WO2023016235A1 - 一种能源管理方法、装置及系统 - Google Patents

一种能源管理方法、装置及系统 Download PDF

Info

Publication number
WO2023016235A1
WO2023016235A1 PCT/CN2022/107658 CN2022107658W WO2023016235A1 WO 2023016235 A1 WO2023016235 A1 WO 2023016235A1 CN 2022107658 W CN2022107658 W CN 2022107658W WO 2023016235 A1 WO2023016235 A1 WO 2023016235A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
target
engine
motion information
speed
Prior art date
Application number
PCT/CN2022/107658
Other languages
English (en)
French (fr)
Inventor
许伟昌
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22855218.8A priority Critical patent/EP4378775A1/en
Publication of WO2023016235A1 publication Critical patent/WO2023016235A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W10/00Conjoint control of vehicle sub-units of different type or different function
    • B60W10/04Conjoint control of vehicle sub-units of different type or different function including control of propulsion units
    • B60W10/06Conjoint control of vehicle sub-units of different type or different function including control of propulsion units including control of combustion engines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/11Controlling the power contribution of each of the prime movers to meet required power demand using model predictive control [MPC] strategies, i.e. control methods based on models predicting performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/12Controlling the power contribution of each of the prime movers to meet required power demand using control strategies taking into account route information
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/13Controlling the power contribution of each of the prime movers to meet required power demand in order to stay within battery power input or output limits; in order to prevent overcharging or battery depletion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W20/00Control systems specially adapted for hybrid vehicles
    • B60W20/10Controlling the power contribution of each of the prime movers to meet required power demand
    • B60W20/15Control strategies specially adapted for achieving a particular effect
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/18Propelling the vehicle
    • B60W30/188Controlling power parameters of the driveline, e.g. determining the required power
    • B60W30/1882Controlling power parameters of the driveline, e.g. determining the required power characterised by the working point of the engine, e.g. by using engine output chart
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/02Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to ambient conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W40/00Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models
    • B60W40/10Estimation or calculation of non-directly measurable driving parameters for road vehicle drive control systems not related to the control of a particular sub unit, e.g. by using mathematical models related to vehicle motion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/44Drive Train control parameters related to combustion engines
    • B60L2240/441Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/60Navigation input
    • B60L2240/64Road conditions
    • B60L2240/642Slope of road
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/10Emission reduction
    • B60L2270/14Emission reduction of noise
    • B60L2270/145Structure borne vibrations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2510/00Input parameters relating to a particular sub-units
    • B60W2510/24Energy storage means
    • B60W2510/242Energy storage means for electrical energy
    • B60W2510/244Charge state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2520/00Input parameters relating to overall vehicle dynamics
    • B60W2520/10Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/15Road slope, i.e. the inclination of a road segment in the longitudinal direction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2552/00Input parameters relating to infrastructure
    • B60W2552/30Road curve radius
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2556/00Input parameters relating to data
    • B60W2556/40High definition maps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2710/00Output or target parameters relating to a particular sub-units
    • B60W2710/06Combustion engines, Gas turbines
    • B60W2710/0666Engine torque

