an integrated circuit chip with signal processing capabilities.
  • each step of the method can be completed by an integrated logic circuit of hardware in a processor or an instruction in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (digital signal processor, DSP), an application specific integrated circuit (application specific integrated circuit, ASIC), an off-the-shelf programmable gate array (field programmable gate array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in random access memory (random access memory, RAM), flash memory, read-only memory (read-only memory, ROM), programmable read-only memory or electrically erasable programmable memory, registers, etc. in the storage medium.
  • the storage medium is located in the memory, and the processor reads the instructions in the memory, and completes the steps of the above method in combination with its hardware.
  • memory 1720 can be either volatile memory or nonvolatile memory, or can include both volatile and nonvolatile memory.
  • the non-volatile memory can be read-only memory ROM, programmable read-only memory (programmable ROM, PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrically erasable programmable read-only memory (electrically EPROM, EEPROM) or flash memory.
  • Volatile memory can be random access memory RAM, which acts as external cache memory.
  • RAM random access memory
  • SRAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • SDRAM double data rate synchronous dynamic random access memory
  • ESDRAM enhanced synchronous dynamic random access memory
  • SLDRAM direct memory bus random access memory
  • direct rambus RAM direct rambus RAM
  • Fig. 18 is a schematic block diagram of an information transmission device 1800 provided in this application.
  • the specific form of the information transmission apparatus 1800 may be a general computer device or a chip in a general computer device, which is not limited in this embodiment of the present application.
  • the information transmission device includes a processing unit 1810 and a transceiver unit 1820 .
  • the information transmission apparatus 1800 may be any device involved in this application, and may implement functions that the device can implement. It should be understood that the information transmission apparatus 1800 may be a physical device, or a component of a physical device (for example, an integrated circuit, a chip, etc.), or a functional module in a physical device.
  • the information transmission device 1800 may be the first communication device in the above method embodiment, or may be a chip configured to realize the function of the first communication device in the above method embodiment.
  • the communication device is used to perform the actions performed by the first communication device in FIG. 9 above, the transceiver unit 1820 is used to perform S910, and the processing unit 1810 is used to perform S920.
  • the transceiver unit is configured to receive first configuration information, the first configuration information includes a first duration, a second duration and a first period, the first duration is less than the first period, and the first duration is at the beginning of a first period start, the second duration is used to indicate the estimated minimum duration between the first communication device reporting the response information at the first moment and receiving the retransmitted scheduling control information corresponding to the response information, or the first communication device at the second moment The expected minimum duration between the transmission of uplink/sidelink data and the receipt of the retransmitted scheduling control information corresponding to the uplink/sidelink data.
  • the processing unit is used for when the time unit corresponding to the end of the first time length is not later than the time unit corresponding to the end of the second time length, and the response information is a non-acknowledgment response NACK, the time corresponding to the end of the second time length.
  • the next time unit of the unit does not monitor the retransmitted scheduling control information corresponding to the response information.
  • the communication device is used to perform the actions performed by the first communication device in FIG. 14 above, the transceiver unit 1820 is used to perform S1410, and the processing unit 1810 is used to perform S1420.
  • the transceiver unit is configured to receive first configuration information, the first configuration information includes a first duration, a second duration and a first period, the first duration is less than the first period, and the first duration starts at the beginning of the first period , the second duration is used to indicate the estimated minimum duration between the first communication device reporting the response information at the first moment and receiving the retransmitted scheduling control information corresponding to the response information, or, the first communication device transmits at the second moment The estimated minimum duration between the uplink/sidelink data and the receipt of the retransmitted scheduling control information corresponding to the uplink/sidelink data; the first configuration information also includes a third duration, and the third duration is used to instruct the first communication device to The maximum time period between the next time unit corresponding to the time unit at the end of the second time period and the receipt of the retransmitted scheduling control information corresponding to the due information; or, the third time period is used to indicate that the first communication device is in the second time period The maximum duration from the next time unit corresponding to the time unit at the end to receiving
  • the processing unit is configured to not monitor the retransmitted scheduling control information corresponding to the response information in the remaining time range of the third time length when the next time unit corresponding to the time unit ends when the first time length ends, and the third time length does not end.
  • the transceiver unit 1820 in the information transmission device 1800 can be implemented through a communication interface (such as a transceiver or an input/output interface), and the processing in the information transmission device 1800 Unit 1810 may be implemented by at least one processor, for example, may correspond to processor 1710 shown in FIG. 17 .
  • the information transmission device 1800 may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the information transmission device 1800 may be the second communication device in the above method embodiment, or may be a chip for realizing the function of the second communication device in the above method embodiment.
  • the communication device is configured to perform the actions performed by the second communication device in FIG. 9 above, and the transceiver unit 1810 is configured to perform S910.
  • the transceiver unit is configured to send the first configuration information, the first configuration information includes the first duration, the second duration and the first period, the first duration is less than the first period, and the first duration is at the beginning of a first period start, the second duration is used to indicate the minimum duration between the second communication device receiving the response information at the first moment and sending the retransmission scheduling control information corresponding to the response information, or, the second communication device receives the uplink The minimum duration between /side data and the retransmission scheduling control information corresponding to the uplink/side data.
  • the transceiver unit is further configured to: when the time unit corresponding to the end of the first time length is not later than the time unit corresponding to the end of the second time length, and the response information is a non-acknowledgment response NACK, the time unit corresponding to the end of the second time length The next time unit of the corresponding time unit does not send the retransmission scheduling control information corresponding to the response information.
  • the communication device is configured to perform the actions performed by the second communication device in FIG. 13 above, and the transceiver unit 1820 is configured to perform S1310.
  • the transceiver unit is configured to send the first configuration information, the first configuration information includes the first duration, the second duration and the first period, the first duration is less than the first period, and the first duration starts at the beginning of the first period,
  • the second duration is used to indicate the minimum duration between when the first communication device receives the response information at the first moment and sends the retransmitted scheduling control information corresponding to the response information, or, the second communication device receives the uplink/side
  • the first configuration information also includes a third time length, and the third time length is used to indicate the second communication device at the end of the second time length.
  • the maximum duration between the next time unit of the corresponding time unit and the sending of the retransmission scheduling control information corresponding to the information; or, the third duration is used to indicate the corresponding time of the second communication device at the end of the second duration
  • the transceiver unit is also used for scheduling control of retransmission corresponding to the response information not sent in the remaining time range of the third time length when the next time unit corresponding to the time unit ends at the end of the first time length and the third time length is not over information.
  • the transceiver unit 1820 in the information transmission device 1800 can be implemented through a communication interface (such as a transceiver or an input/output interface), for example, it can correspond to the
  • the processing unit 1810 in the information transmission device 1800 may be implemented by at least one processor, for example, it may correspond to the processor 1710 shown in FIG. 17 .
  • the information transmission device 1800 may further include a storage unit, which may be used to store instructions or data, and the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • a storage unit which may be used to store instructions or data
  • the processing unit may call the instructions or data stored in the storage unit to implement corresponding operations.
  • the information transmission device 1800 is presented in the form of functional modules.
  • the "module” here may refer to an application-specific integrated circuit ASIC, a circuit, a processor and memory executing one or more software or firmware programs, an integrated logic circuit, and/or other devices that can provide the above-mentioned functions.
  • device 1800 may take the form shown in FIG. 18 .
  • the processing unit 1810 may be implemented by the processor 1710 shown in FIG. 17 .
  • the processing unit 1810 may be implemented by the processor 1710 and the memory 1760 .
  • the transceiver unit 1820 may be implemented by the transceiver 1560 shown in FIG. 17 .
  • the transceiver 1760 includes a receive function and a transmit function.
  • the processor is implemented by executing computer programs stored in the memory.
  • the function and/or implementation process of the transceiver unit 1820 may also be implemented through pins or circuits.
  • the memory may be a storage unit in the chip, such as a register, a cache, etc., and the storage unit may also be a storage unit located outside the chip in the information transmission device, such as the memory shown in FIG. 17 1760, or, may also be a storage unit deployed in other systems or devices, not in the computer device.
  • computer-readable media may include, but are not limited to: magnetic storage devices (e.g., hard disk, floppy disk, or tape, etc.), optical disks (e.g., compact disc (compact disc, CD), digital versatile disc (digital versatile disc, DVD) etc.), smart cards and flash memory devices (for example, erasable programmable read-only memory (EPROM), card, stick or key drive, etc.).
  • various storage media described herein can represent one or more devices and/or other machine-readable media for storing information.
  • the term "machine-readable medium” may include, but is not limited to, various other media capable of storing, containing and/or carrying instructions and/or data.
  • the present application also provides a computer program product, the computer program product including: a computer program or a set of instructions, when the computer program or a set of instructions is run on a computer, the computer is made to execute The method of any one of the embodiments shown in FIG. 9 to FIG. 16 .
  • the present application also provides a computer-readable storage medium, the computer-readable medium stores a program or a set of instructions, and when the program or a set of instructions is run on a computer, the computer Execute the method of any one of the embodiments shown in FIG. 9 to FIG. 16 .
  • the present application further provides a communication system, which includes the foregoing apparatus or device.
  • a component may be, but is not limited to being, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and/or a computer.
  • an application running on a computing device and the computing device can be components.
  • One or more components can reside within a process and/or thread of execution and a component can be localized on one computer and/or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may pass through a signal having one or more packets of data (for example, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet through a signal interacting with other systems) local and/or remote processes to communicate.
  • packets of data for example, data from two components interacting with another component between a local system, a distributed system, and/or a network, such as the Internet through a signal interacting with other systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Detection And Prevention Of Errors In Transmission (AREA)

Abstract

本申请提供了一种信息传输的方法和装置,包括:接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不监测应答信息对应的重传的调度控制信息。本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。

