WO2023015708A1 - 5g n77频段的天线模组、频段分段方法及移动终端 - Google Patents

5g n77频段的天线模组、频段分段方法及移动终端 Download PDF

Info

Publication number
WO2023015708A1
WO2023015708A1 PCT/CN2021/122847 CN2021122847W WO2023015708A1 WO 2023015708 A1 WO2023015708 A1 WO 2023015708A1 CN 2021122847 W CN2021122847 W CN 2021122847W WO 2023015708 A1 WO2023015708 A1 WO 2023015708A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
switch
radio frequency
frequency band
modem
Prior art date
Application number
PCT/CN2021/122847
Other languages
English (en)
French (fr)
Inventor
陈卫
张攀
罗伟东
Original Assignee
惠州Tcl云创科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 惠州Tcl云创科技有限公司 filed Critical 惠州Tcl云创科技有限公司
Publication of WO2023015708A1 publication Critical patent/WO2023015708A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/50Structural association of antennas with earthing switches, lead-in devices or lightning protectors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/10Resonant antennas

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to an antenna module for the 5G N77 frequency band, a frequency band segmentation method, and a mobile terminal.
  • 5G wireless local area network
  • 5G+8K that is, use 5G communication technology to broadcast live events in high-definition
  • 5G+VR that is, the use of 5G communication technology can make VR from wired transmission to wireless transmission
  • the low-latency advantage of 5G makes it possible to implement unmanned driving technology; based on 5G telemedicine, doctors can use high-definition and low-latency
  • the transmitted video can be used to remotely guide surgery; 5G can connect more massive IoT devices.
  • the purpose of this disclosure is to provide a 5G N77 frequency band antenna module, a frequency band segmentation method, and a mobile terminal to solve the internal problems of the mobile terminal caused by the existing single antenna covering a bandwidth of 900Mhz.
  • An antenna module for 5G N77 frequency band which includes:
  • the first antenna and the second antenna can receive signals of different frequency bands
  • a radio frequency modem the radio frequency modem is used for receiving and transmitting radio frequency signals
  • the first switch is respectively connected to the receiving end of the radio frequency modem and the transmitting end of the radio frequency modem, and is used to combine the transmitting path and the receiving path of the radio frequency signal into one radio frequency path;
  • a second switch is respectively connected to the first switch, the first antenna and the second antenna, and is used to switch the frequency band corresponding to the first antenna to the
  • the first antenna is configured to switch the frequency band corresponding to the second antenna to the second antenna;
  • a radio frequency power amplifier is respectively connected to the transmitting end of the radio frequency modem and the first switch, and is used to perform power amplification processing on the radio frequency signal output by the radio frequency modem and output it to the first switch switch;
  • the first integrated switch is connected between the first antenna and the second switch;
  • a second integrated switch the second integrated switch is connected between the second antenna and the second switching switch.
  • an antenna module in the 5G N77 frequency band which includes:
  • the first antenna and the second antenna can receive signals of different frequency bands
  • a radio frequency modem the radio frequency modem is used for receiving and transmitting radio frequency signals
  • the first switch is respectively connected to the receiving end of the radio frequency modem and the transmitting end of the radio frequency modem, and is used to combine the transmitting path and the receiving path of the radio frequency signal into one radio frequency path;
  • a second switch is respectively connected to the first switch, the first antenna and the second antenna, and is used to switch the frequency band corresponding to the first antenna to the
  • the first antenna is configured to switch the frequency band corresponding to the second antenna to the second antenna.
  • the antenna module of the 5G N77 frequency band also includes:
  • a radio frequency power amplifier is respectively connected to the transmitting end of the radio frequency modem and the first switch, and is used to perform power amplification processing on the radio frequency signal output by the radio frequency modem and output it to the first switch switch.
  • the antenna module of the 5G N77 frequency band also includes:
  • a first filter the first filter is connected between the radio frequency modem and the first switch.
  • the antenna module of the 5G N77 frequency band also includes:
  • the first integrated switch is connected between the first antenna and the second switch;
  • a second integrated switch the second integrated switch is connected between the second antenna and the second switching switch.
  • the first integrated switch and the second integrated switch are toggle switches, wherein,
  • the common end of the first integrated switch is connected to the first antenna, and the other end of the first integrated switch has multiple ports, which are respectively connected to radio frequency channels of different frequency bands;
  • the common end of the second integrated switch is connected to the second antenna, and the other end of the second integrated switch has a plurality of ports, which are respectively connected to radio frequency channels of different frequency bands.
  • the inside of the radio frequency modem is composed of a transmitter and a receiver, and the transmitting port and the receiving port of the radio frequency modem are set separately.
  • an antenna module in the 5G N77 frequency band which includes:
  • the first antenna and the second antenna can receive signals of different frequency bands
  • a radio frequency modem the radio frequency modem is used for receiving and transmitting radio frequency signals
  • a first switch the first switch is respectively connected to the receiving end of the radio frequency modem, the transmitting end of the radio frequency modem and the first antenna, and is used to switch the frequency band corresponding to the first antenna to said first antenna;
  • the second switch is respectively connected with the receiving end of the radio frequency modem, the transmitting end of the radio frequency modem and the second antenna, for switching the frequency band corresponding to the second antenna to the second antenna.
  • the antenna module of the 5G N77 frequency band also includes:
  • a radio frequency power amplifier is respectively connected to the transmitting end of the radio frequency modem, the first switch and the second switch, and is used to perform power amplification processing on the radio frequency signal output by the radio frequency modem and output to the first switch or the second switch.
  • the antenna module of the 5G N77 frequency band also includes:
  • a second filter connected between the radio frequency modem and the second switch.
  • the antenna module of the 5G N77 frequency band also includes:
  • the first integrated switch is connected between the first antenna and the first switch;
  • a second integrated switch the second integrated switch is connected between the second antenna and the second switching switch.
  • the first integrated switch and the second integrated switch are toggle switches, wherein,
  • the common end of the first integrated switch is connected to the first antenna, and the other end of the first integrated switch has multiple ports, which are respectively connected to radio frequency channels of different frequency bands;
  • the common end of the second integrated switch is connected to the second antenna, and the other end of the second integrated switch has a plurality of ports, which are respectively connected to radio frequency channels of different frequency bands.
  • the inside of the radio frequency modem is composed of a transmitter and a receiver, and the transmitting port and the receiving port of the radio frequency modem are set separately.
  • the present disclosure also provides a frequency band segmentation method for the antenna module of the 5G N77 frequency band as described above, which includes:
  • controlling the second switch to switch the frequency band corresponding to the first antenna to the first antenna, and switch the frequency band corresponding to the second antenna to the second antenna.
  • the present disclosure also provides a mobile terminal, which includes;
  • the baseband chip includes a memory, and a frequency is preset in the memory, and the baseband chip divides the antenna according to the preset frequency and controls the corresponding pin of the radio frequency modem to work.
  • An antenna module for the 5G N77 frequency band, a frequency band segmentation method, and a mobile terminal provided in the present disclosure, wherein the antenna module for the 5G N77 frequency band includes: a first antenna and a second antenna, and the first antenna and the second antenna
  • the second antenna can receive signals of different frequency bands; a radio frequency modem, the radio frequency modem is used to receive and transmit radio frequency signals; a first switch, the first switch is connected to the receiving end of the radio frequency modem and The transmitting end of the radio frequency modem is connected, and is used to combine the transmitting path and the receiving path of the radio frequency signal into one radio frequency path; the second switching switch, the second switching switch is connected with the first switching switch, the first switching switch and the first switching switch respectively.