Definitions

  • the embodiments of the present application relate to the technical field of automobile energy, and in particular, to an energy management method, device, and system.
  • the on-board battery can release the stored electric energy to drive the electric vehicle.
  • the on-board battery of an electric vehicle is limited by the driving state of the electric vehicle. If the electric vehicle suddenly accelerates or decelerates, it will cause a huge impact on the on-board battery, which will lead to serious loss of the on-board battery.
  • the present application provides an energy management method, device and system, which are used for rationally distributing the energy of electric vehicles to reduce the loss of vehicle batteries.
  • an embodiment of the present application provides an energy management method, and the method may be implemented by an energy management device.
  • the energy management device can obtain the driving environment information of the vehicle, the driving environment information includes terrain parameters; according to the driving environment information, determine the target motion information of the vehicle; the target motion information includes preset speed, preset acceleration and a preset travel path; and control the rotation of the engine in the vehicle according to the target motion information and the target power consumption.
  • the “driving environment information” in the embodiment of the present application refers to the driving environment information of the vehicle within a preset time period, where the preset time length can be 10s, 30s, 60s, etc., and the embodiment of the present application does not make specific limitations.
  • the "target movement information” in the embodiment of the present application can be understood as the movement state of the vehicle within the preset time period, the preset speed can include the speed corresponding to each moment within the preset time period, and the preset acceleration can include the speed within the preset time period. Acceleration corresponding to each moment, the preset driving path is the path that the vehicle will travel within the preset time period.
  • the target motion information of the vehicle may be determined according to the terrain parameters, and the rotation of the engine in the vehicle may be controlled according to the target motion information and the target power consumption. It can realize the power balance control of the vehicle battery, thereby effectively reducing the loss of the vehicle battery.
  • target motion information of the vehicle is determined according to terrain parameters.
  • the driving environment information may further include obstacle information and weather information, and then the energy management device may determine a preset driving route according to the obstacle information and weather information.
  • the above driving environment information may include road surface slope, curvature, friction coefficient, etc., which are not specifically limited in this embodiment of the present application.
  • target power consumption in the embodiment of the present application can be understood as the power consumption required by the vehicle to realize the above target movement information.
  • the electric quantity can be represented by the SOC value of the vehicle battery.
  • the energy management device may determine the target power consumption according to the mapping relationship between the distance of the preset driving route and the target power consumption in the target motion information.
  • the energy management device may determine the target power consumption according to the mapping relationship between the preset speed in the target motion information and the target power consumption.
  • the energy management device may determine the target power consumption according to the mapping relationship between the preset acceleration in the target motion information and the target power consumption.
  • the above terrain parameters may be obtained through a high-precision map and/or roadside equipment.
  • the terrain parameters of the vehicle's driving environment within a preset period of time can be obtained through high-precision maps and/or roadside equipment, so that the subsequent target motion information determined based on the driving environment information is more in line with the vehicle's driving state.
  • the energy management device may control the rotation of the engine in the vehicle according to the target motion information and the target power consumption may be: determine the first control signal according to the target motion information and the target power consumption; The first control signal controls the rotation of the engine.
  • the engine rotation of the vehicle can be controlled according to the preset speed, preset travel path and target power consumption. In this way, the energy management of the vehicle is realized, thereby effectively reducing the loss of the vehicle battery.
  • the process of controlling the engine rotation by the energy management device based on the first control signal may be: according to the first control signal, determining the target speed and target torque of the engine; according to the target speed and target torque of the engine, the current The torque and speed of the battery, the SOC change value of the battery in the vehicle within the preset time period, the current SOC value and the target SOC value of the battery, determine the first SOC value after battery optimization; determine the corresponding SOC value of the first SOC value The first load power, and determining the second control signal corresponding to the first load power, and controlling the rotation of the engine based on the second control signal.
  • the process of controlling the engine rotation by the energy management device based on the first control signal may be: according to the first control signal, determining the target speed and target torque of the engine; according to the target speed and target torque of the engine, the current The torque and speed of the vehicle, the SOC change value of the battery in the vehicle within a preset period of time, the current SOC value of the battery and the target SOC value, and the current weight of the fuel in the vehicle determine the second SOC value of the battery after optimization and the value of the fuel.
  • Target weight determine the second SOC value and the second load power corresponding to the target fuel weight, and determine the third control signal corresponding to the second load power, and control the engine rotation based on the third control signal.
  • the process of the energy management device determining the target movement information of the vehicle according to the driving environment information may be: determining reference movement information based on the vehicle's destination and historical movement information; the reference movement information includes the first driving path and the first speed; input the first driving path, the first speed, the terrain parameters and the current motion information of the vehicle into the vehicle motion model to obtain the target motion information.
  • destination can be understood as a fixed location or target lane, which is not specifically limited in this embodiment of the present application.
  • Historical motion information can be understood as the driving path, driving speed, and driving acceleration of the vehicle within a certain period of time.
  • Current motion information can be understood as the driving speed and driving acceleration of the vehicle at the current moment.
  • the energy management device can determine the road surface material of the first road surface according to the semantic information of the high-precision map; and according to the mapping relationship between the road surface material and the terrain parameter , to determine the terrain parameters.
  • the first road surface is the road surface of any one of multiple candidate paths for the vehicle to reach the destination;
  • the semantic information of the high-precision map may include road attribute information, global positioning system (global positioning system, GPS) signal
  • the disappearing area, road construction status, etc. are not specifically limited in this embodiment of the present application.
  • the embodiment of the present application further provides an energy management device.
  • the means may include:
  • the acquisition module is used to acquire the driving environment information of the vehicle; the driving environment information includes terrain parameters;
  • the processing module is used to determine the target motion information of the vehicle according to the driving environment information; the target motion information includes preset speed, preset acceleration and preset driving path;
  • the processing module is also used to control the rotation of the engine in the vehicle according to the target motion information and the target power consumption.
  • the “driving environment information” in the embodiment of the present application refers to the driving environment information of the vehicle within a preset time period, where the preset time length can be 10s, 30s, 60s, etc., and the embodiment of the present application does not make specific limitations.
  • the "target movement information” in the embodiment of the present application can be understood as the movement state of the vehicle within the preset time period, the preset speed can include the speed corresponding to each moment within the preset time period, and the preset acceleration can include the speed within the preset time period. Acceleration corresponding to each moment, the preset driving path is the path that the vehicle will travel within the preset time period.
  • terrain parameters are obtained through high-precision maps and/or roadside equipment.
  • the driving environment information may further include obstacle information and weather information
  • the processing module is further configured to: determine a preset driving route according to the obstacle information and weather information.
  • the processing module is further configured to: determine a first control signal according to the target motion information and the target power consumption; and control the rotation of the engine based on the first control signal.
  • the processing module is further configured to: determine the target rotational speed and target torque of the engine according to the first control signal; determine the target rotational speed and target torque of the engine, the current torque and rotational speed of the engine, Set the SOC change value of the battery in the vehicle within the time period, the current SOC value of the battery and the target SOC value, determine the first SOC value after battery optimization; determine the first load power corresponding to the first SOC value, and determine the first SOC value A second control signal corresponding to the load power, and based on the second control signal, the rotation of the engine is controlled.
  • the processing module is further configured to: determine the target rotational speed and target torque of the engine according to the first control signal; determine the target rotational speed and target torque of the engine, the current torque and rotational speed of the engine, Set the SOC change value of the battery in the vehicle, the current SOC value and the target SOC value of the battery, and the current weight of the fuel in the vehicle within the time period, determine the second SOC value after battery optimization and the target weight of the fuel; determine the second SOC value The second load power corresponding to the target fuel weight, and determining the third control signal corresponding to the second load power, and controlling the engine rotation based on the third control signal.
  • the processing module is further configured to: determine reference motion information based on the vehicle's destination and historical motion information; the reference motion information includes the first driving path and the first speed; the first driving path, the first The speed, the first acceleration, the terrain parameters and the current motion information of the vehicle are input into the vehicle motion model to obtain the target motion information.
  • destination can be understood as a fixed location or target lane, which is not specifically limited in this embodiment of the present application.
  • Historical motion information can be understood as the driving path, driving speed, and driving acceleration of the vehicle within a certain period of time.
  • Current motion information can be understood as the driving speed and driving acceleration of the vehicle at the current moment.
  • the acquisition module is also used to: determine the road surface material of the first road surface according to the semantic information of the high-precision map; determine the terrain parameter according to the mapping relationship between the road surface material and the terrain parameter.
  • the first road surface is the road surface of any one of multiple candidate paths for the vehicle to reach the destination;
  • the semantic information of the high-precision map may include road attribute information, areas where GPS signals disappear, road construction status, etc.
  • the device may be a chip or an integrated circuit.
  • the device may be a target vehicle or a server.
  • the embodiment of the present application further provides a vehicle.
  • the vehicle includes a memory and a processor; the memory is used to store computer programs; the processor is used to execute the calculation programs stored in the memory, to achieve any one of the first aspect or the first aspect Possible design of the energy management method described.
  • the embodiment of the present application further provides a server.
  • the server includes a memory and a processor; the memory is used to store computer programs; the processor is used to execute the calculation programs stored in the memory, to achieve any one of the first aspect or the first aspect The energy management method described in the possible design of the project.
  • the server is a single server or a server cluster composed of multiple sub-servers.
  • the server is a server cluster composed of multiple sub-servers
  • the multiple sub-servers jointly execute the above-mentioned first aspect and the above-mentioned first
  • the embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program is executed, the above-mentioned first aspect and the first aspect are realized. Any one of the possible designs for the described energy management method.
  • the embodiment of the present application provides a chip system, the chip system includes at least one processor, when the program instructions are executed in the at least one processor, the above-mentioned first aspect and the possible design of the above-mentioned first aspect Any of the described energy management methods is implemented.
  • the chip system further includes a communication interface, which is used for inputting or outputting information.
  • the system-on-a-chip further includes a memory, which is coupled to the processor through a communication interface and used to store the above-mentioned instructions, so that the processor can read the instructions stored in the memory through the communication interface.
  • the foregoing processor may be a processing circuit, which is not limited in the present application.
  • the embodiment of the present application also provides a computer program product including instructions, when it is run on the above-mentioned device, to execute any one of the above-mentioned first aspect and the optional design of the above-mentioned first aspect. method is realized.
  • the embodiment of the present application further provides an energy management system.
  • the system includes:
  • a control unit configured to determine a first control signal based on the target motion information and target power consumption of the vehicle, and send the first control signal to the battery management system; wherein, the target motion information is determined according to the driving environment information , the driving environment information includes terrain parameters;
  • the battery management system is used for receiving the first control signal and controlling the rotation of the engine in the vehicle based on the first control signal.
  • the above control unit is a vehicle controller in the vehicle.
  • FIG. 1 is a schematic diagram of a scene of a vehicle battery
  • FIG. 2A is a schematic diagram of a possible system architecture applicable to the embodiment of the present application.
  • FIG. 2B is a schematic structural diagram of a possible vehicle applicable to the embodiment of the present application.
  • FIG. 3 is a schematic flowchart of an energy management method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a scenario applicable to an embodiment of the present application.
  • FIG. 5A is a schematic flow chart of a possible control engine rotation in the embodiment of the present application.
  • FIG. 5B is a schematic flow diagram of another possible control engine rotation in the embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an energy management device provided in an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a chip system provided by an embodiment of the present application.
  • High-precision map It is an essential component of automatic driving, with the characteristics of "high precision”, “high dynamic” and “multi-dimensional”. Structure, color and shape of road marking lines, data attributes of each lane (slope, curvature, heading, elevation, etc.), road barriers (and materials) and other information and their locations are described in detail; “high dynamic” means high
  • the data of the fine map is real-time and "multi-dimensional", that is, the map not only contains detailed lane models and road component information, but also contains some road attribute information related to traffic safety, such as areas where GPS signals disappear, road construction status, etc. .
  • High-precision maps have precise vehicle location information and rich road element data information, which can build a function similar to the human brain's overall memory and cognition of space, and can help vehicles predict complex information on the road surface and accurately position vehicles on On the lane, it helps vehicles obtain accurate and effective current location and environmental information, and formulates appropriate routes for vehicle planning.
  • the battery management system (battery management system, BMS) is an indispensable and important part of electric vehicles. Early warning, charging and discharging and pre-charging control balance management, etc.
  • Motion information which is used to describe the motion state of the vehicle in a certain period of time, such as the speed, acceleration, and driving path of the vehicle.
  • the term "multiple” in the embodiments of the present application means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship.
  • “At least one of the following” or similar expressions refer to any combination of these items, including any combination of single or plural items. For example, at least one item (piece) of a, b, or c may represent: a, b, c, a and b, a and c, b and c, or a and b and c.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features .
  • a feature defined as “first” or “second” may explicitly or implicitly include one or more of such features.
  • the battery management system is equipped with a controller, a temperature sensor, a current sensor and a voltage sensor, and then the controller can obtain the temperature of the vehicle battery through the temperature sensor information, and obtain the voltage information of the battery through the voltage sensor, and obtain the current information of the vehicle battery through the current sensor; then the controller can adjust the vehicle battery according to the state information of the vehicle battery.
  • this solution cannot predict the status information of the on-board battery, and cannot adjust the on-board battery in real time or in advance, and still cannot solve the problem of loss of the on-board battery caused by sudden acceleration or deceleration of electric vehicles.
  • an embodiment of the present application provides an energy management method, which can be implemented by an energy management device.
  • the energy management device can obtain the driving environment information of the vehicle (for example, terrain parameters), and determine the target movement information of the vehicle according to the driving environment information, and determine the target movement information of the vehicle according to the target movement information (for example, preset speed, preset acceleration and preset travel route) and target power consumption to control engine rotation in the vehicle.
  • the target movement information for example, preset speed, preset acceleration and preset travel route
  • target power consumption for example, preset speed, preset acceleration and preset travel route
  • the “driving environment information” in the embodiment of the present application refers to the driving environment information of the vehicle within a preset time period, where the preset time length can be 10s, 30s, 60s, etc., and the embodiment of the present application does not make specific limitations.
  • the "target movement information” in the embodiment of the present application can be understood as the movement state of the vehicle within the preset time period, the preset speed can include the speed corresponding to each moment within the preset time period, and the preset acceleration can include the speed within the preset time period. Acceleration corresponding to each moment, the preset driving path is the path that the vehicle will travel within the preset time period.
  • the energy management method provided in the embodiment of the present application when applied to a vehicle, it may specifically be applied to a vehicle with an energy management function, or an on board unit (OBU) in a vehicle with an energy management function.
  • the vehicle-mounted equipment may include but not limited to vehicle-mounted terminals, vehicle-mounted controllers, vehicle-mounted modules, vehicle-mounted modules, vehicle-mounted components, vehicle-mounted chips, vehicle-mounted units, electronic control units (electronic control units, ECUs), domain controllers (domain controllers, DC) and other devices.
  • the energy management method provided in the embodiment of the present application may also be applied to the Internet of Vehicles server.
  • the Internet of Vehicles server is a device with energy management functions, such as a physical device, such as a host or a server, or a virtual device, such as a virtual machine or a container.
  • the vehicle can authorize the Internet of Vehicles server to perform energy management.
  • the Internet of Vehicles server can obtain the driving environment information of the vehicle through the information fed back by one or more of the vehicle, the roadside unit, or other vehicles. For example, the vehicle can feed back terrain parameters to the server.
  • the server can predict the vehicle’s target motion information and target power consumption based on the terrain parameters, and based on the target motion information and target power consumption, send a charging control signal to the vehicle, if the vehicle agrees to accept the control signal , according to the control signal, the motor in the vehicle can be controlled to rotate, so as to realize the power balance control of the vehicle battery.
  • the Internet of Vehicles server is referred to as the server for short below. That is to say, in the specific implementation process, the "server” mentioned below may refer to a server in a common sense, or to other devices with energy management functions, or to a module in the device (such as a chip or integrated circuits, etc.).
  • FIG. 2A shows a schematic diagram of a possible system architecture applicable to this embodiment of the present application.
  • the system may include a vehicle 100 and a server 200 .
  • the vehicle 100 can obtain its own driving environment information (for example, terrain parameters), and determine the target movement information of the vehicle 100 (for example, preset speed, preset acceleration and preset travel route); and control the rotation of the engine in the vehicle 100 according to the target motion information and the target power consumption.
  • the target movement information of the vehicle 100 for example, preset speed, preset acceleration and preset travel route
  • the vehicle 100 can acquire its own driving environment information (for example, terrain parameters), and send the driving environment information to the server 200, and then the server 200 can determine the target motion information of the vehicle 100 (for example, preset speed, preset acceleration and preset driving path), and according to the target motion information and target power consumption, determine the corresponding control signal and send it to the vehicle 100, and then the vehicle 100 can control the vehicle 100 according to the control signal The engine turns.
  • the server 200 can determine the target motion information of the vehicle 100 (for example, preset speed, preset acceleration and preset driving path), and according to the target motion information and target power consumption, determine the corresponding control signal and send it to the vehicle 100, and then the vehicle 100 can control the vehicle 100 according to the control signal The engine turns.
  • the system further includes a roadside device 300, which can obtain driving environment information (for example, terrain parameters) of the vehicle 100, and send the driving environment information to the server 200, and then The server 200 may determine target motion information (eg, preset speed, preset acceleration, and preset travel path) of the vehicle 100 , and control engine rotation in the vehicle 100 according to the target motion information and target power consumption.
  • driving environment information for example, terrain parameters
  • target motion information eg, preset speed, preset acceleration, and preset travel path
  • FIG. 2B shows a possible structural schematic diagram of the above-mentioned vehicle 100 .
  • the vehicle 100 may include a vehicle perception positioning module 101 , a vehicle HD map module 102 , a controller 103 and a battery energy management system 104 .
  • the vehicle perception positioning module 101 may include perception sensors such as an inertial navigation system (global navigation satellites system+inertial measurement unit, GNSS+IMU) and a camera.
  • GNSS+IMU can be used for high-precision positioning to obtain the current positioning information of the vehicle 100
  • the camera can be used to obtain image information of the driving environment of the vehicle, and then the vehicle-mounted perception and positioning module 101 can fuse the positioning information with the image information to obtain a local feature map.
  • the vehicle-mounted perception and positioning module 101 may also include a laser radar, which may be used to obtain point cloud data corresponding to the driving environment information of the vehicle 100, and then the vehicle-mounted perception and positioning module 101 will combine the point cloud data, positioning information, and image information Fusion to get the local feature map.
  • a laser radar which may be used to obtain point cloud data corresponding to the driving environment information of the vehicle 100, and then the vehicle-mounted perception and positioning module 101 will combine the point cloud data, positioning information, and image information Fusion to get the local feature map.
  • the vehicle-mounted high-precision map module 102 can be used to determine the high-precision semantic map of the vehicle 100 .
  • controller 103 can be used to predict the preset speed and preset acceleration for the vehicle 100 according to the semantic parameters of the road environment information, and perform path planning.
  • route planning refers to planning a preset travel route of the vehicle 100 .
  • the battery energy management system 104 can be used to determine the load power of the on-board battery according to the speed control signal of the vehicle, and then control the rotation of the engine according to the load power to realize charging or discharging of the on-board battery.
  • the vehicle perception and positioning module 101 can send the positioning information and the local feature map of the driving environment of the vehicle 100 to the vehicle high-precision map module 102, and then the vehicle high-precision map module 102 sends the positioning information and the local feature map Match the map with the global high-precision map, obtain rich environmental semantic information from the global high-precision map, update the local feature map to a high-precision semantic map, and send the high-precision semantic map to the controller 103; the controller 103 receives the High-precision semantic map, and perform path planning for the vehicle 100 according to the high-precision semantic map, output a preset speed sequence and a preset acceleration sequence with a preset duration, and drive the vehicle 100 based on the preset speed sequence and preset acceleration sequence , while sending the speed control signal corresponding to the preset speed sequence and the preset acceleration sequence to the battery management system 104, and then the battery management system 104 can determine the load power of the vehicle battery corresponding to the speed control signal, and determine the motor speed based on
  • the vehicle 100 can obtain a wealth of driving environment information, and the controller 103 performs path planning, so as to obtain more abundant target movement information, so that the battery management system 104 can perform balanced control on the vehicle battery in advance, The system predictability, adaptability and responsiveness of the battery management system 104 are effectively improved.
  • the module division of the vehicle 100 is only an example, and is not a limitation to the structure of the vehicle 100 .
  • lidar is just an exemplary device capable of collecting point cloud data
  • the device for collecting point cloud data in the embodiment of the present application is not limited to lidar, but can also be any other device capable of collecting point cloud data .
  • the camera is just an example of a device capable of collecting images.
  • the device for collecting images in the embodiment of the present application is not limited to a camera, but can also be any other device capable of collecting images, such as a mobile phone, a vehicle camera, and the like.
  • FIG. 3 is a schematic diagram of an energy management method provided by an embodiment of the present application. The method can be applied to an energy management device, and the method includes:
  • driving environment information in the embodiment of the present application refers to the driving environment information of the vehicle within a preset time period, where the preset time length can be 10s, 30s, 60s, etc., and the embodiment of the present application does not make specific limitations.
  • the driving environment information may include terrain parameters.
  • the terrain parameters may include ground slope, ground friction coefficient, road curvature, etc., which are not specifically limited in this embodiment of the present application.
  • the above-mentioned driving environment information may also include obstacle information, road construction information, weather information, and road attribute information (such as grade, material, type, width, etc.), and this embodiment of the present application does not make specific descriptions. limit.
  • the process of the energy management device acquiring the driving environment information of the vehicle through the high-precision map may be: according to the semantic information of the high-precision map, determine the road surface of the first road surface Material, and according to the mapping relationship between pavement material and terrain parameters, determine terrain parameters.
  • the "first road surface” can be understood as the road surface of any one of the multiple candidate paths for the vehicle 100 to reach the destination, specifically, it can be all or part of the road surface corresponding to the any path, and the embodiment of the present application does not make specific limited.
  • Table 1 shows the mapping relationship between road surface material and friction coefficient.
  • Table 1 shows the mapping relationship between road surface material and friction coefficient.
  • the friction coefficient is divided into rolling friction coefficient and sliding friction coefficient. coefficient of friction.
  • Table 1 when the road surface material of the first road surface of the vehicle is concrete, and there is no wear on the first road surface, the rolling friction coefficient of the first road surface is 0.01, and the sliding friction coefficient is 1; In this case, the rolling friction coefficient of the first road surface is 0.02, and the sliding friction coefficient is 0.6.
  • the rolling friction coefficient of the first road surface is 0.012, and the sliding friction coefficient is 0.9; when the first road surface is worn, The rolling friction coefficient of the first road surface is 0.022, and the sliding friction coefficient is 0.6.
  • the rolling friction coefficient of the first road surface is 0.015, and the sliding friction coefficient is 0.9; , the rolling friction coefficient of the first road surface is 0.037, and the sliding friction coefficient is 0.6.
  • the rolling friction coefficient of the first road surface is 0.1, and the sliding friction coefficient is 0.9; when the first road surface is worn, The rolling friction coefficient of the first road surface is 0.35, and the sliding friction coefficient is 0.45.
