WO2023016272A1 - 天线装置及通信设备 - Google Patents

天线装置及通信设备 Download PDF

Info

Publication number
WO2023016272A1
WO2023016272A1 PCT/CN2022/108703 CN2022108703W WO2023016272A1 WO 2023016272 A1 WO2023016272 A1 WO 2023016272A1 CN 2022108703 W CN2022108703 W CN 2022108703W WO 2023016272 A1 WO2023016272 A1 WO 2023016272A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
feed
balun
feeder
feeding
Prior art date
Application number
PCT/CN2022/108703
Other languages
English (en)
French (fr)
Inventor
任超
道坚丁九
肖伟宏
谢国庆
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22855255.0A priority Critical patent/EP4376218A1/en
Publication of WO2023016272A1 publication Critical patent/WO2023016272A1/zh
Priority to US18/423,308 priority patent/US20240170858A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/246Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for base stations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P1/00Auxiliary devices
    • H01P1/18Phase-shifters
    • H01P1/184Strip line phase-shifters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01PWAVEGUIDES; RESONATORS, LINES, OR OTHER DEVICES OF THE WAVEGUIDE TYPE
    • H01P5/00Coupling devices of the waveguide type
    • H01P5/08Coupling devices of the waveguide type for linking dissimilar lines or devices
    • H01P5/10Coupling devices of the waveguide type for linking dissimilar lines or devices for coupling balanced lines or devices with unbalanced lines or devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/48Earthing means; Earth screens; Counterpoises
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/108Combination of a dipole with a plane reflecting surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/08Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a rectilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/24Combinations of antenna units polarised in different directions for transmitting or receiving circularly and elliptically polarised waves or waves linearly polarised in any direction
    • H01Q21/26Turnstile or like antennas comprising arrangements of three or more elongated elements disposed radially and symmetrically in a horizontal plane about a common centre
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/30Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array
    • H01Q3/32Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture varying the relative phase between the radiating elements of an array by mechanical means