  • the antenna connection and the second antenna connection are used for switching the frequency band corresponding to the first antenna to the first antenna, and for switching the frequency band corresponding to the second antenna to the second antenna.
  • the transmission channel and the receiving channel of the 5G N77 frequency band are combined into one radio frequency channel through the first switch and output to the second switch, and the second switch is controlled to switch the frequency band corresponding to the first antenna to the first switch.
  • Antenna, and switch the frequency band corresponding to the second antenna to the second antenna so that the N77 frequency band can be divided into two segments according to the frequency, and the support and coverage can be realized through two antennas, so that the N77 frequency band can work at different frequencies , you can switch to the corresponding antenna according to different frequencies to transmit and receive in the N77 frequency band. Therefore, the present disclosure can change the high bandwidth realized by one antenna into two antennas, which reduces the bandwidth requirement of a single antenna, reduces the antenna design requirements, and thus reduces the requirements and restrictions on the internal space of the mobile terminal.
  • Figure 1 is a schematic block diagram of an antenna module in the 5G N77 frequency band in the prior art.
  • FIG. 2 is a functional block diagram of an antenna module in the 5G N77 frequency band in an embodiment of the present disclosure.
  • FIG. 3 is a functional block diagram of an antenna module in the 5G N77 frequency band in another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of a method for segmenting frequency bands of antenna modules in the 5G N77 frequency band in an embodiment of the present disclosure.
  • This disclosure provides an antenna module for the 5G N77 frequency band, a frequency band segmentation method, and a mobile terminal, which can change the high bandwidth that originally required one antenna into two antennas, reducing the bandwidth requirements of a single antenna and reducing the antenna bandwidth. Design requirements, thereby reducing the requirements and restrictions on the internal space and appearance of the mobile terminal, thereby better meeting the antenna performance requirements. At the same time, the requirement on the bandwidth of the radio frequency device can be reduced, and the design complexity of the radio frequency device can be reduced, thereby reducing the cost of the device.
  • the present disclosure will be further described in detail below with reference to the accompanying drawings and examples. It should be understood that the specific embodiments described here are only used to explain the present disclosure, not to limit the present disclosure.
  • the present disclosure provides an antenna module for the 5G N77 frequency band, a frequency band segmentation method and a mobile terminal, which can change the high bandwidth originally required by one antenna into two antennas, reducing the cost of a single antenna.
  • Bandwidth requirements reduce antenna design requirements, thereby reducing requirements and restrictions on the internal space and appearance of mobile terminals, and can better meet antenna performance requirements.
  • it can also reduce the requirement on the bandwidth of the radio frequency device, reduce the design complexity of the radio frequency device, and thereby reduce the cost of the device.
  • This disclosure provides a preferred embodiment of an antenna module in the 5G N77 frequency band.
  • the present disclosure provides a 5G N77 frequency band antenna module, which includes: a first antenna 1 , a second antenna 2 , a radio frequency modem 3 , a first switch 4 and a second switch 5 .
  • the first antenna 1 and the second antenna 2 can receive signals of different frequency bands;
  • the radio frequency modem 3 is used to receive and transmit radio frequency signals;
  • the first switch 4 is connected to the radio frequency modem respectively The receiving end of 3 and the transmitting end of the radio frequency modem 3 are connected, and are used to combine the transmitting path and the receiving path of the radio frequency signal into one radio frequency path;
  • the second switching switch 5 is respectively connected with the first switching switch 4, the The first antenna 1 is connected and the second antenna 2 is connected, for switching the frequency band corresponding to the first antenna 1 to the first antenna 1, and for switching the frequency band corresponding to the second antenna 2 Switch to the second antenna 2.
  • the bandwidth is from 3300Mhz to 4200Mhz, and the bandwidth is as high as 900Mhz.
  • the resonance coverage of a single antenna is only about 500-600M bandwidth, and it is difficult to cover the bandwidth of 900Mhz.
  • This disclosure divides the N77 frequency band into two sections according to frequency , achieve support and coverage through two antennas, that is, achieve coverage through the first antenna 1 and the second antenna 2, for example, the first antenna 1 can support 3300-3700Mhz, and the second antenna 2 It can support 3700-4200Mhz, and the installation frequency of the N77 frequency band can be divided into two parts, or it can be divided into two uneven parts according to a specific frequency.
  • the N77 frequency band can also be divided into three parts, or more than three parts, so as to achieve full coverage and support through three antennas or multiple antennas. An embodiment of implementing coverage and support with multiple antennas will be described.
  • the radio frequency modem 3 (Transceiver), also known as a radio frequency transceiver, is a common radio frequency chip, which has the functions of receiving and transmitting radio frequency signals. demodulation.
  • the interior of the radio frequency modem 3 is composed of a transmitter and a receiver, so the transmitting port TX and the receiving port RX of the radio frequency modem 3 are separated.
  • the first switch 4 is connected to the receiving end of the radio frequency modem 3 and the transmitting end of the radio frequency modem 3 respectively, and the second switching switch 5 is connected to the first switching switch 4 respectively.
  • the first antenna 1 and the second antenna 2 are connected.
  • the model of the second switch 5 may be SP2T. After the transmission path and the reception path of N77 come out from the radio frequency modem 3, they are merged into one radio frequency path by the first switch 4, and are connected to the radio frequency path before entering the antenna (the first antenna 1 or the second antenna 2).
  • the second switch 5 wherein, the common end of the second switch 5 is connected to the combined radio frequency path, and the two output ends of the second switch 5 are respectively connected to the first antenna 1 and the The second antenna 2, under the action of the second switching switch 5, can switch the communication to the corresponding antenna according to the preset setting when the N77 frequency band is at different frequencies.
  • the second switch 5 is connected to the baseband chip, and the antenna corresponding to the frequency division is preset in the memory inside the baseband chip.
  • the radio frequency modem 3 is also connected to the baseband chip, and the baseband chip will write the frequency to the internal memory in advance according to the needs.
  • the baseband chip controls the frequency of the radio frequency modem 3 according to the current required operating frequency.
  • the corresponding pins work to send and receive signals.
  • the baseband chip can also command the second switch 5 to switch to the first antenna 1 or the second antenna 2 according to the frequency band in which the current mobile terminal works to perform transceivers in the N77 frequency band, thereby connecting with the first antenna 1 or the second antenna 2.
  • a frequency band corresponding to the antenna 1 is switched to the first antenna 1 and used to switch a frequency band corresponding to the second antenna 2 to the second antenna 2 .
  • the present disclosure can change the high bandwidth originally required by one antenna into two antennas, which reduces the bandwidth requirements of a single antenna, reduces the antenna design requirements, and thus reduces the requirements and restrictions on the internal space and appearance of the mobile terminal , which can better meet the antenna performance requirements.
  • it can also reduce the bandwidth requirements of radio frequency devices.
  • the devices such as filters (Surface Acoustic Wave, SAW) and couplers used in the radio frequency path have greatly reduced the supported bandwidth.
  • Support 900Mhz only need to support part of the bandwidth, such as 500Mhz or 600Mhz. In this way, the radio frequency device can be manufactured more simply, with lower cost and better performance, that is, the design complexity of the radio frequency device is reduced, and the device cost can be reduced.
  • the antenna module of the 5G N77 frequency band also includes: a radio frequency power amplifier 6, which is connected to the transmitting end of the radio frequency modem 3 and the first switch respectively.
  • the switch 4 is connected to perform power amplification processing on the radio frequency signal output by the radio frequency modem 3 and output it to the first switching switch 4 .
  • the radio frequency power amplifier (RF PA) is an important part of various wireless transmitters.
  • the power of the radio frequency signal generated by the modulation oscillator circuit is very small, and it needs to go through a series of amplification-buffering Stage, intermediate amplifier stage, and final stage power amplifier stage. After obtaining sufficient RF power, it can be fed to the antenna for radiation.