  • the rolling friction coefficient of the first road surface is 0.055, and the sliding friction coefficient is 0.4; when the first road surface is worn, The rolling friction coefficient of the first road surface is 0.180, and the sliding friction coefficient is 0.3.
  • the rolling friction coefficient of the first road surface is 0.1, and the sliding friction coefficient is 0.35; , the rolling friction coefficient of the first road surface is 0.15, and the sliding friction coefficient is 0.2.
  • the rolling friction coefficient of the first road surface is 0.16, and the sliding friction coefficient is 0.3; when the first road surface is worn, The rolling friction coefficient of the first road surface is 0.3, and the sliding friction coefficient is 0.15.
  • the energy management device may also determine the road surface material and weather information of the first road surface according to the semantic information of the high-precision map, and The friction coefficient of the first road surface is determined according to the mapping relationship among the road surface material, the weather information and the friction coefficient.
  • Table 2 shows the mapping relationship between road surface material, weather information and friction coefficient.
  • the energy management device can directly determine the ground slope and road curvature of the first road surface according to the semantic information of the high-precision map.
  • Method 2 obtain through roadside equipment.
  • the energy management device can collect point cloud data and image information of the first road surface through roadside equipment, carry out semantic recognition on the image information, and combine point cloud data to determine the road surface material of the first road surface; furthermore, the energy management device can determine the terrain parameter according to the mapping relationship between the road surface material and the terrain parameter.
  • the "first road surface” can be understood as the road surface of any one of the multiple candidate paths for the vehicle 100 to reach the destination, specifically, it can be all or part of the road surface corresponding to the any path, and the embodiment of the present application does not make specific limited.
  • the energy management device in mode 2 determines the terrain parameters according to the mapping relationship between the road surface material and the terrain parameters.
  • the terrain parameters in the driving environment obtained by the roadside equipment can effectively reduce the calculation amount of the vehicle.
  • Method 3 obtain through high-precision maps and roadside equipment.
  • the roadside device can collect the road surface image of the first road surface, and the high-precision map can obtain the semantic information of the first road surface, fuse the semantic information with the road surface image, and determine the road surface material of the first road surface , and determine the terrain parameters according to the mapping relationship between the pavement material and the terrain parameters.
  • the "first road surface” can be understood as the road surface of any one of the multiple candidate paths for the vehicle 100 to reach the destination, specifically, it can be all or part of the road surface corresponding to the any path, and the embodiment of the present application does not make specific limited.
  • the terrain parameters in the driving environment of the vehicle within a preset time period are obtained through high-precision maps and roadside equipment, so that the determined terrain parameters are more accurate.
  • the energy management device determines the terrain parameters according to the mapping relationship between the road surface material and the terrain parameters.
  • Mode 4 acquiring historical motion information of the vehicle on the first road surface.
  • the energy management device may acquire historical motion information of the vehicle on the first road surface, where the historical motion information includes historical driving route, historical driving speed and historical driving Acceleration and the first topographical parameters of the first road, and the energy management device can determine the predicted motion information of the vehicle according to the first topographical parameters, and calculate the first terrain according to the difference between the predicted motion information and the historical motion information The parameters are corrected to obtain the second terrain parameter, and the second terrain parameter is used as the terrain parameter of the first road surface.
  • first road surface can be understood as the road surface of any one of the multiple candidate paths for the vehicle 100 to reach the destination, specifically, it can be all or part of the road surface corresponding to the any path, and the embodiment of the present application does not make specific limited.
  • the topographic parameters of the first road surface can be quickly determined through the historical motion information of the vehicle.
  • the topographic parameters in the driving environment are obtained in the above methods 1, 2, 3 and 4, so that the driving environment information has rich information, and then the target motion information determined according to the driving environment information can better meet the actual driving conditions of the vehicle .
  • S302 Determine the target motion information of the vehicle according to the driving environment information.
  • the target motion information may include a preset speed, a preset driving path and a preset acceleration of the vehicle.
  • the "target movement information" in the embodiment of the present application can be understood as the movement state of the vehicle within the preset time period
  • the preset speed can include the speed corresponding to each moment within the preset time period
  • the preset acceleration can include the speed within the preset time period. Acceleration corresponding to each moment, the preset driving path is the path that the vehicle will travel within the preset time period.
  • the preset speed may be [v1, v2, ..., vn]
  • the preset acceleration may be [a1, a2, ..., an].
  • target motion information of the vehicle is determined.
  • the energy management device may obtain the current location of the vehicle, determine multiple candidate routes according to the current location and destination of the vehicle, and obtain multiple Traffic elements, the traffic elements can include path mileage, road condition information, journey time, weather information, user preferences, etc., and then the utility value of each path can be calculated according to the weight information corresponding to each element in multiple traffic elements, and The driving route with the largest utility value is taken as the preset driving route of the vehicle.
  • the current position of the vehicle can be determined through a high-precision map.
  • the "destination" may be a merging point of the target lane or a certain fixed location, which is not specifically limited in this embodiment of the present application.
  • the vehicle is currently at position A, and there are 3 candidate routes for the vehicle to reach destination B from position A, and the traffic elements of these 3 candidate routes include traffic information and weather information; wherein, the traffic information in candidate route 1 corresponds to The weight is 0.5, and the score corresponding to the road condition information is 30 points, the weight corresponding to the weather information in candidate path 1 is 0.5, and the score corresponding to the weather information is 80, then the utility value of candidate path 1 is 60; candidate path 2
  • the weight corresponding to the road condition information in is 0.5, and the score corresponding to the road condition information is 50 points, the weight corresponding to the weather information in candidate path 2 is 0.5, and the score corresponding to the weather information is 50, then the utility value of candidate path 2 is is 50;
  • the weight corresponding to the road condition information in candidate route 3 is 0.5, and the score corresponding to the road condition information is 80, the weight corresponding to the weather information in candidate route 3 is 0.5, and the score corresponding to the weather information is 90, then the candidate route
  • the determined preset driving route can be made more accurate.
  • the energy management device may determine reference motion information based on the vehicle's destination and historical motion information, where the reference motion information includes a first driving path and a first speed; The path and the first speed, the terrain parameters and the current motion information of the vehicle are input into the vehicle motion model to obtain the preset speed and the preset acceleration of the vehicle.
  • the historical motion information includes the path the vehicle has traveled currently, historical speed, historical acceleration, etc.
  • the reference motion information includes the first driving path and the first speed.
  • “historical motion information” can be understood as the driving path, driving speed, driving acceleration, etc. within a certain period of time that the vehicle has been driving
  • “reference motion information” can be understood as the ideal state predicted based on “historical motion information”.
  • Information, “current motion information” can be understood as the driving speed and driving acceleration of the vehicle at the current moment.
  • the “destination” may be the merging point of the target lane, or a certain fixed location, which is not specifically limited in this embodiment of the present application.
  • Fig. 4 shows the vehicle motion model applicable to the embodiment of the present application.
  • the energy management device obtains the reference motion information, it inputs the reference motion information, terrain parameters and current vehicle motion information into the vehicle motion model , you can get the preset speed and preset acceleration.
  • the car motion model can satisfy the following formula:
  • F load F aero + R f + R r + mgsin ⁇
  • X t [x, y, z, v, ⁇ ] is the motion information of the vehicle at time t
  • [x, y, z] is the position parameter of the vehicle at time t
  • v is the predicted time of the vehicle at time t.
  • is the yaw angle of the vehicle at time t
  • X t+1 is the motion information of the vehicle at time t+1
  • u t is the control signal of the vehicle at time t (that is, according to the first speed in the reference motion information A determined speed control signal
  • A, B, and C are the motion coefficients of the vehicle, and the motion coefficient of the vehicle can be determined according to the mapping relationship between the vehicle type and the motion coefficient;
  • F r is the propulsive force of the rear wheel of the vehicle
  • F aero is the air resistance
  • R f is the rolling friction resistance of the front wheel of the vehicle
  • R r is the rolling friction resistance of the rear wheel of the vehicle
  • mgsin ⁇ is the gravity component of the vehicle
  • C a ⁇ A is the air resistance coefficient.
  • R f and R r can be determined according to the coefficient of rolling friction in the terrain parameters.
  • the preset speed v and preset acceleration of the vehicle within the preset time period can be determined by the above formula In this way, the reference motion information and terrain parameters are combined to determine the preset speed and preset acceleration of the vehicle within the preset time period, so that the determined preset speed and preset acceleration are more in line with the actual situation of the vehicle, and then the target movement The information is more accurate.
  • S303 Control the rotation of the engine in the vehicle according to the target movement information and the target power consumption.
  • the "target power consumption” in the embodiment of the present application can be understood as the target power consumption required by the vehicle to achieve the above target motion information. Therefore, before the energy management device controls the rotation of the engine in the vehicle according to the target motion information and the target power consumption, it also needs to determine the target power consumption corresponding to the target motion information.
  • the power consumption in the embodiment of the present application may be represented by a state of charge (state of change, SOC) change value. It should be understood that the SOC value can be used to indicate the state of power. An SOC value of 100% indicates that the vehicle battery is fully charged; an SOC value of 0% indicates that the vehicle battery is completely exhausted.
  • the energy management device determines the target power consumption according to the mapping relationship between the distance of the preset driving route and the target power consumption.
  • the target power consumption is quantified by the SOC change value.
  • the mapping relationship between the distance of the preset driving route and the target power consumption is shown in Table 3. If the distance of the preset driving route is 25km, the target The SOC change value corresponding to the power consumption is 20%.
  • the distance of the preset driving path Target power consumption (SOC change value) 1-10km 10% 11-30km 20% 31-60km 40%
  • the target power consumption can be quickly determined according to the distance of the preset driving route.
  • the energy management device determines the target power consumption according to the mapping relationship between the preset speed and the preset driving route and the target power consumption.
  • the same preset driving route may correspond to different preset speeds.
  • the preset travel route is 100 km as an example, as shown in Table 4, if the vehicle travels the 100 km travel route at a preset speed of 20 km/h, the SOC change value corresponding to the target power consumption is 10%; If the vehicle completes a 100km driving path with a preset acceleration of 40km/h, the SOC change value corresponding to the target power consumption is 20%; if the vehicle completes a 100km driving path with a preset acceleration of 60km/h, the target The SOC change value corresponding to the power consumption is 40%.
  • SOC change value 20-39km/h 10% 40-59km/h 20% 60-80km/h 40%
  • the determined target power consumption is more accurate.
  • the energy management device determines the target power consumption according to the mapping relationship between the preset acceleration and the preset driving route and the target power consumption.
  • the same preset driving path may correspond to different peak preset accelerations.
  • the distance of the preset travel path is 100km as an example, as shown in Table 5, if the vehicle travels within the 100km travel path with a preset acceleration not exceeding 5m/s ⁇ 2, the target power consumption corresponds to The SOC change value of the target power consumption is 10%; if the vehicle travels at a preset acceleration of no more than 8m/s ⁇ 2 within the 100km driving path, the SOC change value corresponding to the target power consumption is 20%; if the vehicle travels within the 100km If you drive at a preset acceleration of no more than 10m/s ⁇ 2 within the driving path, the SOC change value corresponding to the target power consumption is 40%.
  • Peak value of preset acceleration Target power consumption 5m/s ⁇ 2 10% 8m/s ⁇ 2 20% 10m/s ⁇ 2 40%
  • the determined target power consumption is more accurate.
  • the process of the energy management device controlling the rotation of the engine in the vehicle according to the target motion information and the target power consumption may be: A control signal, based on the first control signal, controls the rotation of the engine.
  • the rotation of the engine of the vehicle can be controlled according to the preset speed, the preset travel route and the target power consumption. In this way, the advance management of the vehicle battery in the battery management system is realized, thereby effectively reducing the loss of the vehicle battery caused by sudden acceleration or deceleration of the vehicle.
  • first control signal in this embodiment of the present application may be a collection of multiple control signals, for example, a collection of speed control signals and motor control signals.
  • new energy vehicles can be divided into pure electric vehicles and hybrid vehicles according to their power sources.
  • new energy vehicles based on the first control signal, the specific implementation manners of controlling the rotation of the engine are different, which will be discussed in the following.
  • the energy management device can control the engine rotation based on the first control signal.
  • the process of controlling the engine rotation can be: according to the first control signal, determine the target speed and target torque of the engine; according to the target speed and target torque of the engine, the engine The current torque and speed, the SOC change value of the battery in the vehicle within the preset time period, the current SOC value of the battery and the target SOC value determine the first SOC value after battery optimization; determine the first SOC value corresponding to The first load power, and determine the second control signal corresponding to the first load power, and control the rotation of the engine based on the second control signal.
  • the energy management device may determine the optimized first SOC value of the battery according to the following formula.
  • ⁇ T e (t) T e_d -T e ;
  • ⁇ e (t) T e_d -T e ;
  • T e is the current torque of the engine
  • ⁇ e is the current speed of the engine
  • SOC(t) is the current SOC value of the battery
  • SOC r is the target SOC value
  • w s is the weight coefficient of the SOC change value
  • ⁇ T e (t) is the difference between the current torque of the engine and the target torque value
  • w t is the weight coefficient of the torque change value
  • ⁇ e (t) is the difference between the current engine speed and the target speed
  • w w is the weight coefficient of the speed change
  • SOC(t h ) is the SOC value from time t 0 to time t k , w h is the global weight coefficient; J is the sum of equation optimization, u(t) is the torque optimization item and speed optimization item of the engine, SOC(t) Optimize items for SOC value.
  • the SOC value at time t can be obtained, that is, the optimized first SOC value can be obtained, and then the energy management device can determine the first load power corresponding to the first SOC value, and determine the second load power corresponding to the first load power. control signal, and based on the second control signal, control the rotation of the engine. It should be understood that the SOC value is the state of charge of the vehicle battery at time t.
  • the process of determining the first load power corresponding to the first SOC value by the energy management device may be determined according to a preset mapping relationship between the SOC value and the first load power.
  • the mapping relationship can be shown in Table 6. If the first SOC value after vehicle optimization is 10%, the first load power is 0.4; if the first SOC value after vehicle optimization is 20%, then the first load power is 0.4. A load power is 0.6; if the optimized first SOC value of the vehicle is 40%, the first load power is 1.
  • the vehicle dynamics model obtains the target motion information, it sends it to the controller; the controller determines the first control signal according to the target motion information, and sends it to the battery management system; the battery The management system determines the optimized first SOC value of the battery according to the first control signal, and determines the first load power corresponding to the first SOC value, and sends the first load power to the controller, and then the controller determines the first load power The corresponding second control signal, and based on the second control signal, controls the rotation of the engine.
  • the energy management device may control the engine rotation based on the first control signal: according to the first control signal, determine the target speed and target torque of the engine; according to the target speed and target torque of the engine, the current The torque and speed of the vehicle, the SOC change value of the battery in the vehicle within a preset period of time, the current SOC value of the battery and the target SOC value, and the current weight of the fuel in the vehicle determine the second SOC value of the battery after optimization and the value of the fuel.
  • Target weight determine the second SOC value and the second load power corresponding to the target fuel weight, and determine the third control signal corresponding to the second load power, and control the engine rotation based on the third control signal.
  • the energy management device may determine the optimized second SOC value of the battery and the target fuel weight according to the following formula.
  • ⁇ T e (t) T e_d -T e ;
  • ⁇ e (t) T e_d -T e ;
  • T e is the current torque of the engine
  • ⁇ e is the current speed of the engine
  • ⁇ e is the current speed of the engine
  • SOC(t) is the current SOC value of the battery
  • SOC r is the target SOC value
  • w s is the weight coefficient of the SOC change value
  • ⁇ T e (t) is the difference between the current torque of the engine and the target torque
  • w t is the weight coefficient of the torque change value
  • ⁇ e (t) is the difference between the current engine speed and the target speed
  • w w is the weight coefficient of the speed change
  • SOC(t h ) is the time from t 0 to t k SOC value
  • w h is the global weight coefficient
  • J is the sum of equation optimization
  • u(t) is the torque optimization item and speed optimization item of the engine
  • SOC(t) is the SOC value optimization item, Optimized for fuel weight.
  • the optimized second SOC value and the target weight of fuel can be obtained And the second SOC value after battery optimization is close to the target value SOC r , the target fuel weight It is also as small as possible, so that the energy control of the vehicle can be effectively realized, and the energy consumption of the vehicle can be effectively reduced.
  • the first SOC value is close to the SOC target value SOC r , which can effectively prevent the battery from being overcharged or overdischarged in the vehicle.
  • the use of fuel is reduced in this way, and the energy required for engine rotation is provided as far as possible with electric energy, so that the vehicle can move along the preset driving path at a preset speed and preset acceleration, which is conducive to the environmentally friendly operation of the vehicle.
  • the vehicle dynamics model obtains the target motion information, it sends it to the controller; the controller determines the first control signal according to the target motion information, and sends it to the battery management system; the battery The management system determines the optimized first SOC value of the battery according to the first control signal, and determines the first load power corresponding to the first SOC value, and sends the second load power to the controller, and then the controller determines the second load power The corresponding second control signal, and based on the third control signal, controls engine rotation.
  • controllers in FIG. 5A and FIG. 5B may be vehicle controllers or domain controllers, which are not specifically limited in this embodiment of the present application.
  • the vehicle's target motion information is predicted according to the vehicle's driving environment information (ie, terrain parameters), and the engine rotation in the vehicle is controlled according to the target motion information and target power consumption, so that the on-board battery can be realized.
  • the power balance of the vehicle can effectively reduce the loss of the vehicle battery, achieve the purpose of protecting the vehicle battery, and then improve the energy utilization efficiency of new energy vehicles.
  • Fig. 6 shows a possible structural diagram of the energy management device involved in the above-mentioned embodiments of the present application.
  • the device 600 includes:
  • An acquisition module 601, configured to acquire driving environment information of the vehicle; the driving environment information includes terrain parameters;
  • the processing module 602 is used to determine the target motion information of the vehicle according to the driving environment information; the target motion information includes preset speed, preset acceleration and preset driving path;
  • the processing module 602 is further configured to control the rotation of the engine in the vehicle according to the target motion information and the target power consumption.
  • the “driving environment information” in the embodiment of the present application refers to the driving environment information of the vehicle within a preset time period, wherein the preset time length can be 10s, 30s, 60s, etc., and this application does not make specific limitations.
  • the "target movement information” in the embodiment of the present application can be understood as the movement state of the vehicle within the preset time period, the preset speed can include the speed corresponding to each moment within the preset time period, and the preset acceleration can include the speed within the preset time period. Acceleration corresponding to each moment, the preset driving path is the path that the vehicle will travel within the preset time period.
  • the terrain parameters are obtained through a high-precision map and/or roadside equipment.
  • the processing module 602 is further configured to: determine a first control signal according to the target motion information and the target power consumption; and control the rotation of the engine based on the first control signal.
  • the processing module 602 is further configured to: determine the target rotational speed and target torque of the engine according to the first control signal; determine the target rotational speed and target torque of the engine, the current torque and rotational speed of the engine, Within the preset period of time, the SOC change value of the battery in the vehicle, the current SOC value and the target SOC value of the battery, determine the first SOC value after battery optimization; determine the first load power corresponding to the first SOC value, and Determine the second control signal corresponding to the first load power, and control the rotation of the engine based on the second control signal.
  • the processing module 602 is further configured to: determine the target rotational speed and target torque of the engine according to the first control signal; determine the target rotational speed and target torque of the engine, the current torque and rotational speed of the engine, The SOC change value of the battery in the vehicle, the current SOC value and the target SOC value of the battery, and the current weight of the fuel in the vehicle within a preset period of time determine the second SOC value after battery optimization and the target weight of the fuel; determine the second The SOC value and the second load power corresponding to the fuel target weight, and determining the third control signal corresponding to the second load power, and controlling the engine rotation based on the third control signal.
  • the processing module 602 is further configured to: determine reference motion information based on the vehicle destination and historical motion information; the reference motion information includes the first driving route and the first speed; the reference motion information, terrain parameters Input the vehicle motion model and the current motion information of the vehicle to obtain the target motion information.
  • destination can be understood as a fixed location or target lane, which is not specifically limited in this embodiment of the present application.
  • Historical motion information can be understood as the driving path, driving speed, and driving acceleration of the vehicle within a certain period of time.
  • Current motion information can be understood as the driving speed and driving acceleration of the vehicle at the current moment.
  • the acquisition module 601 is further configured to: determine the road surface material of the first road surface according to the semantic information of the high-precision map; determine the terrain parameter according to the mapping relationship between the road surface material and the terrain parameter.
  • the first road surface is the road surface of any one of multiple candidate paths for the vehicle to reach the destination; the semantic information of the high-precision map may include road attribute information, areas where GPS signals disappear, road construction status, etc., the present application Examples are not specifically limited.
  • the device may be a chip or an integrated circuit.
  • the device may be a target vehicle or a server.
  • An embodiment of the present application also provides a vehicle, and the vehicle may include a processor, and the processor is configured to execute the energy management method in the above embodiment shown in FIG. 3 .
  • a memory is also included for storing computer programs or instructions.
  • a transceiver is further included, configured to receive or send information.
  • An embodiment of the present application further provides a server, where the server includes a processor, and the processor is configured to execute the energy management method in the above embodiment shown in FIG. 3 .
  • a memory is also included for storing computer programs or instructions.
  • a transceiver is further included, configured to receive or send information.
  • the server is a single server or a server cluster composed of multiple sub-servers, and when the server is a server cluster composed of multiple sub-servers, the multiple sub-servers jointly execute the above energy management method.
  • the embodiment of the present application also provides a chip system. Please refer to FIG. 7.
  • the chip system 700 includes at least one processor. When program instructions are executed in at least one processor 701, the above-mentioned embodiment shown in FIG. 3 An energy management approach is realized.
  • the chip system further includes a communication interface 703, which is used for inputting or outputting information.
  • the chip system further includes a memory 702, which is coupled to the processor through the communication interface 703, and is used for storing the above-mentioned instructions, so that the processor reads the instructions stored in the memory through the communication interface 703.
  • connection medium among the foregoing processor 701, memory 702, and communication interface 703 is not limited in this embodiment of the present application.
  • the memory 702, the processor 701, and the communication interface 703 are connected through a communication bus 704.
  • the bus is represented by a thick line in FIG. , is not limited.
  • the bus may include an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is used in FIG. 7 , but it does not mean that there is only one bus or one type of bus.
  • the embodiment of the present application also provides a computer program product including instructions, which can execute the energy management method in the embodiment shown in FIG. 3 above when running on the above device.
  • An embodiment of the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is run, the energy management method in the above-mentioned embodiment shown in FIG. 3 is implemented.
  • the disclosed devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of modules or units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or It may be integrated into another device, or some features may be omitted, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the unit described as a separate component may or may not be physically separated, and the component displayed as a unit may be one physical unit or multiple physical units, that is, it may be located in one place, or may be distributed to multiple different places . Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing module, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • each functional module in each embodiment of the present application may be integrated into one processor, or physically exist separately, or two or more modules may be integrated into one module.
  • the above-mentioned integrated modules can be implemented in the form of hardware or in the form of software function modules.
  • the methods provided in the embodiments of the present application may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, the processes or functions according to the embodiments of the present application will be generated in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment or other programmable devices.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be transmitted from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, or a magnetic tape), an optical medium (for example, a digital video disc (digital video disc, DVD for short)), or a semiconductor medium (for example, SSD).
  • a magnetic medium for example, a floppy disk, a hard disk, or a magnetic tape
  • an optical medium for example, a digital video disc (digital video disc, DVD for short)
  • a semiconductor medium for example, SSD
  • the various embodiments may refer to each other, for example, the methods and/or terms between the method embodiments may refer to each other, such as the functions and/or terms between the device embodiments Or terms may refer to each other, for example, functions and/or terms between the apparatus embodiment and the method embodiment may refer to each other.