Description

信息传输的方法和装置
本申请要求于2021年8月10日提交中国专利局、申请号为202110914712.4、申请名称为“一种重传方法”的中国专利申请的优先权以及于2021年10月14日提交中国专利局、申请号为202111196366.7、申请名称为“信息传输的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,并且更具体地,涉及信息传输的方法和装置。
背景技术
未来通信系统中的实时宽带通信(real-time broadband communication,RTBC)场景旨在支持大带宽和低交互时延,目标是在给定时延和一定的可靠性要求下,将带宽提升10倍,打造人与虚拟世界交互时的沉浸式体验。其中,有着超高带宽和超低时延要求的扩展现实专业版(extended reality professional,XR Pro)业务对第五代(the 5th generation,5G)移动通信技术提出了更为严峻的挑战。XR主要包含虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)以及混合现实(mixed reality,MR)等虚拟与现实交互技术。其中,在下行传输过程中,服务器的XR内容将以固定频率(例如,60Hz或120Hz)生成数据内容,并由基站侧传输给XR的终端设备。另外,由于图形生成的需要,AR和MR等设备需内置摄像头采集并以特定频率(例如,60Hz)连续上传当前场景图像。
在当前的新空口(new radio,NR)中,针对上行传输和下行传输,都提供了动态调度和半静态调度两种调度方式。其中,在动态调度的场景下,一种节能的技术为不连续接收(discontinuous reception,DRX),该技术可以让接收端周期性的在某些时候进入睡眠状态(sleep mode),不去监听物理下行控制信道(physical downlink control channel,PDCCH)子帧,而在需要监听的时候,则从睡眠状态中唤醒(wake up)并监测PDCCH。另外,DRX技术为每个混合自动重传请求(hybrid auto repeat request,HARQ)进程分配了一个对应的定时器,用于在特定的时间接收重传数据。但是,这种唤醒方式可能会打断接收端的睡眠状态,特别是当某个超过空口传输时间要求的传输块(transport block,TB)的重传可能已经无助于当前数据传输的时候,这种唤醒方式不仅无益于接收端用户体验,反而会造成额外的功耗开销;半静态调度具有一次配置多次使用的特点,也即,配置一次参数之后,后续的传输都采用该次配置的参数,但是在半静态传输的场景下,由于接收端无法获知重传出现的具体时隙,只能在固定的时间内监测PDCCH,不仅加剧了数据传输的时延,而且可能打断接收端的睡眠状态,增加了接收端的功耗开销。
因此,亟需一种信息传输的方法,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
发明内容
本申请提供一种信息传输的方法和装置,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
第一方面,提供了一种信息传输的方法,包括:接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不监测应答信息对应的重传的调度控制信息。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
结合第一方面,在第一方面的某些实现方式中,上述方法还包括:在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的前K个连续的时间单元监测应答信息对应的重传的调度控制信息。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
结合第一方面,在第一方面的某些实现方式中,当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为NACK时,上述方法还包括:延长第二时长在第一周期内的终止位置至第一周期结束时所对应的时间单元的相邻的K个连续的时间单元的起始时刻。
结合第一方面,在第一方面的某些实现方式中,第一配置信息还用于配置第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应答信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
结合第一方面,在第一方面的某些实现方式中,K个连续的时间单元是根据第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第一方面,在第一方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第一方面,在第一方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第一方面,在第一方面的某些实现方式中,第一配置信息还用于指示第四时长,第四时长用于表示第一通信装置监测控制信息的时长,上述方法还包括:确定第五时长,第一通信装置在第五时长内监测控制信息,第五时长在第一周期内的起始位置是通过将第 四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第一方面,在第一方面的某些实现方式中,第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一个相邻第一周期的第四时长的起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第一方面,在第一方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第二方面,提供了一种信息传输的方法,包括:发送第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第二通信装置在第一时刻接收应答信息后至发送应答信息对应的重传的调度控制信息之间的最小时长,或者,第二时长用于指示第二通信装置在第二时刻接收上行/侧行数据至发送上行/侧行数据对应的重传的调度控制信息之间的最小时长;当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不发送应答信息对应的重传的调度控制信息。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
结合第二方面,在第二方面的某些实现方式中,上述方法还包括:在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的前K个连续的时间单元发送应答信息对应的重传的调度控制信息。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
结合第二方面,在第二方面的某些实现方式中,第一配置信息还用于配置第三时长,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送应答信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长。
结合第二方面,在第二方面的某些实现方式中,上述K个连续的时间单元是根据第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第二方面,在第二方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第二方面,在第二方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第二方面,在第二方面的某些实现方式中,第一配置信息还用于指示第四时长,第二通信装置在第四时长内发送数据的调度控制信息,上述方法还包括:确定第五时长,第二通信装置在第五时长内发送数据的调度控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第二方面,在第二方面的某些实现方式中,第五时长在第一周期内结束时所对应的时间单元的下一时间单元是下一个相邻第一周期的第四时长起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第二方面,在第二方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第三方面,提供了一种信息传输的方法,包括:接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;第一配置信息还包括第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,在第三时长剩余时间范围不监测应答信息对应的重传的调度控制信息。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
结合第三方面,在第三方面的某些实现方式中,上述方法还包括:在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测应答信息对应的重传的调度控制信息。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
结合第三方面,在第三方面的某些实现方式中,K个连续的时间单元是根据当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束时的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第三方面,在第三方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第三方面,在第三方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第三方面,在第三方面的某些实现方式中,第一配置信息还用于指示第四时长,第四时长用于表示第一通信装置监测控制信息的时长,上述方法还包括:确定第五时长,第一通信装置在第五时长内监测控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第三方面,在第三方面的某些实现方式中,上述第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一个相邻第一周期的第四时长的起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四 时长结束时所对应的时间单元。
结合第三方面,在第三方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第四方面,提供了一种信息传输的方法,包括:发送第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻接收应答信息后至发送应答信息对应的重传的调度控制信息之间的最小时长,或者,第二时长用于指示第二通信装置在第二时刻接收上行/侧行数据至发送上行/侧行数据对应的重传的调度控制信息之间的最小时长;第一配置信息还包括第三时长,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长。当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,在第三时长剩余时间范围不发送应答信息对应的重传的调度控制信息。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
结合第四方面,在第四方面的某些实现方式中,上述方法还包括:在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元发送应答信息对应的重传的调度控制信息。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
结合第四方面,在第四方面的某些实现方式中,K个连续的时间单元是根据当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束时的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第四方面,在第四方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期。
结合第四方面,在第四方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第四方面,在第四方面的某些实现方式中,第一配置信息还用于指示第四时长,第二通信装置在第四时长内发送数据的调度控制信息,上述方法还包括:确定第五时长,第二通信装置在第五时长内发送数据的调度控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第四方面,在第四方面的某些实现方式中,第五时长在第一周期内结束时所对应的时间单元的下一时间单元是下一个相邻第一周期的第四时长起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第四方面,在第四方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第五方面,提供了一种信息传输的装置,包括:收发单元,用于接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在 一个第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;处理单元,用于当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不监测应答信息对应的重传的调度控制信息。
结合第五方面,在第五方面的某些实现方式中,上述处理单元,还用于在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测应答信息对应的重传的调度控制信息。
结合第五方面,在第五方面的某些实现方式中,当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为NACK时,上述处理单元,还用于延长第二时长在第一周期内的终止位置至第一周期结束时所对应的时间单元的相邻的前K个连续的时间单元的起始时刻。
结合第五方面,在第五方面的某些实现方式中,第一配置信息还用于配置第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应答信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
结合第五方面,在第五方面的某些实现方式中,K个连续的时间单元是根据第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第五方面,在第五方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第五方面,在第五方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第五方面,在第五方面的某些实现方式中,第一配置信息还用于指示第四时长,第四时长用于表示第一通信装置监测控制信息的时长,上述处理单元,还用于确定第五时长,第一通信装置在第五时长内监测控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第五方面,在第五方面的某些实现方式中,第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一个相邻第一周期的第四时长的起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第五方面,在第五方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第六方面,提供了一种信息传输的装置,包括:收发单元,用于发送第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第二通信装置在第一时刻接收应答信息 后至发送应答信息对应的重传的调度控制信息之间的最小时长,或者,第二时长用于指示第二通信装置在第二时刻接收上行/侧行数据至发送上行/侧行数据对应的重传的调度控制信息之间的最小时长;所述收发单元,还用于当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不发送应答信息对应的重传的调度控制信息。
结合第六方面,在第六方面的某些实现方式中,上述收发单元,还用于在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的前K个连续的时间单元发送应答信息对应的重传的调度控制信息。
结合第六方面,在第六方面的某些实现方式中,第一配置信息还用于配置第三时长,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送应答信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长。
结合第六方面,在第六方面的某些实现方式中,上述K个连续的时间单元是根据第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第六方面,在第六方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第六方面,在第六方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第六方面,在第六方面的某些实现方式中,第一配置信息还用于指示第四时长,第二通信装置在第四时长内发送数据的调度控制信息,上述收发单元,还用于确定第五时长,第二通信装置在第五时长内发送数据的调度控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第六方面,在第六方面的某些实现方式中,第五时长在第一周期内结束时所对应的时间单元的下一时间单元是下一个相邻第一周期的第四时长起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第六方面,在第六方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第七方面,提供了一种信息传输的装置,包括:收发单元,用于接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;第一配置信息还包括第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所 对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。处理单元,用于当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,在第三时长剩余时间范围不监测应答信息对应的重传的调度控制信息。
结合第七方面,在第七方面的某些实现方式中,上述处理单元,还用于在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测应答信息对应的重传的调度控制信息。
结合第七方面,在第七方面的某些实现方式中,K个连续的时间单元是根据当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束时的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第七方面,在第七方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第七方面,在第七方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第七方面,在第七方面的某些实现方式中,第一配置信息还用于指示第四时长,第四时长用于表示第一通信装置监测控制信息的时长,上述处理单元,还用于确定第五时长,第一通信装置在第五时长内监测控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第七方面,在第七方面的某些实现方式中,上述第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一个相邻第一周期的第四时长的起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第七方面,在第七方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第八方面,提供了一种信息传输的装置,包括:收发单元,用于,发送第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻接收应答信息后至发送应答信息对应的重传的调度控制信息之间的最小时长,或者,第二时长用于指示第二通信装置在第二时刻接收上行/侧行数据至发送上行/侧行数据对应的重传的调度控制信息之间的最小时长;第一配置信息还包括第三时长,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长。所述收发单元,还用于当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,在第三时长剩余时间范围不发送应答信息对应的重传的调度控制信息。