Definitions

  • the embodiments of the present application relate to the technical field of communication antennas, and in particular, to an antenna device and communication equipment.
  • a traditional base station array antenna includes multiple radiating units and a feeding network, wherein the feeding network has a phase shifter, and by electrically connecting the feeding network to each radiating unit, the network coverage can be changed in real time and the network coverage can be adjusted simultaneously.
  • the signal phase realizes the electrical downtilt of the array antenna.
  • the radiating unit includes a plurality of radiating arms and two orthogonally arranged baluns, each balun includes a common ground layer and feed layers respectively located on both sides of the common ground layer, and the common ground layer of the two baluns One end of the feed layer of the two baluns is electrically connected to two of the radiation arms, one end of the feed layer of the two baluns is electrically connected to the other two radiation arms, and the other end of the feed layer of the two baluns is electrically connected to the feed member of the phase shifter.
  • radio frequency currents in dual polarization directions are formed.
  • the feeder of the phase shifter is connected to the feeder layer of each balun by means of welding, which makes the assembly between the feeder network and the radiation unit tedious and complicated, thus reducing the The assembly efficiency of the base station array antenna is improved.
  • Embodiments of the present application provide an antenna device and communication equipment, which simplifies the connection process between the phase shifter of the feeding network and the balun of the radiation unit, thereby improving the assembly efficiency of the antenna device.
  • An embodiment of the present application provides an antenna device, including a reflector, a radiation unit, and a feed network;
  • the radiation unit is arranged on the reflector, the radiation unit includes a balun and at least two radiation arms located at one end of the balun, the balun includes a first feeding layer, a common ground layer and a second feeding layer arranged in sequence, and the balun only There is a common formation, the feed network includes a phase shifter, and the phase shifter includes a feed member;
  • One end of the common ground layer is electrically connected to one of the radiation arms, and the other end of the common ground layer is electrically connected to the reflector, or the other end of the common ground layer is suspended on the reflector; one end of the first feed layer and the second feed layer are electrically connected In the other radiation arm, the other end of the first feeding layer is electrically connected to the feeding part, and the feeding part is integrated with the first feeding layer.
  • the balun is set to include a first feeding layer, a common ground layer, and a second feeding layer arranged at intervals in sequence, and one end of the first feeding layer and the second feeding layer Electrically connect another radiating arm, and electrically connect the other end of the first feeding layer to the feeding part of the phase shifter, so that when the other end of the feeding part and the other end of the second feeding layer are both electrically connected to the corresponding radio frequency
  • the signal port is used, the dual-polarized radio frequency signal transmission between the radiation arm and the radio frequency signal port can be realized through the balun.
  • the feed layer transmits the RF current in the +45° polarization direction, and transmits the RF current in the -45° polarization direction to the second feed layer through the RF signal port, so that at least two radiation arms radiate electromagnetic waves in dual polarization directions Signal.
  • the first feeder layer can be changed by changing the dielectric layer resistance between the feeder and the ground of the phase shifter.
  • the radiation unit has a balun.
  • the balun in the radiation unit of the embodiment of the present application not only realizes the dual-polarized feeding function, but also simplifies the structure of the radiation unit, thereby simplifying the assembly process of the entire radiation unit.
  • first air layer between the common formation and the first feeding layer, and a second air layer between the common formation and the second feeding layer;
  • the first air layer is formed between the common ground layer and the first feed layer of the balun
  • the second air layer is formed between the common ground layer and the second feed layer, so that the balun forms an air microstrip line
  • the structure reduces the energy loss of the radio frequency signal by the dielectric layer of the balun, and improves the radiation performance of the antenna device.
  • the phase shifter also forms an air microstrip line structure, which reduces the energy loss of the feed network to the radio frequency signal, thereby not only improving the radiation performance of the entire antenna device, Moreover, the manufacturing cost of the balun and the phase shifter is saved.
  • the phase shifter further includes a sliding medium, at least part of which is movably arranged on the side of the feed member facing the common formation;
  • the sliding medium coincides with at least a portion of the first air layer as the sliding medium slides relative to the common formation.
  • a sliding medium is provided in the phase shifter, and at least part of the sliding medium is movable on one side of the feeder, so that by moving the sliding medium, the sliding medium and at least part of the first air layer Partial overlap is performed to change the dielectric resistance of the first air layer, thereby achieving stable adjustment of the phase of the output terminal of the first feed layer.
  • the common formation includes a first part and a second part, the first part extends along a direction perpendicular to the reflection plate, and the second part extends along a direction parallel to the reflection plate;
  • the first air layer includes a first horizontal air layer and a first vertical air layer that communicate with each other, and there is a first vertical air layer between the first power supply layer and the first part;
  • the second air layer includes a second horizontal air layer that communicates with each other and a second vertical air layer, with a second vertical air layer between the second feeding layer and the first part;
  • first horizontal air layer between the feed member and the second part, and at least part of the sliding medium overlaps with the first horizontal air layer.
  • the common formation is divided into two parts, the first part is set to extend in the direction perpendicular to the reflector, the second part is set to extend in the direction parallel to the reflector, and the first feed layer
  • a first vertical air layer is formed between the first part of the common formation
  • a first horizontal air layer is formed between the feeder of the phase shifter and the second part of the common formation, so that by moving the sliding medium, the sliding medium Coincident with the first horizontal air layer, not only can the signal phase of the corresponding radiating unit be adjusted, but also the air microstrip line structure of the balun and phase shifter is reasonably arranged, and the antenna device in the direction perpendicular to the reflector is saved. space, thereby improving the structural stability between the feeding network and the radiating unit.
  • the antenna device includes a plurality of radiating units, and the plurality of radiating units are arranged on the reflector at intervals,
  • the second parts of two adjacent common formations are integral.
  • a plurality of radiating units are arranged at intervals on the reflector, so that the antenna device in the embodiment of the present application forms an array antenna, and each radiating unit is electrically connected to the phase shifter of the feeding network, so that each radiating unit A phase difference is formed between them, so as to realize the electric downtilt of the array antenna.
  • each radiating unit is electrically connected to the phase shifter of the feeding network, so that each radiating unit A phase difference is formed between them, so as to realize the electric downtilt of the array antenna.
  • the second parts of two adjacent common ground layers as one piece, all the common ground layers of the antenna device are integrated into one piece, so that while ensuring that each radiation unit of the antenna device is grounded, the radiating unit in the antenna device is simplified. structure, thereby improving the assembly efficiency of the antenna device.
  • the feed network includes a first phase shifter and a second phase shifter, the first phase shifter includes a first feed member, and the second phase shifter includes a second feed member;
  • the first feeder and the first feeder layer are integrated, and there is a first air layer between the first feeder and the common ground layer, the second feeder and the second feeder layer are integrated, and the second There is a second air layer between the feeder and the common ground layer.
  • two phase shifters are set, wherein the first phase shifter is used to change the phase of the output end of the first feeding layer, and the second phase shifter is used to change the phase of the output end of the second feeding layer, thereby the two The phase of the signal in both polarization directions is adjusted.
  • the feeder of the first phase shifter and the first feeder layer are set as one piece, further simplifying the two The connection process between the phase shifter and the balun, thereby improving the assembly efficiency of the antenna device.
  • the first feed member is a first feed sheet
  • the second feed member is a second feed sheet
  • the first feed sheet and the first feed layer are located in the first plane
  • the second feeding sheet and the second feeding layer are located in the second plane
  • the first plane and the second plane are both perpendicular to the reflection plate of the antenna device.
  • the feeder is set as a feeder, for example, the first feeder is set as the first feeder, the second feeder is set as the second feeder, and the feeder and The corresponding feeding layers are arranged in the same plane, which simplifies the manufacturing process of the integrated molding of the feeding parts and the corresponding feeding layers, that is, reduces the difficulty of manufacturing the integrated molding of the feeding parts and the corresponding feeding layers, thereby improving the The production efficiency of the antenna device.
  • the first plane where the first feeder is located and the second plane where the second feeder is located are both perpendicular to the surface of the reflector, preventing the first feeder and the second feeder from colliding with the surface of the reflector. Coupling affects the transmission performance of radio frequency signals.
  • the antenna device further includes a conductive shell with an opening on one side, a through hole on the reflector, the conductive shell is embedded in the through hole, the opening faces the radiation arm, and one end of the balun is connected to the radiation arm. , the other end of the balun is stored in the conductive shell;
  • the other end of the common formation electrically connected to the reflection plate includes: the other end of the common formation is electrically connected to the conductive shell, and the conductive shell is electrically connected to the reflection plate.
  • a conductive shell is embedded in the through hole of the reflector, and a part of the balun is stored in the conductive shell, so that part of the electromagnetic wave signal radiated by the balun itself can be shielded by the conductive shell without It will leak to the outside, thereby reducing the loss of the balun during the transmission of radio frequency signals, especially when the phase shifter part at one end of the balun is housed in the conductive shell, which further reduces the loss of the phase shifter during the transmission of radio frequency signals The loss improves the accuracy of the phase shifter for phase adjustment.
  • the electrical connection between the common ground and the reflector is realized, thereby ensuring that the common ground is grounded.
  • the balun includes an insulating body and three layers of sheet metal;
  • Three layers of sheet metal are set at intervals, and there is an insulating body between two adjacent layers of sheet metal, wherein,
  • the sheet metal in the middle is the common ground layer, and the sheet metals on both sides are the first feed layer and the second feed layer respectively.
  • the balun is made of three layers of sheet metal, which effectively saves the balun structure compared with the production methods of printed circuit boards, cables or photolithography and etching process (PEP for short).
  • the production cost is lower, and it also makes the production process of the balun simpler and faster.
  • the multiple radiating units there are multiple radiating units, and the multiple radiating units are arranged in an array, and the phase shifter includes multiple feeding parts, and the multiple feeding parts are connected to the baluns of the multiple radiating units.
  • the phase shifter includes multiple feeding parts, and the multiple feeding parts are connected to the baluns of the multiple radiating units.
  • phase shifter by setting the phase shifter to include multiple feeding elements, and connecting the multiple feeding elements to the baluns of the corresponding radiating elements, one phase shifter can realize multiple radiating elements phase adjustment, such as through a phase shifter to form a phase difference between multiple radiating elements, so as to realize the electrical downtilt of each radiating element in the antenna device, which not only ensures the radiation performance of the antenna device, but also simplifies the feeding network. structure, making the structural layout of the entire feed network more concise and reliable.
  • An embodiment of the present application further provides a communication device, including a radio frequency circuit and the foregoing antenna device.
  • the communication device provided by the embodiment of the present application simplifies the structure of the antenna device, improves the assembly efficiency of the entire antenna device, and saves the manufacturing cost by electrically connecting the antenna device to the radio frequency circuit.
  • FIG. 1 is a partial structural schematic diagram of a traditional base station array antenna
  • Fig. 2 is a schematic diagram of the internal structure of one of the baluns in Fig. 1;
  • FIG. 3 is a schematic structural diagram of one of the antenna devices provided by an embodiment of the present application.
  • Fig. 4 is the partial enlarged view of I place in Fig. 3;
  • Figure 5 is a top view of Figure 4.
  • Fig. 6 is the left view of Fig. 3;
  • Figure 7 is a partial enlarged view of II in Figure 6;
  • Fig. 8 is the right view of Fig. 3;
  • Figure 9 is an exploded view of Figure 3;
  • Fig. 10 is a partial enlarged view of III in Fig. 3;
  • FIG. 11 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • Fig. 12 is the left view of Fig. 11;
  • Fig. 13 is a partial enlarged view of place IV in Fig. 11;
  • Fig. 14 is a schematic structural diagram of another antenna device provided by an embodiment of the present application.
  • Fig. 15 is a right side view of Fig. 14 .
  • 22a 211-first radiation arm; 22b, 212-second radiation arm; 22c, 213-third radiation arm; 22d, 214-fourth radiation arm; 21a, 220a-first balun; 21b, 220b-the first Two baluns; 220c-the third balun; 201, 221-common ground; 202, 222-the first feeder layer; 203, 223-the second feeder layer; 224-the first air layer; 225-the second air layer; 226-installation part; 227-extension part; 3101-first phase shifter; 3102-second phase shifter; 31, 311-feeder; 312-sliding medium;
  • FIG. 1 is a partial structural schematic diagram of a traditional base station array antenna.
  • a traditional base station array antenna mainly includes a feeding network (the feeding part shown in 31 in Fig. 1 is a part of the feeding network) and a plurality of radiation elements 2 (a radiating unit), a plurality of radiating units 2 are arrayed on one side of the reflecting plate 1 .
  • the feeder network is electrically connected to each radiating unit 2 to realize real-time variable network coverage, so as to satisfy continuous changes in coverage scenarios and optimize network performance.
  • the radiating unit 2 includes a balun 21 and a radiating arm 22 , one end of the balun 21 is connected to the radiating arm 22 , and the other end is arranged on one side of the reflecting plate 1 .
  • the number of baluns 21 can be two, specifically including the first balun 21a and the second balun 21b, and the number of radiating arms 22 can be four, specifically including the first radiating arm 22a, the second radiating arm 22b, The third radiating arm 22c and the fourth radiating arm 22d.
  • the first balun 21a and the second balun 21b are arranged orthogonally, the first radiating arm 22a and the second radiating arm 22b are respectively arranged at one end of the first balun 21a, correspondingly, the third radiating arm 22c and the fourth The radiation arms 22d are respectively arranged at one end of the second balun 21b.
  • the first radiating arm 22a and the second radiating arm 22b can be used as a first dipole, and the third radiating arm 22c and the fourth radiating arm 22d can be used as a second dipole.
  • Fig. 2 is a schematic diagram of the internal structure of one of the baluns in Fig. 1 .
  • each balun 21 includes two feed layers and a common ground layer 201 between the two feed layers.
  • the two feed layers can be respectively the first feed layer 202 and the second feed layer 203, wherein the first feed layer 202, the common ground layer 201 and the second feed layer 203 are along the thickness direction of the balun 21 (see Shown in the direction of the arrow z in Figure 2) are set at intervals in sequence.
  • one end of the common formation 201 of the first balun 21a is respectively connected to the first radiation arm 22a and the second radiation arm 22b, and one end of the common formation 201 of the second balun 21b is electrically connected to the third
  • the other ends of the two common ground layers 201 of the radiation arm 22c and the fourth radiation arm 22d are electrically connected to one side of the reflection plate 1 to ensure that the radiation unit 2 is grounded.
  • the feed network includes a phase shifter, and the phase shifter has a feed member 31 .
  • One end of the first feeding layer 202 of the first balun 21a is respectively connected to the first radiating arm 22a for feeding, and one end of the first feeding layer 202 of the second balun 21b is coupled and feeding to the third radiating arm 22c.
  • the other ends of the two first feed layers 202 are electrically connected to one end of the feed member 31 of the phase shifter.
  • the other end of the feed element 31 of the phase shifter is electrically connected to the first radio frequency signal port (not shown).
  • the second feeding layer 203 of the first balun 21a is coupled and connected to the second radiating arm 22b, and the second feeding layer 203 of the second balun 21b is coupled and connected to the fourth radiating arm 22d.
  • the other end of the second feeding layer 203 is electrically connected to the second radio frequency signal port (not shown).
  • the first radio frequency signal port and the second radio frequency signal port transmit radio frequency currents in a +45° polarization direction and a ⁇ 45° polarization direction respectively.
  • the RF current in the +45° direction is input into the two first feed layers 202 through the first RF signal port and the feed member 31 of the phase shifter, and the +45° direction RF current is fed to the two second feed layers 202 through the second RF signal port.
  • radio frequency current in the direction of -45° is input, so that polarization components are generated in the extension direction of the first dipole and the extension direction of the second dipole, and finally between the first dipole and the second dipole
  • radio frequency signals with opposite polarization directions are respectively excited at +45° and -45°.
  • the phases of the output ends of the two first feeding layers 202 are adjusted, thereby changing the phase of the output end of the radiation unit 2. Phase, and then form the phase difference of the signal among the multiple radiating elements 2, so as to realize the electrical downtilt of the array antenna.
  • the signal ground of the phase shifter is the reflector 1, and the feeder 31 of the phase shifter is opposite to the reflector 1 and arranged at intervals.
  • the feeder 31, the reflector 1 and the feeder 31 and the dielectric layer between the reflection plate 1 jointly form the signal transmission line of the phase shifter.
  • the phase shifter When the phase shifter is in operation, it changes the phase of the output end of the radiation unit 2 by changing the resistance of the medium layer between the feeder 31 and the reflection plate 1 .
  • the feeder 31 of the phase shifter and the two first feeder layers 202 are electrically connected by means of welding or the like, and because the main surface of the feeder 31 is arranged parallel to the reflector 1, the balun 21
  • the feeding layer for example, the main surface of the first feeding layer 202 is perpendicular to the reflector 1, so that the feeding member 31 is perpendicular to the feeding layer, which increases the distance between the feeding member 31 and the feeding layer.
  • Welding difficulty for example, the welding between the feeder 31 and the first feeder layer 202 requires the use of molds, and strict adjustment of welding parameters, etc., which makes the phase shifter in the feeder network and the balun in the radiation unit 2
  • the assembly between 21 becomes tedious and complicated, thereby reducing the assembly efficiency of the base station array antenna.
  • the embodiment of the present application provides an antenna device and a communication device.
  • the feed layer of the balun and the feed part of the phase shifter as one piece, the integration of the electric feed network and the radiation unit is realized. , which simplifies the assembly process between the feed network and the radiation unit, thereby improving the assembly efficiency of the entire antenna device.
  • Fig. 3 is a schematic structural diagram of an antenna device provided by an embodiment of the present application.
  • an embodiment of the present application provides an antenna device, including a reflector 100 , a radiation unit 200 and a feed network 300 .
  • the radiating unit 200 is arranged on one side of the reflector 100, so that the receiving sensitivity of the antenna signal can be improved through the reflector 100, and at the same time, the reflector 100 also plays a role in blocking and shielding the radio waves from the other side of the radiating unit 200, improving Anti-interference capability of the radiation unit 200 to received signals.
  • One end of the feed network 300 is electrically connected to the radiation unit 200, and the other end of the feed network 300 is electrically connected to the radio frequency signal port (not shown in the figure), so that the connection between the radiation unit 200 and the radio frequency signal port can be realized through the feed network 300. radio frequency signal transmission.
  • radio frequency signal transmission includes radio frequency signal transmission or reception
  • radio frequency signal transmission may also include radio frequency signal transmission and reception.
  • a radio frequency signal port may be used to transmit or receive radio frequency signals.
  • the radio frequency signal port is a radio frequency signal source for sending radio frequency signals; when the antenna device is used as a receiving antenna device, the radio frequency signal port is a radio frequency signal receiving end for receiving radio frequency signals.
  • the radio frequency signal port is generally located in a remote radio unit (Remote Radio Unit, RRU for short) in a communication device such as a base station device.
  • RRU Remote Radio Unit
  • the multiple radiation units 200 may be arranged in an array at intervals on one side of the reflector 100, thus, the antenna device in the embodiment of the present application is an array antenna device.
  • a plurality of radiation units 200 are arranged at intervals along the extending direction of the reflecting plate 100 (refer to the x direction in FIG. 3 ).
  • the extending direction of the reflector 100 is represented by the x direction
  • the width direction of the reflector 100 is represented by the y direction
  • the direction perpendicular to the reflector 100 is represented by the z direction.
  • the structure of the antenna device will be specifically described below by taking one radiation unit 200 as an example.
  • Fig. 4 is a partial enlarged view of position I in Fig. 3 .
  • the radiation unit 200 includes a balun 220 and a radiation arm 210 , one end of the balun 220 is arranged on the radiation arm 210 , and the other end of the balun 220 is arranged on the reflector 100 In other words, the balun 220 is located between the radiation arm 210 and the reflector 100 .
  • the radiation unit 200 in the embodiment of the present application has a balun 220 .
  • the end of the balun 220 connected to the radiation arm 210 is taken as the first end of the balun 220
  • the end of the balun 220 connected to the reflector 100 is taken as the second end of the balun 220
  • the height direction of the balun 220 is the direction from the first end to the second end of the balun 220 .
  • the included angle between the height direction of the balun 220 and the reflecting plate 100 may be 90°, that is, the height direction of the balun 220 is parallel to the z direction.
  • the included angle between the height direction of the balun 220 and the reflecting plate 100 may be an acute angle, that is, the included angle between the height direction of the balun 220 and the z direction is an acute angle.
  • the height direction of the balun 220 is parallel to the z direction as an example for description.
  • the radiation arm 210 in the radiation unit 200 is used for radiating electromagnetic wave signals or for receiving electromagnetic wave signals.
  • the number of the radiation arms 210 is at least two, and the at least two radiation arms 210 are both arranged at the first end of the balun 220 .
  • the radiating unit 200 has two radiating arms 210, and the two radiating arms 210 can be orthogonally arranged at the first end of the balun 220, so that one of the radiating arms 210 can be used as the first dipole, and the other radiating arm 210 can be used as the first dipole.
  • Arm 210 acts as a second dipole.
  • the two radiating arms 210 are insulated, for example, the overlapping parts of the two radiating arms 210 along the z direction are electrically isolated by an insulating material.
  • FIG. 5 is a top view of FIG. 4 .
  • the radiation unit 200 may also include four radiation arms 210, wherein two radiation arms 210 are arranged at intervals in the direction a, and the other two radiation arms 210 are arranged at intervals in the direction b, where a The direction and the direction b are perpendicular to each other, so that the two radiation arms 210 located in the direction a can serve as the first dipoles, and the two radiation arms 210 located in the direction b can serve as the second dipoles.
  • each radiation arm 210 is located in the same plane.
  • the radiation unit 200 has four radiation arms 210 as an example for description.
  • the embodiment of the present application uses the four radiation arms 210 of the radiation unit 200 as the first radiation arm 211 , the second radiation arm 212 , the third radiation arm 213 and the fourth radiation arm 214 respectively, Among them, the first radiating arm 211 and the second radiating arm 212 are arranged at intervals in the a direction, and serve as the first dipole, and the third radiating arm 213 and the fourth radiating arm 214 are arranged at intervals in the b direction, and act as the second dipole. dipole.