Landscapes

  • Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种能源管理方法、装置及系统。在该方法中,能源管理装置可以获取车辆的行驶环境信息,该行驶环境信息包括地形参数;根据该行驶环境信息,确定该车辆的目标运动信息;该目标运动信息包括预设速度、预设加速度和预设行驶路径;根据该目标运动信息和目标耗电量,控制该车辆中的发动机转动。如此,通过地形参数确定车辆的目标运动信息,并根据目标运动信息和目标耗电量,控制车辆中的发动机转动,可以实现对车载电池的均衡控制,有效减小车载电池的损耗,达到保护车载电池的目的,进而提升能源利用率。

Description

一种能源管理方法、装置及系统
相关申请的交叉引用
本申请要求在2021年08月13日提交中国专利局、申请号为202110932114.X、申请名称为“一种能源管理方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及汽车能源技术领域,尤其涉及一种能源管理方法、装置及系统。
背景技术
随着新能源技术的发展,电动汽车得到了广泛的关注。在电动汽车行驶过程中,车载电池可以释放存储的电能,从而驱动电动汽车行驶。其中,电动汽车的车载电池受电动汽车行驶状态的限制,若电动汽车突然加速或减速,会对车载电池造成巨大的冲击,进而导致车载电池的损耗严重。
有鉴于此,如何结合电动汽车的行驶状态对电动汽车的能源进行合理分配,以减小车载电池的损耗,是一个亟待解决的问题。
发明内容
本申请提供一种能源管理方法、装置及系统,用以对电动汽车的能源进行合理分配,以减少车载电池的损耗。
第一方面,本申请实施例提供一种能源管理方法,该方法可以由能源管理装置实现。在该方法中,能源管理装置可以获取车辆的行驶环境信息,该行驶环境信息包括地形参数;根据该行驶环境信息,确定该车辆的目标运动信息;该目标运动信息包括预设速度、预设加速度和预设行驶路径;根据该目标运动信息和目标耗电量,控制该车辆中的发动机转动。
应理解,本申请实施例中的“行驶环境信息”是指车辆在预设时长内的行驶环境信息,其中,预设时长可以是10s、30s、60s等,本申请实施例不作具体的限制。本申请实施例中的“目标运动信息”可以理解为预设时长内的车辆的运动状态,预设速度可以包括该预设时长内各个时刻对应的速度,预设加速度可以包括该预设时长内各个时刻对应的加速度,预设行驶路径即该预设时长内车辆将要行驶的路径。
本申请实施例中,可以根据地形参数确定车辆的目标运动信息,并根据目标运动信息和目标耗电量,控制车辆中的发动机转动。可以实现对车载电池的电量均衡控制,进而有效减小车载电池的损耗。
在一种可能的设计中,根据地形参数,确定该车辆的目标运动信息。
在一种可能的设计中,上述行驶环境信息还可以包括障碍物信息和天气信息,进而能源管理装置可以根据障碍物信息和天气信息,确定预设行驶路径。
在一种可能的设计中,上述行驶环境信息可以包括路面的坡度、曲率、摩擦系数等,本申请实施例不作具体的限定。
需要说明的是,本申请实施例中的“目标耗电量”可以理解为该车辆实现上述目标运动信息所需要消耗的电量。其中,电量可以通过车载电池的SOC值来表示。
其中,确定目标运动信息对应的目标耗电量有多种实施方式,包括但不限于以下方式:
方式1,能源管理装置可以根据目标运动信息中的预设行驶路径的距离和目标耗电量之间的映射关系,确定目标耗电量。
在方式1中,确定目标耗电量的效率较高。
方式2,能源管理装置可以根据目标运动信息中的预设速度与目标耗电量之间的映射关系,确定目标耗电量。
在方式2中,确定的目标耗电量更为准确。
方式3,能源管理装置可以根据目标运动信息中的预设加速度与目标耗电量之间的映射关系,确定目标耗电量。
在方式3中,确定的目标耗电量更为准确。
在一种可能的设计中,上述地形参数可以是通过高精地图和/或路侧设备获得的。
在该设计中,可以通过高精地图和/或者路侧设备获取车辆在预设时长内的行驶环境中的地形参数,进而使得后续根据该行驶环境信息,确定的目标运动信息更加符合车辆的行驶状态。
在一种可能的设计中,能源管理装置可以根据目标运动信息和目标耗电量,控制车辆中的发动机转动的过程可以是:根据目标运动信息和目标耗电量,确定第一控制信号;基于第一控制信号,控制发动机转动。
在该设计中,可以根据预设速度、预设行驶路径和目标耗电量,控制车辆的发动机转动。如此,实现了对车辆能源的管理,进而可以有效减少车载电池的损耗。
需要说明的是,对于不同类型的电动汽车,基于第一控制信号,控制发动机转动的具体实施方式不同,下面分情况进行说明。
情况1,纯电动汽车。
对于纯电动汽车,能源管理装置基于第一控制信号,控制发动机转动的过程可以是:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的荷电状态SOC变化值以及电池当前的SOC值和目标SOC值,确定电池优化后的第一SOC值;确定第一SOC值对应的第一负载功率,以及确定第一负载功率对应的第二控制信号,并基于第二控制信号,控制发动机转动。
情况2,混合动力汽车。
对于纯电动车,能源管理装置基于第一控制信号,控制发动机转动的过程可以是:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的SOC变化值、电池当前的SOC值和目标SOC值、和车辆中燃油的当前重量,确定电池优化后的第二SOC值和燃油的目标重量;确定第二SOC值和燃油的目标重量对应的第二负载功率,以及确定第二负载功率对应的第三控制信号,并基于第三控制信号控制发动机转动。
在一种可能的设计中,能源管理装置根据行驶环境信息,确定车辆的目标运动信息的过程可以是:基于车辆的目的地和历史运动信息,确定参考运动信息;参考运动信息包含第一行驶路径和第一速度;将第一行驶路径和第一速度、地形参数和车辆当前的运动信息 输入汽车运动模型,得到目标运动信息。
其中,“目的地”可以理解为一个固定的地点或者目标车道,本申请实施例不作具体的限制。“历史运动信息”可以理解为车辆已行驶的特定时长内的行驶路径和行驶速度、行驶加速度等,“参考运动信息”可以理解为根据“历史运动信息”预测出的理想状态下的运动信息,“当前的运动信息”可以理解为车辆当前时刻的行驶速度、行驶加速度。
在一种可能的设计中,车辆的行驶环境信息为地形参数时,能源管理装置可以根据高精地图的语义信息,确定第一路面的路面材质;以及根据路面材质和地形参数之间的映射关系,确定地形参数。其中,第一路面为所述车辆到达所述目的地的多条候选路径中的任一路径的路面;高精地图的语义信息可以包括道路属性信息、全球定位系统(global positioning system,GPS)信号消失的区域、道路施工状态等,本申请实施例不作具体的限定。
在该设计中,通过高精地图的语义信息可以进一步确定更准确的地形参数。
第二方面,本申请实施例还提供了一种能源管理装置。
作为一种示例,该装置可以包括:
获取模块,用于获取车辆的行驶环境信息;行驶环境信息包括地形参数;
处理模块,用于根据行驶环境信息,确定车辆的目标运动信息;目标运动信息包括预设速度、预设加速度和预设行驶路径;
处理模块,还用于根据目标运动信息和目标耗电量,控制车辆中的发动机转动。
应理解,本申请实施例中的“行驶环境信息”是指车辆在预设时长内的行驶环境信息,其中,预设时长可以是10s、30s、60s等,本申请实施例不作具体的限制。本申请实施例中的“目标运动信息”可以理解为预设时长内的车辆的运动状态,预设速度可以包括该预设时长内各个时刻对应的速度,预设加速度可以包括该预设时长内各个时刻对应的加速度,预设行驶路径即该预设时长内车辆将要行驶的路径。
在一种可能的设计中,地形参数是通过高精地图和/或路侧设备获得的。
在一种可能的设计中,上述行驶环境信息还可以包括障碍物信息和天气信息,处理模块还用于:根据障碍物信息和天气信息,确定预设行驶路径。
在一种可能的设计中,处理模块还用于:根据目标运动信息和目标耗电量,确定第一控制信号;基于第一控制信号,控制发动机转动。
在一种可能的设计中,处理模块还用于:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的荷电状态SOC变化值以及电池当前的SOC值和目标SOC值,确定电池优化后的第一SOC值;确定第一SOC值对应的第一负载功率,以及确定第一负载功率对应的第二控制信号,并基于第二控制信号,控制发动机转动。
在一种可能的设计中,处理模块还用于:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的SOC变化值、电池当前的SOC值和目标SOC值、和车辆中燃油的当前重量,确定电池优化后的第二SOC值和燃油的目标重量;确定第二SOC值和燃油的目标重量对应的第二负载功率,以及确定第二负载功率对应的第三控制信号,并基于第三控制信号控制发动机转动。
在一种可能的设计中,处理模块还用于:基于车辆的目的地和历史运动信息,确定参 考运动信息;参考运动信息包含第一行驶路径和第一速度;将第一行驶路径、第一速度、第一加速度、地形参数和车辆当前的运动信息输入汽车运动模型,得到目标运动信息。
其中,“目的地”可以理解为一个固定的地点或者目标车道,本申请实施例不作具体的限制。“历史运动信息”可以理解为车辆已行驶的特定时长内的行驶路径和行驶速度、行驶加速度等,“参考运动信息”可以理解为根据“历史运动信息”预测出的理想状态下的运动信息,“当前的运动信息”可以理解为车辆当前时刻的行驶速度、行驶加速度。
在一种可能的设计中,获取模块还用于:根据高精地图的语义信息,确定第一路面的路面材质;根据路面材质和地形参数之间的映射关系,确定地形参数。其中,第一路面为所述车辆到达所述目的地的多条候选路径中的任一路径的路面;高精地图的语义信息可以包括道路属性信息、GPS信号消失的区域、道路施工状态等,本申请实施例不作具体的限定。
在一个可能的设计中,该装置可以是芯片或者集成电路。
在一个可能的设计中,该装置可以是目标车辆或服务器。
第三方面,本申请实施例还提供了一种车辆。示例性的,该车辆包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述存储器中存储的计算程序,实现如上述第一方面或第一方面中任一项可能的设计所述的能源管理方法。
第四方面,本申请实施例还提供了一种服务器。示例性的,所述服务器包括存储器和处理器;所述存储器用于存储计算机程序;所述处理器用于执行所述存储器中存储的计算程序,实现如上述第一方面或第一方面中任一项可能的设计所述的能源管理方法。
在一种可能的设计中,所述服务器为单服务器或由多个子服务器构成的服务器集群,当服务器为由多个子服务器构成的服务器集群时,多个子服务器联合执行上述第一方面以及上述第一方面任一可能的设计中所述的能源管理方法。
第五方面,本申请实施例还提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如上述第一方面以及第一方面中任一项可能的设计所述的能源管理方法。
第六方面,本申请实施例提供了一种芯片系统,该芯片系统包括至少一个处理器,当程序指令在至少一个处理器中执行时,使得上述第一方面以及上述第一方面可能的设计中任一所述的能源管理方法得以实现。
在一种可能的设计中,该芯片系统还包括通信接口,通信接口用于输入或输出信息。
在一种可能的设计中,该芯片系统还包括存储器,该存储器通过通信接口耦合处理器,用于存储上述指令,以便处理器通过通信接口读取存储器中存储的指令。
在一种可能的设计中,上述处理器可以为处理电路,本申请对此不作限定。
第七方面,本申请实施例还提供了一种包括指令的计算机程序产品,当其在上述装置运行时,以执行如上述第一方面以及上述第一方面可选的设计中任一所述的方法得以实现。
第八方面,本申请实施例还提供一种能源管理系统。作为一种示例,该系统包括:
控制单元,用于基于车辆的目标运动信息和目标耗电量,确定第一控制信号,并将该第一控制信号发送至电池管理系统;其中,该目标运动信息是根据该行驶环境信息确定的,该行驶环境信息包括地形参数;
电池管理系统,用于接收第一控制信号,并基于第一控制信号,控制车辆中的发动机转动。
在一种可能的设计中,上述控制单元为车辆中的整车控制器。
上述第二方面到第八方面的有益效果,请参见上述第一方面的有益效果的描述,这里不再重复赘述。
附图说明
图1为一种车载电池的场景示意图;
图2A为本申请实施例适用的一种可能的系统架构示意图;
图2B为本申请实施例适用的一种可能的车辆结构示意图;
图3为本申请实施例提供的一种能源管理方法的流程示意图;
图4为本申请实施例适用的一种场景示意图;
图5A为本申请实施例中的一种可能的控制发动机转动的流程示意图;
图5B为本申请实施例中的另一种可能的控制发动机转动的流程示意图;
图6为本申请实施例提供的一种能源管理装置的结构示意图;
图7为本申请实施例提供的一种芯片系统的结构示意图。
具体实施方式
首先,对本申请实施例中涉及的部分用语进行解释说明,以便于理解。
1)高精地图:是自动驾驶的必备组件,具有“高精度”、“高动态”和“多维度”的特性,其中,“高精度”即精度达到厘米级别,比如可以对路面的几何结构、道路标示线的颜色与形状、每个车道的(坡度、曲率、航向、高程等)数据属性、道路隔离带(及材质)等信息及其所在位置进行详尽描述;“高动态”即高精地图的数据具备实时性、“多维度”即地图中不仅包含有详细的车道模型、道路部件信息,还包含与交通安全相关的一些道路属性信息,例如GPS信号消失的区域、道路施工状态等。高精地图拥有精确的车辆位置信息和丰富的道路元素数据信息,起到构建类似于人脑对于空间的整体记忆与认知的功能,可以帮助车辆预知路面复杂信息,将车辆位置精准地定位于车道之上、帮助车辆获取准确有效的当前位置及环境信息,并为车辆规划制定合适的路线。
2)电池管理系统(battery management system,BMS),是电动汽车中不可或缺的重要部件,是管理和监控车载电池的中枢,可以用于实时监测电池的物理参数、电池状态估计、在线诊断与预警、充放电与预充控制均衡管理等等。
3)运动信息,用于描述车辆的在某时间段的运动状态,例如车辆的速度、加速度和行驶路径等。
4)本申请实施例中的术语“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a和b,a和c,b和c,或a和b和c。
以及,在本申请实施例的描述中,以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第 一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。
为了实现保护车载电池的目的,如图1所示,在一些技术方案中,电池管理系统中设置有控制器和温度传感器、电流传感器和电压传感器,进而控制器可以通过温度传感器获取车载电池的温度信息,以及,通过电压传感器获取电池的电压信息,和通过电流传感器获取车载电池的电流信息;进而控制器可以根据车载电池的状态信息对车载电池进行调节。但该方案无法预测车载电池的状态信息,不能实时或提前对车载电池进行调节,仍然无法解决电动汽车突然加速或减速,对车载电池造成的损耗问题。
有鉴于此,本申请实施例提供一种能源管理方法,该方法可以由能源管理装置实现。在该方法中,能源管理装置可以获取车辆的行驶环境信息(例如,地形参数),并根据行驶环境信息,确定车辆的目标运动信息,以及根据目标运动信息(例如,预设速度、预设加速度和预设行驶路径)和目标耗电量,控制车辆中的发动机转动。如此,可以实现对车载电池的均衡控制,有效减小车载电池的损耗,达到保护车载电池的目的,进而提升能源利用效率。
应理解,本申请实施例中的“行驶环境信息”是指车辆在预设时长内的行驶环境信息,其中,预设时长可以是10s、30s、60s等,本申请实施例不作具体的限制。本申请实施例中的“目标运动信息”可以理解为预设时长内的车辆的运动状态,预设速度可以包括该预设时长内各个时刻对应的速度,预设加速度可以包括该预设时长内各个时刻对应的加速度,预设行驶路径即该预设时长内车辆将要行驶的路径。
需要说明的是,本申请实施例提供的能源管理方法应用于车辆时,具体可以是应用于具有能源管理功能的车辆,或者车辆中具有能源管理功能的车载设备(on board unit,OBU)。其中,车载设备可以包括但不限于车载终端、车载控制器、车载模块、车载模组、车载部件、车载芯片、车载单元、电子控制单元(electronic control unit,ECU)、域控制器(domain controller,DC)等装置。
在一些实施例中,本申请实施例提供的能源管理方法也可以应用于车联网服务器。该车联网服务器是一种具有能源管理功能的设备,如可以是实体设备,诸如主机或服务器等,也可以是虚拟设备,诸如虚拟机或容器等。车辆可以授权车联网服务器进行能源管理,车联网服务器可以通过车辆以及路侧单元,或者其他车辆等中的一个或多个反馈的信息获取车辆的行驶环境信息,例如,车辆可以向服务器反馈地形参数等行驶环境信息,进而服务器可以根据该地形参数,预测车辆的目标运动信息和目标耗电,并基于该目标运动信息和目标耗电量,向车辆发送充电控制信号,如果车辆同意接受该控制信号,则可以根据该控制信号,控制车辆中的电机转动,以实现对车载电池的电量均衡控制。