结合第八方面,在第八方面的某些实现方式中,上述收发单元,还用于在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元发送应答信息对应的重传的调度控制信息。
结合第八方面,在第八方面的某些实现方式中,K个连续的时间单元是根据当在第一 时长结束时所对应的时间单元的下一时间单元,第三时长未结束时的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
结合第八方面,在第八方面的某些实现方式中,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
结合第八方面,在第八方面的某些实现方式中,应答信息是一个混合自动重传请求HARQ进程的应答信息。
结合第八方面,在第八方面的某些实现方式中,第一配置信息还用于指示第四时长,第二通信装置在第四时长内发送数据的调度控制信息,上述收发单元,还用于确定第五时长,第二通信装置在第五时长内发送数据的调度控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
结合第八方面,在第八方面的某些实现方式中,第五时长在第一周期内结束时所对应的时间单元的下一时间单元是下一个相邻第一周期的第四时长起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
结合第八方面,在第八方面的某些实现方式中,上述第五时长仅在第一周期内生效。
第九方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第一方面或第三方面的任意可能的实现方式中的方法。
第十方面,提供了一种通信装置,包括处理器和接口电路,接口电路用于接收来自该通信装置之外的其它通信装置的信号并传输至该处理器或将来自该处理器的信号发送给该通信装置之外的其它通信装置,该处理器通过逻辑电路或执行代码指令用于实现前述第二方面或第四方面的任意可能的实现方式中的方法。
第十一方面,提供了一种计算机可读存储介质,该计算机可读存储介质中存储有计算机程序或指令,当该计算机程序或指令被执行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十二方面,提供了一种包含指令的计算机程序产品,当该指令被运行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十三方面,提供了一种计算机程序,该计算机程序包括代码或指令,当该代码或指令被运行时,实现前述第一方面至第四方面的任意可能的实现方式中的方法。
第十四方面,提供一种芯片系统,该芯片系统包括处理器,还包括存储器,用于实现前述第一方面至第四方面的任意可能的实现方式中的方法。该芯片系统由芯片构成,也包含芯片和其他分立器件。
第十五方面,提供了一种通信系统,包括第一通信装置和第二通信装置。
其中,第一通信装置用于实现上述第一方面或第三方面中的各实现方式的方法,第二通信装置用于实现上述第二方面或第四方面中各实现方式中的方法。
在一种可能的设计中,该通信系统还包括本申请实施例提供的方案中与第一通信装置 或第二通信装置进行交互的其他设备。
附图说明
图1是本申请适用的通信系统100的示意图。
图2是本申请适用的信息传输的一例视频编码方案。
图3是本申请适用的半静态传输方法的一例示意图。
图4是本申请适用的非连续接收DRX的一例示意图。
图5是本申请适用的DRX的另一例示意图。
图6是本申请适用的DRX长周期和短周期示意图。
图7是已有的DXR机制下的一例信息重传的示意图。
图8是已有的半静态传输机制下的一例信息重传的示意图。
图9是本申请信息传输方法的一例示意性流程图。
图10是本申请信息传输方法的另一例示意性流程图。
图11是本申请信息传输方法的具体示例的一例示意图。
图12是本申请信息传输方法的具体示例的另一例示意图。
图13是本申请信息传输方法的具体示例的又一例示意图。
图14是本申请信息传输方法的另一例示意性流程图。
图15是本申请信息传输方法的具体示例的又一例示意图。
图16是本申请利用控制信息激活第一时长的一例示意图。
图17是本申请信息传输设备的一例示意性结构图。
图18是本申请信息传输装置的一例示意性框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
图1是适用于本申请实施例的通信系统100的示意图。
如图1所示,该通信系统100可以包括一个或多个网络设备,例如,图1所示的网络设备101。该通信系统100还可以包括一个或多个终端设备(也可以称为用户设备(user equipment,UE)),例如,图1所示的终端设备102、终端设备103以及终端设备104等。其中,通信系统100可以支持侧行链路(sidelink)通信技术,例如,终端设备102和终端设备103之间的侧行通信,终端设备102和终端设备104之间的侧行通信等。
应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括核心网设备105以及在图1中未画出的无线中继设备和无线回传设备。本申请的实施例对该移动通信系统中包括的网络设备和终端设备的数量不做限定。
本申请实施例中的终端设备可以指用户设备、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、无线通信设备、用户代理或用户装置。本申请的实施例中的终端可以是手机(mobile phone)、平板电脑(pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端、增强现实(augmented reality,AR)终端、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程医疗(remote medical)中的无线终端、智能电网(smart grid)中的无线终端、运输 安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端、蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,5G网络中的终端或者未来演进网络中的终端等。
其中,可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
此外,终端设备还可以是物联网(internet of things,IoT)系统中的终端设备。IoT的技术特点是将物品通过通信技术与网络连接,从而实现人机互连,物物互连的智能化网络。本申请对于终端设备的具体形式不作限定。
应理解,本申请实施例中,终端设备可以是用于实现终端设备功能的装置,也可以是能够支持终端设备实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。
本申请实施例中的网络设备可以是任意一种具有无线收发功能的设备。该设备包括但不限于:演进型节点B(evolved Node B,eNB)、家庭基站(例如,home evolved nodeB,或home node B,HNB)、基带单元(base band unit,BBU),无线保真(wireless fidelity,WIFI)系统中的接入点(access point,AP)、无线中继节点、无线回传节点、传输点(transmission point,TP)或者发送接收点(transmission and reception point,TRP)等,还可以为第五代(5th generation,5G),如,新一代无线通信系统(new radio,NR)中的下一代基站(next generation node B,gNB),或,传输点(TRP或TP),5G系统中的基站的一个或一组(包括多个天线面板)天线面板,或者,还可以为构成gNB或传输点的网络节点,如基带单元(BBU),或,分布式单元(distributed unit,DU)等。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和DU。CU实现gNB的部分功能,DU实现gNB的部分功能。比如,CU负责处理非实时协议和服务,实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能。DU负责处理物理层协议和实时服务,实现无线链路控制(radio link control,RLC)层、媒体接入控制(media access control,MAC)层和物理(physical,PHY)层的功能。gNB还可以包括有源天线单元(active antenna unit,简称AAU)。AAU实现部分物理层处理功能、射频处理及有源天线的相关功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令,也可以认为是由DU发送的,或者,由DU+AAU发送的。可以理解的是,网络设备可以为包括CU节点、DU节点、AAU节点中一项或多项的设备。此外,可以将CU划分为接入网(radio access network,RAN)中的网络设备, 也可以将CU划分为核心网(core network,CN)中的网络设备,本申请对此不做限定。
应理解,本申请实施例中,网络设备可以是用于实现网络设备功能的装置,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。
本申请实施例的技术方案可以应用于各种通信系统,例如:LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、5G系统、车到其它设备(vehicle-to-X,V2X),其中V2X可以包括车到互联网(vehicle to network,V2N)、车到车(vehicle to vehicle,V2V)、车到基础设施(vehicle to infrastructure,V2I)、车到行人(vehicle to pedestrian,V2P)等、车间通信长期演进技术(long term evolution-vehicle,LTE-V)、车联网、机器类通信(machine type communication,MTC)、物联网(Internet of things,IoT)、机器间通信长期演进技术(long term evolution-machine,LTE-M),机器到机器(machine to machine,M2M),设备到设备(device to device,D2D)等或未来演进的通信系统,例如第六代(6th generation,6G)系统。
未来通信系统中的实时宽带通信(real-time broadband communication,RTBC)场景旨在支持大带宽和低交互时延,目标是在给定时延和一定的可靠性要求下,将带宽提升10倍,打造人与虚拟世界交互时的沉浸式体验。其中,有着超高带宽和超低时延要求的扩展现实专业版(extended reality professional,XR Pro)业务对第五代(the 5th generation,5G)移动通信技术提出了更为严峻的挑战。XR主要包含虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)以及混合现实(mixed reality,MR)等虚拟与现实交互技术。其中,在下行传输过程中,服务器的XR内容将以固定频率(例如,60Hz或120Hz)生成数据内容,并由基站侧传输给XR的终端设备。另外,由于图形生成的需要,AR和MR等设备需内置摄像头采集并以特定频率(例如,60Hz)连续上传当前场景图像。
在当前的新空口(new radio,NR)中,针对上行传输和下行传输,都提供了动态调度和半静态调度两种调度方式。其中,在动态调度的场景下,一种节能的技术为不连续接收(discontinuous reception,DRX),该技术可以让接收端周期性的在某些时候进入睡眠状态(sleep mode),不去监听物理下行控制信道(physical downlink control channel,PDCCH)子帧,而在需要监听的时候,则从睡眠状态中唤醒(wake up)并监测PDCCH。另外,DRX技术为每个混合自动重传请求(HARQ)进程分配了一个对应的定时器,用于在特定的时间接收重传数据。但是,这种唤醒方式可能会打断接收端的睡眠状态,特别是当某个超过空口传输时间要求的传输块(transport block,TB)的重传可能已经无助于当前数据传输的时候,这种唤醒方式不仅无益于接收端用户体验,反而会造成额外的功耗开销;半静态调度具有一次配置多次使用的特点,也即,配置一次参数之后,后续的传输都采用该次配置的参数,但是在半静态传输的场景下,由于接收端无法获知重传出现的具体时隙,只能在固定的时间内监测PDCCH,不仅加剧了数据传输的时延,而且可能打断接收端的睡眠状态,增加了接收端的功耗开销。
图2示出了当前XR业务传输所采用的一种视频编码方案,其中,每个视频序列被分割成多个大小相同的图像组(group of picture,GOP),在每个GOP内的视频帧进行帧内或帧间编码。通常,每个GOP中首个编码帧被记为I帧,可独立编解码,而后续编码的帧记为P帧,需要基于之前已编码的I或P帧进行编解码,从而提高编码压缩性能,但这种编码方式也引入了差错传递,比如,图2中的I帧传输出现错误,则其后面的P帧都无 法正确解码。
在NR中,数据的调度通常可以分为动态调度和半静态调度。其中,半静态调度包括配置授权调度和半持续调度。
例如,上行链路的调度分为动态调度传输和配置授权(configured grant,CG)免调度传输两种,CG免调度传输在下文中简称为CG传输。动态调度传输,是在上行数据传输之前,UE向基站发送传输请求并上报传输的数据量。基站根据UE上报的信息为UE分配相应的传输资源。动态调度可以为每次传输配置不同的参数,以适应信道状态的变化。但是,动态调度需要接收端盲检控制信息,增加了接收端的功耗开销。配置授权免调度传输是指UE不需要每次传输时向基站发送调度请求,也不需要等待基站的上行调度许可,而是由UE在实现配置或激活的资源上自主进行周期性的上行数据的发送。上行的免调度传输包括type1和type2两种,其中,对于type1,上行免调度的传输配置全部是通过RRC信令完成的。对于type2,上行免调度的传输配置首先由基站通过RRC信令配置,然后由基站通过下行控制信息(downlink control information,DCI)信令激活上行传输。相比于动态调度传输,在免调度传输中,接收端不需要盲检控制信息。但是,如果CG传输的配置参数发生变化,需要进行重新激活或者重配置,这依然需要接收端盲检控制信息,带来功耗开销。
如图3(a)所示,上行免调度传输方案分为type1和type2两种。Type1的上行免调度的传输配置是通过RRC信令完成的,type2的上行免调度的传输配置是通过RRC信令和DCI激活信令共同完成的。对于type1的上行免调度数据传输,网络设备(例如,基站)先通过RRC信令为终端设备配置周期性的传输资源,终端设备有上行数据需要传输时可以直接在配置的资源上进行传输。相对于基于调度的数据传输,免调度传输省去了调度请求和数据调度的时间。Type1免调度传输涉及的所有参数,均通过RRC配置。
对于type2的上行免调度数据传输,由网络设备(例如,基站)先通过RRC信令配置,然后由网络设备(例如,基站)通过配置调度无线网络临时标识(configured scheduling radio network temporary identifier,CS-RNTI)加扰的物理下行控制信道(physical downlink control channel,PDCCH)激活信令激活上行传输。Type2免调度传输资源周期通过RRC信令配置,具体的时频资源配置,调制与编码策略(modulation and coding scheme,MCS)等级和多输入多输出系统(multi-input multi-output,MIMO)参数等都在激活DCI信令中指示。终端设备按照RRC配置的周期和偏移,在收到DCI激活信令后,可在配置的传输周期上直接进行传输。
另外,在下行传输中,NR也提供了两种调度方式,即为动态调度和预配置授权的半持续调度(semi-perisistent scheduling,SPS)传输。在动态调度中,终端需要监测(monitor)PDCCH,并通过PDCCH携带的CS-RNTI信息来确定针对本终端的调度信令。UE的盲检功耗也是比较大的。在预配置授权的SPS传输中,基站会通过RRC信令配置下行SPS资源周期,但此时并不激活SPS。如图3(b)所述,SPS与上行传输的type2过程类似,基站发送经过CS-RNTI加扰的PDCCH用于激活或去激活SPS,并指示SPS的首次传输使用的资源。UE通过监测PDCCH来确定下行SPS是否被激活,以及后续SPS的资源位置。当下行的SPS被激活之后,UE会在预配置的资源位置上接收下行传输。
目前,针对下行场景中的动态调度传输的场景,一种节能的方法为不连续接收 (discontinuous reception,DRX)。该方法可以使接收端设备(例如终端设备)周期性的在某些时候进入睡眠状态(sleep mode),不再监听PDCCH子帧,而当需要监听的时候,则从睡眠状态中唤醒(wake up),这样就可以使终端达到省电的目的。虽然这样在一定程度上增加了数据传输的时延,但是如果这种时延并不影响用户体验时,执行这种方法将减少终端的功耗。
由于DRX为本申请技术方案的重要应用场景,为更清楚的介绍本申请的技术方案,下面将首先结合图4和图5对DRX技术进行简单的介绍。
应理解,DRX机制在空闲态和连接态下的实现是不同的,相对而言,连接态下的DRX机制要复杂的多。因此,下文描述的DRX均特指终端处于连接态时使用的DRX,即C-DRX(Connected DRX)。
图4(a)示出了一个典型的DRX周期示意图。其中,标识“持续时间(On Duration)”的这段时间是终端监测PDCCH的时间区间,在这段时间里,终端是处于唤醒状态的,属于“激活期”;标识“睡眠时间(Opportunity for DRX)”的这段时间是DRX周期中的睡眠时间,即终端为了省电,进入了睡眠而不监测PDCCH的时间,属于“休眠期”。随着一个DRX周期中的睡眠时间越长,终端的功耗就越低,相应的,业务传输的时延也会随之增加。
在“激活期”内,终端持续地监测下行PDCCH信道。“激活期”不仅包括持续时间(On Duration),还包括闲置时间(Inactivity Time)以及重传时间(Retransmission Time),即,如图4(b)所示,当终端处于持续时间定时器OnDurationTimer时期、闲置时间定时器drx-InactivityTimer正在运行、或者重传定时器drx-RetransmissionTimer正在运行时,终端始终处于“激活期”。例如,在实际传输中,0号子帧是持续时间(On Duration)的最后一个子帧,此时网络侧刚好有一个较大字节的数据需要发给终端,这些数据无法在0号子帧全部发送完。如果按照图4(a)中所示的DRX周期,那么终端将在1号子帧(即0号子帧后的第一个子帧)进入DRX睡眠状态,不再会去监测PDCCH。网络侧也只能等到DRX周期结束,并在下一个持续时间(On Duration)时刻到来时,继续向终端发送没有传完的数据。因此,如图4(b)所示,DRX机制中增加了闲置时间定时器drx-InactivityTimer。如果闲置时间定时器drx-InactivityTimer正在运行,那么即便原本配置的持续时间(On Duration)时间已经结束,终端仍然需要继续监听PDCCH,直到闲置时间定时器drx-InactivityTimer超时。这样,通过增加了闲置时间定时器drx-InactivityTimer机制,减少了数据的处理时延。
在大多数传输中,当一个终端在某个子帧被调度并接收或发送数据后,很可能在接下来的几个子帧内继续被调度。因此,闲置时间定时器drx-InactivityTimer机制原理为:在终端进入DRX激活期的持续时间(On Duration)内,当终端进行上行或下行数据传输调度时,基站就会启动或重启闲置时间定时器drx-InactivityTimer,且终端将一直位于“激活期”直到该定时器超时,如图5(a)所示。如果闲置时间定时器drx-InactivityTimer正在运行,那么即便原本配置的持续时间定时器On Duration Timer已经结束,终端仍然需要继续监听PDCCH,直到闲置时间定时器drx-InactivityTimer超时。
此外,针对重传场景,在DRX机制中还引入了另外一个与下行重传相关的定时器,混合自动重传请求HARQ往返时延(round-trip time,RTT)定时器HARQ RTT Timer。在 当前DRX机制中,如果某个下行HARQ进程的传输块(transport block,TB)解码失败后,终端可以假定在上报HARQ应答信息后的混合自动重传请求往返时延定时器drx-HARQ-RTT-TimerDL时间后才会有重传,因此如图5(b)所示,当混合自动重传请求往返时延定时器drx-HARQ-RTT-TimerDL正在运行时,终端可以不监听PDCCH。当混合自动重传请求往返时延定时器drx-HARQ-RTT-TimerDL超时,且对应HARQ进程接收到的数据没有被成功解码时,终端会为该HARQ进程启动一个重传进程定时器drx-RetransmissionTimer。该重传定时器drx-RetransmissionTimer可以表示终端监测调度重传的PDCCH的最长时间。当该重传定时器drx-RetransmissionTimer运行时,终端会在该定时器时间内持续监测调度对应HARQ进程的PDCCH,直至监测到调度对应HARQ进程的PDCCH或该重传定时器drx-RetransmissionTimer超时。