  • Fig. 6 is a left side view of Fig. 3 .
  • the balun 220 includes a first feed layer 222 , a common ground layer 221 and a second feed layer 223 (shown in FIG. 6 ) arranged in sequence.
  • the balun 220 includes a first feeding layer 222, a common ground layer 221, and a second feeding layer 223 arranged in sequence along the first direction.
  • the electrical layer 222 and the second feeding layer 223 arranged in sequence along the first direction.
  • the balun 220 of the radiation unit 200 has only one common formation 221 .
  • the first direction can be regarded as the thickness direction of the balun 220, which is perpendicular to the height direction of the balun 220, for example, the first direction (ie, the thickness direction) can be
  • the x direction can also be the y direction.
  • the embodiment of the present application is specifically described by taking the first direction as the y direction as an example.
  • both the first feed layer 222 (shown in FIG. 4 ) and the second feed layer 223 (the second feed layer 223 is not shown in FIG. 4 ) are sheet-like pieces with a certain width.
  • the width direction of the first feed layer 222 and the second feed layer 223 is the x direction
  • the height direction is the z direction.
  • the common formation 221 of the balun 220 is also a sheet
  • the width direction of the common formation 221 is also the x direction
  • the height direction is the z direction.
  • the insulation between the first feed layer 222 and the common ground layer 221 is set, and the insulation between the second feed layer 223 and the common ground layer 221 is provided to ensure that the first feed layer 222, the common ground layer 221 and the second feed layer
  • the three layers 223 will not be short-circuited.
  • the first feed layer 222 is electrically isolated from the common ground layer 221 through a plastic layer
  • the second feed layer 223 is electrically isolated from the common ground layer 221 through a plastic layer.
  • other insulating materials may also be used to electrically isolate the feed layer (ie, the first feed layer 222 and the second feed layer 223 ) from the common ground layer 221 .
  • the insulating material is not limited here.
  • one end of the common ground layer 221 is electrically connected to one of the radiation arms 210 , and the other end of the common ground layer 221 is electrically connected to the reflector 100 .
  • a first end of the common ground layer 221 is electrically connected to one of the radiation arms 210
  • a second end of the common ground layer 221 is electrically connected to the reflector 100 .
  • the first end and the second end of the common formation 221 respectively refer to the two ends of the common formation 221 arranged oppositely along the height direction (for example, z direction) of the common formation 221, and the first end of the common formation 221 is close to the radiation arm 210.
  • One end, the second end of the common ground layer 221 is an end close to the emitting board 100 .
  • the reflector 100 is the reference ground, by electrically connecting the second end of the common ground layer 221 of the balun 220 to the reflector 100, and the first end of the common ground layer 221 is electrically connected to one of the radiation arms 210, thereby ensuring that the radiation arm 210 is grounded.
  • the first end of the common ground layer 221 can be electrically connected to a radiation arm 210 corresponding to the first dipole, or can be electrically connected to a radiation arm 210 corresponding to the second dipole, or can be electrically connected to the first dipole at the same time.
  • the first end of the common ground layer 221 may be electrically connected to the first radiating arm 211 and the fourth radiating arm 214 through the installation part 226 .
  • the side of the first radiation arm 211 facing the second radiation arm 212 can be connected to the first installation part 226a through the extension part 227, and the second installation part 226a can be connected to the side of the fourth radiation arm 214 facing the third radiation arm 213.
  • Part 226b a part of the first end of the common formation 221 is connected to the first installation part 226a, and the other part of the first end of the common formation 221 is connected to the second installation part 226b, so that the first end of the common formation 221 is simultaneously connected with the first installation part 226a.
  • the radiation arm 211 is electrically connected to the fourth radiation arm 214 .
  • both the installation part 226 (that is, the first installation part 226a and the second installation part 226b) and the extension part 227 are conductive parts, so that the first end of the common formation 221 is connected to the first radiating arm 211 and the fourth radiating arm at the same time. 214 electrical connection.
  • one end of the first feed layer 222 and the second feed layer 223 is electrically connected to another radiation arm 210, and the other end of the first feed layer 222 and the second feed layer 223 is electrically connected to the corresponding radio frequency signal port.
  • the first ends of the first feed layer 222 and the second feed layer 223 are electrically connected to another radiation arm 210, and the second ends of the first feed layer 222 and the second feed layer 223 are electrically connected to corresponding radio frequency signals. port.
  • the first end and the second end of the first feed layer 222 respectively refer to two ends of the first feed layer 222 arranged opposite to each other along the height direction of the balun 220 (for example, the z direction).
  • a first end of a feeding layer 222 is close to the radiation arm 210
  • a second end of the first feeding layer 222 is away from the radiation arm 210 .
  • first end and the second end of the second feed layer 223 respectively refer to the two ends of the second feed layer 223 arranged opposite to each other along the height direction of the balun 220 (for example, the z direction), and the second feed layer
  • the first end of the second feeding layer 223 is close to the radiation arm 210
  • the second end of the second feeding layer 223 is away from the radiation arm 210 .
  • the first end of the first feed layer 222 can be electrically connected to one of the radiation arms 210 of the first dipole, and correspondingly, the first end of the second feed layer 223 is electrically connected to the second dipole.
  • One of the radiation arms 210 For example, the first end of the first feeding layer 222 is electrically connected to the first radiation arm 211 , and the first end of the second feeding layer 223 is electrically connected to the third radiation arm 213 .
  • the first end of the first feeding layer 222 is electrically connected to the third radiating arm 213
  • the first end of the second feeding layer 223 is electrically connected to the second radiating arm 212 .
  • the first end of the first feeding layer 222 is electrically connected to the second radiating arm 212
  • the first end of the second feeding layer 223 is electrically connected to the third radiating arm 213 .
  • the first end of the common ground layer 221 and the first end of the feed layer need to be electrically connected to different radiation arms 210, so as to avoid radiation arms 210 short circuit.
  • the first end of the common ground layer 221 is electrically connected to the first radiating arm 211 and the fourth radiating arm 214
  • the first end of the first feeding layer 222 is electrically connected to the third radiating arm 213
  • the first end of the first feeding layer 222 is electrically connected to the third radiating arm 213.
  • the first end of the second feeding layer 223 is electrically connected to the second radiation arm 212 .
  • the first end of the common ground layer 221 is electrically connected to the second radiating arm 212 and the third radiating arm 213, the first end of the first feeding layer 222 is electrically connected to the first radiating arm 211, and the second feeding layer 223 The first end of the radiating arm is electrically connected to the fourth radiating arm 214 .
  • the first end of the first feed layer 222 can be directly electrically connected to the radiation arm 210, or can be spaced apart from the radiation arm 210, so that the first end of the first feed layer 222 is connected to the radiation arm 210. 210 realizes the coupling feed connection.
  • the first end of the second feeding layer 223 may be directly electrically connected to the radiating arm 210, or may be spaced apart from the radiating arm 210, so that the first end of the second feeding layer 223 and the radiating arm 210 realize a coupling feeding connection. .
  • the first end of the first feeding layer 222 is directly electrically connected to the third radiation arm 213
  • the first end of the second feeding layer 223 is directly electrically connected to the second radiation arm 212 .
  • the first end of the first feeding layer 222 passes through the upper surface of the third radiating arm 213
  • the first end of the second feeding layer 223 is located on the lower surface of the second radiating arm 212 .
  • the upper surface of the radiation arm 210 refers to the surface of the radiation arm 210 away from the reflector 100
  • the lower surface of the radiation arm 210 refers to the radiation arm 210 facing the reflection plate 100. surface of the board 100 .
  • radio frequency signal ports for dual-polarization feeding which are the first radio frequency signal port and the second radio frequency signal port.
  • the first feed layer 222 The second end is electrically connected to the first radio frequency signal port.
  • the first feed layer 222 is used to transmit the radio frequency signal in the +45° polarization direction
  • the second end of the second feed layer 223 is electrically connected to the second radio frequency signal port.
  • the second feeding layer 223 is used to transmit radio frequency signals with a polarization direction of -45°.
  • the second end of the first feeding layer 222 can be electrically connected to the second radio frequency signal port, so that the first feeding layer 222 is used to transmit the radio frequency signal in the -45° polarization direction, and the second The second end of the feeding layer 223 is electrically connected to the first radio frequency signal port, so that the second feeding layer 223 is used to transmit radio frequency signals with a +45° polarization direction.
  • the first feeding layer 222 is used to transmit radio frequency signals in a +45° polarization direction
  • the second feeding layer 223 is used to transmit radio frequency signals in a -45° polarization direction as an example for illustration.
  • the embodiment of the present application realizes the dual-polarized radio frequency signal transmission between the radiation arm 210 and the radio frequency signal port through the balun 220.
  • the radio frequency signal port is a radio frequency signal source
  • the first radio frequency The signal port feeds the radio frequency signal in the +45° polarization direction to the third radiating arm 213 through the first feeding layer 222 in the balun 220, and since the third radiating arm 213 and the fourth radiating arm 214 are spaced apart,
  • the electromagnetic wave emitted by the third radiating arm 213 excites a radio frequency current on the fourth radiating arm 214, so that a radio frequency signal with a +45° polarization direction is generated on the first dipole, and the second radio frequency signal port is polarized at -45°
  • the radio frequency signal in the UL direction is fed into the second radiating arm 212 through the second feeding layer 223 of the balun 220, and because the second radiating arm 212 is spaced apart from the first radiating arm 211, the second radiating arm
  • the balun 220 in the radiating unit 200 of the embodiment of the present application not only realizes the dual-polarized feeding function, but also simplifies the radiation by setting only one balun 220 in the radiating unit 200.
  • the structure of the unit 200 simplifies the assembly process of the entire radiation unit 200 .
  • the balun 220 of the embodiment of the present application includes an insulating body (not shown in the figure) and three layers of sheet metal when it is specifically set up.
  • the insulating body is arranged between the radiation arm 210 and the reflector 100, and the three layers of sheet metal are arranged at intervals.
  • the sheet metal located in the middle is the common ground layer 221
  • the sheet metal located on both sides are the first feed layer 222 and the second feed layer 223 respectively.
  • the balun 220 is made of three-layer sheet metal, which effectively saves baluns compared with the production methods of printed circuit boards, cables, or photolithography and etching processes (PEP for short).
  • the production cost of 220 also makes the production process of Balun 220 simpler and faster.
  • the phase shifter 310 includes a feeder 311 .
  • One end of the feed member 311 is electrically connected to the second end of the first feed layer 222, and the other end of the feed member 311 is electrically connected to the first radio frequency signal port, so that the second end of the first feed layer 222 passes through the feed member 311 Electrically connected to the first radio frequency signal port.
  • the RF current in the +45° polarization direction can be transmitted to the feed member 311 of the phase shifter 310 and the first feed layer 222 sequentially through the first RF signal port, and to the second feed layer through the second RF signal port.
  • 223 transmits radio frequency current in a -45° polarization direction, so that at least two radiating arms 210 (for example, four radiating arms 210 ) radiate electromagnetic wave signals in dual polarization directions.
  • the end of the feeder 311 connected to the first feeder layer 222 is referred to as the first end of the feeder 311, and the end of the feeder 311 connected to the first radio frequency signal port is referred to as the second end of the feeder 311. end.
  • phase of the output terminal of the first feeding layer 222 can be adjusted through the feeding part 311 of the phase shifter 310 .
  • the feeder 311 and the first feeder layer 222 are integrated, which not only realizes the phase adjustment of the output end of the first feeder layer 222, but also simplifies the connection structure between the balun 220 and the phase shifter 310 , thereby simplifying the assembling process between the feeding network 300 and the radiating unit 200, improving the assembling efficiency of the whole antenna device, and saving the production cost at the same time.
  • both the feeder 311 and the first feeder layer 222 are made of conductive metal materials, the feeder 311 and the first feeder layer 222 can be integrally injection molded, so that the feeder 311 and the first feeder The electrical layer 222 is formed in one piece.
  • the output end of the first feeding layer 222 may be the first end of the first feeding layer 222 or the second end of the first feeding layer 222 .
  • the output end of the first feeding layer 222 is the first end of the first feeding layer 222
  • the antenna device is a receiving antenna
  • the output end of the first feeding layer 222 is the first end of the first feeding layer 222.
  • a second end of the feeding layer 222 is the first end of the first feeding layer 222 .
  • the phase shifter 310 can change the signal phase of the first end of the first feeding layer 222 to change the signal phase of the radiation arm 210 corresponding to the +45° polarization direction, and then the antenna device includes a plurality of radiation elements At 200, a phase difference is formed between the radiating arms 210 of each radiating unit 200, so as to realize the electrical downtilt of the array antenna.
  • the phase shifter 310 includes a signal ground, and a dielectric layer is formed between the feed member 311 and the signal ground. By changing the resistance of the dielectric layer, the phase adjustment of the output end of the first feed layer 222 is realized.
  • Fig. 7 is a partially enlarged view of II in Fig. 6 .
  • the common formation 221 of the balun 220 is used as the signal ground of the phase shifter 310
  • at least part of the feeder 311 is set opposite to the common formation 221, and between the feeder 311 and the common formation 221
  • the air (such as the first air layer 224 mentioned below) is used as the dielectric layer of the phase shifter 310 , so that the feeder 311 , the air medium and the common ground layer 221 together form the air microstrip line structure of the phase shifter 310 .
  • the feeding part 311 When it is necessary to adjust the phase of the output end of the first feeding layer 222, the feeding part 311 can be moved to change the area of the feeding part 311 projected on the common formation 221, thereby changing the volume of the air medium, and then the phase shifter 310 The resistance of the dielectric layer is adjusted to realize the adjustment of the phase of the output terminal of the first feeding layer 222 .
  • the specific working principle of the phase shifter 310 can directly refer to relevant content in the prior art, and will not be repeated here.
  • one end of the feed member 311 is electrically connected to the second end of the first feed layer 222 as an example, so that the phase shifter 310 adjusts the phase of the radio frequency signal in the +45° polarization direction.
  • one end of the feed member 311 may also be electrically connected to the second end of the second feed layer 223 so that the phase shifter 310 adjusts the phase of the radio frequency signal in the -45° polarization direction.
  • the feed member 311 in the embodiment of the present application may be a feed sheet, which is located in the same plane as the first feed layer 222, for example, the feed sheet and the first feed layer 222 is located on any plane parallel to the x-z plane. Meanwhile, the plane where the feed sheet and the first feed layer 222 are located is perpendicular to the reflector 100 .
  • the integrated molding of the feeder 311 and the first feeder layer 222 is simplified.
  • the manufacturing process is simplified, that is, the manufacturing difficulty of the integral molding of the feeding member 311 and the first feeding layer 222 is reduced, thereby improving the manufacturing efficiency of the antenna device.
  • the plane where the feeder 311 and the first feeder layer 222 are located is perpendicular to the surface of the reflector 100 , so as to prevent the coupling between the feeder 311 and the surface of the reflector 100 from affecting the transmission performance of radio frequency signals.
  • the feeder 311 may include multiple bends in its extending direction (refer to FIG. 4 ), for example, the feeder 311 has multiple bends on any plane parallel to the x-z plane part, so as to increase the overlapping area of the feeder 311 and the common ground layer 221 in the y direction, which can improve the stability of the dielectric layer in the phase shifter, thereby ensuring the working performance of the phase shifter.
  • electrical isolation between the common ground layer 221 and the first feeding layer 222 , and between the common ground layer 221 and the second feeding layer 223 can be realized through an air medium.
  • an air medium there is a first air layer 224 between the common ground layer 221 and the first feeding layer 222, and there is a second air layer 225 between the common ground layer 221 and the second feeding layer 223.
  • the first feeding layer 222, the second feeding layer An air layer 224 and the common ground layer 221 jointly form the first air microstrip line for transmitting radio frequency signals in the +45° polarization direction
  • the second feed layer 223, the second air layer 225 and the common ground layer 221 jointly form the The second air microstrip line that transmits radio frequency signals in the -45° polarization direction
  • the first air microstrip line and the second air microstrip line together form the air microstrip line structure of the balun 220, reducing the balun 220
  • the energy loss of the radio frequency signal by the dielectric layer improves the radiation performance of the antenna device.
  • first air layer 224 between the feeder 311 of the phase shifter 310 and the common formation 221 of the balun 220, in other words, the common formation 221 also serves as the phase shifter 310
  • the signal ground of the first air layer 224 is also the dielectric layer of the phase shifter 310, so that the feed member 311, the first air layer 224 and the common ground layer 221 together form the air microstrip line structure of the phase shifter 310, reducing The energy loss of the radio frequency signal by the feeding network 300 is reduced, and the production cost of the phase shifter 310 is also saved.
  • the air microstrip line structure of the phase shifter 310 is connected to the first microstrip line of the balun 220, and serves as an air microstrip line for transmitting radio frequency signals with a +45° polarization direction.
  • the first feed layer 222 and the feed member 311 can be regarded as a transmission line, which is located on one side of the common ground layer 221 and forms a first air layer 224 with the common ground layer 221, so that the balun 220 and phase shifter 310 form an interconnected air microstrip line structure, that is, the entire feed network 300 and balun 220 form an air microstrip line structure, thereby reducing the energy of the feed network 300 and balun 220 to the radio frequency signal loss, improves the radiation performance of the antenna device, and saves the production cost of the balun 220 and the feeding network 300 .
  • the common ground layer 221 can extend along the z direction, that is, the direction perpendicular to the reflecting plate 100, the first feed layer 222 is located on one side of the common ground layer 221 along the y direction, and the first feed layer 222 is on the side of the common ground layer 221
  • the orthographic projection on is overlaid on the first region of the common formation 221 .
  • the first feeding layer 222 may extend along the z direction, that is, the first feeding layer 222 is arranged parallel to the common ground layer 221 .
  • a part of the feeder 311 is also located on one side of the common formation 221 along the y direction, and the orthographic projection of the part of the feeder 311 on the common formation 221 covers the second area of the common formation 221 .
  • a part of the feeder 311 can extend along the z direction, or have a component in the z direction, that is, there is a certain angle between the part of the feeder 311 and the z direction, as long as the part of the feeder 311 is ensured It only needs to be located on one side of the common ground layer 221 along the y direction. In this way, the first air layer 224 can also be formed between the feeder 311 and the common ground layer 221 .
  • the first area is close to the radiation arm 210
  • the second area is close to the reflection plate 100 .
  • the phase shifter 310 may further include a sliding medium 312 , and at least part of the sliding medium 312 is movably disposed on a side of the feed member 311 facing the common formation 221 .
  • the sliding medium 312 slides relative to the common formation 221 , the sliding medium 312 coincides with at least a portion of the first air layer 224 .
  • the sliding medium 312 specifically overlaps with the first air layer 224 on one side of the power feeding member 311 .
  • the at least partial overlap of the sliding medium 312 and the first air layer 224 means that at least part of the sliding medium 312 enters into the first air layer 224 .
  • the sliding medium 312 when set, may be a strip.
  • the sliding medium 312 can also be a cylindrical member, and the sliding medium 312 is movably sleeved on the outer circumference of the feeder 311, so as to ensure that a part of the sliding medium 312 is located at the side of the feeder 311 facing the common formation 221. One side, so that a part of the sliding medium 312 can slide into the first air layer 224 .
  • the sliding medium 312 can also be a double-layer structure
  • the feeder 311 is wrapped inside the double-layer structure of the sliding medium 312, and the sliding medium 312 is movably arranged on the surface of the feeder 311, wherein a part of the sliding medium 312 is located on the feeder.
  • the side of the member 311 facing the common formation 221 can ensure that the sliding medium 212 can move into the first air layer 224 .
  • the embodiment of the present application specifically does not limit the arrangement manner of the sliding medium 312 .
  • the embodiment of the present application is specifically described by taking the sliding medium 312 as a strip and being movably arranged on the side of the feeder 311 facing the common formation 221 as an example.
  • the sliding medium 312 When it is necessary to change the signal phase of the output end of the first feeding layer 222, the sliding medium 312 can be moved, so that the sliding medium 312 enters the first air layer 224 between the feeding part 311 and the common ground layer 221, so as to be compatible with the first
  • the air layers 224 overlap to change the dielectric resistance of the first air layer 224 , that is, the dielectric layer resistance of the air microstrip line corresponding to the phase shifter 310 , thereby stably adjusting the signal phase at the output end of the first feeder layer.
  • the overlapping amount between the sliding medium 312 and the first air layer 224 is different, and the phase of the signal at the output end of the first feeder layer is different.
  • the position of the sliding medium 312 can be adjusted as required.
  • the common formation 221 of the balun 220 may both include a first part 2211 and a second part 2212 during specific implementation.
  • the first part 2211 extends along a direction perpendicular to the reflector 100
  • the second part 2212 extends along a direction parallel to the reflector 100
  • the extension direction of the first part 2211 of the common formation 221 is perpendicular to the reflector 100, that is
  • the extension direction of the first part 2211 is the z direction
  • the extension direction of the second part 2212 of the common formation 221 is parallel to the reflection plate 100 , that is, the extension direction of the second part 2212 is the x direction.
  • the first air layer 224 located on one side of the common formation 221 includes two parts, one of which is perpendicular to the reflection plate 100 and the other is parallel to the reflection plate 100 .
  • the second air layer 225 located on the other side of the common ground layer 221 also includes two parts, one of which is perpendicular to the reflector 100 and the other parallel to the reflector 100 .
  • Fig. 8 is a right side view of Fig. 3 .
  • the first air layer 224 may include a first horizontal air layer 2242 and a first vertical air layer 2241 communicating with each other, and there is a gap between the first feed layer 222 and the first part 2211.
  • There is a first vertical air layer 2241 and a first horizontal air layer 2242 between the feeder 311 and the second portion 2212 of the phase shifter 310 .
  • the second air layer 225 includes a second horizontal air layer 2252 and a second vertical air layer 2251 connected to each other, and there is a second vertical air layer 2251 between the second power feeding layer 223 and the first part 2211.
  • first vertical air layer 2241 and the second vertical air layer 2251 are perpendicular to the reflector 100, in other words, the extension direction of the first vertical air layer 2241 and the second vertical air layer 2251 is perpendicular to the reflector 100, for example Referring to FIG. 8, the extension direction of the first vertical air layer 2241 and the second vertical air layer 2251 is the z direction.