需要说明的是,为便于描述,下文将车联网服务器简称为服务器。也就是说,在具体实现过程中,下文所出现的“服务器”可以是指通俗意义上的服务器,也可以是指其它具有能源管理功能的设备,还可以是指设备中的一个模块(例如芯片或集成电路等)。
在详细介绍本申请实施例的技术方案之前,首先结合附图对本申请实施例适用的系统架构进行介绍。
示例性的,图2A示出了为本申请实施例适用的一种可能的系统架构示意图。如图2A所示,该系统中可以包括车辆100和服务器200。
在一种可能的实施方式中,车辆100可以获取其自身的行驶环境信息(例如,地形参数),并根据行驶环境信息,确定车辆100的目标运动信息(例如,预设速度、预设加速 度和预设行驶路径);以及根据目标运动信息和目标耗电量,控制车辆100中的发动机转动。
在另一种可能的实施方式中,车辆100可以获取其自身的行驶环境信息(例如,地形参数),并将该行驶环境信息发送至服务器200,进而服务器200可以确定车辆100的目标运动信息(例如,预设速度、预设加速度和预设行驶路径),并根据目标运动信息和目标耗电量,确定相应的控制信号并发送至车辆100,进而车辆100可以根据该控制信号控制车辆100中的发动机转动。
在另一种可能的实施方式中,该系统还包括路侧设备300,路侧设备300可以获取车辆100的行驶环境信息(例如,地形参数),并将该行驶环境信息发送至服务器200,进而服务器200可以确定车辆100的目标运动信息(例如,预设速度、预设加速度和预设行驶路径),并根据目标运动信息和目标耗电量,控制车辆100中的发动机转动。
请参见图2B,图2B中示出了上述车辆100可能的结构示意图。如图2B所示,车辆100可以包括车载感知定位模块101、车载高精地图模块102、控制器103和电池能源管理系统104。
其中,车载感知定位模块101可以包括惯性导航系统(global navigation satellites system+inertial measurement unit,GNSS+IMU)、相机等感知传感器。GNSS+IMU可以用于进行高精度定位,获取车辆100当前的定位信息,相机可以用于获取车辆的行驶环境的图像信息,进而车载感知定位模块101将该定位信息和图像信息相融合可以得到局部特征地图。
可选的,车载感知定位模块101还可以包括激光雷达,激光雷达可以用于获取车辆100的行驶环境信息对应的点云数据,进而车载感知定位模块101将该点云数据、定位信息、图像信息相融合得到局部特征地图。
其中,车载高精地图模块102可以用于确定车辆100的高精语义地图。
其中,控制器103可以用于根据道路环境信息的语义参数为车辆100预测预设速度和预设加速度,以及进行路径规划。
应理解,“路径规划”即规划车辆100的预设行驶路径。
其中,电池能源管理系统104可以用于根据车辆的速度控制信号,确定车载电池的负载功率,进而根据负载功率控制发动机转动,实现车载电池的充电或放电。
在一种可能的实施方式中车载感知定位模块101可以将车辆100行驶环境的定位信息和局部特征地图发送给车载高精地图模块102,进而车载高精地图模块102将该定位信息和该局部特征地图与全局高精地图做匹配,从全局高精地图中获取丰富的环境语义信息,将局部特征地图更新为高精度语义地图,并将高精语义地图发送至控制器103;控制器103接收该高精语义地图,并根据该高精语义地图为车辆100进行路径规划,输出预设时长的预设速度序列和预设加速度序列,并基于该预设速度序列和预设加速度序列驱动车辆100行驶,同时将该预设速度序列和预设加速度序列对应的速度控制信号发送至电池管理系统104,进而电池管理系统104可以确定速度控制信号对应的车载电池的负载功率,并基于该负载功率确定电机控制信号,并根据该电机控制信号控制车辆中的发动机转动,进而控制车载电池充电或放电,达到优化车载电池的目的。
在该实施方式中,车辆100可以获得丰富的行驶环境信息,并且通过控制器103进行路径规划,从而可以获得更丰富的目标运动信息,从而使得电池管理系统104可以提前对 车载电池进行均衡控制,有效提升电池管理系统104的系统预测性、适应性与响应性。
需要说明的是,在图2B中,对车辆100的模块划分仅仅是一种示例,并不是对车辆100的结构的限定。以及,图2B中,激光雷达只是一种示例的能够采集点云数据的装置,本申请实施例中采集点云数据的装置也不仅限于激光雷达,还可以是其它任何能够采集点云数据的装置。同理,相机也只是一种示例的能够采集图像的装置,本申请实施例中采集图像的装置也不仅限于相机,还可以是其它任何能够采集图像的装置,如手机、车载摄像头等。
下面结合附图,对本申请实施例提供的能源管理方法进行详细说明。
示例性的,请参见图3,图3为本申请实施例提供的一种能源管理方法的示意图,该方法可以应用于能源管理装置,该方法包括:
S301:获取车辆的行驶环境信息。
应理解,本申请实施例中的“行驶环境信息”是指车辆在预设时长内的行驶环境信息,其中,预设时长可以是10s、30s、60s等,本申请实施例不作具体的限制。
其中,行驶环境信息可以包括地形参数。示例性的,地形参数可以包括地面坡度、地面摩擦系数、道路曲率等,本申请实施例不作具体的限定。
在一种可能的实施方式中,上述行驶环境信息还可以包括障碍物信息、道路施工信息、天气信息和道路的属性信息(例如,等级、材质、类型、宽度等),本申请实施例不作具体的限定。
其中,获取车辆的行驶环境信息有多种实施方式,包括但不限于以下方式:
方式1,通过高精地图获取。
在一种可能的实施方式中,当行驶环境信息包括地形参数时,能源管理装置通过高精地图获取车辆的行驶环境信息的过程可以是:根据高精地图的语义信息,确定第一路面的路面材质,并根据路面材质和地形参数之间的映射关系,确定地形参数。其中,“第一路面”可以理解为车辆100到达目的地的多条候选路径中的任一路径的路面,具体可以是该任一路径对应的所有路面或部分路面,本申请实施例不作具体的限定。
示例性的,请参见表1,表1中地形参数以摩擦系数为例,表1示出了路面材质与摩擦系数之间的映射关系,在表1中将摩擦系数分为滚动摩擦系数和滑动摩擦系数。如表1所示,车辆的第一路面的路面材质为混凝土,且第一路面不存在磨损的情况下,第一路面的滚动摩擦系数为0.01,滑动摩擦系数为1;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.02,滑动摩擦系数为0.6。
可选的,车辆的第一路面的路面材质为沥青,且第一路面不存在磨损的情况下,第一路面的滚动摩擦系数为0.012,滑动摩擦系数0.9;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.022,滑动摩擦系数为0.6。
可选的,车辆的第一路面的路面材质为碎石,且第一路面不存在磨损的情况下,第一路面的滚动摩擦系数为0.015,滑动摩擦系数0.9;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.037,滑动摩擦系数为0.6。
可选的,车辆的第一路面的路面材质为农田,且第一路面不存在磨损的情况下,第一路面的滚动摩擦系数为0.1,滑动摩擦系数0.9;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.35,滑动摩擦系数为0.45。
可选的,车辆的第一路面的路面材质为黏土,且第一路面不存在磨损的情况下,第一 路面的滚动摩擦系数为0.055,滑动摩擦系数0.4;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.180,滑动摩擦系数为0.3。
可选的,车辆的第一路面的路面材质为砂石,且第一路面不存在磨损的情况下,第一路面的滚动摩擦系数为0.1,滑动摩擦系数0.35;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.15,滑动摩擦系数为0.2。
可选的,车辆的第一路面的路面材质为沙丘,且第一路面不存在磨损的情况下,第一路面的滚动摩擦系数为0.16,滑动摩擦系数0.3;第一路面存在磨损的情况下,第一路面的滚动摩擦系数为0.3,滑动摩擦系数为0.15。
表1
Figure PCTCN2022107658-appb-000001
在另一种可能的实施方式中,当行驶环境信息包括的地形参数为路面的摩擦系数时,能源管理装置还可以根据高精地图的语义信息,确定第一路面的路面材质和天气信息,并根据路面材质、天气信息和摩擦系数之间的映射关系,确定第一路面的摩擦系数。
示例性的,请参见表2,表2示出了路面材质、天气信息与摩擦系数之间的映射关系。能源管理装置在通过高精地图获取到第一路面的路面材质和天气信息之后,可以通过与表2进行匹配,得到第一路面的路面材质。
表2
Figure PCTCN2022107658-appb-000002
Figure PCTCN2022107658-appb-000003
应理解,上述表1和表2中路面材质类型仅仅是举例,在实际应用中,路面材质的种类还可以有多种;以及上述表1和表2中各种路面材质对应的摩擦系数也仅仅举例,在实际应用中,上述各种路面材质在实际应用中对应的摩擦系数还可以有其他的取值,本申请实施例不作具体的限定。
需要说明的是,当行驶环境信息中的地形参数包括地面坡度、道路曲率时,能源管理装置可以直接根据高精地图的语义信息,确定第一路面的地面坡度和道路曲率。
在方式1中,通过高精地图获取车辆的第一路面的地形参数的准确性较高。
方式2,通过路侧设备获取。
在一种可能的实施方式中,当行驶环境信息包括地形参数时,能源管理装置可以通过路侧设备采集第一路面的点云数据和图像信息,对该图像信息进行语义识别,并结合点云数据,确定第一路面的路面材质;进而能源管理装置可以根据路面材质和地形参数之间的映射关系,确定地形参数。其中,“第一路面”可以理解为车辆100到达目的地的多条候选路径中的任一路径的路面,具体可以是该任一路径对应的所有路面或部分路面,本申请实施例不作具体的限定。
应理解,方式2中能源管理装置根据路面材质和地形参数之间的映射关系,确定地形参数的具体实施方式与方式1中类似,请参见前文的描述,这里不再赘述。
在方式2中,通过路侧设备获取的行驶环境中的地形参数,可以有效减少车辆的计算量。
方式3,通过高精地图和路侧设备获取。
在一种可能的实施方式中,路侧设备可以采集第一路面的路面图像,高精地图可以获取第一路面的语义信息,将该语义信息和路面图像相融合,确定第一路面的路面材质,并根据路面材质和地形参数之间的映射关系,确定地形参数。其中,“第一路面”可以理解为车辆100到达目的地的多条候选路径中的任一路径的路面,具体可以是该任一路径对应的所有路面或部分路面,本申请实施例不作具体的限定。
在该方式3中,通过高精地图和路侧设备获取车辆在预设时长内的行驶环境中的地形参数,使得确定的地形参数更准确。
应理解,方式3中能源管理装置根据路面材质和地形参数之间的映射关系,确定地形参数的具体实施方式与方式1中类似,请参见前文的描述,这里不再赘述。
方式4,通过车辆在第一路面的历史运动信息获取。
在一种可能的实施方式中,当行驶环境信息包括地形参数时,能源管理装置可以获取车辆在第一路面的历史运动信息,其中,该历史运动信息包括历史行驶路径、历史行驶速 度和历史行驶加速度以及第一路面的第一地形参数,进而能源管理装置可以根据该第一地形参数,确定车辆的预测运动信息,并根据预测运动信息和历史运动信息之间的差异信息,对该第一地形参数进行修正,得到第二地形参数,将第二地形参数作为第一路面的地形参数。其中,“第一路面”可以理解为车辆100到达目的地的多条候选路径中的任一路径的路面,具体可以是该任一路径对应的所有路面或部分路面,本申请实施例不作具体的限定。
在该方式4中,通过车辆的历史运动信息可以快速确定第一路面的地形参数。
上述方式1、方式2、方式3和方式4中获取了行驶环境中的地形参数,使得行驶环境信息具备丰富的信息,进而使得根据行驶环境信息确定的目标运动信息,更加满足车辆的实际行驶情况。
应理解,上述方式1、方式2、方式3和方式4可以结合使用,也可以单独使用。
S302:根据行驶环境信息,确定车辆的目标运动信息。
其中,目标运动信息可以包括车辆的预设速度、预设行驶路径和预设加速度。
本申请实施例中的“目标运动信息”可以理解为预设时长内的车辆的运动状态,预设速度可以包括该预设时长内各个时刻对应的速度,预设加速度可以包括该预设时长内各个时刻对应的加速度,预设行驶路径即该预设时长内车辆将要行驶的路径。示例性的,预设速度可以是[v1,v2,……,vn],预设加速度可以是[a1,a2,……,an]。
可选的,根据地形参数,确定车辆的目标运动信息。
下面介绍确定目标运动信息中各个参数的实施方式。
1、预设行驶路径。
在一种可能的实施方式中,能源管理装置可以获取车辆的当前位置,根据车辆的当前位置和目的地,确定多条候选路径,并获取该多条候选路径中的每条路径中的多个交通要素,该交通要素可以包括路径里程、路况信息、路程耗时、天气信息和用户偏好等,进而可以根据多个交通要素中每个要素对应的权重信息,计算每条路径的效用值,并将效用值最大的行驶路径作为车辆的预设行驶路径。其中,车辆的当前位置可以通过高精地图确定。应理解,“目的地”可以是目标车道的汇入点、或者某一固定的地点,本申请实施例不作具体的限定。
示例性的,车辆当前在位置A,车辆从位置A到达目的地B存在3条候选路径,这3条候选路径的交通要素包括路况信息和天气信息;其中,候选路径1中的路况信息对应的权重为0.5,且路况信息对应的得分为30分,候选路径1中的天气信息对应的权重为0.5,且天气信息对应的得分为80,则候选路径1的效用值得分为60;候选路径2中的路况信息对应的权重为0.5,且路况信息对应的得分为50分,候选路径2中的天气信息对应的权重为0.5,且天气信息对应的得分为50,则候选路径2的效用值得分为50;候选路径3中的路况信息对应的权重为0.5,且路况信息对应的得分为80,候选路径3中的天气信息对应的权重为0.5,且天气信息对应的得分为90,则候选路径3的效用值得分为85;则能源管理装置将候选路径3作为预设行驶路径。
在该实施方式中,通过综合考虑候选路径的多种交通要素,可以使得确定出的预设行驶路径更准确。
2、预设速度和预设加速度。
在一种可能的实施方式中,能源管理装置可以基于车辆的目的地和历史运动信息,确 定参考运动信息,该参考运动信息包括第一行驶路径和第一速度;能源管理装置将该第一行驶路径和第一速度、地形参数和车辆当前的运动信息输入汽车运动模型,得到车辆的预设速度和预设加速度。
应理解,历史运动信息包括车辆当前已行驶的路径、历史速度、历史加速度等,参考运动信息包含第一行驶路径和第一速度。其中,“历史运动信息”可以理解为车辆已行驶的特定时长内的行驶路径和行驶速度、行驶加速度等,“参考运动信息”可以理解为根据“历史运动信息”预测出的理想状态下的运动信息,“当前的运动信息”可以理解为车辆当前时刻的行驶速度、行驶加速度。“目的地”可以是目标车道的汇入点、或者某一固定的地点,本申请实施例不作具体的限定。
示例性的,请参见图4,图4示出了本申请实施例适用的汽车运动模型,能源管理装置得到参考运动信息之后,将参考运动信息、地形参数和车辆当前的运动信息输入汽车运动模型,可以得到预设速度和预设加速度。
其中,汽车运动模型可以满足如下公式:
X t+1=AX t+Bu t+C;
Figure PCTCN2022107658-appb-000004
F load=F aero+R f+R r+mgsinβ;
Figure PCTCN2022107658-appb-000005
Figure PCTCN2022107658-appb-000006
其中,X t=[x,y,z,v,θ]为车辆在t时刻的运动信息,[x,y,z]即为车辆在t时刻的位置参数,v为车辆在t时刻的预设速度,θ为车辆在t时刻的偏航角;X t+1为车辆在t+1时刻的运动信息;u t为车辆在t时刻的控制信号(即根据参考运动信息中的第一速度确定的速度控制信号;A、B、C为车辆的运动系数,车辆的运动系数可以根据车辆类型与运动系数之间的映射关系确定;
其中,
Figure PCTCN2022107658-appb-000007
为车辆的预设加速度,
Figure PCTCN2022107658-appb-000008
为车辆的预设速度,F f为车辆的前轮推进力,
F r为车辆的后轮推进力,F aero为空气阻力,R f为车辆的前轮滚动摩擦阻力,R r为车辆的后轮滚动摩擦阻力,mgsinβ为车辆重力分量,C aρA为空气阻力系数。
应理解,R f和R r可以根据地形参数中滚动摩擦系数确定。
通过上述公式可以确定车辆在预设时长内的预设速度v和预设加速度
Figure PCTCN2022107658-appb-000009
如此,将参考运动信息和地形参数相结合,确定车辆在预设时长内预设速度和预设加速度,使得确定出的预设速度和预设加速度更加符合车辆行驶的实际情况,进而使得目标运动信息更准确。
S303:根据目标运动信息和目标耗电量,控制车辆中的发动机转动。