为了适应终端的不同数据的传输周期要求,在DRX机制中还引入了短周期和长周期两种场景。例如,在进行基于网络协议传输的语音(voice over internet protocol,VoIP)业务时,语音编解码器通常20ms发送一个VoIP包,那么就可以配置长度为20ms的DRX短周期;而在在VoIP通话期间会有较长的静默期,可以配置DRX长周期。如图6所示,终端默认应用长周期,如果闲置时间定时器drx-inactivityTimer被触发,证明有数据需要传输,且接下来可能有连续的数据传输,若终端配置了DRX短周期,终端可以进入DRX短周期,以降低业务的传输时延。终端进入短周期后,会启动短周期定时器drx-ShortCycleTimer。当短周期定时器drx-ShortCycleTimer超时后,也就是说连续多个DRX短周期内都没有监测到PDCCH后,终端将进入DRX长周期,以达到使终端省电的目的。在图6中,终端在持续时间定时器drx-onDurationTimer开启时间内监测到PDCCH后触发闲置时间定时器drx-InactivityTimer,且闲置时间定时器drx-InactivityTimer超时后开启DRX短周期定时器drx-shortCycleTimer,该短周期定时器drx-shortCycleTimer用于指示DRX短周期drx-shortCycle的次数,例如2次。若在DRX短周期drx-shortCycle中监测到PDCCH,则重置短周期定时器drx-shortCycleTimer。在短周期定时器drx-shortCycleTimer超时后,终端进入DRX长周期drx-longCycle循环。需要注意的是,DRX短周期drx-shortCycle的开启时间需要满足:[(SFN×10)+subframe number]mod(drx-ShortCycle)=(drx-StartOffset)mod(drx-ShortCycle),其中,SFN(system frame number)为系统帧号,subframe number为SFN中的子帧号,drx-ShortCycle,drx-StartOffset为drx-config中配置参数;DRX长周期drx-LongCycle应当满足:[(SFN×10)+subframe number]mod(drx-LongCycle)=drx-StartOffset。
另外,当终端在一段时间内(例如,4ms)未接收或发送任何数据,终端可以进入睡眠状态从而到达节省功耗的目的。
基于上述介绍,当采用动态调度的方法传输XR视频等业务时,为达到省电的目的,可以将DRX周期与XR周期进行匹配的方式,让XR数据的传输周期尽量在持续时间drx-onDuration中,以降低数据传输的时延。
但是,在目前的DRX机制中,该重传机制可能无益于提升用户的体验,反而会打断终端进入睡眠的状态加剧功耗的开销。例如,某个XR帧的数据的重传所对应的时间超过空口传输时间要求,因此该XR帧已经来不及显示,且可能会导致终端无法进入睡眠状态。又考虑到图2的XR帧间差错传递,该XR帧的数据仍有助于下一个XR帧的译码,因此 为提升用户体验,该数据仍需要进行传输。示例性地,图7展示一种下行传输2个相邻XR帧的传输,XR帧1和XR帧2的场景,其中,子载波间隔(sub-carrier spacing,SCS)为30k赫兹(Hertz,Hz),时分双工TDD上下行时隙配比为8:2(即每10个时隙为一个周期,其中包含8个下行时隙和2个上行时隙)。在图7中,D代表下行时隙,U代表上行时隙,图8、图10、图11、图12、图14以及图15的D和U与图7相同,后续不再赘述。图7中,XR帧1的数据包含在D00为起始的11个下行时隙传输,XR帧2包含在D33为起始的9个下行时隙传输,它们的传输间隔约为16.5ms(60Hz),对应的DRX周期也为16.5ms,XR帧的空口时延预算(packet delay budget,PDB)为10ms。其中,XR帧1在D11处传输的TB传输出现错误,其对应的HARQ进程的非确认应答(Negative Acknowledgement,NACK)信息在上行时隙U10上报后,终端开启混合自动重传请求往返时延定时器drx-HARQ-RTT-TimerDL。在该定时器超时后,由于D11的数据译码失败,因此启动下行重传进程定时器drx-retransmissionTimerDL定时器。在该重传进程定时器drx-retransmissionTimerDL开启时间内,终端将醒来监测重传数据的PDCCH。需要注意的是,在图7所示的数据传输中,终端醒来接收重传数据的时间,如D23处,已经超过XR帧的空口时延预算PDB(10ms)。因此,尽管XR帧1已经全部接收成功,但由于传输时间已经超过空口时延预算PDB,XR帧1已经来不及在用户侧显示。同时,由于XR帧2的传输时间距离该TB的重传时间大约有5ms的时间,因此,此时接收到的XR帧1并未直接有益于XR帧2的译码,反而由于终端在XR帧1和帧2的传输中间接收重传数据,导致终端无法进入睡眠,造成了额外的功耗。为了不打断终端进入睡眠的同时保证XR帧1的完整传输,一种可能的方法为延迟已经超过空口时延预算PDB的重传数据至XR帧2前。尽管目前的机制中,基站可以通过RRC信令中的DRX-config信令为终端配置DRX的参数,如drx-longCycle、drx-shortCycle、drx-HARQ-RTT-TimerDL以及drx-retransmissionTimerDL等参数,但这些参数通常为静态参量,因此无法通过修改参数数值的方法实现上述方法。
目前还存在不配置DRX进行数据传输的场景,例如,采用半静态调度(如半持续调度(semi-perisistent scheduling,SPS))来传输XR业务。因为SPS有一次配置,多次使用的特点,因此在每次SPS传输过程中,终端不需要解码对应的控制信息(如DCI),因而可以降低了终端的功耗开销。
图8示出了一种SPS传输2个相邻XR帧的示意图,同样采用的是SCS为30kHz,TDD上下行时隙配比为8:2的情况下。其中,假设SPS的周期与XR帧的周期已经匹配。其中,XR帧1的某个TB传输错误,在上行时隙传输HARQ应答信息后,基站过采用授权调度-无线网络临时标识(configured scheduling–radio network temporary identity,CS-RNTI)加扰的DCI调度重传。
然而,在上述SPS调度下的数据传输中,由于终端不确定重传数据出现的具体时隙,故只能在一段周期内连续监测PDCCH,因此该方法可能导致终端不断盲检控制信息而加剧功耗开销的问题。同时,由于重传数据所对应的时隙可能已经超过XR帧空口传输时间,因此SPS调度也可能会存在像上述DRX机制中一样的问题,即重传的TB既无益于提升用户体验,又可能会打断终端进入睡眠状态而导致终端的功耗开销过大。
基于上述原因,本申请提出了一种信息传输的方法和装置,以期望既能降低接收端因 接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
图9示出了本申请信息传输的方法的一例示意性流程图。
S910,第一通信装置接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期。
其中,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长。
可选地,在本申请实施例中,时长可以通过定时器来确定,例如,第一时长可以通过第一定时器确定,本申请不对其进行限定。
可选地,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
可选地,上述应答信息是一个混合自动重传请求HARQ进程的应答信息。
可选地,上述第一配置信息还用于配置第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应答信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
S920,当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,第一通信装置在第二时长结束时所对应的时间单元的下一时间单元不监测应答信息对应的重传的调度控制信息。
可选地,上述方法还包括:第一通信装置在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测应答信息对应的重传的调度控制信息。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
可选地,当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为NACK时,上述方法还包括:第一通信装置延长第二时长在第一周期内的终止位置至第一周期结束时所对应的时间单元的相邻的前K个连续的时间单元的起始时刻。
其中,K个连续的时间单元是根据第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
可选地,第一配置信息还用于指示第四时长,第四时长用于表示第一通信装置监测控制信息的时长,上述方法还包括:确定第五时长,第一通信装置在第五时长内监测控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。
可选地,第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一个相邻第一周期的第四时长的起始时所对应的时间单元;或第五时长在第一周期内结束时所对 应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
其中,上述第五时长仅在第一周期内生效。
可选地,上述第一配置信息还包括第一指示信息,第一指示信息用于指示第一时长的起始时刻相对于第一周期的起始时刻的偏移。
应理解,在本申请实施例中“指示”可以显式地和/或隐式地指示。示例性地,隐式指示可以基于用于传输的位置和/或资源;显式指示可以基于一个或多个参数,和/或一个或多个索引,和/或一个或多个它所表示的位模式。此外,“指示”还可以表示“包含”,例如,第一指示信息用于指示第一时长的起始时刻相对于第一周期的起始时刻的偏移,也可以表述为:第一指示信息包含第一时长的起始时刻相对于第一周期的起始时刻的偏移。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
图10示出了本申请的信息传输方法的另一例示意性交互图。
S1010,第一通信装置接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期。
其中,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长。
在本申请实施例中,时长可以通过定时器来确定,例如,第一时长可以通过第一定时器确定。
第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
S1020,第一通信装置上报应答信息,该应答信息为一个HARQ进程的应答信息。
S1030,当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,第一通信装置在第二时长结束时所对应的时间单元的下一时间单元不监测应答信息对应的重传的调度控制信息。
不同于上述图7和图8中所展示的方式,即,第一通信装置在XR帧0和帧1(即连续的两个XR帧)的传输中间接收重传数据,导致第一通信装置无法进入睡眠,造成了额外的功耗。在本申请实施例中,第一通信装置可以将XR帧0的重传数据延迟至XR帧1传输前若干个时隙进行传输,具体可以由以下两种方式。
方式1:
S1040,第一通信装置延长第二时长在第一周期内的终止位置至第一周期结束时所对应的时间单元的相邻的前K个连续的时间单元的起始时刻。
其中,K个连续的时间单元是根据第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,根据第一通信装置的解码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
其中,上述第一配置信息还用于配置第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应答信息对应的重传的调度控制 信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
该方法还包括,确定第五时长,第一通信装置在第五时长内监测控制信息。
其中,第五时长可以有多种方式确定,本申请不对其进行限定。例如,第五时长根据上述K个连续的时间单元确定,即第五时长可以可以根据HARQ进程的第二时长结束时对应的时隙不早于第一时长结束时对应的时隙,且HARQ的应答信息为NACK的个数确定。例如,4个HARQ进程的第二时长结束时所对应的时隙不早于第一时长结束时所对应的时隙,但是其中1个HARQ进程的应答信息为NACK,则可以认为K为1,即第五时长为1个时间单元。或者,第五时长可以根据第三时长确定,比如第五时长可以根据DRX配置信息中用于确定第三时长的信令(如drx-retransmissionTimerDL)确定。又或者,第五时长也可以由第一配置信息drx-config单独配置。需要注意的是,在每个DRX周期中,可以有多于一个第五时长。例如,当第五时长为由第三时长确定时,每个HARQ进程可以有自己的第五时长。又如,当第五时长是根据HARQ进程的第二时长结束时对应的时隙不早于第一时长结束时对应的时隙,且HARQ的应答信息为NACK的个数确定的时候,每个DRX周期可以有一个第五时长。又如,当第五时长由第一配置信息单独配置时,可以是每个DRX周期可以有一个第五时长,也可以是每个HARQ进程有自己的第五时长。本申请对其不做限制。
方式2:
S1050,第一通信装置在第二时长结束时不再开启第三时长,而是在第五时长的起始时刻开始监测控制信息。
其中,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
第五时长用于第一通信装置监测控制信息,第五时长的确定方式可参照上述方式1中的描述,在此不再赘述。其中,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移K个连续的时间单元确定的。该第五时长仅在第一周期内生效,且第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一个相邻第一周期的第四时长的起始时所对应的时间单元;或第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。应理解,K个连续的时间单元的确定方式与S1040中相同,在此不再赘述。
其中,第四时长可以由上述第一配置信息确定,第四时长用于表示第一通信装置在下一个相邻的第一周期监测控制信息的时长。
S1060,第一通信装置在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元,监测应答信息对应的重传的调度控制信息。
可选地,第五时长可以是上述第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元,此时,该第五时长可以包括K=X+Y个时隙,其中,X为重传第二时长结束时所对应的时隙超过第一时长结束时所对应的时隙的HARQ进程中应答信息为NACK的HARQ进程的数据所需要的时隙数,Y为在下一帧前 的重传上述数据所占的X个时隙和上行时隙重叠的时隙数。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
图11示出了本申请的信息传输方法的具体示例的一例示意图。
本申请实施例的技术方案可以应用在DRX配置下的XR传输中,通过延长drx-HARQ-RTT-TimerDL,即通过图10中方式1中的方法,将重传数据延迟至下XR帧传输前若干个时隙。
本申请的技术方案可以在DRX配置DRX-config(即为第一配置信息)中加入第一定时器delayBudgetTimer参数,该第一定时器delayBudgetTimer可以用于确定第一时长,第一时长用于第一通信装置(例如,终端设备)计时空口时延预算PDB,即业务期望的传输时延预算。其中,第一时长(即第一定时器delayBudgetTimer)是周期性的,其周期可以与DRX周期相同,也可以与DRX周期不同,本申请不对其进行限定。在本实施例中,第一时长的周期与第一周期相同,或第一时长的周期为第一周期。以XR业务为例,超过该空口时延预算PDB的数据XR帧数据已经来不及在端侧显示给用户。在第一时长内无法完成传输并不意味着接收剩余的XR帧数据是无用的,参考图2的帧间编码特性,如I帧的成功译码同样有助于参考其编解码的P帧的解码。由于超过第一时长的剩余XR帧已经来不及送显,而在两帧之间接收重传数据不仅无助于XR帧译码,而且会降低第一通信装置进入睡眠的概率。因此,延迟重传的数据,使第一通信装置在下一个XR帧传输前接收到该重传数据,既可以保证帧的完整性,即有助于下一帧译码,且不会打断第一通信装置进入睡眠的状态。
作为示例而非限定,图11示出了一例子载波间隔SCS为30kHz,时分双工TDD上下行时隙配比8:2下的连续2个XR帧(XR帧1和XR帧2)的传输场景。其中,XR帧1在D00开始传输,包括11个下行时隙,XR帧2在D33开始传输,包括9个下行时隙。两个XR帧的传输间隔约为16.5ms,DRX的周期也为16.5ms,XR帧的周期或DRX的周期可用于确定第一周期。
在DRX周期的起始位置,即从D00和D33处开始计时持续时间定时器drx-onDuraitonTimer,该持续时间定时器drx-onDuraitonTimer用于确定第四时长。应理解,该DRX周期可以是DRX长周期,也可以是DRX短周期,本申请对此不做限制。同时,在DRX周期起始位置开启时延预算计时器drx-delayBudgetTimer,该时延预算计时器drx-delayBudgetTimer用于确定第一时长为。需要注意的是,在本实施例中,第一时长的起始位置与第四时长(即持续时间定时器drx-onDuraitonTimer)的起始位置相同,均为DRX周期的起始位置,即图中D00和D33处。示例性地,该第一时长(或可以称为drx-delayBudgetTimer)在DRX配置中可以由如下加黑字体所示:
Figure PCTCN2022109575-appb-000001
Figure PCTCN2022109575-appb-000002
应理解,上述的参数的配置数值可以是毫秒、时隙、符号等时间单位也可以是监测控制信息的次数,本申请不对其进行限定。
在图11中,当XR帧1在D11处的数据传输失败,其HARQ应答信息于U10处由第一通信装置(如终端)上报给第二通信装置(如基站),并在上报HARQ应答信息后为对应的HARQ进程开启第二定时器drx-HARQ-RTT-TimerDL,该第二定时器可以用于确定第二时长,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长。需要注意的是,第一时长在每个DRX周期中只出现一次,且优选地,与DRX的周期起始位置相同,而在drx-onDuration中接收到的每个HARQ进程均有自己的第二时长。
在已有方案中,第一通信装置在U10上报了D11的NACK信息后,开始计时第二时长(即开启第二定时器Drx-HARQ-RTT-TimerDL),第一通信装置可以在第二时长内不监测控制信息(例如,DCI)。第二时长结束(即第二定时器Drx-HARQ-RTT-TimerDL超时)后,第一通信装置开启第三定时器drx-retransmissionTimerDL,该第三定时器drx-retransmissionTimerDL可以用于确定第三时长,第一通信装置可以在第三时长的持续 时间内监测控制信息。假定D11处数据对应的HARQ进程的第二时长结束时的时隙不早于第一时长结束时的时隙,则在第三时长内监测控制信息已经无法提升用户体验,同时会导致第一通信装置无法进入睡眠,或中断睡眠。因此在本实施例中,当第二时长结束时所对应的时隙不早于第一时长结束时所对应的时隙时,可以通过增加第二时长的时间(即,延长第二定时器drx-HARQ-RTT-TimerDL的时间),将XR帧1中D11所对应数据的重传数据延长至XR帧2的前K=1个时隙处,即D32处。
具体计算方式如下:
令第二时长更新为:slot Frame2-slot U-HARQ-X-Y-1,其中slot Frame2为XR帧2出现的第一个时隙,如图10中所示的D33,可选地,可以是DRX的持续时间drx-onDuration的开始时隙;slot U-HARQ为上报HARQ的上行时隙,如图11中所示的U10;X为重传第二时长结束时所对应的时隙超过第一时长结束时所对应的时隙的HARQ进程中应答信息为NACK的HARQ进程的数据所需要的时隙数,如图11所示,只有D11上的数据需要重传,故X为1;Y为在XR帧2前的重传上述数据所占的X个时隙和上行时隙重叠的时隙数。具体地,当在XR帧2(或drx-onDuration的开始时隙或第一时长的开始时隙)所对应的时隙向前提前X个时隙时,可能会在X个时隙中出现Y个上行时隙。因为图11中不存在推迟的重传数据占用的下行时隙和上行时隙重叠的情况,故Y为0。在本实施例中,K的取值可以是X+Y。
因此,图11中所示的第二时长可以更新为D33-U10-X-Y-1=34-19-1-0-1=13个时隙,其中D33位于图11中从左到右的第34个时隙,U10位于图11中从左到右的第19个时隙上。