  • first horizontal air layer 2242 and the second horizontal air layer 2252 are equivalent to parallel to the reflecting plate 100, in other words, the extension direction of the first horizontal air layer 2242 and the second horizontal air layer 2252 is parallel to the reflecting plate 100, for example , the extending direction of the first horizontal air layer 2242 and the second horizontal air layer 2252 is the x direction (the x direction in FIG. 8 is the direction perpendicular to the y-z plane).
  • At least a portion of the feeder 311 also extends along the x direction, so that at least a portion of the feeder 311 is disposed opposite to the second portion 2212 of the common formation 221 , and a second horizontal air layer 2252 is formed therebetween.
  • the extension direction of the feeder 311 is the x direction, so that the first horizontal air layer 2242 is formed between the feeder 311 and the second portion 2212 in the entire extension direction.
  • the first part 2211 of the common formation 221 is arranged close to the radiation arm 210
  • the second part 2212 of the common formation 221 is arranged close to the reflector 100
  • the first feeding layer 222, the first part 2211 and the first vertical air layer 2241 together form a bar
  • the air microstrip line structure of the ring 220 , the feeder 311 , the second portion 2212 and the first horizontal air layer 2242 together form the air microstrip line structure of the phase shifter 310 .
  • the sliding medium 312 of the phase shifter 310 may specifically overlap at least part of the first horizontal air layer 2242 .
  • the sliding medium 312 can be moved so that the sliding medium 312 enters the first horizontal air layer 2242 to overlap with the first horizontal air layer 2242, thereby Change the dielectric resistance of the first horizontal air layer 2242 , that is, the dielectric layer resistance of the air microstrip line corresponding to the phase shifter 310 , so as to stably adjust the signal phase at the output end of the first feeder layer.
  • the common formation 221 is divided into two parts, the first part 2211 is set to extend in a direction perpendicular to the reflector 100, and the second part 2212 is set to extend in a direction parallel to the reflector 100, thus, A first vertical air layer 2241 can be formed between the first feeding layer 222 and the first part 2211, and a first horizontal air layer 2242 can be formed between the feeding part 311 and the second part 2212.
  • the The sliding medium 312 coincides with the first horizontal air layer 2242, which not only realizes the phase adjustment of the output end of the radiating unit 200, but also rationally arranges the air microstrip line structure of the balun 220 and the phase shifter 310, saving the antenna device in vertical
  • the space in the direction of the reflecting plate 100 further improves the structural stability between the feeding network 300 and the radiation unit 200 .
  • FIG. 9 is an exploded view of FIG. 3
  • FIG. 10 is a partially enlarged view of III in FIG. 3 .
  • the phase shifter 310 is used to adjust the phase of the output terminal of each radiating element 200 to form a phase difference between the radiating elements 200, An electrical downtilt of the antenna arrangement as an array antenna is thereby achieved.
  • the phase shifter 310 may include a plurality of feeding elements 311, and the plurality of feeding elements 311 are set in one-to-one correspondence with the baluns 220 of the plurality of radiation units 200, and the first end of each feeding element 311 is connected to the corresponding The second ends of the first feed layer 222 of the balun 220 are electrically connected, so as to adjust the phase of the signal at the output end of the corresponding first feed layer 222 , so that a phase difference can be formed between the radiation units 200 .
  • the antenna device includes a first radiating unit 200a, a second radiating unit 200b, and a third radiating unit 200c, wherein the balun 220a corresponding to the first radiating unit 200a is the first balun 220a, and the balun 220 corresponding to the second radiating unit 200b is is the second balun 220b, and the balun 220 corresponding to the third radiation unit 200c is the third balun 220c.
  • the phase shifter 310 has three feeders 311 , which are feeder 311 a , feeder 311 b , and feeder 311 c .
  • the first end of the feeder 311a is electrically connected to the first feeder layer 222 of the first balun 220a
  • the first end of the feeder 311b is electrically connected to the first feeder layer 222 of the second balun 220b
  • the first end of the feed member 311c is electrically connected to the first feed layer 222 of the third balun 220c.
  • the common ground layer 221 of each balun 220 is used as the ground of the phase shifter 310, wherein at least part of the feed member 311a forms one of the first common ground layers 221 corresponding to the first balun 220a.
  • Air layer 224 another first air layer 224 is formed between at least part of the feeder 311b and the second common formation 221 corresponding to the second balun 220b, at least part of the feeder 311c is corresponding to the third balun 220c
  • Another first air layer 224 is formed between the third common formation 221, like this, by changing the resistance of at least one of the three first air layers 224 corresponding to the three baluns 220, the three radiating units 200 can form a phase difference.
  • the first air layer 224 includes a first vertical air layer 2241 and a first horizontal air layer 2242, so that by changing the resistance of at least one of the three first air layers 224 corresponding to the three baluns 220, the A phase difference is formed between the three radiation elements 200 .
  • the phase shifter 310 may include a sliding medium 312 , and the sliding medium 312 is located between any one feeder 311 and the corresponding common formation 221 .
  • the sliding medium 312 By moving the sliding medium 312 so that the sliding medium 312 coincides with at least one of the three first air layers 224, thereby changing the phase of the output end of the corresponding radiation unit 200, so that a phase difference is formed between the radiation units 200, to achieve Electrical downtilt of an array antenna.
  • the sliding medium 312 changes the dielectric resistance of the air microstrip line structure corresponding to the first radiating unit 200, thereby changing the signal phase of the first radiating unit 200, so that the output terminals of the three radiating units 200 A phase difference is formed so that an electrical downtilt of the antenna arrangement is achieved.
  • the sliding medium 312 when a part of the sliding medium 312 is located in the first air layer 224 of the first balun 220a, and another part is located in the first air layer 224 of the second balun 220b, and the sliding medium 312 does not enter the third balun 220c
  • the sliding medium 312 changes the dielectric resistance of the air microstrip line structure corresponding to the first radiating unit 200 and the second radiating unit 200, thus changing the first radiating unit 200 and the second radiating unit
  • the signal phase of 200 makes the output ends of the three radiating elements 200 form a phase difference, thereby realizing the electrical downtilt of the antenna device.
  • the overlapping amount of the sliding medium 312 and the first air layer 224 of the first balun 220a is the first overlapping amount
  • the overlapping amount of the sliding medium 312 and the first air layer 224 of the second balun 220b is the first overlapping amount.
  • the double overlap amount, the first overlap amount and the second overlap amount may be equal or not.
  • the phase of the output terminal of the first radiation unit 200 is equal to the phase of the output end of the second radiation unit 200, on the contrary, when the first coincidence amount and the second coincidence amount are not equal, The phase of the output terminal of the first radiation unit 200 is not equal to the phase of the output terminal of the second radiation unit 200 .
  • multiple baluns 220 share one sliding medium 312 .
  • a sliding medium 312 moves between the first air layers 224 on multiple baluns 220, so as to change the overlapping amount of the air microstrip line corresponding to each radiating unit 200, thereby ensuring that the A phase difference is formed between the radiating elements 200 so as to realize the electric downtilt of the antenna device and save the manufacturing cost of the phase shifter 310 .
  • the phase shifter 310 may include a plurality of sliding media 312 , and the plurality of sliding media 312 are arranged in one-to-one correspondence with the plurality of first air layers 224 .
  • the phase shifter 310 includes a first sliding medium 3121, a second sliding medium 3122 and a third sliding medium 312, wherein the first sliding medium 3121 and the first air layer 224a At least partially overlap to change the dielectric resistance of the first air layer 224a, thereby changing the signal phase at the output end of the first radiation unit 200, and at least partially overlap the second sliding medium 3122 with the first air layer 224b to change the first air layer 224b medium resistance, thereby changing the signal phase of the output end of the second radiation unit 200, the third sliding medium 312 coincides with at least part of the first air layer 224c, so as to change the medium resistance of the first air layer 224c, thereby changing the third radiation unit 200
  • the phase of the signal at the output terminal further causes
  • phase shifter 310 by setting the phase shifter 310 to include multiple feeding elements 311, and connecting the multiple feeding elements 311 to the balun 220 of the corresponding radiation unit 200, one phase shifter 310 can
  • the phase adjustment of multiple radiation units 200 is realized, for example, a phase shifter 310 is used to make a phase difference between multiple radiation units 200, so as to realize the electrical downtilt of each radiation unit 200 in the antenna device, which not only ensures the stability of the antenna device Radiation performance is improved, and the structure of the feed network 300 is simplified, making the structural layout of the entire feed network 300 more concise and reliable.
  • the second ends of the multiple feeding elements 311 of the phase shifter 310 may be directly electrically connected to corresponding radio frequency signal ports.
  • the antenna device further includes a main feeder 320, the first end of each feeder 311 of the phase shifter 310 is electrically connected to the corresponding first feeder layer 222, and each feeder
  • the second end of each feeding element 311 is electrically connected to the main feeder 320, and one end of the main feeder 320 is used to electrically connect to a radio frequency signal port, so that the second end of each feeder 311 is electrically connected to the corresponding radio frequency signal port.
  • the second end of each feeder 311 can be electrically connected to the first radio frequency signal port through a main feeder line 320, so that the first radio frequency signal port and the plurality of first feeder layers 222 can be connected through the main feeder line.
  • 320 and the corresponding feeder 311 realize the transmission of radio frequency signals.
  • the electrical connection between multiple feeding parts 311 and the radio frequency signal port is realized through the main feeding line 320, while realizing the electrical conduction between the multiple feeding parts 311 of the phase shifter 310 and the radio frequency signal port, simplifying the multiple feeding
  • the connection line between the electrical component 311 and the radio frequency signal port makes the structural layout of the entire feeding network 300 more concise and reliable.
  • each feeder 311 and the main feeder 320 may be integrated, so as to further simplify the structure of the feeder network 300 and improve the assembly efficiency of the entire antenna device.
  • the second part 2212 of the common formation 221 can be the part where the end of the first part 2211 close to the reflecting plate 100 extends in the positive direction in the x direction, or the end of the first part 2211 close to the reflecting plate 100 extends in the x direction.
  • the second part 2212 of the common formation 221 can also be two parts extending in two directions (positive and negative) in the x direction from the end of the first part 2211 close to the reflection plate 100 .
  • the specific setting of the second part 2212 of the above-mentioned common formation 221 depends on the position of the radiation unit 200 corresponding to the common formation 221 located among the plurality of radiation units 200 .
  • the common stratum corresponding to the first balun 220a is The first common stratum
  • the common stratum corresponding to the second balun 220b is the second common stratum
  • the common stratum corresponding to the third balun 220c is the third common stratum.
  • the second portion 2212 of each common formation 221 extends along the x direction, for example, the second portion 2212 of the first common formation 221, the second portion 2212 of the second common formation 221 and the second portion of the third common formation 221 2212 each extend along the x-direction.
  • the second part 2212 of the first common stratum is a part extending forwardly from one end of the first part 2211 to the x direction
  • the second part 2212 of the second common stratum is a part extending forwardly and reversely from one end of the first part 2211 to the x direction
  • the second part 2212 of the third common formation is a part extending oppositely from one end of the first part 2211 to the x direction.
  • the second portions 2212 of two adjacent common formations 221 are integrated.
  • the second portion 2212 of the first common formation is integral with the second portion 2212 of the second common formation
  • the second portion 2212 of the second common formation is integral with the second portion 2212 of the third common formation such that, All the common ground layers 221 of the antenna device are formed in one piece, which simplifies the structural setting of the radiation unit 200 of the antenna device while ensuring the grounding of the radiation unit 200 of the antenna device, thereby improving the assembly efficiency of the antenna device.
  • a phase shifter 310 is used to adjust the signal phase of one of the polarization directions in the radiation unit 200, for example, by connecting the feed member 311 of the phase shifter 310 with the first feed layer 222 in the radiation unit 200 Electrically connected to adjust the phase of the radio frequency signal in the +45° polarization direction.
  • the feed network 300 of the embodiment of the present application may also include two phase shifters 310, for example, the feed network 300 includes a first phase shifter 3101 and a second phase shifter 3102, the first phase shifter
  • the device 3101 includes a first feed member 3111 and a first sliding medium 3121.
  • the first end of the first feeder 3111 is electrically connected to the first feeder layer 222 of the balun 220, and the first sliding medium 3121 is located on the side of the first feeder 3111 facing the common ground layer 221.
  • a phase shifter 3101 adjusts the phase of the output terminal of the first feeding layer 222 , that is, adjusts the phase of the radio frequency signal in the +45° polarization direction.
  • the first sliding medium 3121 by moving the first sliding medium 3121, at least part of the first sliding medium 3121 enters the first horizontal air layer 2242 of the first air layer 224, thereby changing the medium resistance of the first horizontal air layer 2242 to achieve the first The phase of the output terminal of the feeding layer 222 is adjusted.
  • the second phase shifter 3102 includes a second feed member 3112 and a second sliding medium 3122, the first end of the second feed member 3112 is electrically connected to the second feed layer 223 of the balun 220, and the second The sliding medium 3122 is located on the side of the second feed member 3112 facing the common formation 221, so that the phase of the output terminal of the second feed layer 223 is adjusted through the second phase shifter 3102, that is, the polarization of -45° is realized. directional adjustment of the RF signal phase.
  • the first feeder 3111 and the first feeder layer 222 are integrated, and there is a first air layer 224 between the first feeder 3111 and the common ground layer 221, by changing the dielectric resistance of the first air layer 224,
  • the second feeding part 3112 and the second feeding layer 223 are integrated, and there is a second air between the second feeding part 3112 and the common ground layer 221 Layer 225, by changing the dielectric resistance of the second air layer 225, the phase adjustment of the output end of the second feeding layer 223 is realized.
  • the setting method and working principle of the first phase shifter 3101 and the setting method and working principle of the second phase shifter 3102 can refer to the relevant content of the phase shifter 310 above, and will not be repeated here.
  • phase shifters 310 are set, wherein the first phase shifter 3101 is used to change the phase of the output terminal of the first feeding layer 222, and the second phase shifter 3102 is used to change the output phase of the second feeding layer 223. The phase of the end, thereby adjusting the phase of the signal in both polarization directions.
  • the second feed member 3112 of the second phase shifter 3102 and the second feed layer 223 Being arranged in one piece further simplifies the connection process between the two phase shifters 310 and the balun 220 , thus improving the assembly efficiency of the antenna device.
  • the first feeder 3111 can be the first feeder piece, and correspondingly, the second feeder 3112 can be the second feeder Two feeders.
  • first feed sheet and the first feed layer 222 are located in a first plane, for example, the first feed sheet and the first feed layer 222 are located in a first plane parallel to the x-z plane.
  • the second feed sheet and the second feed layer 223 are located in a second plane, for example, the second feed sheet and the second feed layer 223 are located in a second plane parallel to the x-z plane.
  • the first plane and the second plane may be two planes parallel to the x-z plane, and both the first plane and the second plane are perpendicular to the reflector 100 of the antenna device.
  • the feeder 311 as a feeder sheet, for example, setting the first feeder 3111 as the first feeder sheet, setting the second feeder 3112 as the second feeder sheet, and setting the feeder
  • the electrical part 311 and the corresponding feeding layer are arranged in the same plane, which simplifies the manufacturing process of the integral molding of the feeding part 311 and the corresponding feeding layer, that is, reduces the cost of integrally forming the feeding part 311 and the corresponding feeding layer. production difficulty, thereby improving the production efficiency of the antenna device.
  • first plane where the first feeder 3111 is located and the second plane where the second feeder 3112 is located are both perpendicular to the surface of the reflector 100, so as to prevent the first feeder 3111 and the second feeder 3112 from Coupling occurs on the surface of the reflector 100 to affect the transmission performance of the radio frequency signal.
  • FIG. 11 is a schematic structural diagram of another antenna device provided by an embodiment of the present application
  • FIG. 12 is a left side view of FIG. 11
  • FIG. 13 is a partially enlarged view of IV in FIG. 11 .
  • a through hole 110 can be formed on the reflector 100 , and the through hole 110 penetrates both surfaces of the reflector 100 along the thickness direction (refer to the z direction shown in FIG. 12 ).
  • the antenna device also includes a conductive shell 400 with an opening 430 on one side, the conductive shell 400 is embedded in the through hole 110, and the opening 430 of the conductive shell 400 faces the radiation arm 210, and one end of the balun 220 is connected to the radiation arm 210, The other end of the balun 220 is accommodated in the conductive case 400 .
  • the first end of the balun 220 is connected to the radiation arm 210, and at least part of the second end of the balun 220 is stored in the conductive shell 400, so that a part of the electromagnetic wave signal radiated by the balun 220 itself can be obtained by the conductive shell 400.
  • the shading of the balun 220 without leakage to the outside reduces the loss of the balun 220 during the transmission of radio frequency signals.
  • the reflecting plate 100 includes a first side and a second side oppositely disposed along the z direction, and by accommodating the second end of the balun 220 in the conductive shell 400 of the through hole 110, a part of the balun 220 (for example, radiating Arm 210 side) is located on the first side of the reflector 100, and another part of the balun 220 (for example, a part of the phase shifter 310) is located on the second side of the reflector 100, shortening the distance between the radiation arm 210 and the reflector 100, This not only saves the vertical space on the first side of the reflector 100, but also makes the antenna structure on the reflector 100 more stable, thereby ensuring the radiation performance of the antenna device.
  • a part of the balun 220 for example, radiating Arm 210 side
  • another part of the balun 220 for example, a part of the phase shifter 310
  • a part of the phase shifter 310 is accommodated in the conductive shell 400, for example, a part of the common formation 221, the first feeder 3111, the second feeder 3112 and a part of the corresponding sliding medium 312 are all accommodated In the conductive shell 400, the loss of the phase shifter 310 during radio frequency signal transmission is further reduced, and the accuracy of phase adjustment by the phase shifter 310 is improved.
  • the through holes 110 on the reflector 100 can extend from one end of the reflector 100 along the x direction to the other end, so that the radiation elements 200 arranged along the x direction One ends of the plurality of radiation units 200 are all accommodated in the conductive shell 400 of the through hole 110 .
  • a row of radiation units 200 arranged at intervals along the x direction may be arranged on the reflecting plate 100 , and multiple rows of radiation units 200 may be arranged at intervals along the y direction.
  • the number of through holes 110 can be one, and the through holes 110 can extend from one end of the reflecting plate 100 along the x direction to the other.
  • the second end of the radiation unit 200 is oriented in the same direction as the second end of the balun 220 .
  • the number of through holes 110 can be multiple, and the plurality of through holes 110 are arranged at intervals along the y direction, so that the plurality of through holes 110 and the plurality of through holes
  • the rows of radiating units 200 are provided in one-to-one correspondence, for example, the second end of one row of radiating units 200 is located in one through hole 110 , and the second end of another row of radiating units 200 is located in another through hole 110 .
  • the conductive shell 400 is electrically connected to the reflector 100, and the other end of the common ground layer 221, such as the second end of the common ground layer 221, is electrically connected to the conductive shell 400, so that the second end of the common ground layer 221 is electrically connected to the reflector 100, thereby ensuring that the common ground layer 221 grounded.
  • the second end of the common formation 221 can be understood as the side of the second part 2212 of the common formation 221 facing the reflection plate 100 .
  • the conductive shell 400 may include a main body 410 and a connecting portion 420, the main body 410 is embedded in the through hole 110, the opening 430 is formed on one side of the main body 410, and at least the balun 220 Part is located in the main body 410 , and one end of the balun 220 is connected to the inner wall of the main body 410 facing the opening 430 .
  • a part of the phase shifter 310 is located in the main body 410, and the second end of the common formation 221 of the balun 220 is electrically connected to the inner bottom wall of the main body 410 (see Figure 12 shown). Wherein, the inner bottom wall of the main body 410 faces the opening 430 of the main body 410 .
  • connection portion 420 is disposed at one end of the main body portion 410 having the opening 430 , and the connection portion 420 abuts against the side surface of the reflector 100 facing the radiator, for example, the connection portion 420 abuts against the first side surface of the reflector 100 .
  • the connecting portion 420 may be bonded to the first side surface of the reflector 100 by conductive glue, or may be fixed on the first side surface of the reflector 100 by fasteners such as screws.
  • the connection mode with the reflector 100 is limited, as long as the connection part 420 is fixed on the reflector 100 and the connection part 420 is electrically connected to the reflector 100 .
  • An embodiment of the present application further provides a communication device, including a radio frequency circuit and the antenna device in any of the foregoing examples.
  • the radio frequency circuit is electrically connected with the antenna device.
  • the radio frequency circuit can provide a signal source for the antenna device, for example, the feed member 311 of the antenna device is electrically connected to the first radio frequency signal port in the radio frequency circuit, so that there is a gap between the first radio frequency signal port and the first feed layer 222 in the antenna device Realize RF signal transmission in +45° polarization direction.
  • the second feed layer 223 of the antenna device is electrically connected to the second radio frequency signal port in the radio frequency circuit, so that -45° polarization is realized between the second radio frequency signal port and the second feed layer 223 in the antenna device Direction of radio frequency signal transmission.
  • the radio frequency circuit is generally arranged in the remote radio unit.
  • the specific circuit configuration and working principle of the radio frequency circuit can directly refer to relevant content in the prior art, and will not be repeated here.
  • the second ends of the plurality of first feeding elements 3111 in the antenna device are electrically connected to the first radio frequency signal port, so that the radio frequency signal with a +45° polarization direction emitted by the first radio frequency signal port is transmitted to the antenna device
  • the radiating arm 210 at the first end of the first feeding layer 222 emits the signal in the form of electromagnetic waves, thereby completing the transmission of the signal.
  • the communication device provided by the embodiment of the present application simplifies the structure of the antenna device, improves the assembly efficiency of the entire antenna device, and saves the manufacturing cost by electrically connecting the antenna device to the radio frequency circuit.
  • the communication device in this embodiment of the present application may also be a communication base station.
  • FIG. 14 is a schematic structural diagram of another antenna device provided by an embodiment of the present application
  • FIG. 15 is a right side view of FIG. 14 . 14 and 15, different from the first embodiment, in the radiation unit 200 of the embodiment of the present application, the second end of the balun 220 is suspended on one side of the reflector 100, so as to simplify the assembly process of the balun 220 .
  • the common formation 221 of the balun 220 is suspended on the reflection plate 100 .
  • the common formation 221 may not be grounded.
  • connection should be understood in a broad sense, for example, it can be a fixed connection or a An indirect connection through an intermediary may be an internal communication between two elements or an interaction relationship between two elements.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)