本申请实施例中的“目标耗电量”可以理解为车辆实现上述目标运动信息所需要的目标耗电量。因此,能源管理装置在根据目标运动信息和目标耗电量,控制所述车辆中的发动机转动之前,还需要确定目标运动信息对应的目标耗电量。本申请实施例中的耗电量可以用荷电状态(state of change,SOC)变化值来表示。应理解,SOC值可以用于表示电量状态,SOC值为100%,则表示车载电池的电量完全充满;SOC值为0%,则表示车载电池的电量完全耗尽。
其中,确定目标运动信息对应的目标耗电量有多种实施方式,包括但不限于以下实施 方式:
实施方式1,能源管理装置根据预设行驶路径的距离和目标耗电量之间的映射关系,确定目标耗电量。
示例性地,目标耗电量通过SOC变化值来进行量化,预设行驶路径的距离和目标耗电量之间的映射关系如表3所示,若预设行驶路径的距离为25km,则目标耗电量对应的SOC变化值为20%。
表3
预设行驶路径的距离 目标耗电量(SOC变化值)
1-10km 10%
11-30km 20%
31-60km 40%
在实施方式1中,根据预设行驶路径的距离可以快速确定目标耗电量。
实施方式2,能源管理装置根据预设速度和预设行驶路径与目标耗电量之间的映射关系,确定目标耗电量。
其中,同一预设行驶路径可以对应不同的预设速度。示例性的,预设行驶路径以100km为例,如表4所示,若车辆以20km/h的预设速度行驶完100km的行驶路径,则目标耗电量对应的SOC变化值为10%;若车辆以40km/h的预设加速度行驶完100km的行驶路径,则目标耗电量对应的SOC变化值为20%;若车辆以60km/h的预设加速度行驶完100km的行驶路径,则目标耗电量对应的SOC变化值为40%。
表4
预设速度 目标耗电量(SOC变化值)
20-39km/h 10%
40-59km/h 20%
60-80km/h 40%
在实施方式2中,确定的目标耗电量更为准确。
实施方式3,能源管理装置根据预设加速度和预设行驶路径与目标耗电量之间的映射关系,确定目标耗电量。
其中,同一预设行驶路径可以对应不同峰值的预设加速度。示例性的,预设行驶路径的距离以100km为例,如表5所示,若车辆在这100km的行驶路径内以不超过5m/s^2的预设加速度行驶,则目标耗电量对应的SOC变化值为10%;若车辆在这100km的行驶路径内以不超过8m/s^2的预设加速度行驶,则目标耗电量对应的SOC变化值为20%;若车辆在这100km的行驶路径内以不超过10m/s^2的预设加速度行驶,则目标耗电量对应的SOC变化值为40%。
表5
预设加速度的峰值 目标耗电量(SOC变化值)
5m/s^2 10%
8m/s^2 20%
10m/s^2 40%
在实施方式3中,确定的目标耗电量更为准确。
在一种可能的实施方式中,能源管理装置根据目标运动信息和目标耗电量,控制车辆中的发动机转动的过程可以是:根据预设速度、预设行驶路径和目标耗电量,确定第一控制信号,并基于第一控制信号,控制发动机转动。在该实施方式中,可以根据预设速度、预设行驶路径和目标耗电量,控制车辆的发动机转动。如此,实现了对电池管理系统中的车辆电池的提前管理,进而有效减少因车辆突然加速或减速导致的车载电池损耗。
应理解,本申请实施例中“第一控制信号”可以是多个控制信号的集合,例如,速度控制信号和电机控制信号的集合。
需要说明的是,新能源汽车根据其动力源可分为纯电动汽车和混合动力汽车。对于不同类型的新能源汽车,基于第一控制信号,控制发动机转动的具体实施方式不同,下面分情况进行讨论。
情况1,纯电动汽车。
对于纯电动车,能源管理装置可以基于第一控制信号,控制发动机转动的过程可以是:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的荷电状态SOC变化值以及电池当前的SOC值和目标SOC值,确定电池优化后的第一SOC值;确定第一SOC值对应的第一负载功率,以及确定第一负载功率对应的第二控制信号,并基于第二控制信号,控制发动机转动。
示例性的,能源管理装置可以根据如下公式,确定电池优化后的第一SOC值。
Figure PCTCN2022107658-appb-000010
ΔT e(t)=T e_d-T e
Δω e(t)=T e_d-T e
u(t)=[ΔT e(t),Δω e(t)];
其中,T e为发动机当前的转矩,ω e为发动机当前的转速,
Figure PCTCN2022107658-appb-000011
为发动机的目标转矩,
Figure PCTCN2022107658-appb-000012
为发动机的目标转速,SOC(t)为电池当前的SOC值,SOC r为目标SOC值,w s为SOC变化值的权重系数;ΔT e(t)为发动机当前转矩与目标转矩的差值,w t为转矩变化值的权重系数;Δω e(t)为发动机当前转速与目标转速的差值,w w为转速变化的权重系数;
SOC(t h)为t 0时刻到t k时刻的SOC值,w h为全局权重系数;J为方程优化总和,u(t)为发动机的转矩优化项和转速优化项,SOC(t)为SOC值优化项。
通过求解上述公式可以得到t时刻的SOC值,即可以得到优化后的第一SOC值,进而能源管理装置可以确定第一SOC值对应的第一负载功率,以及确定第一负载功率对应的第二控制信号,并基于第二控制信号,控制发动机转动。应理解,SOC值即车载电池在t时刻的电量状态。
其中,能源管理装置确定第一SOC值对应的第一负载功率的过程可以是根据预设的SOC值与第一负载功率之间映射关系确定。示例性的,该映射关系可以如表6所示,若车辆优化后的第一SOC值为10%,则第一负载功率为0.4;若车辆优化后的第一SOC值为20%,则第一负载功率为0.6;若车辆优化后的第一SOC值为40%,则第一负载功率为1。
表6
负载功率 第一SOC值
0.4 10%
0.6 20%
1 40%
示例性的,请参见图5A,在图5A中,汽车动力学模型得到目标运动信息之后,发送至控制器;控制器根据目标运动信息,确定第一控制信号,并发送至电池管理系统;电池管理系统根据第一控制信号,确定电池优化后的第一SOC值,以及确定第一SOC值对应的第一负载功率,并将第一负载功率发送至控制器,进而控制器确定第一负载功率对应的第二控制信号,并基于第二控制信号,控制发动机转动。
情况2,混合动力汽车。
对于混合动力汽车,能源管理装置基于第一控制信号,控制发动机转动的过程可以是:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的SOC变化值、电池当前的SOC值和目标SOC值、和车辆中燃油的当前重量,确定电池优化后的第二SOC值和燃油的目标重量;确定第二SOC值和燃油的目标重量对应的第二负载功率,以及确定第二负载功率对应的第三控制信号,并基于第三控制信号控制发动机转动。
示例性的,能源管理装置可以根据如下公式,确定电池优化后的第二SOC值和燃油的目标重量。
Figure PCTCN2022107658-appb-000013
ΔT e(t)=T e_d-T e
Δω e(t)=T e_d-T e
u(t)=[ΔT e(t),Δω e(t)];
其中,T e为发动机当前的转矩,ω e为发动机当前的转速,
Figure PCTCN2022107658-appb-000014
为发动机的目标转矩,
Figure PCTCN2022107658-appb-000015
为发动机的目标转速,SOC(t)为电池当前的SOC值,SOC r为目标SOC值,w s为SOC变化值的权重系数;
Figure PCTCN2022107658-appb-000016
为t时刻的燃油重量,ΔT e(t)为发动机当前转矩与目标转矩的差值;
w t为转矩变化值的权重系数,Δω e(t)为发动机当前转速与目标转速的差值,w w为转速变化的权重系数;SOC(t h)为t 0时刻到t k时刻的SOC值,w h为全局权重系数;J为方程优化总和,u(t)为发动机的转矩优化项和转速优化项,SOC(t)为SOC值优化项,
Figure PCTCN2022107658-appb-000017
为燃油重量优化项。
通过上述方式可以得到优化后的第二SOC值,以及燃油的目标重量
Figure PCTCN2022107658-appb-000018
并且电池优化后的第二SOC值接近目标值SOC r,燃油的目标重量
Figure PCTCN2022107658-appb-000019
也尽可能小,如此有效实现对车辆的能源控制,有效减少汽车的能量消耗。同时,第一SOC值接近SOC目标值SOC r,可以有效避免车辆中电池出现过充或过放的情况。如此减少燃油的使用,尽量以电能提供发动机转 动所需的能量,以使车辆能够以预设速度和预设加速度沿着预设行驶路径进行运动,有助于车辆的环保运行。
示例性的,请参见图5B,在图5B中,汽车动力学模型得到目标运动信息之后,发送至控制器;控制器根据目标运动信息,确定第一控制信号,并发送至电池管理系统;电池管理系统根据第一控制信号,确定电池优化后的第一SOC值,以及确定第一SOC值对应的第一负载功率,并将第二负载功率发送至控制器,进而控制器确定第二负载功率对应的第二控制信号,并基于第三控制信号,控制发动机转动。
应理解,上述图5A和图5B中的控制器可以是整车控制器也可以是域控制器,本申请实施例不作具体的限定。
在图3所示的实施例中,根据车辆的行驶环境信息(即地形参数)预测车辆的目标运动信息,并根据目标运动信息和目标耗电量,控制车辆中的发动机转动,可以实现车载电池的电量均衡,有效减少车载电池的损耗,达到保护车载电池的目的,进而提升新能源汽车的能源利用效率。
图6示出了本申请上述实施例中所涉及的能源管理装置的一种可能的结构示意图。
示例性地,该装置600包括:
获取模块601,用于获取车辆的行驶环境信息;行驶环境信息包括地形参数;
处理模块602,用于根据行驶环境信息,确定车辆的目标运动信息;目标运动信息包括预设速度、预设加速度和预设行驶路径;
处理模块602,还用于根据目标运动信息和目标耗电量,控制车辆中的发动机转动。
应理解,本申请实施例中的“行驶环境信息”是指车辆在预设时长内的行驶环境信息,其中,预设时长可以是10s、30s、60s等,本申请不作具体的限制。本申请实施例中的“目标运动信息”可以理解为预设时长内的车辆的运动状态,预设速度可以包括该预设时长内各个时刻对应的速度,预设加速度可以包括该预设时长内各个时刻对应的加速度,预设行驶路径即该预设时长内车辆将要行驶的路径。
在一种可能的实施方式中,地形参数是通过高精地图和/或路侧设备获得的。
在一种可能的实施方式中,处理模块602还用于:根据目标运动信息和目标耗电量,确定第一控制信号;基于第一控制信号,控制发动机转动。
在一种可能的实施方式中,处理模块602还用于:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的荷电状态SOC变化值以及电池当前的SOC值和目标SOC值,确定电池优化后的第一SOC值;确定第一SOC值对应的第一负载功率,以及确定第一负载功率对应的第二控制信号,并基于第二控制信号,控制发动机转动。
在一种可能的实施方式中,处理模块602还用于:根据第一控制信号,确定发动机的目标转速和目标转矩;根据发动机的目标转速和目标转矩、发动机当前的转矩和转速、在预设时长内车辆中的电池的SOC变化值、电池当前的SOC值和目标SOC值、和车辆中燃油的当前重量,确定电池优化后的第二SOC值和燃油的目标重量;确定第二SOC值和燃油的目标重量对应的第二负载功率,以及确定第二负载功率对应的第三控制信号,并基于第三控制信号控制发动机转动。
在一种可能的实施方式中,处理模块602还用于:基于车辆目的地和历史运动信息,确定参考运动信息;参考运动信息包含第一行驶路径和第一速度;将参考运动信息、地形 参数和车辆当前的运动信息输入汽车运动模型,得到目标运动信息。
其中,“目的地”可以理解为一个固定的地点或者目标车道,本申请实施例不作具体的限制。“历史运动信息”可以理解为车辆已行驶的特定时长内的行驶路径和行驶速度、行驶加速度等,“参考运动信息”可以理解为根据“历史运动信息”预测出的理想状态下的运动信息,“当前的运动信息”可以理解为车辆当前时刻的行驶速度、行驶加速度。
在一种可能的实施方式中,获取模块601还用于:根据高精地图的语义信息,确定第一路面的路面材质;根据路面材质和地形参数之间的映射关系,确定地形参数。第一路面为所述车辆到达所述目的地的多条候选路径中的任一路径的路面;高精地图的语义信息可以包括道路属性信息、GPS信号消失的区域、道路施工状态等,本申请实施例不作具体的限定。
在一个可能的实施方式中,该装置可以是芯片或者集成电路。
在一个可能的实施方式中,该装置可以是目标车辆或服务器。
本申请实施例还提供了一种车辆,该车辆可以包括处理器,处理器用于执行上述图3所示实施例中的能源管理方法。
在一种可能的实施方式中,还包括存储器,用于存储计算机程序或指令。
在一种可能的实施方式中,还包括收发器,用于接收或发送信息。
本申请实施例还提供了一种服务器,该服务器包括处理器,处理器用于执行上述图3所示实施例中的能源管理方法。
在一种可能的实施方式中,还包括存储器,用于存储计算机程序或指令。
在一种可能的实施方式中,还包括收发器,用于接收或发送信息。
在一种可能的实施方式中,服务器为单服务器或由多个子服务器构成的服务器集群,当服务器为由多个子服务器构成的服务器集群时,多个子服务器联合执行上述能源管理方法。
本申请实施例还提供了一种芯片系统,请参见图7,该芯片系统700包括至少一个处理器,当程序指令在至少一个处理器701中执行时,使得上述图3所示实施例中的能源管理方法得以实现。
在一种可能的实施方式中,该芯片系统还包括通信接口703,通信接口用于输入或输出信息。
在一种可能的实施方式中,该芯片系统还包括存储器702,该存储器702通过通信接口703耦合处理器,用于存储上述指令,以便处理器通过通信接口703读取存储器中存储的指令。
应理解,本申请实施例中不限定上述处理器701、存储器702以及通信接口703之间的连接介质。本申请实施例在图7中以存储器702、处理器701以及通信接口703之间通过通信总线704连接,总线在图7中以粗线表示,其它部件之间的连接方式,仅是示意性说明,并不作为限定。所述总线可以包括地址总线、数据总线、控制总线等。为了便于表示,图7中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线等。
本申请实施例还提供了一种包括指令的计算机程序产品,当其在上述装置上运行时,以执行如上述图3所示实施例中的能源管理方法。
本申请实施例提供一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当计算机程序被运行时,实现如上述图3所示实施例中的能源管理方法。
上述各实施例可以相互结合以实现不同的技术效果。
通过以上的实施方式的描述,所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,仅以上述各功能模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能模块完成,即将装置的内部结构划分成不同的功能模块,以完成以上描述的全部或者部分功能。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个装置,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是一个物理单元或多个物理单元,即可以位于一个地方,或者也可以分布到多个不同地方。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理模块中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
本申请实施例中对模块的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能模块可以集成在一个处理器中,也可以是单独物理存在,也可以两个或两个以上模块集成在一个模块中。上述集成的模块既可以采用硬件的形式实现,也可以采用软件功能模块的形式实现。
本申请实施例提供的方法中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,简称DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机可以存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,数字视频光盘(digital video disc,简称DVD))、或者半导体介质(例如,SSD)等。
在本申请实施例中,在无逻辑矛盾的前提下,各实施例之间可以相互引用,例如方法实施例之间的方法和/或术语可以相互引用,例如装置实施例之间的功能和/或术语可以相互引用,例如装置实施例和方法实施例之间的功能和/或术语可以相互引用。
本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (19)