在另一种可能的情况下,有多个数据需要重传时,例如,若4个HARQ进程分别对应的第二时长结束时所在的时隙不早于上述第一时长,可以令X为4。此时,重传时隙可以为D33向前推X=4个时隙,即U21-D32,由于U21为上行时隙不能用于基站调度重传,因此需要将重传时隙继续向前推2个时隙,即避开上行时隙,此时Y为2,即X为4时,第二通信装置(例如,基站)在D27以及D30至D32时隙上调度重传,第一通信装置在D27以及D30至D32时隙上监测调度重传的控制信息(如DCI),即此时K=X+Y=6。
可选地,为减少XR帧1对于XR帧2的译码影响,在更新第二时长时,还可以考虑应用层的解码时延。例如,当接收端的应用层译码时延为Z时,那么第二时长可以为slot Frame2-slot U-HARQ-X-Y-Z-1。此外,还可以同时考虑物理层到应用层的传输时延,例如,当物理层到应用层的传输时延为W,且Z大于W时,那么第二时长可以为slot Frame2-slot U-HARQ-X-Y-(Z-W)-1,而当Z小于或等于W时,那么第二时长仍旧为slot Frame2-slot U-HARQ-X-Y-1。此时,K的取值应为X+Y+(Z-W)。应理解,X和Y的释义与前文描述相同,不再赘述。为方便理解,本申请中实施例多以时隙为时间单位进行展示,应理解,上述实施例中的时间单位可以是任意时间单位,如毫秒、时隙、符号等,且每个时长的时间单位可以不同。
其中,K可以用于确定第五时长,第五时长可以有多种方式确定,本申请不对其进行限定。例如,第五时长可以根据HARQ进程的第二时长结束时对应的时隙不早于第一时长结束时对应的时隙,且HARQ的应答信息为NACK的个数确定。例如,4个HARQ进程的第二时长结束时所对应的时隙不早于第一时长结束时所对应的时隙,但是其中1个 HARQ进程的应答信息为NACK,则可以认为K为1。或者,第五时长可以根据第三时长确定,比如第五时长可以根据DRX配置信息中用于确定第三时长的信令(如drx-retransmissionTimerDL)确定。又或者,第五时长也可以由第一配置信息drx-config单独配置。需要注意的是,在每个DRX周期中,可以有多于一个第五时长。例如,当第五时长为由第三时长确定时,每个HARQ进程可以有自己的第五时长。又如,当第五时长是根据HARQ进程的第二时长结束时对应的时隙不早于第一时长结束时对应的时隙,且HARQ的应答信息为NACK的个数确定的时候,每个DRX周期可以有一个第五时长。又如,当第五时长由第一配置信息单独配置时,可以是每个DRX周期可以有一个第五时长,也可以是每个HARQ进程有自己的第五时长。本申请对其不做限制。
需要说明的是,第二时长的计时是从HARQ所在UL时隙传输完成后的第一个符号开始计算且每个HARQ进程都有自己的第二时长,因此可能会有多于一个第二时长需要延长。例如,在图11中,若U10和U11分别上报了2个HARQ进程的NACK应答信息,其所对应的第二时长的开启位置和结束位置也会有所不同。此时,可以规定多个第二时长中增加量最少的第二时长生效,而其他第二时长不生效。例如,对于图11中XR帧1的数据而言,U11处开启的第二时长拥有最短的第二时长,因此采用U11处开启的第二时长;或者,还可以规定最新的第二时长生效,例如,U10处计算出的第二时长和U11处计算出的第二时长可能不一样,可以采用U11处的第二时长作为最后的时长(或定时器)。因此,这种多个第二时长并存的情况并不影响本申请的技术方案。应理解,考虑到在U10上报NACK时,只有一个NACK,而在U11处上报NACK,有2个NACK,因此,根据上述实施例计算的U11处上报应答信息的HARQ进程的延长量应小于在U10处上报HARQ应答信息的HARQ进程的延长量。因此,第一通信装置可以仅开启在U11上报的HARQ进程的第二定时器。
在另一种实现方式中,第一配置信息可以为第一通信装置配置一个第六时长,用于表示第二时长的延长量。依然以图11为例,当第二时长(即第二定时器drx-HARQ-RTT-TimerDL)结束时对应的时隙不晚于第一时长结束时所对应的时隙,则开启第六定时器drx-HARQ-RTT-ExtTimerDL,该第六定时器drx-HARQ-RTT-ExtTimerDL可以用于确定第六时长,此时,第六时长可以视为第二时长的延长量,第一通信装置在第六时长内可以不监测控制信息。
示例性地,该第六时长在DRX配置中可以称为drx-HARQ-RTT-ExtTimerDL,如下加黑字体所示:
Figure PCTCN2022109575-appb-000003
Figure PCTCN2022109575-appb-000004
应理解,上述的参数的配置数值可以是毫秒、时隙、符号等时间单位,本申请不对其进行限定。
在又一种实现方式中,第一配置信息可以为第一通信装置配置一个第七定时器,用于确定第七时长。当第一/第二通信装置预算到第二时长结束时所对应的时隙将不晚于第一时长结束时所对应的时隙时,用第七时长替代第二时长。以下行传输为例,当第一/第二通信装置预算到某个HARQ进程的第二时长(即第二定时器drx-HARQ-RTT-TimerDL)结束时所对应的时隙将不晚于第一时长结束时所对应的时隙,则在对应HARQ进程上报应答信息后,不在开启第二定时器,而是开启第七定时器drx-HARQ-RTT-TimerDL-r18,该第七定时器drx-HARQ-RTT-TimerDL-r18可以用于确定第七时长。此时,第七时长可以替代第二时长,第一通信装置在第七时长内可以不监测控制信息。若该HARQ进程的应答信息为NACK,则在第七时长结束时所对应的符号的下一符号开始计时第五时长,第一通信装置在第五时长内监测对应HARQ进程的重传控制信息。应理解,该第五时长可以是第三时长,即第五时长可以通过第三定时器确定。或者,第五时长可以根据第三时长确定,本申请对此不做限定。示例性地,该第七时长在DRX配置中可以称为drx-HARQ-RTT-TimerDL-r18,如下加黑字体所示:
Figure PCTCN2022109575-appb-000005
Figure PCTCN2022109575-appb-000006
应理解,上述的参数的配置数值可以是毫秒、时隙、符号等时间单位,本申请不对其进行限定。
应理解,在本申请实施例中,时长均可以通过定时器确定,因此,上述确定第一时长也可以表述为确定第一定时器;延长第二时长,也可以表述为延长第二定时器。无论表述为时长还是定时器,均不会对本申请的技术方案产生额外的影响,本申请为方便描述,统一称为时长,但其不应作为限定,本领域技术人员可以在本申请的基础上采用定时器、计时器、计时标识等方法得到时长,均应属于本申请的保护范围。
图12示出了本申请的信息传输方法的具体示例的另一例示意图。
在本申请实施例中,本申请的技术方案可以应用在DRX配置下的XR传输中,通过在下一个持续时间drx-onDuration,或者下一个XR帧到来前提前唤醒第一通信装置,即图10中方式2的方法,来达到在下一个XR帧前接收重传数据的目的。
同上述图11中所描述的,本申请的技术方案可以在DRX配置DRX-config(即为第一配置信息)中加入第一定时器drx-delayBudgetTimer参数,该第一定时器drx-delayBudgetTimer可以用于确定第一时长,第一时长用于第一通信装置(例如,终端设备)计时空口时延预算PDB。其中,第一时长(即第一定时器delayBudgetTimer)是周期性的,其周期可以与DRX周期相同,也可以与DRX周期不同,本申请不对其进行限定。以XR业务为例,超过该空口时延预算的数据XR帧数据已经来不及在端侧显示给用户。因此,延迟重传的数据,使第一通信装置在下一个XR帧传输前接收到该重传数据,既可以保证帧的完整性,即有助于下一帧译码,且不会打断第一通信装置进入睡眠的状态。示例性地,该第一时长在DRX配置中的部分字段可参照图11中的介绍,在此不再赘述。
作为示例而非限定,图12示出了一例子载波间隔(sub-carrier spacing,SCS)为30kHz,TDD上下行时隙配比8:2下的2个连续的XR帧(XR帧1和XR帧2)的传输时的又一种实现方法。其中,XR帧1在D11处的数据传输失败,且在U10处上报的HARQ应答信息后,第二时长结束时所对应的位置(如D22)超过第一时长结束时所对应的位置(U11)。此时,第一通信装置不会在第二时长结束后开始计时第三时长(开启第三定时器drx-retransmissionTimerDL),即第一通信装置不会在第二时长结束后为D11处数据对应的HARQ进程监测器对应的重传控制信息,而是在下一个XR帧,即XR帧2(或下一个DRX周期的持续时间on-duration或下一个DRX周期起始)前第五时长醒来接收重传数 据。其中,该第五时长可以包括K=X+Y个时隙,X、Y的定义参照图11中的描述,在此不再赘述。
在本申请实施例中,第一通信装置只需要在下一个XR帧(和/或下一个drx周期的持续时间on-duration)前第五时长醒来接收重传数据,其中,该第五时长可以包括K=X+Y个时隙,X、Y的定义参照图11中的描述,在此不再赘述。
其中,K可以用于确定第五时长,第五时长可以有多种方式确定,本申请不对其进行限定,具体可参照上文,此处不再做赘述。
在图12中所示的传输中,第一时长(即第一定时器delayBudgetTimer)的长度为10ms且起始位置为D00的,因此其终止位置为U11。XR帧1在D11处传输的TB出现错误,其对应的HARQ应答信息在U10处上报后,第一通信装置开启第二时长(即第二定时器drx-HARQ-RTT-TimerDL)。因为第二时长结束时所对应的时隙,如D22,已经超过第一时长结束时对应的时隙U11,因此第一通信装置不再开启第三时长(即第三定时器drx-retransmissionTimerDL),此时X=1,Y=0,即K=1。在该实施例中,XR帧2以及下一个周期的第四时长DRX-onDuration从D33处开始,因此,第一通信装置可以在第五时长的开始时隙醒来接收重传数据,其中第五时长的开始时隙为D33-K=D32。
以图12为例,其中XR帧1只有D11的数据的重传需要延迟到XR帧2前传输,因此,在本实施例中可以认为第五时长为K=1个时隙,该第五时长的其实时隙和结束时隙为D32,即第五时长的长度仅包括时隙D32。需要注意的是,第五时长并不会改变下一个DRX周期,即不会影响下一个DRX周期的第一时长和第四时长的起始位置。具体地,下一个DRX周期开始的时间单元仍为D33,第一时长在D33处重新开始计时(即在D33处重启第一计时器drx-DelayBudgetTimer),第一通信装置指示在D33前的第五时长提前醒来并在第五时长内接收监测调度重传的控制信息。该第五时长可以是由第二时长结束时所对应的时隙不晚于第一时长结束时所对应的时隙的HARQ进程中应答信息为NACK的HARQ进程个数确定的,此时,该DRX周期内可以只有一个第五时长。
在另外一种可能的实现方式中,该第五时长的结束时隙还可以是第四时长的结束时隙,即第五时长包含第四时长,其中,第四时长可以是下一个DRX周期中的持续时间DRX-onDuration。第一通信装置在该第四时长内监测控制信息。第五时长也可以通过第四时长向前提前K个时隙得到。同时,当通过第四时长向前提前K个时隙时,第四时长会相应延长K个时隙。或者,一个周期的第五时长可以是下一个相邻周期的第四时长向前延长K个时隙获得的。需要注意的是,通过第四时长向前提前K个时隙获得的第五时长只在该DRX周期生效,不对下一个DRX周期产生影响。例如,假设有3个DRX周期,分别为DRX0、DRX1、DRX2,分别对应第一通信装置开启持续时间DRX-onDuration的起始时刻为0ms、10ms、20ms。其中,DRX0中超时的重传数据影响第一通信装置开启DRX1的持续时间DRX1-onDuration的起始时刻(即,第一通信装置可能会在10ms时刻之前醒来),但不会影响第一通信装置开启DRX2的持续时间DRX2-onDuration的起始时刻(依旧为20ms的时刻)。应理解,在本方案中,DRX2的持续时间DRX2-onDuration的起始时刻有可能会因为DRX1的重传而发生改变。需要注意的是,DRX0、DRX1和DRX2的第一时长的起始时刻均不会发生改变(依旧为0ms、10ms和20ms)。可选地,为减少XR帧1对于XR帧2的译码影响,在确定第五时长时,还可以考虑应用层的解码时延以及物 理层到应用层的传输时延,其具体方法参照图11中的描述,在此不再赘述。
在本申请实施例中,本申请的技术方案也可以应用在半静态传输的场景,例如,在下行场景下采用半持续调度SPS进行XR的传输,通过延迟超时的重传数据至在下一个SPS传输机会前的方式,提升终端进入睡眠的概率,从而达到降低终端功耗的目的。
在现有的SPS传输过程中,若数据传输出现错误,则在第一通信装置(例如,终端设备)上报HARQ应答信息后,第二通信装置(例如,基站)会在某个时隙通过CS-RNTI加扰的控制信息(如DCI)为第一通信装置调度重传数据,因此需要第一通信装置(例如,终端设备)去监测控制信息以便于接收重传数据。在已有方案中,第二通信装置调度SPS重传的时隙取决于第二通信装置为第一通信装置配置的PDCCH的监测周期。具体地,该监测周期与SPS周期无直接关联性,可以独立配置。例如,在图8所示的现有SPS配置场景中,SCS为30kHz,TDD上下行时隙比8:2时,若PDCCH的监测周期为5ms,持续时间为2个时隙,则第一通信装置只能在如图8中的,D00、D01、D10、D11、D20、D21等处监测控制信息,第二通信装置也只能在所述时隙调度重传,第一通信装置在上述时隙监测重传控制信息。这样,由于第一通信装置不确定第二通信装置调度重传的具体时隙,因此需要一直盲检调度控制信息来接收重传。
图13(a)展示一种SPS场景下的接收重传数据的实施例。在本申请的实施例中,可以在SPS配置SPS-config(即为第一配置信息)中加入第一定时器delayBudgetTimer参数,该第一定时器delayBudgetTimer与上述DRX配置中的第一定时器delayBudgetTimer作用相同,可以用于确定第一时长,第一时长用于第一通信装置(例如,终端设备)计时空口时延预算PDB。其中,第一时长(即第一定时器delayBudgetTimer)是周期性的,其周期可以与SPS周期相同,也可以与SPS周期不同,本申请不对其进行限定。以XR业务为例,超过该空口时延预算的数据XR帧数据已经来不及在端侧显示给用户。此外,还可以在SPS配置SPS-config中加入第二定时器retransmissionProcessingTimer,该第二定时器retransmissionProcessingTimer与上述DRX配置中的第二定时器drx-HARQ-RTT-TimerDL的作用相同,可以用于确定第二时长。该第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长。在SPS传输中,该第二时长可以辅助第一通信装置确定监测重传的调度控制信息。需要注意的是,类似于DRX机制中的drx-HARQ-RTT-TimerDL,SPS数据中的每个HARQ进程可以有自己的第二时长(即第二定时器retransmissionProcessingTimer)。在第二时长结束后,若该第二时长对应HARQ进程的应答信息为NACK时,则开始计时第三时长(即开启第三定时器slotMonitoringTimer),该第三定时器slotMonitoringTimer可以用于确定第三时长,第一通信装置可以在第三时长的持续时间内监测控制信息(例如,DCI)。示例性地,一种SPS配置的部分字段可以如下所示,其中第一时长、第二时长和第三时长可以可以分别称为drx-delayBudgetTimer、retransmissionProcessingTimer和slotMonitoringTimer,如下加黑字体所示:
Figure PCTCN2022109575-appb-000007
Figure PCTCN2022109575-appb-000008
其中,delayBudgetTimer的可选取值以毫秒(ms)为单位,如ms1代表delayBudgetTimer的持续时间为1ms,retransmissionProcessingTimer的可选取值以符号为单位,而slotMonitoringTimer的取值以时隙为单位,如sl4代表slotMonitoringTimer的持续时间为4个时隙。
应理解,上述第一时长(即第一定时器delayBudgetTimer),第二时长(即第二定时器retransmissionProcessingTimer)以及第三时长(即第三定时器slotMonitoringTimer)的时间单元也可以是其他计时单元,如毫秒,符号或者时隙等,本申请不做限制。
作为示例而非限定,图13(b)示出了一例SCS为30kHz,TDD上下行时隙配比8:2下的2个连续的XR帧(XR帧1和XR帧2)的传输。其中,XR帧1在D00开始传输,包含11个下行时隙。XR帧2在D33开始传输,包含9个下行时隙。XR帧传输周期为16.5ms,SPS的周期也为16.5ms,即从D00-D32为第一个SPS的周期。假定第一时长为10ms,从每个SPS周期的起始位置或XR业务周期的起始位置,即D00和D33开始计时。在该实施例中,XR帧1中在D11处传输的数据传输失败,其对应的HARQ进程的应答信息于U10处由第一通信装置上报给第二通信装置,并在上报后开启第二定时器retransmissionProcessingTimer,该第二定时器retransmissionProcessingTimer可以用于确定第二时长。在图13(a)中,第二时长结束时所对应的时隙为D22。因为该第二定时器对 应的HARQ进程的应答信息为NACK,因此在D22后下的一个符号处开启第三定时器slotMonitoringTimer,该第三定时器slotMonitoringTimer用于确定第三时长,第一通信装置在第三时长内监测控制信息。假定第二定时器结束时的位置刚好为D22中最后一个符号,因此在D23处开启第三定时器并开始监测控制信息。
由于此时第二时长结束所对应的时隙,如D23,已经晚于第一时长结束所对应的时隙U11,因此在D11所传输的数据对应的重传已经无益于提升用户体验,而且可能打断或阻止第一通信装置进入睡眠状态而导致额外的功耗开销。因此,在图13(b)所示的实施方法中,为了不打断第一通信装置进入睡眠,在第二时长结束后,不进入第三时长(即不开启第三定时器slotMonitoringTimer),第一通信装置也不再第二时长结束后监测控制信息,而是在下一个SPS传输机会的前第五时长开始接收重传数据。其中,第五时长可以包括K个时隙,K的定义参照图11中的描述,在此不再赘述。
可选地,为减少XR帧1对于XR帧2的译码影响,在确定第五时长时,还可以考虑应用层的解码时延以及物理层到应用层的传输时延,其具体方法参照图11中的描述,在此不再赘述。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
图14示出了本申请信息传输的方法的另一例示意性流程图。
S1410,第一通信装置接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一配置信息还包括第三时长。
其中,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第二时长用于指示第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
可选地,第一周期为非连续接收DRX的长周期;或者,第一周期为DRX的短周期;或者,第一周期为半静态传输的周期;或者,第一周期为业务的传输周期。
可选地,上述应答信息是一个混合自动重传请求HARQ进程的应答信息。
S1420,当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,第一通信装置在第三时长剩余时间范围不监测应答信息对应的重传的调度控制信息。
可选地,上述方法还包括:第一通信装置在第一周期结束时所对应的时间单元前且与第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测应答信息对应的重传的调度控制信息。
这样,通过本申请的技术方案,既能保证重传数据的快速、可靠传输,又能降低接收端因接收重传数据而终端睡眠导致的功耗开销。
可选地,X个连续的时间单元是根据当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束时的HARQ进程的个数确定的;和/或,根据第一通信装置的解 码能力确定的;和/或,根据第三时长确定的;和/或,第一配置信息配置的。
可选地,上述第一配置信息还用于指示第四时长,第四时长用于表示第一通信装置监测控制信息的时长,方法还包括:第一通信装置确定第五时长,第一通信装置在第五时长内监测控制信息,第五时长在第一周期内的起始位置是通过将第四时长的起始位置向前偏移X个连续的时间单元确定的。
可选地,第五时长在第一周期内结束时所对应的时间单元的下一时间单元为下一相邻第一周期的第四时长的起始时所对应的时间单元;或,第五时长在第一周期内结束时所对应的时间单元为下一个相邻第一周期的第四时长结束时所对应的时间单元。
其中,上述第五时长仅在第一周期内生效。
可选地,上述第一配置信息还包括第一指示信息,第一指示信息用于指示第一时长的起始时刻相对于第一周期的起始时刻的偏移。
本申请的技术方案,既能降低接收端因接收重传数据而中断睡眠导致的功耗开销,又能保证数据的可靠传输。
在本申请实施例的技术方案中,当第一时长结束时所对应的下一时间单元,第三时长未结束,则在第三时长剩余时间范围内不监测应答信息所对应的HARQ进程所对应的重传的调度控制信息。作为示例而非限定,图15示出了本申请的信息传输方法的具体示例的另一例示意图,子载波间隔SCS为30kHz,时分双工TDD上下行时隙配比8:2下的连续2个XR帧(XR帧1和XR帧2)的传输场景。其中,XR帧1在D00开始传输,包括11个下行时隙,XR帧2在D33开始传输,包括9个下行时隙。两个XR帧的传输间隔约为16.5ms,DRX的周期也为16.5ms,XR帧的周期或DRX的周期可用于确定第一周期。