Abstract

本申请实施例提供一种天线装置及通信设备,天线装置包括反射板、辐射单元和馈电网络;辐射单元设置在反射板上,辐射单元包括巴伦和至少两个辐射臂,巴伦包括依次设置的第一馈电层、公共地层和第二馈电层,馈电网络包括移相器,移相器包括馈电件;公共地层的一端电连接其中一个辐射臂,公共地层的另一端电连接反射板,或者,公共地层的另一端悬空设置在所述反射板上;第一馈电层和第二馈电层的一端电连接另一个辐射臂,第一馈电层的另一端电连接馈电件,且馈电件与第一馈电层为一体件,简化了馈电网络的移相器与辐射单元的巴伦之间的连接工序,从而提高了天线装置的装配效率。

Description

天线装置及通信设备
本申请要求于2021年8月10日提交中国专利局、申请号为202110913828.6、申请名称为“天线装置及通信设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信天线技术领域,特别涉及一种天线装置及通信设备。
背景技术
随着无线通信技术的快速发展,对通信系统容量需求越来越大,多输入多输出(Multi Input Multi Output,简称MIMO)技术和波束赋形阵列天线应运而生。传统的基站阵列天线包括多个辐射单元和馈电网络,其中,馈电网络中具有移相器,通过将馈电网络与每个辐射单元电连接,以实现网络覆盖的实时可变,同时调节信号相位,实现阵列天线的电下倾。
传统的阵列天线中,辐射单元包括多个辐射臂和两个正交设置的巴伦,每个巴伦均包括公共地层和分别位于公共地层两侧的馈电层,两个巴伦的公共地层的一端电连接其中两个辐射臂,两个巴伦的馈电层的一端电连接另外两个辐射臂,两个巴伦的馈电层的另一端电连接移相器的馈电件。通过向两个巴伦的其中一个馈电层提供+45°极化方向的射频电流,向两个巴伦上的另一个馈电层提供-45°极化方向的射频电流,这样便在辐射臂形成的辐射面上形成双极化方向的射频电流。
然而,在实际应用中,移相器的馈电件通过焊接等方式连接在每个巴伦的馈电层上,这就使得馈电网络与辐射单元之间的装配变得繁琐复杂,从而降低了基站阵列天线的装配效率。
发明内容
本申请实施例提供了一种天线装置及通信设备,简化了馈电网络的移相器与辐射单元的巴伦之间的连接工序,从而提高了天线装置的装配效率。
本申请实施例提供了一种天线装置,包括反射板、辐射单元和馈电网络;
辐射单元设置在反射板上,辐射单元包括巴伦和位于巴伦一端的至少两个辐射臂,巴伦包括依次设置的第一馈电层、公共地层和第二馈电层,且巴伦仅具有一个公共地层,馈电网络包括移相器,移相器包括馈电件;
公共地层的一端电连接其中一个辐射臂,公共地层的另一端电连接反射板,或者,公共地层的另一端悬空设置在反射板上;第一馈电层和第二馈电层的一端电连接另一个辐射臂,第一馈电层的另一端电连接馈电件,且馈电件与第一馈电层为一体件。
本申请实施例提供的天线装置,通过将巴伦设置为包括依次间隔设置的第一馈电层、公共地层和第二馈电层,并将第一馈电层和第二馈电层的一端电连接另一个辐射 臂,将第一馈电层的另一端电连接移相器的馈电件,这样,当馈电件的另一端和第二馈电层的另一端均电连接相应的射频信号端口时,便可通过该巴伦实现辐射臂与射频信号端口之间的双极化射频信号传输,例如,本申请实施例可通过射频信号端口依次向移相器的馈电件和第一馈电层传输+45°极化方向的射频电流,通过射频信号端口向第二馈电层传输-45°极化方向的射频电流,进而使得至少两个辐射臂辐射出双极化方向的电磁波信号。同时,通过在第一馈电层的另一端电连接移相器的馈电件,这样,可通过改变馈电件与移相器的地之间的介质层阻力,以改变第一馈电层输出端的相位,进而在天线装置包括多个辐射单元时,在各个辐射单元的辐射臂之间形成相位差,从而实现阵列天线的电下倾。通过将移相器的馈电件与第一馈电层设置为一体件,不仅实现了对第一馈电层的输出端的相位调节作用,而且简化了巴伦与移相器的连接结构,从而简化了馈电网络与辐射单元之间的装配工序,提高了整个天线装置的装配效率,同时节约了制作成本。
在一种可选的实现方式中,辐射单元具有一个巴伦。相比于传统技术,本申请实施例的辐射单元中的巴伦不仅实现了双极化馈电作用,而且简化了辐射单元的结构,从而简化了整个辐射单元的装配工序。
在一种可选的实现方式中,公共地层与第一馈电层之间具有第一空气层,公共地层与第二馈电层之间具有第二空气层;
馈电件与公共地层之间具有第一空气层。
本申请实施例通过在巴伦的公共地层与第一馈电层之间形成第一空气层,在公共地层与第二馈电层之间形成第二空气层,使得巴伦形成空气微带线结构,减小了巴伦的介质层对射频信号的能量损耗,提高了天线装置的辐射性能。同时,在移相器的馈电件与公共地层之间也具有第一空气层,使得巴伦的公共地层也作为移相器的信号地,这样,通过改变该第一空气层的阻力,便可实现对第一馈电层输出端的相位调节作用,并且移相器也形成空气微带线结构,减小了馈电网络对射频信号的能量损耗,从而不仅提高了整个天线装置的辐射性能,而且节约了巴伦和移相器的制作成本。
在一种可选的实现方式中,移相器还包括滑动介质,滑动介质的至少部分活动设置在馈电件朝向公共地层的一侧;
当滑动介质相对于公共地层滑动时,滑动介质与第一空气层的至少部分重合。
本申请实施例通过在移相器中设置滑动介质,并将该滑动介质的至少部分活动设置在馈电件的一侧,这样,通过移动滑动介质,使得该滑动介质与第一空气层的至少部分进行重合,以改变第一空气层的介质阻力,从而实现对第一馈电层的输出端相位的稳定调节。
在一种可行的实现方式中,公共地层包括第一部分和第二部分,第一部分沿垂直于反射板的方向延伸,第二部分沿平行于反射板的方向延伸;
第一空气层包括相互连通的第一水平空气层和第一垂直空气层,第一馈电层与第一部分之间具有第一垂直空气层;第二空气层包括相互连通的第二水平空气层和第二垂直空气层,第二馈电层与第一部分之间具有第二垂直空气层;
馈电件与第二部分之间具有第一水平空气层,滑动介质与第一水平空气层的至少部分重合。
本申请实施例通过将公共地层设置为两个部分,将第一部分设置为沿垂直于反射板的方向延伸,将第二部分设置为沿平行于反射板的方向延伸,并将第一馈电层与公共地层的第一部分之间形成第一垂直空气层,将移相器的馈电件与公共地层的第二部分之间形成第一水平空气层,这样,通过移动滑动介质,使得该滑动介质与第一水平空气层重合,不仅能够对应的辐射单元的信号相位进行调整,而且合理布局了巴伦和移相器的空气微带线结构,并节约了天线装置在垂直于反射板方向上的空间,进而提高了馈电网络与辐射单元之间的结构稳定性。
在一种可行的实现方式中,天线装置包括多个辐射单元,多个辐射单元间隔设置在反射板上,
其中,沿第二部分的延伸方向设置的多个辐射单元中,相邻两个公共地层的第二部分为一体件。
本申请实施例通过在反射板上间隔设置多个辐射单元,使得本申请实施例的天线装置形成阵列天线,并通过将每个辐射单元电连接馈电网络的移相器,使得各个辐射单元之间形成相位差,从而实现阵列天线的电下倾。另外,通过将相邻两个公共地层的第二部分设置为一体件,使得天线装置的所有公共地层为一体件,这样在确保天线装置的各个辐射单元接地的同时,简化了天线装置中辐射单元的结构,从而提高了天线装置的装配效率。
在一种可行的实现方式中,馈电网络包括第一移相器和第二移相器,第一移相器包括第一馈电件,第二移相器包括第二馈电件;
第一馈电件与第一馈电层为一体件,且第一馈电件与公共地层之间具有第一空气层,第二馈电件与第二馈电层为一体件,且第二馈电件与公共地层之间具有第二空气层。
本申请实施例通过设置两个移相器,其中,第一移相器用于改变第一馈电层输出端的相位,第二移相器用于改变第二馈电层输出端的相位,从而对两个极化方向的信号相位均进行调节。同时,通过将第一移相器的馈电件与第一馈电层设置为一体件,将第二移相器的馈电件与第二馈电层设置为一体件,进一步简化了两个移相器与巴伦之间的连接工序,从而提高了天线装置的装配效率。
在一种可行的实现方式中,第一馈电件为第一馈电片,第二馈电件为第二馈电片;第一馈电片与第一馈电层位于第一平面内,第二馈电片与第二馈电层位于第二平面内;第一平面与第二平面均垂直于天线装置的反射板。
本申请实施例通过将馈电件设置为馈电片,例如将第一馈电件设置为第一馈电片,将第二馈电件设置为第二馈电片,并将馈电件与对应的馈电层设置在同一平面内,简化了馈电件与对应的馈电层一体成型的制作工序,即降低了馈电件与对应的馈电层的一体成型的制作难度,从而提高了天线装置的制作效率。另外,第一馈电件所在的第一平面与第二馈电件所在的第二平面均垂直于反射板的表面,避免第一馈电件和第二馈电件分别与反射板的表面发生耦合而影响射频信号的传输性能。
在一种可行的实现方式中,天线装置还包括一侧具有开口的导电壳,反射板上具有贯穿孔,导电壳嵌设在贯穿孔内,开口朝向辐射臂,巴伦的一端连接在辐射臂上,巴伦的另一端收纳在导电壳内;
公共地层的另一端电连接反射板包括:公共地层的另一端电连接导电壳,导电壳电连接反射板。
本申请实施例通过在反射板的贯穿孔内嵌设导电壳,并将巴伦的一部分收纳在该导电壳内,使得巴伦自身向外辐射的一部分电磁波信号能够得到导电壳的遮挡,而不会向外部泄露,从而降低了巴伦在射频信号传输过程中的损耗,尤其是在将巴伦一端的移相器部分收纳在导电壳内,进一步降低了移相器在射频信号传输过程中的损耗,提高了移相器对相位调整的准确度。同时,通过将导电壳电连接在反射板上,并将巴伦的公共地层的一端连接在导电壳上,实现了公共地层与反射板之间的电连接,从而确保公共地层接地。
在一种可行的实现方式中,巴伦包括绝缘主体和三层钣金;
三层钣金间隔设置,且相邻两层钣金之间具有绝缘主体,其中,
位于中间的钣金为公共地层,位于两侧的钣金分别为第一馈电层和第二馈电层。
本申请实施例通过将巴伦采用三层钣金制作,相比于印制电路板、电缆或者光刻和腐蚀工艺(Photolithography and Etching Process,简称PEP)的制作方式,有效的节约了巴伦结构的制作成本,同时也使得巴伦的制作工序更加简单快捷。
在一种可行的实现方式中,辐射单元的数量为多个,多个辐射单元呈阵列排布,移相器包括多个馈电件,多个馈电件与多个辐射单元的巴伦一一对应设置。
本申请实施例通过将移相器设置为包括多个馈电件,并将多个馈电件连接在相应的辐射单元的巴伦上,这样便可通过一个移相器实现对多个辐射单元的相位调节,例如通过一个移相器使得多个辐射单元之间形成相位差,从而实现天线装置中各个辐射单元的电下倾,不仅确保了天线装置的辐射性能,而且简化了馈电网络的结构,使得整个馈电网络的结构布局更加简洁可靠。
本申请实施例还提供一种通信设备,包括射频电路和上述天线装置。
本申请实施例提供的通信设备,通过在射频电路上电连接上述天线装置,简化了天线装置的结构,提高了整个天线装置的装配效率,同时节约了制作成本。
附图说明
图1是传统的基站阵列天线的部分结构示意图;
图2是图1中其中一个巴伦的内部结构示意图;
图3是本申请一实施例提供的其中一种天线装置的结构示意图;
图4是图3中I处的局部放大图;
图5是图4的俯视图;
图6是图3的左视图;
图7是图6中II处的局部放大图;
图8是图3的右视图;
图9是图3的爆炸图;
图10是图3中III处的局部放大图;
图11是本申请一实施例提供的另一种天线装置的结构示意图;
图12是图11的左视图;
图13是图11中IV处的局部放大图;
图14是本申请一实施例提供的又一种天线装置的结构示意图;
图15是图14的右视图。
附图标记说明:
1、100-反射板;2、200-辐射单元;300-馈电网络;400-导电壳;500-间隙;
110-贯穿孔;200a-第一辐射单元;200b-第二辐射单元;200c-第三辐射单元;22、210-辐射臂;21、220-巴伦;310-移相器;320-主馈电线;410-主体部;420-连接部;430-开口;
22a、211-第一辐射臂;22b、212-第二辐射臂;22c、213-第三辐射臂;22d、214-第四辐射臂;21a、220a-第一巴伦;21b、220b-第二巴伦;220c-第三巴伦;201、221-公共地层;202、222-第一馈电层;203、223-第二馈电层;224-第一空气层;225-第二空气层;226-安装部;227-延伸部;3101-第一移相器;3102-第二移相器;31、311-馈电件;312-滑动介质;
2211-第一部分;2212-第二部分;2241-第一垂直空气层;2242-第一水平空气层;2251-第二垂直空气层;2252-第二水平空气层;226a-第一安装部;226b-第二安装部;3111-第一馈电件;3112-第二馈电件;3121-第一滑动介质;3122-第二滑动介质。
具体实施方式
本申请的实施方式部分使用的术语仅用于对本申请的具体实施例进行解释,而非旨在限定本申请。
图1是传统的基站阵列天线的部分结构示意图。参照图1所示,目前,传统的基站阵列天线主要包括馈电网络(图1中31所示的馈电件为馈电网络的一部分)和多个辐射单元2(图1中示出了一个辐射单元),多个辐射单元2阵列排布在反射板1的一面上。通过馈电网络与每个辐射单元2电连接,实现网络覆盖的实时可变,以满足覆盖场景的不断变化,使网络性能最优。
参照图1所示,辐射单元2包括巴伦21和辐射臂22,巴伦21的一端连接在辐射臂22上,另一端设置在反射板1的一面上。巴伦21的个数可以为两个,具体包括第一巴伦21a和第二巴伦21b,辐射臂22的个数可以为四个,具体包括第一辐射臂22a、第二辐射臂22b、第三辐射臂22c和第四辐射臂22d。
其中,第一巴伦21a和第二巴伦21b正交设置,第一辐射臂22a和第二辐射臂22b分别设置在第一巴伦21a的一端,相应的,第三辐射臂22c和第四辐射臂22d分别设置在第二巴伦21b的一端。其中,第一辐射臂22a和第二辐射臂22b可作为第一偶极子,第三辐射臂22c和第四辐射臂22d作为第二偶极子。
图2是图1中其中一个巴伦的内部结构示意图。参照图2所示,每个巴伦21包括两个馈电层和位于两个馈电层之间的公共地层201。两个馈电层可分别为第一馈电层202和第二馈电层203,其中,第一馈电层202、公共地层201及第二馈电层203沿巴伦21的厚度方向(参见图2中箭头z方向所示)依次间隔设置。
参照图1所示,设置时,第一巴伦21a的公共地层201的一端分别连接第一辐射臂22a和第二辐射臂22b,第二巴伦21b的公共地层201的一端分别电连接第三辐射 臂22c和第四辐射臂22d,两个公共地层201的另一端均电连接反射板1的一面上,以保证辐射单元2接地。
继续参照图1所示,馈电网络包括移相器,移相器具有馈电件31。第一巴伦21a的第一馈电层202的一端分别与与第一辐射臂22a耦合馈电连接,第二巴伦21b的第一馈电层202的一端与第三辐射臂22c耦合馈电连接,两个第一馈电层202的另一端电连接移相器的馈电件31的一端。移相器的馈电件31的另一端电连接第一射频信号端口(未示出)。
相应地,第一巴伦21a的第二馈电层203与第二辐射臂22b耦合馈电连接,第二巴伦21b的第二馈电层203与第四辐射臂22d耦合馈电连接,两个第二馈电层203的另一端电连接第二射频信号端口(未示出)。
以下以第一射频信号端口和第二射频信号端口分别发送+45°极化方向和-45°极化方向的射频电流为例。具体工作时,通过第一射频信号端口和移相器的馈电件31向两个第一馈电层202中输入+45°方向的射频电流,通过第二射频信号端口向两个第二馈电层203中输入-45°方向的射频电流,使得第一偶极子的延伸方向上和第二偶极子的延伸方向产生极化分量,最终在第一偶极子和第二偶极子形成的坐标系中+45°处和-45°处分别激励出极化方向相反的射频信号。
另外,通过在两个第一馈电层202的一端电连接移相器31的馈电件,以对两个第一馈电层202的输出端的相位进行调整,从而改变辐射单元2的输出端的相位,进而在多个辐射单元2之间形成信号的相位差,实现阵列天线的电下倾。
需要说明的是,传统技术中,移相器的信号地为反射板1,移相器的馈电件31与反射板1相对且间隔设置,该馈电件31、反射板1及馈电件31与反射板1之间的介质层共同形成移相器的信号传输线路。移相器在工作时,通过改变馈电件31与反射板1之间的介质层的阻力,以实现对辐射单元2输出端相位的改变。
通常,移相器的馈电件31与两个第一馈电层202之间是采用焊接等连接方式进行电连接,同时因馈电件31的主表面与反射板1平行设置,巴伦21的馈电层例如第一馈电层202的主表面与反射板1垂直设置,使得馈电件31与馈电层异面垂直,这就增大了馈电件31与馈电层之间的焊接难度,例如,馈电件31与第一馈电层202之间的焊接需借助模具,且需严格调整焊接参数等,这就使得馈电网络中移相器与辐射单元2中的巴伦21之间的装配变得繁琐复杂,从而降低了基站阵列天线的装配效率。
基于此,本申请实施例提供一种天线装置及通信设备,通过将巴伦的馈电层与移相器的馈电件设置为一体件,以实现了电调馈电网络和辐射单元一体化,简化了馈电网络与辐射单元之间的装配工序,从而提高了整个天线装置的装配效率。
以下对本申请实施例的天线装置及通信设备的具体结构进行详细说明。
实施例一
图3是本申请一实施例提供的其中一种天线装置的结构示意图。参照图1所示,本申请实施例提供了一种天线装置,包括反射板100、辐射单元200和馈电网络300。其中,辐射单元200设置在反射板100一面,这样,可通过该反射板100提高天线信号的接收灵敏度,同时,该反射板100也起到阻挡、屏蔽来自与辐射单元200另一面 的电波,提高辐射单元200对接收信号的抗干扰能力。馈电网络300的一端电连接辐射单元200,馈电网络300的另一端电连接射频信号端口(图中未示出),这样,通过馈电网络300可实现辐射单元200与射频信号端口之间的射频信号传输。
可以理解的是,射频信号传输包括射频信号的发射或者接收,当然,射频信号传输也可包括射频信号的发射和接收。例如,射频信号端口可用于发送或者接收射频信号。
当天线装置作为发送天线装置时,该射频信号端口为发送射频信号的射频信号源;当天线装置作为接收天线装置时,该射频信号端口为接收射频信号的射频信号接收端。
实际应用中,该射频信号端口一般位于通信设备例如基站设备中的射频拉远单元(Remote Radio Unit,简称RRU)中。
可以理解的是,辐射单元200可以是一个,也可以是多个(参见图3所示)。当辐射单元200为多个时,多个辐射单元200可呈阵列间隔排布在反射板100的一面,这样,本申请实施例的天线装置便为阵列天线装置。例如,多个辐射单元200沿反射板100的延伸方向(参照图3中x方向)间隔设置。
参照图3所示,为了方便描述,将反射板100的延伸方向用x方向表示,将反射板100的宽度方向用y方向表示,将垂直于反射板100的方向用z方向表示。
以下具体以一个辐射单元200为例对天线装置的结构进行说明。
图4是图3中I处的局部放大图。参照图4所示,本申请实施例的天线装置中,辐射单元200包括巴伦220和辐射臂210,巴伦220的一端设置在辐射臂210上,巴伦220的另一端设置在反射板100的一面,换句话说,巴伦220位于辐射臂210与反射板100之间。
需要说明的是,本申请实施例的辐射单元200具有一个巴伦220。
为了下文方便描述,将巴伦220连接辐射臂210的一端作为巴伦220的第一端,将巴伦220连接反射板100的一端作为巴伦220的第二端,则巴伦220的高度方向为巴伦220的第一端至第二端的方向。可以理解,参照图2所示,巴伦220的高度方向与反射板100之间的夹角可以是90°,即巴伦220的高度方向平行于z方向。当然,在某些示例中,巴伦220的高度方向与反射板100之间的夹角可以为锐角,即巴伦220的高度方向与z方向之间的夹角为锐角。本申请实施例具体以巴伦220的高度方向平行于z方向为例进行说明。
辐射单元200中的辐射臂210用于辐射出电磁波信号或者用于接收电磁波信号。辐射臂210的数量至少为两个,至少两个辐射臂210均设置在巴伦220的第一端。例如,辐射单元200具有两个辐射臂210,两个辐射臂210可正交设置在巴伦220的第一端,这样,可将其中一个辐射臂210作为第一偶极子,将另一个辐射臂210作为第二偶极子。需要说明的是,两个辐射臂210之间绝缘设置,例如,两个辐射臂210沿z方向重叠的部分之间通过绝缘材料实现电隔离。
图5是图4的俯视图。参照图5所示,再例如,辐射单元200还可以包括四个辐射臂210,其中两个辐射臂210间隔设置在a方向上,另外两个辐射臂210间隔设置在b方向上,其中,a方向与b方向相互垂直,这样,位于a方向的两个辐射臂210可以作为第一偶极子,位于b方向上的两个辐射臂210可以作为第二偶极子。
实际应用中,每个辐射臂210所在的平面均平行于反射板100,换句话说,每个辐射臂210均平行于x-y平面。另外,本申请实施例中的辐射单元200中的所有辐射臂210位于同一个平面内。