  • an RF power amplifier must be used.
  • the main function of the radio frequency power amplifier is to send the signal given by the radio frequency modem 3 to a sufficient power, so that the signal can be transmitted after being radiated by the first antenna 1 or the second antenna 2 far enough away.
  • the antenna module of the 5G N77 frequency band also includes: a first filter 7, the first filter 7 is connected between the radio frequency modem 3 and the first switch between 4.
  • the first filter 7 is a surface acoustic wave filter.
  • a SAW filter is used on the receive diversity path. The signal is received from the first antenna 1 or the second antenna 2, and is passed through a SAW filter to filter out unused frequency signals, so as to prevent out-of-band signals from entering the radio frequency modem 3 and causing blocking, As a result, the radio frequency modem 3 cannot demodulate normal useful signals, and the function of the SAW filter is to allow signals within a specific frequency range to pass through and suppress signals outside the frequency range.
  • the antenna module of the 5G N77 frequency band also includes: a first integrated switch 8 and a second integrated switch 9; the first integrated switch 8 is connected to the first antenna 1 Between the second switch 5 and the second integrated switch 9 is connected between the second antenna 2 and the second switch 5 .
  • the first integrated switch 8 and the second integrated switch 9 are toggle switches, the common end of the first integrated switch 8 is connected to the first antenna 1, and the other of the first integrated switch 8 One end has multiple ports, which are respectively connected to radio frequency channels of different frequency bands.
  • the first integrated switch 8 is controlled by the radio frequency modem 3 to conduct the radio frequency circuit of the corresponding frequency band with the first antenna 1 .
  • the common end of the second integrated switch 9 is connected to the second antenna 2, and the other end of the second integrated switch 9 has a plurality of ports, which are respectively connected to radio frequency channels of different frequency bands.
  • the second integrated switch 9 is controlled by the radio frequency modem 3 to conduct the radio frequency circuit of the corresponding frequency band with the second antenna 2 .
  • the N77 frequency band before entering the first antenna 1 or the second antenna 2, can be combined with other frequency bands by adding a switch or a frequency divider to share the same One antenna (i.e. first antenna 1 or second antenna 2).
  • the present disclosure also provides another embodiment of an antenna module in the 5G N77 frequency band, which includes: a first antenna 1, a second antenna 2, a radio frequency modem 3, a first switch 4 and a second Toggle switch 5.
  • the first antenna 1 and the second antenna 2 can receive signals of different frequency bands;
  • the radio frequency modem 3 is used to receive and transmit radio frequency signals;
  • the first switch 4 is connected to the radio frequency modem respectively
  • the receiving end of 3, the transmitting end of the radio frequency modem 3 and the first antenna 1 are connected to switch the frequency band corresponding to the first antenna 1 to the first antenna 1;
  • the second switching switch 5 are respectively connected to the receiving end of the radio frequency modem 3, the transmitting end of the radio frequency modem 3 and the second antenna 2, for switching the frequency band corresponding to the second antenna 2 to the second antenna 2 .
  • the first transmission and the first reception of the N77 frequency band are combined into one radio frequency path through the first switch 4 and enter the first antenna 1, and the second transmission and the second reception of the N77 frequency band pass through
  • the switches are merged into a second radio frequency path, which enters the second antenna 2 , and there is no need to add a switching switch before entering the first antenna 1 or entering the second antenna 2 .
  • This disclosure divides the N77 frequency band into two parts according to the frequency, that is, the transmission signal of the N77 is sent from the two pins of the RF chip according to the frequency, and the receiving signal also enters two different pins according to the corresponding frequency, that is, the original needs
  • the high bandwidth achieved by one antenna is changed to two antennas, which reduces the bandwidth requirements of a single antenna and reduces the antenna design requirements, thus reducing the requirements and restrictions on the internal space and appearance of the mobile terminal, which can better meet the needs of antennas. performance requirements.
  • it can also reduce the bandwidth requirement of the radio frequency device, so that the radio frequency device can be manufactured more simply, with lower cost and better performance, that is, the design complexity of the radio frequency device is reduced, and the cost of the device can be reduced.
  • the antenna module in the 5G N77 frequency band also includes: a radio frequency power amplifier 6, which is connected to the transmitting end of the radio frequency modem 3, the first switch 4 and the second switch respectively.
  • the switch 5 is connected to perform power amplification processing on the radio frequency signal output by the radio frequency modem 3 and output it to the first switch 4 or the second switch 5 .
  • the antenna module of the 5G N77 frequency band also includes: a first filter 7 and a second filter 10, the first filter 7 is connected between the radio frequency modem 3 and the first switch 4 Between, the second filter 10 is connected between the radio frequency modem 3 and the second switch 5 .
  • the antenna module of the 5G N77 frequency band also includes: a first integrated switch 8, the first integrated switch 8 is connected between the first antenna 1 and the first switch 4;
  • the second integrated switch 9 is connected between the second antenna 2 and the second switching switch 5 .
  • the present disclosure also provides a frequency band segmentation method for an antenna module in the 5G N77 frequency band, which includes steps:
  • the present disclosure also provides a mobile terminal, which includes: a baseband chip and an antenna module in the 5G N77 frequency band.
  • the baseband chip is respectively connected to the radio frequency modem and the second switch.
  • the second switch is connected to the baseband chip, and the antenna corresponding to the frequency division is preset in the memory inside the baseband chip.
  • the radio frequency modem is also connected to the baseband chip, and the baseband chip will write the frequency to the internal memory in advance according to the needs.
  • the baseband chip controls the corresponding frequency of the radio frequency modem according to the current required operating frequency.
  • the pin feet work to send and receive signals.
  • the baseband chip can also command the second switch to switch to the first antenna or the second antenna according to the frequency band in which the mobile terminal is currently working for N77 frequency band transmission and reception, so that the frequency band corresponding to the first antenna The frequency band is switched to the first antenna, and is used to switch the frequency band corresponding to the second antenna to the second antenna.
  • the high bandwidth originally required by one antenna can be realized by two antennas, which reduces the bandwidth requirements of a single antenna, reduces the antenna design requirements, and thus reduces the requirements for the internal space and appearance of the mobile terminal And constraints, and thus better meet the antenna performance requirements.
  • the devices such as filters (Surface Acoustic Wave, SAW) and couplers used in the radio frequency path have greatly reduced the supported bandwidth.
  • Support 900Mhz only need to support part of the bandwidth, such as 500Mhz or 600Mhz. In this way, the radio frequency device can be manufactured more simply, with lower cost and better performance, that is, the design complexity of the radio frequency device is reduced, and the device cost can be reduced.
  • the antenna module, the frequency band segmentation method and the mobile terminal provided in the present disclosure combine the transmission channel and the receiving channel of the 5G N77 frequency band into one radio frequency channel through the first switch and output to the second switch, and control the second switch to switch the frequency band corresponding to the first antenna to the first antenna, and switch the frequency band corresponding to the second antenna to the second antenna, thereby enabling the N77 frequency band Divide into two sections according to the frequency, and realize support and coverage through two antennas.
  • the N77 frequency band is not working at an unused frequency, it can be switched to the corresponding antenna according to different frequencies for the N77 frequency band to transmit and receive.
  • the present disclosure can change the high bandwidth realized by one antenna into two antennas, which reduces the bandwidth requirement of a single antenna, reduces the requirements for antenna design, and thus reduces the requirements and restrictions on the internal space of the mobile terminal.
  • it can also reduce the bandwidth requirement of the radio frequency device, so that the radio frequency device can be manufactured more simply, with lower cost and better performance, that is, the design complexity of the radio frequency device is reduced, and the cost of the device can be reduced.