在DRX周期的起始位置,即从D00和D33处开始计时持续时间定时器drx-onDuraitonTimer,该持续时间定时器drx-onDuraitonTimer用于确定第四时长。应理解,该DRX周期可以是DRX长周期,也可以是DRX短周期,本申请对此不做限制。同时,在DRX周期起始位置开启时延预算计时器drx-delayBudgetTimer,该时延预算计时器drx-delayBudgetTimer用于确定第一时长为。需要注意的是,在本实施例中,第一时长的起始位置与第四时长(即持续时间定时器drx-onDuraitonTimer)的起始位置相同,均为DRX周期的起始位置,即图中D00和D33处。示例性地,该第一时长(或可以称为drx-delayBudgetTimer)在DRX配置中可以参照图11中的描述,在此不再赘述。
在图15中,当XR帧1在D11处的数据传输失败,其HARQ应答信息于U10处由第一通信装置(如终端)上报给第二通信装置(如基站),并在上报HARQ应答信息后为对应的HARQ进程开启第二定时器drx-HARQ-RTT-TimerDL,该第二定时器可以用于确定第二时长,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长。需要注意的是,第一时长在每个DRX周期中只出现一次,且优选地,与DRX的周期起始位置相同,而在drx-onDuration中接收到的每个HARQ进程均有自己的第二时长。
在已有方案中,第一通信装置在U10上报了D11的NACK应答信息后,开始计时对应HARQ进程的第二时长(即开启第二定时器Drx-HARQ-RTT-TimerDL),第一通信装置可以在第二时长内不监测控制信息(例如,DCI)。第二时长结束(即第二定时器 Drx-HARQ-RTT-TimerDL超时)后,第一通信装置开启第三定时器drx-retransmissionTimerDL,该第三定时器drx-retransmissionTimerDL可以用于确定第三时长,第一通信装置可以在第三时长的持续时间内监测控制信息。
如图15所示,第三时长结束时所对应的时隙(D26)已经超过第一时长结束时所对应的时隙(D23)。因此,在第一时长结束时所对应时隙的下一时隙,第三时长未结束,则在剩余第三时长内监测控制信息已经无法提升用户体验,同时会影响第一通信装置进入睡眠从而造成额外功耗开销。因此,在本实施例中,当第一时长结束时所对应时隙的下一时隙,第三时长未结束,则在剩余第三时长内第一通信装置不再监测第三时长对应的HARQ进程的重传调度控制信息。具体地,若第一通信装置未在D23处监测到D11对应HARQ进程的调度控制信息,则第一通信装置在剩余第三时长内(D24-D26)不再监测该HARQ进程的调度控制信息。或者,当第一时长结束时所对应时隙的下一时隙,第三时长未结束时,结束第三时长。并在下一个XR帧,即XR帧2(或下一个DRX周期的持续时间on-duration或下一个DRX周期起始)前第五时长醒来接收重传数据。其中,该第五时长可以包括K=X+Y个时隙。X为重传在第一时长结束时所对应的时间单元的下一时间,第三时长未结束时,所对应的HARQ进程的数据所需要的时隙数,如图15所示,只有D11上的数据需要重传,故X为1;Y为在XR帧2前的重传上述数据所占的X个时隙和上行时隙重叠的时隙数。具体地,当在XR帧2(或drx-onDuration的开始时隙或第一时长的开始时隙)所对应的时隙向前提前X个时隙时,可能会在X个时隙中出现Y个上行时隙。因为图15中不存在推迟的重传数据占用的下行时隙和上行时隙重叠的情况,故Y为0。在本实施例中,K的取值可以是X+Y。
具体地,第五时长的获取方式可以参考图11、图12以及图13对应的说明部分,此处不再赘述。
在上述方法中,第一配置信息包括或本身即为DRX配置或SPS配置。作为另一种可能的实现方式,第一配置信息还可以是一个单独的配置参数集。示例性地,第一配置信息可以是时延预算配置delayBudget-config,该配置的部分字段可以如下所示:
Figure PCTCN2022109575-appb-000009
Figure PCTCN2022109575-appb-000010
其中,第一定时器delayBudgetTimer与上述DRX或SPS配置中的第一定时器delayBudgetTimer的作用相同,可以用于确定第一时长,第一时长用于第一通信装置(例如,终端设备)计时空口时延预算PDB。示例性的,该第一配置信息中包括了该第一时长(或称为第一定时器)的周期periodicity,包括了第一时长(或称为第一定时器)delayBudgetTimer,该第一时长在delayBudget的每个周期的开始位置生效。此外,该第一配置信息中还包括第二定时器retransmissionProcessingTimer,该第二定时器retransmissionProcessingTimer用于确定第二时长,该第二时长用于指示在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长。可选地,该第二时长可以是基于HARQ进程的,即每个HARQ进程的均可以有对应的第二时长。该第一配置信息中还可以包括第三定时器slotMonitoringTimer,该第三定时器slotMonitoringTimer用于确定第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应答信息对应的重传的调度控制信息之间的最大时长。可选地,该第三时长可以是基于HARQ进程的,即每个HARQ进程的均可以有对应的第三时长。第一通信装置在第三时长内监测对应HARQ进程的控制信息。具体地,当第一通信装置在第三时长内接收到对应HARQ进程的控制信息,则对应HARQ进程的第三时长可以结束。应理解,上述第一时长,第二时长和第三时长可以是几毫秒、时隙、符号等时间单位,也可以是监测控制信息的次数,本申请不对其进行限定。
可选地,该第一配置信息中还可以包括标识delayFlag,该标识delayFlag可以为一个布尔数,即为‘1’或‘0’。示例性地‘1’代表若第二时长结束时所对应的时间单元不早于第一时长结束时所对应的时间单元时,或若当第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束时,则可参照图11、图12、图13以及图15所述的方式,将超过第一时长的重传延迟到下一个第一定时器delayBudgetTimer开始计时的前第五时长,具体方式可以是延长第二时长,即延长第二定时器retransmissionProcessingTimer(类似于图11中所示的延长第二定时器drx-HARQ-RTT-TimerDL,包括设置第六定时器drx-HARQ-RTT-ExtTimerDL),或是开启第七定时器drx-HARQ-RTT-TimerDL-r18,或是关闭第三定时器slotMonitoringTimer(类似于图12中所示的的关闭第三定时器drx-retransmissionTimerDL)并在下一个第一定时器delayBudgetTimer开始计时的前的第五时长对应的时间单元唤醒第一通信装置。‘0’则代表关闭该延迟效果,即第一通信装置按照已有的技术方案接收重传数据。
示例性地,上述时延预算配置delayBudget-config的一种实现方式可以配置在DRX配置中,可如下加黑字体所示:
Figure PCTCN2022109575-appb-000011
Figure PCTCN2022109575-appb-000012
其中,delayBudget-config中相关参数的含义请参照前文中的介绍,此处不再赘述。
另外,DRX配置drx-config和时延预算配置delayBudget-config可以分别有自己的周期当在DRX配置drx-config中配置delayBudget-config时,可以规定两者都采用DRX配 置drx-config的周期及偏移参数,即drx-LongCycleStartOffset,也可以是采用时延预算配置delayBudget-config中的周期;或者DRX配置drx-config和时延预算配置delayBudget-config分别采用自己的周期,此时空口时延预算有自己的周期,且可以与第一周期(即drx-config配置的周期)不相同。
在另一种实现方式中,上述时延预算配置delayBudget-config也可用于SPS的场景。示例性地,可以将时延预算配置delayBudget-config参数按照如下加黑部分置于SPS配置中,如下所示:
Figure PCTCN2022109575-appb-000013
这样,通过单独配置参数集可以与DRX或SPS联合配置,增加了配置的灵活性。
在上述实施例中,第一时长(或第一定时器delayBudgetTimer)的触发时间与DRX周期或SPS的周期相关,即在每个drx周期的起始位置开始开启第一时长(或第一定时器delayBudgetTimer),或在每个SPS传输时刻的起始位置开启第一时长(或第一定时器delayBudgetTimer)。
作为一种可能的实现方式,第一时长(或第一定时器delayBudgetTimer)也可以不与DRX或SPS的周期相关联。例如,第一时长(或第一定时器delayBudgetTimer)可以在drx-onDurationTimer开启时接收到第一个数据后开启计时,也可以是在每个SPS传输时刻接收到第一个数据后开启计时。
可选地,可以在drx-config、sps-config或delayBudget-config中,加入db-slotOffset参数,用于指示第一通信装置第一时长(或第一定时器delayBudgetTimer)的启动时间偏移。该偏移可以是相对于DRX或SPS的每个周期的起始位置(如时隙,符号等)的偏移,也可以是相对于收到RRC信令时刻的偏移,本申请对此不做限制。示例性地,该时延预算配置delayBudget-config的部分字段可以如下所示,其中偏移参量可以如下加黑字体所示:
Figure PCTCN2022109575-appb-000014
应理解,上述的参数的配置数值可以是毫秒,时隙、符号等时间单位也可以是监测控制信息的次数,本申请不对其进行限定。这样,可以通过加入偏移参量的方式,使得第一时长的配置更加灵活。
在上述方案中,第一时长(即第一定时器delayBudgetTimer)为配置的固定的值。作为另一种可能的实现方式,在实际使用中,为提高配置的灵活性,可以为第一时长(即第一定时器delayBudgetTimer)配置多个候选值,并通过控制信息激活其中某个候选值。
如图16示出了一例SCS为30kHz,TDD上下行时隙配比8:2下的2个连续的XR帧(XR帧1和XR帧2)的传输。其中,XR帧1在D00开始传输,包含11个下行时隙。XR帧2在D33开始传输,包含9个下行时隙传输,两个帧的传输间隔为16.5ms。该实施例配置了DRX,且DRX的周期也为16.5ms,即从D00-D32为第一个DRX周期。以下行传输为例,第二通信装置(例如,基站)在D00处发送由DCI-X1指示的物理共享信道(physical downlink shared channel,PDSCH)数据,其中DCI-X1可以为任意格式DCI,且该DCI-X1包含db-timer字段,用于开启第一定时器delayBudgetTimer。第一通信装置(例如,终端设备)在接收到DCI-X1后,根据DCI-XI中的db-timer字段的内容,从第一配置信息的多个第一时长候选中开启对应的第一定时器drx-delayBudgetTimer,具体激活时间可以是在接收到DCI-X1的时隙,或者是接收到DCI-X1的下一个时隙,或者是DCI-X1所指示的PDSCH所在的时隙,或者是DCI-X1所指示的物理共享信道PDSCH所在时隙的下一相邻时隙,此处不再赘述。
示例性的,此时DRX配置drx-config的部分字段可以如下所示,其中候选第一时长(即第一定时器delayBudgetTimer)可以如下加黑字体所示:
Figure PCTCN2022109575-appb-000015
Figure PCTCN2022109575-appb-000016
示例性地,第一时长(即第一定时器drx-delayBudgetTimer)计时的单位为时隙个数,如n8代表第一时长(即第一定时器drx-delayBudgetTimer)计时8个时隙,即在第一时长(即第一定时器drx-delayBudgetTimer)开启后8个时隙后关闭。需要注意的是,该时隙包括上行时隙和下行时隙,也可以只包括下行时隙或只包括上行时隙,也可以是只包括含有DCI的时隙。上述字段中第一时长包括4个候选信息,因此需要log2(4)=2bit(例如00,01,10,11)的指示信息进行指示。具体地,可以通过在DCI添加2比特字段来指示具体 的drx-delayBudgetTimer大小(如在DCI中加入2比特db-timer字段)。示例性地,db-timer=‘00’代表n1,db-timer=‘01’代表n2,db-timer=‘10’代表n4,db-timer=‘11’代表n8。UE在接收到该DCI后,将根据其中的db-timer字段启动DRX-config中对应的delayBudgetTimer。
可选地,上述第一时长(即第一定时器drx-delayBudgetTimer)也可以以毫秒为单位,如以下字段中加黑字体所示:
Figure PCTCN2022109575-appb-000017
Figure PCTCN2022109575-appb-000018
其中ms10代表delayBudgetTimer开启后持续10ms,即在开启后10ms后关闭。实施方式可以和上述方式相同。如,在DCI字段中计入3bit(因为上述字段中ms1,ms2,…,ms20共有8个数值,需要log2(8)=3bit)用于承载db-timer字段。第一通信装置在接收到DCI后根据db-timer字段启动DRX-config中对应的drx-delayBudgetTimer。
应理解,上述标识第一时长(即第一定时器drx-delayBudgetTimer)的方式只是作为一种示例,其不应对本申请造成任何限定,其他标识第一时长的方式同样属于本申请的保护范围。应理解,上述的参数的配置数值可以是毫秒,时隙、符号等时间单位也可以是监测控制信息的次数,本申请不对其进行限定。
如上所述,第一配置信息中可能包括多个第一时长候选时,可以通过控制信息激活其中的某个候选,以此来确定第一时长(即第一定时器delayBudgetTimer)。
需要注意的是,在图16中,D00-D12处的下行时隙都可以采用DCI-X1来指示对应的PDSCH,但是多个DCI-X1并不会重复启动第一时长(即第一定时器delayBudgetTimer),即每个DRX周期只有一个第一时长(即第一定时器delayBudgetTimer)生效。具体地,该DRX周期内的第一时长(即第一定时器delayBudgetTimer)的启动时刻取决于DRX周期中接收到的第一个DCI-X1。同理,在图16中下一个DRX周期(起始位置为D33),第二通信装置可以通过DCI-X2动态指示第一时长的起始位置。应理解,DCI-X1和DCI-X2可以是相同的DCI类型,也可以是不同的DCI类型。
可选地,在本申请实施例中,还可以通过媒体接入控制(media access control,MAC)控制信令(control element,CE)的方式进行激活第一时长(即第一定时器delayBudgetTimer)。
具体地,可以在DRX-config中加入drx-delayBudgetTimer参数确定第一时长,然后通过MAC CE进行激活,其MAC CE可以通过MAC层包头的逻辑信道号(logical channel identity,LCID)得到。示例性地,可以称该MAC CE为delayBudgetTimer MAC CE,该MAC CE可以是一次性的,即UE在接收到该MAC CE后,开启一个delayBudgetTimer,持续时间取决于drx-config中的drx-delayBudgetTimer。因此,若要每个drx-cycle开启一个delayBudgetTimer,需要发送端在每个drx-cycle都发送delayBudgetTimer MAC CE。可选地,该delayBudgetTimer MAC CE可以激活一段时间的delayBudgetTimer。示例性的,该MAC CE可以包含激活信令DB-Activiation MAC CE以及去激活信令DB-Deactivation MAC CE。其中,DB-Activation MAC CE用于激活drx-delayBudgetTimer,即UE在接收到该MAC CE后,每个drx-cycle(可以是long-cycle或short-cycle),都重置并开启drx-delayBudgetTimer,具体开启时刻可以参照前述方法,如DRX周期的持续时间onDuration位置,或者DCI指示等。当第一通信装置接收到DB-Deactivation后,该drx-delayBudgetTimer将会被停用。
应理解,为便于理解本申请的技术方案,上述实施例中以下行传输为例,对本申请的 技术方案进行了详细介绍。但本申请的技术方案也可以应用在上行传输、以及侧行传输中。例如,在上行传输中,第一通信装置可以是基站,第二通信装置可以为终端设备。又例如,第一通信装置和第二通信装置可以同为终端设备,其消息的具体形式可参照已有的技术,本申请不对其进行限定。
以上,结合图9至图16详细说明了本申请实施例提供的信息传输的方法。上述信息传输方法主要从各个装置之间交互的角度进行了介绍。可以理解的是,各个装置,为了实现上述功能,其包含了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,本申请能够以硬件或硬件和计算机软件的结合形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
应理解,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
还应理解,在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
可以理解的是,本申请上述实施例中,由通信设备实现的方法,也可以由可配置于通信设备内部的部件(例如芯片或者电路)实现。
以下,结合图17和图18详细说明本申请实施例提供的信息传输装置。应理解,装置实施例的描述与方法实施例的描述相互对应,因此,未详细描述的内容可以参见上文方法实施例,为了简洁,部分内容不再赘述。
本申请实施例可以根据上述方法示例对发射端设备或者接收端设备进行功能模块的划分,例如,可以对应各个功能划分各个功能模块,也可以将两个或两个以上的功能集成在一个处理模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。需要说明的是,本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。下面以采用对应各个功能划分各个功能模块为例进行说明。
图17是本申请提供的信息传输设备1700的一例示意性框图。上述方法900至方法1600中任一方法所涉及的任一设备,如第一通信装置和第二通信装置等都可以由图17所示的信息传输设备来实现。
应理解,信息传输设备1700可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
如图17所示,该信息传输设备1700包括:一个或多个处理器1710。可选地,处理器1710中可以调用接口实现接收和发送功能。所述接口可以是逻辑接口或物理接口,对此不作限定。例如,接口可以是收发电路,输入输出接口,或是接口电路。用于实现接收和发送功能的收发电路、输入输出接口或接口电路可以是分开的,也可以集成在一起。上述收发电路或接口电路可以用于代码/数据的读写,或者,上述收发电路或接口电路可以用于信号的传输或传递。
可选地,接口可以通过收发器实现。可选地,该信息传输设备1700还可以包括收发器1730。所述收发器1730还可以称为收发单元、收发机、收发电路等,用于实现收发功能。
可选地,该信息传输设备1700还可以包括存储器1720。本申请实施例对存储器1720的具体部署位置不作具体限定,该存储器可以集成于处理器中,也可以是独立于处理器之外。对于该信息传输装置1700不包括存储器的情形,该信息传输设备1700具备处理功能即可,存储器可以部署在其他位置(如,云系统)。
处理器1710、存储器1720和收发器1730之间通过内部连接通路互相通信,传递控制和/或数据信号。
可以理解的是,尽管并未示出,信息传输设备1700还可以包括其他装置,例如输入装置、输出装置、电池等。
可选地,在一些实施例中,存储器1720可以存储用于执行本申请实施例的方法的执行指令。处理器1710可以执行存储器1720中存储的指令结合其他硬件(例如收发器1730)完成下文所示方法执行的步骤,具体工作过程和有益效果可以参见上文方法实施例中的描述。
本申请实施例揭示的方法可以应用于处理器1710中,或者由处理器1710实现。处理器1710可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存取存储器(random access memory,RAM)、闪存、只读存储器(read-only memory,ROM)、可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的指令,结合其硬件完成上述方法的步骤。