以下具体以辐射单元200具有四个辐射臂210为例进行说明。
参照图5所示,为了方便描述,本申请实施例将辐射单元200的四个辐射臂210分别作为第一辐射臂211、第二辐射臂212、第三辐射臂213和第四辐射臂214,其中,第一辐射臂211和第二辐射臂212间隔设置在a方向上,并作为第一偶极子,第三辐射臂213和第四辐射臂214间隔设置在b方向上,并作为第二偶极子。
图6是图3的左视图。参照图4和图6所示,巴伦220包括依次设置的第一馈电层222、公共地层221和第二馈电层223(参照图6所示)。例如,巴伦220包括沿第一方向依次设置的第一馈电层222、公共地层221和第二馈电层223,换句话说,公共地层221沿第一方向的两侧分别设置第一馈电层222和第二馈电层223。其中,辐射单元200的巴伦220仅有一个公共地层221。
参照图6所示,需要说明的是,可以将第一方向看做是巴伦220的厚度方向,该厚度方向垂直于巴伦220的高度方向,例如,第一方向(即厚度方向)可以是x方向,也可以是y方向。本申请实施例具体以第一方向为y方向为例进行说明。
实际应用中,第一馈电层222(参照图4所示)和第二馈电层223(图4中未示出第二馈电层223)均为具有一定宽度的片状件。例如,第一馈电层222和第二馈电层223的宽度方向为x方向,高度方向为z方向。本申请实施例中,巴伦220的公共地层221也为片状件,且该公共地层221的宽度方向也为x方向,高度方向为z方向。
可以理解,第一馈电层222和公共地层221之间绝缘设置,第二馈电层223与公共地层221之间绝缘设置,以确保第一馈电层222、公共地层221及第二馈电层223三者不会发生短路。例如,第一馈电层222与公共地层221之间通过塑胶层进行电隔离,相应的,第二馈电层223与公共地层221之间通过塑胶层进行电隔离。当然,馈电层(即第一馈电层222和第二馈电层223)与公共地层221之间还可以通过其他绝缘材料进行电隔离。此处不对绝缘材料进行限制。
继续参照图4和图6,其中,公共地层221的一端电连接其中一个辐射臂210,公共地层221的另一端电连接反射板100。例如,公共地层221的第一端电连接其中一个辐射臂210,公共地层221的第二端电连接反射板100。其中,公共地层221的第一端和第二端分别是指公共地层221沿公共地层221的高度方向(例如z方向)相对设置的两端,公共地层221的第一端为靠近辐射臂210的一端,公共地层221的第二端为靠近发射板100的一端。
实际应用中,反射板100为参考地,通过将巴伦220的公共地层221的第二端电连接反射板100,公共地层221的第一端电连接其中一个辐射臂210,从而保证该辐射臂210接地。
具体设置时,公共地层221的第一端可以电连接第一偶极子对应的一个辐射臂210,也可以电连接第二偶极子对应的一个辐射臂210,也可以同时电连接第一偶极子的一个辐射臂210和第二偶极子的一个辐射臂210。
参照图5所示,例如,公共地层221的第一端可以通过安装部226电连接在第一 辐射臂211和第四辐射臂214上。具体而言,可以在第一辐射臂211朝向第二辐射臂212的一侧通过延伸部227连接第一安装部226a,在第四辐射臂214朝向第三辐射臂213的一侧连接第二安装部226b,公共地层221第一端的一部分连接在第一安装部226a上,公共地层221第一端的另一部分连接在第二安装部226b上,使得公共地层221的第一端同时与第一辐射臂211和第四辐射臂214电连接。
可以理解,安装部226(即第一安装部226a和第二安装部226b)和延伸部227均为导电件,以实现公共地层221的第一端同时与第一辐射臂211和第四辐射臂214电连接。
参照图5所示,第一馈电层222和第二馈电层223的一端电连接另一个辐射臂210,第一馈电层222和第二馈电层223的另一端电连接相应的射频信号端口。例如,第一馈电层222和第二馈电层223的第一端电连接另一个辐射臂210,第一馈电层222和第二馈电层223的第二端电连接相应的射频信号端口。
参照图6所示,其中,第一馈电层222的第一端和第二端分别是指第一馈电层222沿巴伦220的高度方向(例如z方向)相对设置的两端,第一馈电层222的第一端靠近辐射臂210,第一馈电层222的第二端远离辐射臂210。同样的,第二馈电层223的第一端和第二端分别是指第二馈电层223沿巴伦220的高度方向(例如z方向)相对设置的两端,且第二馈电层223的第一端靠近辐射臂210,第二馈电层223的第二端远离辐射臂210。
具体设置时,第一馈电层222的第一端可以电连接第一偶极子的其中一个辐射臂210,相应地,第二馈电层223的第一端电连接第二偶极子的其中一个辐射臂210。例如,第一馈电层222的第一端电连接第一辐射臂211,第二馈电层223的第一端电连接第三辐射臂213。或者,参照图5所示,第一馈电层222的第一端电连接第三辐射臂213,第二馈电层223的第一端电连接第二辐射臂212。又或者,第一馈电层222的第一端电连接第二辐射臂212,第二馈电层223的第一端电连接第三辐射臂213。
这里应当说明的是,公共地层221的第一端和馈电层(第一馈电层222和第二馈电层223)的第一端需电连接不同的辐射臂210,以避免辐射臂210短路。例如,参照图5所示,当公共地层221的第一端电连接第一辐射臂211和第四辐射臂214时,第一馈电层222的第一端电连接第三辐射臂213,第二馈电层223的第一端电连接第二辐射臂212。
再例如,当公共地层221的第一端电连接第二辐射臂212和第三辐射臂213时,第一馈电层222的第一端电连接第一辐射臂211,第二馈电层223的第一端电连接第四辐射臂214。
参照图6所示,可以理解,第一馈电层222的第一端可以直接电连接辐射臂210,也可以与辐射臂210间隔设置,使得第一馈电层222的第一端与辐射臂210实现耦合馈电连接。同样地,第二馈电层223的第一端可以直接电连接辐射臂210,也可以与辐射臂210间隔设置,使得第二馈电层223的第一端与辐射臂210实现耦合馈电连接。
参照图6所示,例如,第一馈电层222的第一端与第三辐射臂213直接电连接,第二馈电层223的第一端与第二辐射臂212直接电连接。其中,第一馈电层222的第一端穿出第三辐射臂213的上表面,第二馈电层223的第一端位于第二辐射臂212的 下表面。
需要说明的是,辐射臂210(例如第三辐射臂213和第二辐射臂212)的上表面是指辐射臂210背离反射板100的表面,辐射臂210的下表面是指辐射臂210朝向反射板100的表面。
另外,在实际应用中,实现双极化馈电的射频信号端口有两个,分别为第一射频信号端口和第二射频信号端口。
以第一射频信号端口用于发送或者接收+45°极化方向的射频信号,第二射频信号端口用于发送或者接收-45°极化方向的射频信号为例,第一馈电层222的第二端电连接第一射频信号端口,这样,第一馈电层222用于传输+45°极化方向的射频信号,第二馈电层223的第二端电连接第二射频信号端口,这样,第二馈电层223用于传输-45°极化方向的射频信号。
当然,在某些示例中,第一馈电层222的第二端可以电连接第二射频信号端口,这样,第一馈电层222用于传输-45°极化方向的射频信号,第二馈电层223的第二端电连接第一射频信号端口,这样,第二馈电层223用于传输+45°极化方向的射频信号。
本申请实施例具体以第一馈电层222用于传输+45°极化方向的射频信号,第二馈电层223用于传输-45°极化方向的射频信号为例进行说明。
参照图4至图6所示,本申请实施例通过巴伦220实现辐射臂210与射频信号端口之间的双极化射频信号传输,例如,当射频信号端口为射频信号源时,第一射频信号端口将+45°极化方向的射频信号通过巴伦220中的第一馈电层222馈入至第三辐射臂213上,且因第三辐射臂213与第四辐射臂214间隔设置,使得第三辐射臂213发出的电磁波在第四辐射臂214上激励出射频电流,从而使得第一偶极子上产生+45°极化方向的射频信号,第二射频信号端口将-45°极化方向的射频信号通过巴伦220的第二馈电层223馈入至第二辐射臂212上,且因第二辐射臂212与第一辐射臂211间隔设置,使得第二辐射臂212发出的电磁波在第一辐射臂211上激励出射频电流,从而使得第二偶极子上产生-45°极化方向的射频信号,进而使得四个辐射臂210形成的辐射面辐射出双极化方向的电磁波信号。
基于上述可知,相比于传统技术,本申请实施例的辐射单元200中的巴伦220不仅实现了双极化馈电作用,而且通过在辐射单元200中仅设置一个巴伦220,简化了辐射单元200的结构,从而简化了整个辐射单元200的装配工序。
本申请实施例的巴伦220在具体设置时,包括绝缘主体(图中未示出)和三层钣金,绝缘主体设置在辐射臂210与反射板100之间,三层钣金间隔设置,相邻两个钣金之间具有绝缘主体,该绝缘主体作为三层板金之间的绝缘介质。其中,位于中间的钣金为公共地层221,位于两侧的钣金分别为第一馈电层222和第二馈电层223。
本申请实施例通过将巴伦220采用三层钣金制作,相比于印制电路板、电缆或者光刻和腐蚀工艺(Photolithography and Etching Process,简称PEP)的制作方式,有效的节约了巴伦220的制作成本,同时也使得巴伦220的制作工序更加简单快捷。
参照图4和图6所示,移相器310包括馈电件311。馈电件311的一端电连接第一馈电层222的第二端,馈电件311的另一端电连接第一射频信号端口,使得第一馈电层222的第二端通过馈电件311电连接第一射频信号端口。这样,可通过第一射频 信号端口依次向移相器310的馈电件311和第一馈电层222传输+45°极化方向的射频电流,通过第二射频信号端口向第二馈电层223传输-45°极化方向的射频电流,进而使得至少两个辐射臂210(例如四个辐射臂210)辐射出双极化方向的电磁波信号。
为了方便描述,以下将馈电件311连接第一馈电层222的一端作为馈电件311的第一端,将馈电件311连接第一射频信号端口的一端作为馈电件311的第二端。
另外,通过移相器310的馈电件311可实现对第一馈电层222输出端的相位的调节作用。
具体设置时,馈电件311与第一馈电层222为一体件,不仅实现了对第一馈电层222的输出端的相位调节作用,而且简化了巴伦220与移相器310的连接结构,从而简化了馈电网络300与辐射单元200之间的装配工序,提高了整个天线装置的装配效率,同时节约了制作成本。
其中,因馈电件311与第一馈电层222均是由导电金属材料制成,则馈电件311与第一馈电层222可通过一体注塑成型,使得馈电件311与第一馈电层222形成为一体件。
需要说明的是,第一馈电层222的输出端可以是第一馈电层222的第一端,也可以是第一馈电层222的第二端。例如,当天线装置为发送天线时,第一馈电层222的输出端为第一馈电层222的第一端,当天线装置为接收天线时,第一馈电层222的输出端为第一馈电层222的第二端。
例如,通过该移相器310可改变第一馈电层222的第一端的信号相位,以改变+45°极化方向对应的辐射臂210的信号相位,进而在天线装置包括多个辐射单元200时,在各个辐射单元200的辐射臂210之间形成相位差,从而实现阵列天线的电下倾。
实际应用中,移相器310包括信号地,馈电件311与该信号地之间形成介质层,通过改变该介质层的阻力,实现对第一馈电层222输出端的相位的调节作用。
图7是图6中II处的局部放大图。参照图7所示,例如,将巴伦220的公共地层221作为移相器310的信号地,馈电件311的至少部分与公共地层221相对设置,且馈电件311与公共地层221之间的空气(例如下文涉及的第一空气层224)作为移相器310的介质层,如此,馈电件311、空气介质及公共地层221共同形成移相器310的空气微带线结构。
当需要调节第一馈电层222输出端的相位时,可通过移动馈电件311,以改变馈电件311投影在公共地层221上的面积,从而改变空气介质的体积,进而对移相器310的介质层阻力进行调节,实现对第一馈电层222输出端的相位的调节。其中,移相器310的具体工作原理可直接参照现有技术的相关内容,此处不再赘述。
本申请实施例是以馈电件311的一端电连接在第一馈电层222的第二端为例,使得移相器310对+45°极化方向的射频信号相位进行调节。当然,在某些示例中,馈电件311的一端也可电连接第二馈电层223的第二端,使得移相器310对-45°极化方向的射频信号相位进行调节。
参照图4所示,本申请实施例中的馈电件311可以为馈电片,该馈电片与第一馈电层222位于同一个平面内,例如,馈电片与第一馈电层222位于平行于x-z平面的任意一个平面。同时,馈电片与第一馈电层222所在的平面垂直于反射板100。
本申请实施例通过将馈电件311设置为馈电片,并将馈电件311与第一馈电层222设置在同一平面内,简化了馈电件311与第一馈电层222一体成型的制作工序,即降低了馈电件311与第一馈电层222的一体成型的制作难度,从而提高了天线装置的制作效率。另外,馈电件311与第一馈电层222所在的平面垂直于反射板100的表面,避免馈电件311与反射板100的表面发生耦合而影响射频信号的传输性能。
具体设置时,馈电件311在其延伸方向上可以包括多个弯折部(参照图4所示),例如,该馈电件311在平行于x-z平面的任意一个平面上具有多个弯折部,以增大馈电件311与公共地层221在y方向上的重叠面积,这样可提高移相器中介质层的稳定性,从而保证移相器的工作性能。
参照图6所示,本申请实施例的巴伦220中,公共地层221与第一馈电层222之间、公共地层221与第二馈电层223之间可通过空气介质实现电隔离。例如,公共地层221与第一馈电层222之间具有第一空气层224,公共地层221与第二馈电层223之间具有第二空气层225,这样,第一馈电层222、第一空气层224及公共地层221共同形成用于传输+45°极化方向的射频信号的第一空气微带线,第二馈电层223、第二空气层225及公共地层221共同形成用于传输-45°极化方向的射频信号的第二空气微带线,该第一空气微带线和第二空气微带线共同形成巴伦220的空气微带线结构,减小了巴伦220的介质层对射频信号的能量损耗,提高了天线装置的辐射性能。
参照图6和图7所示,移相器310的馈电件311与巴伦220的公共地层221之间也具有第一空气层224,换句话说,该公共地层221也作为移相器310的信号地,第一空气层224也是移相器310的介质层,这样,该馈电件311、第一空气层224及公共地层221共同形成移相器310的空气微带线结构,减小了馈电网络300对射频信号的能量损耗,也节约了移相器310的制作成本。例如,第一馈电层222与公共地层221的一部分之间具有一部分第一空气层224,馈电件311第一端的至少部分与公共地层221的另一部分之间之间具有另一部分第一空气层224,使得两部分第一空气层224共同形成传输+45°极化方向的射频信号的空气介质层,且馈电件311的第一端与第一馈线层的第二端电连接,从而使得移相器310的空气微带线结构与巴伦220的第一微带线相连通,并作为传输+45°极化方向的射频信号的空气微带线。
为方便理解,可将第一馈电层222和馈电件311看做一条传输线,该传输线位于公共地层221的一侧,且与公共地层221之间形成第一空气层224,这样使得巴伦220和移相器310形成相互连通的空气微带线结构,即整个馈电网络300和巴伦220形成空气微带线结构,从而减小了馈电网络300和巴伦220对射频信号的能量损耗,提高了天线装置的辐射性能,而且节约了巴伦220和馈电网络300的制作成本。
具体设置时,公共地层221可以沿z方向即垂直于反射板100的方向延伸,第一馈电层222位于公共地层221沿y方向的一侧,且该第一馈电层222在公共地层221上的正投影覆盖在公共地层221的第一区域。其中,该第一馈电层222可沿z方向延伸,即该第一馈电层222与公共地层221平行设置。
馈电件311的一部分也位于公共地层221沿y方向的一侧,该馈电件311的一部分在公共地层221上的正投影覆盖在公共地层221的第二区域。其中,该馈电件311的一部分可沿z方向延伸,或者在z方向上具有分量,即该馈电件311的一部分与z 方向之间具有一定夹角,只要保证该馈电件311的一部分位于公共地层221沿y方向的一侧即可,这样,便可使得馈电件311与公共地层221之间也形成第一空气层224。
其中,第一区域靠近辐射臂210,第二区域靠近反射板100。
继续参照图4和图6所示,移相器310还可以包括滑动介质312,该滑动介质312的至少部分活动设置在馈电件311朝向公共地层221的一侧。当滑动介质312相对于公共地层221滑动时,滑动介质312与第一空气层224的至少部分重合。可以理解,滑动介质312具体是与馈电件311一侧的第一空气层224进行重合。其中,滑动介质312与第一空气层224的至少部分重合是指滑动介质312的至少部分进入至第一空气层224内。
参照图4所示,设置时,滑动介质312可以为条状件。
在某些示例中,滑动介质312还可以是筒状件,该滑动介质312活动套设在馈电件311的外周,这样也可保证滑动介质312的一部分位于馈电件311朝向公共地层221的一侧,使得该滑动介质312的一部分可滑动至第一空气层224内。
当然,滑动介质312还可以是双层结构,馈电件311包裹在滑动介质312的双层结构内部,且滑动介质312活动设置在馈电件311的表面,其中滑动介质312的一部分位于馈电件311朝向公共地层221的一侧,这样可保证滑动介质212能够移动至第一空气层224内。本申请实施例具体不对滑动介质312的设置方式进行限制。
本申请实施例具体以滑动介质312为条状件,且活动设置在馈电件311朝向公共地层221的一侧为例进行说明。
当需要改变第一馈电层222的输出端的信号相位时,可移动滑动介质312,使得滑动介质312进入至馈电件311与公共地层221之间的第一空气层224,以与该第一空气层224进行重合,从而改变第一空气层224的介质阻力,即移相器310对应的空气微带线的介质层阻力,进而对第一馈线层输出端的信号相位进行稳定调节。其中,滑动介质312与第一空气层224之间的重合量不同,第一馈线层输出端的信号相位则不同,具体可根据需要对滑动介质312的位置进行调整。
参照图4和图6所示,巴伦220的公共地层221在具体实现时,可以均包括第一部分2211和第二部分2212。其中,第一部分2211沿垂直于反射板100的方向延伸,第二部分2212沿平行于反射板100的方向延伸,换句话说,公共地层221的第一部分2211的延伸方向垂直于反射板100,即第一部分2211的延伸方向为z方向,公共地层221的第二部分2212的延伸方向平行于反射板100,即第二部分2212的延伸方向为x方向。
基于公共地层221的结构设置,位于公共地层221一侧的第一空气层224则包括两个部分,其中一个部分垂直于反射板100,另一个部分平行于反射板100。同样地,位于公共地层221另一侧的第二空气层225也包括两个部分,其中一个部分垂直于反射板100,另一个部分平行于反射板100。
图8是图3的右视图。参照图8所示,例如,在具体设置时,第一空气层224可以包括相互连通的第一水平空气层2242和第一垂直空气层2241,第一馈电层222与第一部分2211之间具有第一垂直空气层2241,移相器310的馈电件311与第二部分2212之间具有第一水平空气层2242。相应地,第二空气层225包括相互连通的第二水 平空气层2252和第二垂直空气层2251,第二馈电层223与第一部分2211之间具有第二垂直空气层2251。
可以理解,第一垂直空气层2241和第二垂直空气层2251相对于反射板100垂直,换句话说,第一垂直空气层2241和第二垂直空气层2251的延伸方向垂直于反射板100,例如,参照图8所示,第一垂直空气层2241和第二垂直空气层2251的延伸方向为z方向。
相应地,第一水平空气层2242和第二水平空气层2252相当于反射板100平行,换句话说,第一水平空气层2242和第二水平空气层2252的延伸方向平行于反射板100,例如,第一水平空气层2242和第二水平空气层2252的延伸方向为x方向(图8中x方向为垂直于y-z平面的方向)。
基于此,馈电件311的至少部分也沿x方向延伸,使得馈电件311的至少部分与公共地层221的第二部分2212相对设置,并在两者之间形成第二水平空气层2252。
例如,馈电件311的延伸方向为x方向,这样,该馈电件311在整个延伸方向上均与第二部分2212之间形成第一水平空气层2242。