Landscapes

  • Transceivers (AREA)

Abstract

本公开涉及一种5G N77频段的天线模组、频段分段方法及移动终端,5G N77频段的天线模组包括:第一天线与第二天线,第一天线与第二天线可接收不同频段的信号;射频调制解调器,用于对射频信号进行接收和发射;第一切换开关,分别与射频调制解调器的接收端以及射频调制解调器的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;第二切换开关,分别与第一切换开关、第一天线连接以及第二天线连接,用于将与第一天线对应的频段切换至第一天线,并用于将与第二天线对应的频段切换至第二天线。本公开可将需要一个天线实现的高带宽变为两个天线实现,降低了天线设计要求,以减少对移动终端内部空间要求和限制。

Description

5G N77频段的天线模组、频段分段方法及移动终端
优先权
所述PCT专利申请要求申请日为2021年8月12日,申请号为202110933093.3的中国专利优先权,本专利申请结合了上述专利的技术方案。
技术领域
本公开涉及通信技术领域,尤其涉及的是一种5G N77频段的天线模组、频段分段方法及移动终端。
背景技术
当前,各大运营商和网络厂商开始部署5G网络,手机厂商开始发布5G商用手机。相比于4GLTE,5G最大的优势在于高速率、低延时和较大的连接密度,由此可带来一系列的应用,例如5G+8K(即使用5G通信技术来高清直播赛事活动);5G+VR(即使用5G通信技术可以使VR从有线传输变成无线传输);5G的低延时优势使得无人驾驶技术落地成为可能;基于5G的远程医疗,医生可以通过高清和低延时传输的视频来远程指导动手术;5G可以连接更加海量的物联网设备。
随着移动通讯所使用的频段越来越多,以及5G时代的到来,移动通讯频段加入了一些带宽非常宽的频段,比如N77频段,带宽从3300Mhz到4200Mhz,带宽高达900Mhz,这对天线设计来说是一个非常大的挑战。因在常规天线设计中,单个天线的谐振覆盖范围大体只有500-600M带宽左右,很难覆盖到900Mhz的带宽,即使单个天线可以覆盖到900Mhz的带宽,这样对天线的要求也比较高,导致移动终端的内部空间受到了限制。
因此,现有技术还有待于改进和发展。
发明内容
鉴于上述现有技术的不足,本公开的目的在于提供一种5G N77频段的天线模组、 频段分段方法及移动终端,以解决现有单个天线为覆盖到900Mhz的带宽所导致移动终端的内部空间受到限制的问题。
本公开的技术方案如下:
一种5G N77频段的天线模组,其包括:
第一天线与第二天线,所述第一天线与所述第二天线可接收不同频段的信号;
射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;
第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端以及所述射频调制解调器的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;
第二切换开关,所述第二切换开关分别与所述第一切换开关、所述第一天线连接以及所述第二天线连接,用于将与所述第一天线对应的频段切换至所述第一天线,并用于将与所述第二天线对应的频段切换至所述第二天线;
射频功率放大器,所述射频功率放大器分别与所述射频调制解调器的发射端以及所述第一切换开关连接,用于对所述射频调制解调器输出的射频信号进行功率放大处理并输出至所述第一切换开关;
第一滤波器,所述第一滤波器连接在所述射频调制解调器与所述第一切换开关之间;
第一集成开关,所述第一集成开关连接在所述第一天线与所述第二切换开关之间;
第二集成开关,所述第二集成开关连接在所述第二天线与所述第二切换开关之间。
基于同样的发明构思,本公开还提供了一种5G N77频段的天线模组,其包括:
第一天线与第二天线,所述第一天线与所述第二天线可接收不同频段的信号;
射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;
第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端以及所述射频调制解调器的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;
第二切换开关,所述第二切换开关分别与所述第一切换开关、所述第一天线连接以 及所述第二天线连接,用于将与所述第一天线对应的频段切换至所述第一天线,并用于将与所述第二天线对应的频段切换至所述第二天线。
本公开的进一步设置,所述5G N77频段的天线模组还包括:
射频功率放大器,所述射频功率放大器分别与所述射频调制解调器的发射端以及所述第一切换开关连接,用于对所述射频调制解调器输出的射频信号进行功率放大处理并输出至所述第一切换开关。
本公开的进一步设置,所述5G N77频段的天线模组还包括:
第一滤波器,所述第一滤波器连接在所述射频调制解调器与所述第一切换开关之间。
本公开的进一步设置,所述5G N77频段的天线模组还包括:
第一集成开关,所述第一集成开关连接在所述第一天线与所述第二切换开关之间;
第二集成开关,所述第二集成开关连接在所述第二天线与所述第二切换开关之间。
本公开的进一步设置,所述第一集成开关与所述第二集成开关为切换开关,其中,
所述第一集成开关的公共端连接至所述第一天线,所述第一集成开关的另外一端具有多个端口,分别连接不同频段的射频通路;
所述第二集成开关的公共端连接至所述第二天线,所述第二集成开关的另外一端具有多个端口,分别连接不同频段的射频通路。
本公开的进一步设置,所述第一天线支持3300-3700Mhz,所述第二天线支持3700-4200Mhz。
本公开的进一步设置,所述射频调制解调器的内部由发射机和接收机组成,所述射频调制解调器的发射端口和接收端口分开设置。
基于同样的发明构思,本公开还提供了一种5G N77频段的天线模组,其包括:
第一天线与第二天线,所述第一天线与所述第二天线能够接收不同频段的信号;
射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;
第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端、所述射频调制解调器的发射端以及所述第一天线连接,用于将与所述第一天线对应的频段切换至 所述第一天线;
第二切换开关,所述第二切换开关分别与所述射频调制解调器的接收端、所述射频调制解调器的发射端以及所述第二天线连接,用于将与所述第二天线对应的频段切换至所述第二天线。
本公开的进一步设置,所述5G N77频段的天线模组还包括:
射频功率放大器,所述射频功率放大器分别与所述射频调制解调器的发射端、所述第一切换开关以及所述第二切换开关连接,用于对所述射频调制解调器输出的射频信号进行功率放大处理并输出至所述第一切换开关或所述第二切换开关。
本公开的进一步设置,所述5G N77频段的天线模组还包括:
第一滤波器,所述第一滤波器连接在所述射频调制解调器与所述第一切换开关之间;
第二滤波器,所述第二滤波器连接在所述射频调制解调器与所述第二切换开关之间。
本公开的进一步设置,所述5G N77频段的天线模组还包括:
第一集成开关,所述第一集成开关连接在所述第一天线与所述第一切换开关之间;
第二集成开关,所述第二集成开关连接在所述第二天线与所述第二切换开关之间。
本公开的进一步设置,所述第一集成开关与所述第二集成开关为切换开关,其中,
所述第一集成开关的公共端连接至所述第一天线,所述第一集成开关的另外一端具有多个端口,分别连接不同频段的射频通路;
所述第二集成开关的公共端连接至所述第二天线,所述第二集成开关的另外一端具有多个端口,分别连接不同频段的射频通路。
本公开的进一步设置,所述第一天线支持3300-3700Mhz,所述第二天线支持3700-4200Mhz。
本公开的进一步设置,所述射频调制解调器的内部由发射机和接收机组成,所述射频调制解调器的发射端口和接收端口分开设置。
基于同样的发明构思,本公开还提供了一种如上述所述的5G N77频段的天线模组 的频段分段方法,其包括:
将5G N77频段的发射通路与接收通路通过第一切换开关合并成一路射频通路并输出至第二切换开关;
控制第二切换开关将与第一天线对应的频段切换至所述第一天线,并将与第二天线对应的频段切换至所述第二天线。
基于同样的发明构思,本公开还提供了一种移动终端,其包括;
基带芯片;以及
如上所述的5G N77频段的天线模组;其中,所述射频调制解调器与所述基带芯片连接。
本公开的进一步设置,所述基带芯片包括存储器,所述存储器内预先设定频率,所述基带芯片根据预先设定频率划分天线以及控制所述射频调制解调器对应的pin脚工作。