  1. 一种能源管理方法,其特征在于,包括:
    获取车辆的行驶环境信息;所述行驶环境信息包括地形参数;
    根据所述行驶环境信息,确定所述车辆的目标运动信息;所述目标运动信息包括预设速度、预设加速度和预设行驶路径;
    根据所述目标运动信息和目标耗电量,控制所述车辆中的发动机转动。
  2. 根据权利要求1所述的方法,其特征在于,所述地形参数是通过高精地图和/或路侧设备获得的。
  3. 根据权利要求1或2所述的方法,其特征在于,所述根据所述目标运动信息和目标耗电量,控制所述车辆中的发动机转动,包括:
    根据所述目标运动信息和目标耗电量,确定第一控制信号;
    基于所述第一控制信号,控制所述发动机转动。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述第一控制信号,控制所述发动机转动,包括:
    根据所述第一控制信号,确定所述发动机的目标转速和目标转矩;
    根据所述发动机的目标转速和目标转矩、所述发动机当前的转矩和转速、在预设时长内所述车辆中的电池的荷电状态SOC变化值以及所述电池当前的SOC值和目标SOC值,确定所述电池优化后的第一SOC值;
    确定所述第一SOC值对应的第一负载功率,以及确定所述第一负载功率对应的第二控制信号,并基于所述第二控制信号,控制所述发动机转动。
  5. 根据权利要求3所述的方法,其特征在于,所述基于所述第一控制信号,控制所述发动机转动,包括:
    根据所述第一控制信号,确定所述发动机的目标转速和目标转矩;
    根据所述发动机的目标转速和目标转矩、所述发动机当前的转矩和转速、在预设时长内所述车辆中的电池的SOC变化值、所述电池当前的SOC值和目标SOC值、和所述车辆中燃油的当前重量,确定所述电池优化后的第二SOC值和所述燃油的目标重量;
    确定所述第二SOC值和所述燃油的目标重量对应的第二负载功率,以及确定所述第二负载功率对应的第三控制信号,并基于所述第三控制信号控制所述发动机转动。
  6. 根据权利要求1-5任一项所述的方法,其特征在于,所述根据所述行驶环境信息,确定所述车辆的目标运动信息,包括:
    基于所述车辆的目的地和历史运动信息,确定参考运动信息;所述参考运动信息包含第一行驶路径和第一速度;
    将所述第一行驶路径、所述第一速度、所述地形参数和所述车辆当前的运动信息输入汽车运动模型,得到所述目标运动信息。
  7. 根据权利要求6所述的方法,其特征在于,所述获取车辆的行驶环境信息,包括:
    根据高精地图的语义信息,确定第一路面的路面材质;所述第一路面为所述车辆到达所述目的地的多条候选路径中的任一路径的路面;
    根据所述路面材质和所述地形参数之间的映射关系,确定所述地形参数。
  8. 一种能源管理装置,其特征在于,包括:
    获取模块,用于获取车辆的行驶环境信息;所述行驶环境信息包括地形参数;
    处理模块,用于根据所述行驶环境信息,确定所述车辆的目标运动信息;所述目标运动信息包括预设速度、预设加速度和预设行驶路径;
    所述处理模块,还用于根据所述目标运动信息和目标耗电量,控制所述车辆中的发动机转动。
  9. 根据权利要求8所述的装置,其特征在于,所述地形参数是通过高精地图和/或路侧设备获得的。
  10. 根据权利要求8或9所述的装置,其特征在于,所述处理模块还用于:
    根据所述目标运动信息和目标耗电量,确定第一控制信号;
    基于所述第一控制信号,控制所述发动机转动。
  11. 根据权利要求10所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一控制信号,确定所述发动机的目标转速和目标转矩;
    根据所述发动机的目标转速和目标转矩、所述发动机当前的转矩和转速、在预设时长内所述车辆中的电池的荷电状态SOC变化值以及所述电池当前的SOC值和目标SOC值,确定所述电池优化后的第一SOC值;
    确定所述第一SOC值对应的第一负载功率,以及确定所述第一负载功率对应的第二控制信号,并基于所述第二控制信号,控制所述发动机转动。
  12. 根据权利要求10所述的装置,其特征在于,所述处理模块还用于:
    根据所述第一控制信号,确定所述发动机的目标转速和目标转矩;
    根据所述发动机的目标转速和目标转矩、所述发动机当前的转矩和转速、在预设时长内所述车辆中的电池的SOC变化值、所述电池当前的SOC值和目标SOC值、和所述车辆中燃油的当前重量,确定所述电池优化后的第二SOC值和所述燃油的目标重量;
    确定所述第二SOC值和所述燃油的目标重量对应的第二负载功率,以及确定所述第二负载功率对应的第三控制信号,并基于所述第三控制信号控制所述发动机转动。
  13. 根据权利要求8-12任一项所述的装置,其特征在于,所述处理模块还用于:
    基于所述车辆的目的地和历史运动信息,确定参考运动信息;所述参考运动信息包含第一行驶路径和第一速度;
    将所述第一行驶路径、所述第一速度、所述地形参数和所述车辆当前的运动信息输入汽车运动模型,得到所述目标运动信息。
  14. 根据权利要求8-13任一项所述的装置,其特征在于,所述获取模块还用于:
    根据高精地图的语义信息,确定第一路面的路面材质;所述第一路面为所述车辆到达所述目的地的多条候选路径中的任一路径的路面;
    根据所述路面材质和所述地形参数之间的映射关系,确定所述地形参数。
  15. 一种车辆,其特征在于,包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器中存储的计算程序,实现如权利要求1~7中任一项所述的方法。
  16. 一种服务器,其特征在于,所述服务器包括存储器和处理器;
    所述存储器用于存储计算机程序;
    所述处理器用于执行所述存储器中存储的计算机程序,实现如权利要求1~7中任一项所述的方法。
  17. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机程序,当所述计算机程序被运行时,实现如上述权利要求1~7中任一项所述的方法。
  18. 一种芯片系统,其特征在于,所述芯片系统包括至少一个处理器,当程序指令在所述至少一个处理器中执行时,实现如上述权利要求1~7中任一项所述的方法。
  19. 一种计算机程序产品,其特征在于,所述计算机程序产品包括指令,当所述指令被运行时,实现如上述权利要求1~7中任一项所述的方法。
PCT/CN2022/107658 2021-08-13 2022-07-25 一种能源管理方法、装置及系统 WO2023016235A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22855218.8A EP4378775A1 (en) 2021-08-13 2022-07-25 Energy management method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110932114.X 2021-08-13
CN202110932114.XA CN115703452A (zh) 2021-08-13 2021-08-13 一种能源管理方法、装置及系统