可以理解,公共地层221的第一部分2211靠近辐射臂210设置,公共地层221的第二部分2212靠近反射板100设置,第一馈电层222、第一部分2211以及第一垂直空气层2241共同形成巴伦220的空气微带线结构,馈电件311、第二部分2212以及第一水平空气层2242共同形成移相器310的空气微带线结构。
参照图4所示,移相器310的滑动介质312具体可与第一水平空气层2242的至少部分重合。例如,当需要改变第一馈电层222的输出端的信号相位时,可移动滑动介质312,使得滑动介质312进入至第一水平空气层2242,以与该第一水平空气层2242进行重合,从而改变第一水平空气层2242的介质阻力,即移相器310对应的空气微带线的介质层阻力,进而对第一馈线层输出端的信号相位进行稳定调节。
本申请实施例通过将公共地层221设置为两个部分,将第一部分2211设置为沿垂直于反射板100的方向延伸,将第二部分2212设置为沿平行于反射板100的方向延伸,这样,可将第一馈电层222与第一部分2211之间形成第一垂直空气层2241,将馈电件311与第二部分2212之间形成第一水平空气层2242,通过移动滑动介质312,使得该滑动介质312与该第一水平空气层2242重合,不仅实现对辐射单元200输出端的相位调节,而且合理布局了巴伦220和移相器310的空气微带线结构,节约了天线装置在垂直于反射板100方向上的空间,进而提高了馈电网络300与辐射单元200之间的结构稳定性。
图9是图3的爆炸图,图10是图3中III处的局部放大图。参照图9和图10所示,当天线装置包括多个辐射单元200时,通过移相器310对每个辐射单元200的输出端相位进行调节,以在各个辐射单元200之间形成相位差,从而实现作为阵列天线的天线装置的电下倾。
具体设置时,移相器310可以包括多个馈电件311,多个馈电件311与多个辐射单元200的巴伦220一一对应设置,每个馈电件311的第一端与对应巴伦220的第一馈电层222的第二端电连接,从而对相应的第一馈电层222输出端的信号相位进行调节,从而可在各个辐射单元200之间形成相位差。
参照图10所示,以三个沿x方向间隔设置的辐射单元200为例。天线装置包括第一辐射单元200a、第二辐射单元200b和第三辐射单元200c,其中,第一辐射单元200a对应的巴伦220a为第一巴伦220a,第二辐射单元200b对应的巴伦220为第二巴伦220b,第三辐射单元200c对应的巴伦220为第三巴伦220c。
参照图10所示,移相器310具有三个馈电件311,分别为馈电件311a,馈电件311b,馈电件311c。其中,馈电件311a的第一端与第一巴伦220a的第一馈电层222电连接,馈电件311b的第一端与第二巴伦220b的第一馈电层222电连接,馈电件311c的第一端与第三巴伦220c的第一馈电层222电连接。这样,可通过改变三个馈电件311与移相器310的地之间的介质层阻力,实现对三个辐射单元200输出端的信号相位的调节,从而在三个辐射单元200之间形成相位差。
例如,将每个巴伦220的公共地层221分别作为移相器310的地,其中,馈电件311a的至少部分与第一巴伦220a对应的第一公共地层221之间形成其中一个第一空气层224,馈电件311b的至少部分与第二巴伦220b对应的第二公共地层221之间形成另一个第一空气层224,馈电件311c的至少部分与第三巴伦220c对应的第三公共地层221之间形成再一个第一空气层224,这样,通过改变三个巴伦220对应的三个第一空气层224中至少一个的阻力,便可在三个辐射单元200之间形成相位差。
可以理解的是,三个巴伦220对应的三个第一空气层224在x方向上完全重叠(如图8所示)。
基于上述可知,第一空气层224包括第一垂直空气层2241和第一水平空气层2242,这样,通过改变三个巴伦220对应的三个第一空气层224中至少一个的阻力,便可在三个辐射单元200之间形成相位差。
继续参照图10所示,具体设置时,移相器310可以包括一个滑动介质312,该滑动介质312位于任意一个馈电件311与对应的公共地层221之间。通过移动该滑动介质312,使得该滑动介质312与三个第一空气层224中的至少一个进行重合,从而改变对应的辐射单元200输出端的相位,使得各个辐射单元200之间形成相位差,实现阵列天线的电下倾。
具体而言,当滑动介质312的一部分移动至第一巴伦220a的第一空气层224中,且该滑动介质312未进入第二巴伦220b的第一空气层224及第三巴伦220c的第一空气层224时,该滑动介质312改变了第一辐射单元200对应的空气微带线结构的介质阻力,从而改变了第一辐射单元200的信号相位,使得三个辐射单元200的输出端形成相位差,从而实现天线装置的电下倾。
再例如,当滑动介质312的一部分位于第一巴伦220a的第一空气层224,另一部分位于第二巴伦220b的第一空气层224时,且该滑动介质312未进入第三巴伦220c的第一空气层224时,该滑动介质312均改变了第一辐射单元200和第二辐射单元200对应的空气微带线结构的介质阻力,从而改变了第一辐射单元200和第二辐射单元200的信号相位,使得三个辐射单元200的输出端形成相位差,从而实现天线装置的电下倾。
为方便描述,将滑动介质312与第一巴伦220a的第一空气层224的重合量为第一重合量,将滑动介质312与第二巴伦220b的第一空气层224的重合量为第二重合量, 第一重合量和第二重合量可以相等,也可以不相等。当第一重合量和第二重合量相等时,第一辐射单元200的输出端相位与第二辐射单元200的输出端相位相等,相反,当第一重合量和第二重合量不相等时,第一辐射单元200的输出端相位与第二辐射单元200的输出端相位不相等。
上述技术方案中,多个巴伦220共用一个滑动介质312。这样,在具体工作时,一个滑动介质312在多个巴伦220上的第一空气层224之间活动,以改变其与各个辐射单元200对应的空气微带线的重合量,从而在保证使各个辐射单元200之间形成相位差,以实现天线装置电下倾的同时,节约了移相器310的制作成本。
在某些示例中,移相器310可以包括多个滑动介质312,多个滑动介质312与多个第一空气层224一一对应设置。例如,当天线装置包括三个辐射单元200时,移相器310包括第一滑动介质3121、第二滑动介质3122及第三滑动介质312,其中,第一滑动介质3121与第一空气层224a的至少部分重合,以改变第一空气层224a的介质阻力,从而改变第一辐射单元200输出端的信号相位,第二滑动介质3122与第一空气层224b的至少部分重合,以改变第一空气层224b的介质阻力,从而改变第二辐射单元200输出端的信号相位,第三滑动介质312与第一空气层224c的至少部分重合,以改变第一空气层224c的介质阻力,从而改变第三辐射单元200输出端的信号相位,进而使得各个辐射单元200之间形成相位差,实现阵列天线的电下倾。
本申请实施例通过将移相器310设置为包括多个馈电件311,并将多个馈电件311连接在相应的辐射单元200的巴伦220上,这样便可通过一个移相器310实现对多个辐射单元200的相位调节,例如通过一个移相器310使得多个辐射单元200之间形成相位差,从而实现天线装置中各个辐射单元200的电下倾,不仅确保了天线装置的辐射性能,而且简化了馈电网络300的结构,使得整个馈电网络300的结构布局更加简洁可靠。
实际应用中,移相器310的多个馈电件311的第二端可以直接电连接在对应的射频信号端口上。
参照图10所示,在一些示例中,天线装置还包括主馈电线320,移相器310的每个馈电件311的第一端电连接对应的第一馈电层222,每个馈电件311的第二端电连接主馈电线320,主馈电线320的一端用于电连接射频信号端口,这样便可使得每个馈电件311的第二端与对应的射频信号端口电连接。例如,每个馈电件311的第二端可通过一个主馈电线320电连接在第一射频信号端口上,实现第一射频信号端口与多个第一馈电层222之间通过主馈电线320和相应的馈电件311实现射频信号的传输。
通过主馈电线320实现多个馈电件311与射频信号端口之间的电连接,在实现移相器310的多个馈电件311与射频信号端口的电导通的同时,简化了多个馈电件311与射频信号端口之间的连接线路,使得整个馈电网络300的结构布局更加简洁可靠。
其中,每个馈电件311与主馈电线320可以是一体件,以进一步简化了馈电网络300的结构,提高了整个天线装置的装配效率。
参照图10所示,公共地层221的第二部分2212可以是第一部分2211靠近反射板100的一端往x方向的正向延伸的部分,也可以是第一部分2211靠近反射板100的一端往x方向的负向延伸的部分,当然,公共地层221的第二部分2212还可以是第一部 分2211靠近反射板100的一端往x方向的两个方向(正向和负向)延伸的两部分。上述公共地层221的第二部分2212的具体设置取决于该公共地层221对应的辐射单元200位于多个辐射单元200中的位置。
继续参照图10,以天线装置仅包括沿x方向的正向依次间隔设置的第一巴伦220a、第二巴伦220b及第三巴伦220c为例,第一巴伦220a对应的公共地层为第一公共地层,第二巴伦220b对应有公共地层为第二公共地层,第三巴伦220c对应的公共地层为第三公共地层。其中,每个公共地层221的第二部分2212沿x方向延伸,例如,第一公共地层221的第二部分2212、第二公共地层221的第二部分2212及第三公共地层221的第二部分2212均沿x方向延伸。
其中,第一公共地层的第二部分2212为第一部分2211的一端往x方向的正向延伸的部分,第二公共地层的第二部分2212为第一部分2211的一端往x方向的正反向延伸的两个部分,第三公共地层的第二部分2212为第一部分2211的一端往x方向的反向延伸的部分。
继续参照图10,具体设置时,沿第二部分2212的延伸方向设置的多个辐射单元200中,相邻两个公共地层221的第二部分2212为一体件。例如,第一公共地层的第二部分2212与第二公共地层的第二部分2212为一体件,第二公共地层的第二部分2212和第三公共地层的第二部分2212为一体件,这样,天线装置的所有公共地层221均形成为一体件,在确保天线装置的辐射单元200接地的同时,简化了天线装置的辐射单元200的结构设置,从而提高了天线装置的装配效率。
以上示例是通过一个移相器310对辐射单元200中其中一个极化方向的信号相位进行调节,例如,通过将该移相器310的馈电件311与辐射单元200中第一馈电层222电连接,实现对+45°极化方向的射频信号相位进行调节。
参照图8所示,本申请实施例的馈电网络300还可以包括两个移相器310,例如,馈电网络300包括第一移相器3101和第二移相器3102,第一移相器3101包括第一馈电件3111和第一滑动介质3121。其中,第一馈电件3111的第一端与巴伦220的第一馈电层222电连接,第一滑动介质3121位于第一馈电件3111朝向公共地层221的一侧,这样,通过第一移相器3101实现对第一馈电层222的输出端相位进行调节,即实现对+45°极化方向的射频信号相位的调节。例如,通过移动第一滑动介质3121,使得第一滑动介质3121的至少部分进入第一空气层224的第一水平空气层2242内,从而改变第一水平空气层2242的介质阻力,实现对第一馈电层222的输出端相位进行调节。
相应地,,第二移相器3102包括第二馈电件3112和第二滑动介质3122,第二馈电件3112的第一端与巴伦220的第二馈电层223电连接,第二滑动介质3122位于第二馈电件3112朝向公共地层221的一侧,这样,通过第二移相器3102实现对第二馈电层223的输出端相位进行调节,即实现对-45°极化方向的射频信号相位的调节。例如,通过移动第二滑动介质3122,使得第二滑动介质3122的至少部分进入第二空气层225的第二水平空气层2252内,从而改变第二水平空气层2252的介质阻力,实现对第二馈电层223的输出端相位进行调节。
其中,第一馈电件3111与第一馈电层222为一体件,且第一馈电件3111与公共地层221之间具有第一空气层224,通过改变第一空气层224的介质阻力,便实现对 第一馈电层222的输出端相位的调节,第二馈电件3112与第二馈电层223为一体件,且第二馈电件3112与公共地层221之间具有第二空气层225,通过改变第二空气层225的介质阻力,便实现对第二馈电层223的输出端相位的调节。
需要说明的是,第一移相器3101的设置方式以及工作原理、第二移相器3102的设置方式以及工作原理具体可参照上文中移相器310的相关内容,此处不再赘述。
本申请实施例通过设置两个移相器310,其中,第一移相器3101用于改变第一馈电层222输出端的相位,第二移相器3102用于改变第二馈电层223输出端的相位,从而对两个极化方向的信号相位均进行调节。
同时,通过将第一移相器3101的第一馈电件3111与第一馈电层222设置为一体件,将第二移相器3102的第二馈电件3112与第二馈电层223设置为一体件,进一步简化了两个移相器310与巴伦220之间的连接工序,从而提高了天线装置的装配效率。
参照图8所示,第一移相器3101和第二移相器3102在具体设置时,第一馈电件3111可以为第一馈电片,相应地,第二馈电件3112可以为第二馈电片。
其中,第一馈电片与第一馈电层222位于第一平面内,例如,第一馈电片与第一馈电层222位于平行于x-z平面的第一平面内。第二馈电片与第二馈电层223位于第二平面内,例如,第二馈电片与第二馈电层223位于平行于x-z平面的第二平面内。
基于上述可知,第一平面与第二平面可为平行于x-z平面的两个平面,且第一平面与第二平面均垂直于天线装置的反射板100。
本申请实施例通过将馈电件311设置为馈电片,例如将第一馈电件3111设置为第一馈电片,将第二馈电件3112设置为第二馈电片,并将馈电件311与对应的馈电层设置在同一平面内,简化了馈电件311与对应的馈电层一体成型的制作工序,即降低了馈电件311与对应的馈电层的一体成型的制作难度,从而提高了天线装置的制作效率。另外,第一馈电件3111所在的第一平面与第二馈电件3112所在的第二平面均垂直于反射板100的表面,避免第一馈电件3111和第二馈电件3112分别与反射板100的表面发生耦合而影响射频信号的传输性能。
图11是本申请一实施例提供的另一种天线装置的结构示意图,图12是图11的左视图,图13是图11中IV处的局部放大图。参照图11至图13所示,本申请实施例可以在反射板100上形成贯穿孔110,该贯穿孔110贯穿反射板100沿厚度方向(参照图12中z方向所示)的两个表面。天线装置还包括一侧具有开口430的导电壳400,该导电壳400嵌设在贯穿孔110内,且导电壳400的开口430朝向辐射臂210,巴伦220的一端连接在辐射臂210上,巴伦220的另一端收纳在导电壳400内。例如,巴伦220的第一端连接在辐射臂210上,巴伦220的第二端的至少部分收纳在该导电壳400内,使得巴伦220自身向外辐射的一部分电磁波信号能够得到导电壳400的遮挡,而不会向外部泄露,从而降低了巴伦220在射频信号传输过程中的损耗。
另外,反射板100包括沿z方向相背设置的第一侧和第二侧,通过将巴伦220的第二端收纳在贯穿孔110的导电壳400内,使得巴伦220的一部分(例如辐射臂210侧)位于反射板100的第一侧,巴伦220的另一部分(例如移相器310的一部分)位于反射板100的第二侧,缩短辐射臂210与反射板100之间的间距,不仅节约了反射板100的第一侧的垂直空间,而且使得反射板100上的天线结构更加稳定,从而确保 天线装置的辐射性能。
参照图12所示,移相器310的一部分收纳在导电壳400内,例如,公共地层221的一部分、第一馈电件3111、第二馈电件3112以及相应的滑动介质312的一部分均收纳在导电壳400内,进一步降低了移相器310在射频信号传输过程中的损耗,提高了移相器310对相位调整的准确度。
需要说明的是,当天线装置包括多个沿x方向间隔设置的辐射单元200时,反射板100上的贯穿孔110可从反射板100沿x方向的一端延伸至另一端,使得沿x方向设置的多个辐射单元200的一端均收纳在该贯穿孔110的导电壳400内。
其中,反射板100上可设置一排沿x方向间隔设置的辐射单元200,也可设置多排辐射单元200,且多排辐射单元200沿y方向间隔设置。参照图8和图10所示,当反射板100上具有一排辐射单元200时,贯穿孔110的数量可以为1个,且该贯穿孔110可从反射板100沿x方向的一端延伸至另一端,使得一排辐射单元200的第二端均收纳在该贯穿孔110的导电壳400内。其中,辐射单元200的第二端与巴伦220的第二端朝向一致。
当反射板100上具有多排辐射单元200时(图中未示出),贯穿孔110的数量可以为多个,且多个贯穿孔110沿y方向间隔设置,使得多个贯穿孔110与多排辐射单元200一一对应设置,例如,一排辐射单元200的第二端位于一个贯穿孔110内,另一排辐射单元200的第二端位于另一个贯穿孔110内。
其中,导电壳400电连接反射板100,公共地层221的另一端例如公共地层221的第二端电连接导电壳400,使得公共地层221的第二端电连接反射板100,从而确保公共地层221接地。公共地层221的第二端可以理解为公共地层221的第二部分2212朝向反射板100的一侧。
参照图12所示,具体设置时,导电壳400可以包括主体部410和连接部420,主体部410嵌设在贯穿孔110内,开口430形成在主体部410的一侧,巴伦220的至少部分位于主体部410内,且巴伦220的一端连接在主体部410朝向开口430的内壁上。
参照图12和图13所示,例如,移相器310的一部分位于主体部410内,且巴伦220的公共地层221的第二端电连接在主体部410的内底壁上(参照图12所示)。其中,主体部410的内底壁朝向主体部410的开口430。
其中,连接部420设置在主体部410具有开口430的一端,且连接部420抵挡在反射板100朝向辐射体的一侧表面,例如,该连接部420抵挡在反射板100的第一侧表面。
可以理解的是,该连接部420可以通过导电胶粘接在反射板100的第一侧表面,也可通过螺钉等紧固件固定在反射板100的第一侧表面,此处不对连接部420与反射板100之间的连接方式进行限制,只要保证连接部420固定在反射板100上,且连接部420与反射板100之间电连接即可。
本申请实施例还提供一种通信设备,包括射频电路和上述任意示例中的天线装置。其中,该射频电路与天线装置电连接。
射频电路可以为天线装置提供信号源,例如,天线装置的馈电件311与射频电路中第一射频信号端口电连接,使得第一射频信号端口与天线装置中的第一馈电层222 之间实现+45°极化方向的射频信号传输。相应地,天线装置的第二馈电层223与射频电路中的第二射频信号端口电连接,使得第二射频信号端口与天线装置中的第二馈电层223之间实现-45°极化方向的射频信号传输。
其中,射频电路一般设置在射频拉远单元中。射频电路的具体电路设置以及工作原理可直接参照现有技术的相关内容,此处不再赘述。
示例性地,天线装置中的多个第一馈电件3111的第二端与第一射频信号端口电连接,使得第一射频信号端口发出的+45°极化方向的射频信号传输至天线装置的第一馈电层222内,继而使得第一馈电层222第一端的辐射臂210将该信号以电磁波的方式向外发射,从而完成信号的传送。
本申请实施例提供的通信设备,通过在射频电路上电连接上述天线装置,简化了天线装置的结构,提高了整个天线装置的装配效率,同时节约了制作成本。
需要说明的是,本申请实施例的通信设备还可以是通信基站。
实施例二
图14是本申请一实施例提供的又一种天线装置的结构示意图,图15是图14的右视图。参照图14和图15所示,与实施例一不同的是,本申请实施例的辐射单元200中,巴伦220的第二端悬空设置在反射板100一面,以简化巴伦220的装配工序。
具体而言,巴伦220的公共地层221悬空设置在反射板100上,换句话说,公共地层221可不接地,例如,公共地层221的第二端与反射板100之间具有间隙500。实施例二其余的技术方案可以参照实施例一,此处不再赘述。
在本申请实施例的描述中,需要说明的是,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应作广义理解,例如,可以是固定连接,也可以是通过中间媒介间接相连,可以是两个元件内部的连通或者两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本申请实施例中的具体含义。
本申请实施例的说明书和权利要求书及上述附图中的术语“第一”、“第二”、“第三”、“第四”等(如果存在)是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。