本公开所提供的一种5G N77频段的天线模组、频段分段方法及移动终端,其中,所述5G N77频段的天线模组包括:第一天线与第二天线,所述第一天线与所述第二天线可接收不同频段的信号;射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端以及所述射频调制解调器的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;第二切换开关,所述第二切换开关分别与所述第一切换开关、所述第一天线连接以及所述第二天线连接,用于将与所述第一天线对应的频段切换至所述第一天线,并用于将与所述第二天线对应的频段切换至所述第二天线。本公开将5G N77频段的发射通路与接收通路通过第一切换开关合并成一路射频通路并输出至第二切换开关,并控制第二切换开关将与第一天线对应的频段切换至所述第一天线,并将与第二天线对应的频段切换至所述第二天线,从而能够将N77频段按照频率分成两段,并通过两个天线来实现支持与覆盖,这样,在N77频段工作在不用频率时,可以根据不同频率切换到对应的天线以进行N77频段的收发。因此,本公开可以将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少 了对移动终端内部空间要求和限制。
附图说明
为了更清楚的说明本公开实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图示出的结构获得其他的附图。
图1是现有技术中5G N77频段的天线模组的原理框图。
图2是本公开一个实施例中5G N77频段的天线模组的原理框图。
图3是本公开中另一个实施例中5G N77频段的天线模组的原理框图。
图4是本公开中一个实施例中5G N77频段的天线模组的频段分段方法的流程示意图。
附图中各标记:1、第一天线;2、第二天线;3、射频调制解调器;4、第一切换开关;5、第二切换开关;6、射频功率放大器;7、第一滤波器;8、第一集成开关;9、第二集成开关;10、第二滤波器。
具体实施方式
本公开提供一种5G N77频段的天线模组、频段分段方法及移动终端,可以将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少了对移动终端内部空间和外观的要求和限制,进而能更好的满足天线性能要求。同时可以减少对射频器件的带宽要求,降低射频器件设计复杂度,从而能够降低器件成本。为使本公开的目的、技术方案及效果更加清楚、明确,以下参照附图并举实例对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
在实施方式和申请专利范围中,除非文中对于冠词有特别限定,否则“一”、“一个”、“所述”和“该”也可包括复数形式。若本公开实施例中有涉及“第一”、“第二”等的描述, 则该“第一”、“第二”等的描述仅用于描述目的,而不能理解为指示或暗示其相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。
应该进一步理解的是,本公开的说明书中使用的措辞“包括”是指存在所述特征、整数、步骤、操作、元件和/或组件,但是并不排除存在或添加一个或多个其他特征、整数、步骤、操作、元件、组件和/或它们的组。应该理解,当我们称元件被“连接”或“耦接”到另一元件时,它可以直接连接或耦接到其他元件,或者也可以存在中间元件。此外,这里使用的“连接”或“耦接”可以包括无线连接或无线耦接。这里使用的措辞“和/或”包括一个或更多个相关联的列出项的全部或任一单元和全部组合。
本技术领域技术人员可以理解,除非另外定义,这里使用的所有术语(包括技术术语和科学术语),具有与本公开所属领域中的普通技术人员的一般理解相同的意义。还应该理解的是,诸如通用字典中定义的那些术语,应该被理解为具有与现有技术的上下文中的意义一致的意义,并且除非像这里一样被特定定义,否则不会用理想化或过于正式的含义来解释。
另外,各个实施例之间的技术方案可以相互结合,但是必须是以本领域普通技术人员能够实现为基础,当技术方案的结合出现相互矛盾或无法实现时应当认为这种技术方案的结合不存在,也不在本公开要求的保护范围之内。
经发明人研究发现,随着移动通讯所使用的频段越来越多,以及5G时代的到来,移动通讯频段加入了一些带宽非常宽的频段,比如N77频段,带宽从3300Mhz到4200Mhz,带宽高达900Mhz,这对天线设计来说是一个非常大的挑战。因在常规天线设计中,如图1所示,N77频段的发射通路与接收通路从射频调制解调器出来之后,通过切换开关合并成一路射频通路后直接进入一个天线,而单个天线的谐振覆盖范围大体只有500-600M带宽左右,很难覆盖到900Mhz的带宽,即使单个天线可以覆盖到900Mhz的带宽,这样对天线的要求也比较高,导致移动终端的内部空间和外观的要求受到了限制。另外,因单个天线对带宽的要求较高,那么对在射频通路上的滤波器以及耦合器件等的带宽要求也比较高,使得射频器件的设计更加复杂,成本也随之增高。
针对上述技术问题,本公开提供了一种5G N77频段的天线模组、频段分段方法及移动终端,可以将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少了对移动终端内部空间和外观的要求和限制,进而能更好的满足天线性能要求。同时,还可以减少对射频器件的带宽要求,降低射频器件设计复杂度,从而能够降低器件成本。
请同时参阅图2,本公开提供了一种5G N77频段的天线模组的较佳实施例。
如图2所示,本公开提供的一种5G N77频段的天线模组,其包括:第一天线1、第二天线2、射频调制解调器3、第一切换开关4以及第二切换开关5。其中,所述第一天线1与所述第二天线2能够接收不同频段的信号;所述射频调制解调器3用于对射频信号进行接收和发射;所述第一切换开关4分别与所述射频调制解调器3的接收端以及所述射频调制解调器3的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;所述第二切换开关5分别与所述第一切换开关4、所述第一天线1连接以及所述第二天线2连接,用于将与所述第一天线1对应的频段切换至所述第一天线1,并用于将与所述第二天线2对应的频段切换至所述第二天线2。
具体地,对于N77频段,带宽从3300Mhz到4200Mhz,带宽高达900Mhz,通过单个天线的谐振覆盖范围大体只有500-600M带宽左右,很难覆盖到900Mhz的带宽,本公开将N77频段按照频率分成两段,通过两个天线来实现支持和覆盖,即通过所述第一天线1与所述第二天线2来实现覆盖,例如,所述第一天线1可以支持3300-3700Mhz,所述第二天线2可以支持3700-4200Mhz,其中可以件N77频段安装频率分成两部分,也可以按照特定频率分成不平均的两部分。需要理解的是,在一些实施例中,还可以将N77频段分成三部分,或者三部分以上,以通过三个天线或多个天线来实现全部覆盖与支持,在本实施例中,以通过两个天线的来实现覆盖与支持的实施例进行说明。
其中,所述射频调制解调器3(Transceiver),又称射频收发器,是一种射频常用芯片,具有射频信号的接收和发射功能,主要作用即对射频信号进行调制后发射,或将信号接收进来后解调。所述射频调制解调器3的内部由发射机和接收机组成,所以所述射频调制解调器3的发射端口TX和接收端口RX是分开的。
在本实施例中,所述第一切换开关4分别与所述射频调制解调器3的接收端以及所述射频调制解调器3的发射端连接,所述第二切换开关5分别与所述第一切换开关4、所述第一天线1以及所述第二天线2连接,在一些实施例中,所述第二切换开关5的型号可以是SP2T。当N77的发射通路与接收通路从所述射频调制解调器3出来之后,通过所述第一切换开关4合并成一路射频通路,在进入天线(第一天线1或第二天线2)之前再接入所述第二切换开关5,其中,所述第二切换开关5的公共端与合并后的射频通路连接,所述第二切换开关5的两个输出端分别连接所述第一天线1以及所述第二天线2,在所述第二切换开关5的作用下,能够使得N77频段在不同频率时,根据预先的设定将通讯切换至对应的天线。其中,所述第二切换开关5与基带芯片连接,在基带芯片内部的存储器内预先会设定好频率划分对应的天线。所述射频调制解调器3也与基带芯片连接,基带芯片预先根据需要会将频率写入至内部的存储器,当移动终端在N77频段时,基带芯片根据当前需要的工作频率,控制所述射频调制解调器3的对应的pin脚工作,以进行信号的收发。在使用时,基带芯片还能够根据当前移动终端工作的频段命令所述第二切换开关5切换到所述第一天线1或所述第二天线2以进行N77频段收发,从而将与所述第一天线1对应的频段切换至所述第一天线1,并用于将与所述第二天线2对应的频段切换至所述第二天线2。