可以理解,存储器1720可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器ROM、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器RAM,其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它 适合类型的存储器。
图18是本申请提供的信息传输装置1800的示意性框图。
可选地,所述信息传输装置1800的具体形态可以是通用计算机设备或通用计算机设备中的芯片,本申请实施例对此不作限定。如图18所示,该信息传输装置包括处理单元1810和收发单元1820。
具体而言,信息传输装置1800可以是本申请涉及的任一设备,并且可以实现该设备所能实现的功能。应理解,信息传输装置1800可以是实体设备,也可以是实体设备的部件(例如,集成电路,芯片等等),还可以是实体设备中的功能模块。
在一种可能的设计中,该信息传输装置1800可以是上文方法实施例中的第一通信装置,也可以是用于实现上文方法实施例中第一通信装置的功能的芯片。
作为一种示例,该通信装置用于执行上文图9中第一通信装置所执行的动作,收发单元1820用于执行S910,处理单元1810用于执行S920。
例如,收发单元,用于接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长。
处理单元,用于当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不监测应答信息对应的重传的调度控制信息。
作为另一种示例,该通信装置用于执行上文图14中第一通信装置所执行的动作,收发单元1820用于执行S1410,处理单元1810用于执行S1420。
例如,收发单元,用于接收第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到应答信息对应的重传的调度控制信息之间预计的最小时长,或者,第一通信装置在第二时刻传输上行/侧行数据至收到上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;第一配置信息还包括第三时长,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至收到应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第一通信装置在第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
处理单元,用于当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,在第三时长剩余时间范围不监测应答信息对应的重传的调度控制信息。
还应理解,该信息传输装置1800为第一通信装置时,该信息传输装置1800中的收发单元1820可通过通信接口(如收发器或输入/输出接口)实现,该信息传输装置1800中的处理单元1810可通过至少一个处理器实现,例如可对应于图17中示出的处理器1710。
可选地,信息传输装置1800还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为 了简洁,在此不再赘述。
在另一种可能的设计中,该信息传输装置1800可以是上文方法实施例中的第二通信装置,也可以是用于实现上文方法实施例中第二通信装置功能的芯片。
作为一种示例,该通信装置用于执行上文图9中第二通信装置所执行的动作,收发单元1810用于执行S910。
例如,收发单元,用于发送第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在一个第一周期的起始时刻启动,第二时长用于指示第二通信装置在第一时刻接收应答信息后至发送应答信息对应的重传的调度控制信息之间的最小时长,或者,第二通信装置在第二时刻接收上行/侧行数据至发送上行/侧行数据对应的重传的调度控制信息之间的最小时长。
所述收发单元,还用于当第一时长结束时所对应的时间单元不晚于第二时长结束时所对应的时间单元,且应答信息为非确认应答NACK时,在第二时长结束时所对应的时间单元的下一时间单元不发送应答信息对应的重传的调度控制信息。
作为另一种示例,该通信装置用于执行上文图13中第二通信装置所执行的动作,收发单元1820用于执行S1310。
收发单元,用于,发送第一配置信息,第一配置信息包括第一时长、第二时长和第一周期,第一时长小于第一周期,第一时长在第一周期的起始时刻启动,第二时长用于指示第一通信装置在第一时刻接收应答信息后至发送应答信息对应的重传的调度控制信息之间的最小时长,或者,第二通信装置在第二时刻接收上行/侧行数据至发送上行/侧行数据对应的重传的调度控制信息之间的最小时长;第一配置信息还包括第三时长,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送应到信息对应的重传的调度控制信息之间的最大时长;或者,第三时长用于指示第二通信装置在第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长。
所述收发单元,还用于当在第一时长结束时所对应的时间单元的下一时间单元,第三时长未结束,在第三时长剩余时间范围不发送应答信息对应的重传的调度控制信息。
还应理解,该信息传输装置1800为第二通信装置时,该信息传输装置1800中的收发单元1820可通过通信接口(如收发器或输入/输出接口)实现,例如可对应于图17中示出的通信接口1860,该信息传输装置1800中的处理单元1810可通过至少一个处理器实现,例如可对应于图17中示出的处理器1710。
可选地,信息传输装置1800还可以包括存储单元,该存储单元可以用于存储指令或者数据,处理单元可以调用该存储单元中存储的指令或者数据,以实现相应的操作。
应理解,各单元执行上述相应步骤的具体过程在上述方法实施例中已经详细说明,为了简洁,在此不再赘述。
另外,在本申请中,信息传输装置1800是以功能模块的形式来呈现。这里的“模块”可以指特定应用集成电路ASIC、电路、执行一个或多个软件或固件程序的处理器和存储器、集成逻辑电路,和/或其他可以提供上述功能的器件。在一个简单的实施例中,本领域的技术人员可以想到装置1800可以采用图18所示的形式。处理单元1810可以通过图17所示的处理器1710来实现。可选地,如果图17所示的计算机设备包括存储器1760, 处理单元1810可以通过处理器1710和存储器1760来实现。收发单元1820可以通过图17所示的收发器1560来实现。所述收发器1760包括接收功能和发送功能。具体的,处理器通过执行存储器中存储的计算机程序来实现。可选地,当所述装置1800是芯片时,那么收发单元1820的功能和/或实现过程还可以通过管脚或电路等来实现。可选地,所述存储器可以为所述芯片内的存储单元,比如寄存器、缓存等,所述存储单元还可以是信息传输装置内的位于所述芯片外部的存储单元,如图17所的存储器1760,或者,也可以是部署在其他系统或设备中的存储单元,不在所述计算机设备内。
本申请的各个方面或特征可以实现成方法、装置或使用标准编程和/或工程技术的制品。例如,计算机可读介质可以包括,但不限于:磁存储器件(例如,硬盘、软盘或磁带等),光盘(例如,压缩盘(compact disc,CD)、数字通用盘(digital versatile disc,DVD)等),智能卡和闪存器件(例如,可擦写可编程只读存储器(erasable programmable read-only memory,EPROM)、卡、棒或钥匙驱动器等)。另外,本文描述的各种存储介质可代表用于存储信息的一个或多个设备和/或其它机器可读介质。术语“机器可读介质”可包括但不限于,能够存储、包含和/或承载指令和/或数据的各种其它介质。
根据本申请实施例提供的方法,本申请还提供一种计算机程序产品,该计算机程序产品包括:计算机程序或一组指令,当该计算机程序或一组指令在计算机上运行时,使得该计算机执行图9至图16中所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种计算机可读存储介质,该计算机可读介质存储有程序或一组指令,当该程序或一组指令在计算机上运行时,使得该计算机执行图9至图16中所示实施例中任意一个实施例的方法。
根据本申请实施例提供的方法,本申请还提供一种通信系统,其包括前述的装置或设备。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
还应理解,本申请实施例中引入编号“第一”、“第二”等只是为了区分不同的对象,比如,区分不同的“信息”,或,“设备”,或,“单元”,对具体对象以及不同对象间的对应关系的理解应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装 置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种信息传输的方法,其特征在于,包括:
    接收第一配置信息,所述第一配置信息包括第一时长、第二时长和第一周期,所述第一时长小于所述第一周期,所述第一时长在一个所述第一周期的起始时刻启动,所述第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到所述应答信息对应的重传的调度控制信息之间预计的最小时长,或者,所述第二时长用于指示所述第一通信装置在第二时刻传输上行/侧行数据至收到所述上行/侧行数据对应的重传的调度控制信息之间预计的最小时长;
    当所述第一时长结束时所对应的时间单元不晚于所述第二时长结束时所对应的时间单元,且所述应答信息为非确认应答NACK时,在所述第二时长结束时所对应的时间单元的下一时间单元不监测所述应答信息对应的重传的调度控制信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    在所述第一周期结束时所对应的时间单元前且与所述第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测所述应答信息对应的重传的调度控制信息。
  3. 根据权利要求2所述的方法,其特征在于,当所述第一时长结束时所对应的时间单元不晚于所述第二时长结束时所对应的时间单元,且所述应答信息为NACK时,所述方法还包括:
    延长所述第二时长在所述第一周期内的终止位置至所述第一周期结束时所对应的时间单元的相邻的前K个连续的时间单元的起始时刻。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第一配置信息还用于配置第三时长,所述第三时长用于指示所述第一通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至收到所述应答信息对应的重传的调度控制信息之间的最大时长;或者,
    所述第三时长用于指示所述第一通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长。
  5. 根据权利要求1至4所述的方法,其特征在于,所述K个连续的时间单元是根据所述第一时长结束时所对应的时间单元不晚于所述第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,
    根据所述第一通信装置的解码能力确定的;和/或,
    根据所述第三时长确定的;和/或,
    所述第一配置信息配置的。
  6. 一种信息传输的方法,其特征在于,包括:
    接收第一配置信息,所述第一配置信息包括第一时长、第二时长和第一周期,所述第一时长小于所述第一周期,所述第一时长在所述第一周期的起始时刻启动,所述第二时长用于指示第一通信装置在第一时刻上报应答信息后至收到所述应答信息对应的重传的调度控制信息之间预计的最小时长,或者,所述第二时长用于指示所述第一通信装置在第二时刻传输上行/侧行数据至收到所述上行/侧行数据对应的重传的调度控制信息之间预计的 最小时长;
    所述第一配置信息还包括第三时长,所述第三时长用于指示所述第一通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至收到所述应到信息对应的重传的调度控制信息之间的最大时长;或者,所述第三时长用于指示所述第一通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至接收到上行/侧行数据的调度授权的最大时长;
    当在所述第一时长结束时所对应的时间单元的下一时间单元,所述第三时长未结束,在所述第三时长剩余时间范围不监测所述应答信息对应的重传的调度控制信息。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    在所述第一周期结束时所对应的时间单元前且与所述第一周期结束时所对应的时间单元相邻的K个连续的时间单元监测所述应答信息对应的重传的调度控制信息。
  8. 根据权利要求7所述的方法,其特征在于,所述K个连续的时间单元是根据当在所述第一时长结束时所对应的时间单元的下一时间单元,所述第三时长未结束时的HARQ进程的个数确定的;和/或,
    根据所述第一通信装置的解码能力确定的;和/或,
    根据所述第三时长确定的;和/或,
    所述第一配置信息配置的。
  9. 根据权利要求1至8中任一项所述的方法,其特征在于,所述第一周期为非连续接收DRX的长周期;或者,
    所述第一周期为DRX的短周期;或者,
    所述第一周期为半静态传输的周期;或者,
    所述第一周期为业务的传输周期。
  10. 根据权利要求1至9中任一项所述的方法,其特征在于,所述应答信息是一个混合自动重传请求HARQ进程的应答信息。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一配置信息还用于指示第四时长,所述第四时长用于表示所述第一通信装置监测控制信息的时长,所述方法还包括:
    确定第五时长,所述第一通信装置在所述第五时长内监测控制信息,所述第五时长在所述第一周期内的起始位置是通过将所述第四时长的起始位置向前偏移所述K个连续的时间单元确定的。
  12. 根据权利要求11所述的方法,其特征在于,所述第五时长在所述第一周期内结束时所对应的时间单元的下一时间单元是下一个相邻所述第一周期的所述第四时长的起始时所对应的时间单元;或
    所述第五时长在所述第一周期内结束时所对应的时间单元为下一个相邻所述第一周期的所述第四时长结束时所对应的时间单元。
  13. 根据权利要求11或12所述的方法,其特征在于,所述第五时长仅在所述第一周期内生效。
  14. 一种信息传输的方法,其特征在于,包括:
    发送第一配置信息,所述第一配置信息包括第一时长、第二时长和第一周期,所述第 一时长小于所述第一周期,所述第一时长在一个所述第一周期的起始时刻启动,所述第二时长用于指示第二通信装置在第一时刻接收应答信息后至发送所述应答信息对应的重传的调度控制信息之间的最小时长,或者,所述第二时长用于指示所述第二通信装置在第二时刻接收上行/侧行数据至发送所述上行/侧行数据对应的重传的调度控制信息之间的最小时长;
    当所述第一时长结束时所对应的时间单元不晚于所述第二时长结束时所对应的时间单元,且所述应答信息为非确认应答NACK时,在所述第二时长结束时所对应的时间单元的下一时间单元不发送所述应答信息对应的重传的调度控制信息。
  15. 根据权利要求14所述的方法,其特征在于,所述方法还包括:
    在所述第一周期结束时所对应的时间单元前且与所述第一周期结束时所对应的时间单元相邻的前K个连续的时间单元发送所述应答信息对应的重传的调度控制信息。
  16. 根据权利要求14或15所述的方法,其特征在于,所述第一配置信息还用于配置第三时长,所述第三时长用于指示所述第二通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至发送所述应答信息对应的重传的调度控制信息之间的最大时长;或者,
    所述第三时长用于指示所述第二通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长。
  17. 根据权利要求14至16所述的方法,其特征在于,所述K个连续的时间单元是根据所述第一时长结束时所对应的时间单元不晚于所述第二时长结束时所对应的时间单元的应答信息为NACK的HARQ进程的个数确定的;和/或,
    根据所述第一通信装置的解码能力确定的;和/或,
    根据所述第三时长确定的;和/或,
    所述第一配置信息配置的。
  18. 一种信息传输的方法,其特征在于,包括:
    发送第一配置信息,所述第一配置信息包括第一时长、第二时长和第一周期,所述第一时长小于所述第一周期,所述第一时长在所述第一周期的起始时刻启动,所述第二时长用于指示第一通信装置在第一时刻接收应答信息后至发送所述应答信息对应的重传的调度控制信息之间的最小时长,或者,所述第二时长用于指示所述第二通信装置在第二时刻接收上行/侧行数据至发送所述上行/侧行数据对应的重传的调度控制信息之间的最小时长;
    所述第一配置信息还包括第三时长,所述第三时长用于指示所述第二通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至发送所述应到信息对应的重传的调度控制信息之间的最大时长;或者,所述第三时长用于指示所述第二通信装置在所述第二时长结束时所对应的时间单元的下一时间单元至发送上行/侧行数据的调度授权的最大时长;
    当在所述第一时长结束时所对应的时间单元的下一时间单元,所述第三时长未结束,在所述第三时长剩余时间范围不发送所述应答信息对应的重传的调度控制信息。
  19. 根据权利要求18所述的方法,其特征在于,所述方法还包括:
    在所述第一周期结束时所对应的时间单元前且与所述第一周期结束时所对应的时间 单元相邻的K个连续的时间单元发送所述应答信息对应的重传的调度控制信息。
  20. 根据权利要求7所述的方法,其特征在于,所述K个连续的时间单元是根据当在所述第一时长结束时所对应的时间单元的下一时间单元,所述第三时长未结束时的HARQ进程的个数确定的;和/或,
    根据所述第一通信装置的解码能力确定的;和/或,
    根据所述第三时长确定的;和/或,
    所述第一配置信息配置的。
  21. 根据权利要求14至20中任一项所述的方法,其特征在于,所述第一周期为非连续接收DRX的长周期;或者,
    所述第一周期为DRX的短周期;或者,
    所述第一周期为半静态传输的周期;或者,
    所述第一周期为业务的传输周期。
  22. 根据权利要求14至21中任一项所述的方法,其特征在于,所述应答信息是一个混合自动重传请求HARQ进程的应答信息。
  23. 根据权利要求14至22中任一项所述的方法,其特征在于,所述第一配置信息还用于指示第四时长,所述第二通信装置在所述第四时长内发送数据的调度控制信息,所述方法还包括:
    确定第五时长,所述第二通信装置在所述第五时长内发送数据的调度控制信息,所述第五时长在所述第一周期内的起始位置是通过将所述第四时长的起始位置向前偏移所述K个连续的时间单元确定的。
  24. 根据权利要求23所述的方法,其特征在于,所述第五时长在所述第一周期内结束时所对应的时间单元的下一时间单元是下一个相邻所述第一周期的所述第四时长起始时所对应的时间单元;或
    所述第五时长在所述第一周期内结束时所对应的时间单元为下一个相邻所述第一周期的所述第四时长结束时所对应的时间单元。
  25. 根据权利要求23或24所述的方法,其特征在于,所述第五时长仅在所述第一周期内生效。
  26. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求1至13中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:
    存储器,用于存储计算机指令;
    处理器,用于执行所述存储器中存储的计算机指令,使得所述通信装置执行如权利要求14至25中任一项所述的方法。
  28. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被通信装置执行时,使得如权利要求1至25中任一项所述方法被执行。
  29. 一种包含指令的计算机程序产品,其特征在于,当其在计算机上运行时,使得如权利要求1至25中任一项所述方法被执行。
  30. 一种芯片系统,其特征在于,包括:处理器,用于从存储器中调用并运行计算机程序或指令,使得安装有所述芯片系统的通信装置实现如权利要求1至25中任一项所述的方法。
PCT/CN2022/109575 2021-08-10 2022-08-02 信息传输的方法和装置 WO2023016294A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22855277.4A EP4380281A1 (en) 2021-08-10 2022-08-02 Method and apparatus for information transmission
US18/436,403 US20240179710A1 (en) 2021-08-10 2024-02-08 Information transmission method and apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202110914712.4 2021-08-10
CN202110914712 2021-08-10
CN202111196366.7A CN115843112A (zh) 2021-08-10 2021-10-14 信息传输的方法和装置
CN202111196366.7 2021-10-14