Publications (1)

Publication Number Publication Date
WO2023016235A1 true WO2023016235A1 (zh) 2023-02-16

Family

ID=85181146

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107658 WO2023016235A1 (zh) 2021-08-13 2022-07-25 一种能源管理方法、装置及系统

Country Status (3)

Country Link
EP (1) EP4378775A1 (zh)
CN (1) CN115703452A (zh)
WO (1) WO2023016235A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116901927A (zh) * 2023-08-08 2023-10-20 广州汽车集团股份有限公司 一种能源量控制方法、装置、设备及存储介质
CN117445766A (zh) * 2023-11-20 2024-01-26 北京卡文新能源汽车有限公司 车辆的控制方法、装置、车辆及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116215314B (zh) * 2023-05-08 2023-09-12 深圳市创诺新电子科技有限公司 车载电源电量控制装置及控制方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104554251A (zh) * 2014-12-09 2015-04-29 河南理工大学 基于道路坡度信息的混合动力汽车节能预测控制方法
US20190039596A1 (en) * 2017-08-04 2019-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. Navigation-enhanced battery state of charge maintenance
CN111409645A (zh) * 2020-04-13 2020-07-14 宁波吉利汽车研究开发有限公司 一种用于混合动力车辆的驾驶模式切换的控制方法及系统
CN112009455A (zh) * 2019-05-28 2020-12-01 北汽福田汽车股份有限公司 混合动力车辆的能量管理方法、装置及车辆
US20210179061A1 (en) * 2019-12-16 2021-06-17 Hyundai Motor Company Method and apparatus for controlling terrain driving mode of hybrid vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104554251A (zh) * 2014-12-09 2015-04-29 河南理工大学 基于道路坡度信息的混合动力汽车节能预测控制方法
US20190039596A1 (en) * 2017-08-04 2019-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. Navigation-enhanced battery state of charge maintenance
CN112009455A (zh) * 2019-05-28 2020-12-01 北汽福田汽车股份有限公司 混合动力车辆的能量管理方法、装置及车辆
US20210179061A1 (en) * 2019-12-16 2021-06-17 Hyundai Motor Company Method and apparatus for controlling terrain driving mode of hybrid vehicle
CN111409645A (zh) * 2020-04-13 2020-07-14 宁波吉利汽车研究开发有限公司 一种用于混合动力车辆的驾驶模式切换的控制方法及系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116901927A (zh) * 2023-08-08 2023-10-20 广州汽车集团股份有限公司 一种能源量控制方法、装置、设备及存储介质
CN116901927B (zh) * 2023-08-08 2024-05-14 广州汽车集团股份有限公司 一种能源量控制方法、装置、设备及存储介质
CN117445766A (zh) * 2023-11-20 2024-01-26 北京卡文新能源汽车有限公司 车辆的控制方法、装置、车辆及存储介质
CN117445766B (zh) * 2023-11-20 2024-04-30 北京卡文新能源汽车有限公司 车辆的控制方法、装置、车辆及存储介质

Also Published As

Publication number Publication date
EP4378775A1 (en) 2024-06-05
CN115703452A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
US20210018924A1 (en) Power management, dynamic routing and memory management for autonomous driving vehicles
WO2023016235A1 (zh) 一种能源管理方法、装置及系统
KR102225006B1 (ko) 차량 제동 에너지 회수 방법 및 장치
CN112519575B (zh) 调整油门踏板特性的方法和装置
US9792736B1 (en) Telemetry device for capturing vehicle environment and operational status history
CN112146671B (zh) 路径规划方法、相关设备及计算机可读存储介质
JP2019059462A (ja) ピーク効率の勧告および共有
US20210012584A1 (en) Driving range based on past and future data
WO2021204189A1 (zh) 一种驾驶性能调节方法和装置
CN113632033B (zh) 车辆控制方法及装置
CN103782133A (zh) 车辆用导航装置
EP4219253A1 (en) Electromechanical braking method and electromechanical braking device
CN112092811B (zh) 巡航控制中的预测坡度优化
CN114782638B (zh) 生成车道线的方法、装置、车辆、存储介质及芯片
CN115871523A (zh) 电池加热方法、装置、车辆、可读存储介质及芯片
US20220291003A1 (en) Ridesharing management system
CN115314526A (zh) 用于自车位置识别的系统架构、传输方法、车辆、介质及芯片
Estreen et al. Visualization of Platooning in Unity
Narisawa et al. Vehicle Electronic Control Units for Autonomous Driving in Safety and Comfort
WO2021057662A1 (zh) 地图级别指示方法、地图级别获取方法及相关产品
US11742683B2 (en) Managing storage of electrical energy
CN113246949B (zh) 自动跟随距离的巡航控制方法
EP4194299A1 (en) Method and apparatus for planning lane-changing trajectory
CN117664163A (zh) 车辆专用路线规划
JP2023085804A (ja) 情報処理装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22855218

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022855218

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2022855218

Country of ref document: EP

Effective date: 20240227

NENP Non-entry into the national phase

Ref country code: DE