因此,本公开可以将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少了对移动终端内部空间和外观的要求和限制,进而能更好的满足天线性能要求。同时还可以减少对射频器件的带宽要求,例如,在射频通路上所使用的滤波器(Surface Acoustic Wave,SAW)和耦合器等器件,所需要支持的带宽都大大减少了,从原来单个器件需要支持900Mhz,变为只需要支持部分带宽,比如500Mhz或600Mhz。这样射频器件可以制作起来更简单,成本更低,性能更优,即降低了射频器件设计复杂度,并能够降低器件成本。
在一个实施例的进一步地实施方式中,所述5G N77频段的天线模组还包括:射频功率放大器6,所述射频功率放大器6分别与所述射频调制解调器3的发射端以及所述第一切换开关4连接,用于对所述射频调制解调器3输出的射频信号进行功率放大处理 并输出至所述第一切换开关4。
具体地,射频功率放大器(RF PA)是各种无线发射机的重要组成部分,在发射机的前级电路中,调制振荡电路所产生的射频信号功率很小,需要经过一系列的放大一缓冲级、中间放大级、末级功率放大级,获得足够的射频功率以后,才能馈送到天线上辐射出去,为了获得足够大的射频输出功率,必须采用射频功率放大器。在本实施例中,射频功率放大器的主要作用即将所述射频调制解调器3给过来的信号发大至足够的功率,这样经由所述第一天线1或所述第二天线2辐射后信号才能够传输足够远距离。
在一个实施例的进一步地实施方式中,所述5G N77频段的天线模组还包括:第一滤波器7,所述第一滤波器7连接在所述射频调制解调器3与所述第一切换开关4之间。
具体地,所述第一滤波器7为声表面波滤波器。一般来说,在接收分集通路上,会使用一个SAW滤波器。信号从所述第一天线1或所述第二天线2接收下来,经过SAW滤波器,将用不到的频率的信号进行滤除,以免频带外的信号进入到射频调制解调器3内部,引起阻塞,造成射频调制解调器3无法对正常有用信号的解调,SAW滤波器的作用即允许特定频率范围内的信号通过,对频率范围外的信号抑制。
在一个实施例的进一步地实施方式中,所述5G N77频段的天线模组还包括:第一集成开关8与第二集成开关9;所述第一集成开关8连接在所述第一天线1与所述第二切换开关5之间,所述第二集成开关9连接在所述第二天线2与所述第二切换开关5之间。
具体地,所述第一集成开关8与所述第二集成开关9为切换开关,所述第一集成开关8的公共端连接至所述第一天线1,所述第一集成开关8的另外一端具有多个端口,分别连接不同频段的射频通路。当某一个频段通讯时,所述第一集成开关8受所述射频调制解调器3控制将对应频段的射频电路与所述第一天线1导通。相应地,所述第二集成开关9的公共端连接至所述第二天线2,所述第二集成开关9的另外一端具有多个端口,分别连接不同频段的射频通路。当某一个频段通讯时,所述第二集成开关9受所述射频调制解调器3控制将对应频段的射频电路与所述第二天线2导通。
可以理解的是,在一些实施例中,在进入所述第一天线1或所述第二天线2之前, 可以通过增加切换开关或分频器的方式,将N77频段与其他频段合并,共用同一个天线(即第一天线1或第二天线2)。
请参阅图3,本公开还提供了一种5G N77频段的天线模组的另一实施例,其包括:第一天线1、第二天线2、射频调制解调器3、第一切换开关4以及第二切换开关5。其中,所述第一天线1与所述第二天线2能够接收不同频段的信号;所述射频调制解调器3用于对射频信号进行接收和发射;所述第一切换开关4分别与所述射频调制解调器3的接收端、所述射频调制解调器3的发射端以及所述第一天线1连接,用于将与所述第一天线1对应的频段切换至所述第一天线1;所述第二切换开关5分别与所述射频调制解调器3的接收端、所述射频调制解调器3的发射端以及所述第二天线2连接,用于将与所述第二天线2对应的频段切换至所述第二天线2。
具体地,N77频段的第一路发射与第一路接收通过所述第一切换开关4合并成一路射频通路并进入所述第一天线1,N77频段的第二路发射和第二路接收通过开关合并成第二路射频通路,并进入所述第二天线2,且在进入所述第一天线1前或进入所述第二天线2前不需要再增加切换开关。本公开将N77频段按照频率分成连个部分,即N77的发射信号按照频率分别从射频芯片的2个pin脚发出,接收信号也按照相应的频率进入2个不同的pin脚,即能够将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少了对移动终端内部空间和外观的要求和限制,进而能更好的满足天线性能要求。同时还可以减少对射频器件的带宽要求,这样射频器件可以制作起来更简单,成本更低,性能更优,即降低了射频器件设计复杂度,并能够降低器件成本。
进一步地,所述5G N77频段的天线模组还包括:射频功率放大器6,所述射频功率放大器6分别与所述射频调制解调器3的发射端、所述第一切换开关4以及所述第二切换开关5连接,用于对所述射频调制解调器3输出的射频信号进行功率放大处理并输出至所述第一切换开关4或所述第二切换开关5。
进一步地,所述5G N77频段的天线模组还包括:第一滤波器7以及第二滤波器10,所述第一滤波器7连接在所述射频调制解调器3与所述第一切换开关4之间,所述第二 滤波器10连接在所述射频调制解调器3与所述第二切换开关5之间。
进一步地,所述5G N77频段的天线模组还包括:第一集成开关8,所述第一集成开关8连接在所述第一天线1与所述第一切换开关4之间;
第二集成开关9,所述第二集成开关9连接在所述第二天线2与所述第二切换开关5之间。
请参阅图4,在一些实施例中,本公开还提供了一种5G N77频段的天线模组的频段分段方法,其包括步骤:
S100、将5G N77频段的发射通路与接收通路通过第一切换开关合并成一路射频通路并输出至第二切换开关。具体如一种5G N77频段的天线模组的实施例所述,在此不再赘述。
S200、控制第二切换开关将与第一天线对应的频段切换至所述第一天线,并将与第二天线对应的频段切换至所述第二天线。具体如一种5G N77频段的天线模组的实施例所述,在此不再赘述。
在一些实施例中,本公开还提供了一种移动终端,其包括:基带芯片以及5G N77频段的天线模组。其中,所述基带芯片分别与所述射频调制解调器连接以及所述第二切换开关连接。
具体地,所述第二切换开关与基带芯片连接,在基带芯片内部的存储器内预先会设定好频率划分对应的天线。所述射频调制解调器也与基带芯片连接,基带芯片预先根据需要会将频率写入至内部的存储器,当移动终端在N77频段时,基带芯片根据当前需要的工作频率,控制所述射频调制解调器的对应的pin脚工作,以进行信号的收发。在使用时,基带芯片还能够根据当前移动终端工作的频段命令所述第二切换开关切换到所述第一天线或所述第二天线以进行N77频段收发,从而将与所述第一天线对应的频段切换至所述第一天线,并用于将与所述第二天线对应的频段切换至所述第二天线。
在上述技术方案中,可以将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少了对移动终端内部空间和外观的要求和限制,进而能更好的满足天线性能要求。同时还可以减少对射频器件的带 宽要求,例如,在射频通路上所使用的滤波器(Surface Acoustic Wave,SAW)和耦合器等器件,所需要支持的带宽都大大减少了,从原来单个器件需要支持900Mhz,变为只需要支持部分带宽,比如500Mhz或600Mhz。这样射频器件可以制作起来更简单,成本更低,性能更优,即降低了射频器件设计复杂度,并能够降低器件成本。
综上所述,本公开所提供的一种5G N77频段的天线模组、频段分段方法及移动终端,将5G N77频段的发射通路与接收通路通过第一切换开关合并成一路射频通路并输出至第二切换开关,并控制第二切换开关将与第一天线对应的频段切换至所述第一天线,并将与第二天线对应的频段切换至所述第二天线,从而能够将N77频段按照频率分成两段,并通过两个天线来实现支持与覆盖,这样,在N77频段工作在不用频率时,可以根据不同频率切换到对应的天线以进行N77频段的收发。因此,本公开可以将原来需要一个天线实现的高带宽,变为两个天线实现,减少了单个天线的带宽要求,降低了天线设计要求,从而减少了对移动终端内部空间要求和限制。同时还可以减少对射频器件的带宽要求,这样射频器件可以制作起来更简单,成本更低,性能更优,即降低了射频器件设计复杂度,并能够降低器件成本。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (18)