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/436,403 Continuation US20240179710A1 (en) 2021-08-10 2024-02-08 Information transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2023016294A1 true WO2023016294A1 (zh) 2023-02-16

Family

ID=85199897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109575 WO2023016294A1 (zh) 2021-08-10 2022-08-02 信息传输的方法和装置

Country Status (3)

Country Link
US (1) US20240179710A1 (zh)
EP (1) EP4380281A1 (zh)
WO (1) WO2023016294A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018082716A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备
US20190081743A1 (en) * 2016-04-01 2019-03-14 Panasonic Intellectual Property Corporation Of America Asynchronous retransmission protocol
CN109511157A (zh) * 2017-09-15 2019-03-22 珠海市魅族科技有限公司 一种数据非连续接收方法及数据非连续接收装置
US20200037398A1 (en) * 2016-09-30 2020-01-30 Kyocera Corporation Communication control method

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190081743A1 (en) * 2016-04-01 2019-03-14 Panasonic Intellectual Property Corporation Of America Asynchronous retransmission protocol
US20200037398A1 (en) * 2016-09-30 2020-01-30 Kyocera Corporation Communication control method
WO2018082716A1 (zh) * 2016-11-04 2018-05-11 华为技术有限公司 传输信息的方法、网络设备和终端设备
CN109511157A (zh) * 2017-09-15 2019-03-22 珠海市魅族科技有限公司 一种数据非连续接收方法及数据非连续接收装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Potential extension(s) to Rel-16 DCI-based power saving adaptation during DRX Active Time", 3GPP DRAFT; R1-2006817, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051918267 *
VIVO: "Views on XR and Cloud Gaming evaluation", 3GPP DRAFT; R1-2005412, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20200817 - 20200828, 8 August 2020 (2020-08-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051917437 *

Also Published As

Publication number Publication date
EP4380281A1 (en) 2024-06-05
US20240179710A1 (en) 2024-05-30

Similar Documents

Publication Publication Date Title
US11470680B2 (en) Method for controlling connected mode DRX operations
KR102376053B1 (ko) 불연속 수신 통신 방법과 통신 장치, 통신 디바이스 및 통신 시스템
WO2022083769A1 (zh) 一种数据传输方法、装置及终端
EP3414859B1 (en) Apparatus and method for drx mechanisms for single harq process operation in nb-iot
US11451345B2 (en) Data transmission method, terminal, and RAN device
KR101995329B1 (ko) 무선 통신 시스템, 무선 단말, 무선 기지국, 및 무선 통신 방법
WO2012100731A1 (zh) 载波聚合系统中的定时器维护方法和设备
WO2020063896A1 (zh) 信号处理的方法和装置
EP4087168A1 (en) Communication method and apparatus
CN115918007A (zh) 对侧链路资源的请求的指示
WO2022151060A1 (zh) 数据接收方法、装置和系统
WO2023016294A1 (zh) 信息传输的方法和装置
CN115843112A (zh) 信息传输的方法和装置
WO2024027310A1 (zh) 基于优先级的传输方法和传输装置
WO2024032077A1 (zh) 上行传输方法和通信装置
WO2024065770A1 (en) Wireless communication method and related devices
WO2023011350A1 (zh) 通信方法及装置
WO2022042705A1 (zh) 一种非连续接收drx方法及装置
WO2023216986A1 (zh) 缓存状态报告bsr指示方法和装置
US20240040593A1 (en) Configuring resources corresponding to discontinuous reception

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855277

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022855277

Country of ref document: EP

Effective date: 20240301

NENP Non-entry into the national phase

Ref country code: DE