Claims (12)

  1. 一种天线装置,其特征在于,包括反射板、辐射单元和馈电网络;
    所述辐射单元设置在所述反射板上,所述辐射单元包括巴伦和位于所述巴伦一端的至少两个辐射臂,所述巴伦包括依次设置的第一馈电层、公共地层和第二馈电层,所述馈电网络包括移相器,所述移相器包括馈电件;
    所述公共地层的一端电连接其中一个所述辐射臂,所述公共地层的另一端电连接所述反射板,或者,所述公共地层的另一端悬空设置在所述反射板上;所述第一馈电层和所述第二馈电层的一端电连接另一个所述辐射臂,所述第一馈电层的另一端电连接所述馈电件,且所述馈电件与所述第一馈电层为一体件。
  2. 根据权利要求1所述的天线装置,其特征在于,所述辐射单元具有一个所述巴伦。
  3. 根据权利要求1或2所述的天线装置,其特征在于,所述公共地层与所述第一馈电层之间具有第一空气层,所述公共地层与所述第二馈电层之间具有第二空气层;
    所述馈电件与所述公共地层之间具有所述第一空气层。
  4. 根据权利要求3所述的天线装置,其特征在于,所述移相器还包括滑动介质,所述滑动介质的至少部分活动设置在所述馈电件朝向所述公共地层的一侧;
    当所述滑动介质相对于所述公共地层滑动时,所述滑动介质与所述第一空气层的至少部分重合。
  5. 根据权利要求4所述的天线装置,其特征在于,所述公共地层包括第一部分和第二部分,所述第一部分沿垂直于所述反射板的方向延伸,所述第二部分沿平行于所述反射板的方向延伸;
    所述第一空气层包括相互连通的第一水平空气层和第一垂直空气层,所述第一馈电层与所述第一部分之间具有所述第一垂直空气层;所述第二空气层包括相互连通的第二水平空气层和第二垂直空气层,所述第二馈电层与所述第一部分之间具有所述第二垂直空气层;
    所述馈电件与所述第二部分之间具有所述第一水平空气层,所述滑动介质与所述第一水平空气层的至少部分重合。
  6. 根据权利要求5所述的天线装置,其特征在于,所述天线装置包括多个辐射单元,多个辐射单元间隔设置在所述反射板上,
    其中,沿所述第二部分的延伸方向设置的多个所述辐射单元中,相邻两个所述公共地层的第二部分为一体件。
  7. 根据权利要求3-6任一项所述的天线装置,其特征在于,所述馈电网络包括第一移相器和第二移相器,所述第一移相器包括第一馈电件,所述第二移相器包括第二馈电件;
    所述第一馈电件与所述第一馈电层为一体件,且所述第一馈电件与所述公共地层之间具有所述第一空气层,所述第二馈电件与所述第二馈电层为一体件,且所述第二馈电件与所述公共地层之间具有所述第二空气层。
  8. 根据权利要求7所述的天线装置,其特征在于,所述第一馈电件为第一馈电片, 所述第二馈电件为第二馈电片;
    所述第一馈电片与所述第一馈电层位于第一平面内,所述第二馈电片与所述第二馈电层位于第二平面内;
    所述第一平面与所述第二平面均垂直于所述天线装置的反射板。
  9. 根据权利要求1-8任一项所述的天线装置,其特征在于,所述天线装置还包括一侧具有开口的导电壳,所述反射板上具有贯穿孔,所述导电壳嵌设在所述贯穿孔内,所述开口朝向所述辐射臂,所述巴伦的一端连接在所述辐射臂上,所述巴伦的另一端收纳在所述导电壳内;
    所述公共地层的另一端电连接所述反射板包括:所述公共地层的另一端电连接所述导电壳,所述导电壳电连接所述反射板。
  10. 根据权利要求1-8任一项所述的天线装置,其特征在于,所述巴伦包括绝缘主体和三层钣金;
    所述三层钣金间隔设置,且相邻两层所述钣金之间具有所述绝缘主体,其中,
    位于中间的所述钣金为所述公共地层,位于两侧的所述钣金分别为所述第一馈电层和所述第二馈电层。
  11. 根据权利要求1-10任一项所述的天线装置,其特征在于,所述辐射单元的数量为多个,多个所述辐射单元呈阵列排布;
    所述移相器包括多个馈电件,多个馈电件与多个辐射单元的巴伦一一对应设置。
  12. 一种通信设备,其特征在于,包括射频电路和权利要求1-11任一项所述的天线装置。
PCT/CN2022/108703 2021-08-10 2022-07-28 天线装置及通信设备 WO2023016272A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22855255.0A EP4376218A1 (en) 2021-08-10 2022-07-28 Antenna apparatus and communication device
US18/423,308 US20240170858A1 (en) 2021-08-10 2024-01-26 Antenna apparatus and communication device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110913828.6A CN115706315A (zh) 2021-08-10 2021-08-10 天线装置及通信设备
CN202110913828.6 2021-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,308 Continuation US20240170858A1 (en) 2021-08-10 2024-01-26 Antenna apparatus and communication device

Publications (1)

Publication Number Publication Date
WO2023016272A1 true WO2023016272A1 (zh) 2023-02-16

Family

ID=85179681

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108703 WO2023016272A1 (zh) 2021-08-10 2022-07-28 天线装置及通信设备

Country Status (4)

Country Link
US (1) US20240170858A1 (zh)
EP (1) EP4376218A1 (zh)
CN (1) CN115706315A (zh)
WO (1) WO2023016272A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106841A (ja) * 1993-10-06 1995-04-21 Mitsubishi Electric Corp プリント化ダイポールアンテナ
JP2011244244A (ja) * 2010-05-19 2011-12-01 Denki Kogyo Co Ltd 偏波ダイバーシチアンテナ
US20150200460A1 (en) * 2014-01-15 2015-07-16 Raytheon Company Dual Polarized Array Antenna With Modular Multi-Balun Board and Associated Methods
CN105490006A (zh) * 2015-12-23 2016-04-13 西安华为技术有限公司 一种馈电结构和天线辐射系统
CN109599657A (zh) * 2018-11-29 2019-04-09 安徽大学 一种基于天线阵与功分馈电网络一体化集成设计的面向5g基站天线阵列及其设计方法
CN110692167A (zh) * 2017-06-01 2020-01-14 华为技术有限公司 双极化辐射单元、天线、基站及通信系统
CN113036432A (zh) * 2021-03-10 2021-06-25 广东富宇鸿通讯有限公司 一种异频滤波天线、异频滤波天线的制作方法、应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07106841A (ja) * 1993-10-06 1995-04-21 Mitsubishi Electric Corp プリント化ダイポールアンテナ
JP2011244244A (ja) * 2010-05-19 2011-12-01 Denki Kogyo Co Ltd 偏波ダイバーシチアンテナ
US20150200460A1 (en) * 2014-01-15 2015-07-16 Raytheon Company Dual Polarized Array Antenna With Modular Multi-Balun Board and Associated Methods
CN105490006A (zh) * 2015-12-23 2016-04-13 西安华为技术有限公司 一种馈电结构和天线辐射系统
CN110692167A (zh) * 2017-06-01 2020-01-14 华为技术有限公司 双极化辐射单元、天线、基站及通信系统
CN109599657A (zh) * 2018-11-29 2019-04-09 安徽大学 一种基于天线阵与功分馈电网络一体化集成设计的面向5g基站天线阵列及其设计方法
CN113036432A (zh) * 2021-03-10 2021-06-25 广东富宇鸿通讯有限公司 一种异频滤波天线、异频滤波天线的制作方法、应用

Also Published As

Publication number Publication date
US20240170858A1 (en) 2024-05-23
EP4376218A1 (en) 2024-05-29
CN115706315A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
CN107819198B (zh) 一种基站天线的馈电网络,基站天线及基站
US11387568B2 (en) Millimeter-wave antenna array element, array antenna, and communications product
US20190089069A1 (en) Broadband phased array antenna system with hybrid radiating elements
EP2201646B1 (en) Dual polarized low profile antenna
CN113555677B (zh) 一种馈电系统、天线系统及基站
CN107808998B (zh) 多极化辐射振子及天线
TWI389390B (zh) 陣列天線以及使用其之電子裝置
CN107331974A (zh) 一种基于脊间隙波导的圆极化天线
EP4109676A1 (en) Antenna, antenna module and wireless network device
EP4216367A1 (en) Antenna, antenna module, and electronic device
WO2019228336A1 (zh) 天线及无人飞行器
WO2021244158A1 (zh) 双极化天线及客户前置设备
US11239544B2 (en) Base station antenna and multiband base station antenna
KR101784501B1 (ko) 고효율 알에프 전송선로 구조 및 상기 구조를 이용한 이중 직교 편파를 갖는 송수신 배열 안테나 장치
CN109742515B (zh) 一种用于移动终端的毫米波圆极化天线
US9893430B2 (en) Short coincident phased slot-fed dual polarized aperture
WO2022088863A1 (zh) 天线、天线模组和电子设备
KR20130025571A (ko) 다중 안테나
KR20200132618A (ko) 시프트 직렬 급전을 이용한 이중편파 안테나
CN212303896U (zh) 一种基站mimo天线单元
CN109103595A (zh) 双向双极化天线
WO2023016272A1 (zh) 天线装置及通信设备
CN111864345A (zh) 一种基站mimo天线单元
US10826184B2 (en) Unbalanced slot aperture (USA) radiator
KR20190015419A (ko) 방사기에 신호를 공급하기 위한 회로 보드 조립체

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855255

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022855255

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022855255

Country of ref document: EP

Effective date: 20240219

NENP Non-entry into the national phase

Ref country code: DE