  1. 一种5G N77频段的天线模组,其特征在于,包括:
    第一天线与第二天线,所述第一天线与所述第二天线可接收不同频段的信号;
    射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;
    第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端以及所述射频调制解调器的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;
    第二切换开关,所述第二切换开关分别与所述第一切换开关、所述第一天线连接以及所述第二天线连接,用于将与所述第一天线对应的频段切换至所述第一天线,并用于将与所述第二天线对应的频段切换至所述第二天线;
    射频功率放大器,所述射频功率放大器分别与所述射频调制解调器的发射端以及所述第一切换开关连接,用于对所述射频调制解调器输出的射频信号进行功率放大处理并输出至所述第一切换开关;
    第一滤波器,所述第一滤波器连接在所述射频调制解调器与所述第一切换开关之间;
    第一集成开关,所述第一集成开关连接在所述第一天线与所述第二切换开关之间;
    第二集成开关,所述第二集成开关连接在所述第二天线与所述第二切换开关之间。
  2. 一种5G N77频段的天线模组,其特征在于,包括:
    第一天线与第二天线,所述第一天线与所述第二天线可接收不同频段的信号;
    射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;
    第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端以及所述射频调制解调器的发射端连接,用于将射频信号的发射通路与接收通路合并成一路射频通路;
    第二切换开关,所述第二切换开关分别与所述第一切换开关、所述第一天线连接以及所述第二天线连接,用于将与所述第一天线对应的频段切换至所述第一天线,并用于将与所述第二天线对应的频段切换至所述第二天线。
  3. 根据权利要求1所述的5G N77频段的天线模组,其特征在于,所述5G N77频 段的天线模组还包括:
    射频功率放大器,所述射频功率放大器分别与所述射频调制解调器的发射端以及所述第一切换开关连接,用于对所述射频调制解调器输出的射频信号进行功率放大处理并输出至所述第一切换开关。
  4. 根据权利要求1所述的5G N77频段的天线模组,其特征在于,所述5G N77频段的天线模组还包括:
    第一滤波器,所述第一滤波器连接在所述射频调制解调器与所述第一切换开关之间。
  5. 根据权利要求1所述的5G N77频段的天线模组,其特征在于,所述5G N77频段的天线模组还包括:
    第一集成开关,所述第一集成开关连接在所述第一天线与所述第二切换开关之间;
    第二集成开关,所述第二集成开关连接在所述第二天线与所述第二切换开关之间。
  6. 根据权利要求5所述的5G N77频段的天线模组,其特征在于,所述第一集成开关与所述第二集成开关为切换开关,其中,
    所述第一集成开关的公共端连接至所述第一天线,所述第一集成开关的另外一端具有多个端口,分别连接不同频段的射频通路;
    所述第二集成开关的公共端连接至所述第二天线,所述第二集成开关的另外一端具有多个端口,分别连接不同频段的射频通路。
  7. 根据权利要求1所述的5G N77频段的天线模组,其特征在于,所述第一天线支持3300-3700Mhz,所述第二天线支持3700-4200Mhz。
  8. 根据权利要求1所述的5G N77频段的天线模组,其特征在于,所述射频调制解调器的内部由发射机和接收机组成,所述射频调制解调器的发射端口和接收端口分开设置。
  9. 一种5G N77频段的天线模组,其特征在于,包括:
    第一天线与第二天线,所述第一天线与所述第二天线能够接收不同频段的信号;
    射频调制解调器,所述射频调制解调器用于对射频信号进行接收和发射;
    第一切换开关,所述第一切换开关分别与所述射频调制解调器的接收端、所述射频调制解调器的发射端以及所述第一天线连接,用于将与所述第一天线对应的频段切换至所述第一天线;
    第二切换开关,所述第二切换开关分别与所述射频调制解调器的接收端、所述射频调制解调器的发射端以及所述第二天线连接,用于将与所述第二天线对应的频段切换至所述第二天线。
  10. 根据权利要求9所述的5G N77频段的天线模组,其特征在于,所述5G N77频段的天线模组还包括:
    射频功率放大器,所述射频功率放大器分别与所述射频调制解调器的发射端、所述第一切换开关以及所述第二切换开关连接,用于对所述射频调制解调器输出的射频信号进行功率放大处理并输出至所述第一切换开关或所述第二切换开关。
  11. 根据权利要求9所述的5G N77频段的天线模组,其特征在于,所述5G N77频段的天线模组还包括:
    第一滤波器,所述第一滤波器连接在所述射频调制解调器与所述第一切换开关之间;
    第二滤波器,所述第二滤波器连接在所述射频调制解调器与所述第二切换开关之间。
  12. 根据权利要求9所述的5G N77频段的天线模组,其特征在于,所述5G N77频段的天线模组还包括:
    第一集成开关,所述第一集成开关连接在所述第一天线与所述第一切换开关之间;
    第二集成开关,所述第二集成开关连接在所述第二天线与所述第二切换开关之间。
  13. 根据权利要求12所述的5G N77频段的天线模组,其特征在于,所述第一集成开关与所述第二集成开关为切换开关,其中,
    所述第一集成开关的公共端连接至所述第一天线,所述第一集成开关的另外一端具有多个端口,分别连接不同频段的射频通路;
    所述第二集成开关的公共端连接至所述第二天线,所述第二集成开关的另外一端具 有多个端口,分别连接不同频段的射频通路。
  14. 根据权利要求9所述的5G N77频段的天线模组,其特征在于,所述第一天线支持3300-3700Mhz,所述第二天线支持3700-4200Mhz。
  15. 根据权利要求9所述的5G N77频段的天线模组,其特征在于,所述射频调制解调器的内部由发射机和接收机组成,所述射频调制解调器的发射端口和接收端口分开设置。
  16. 一种如权利要求2所述的5G N77频段的天线模组的频段分段方法,其特征在于,包括:
    将5G N77频段的发射通路与接收通路通过第一切换开关合并成一路射频通路并输出至第二切换开关;
    控制第二切换开关将与第一天线对应的频段切换至所述第一天线,并将与第二天线对应的频段切换至所述第二天线。
  17. 一种移动终端,其特征在于,包括;
    基带芯片;以及
    如权利要求2-5任一项所述的5G N77频段的天线模组;其中,所述射频调制解调器与所述基带芯片连接。
  18. 根据权利要求17所述的移动终端,其特征在于,所述基带芯片包括存储器,所述存储器内预先设定频率,所述基带芯片根据预先设定频率划分天线以及控制所述射频调制解调器对应的pin脚工作。
PCT/CN2021/122847 2021-08-12 2021-10-09 5g n77频段的天线模组、频段分段方法及移动终端 WO2023015708A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110933093.3 2021-08-12
CN202110933093.3A CN113612023B (zh) 2021-08-12 2021-08-12 5g n77频段的天线模组、频段分段方法及移动终端

Publications (1)

Publication Number Publication Date
WO2023015708A1 true WO2023015708A1 (zh) 2023-02-16

Family

ID=78308591

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/122847 WO2023015708A1 (zh) 2021-08-12 2021-10-09 5g n77频段的天线模组、频段分段方法及移动终端

Country Status (2)

Country Link
CN (1) CN113612023B (zh)
WO (1) WO2023015708A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014959A1 (en) * 2009-07-17 2011-01-20 Qualcomm Incorporated Antenna Array Isolation For A Multiple Channel Communication System
CN102790638A (zh) * 2011-05-20 2012-11-21 中兴通讯股份有限公司 一种天线性能优化方法和系统
CN104753555A (zh) * 2013-12-30 2015-07-01 联芯科技有限公司 双通道射频结构
CN106685468A (zh) * 2017-01-10 2017-05-17 广东欧珀移动通信有限公司 射频电路、终端及射频电路控制方法
CN109004947A (zh) * 2018-08-10 2018-12-14 维沃移动通信有限公司 一种射频装置和电子设备
CN110098840A (zh) * 2019-04-30 2019-08-06 维沃移动通信有限公司 一种射频装置及终端设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8676136B2 (en) * 2011-01-26 2014-03-18 Peraso Technologies, Inc. Radio antenna switch
US8849217B2 (en) * 2011-06-22 2014-09-30 Broadcom Corporation Antenna arrangement
US8760360B2 (en) * 2012-03-16 2014-06-24 Amazon Technologies, Inc. Switching multi-mode antenna
CN106788576A (zh) * 2017-01-10 2017-05-31 广东欧珀移动通信有限公司 射频切换电路及终端
KR20200144902A (ko) * 2019-06-19 2020-12-30 삼성전자주식회사 복수의 안테나들 중에서 지정된 무선 통신을 지원할 안테나를 선택하기 위한 전자 장치
CN112086753A (zh) * 2020-09-30 2020-12-15 Oppo广东移动通信有限公司 天线组件和电子设备
CN112382845B (zh) * 2020-10-21 2022-04-22 捷开通讯(深圳)有限公司 移动终端
CN112713384A (zh) * 2020-12-09 2021-04-27 宇龙计算机通信科技(深圳)有限公司 一种天线结构和移动终端

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110014959A1 (en) * 2009-07-17 2011-01-20 Qualcomm Incorporated Antenna Array Isolation For A Multiple Channel Communication System
CN102790638A (zh) * 2011-05-20 2012-11-21 中兴通讯股份有限公司 一种天线性能优化方法和系统
CN104753555A (zh) * 2013-12-30 2015-07-01 联芯科技有限公司 双通道射频结构
CN106685468A (zh) * 2017-01-10 2017-05-17 广东欧珀移动通信有限公司 射频电路、终端及射频电路控制方法
CN109004947A (zh) * 2018-08-10 2018-12-14 维沃移动通信有限公司 一种射频装置和电子设备
CN110098840A (zh) * 2019-04-30 2019-08-06 维沃移动通信有限公司 一种射频装置及终端设备

Also Published As

Publication number Publication date
CN113612023B (zh) 2022-11-04
CN113612023A (zh) 2021-11-05

Similar Documents

Publication Publication Date Title
CN108199728B (zh) 多路选择开关、射频系统和无线通信设备
CN108923790B (zh) 多路选择开关、射频系统和无线通信设备
US11757484B2 (en) Radio frequency front-end circuit and mobile terminal
CN108880602B (zh) 多路选择开关以及相关产品
CN108462498B (zh) 多路选择开关、射频系统和无线通信设备
EP3540961B1 (en) Multiway switch, radio frequency system, and wireless communication device
AU2018412832B2 (en) Multiway switch, radio frequency system, and communication device
CN111245468A (zh) 射频电路和电子设备
US11569850B2 (en) Radio frequency front-end circuit and controller
CN115459805B (zh) 一种实现天线复用的电路
KR20040051479A (ko) 2중 밴드 무선송수신기의 무선주파수 프론트엔드
CN111726138B (zh) 射频电路和电子设备
WO2023015708A1 (zh) 5g n77频段的天线模组、频段分段方法及移动终端
WO2020052406A1 (zh) 开关控制电路、载波聚合方法及装置、通信设备
WO2022143148A1 (zh) 天线系统、无线通信系统和电子设备
WO2022111632A1 (zh) 网络设备、用户终端、芯片、无线通信系统及方法
US8099133B2 (en) Apparatus and a method for directing a received signal in an antenna system
CN111490813A (zh) 天线复用射频装置以及移动终端
RU2784458C1 (ru) Радиочастотная входная схема и мобильный терминал
CN105450250B (zh) 滤波装置、控制方法和电子设备
CN213846664U (zh) 通信装置和电子设备
WO2024016282A1 (zh) 联动天线电路及终端
CN217468811U (zh) 一种天线结构及终端设备
CN117040549A (zh) 射频系统及其改造方法、电子设备
CN113300734A (zh) 射频天线装置、射频天线装置信号收发方法及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953314

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE