WO2022143148A1 - 天线系统、无线通信系统和电子设备 - Google Patents

天线系统、无线通信系统和电子设备 Download PDF

Info

Publication number
WO2022143148A1
WO2022143148A1 PCT/CN2021/137837 CN2021137837W WO2022143148A1 WO 2022143148 A1 WO2022143148 A1 WO 2022143148A1 CN 2021137837 W CN2021137837 W CN 2021137837W WO 2022143148 A1 WO2022143148 A1 WO 2022143148A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
radio frequency
antenna unit
switching device
signal
Prior art date
Application number
PCT/CN2021/137837
Other languages
English (en)
French (fr)
Inventor
沈来伟
薛亮
吴鹏飞
余冬
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP21913889.8A priority Critical patent/EP4243200A4/en
Publication of WO2022143148A1 publication Critical patent/WO2022143148A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/241Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM
    • H01Q1/242Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use
    • H01Q1/243Supports; Mounting means by structural association with other equipment or articles with receiving set used in mobile communications, e.g. GSM specially adapted for hand-held use with built-in antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/24Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the orientation by switching energy from one active radiating element to another, e.g. for beam switching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/26Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system varying the relative phase or relative amplitude of energisation between two or more active radiating elements; varying the distribution of energy across a radiating aperture
    • H01Q3/2605Array of radiating elements provided with a feedback control over the element weights, e.g. adaptive arrays
    • H01Q3/2611Means for null steering; Adaptive interference nulling
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/30Arrangements for providing operation on different wavebands
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0817Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection with multiple receivers and antenna path selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0822Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection according to predefined selection scheme
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • H04B7/0834Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection based on external parameters, e.g. subscriber speed or location

Definitions

  • the embodiments of the present application relate to the field of communications, and in particular, to an antenna system, a wireless communication system, and an electronic device.
  • the electronic device can achieve wireless communication with other devices through one or more antennas provided therein. Therefore, the antenna plays a very important role in the communication process of the electronic device.
  • FIG. 1 shows a schematic diagram of a pattern of an antenna.
  • the gain (Gain) of the antenna at different angles (Angle) is different, some angle gains are larger, and some angle gains are smaller.
  • the greater the gain the stronger the antenna's ability to radiate (eg transmit or receive) at that angle.
  • the smaller the gain the weaker the radiation capability of the antenna at this angle.
  • the angle at which the gain is much smaller than the maximum gain may be referred to as the "pattern zero point".
  • Embodiments of the present application provide an antenna system, a wireless communication system, and an electronic device.
  • the electrical connection relationship between the antenna pair and the radio frequency module can be flexibly adjusted through the switching unit set in the antenna system, thereby achieving the effect of antenna pattern reconstruction, thereby solving the influence of the antenna's inherent pattern zero point on communication.
  • the electrical connection relationship between the antenna pair and the radio frequency module can also be flexibly adjusted, thereby achieving the effect of reconstructing the number of antennas to work, thereby improving the throughput rate in scenarios with high throughput rate requirements.
  • a wireless communication system which is applied to an electronic device.
  • the wireless communication system includes: a first radio frequency channel. the first antenna unit. the second antenna unit. and a first switching device configured to selectively conduct at least one of the first antenna unit and the second antenna unit with the first radio frequency channel.
  • the first switching device in the first state, is configured to conduct the first antenna unit and the first radio frequency channel, and the first switching device is further configured to conduct the second antenna unit and the first radio frequency channel.
  • the first switching device is configured to conduct the first antenna unit and the first radio frequency channel, and the second antenna unit and the first radio frequency channel do not conduct.
  • a switching device eg, a first switching device
  • the wireless communication system is made to work in different states (eg, the first state or the second state).
  • the radio frequency channel and the antenna unit coupled to the front end and the rear end of the first switching device may have different electrical connection states.
  • the first radio frequency channel is coupled to the first antenna unit, and the first radio frequency channel is further coupled to the second antenna unit.
  • the first radio frequency channel is only coupled with the first antenna unit.
  • the radiation patterns corresponding to the wireless communication system are also different in different states.
  • the first state By switching the first state to the second state, or the second state to the first state, or from other states to the first state (or the second state), when there is a communication blocking in a certain state, Or switch the first state (or the second state) to another state to realize the reconstruction of the orientation map.
  • the corresponding zero points of the pattern are also different. Therefore, through pattern reconstruction, the incoming wave direction (or radiation direction) that was originally at the zero point of the pattern can no longer correspond to the direction. The zero point of the pattern, thereby improving the problem of communication blocking caused by the zero point of the pattern.
  • the first radio frequency channel may correspond to the radio frequency channel RF2 involved in the embodiment.
  • the signals flowing through the first antenna unit and the second antenna unit are both first signals.
  • the signal flowing through the first antenna unit is the second signal, and the second signal does not flow through the second antenna unit.
  • an example of the signal flow distribution in the first state and the second state is provided.
  • both the first antenna unit and the second antenna unit are connected to the first radio frequency channel due to the first switching device. Therefore, in the transmission scenario, the first signal from the first radio frequency channel may flow to the first antenna unit and the second antenna unit respectively for radiation.
  • the electromagnetic waves received by the first antenna unit and the second antenna unit may also be converted into analog signals (for example, corresponding to one channel of the first signal respectively) and transmitted to the first radio frequency channel.
  • the first radio frequency channel may transmit the second signal through the first antenna unit.
  • the second signal may be converted and generated by the first antenna unit from the received electromagnetic wave, and transmitted to the first radio frequency channel.
  • the radio frequency parameter of the first signal in the first state, is the first parameter.
  • the radio frequency parameter of the second signal is the second parameter, wherein the first parameter and the second parameter are different.
  • a solution for distinguishing the first state and the second state is provided.
  • the first state and the second state may be distinguished by the radio frequency parameter being the first parameter or the second parameter.
  • the electronic device can adjust the current working state to the first state or the second state according to the radio frequency parameter, so as to achieve the effect of improving the radio frequency parameter in the communication process. It can be understood that when the radio frequency parameters are improved, it also means that the communication quality is improved.
  • the radio frequency parameters include reference signal received power RSRP and/or bit error rate.
  • the radio frequency parameter may include RSRP, or bit error rate, or RSRP and bit error rate, and the like.
  • the radio frequency parameters may also include more other parameters, such as received signal strength (RSSI) and the like. This example does not limit the specific content of the radio frequency parameters.
  • the wireless communication system further includes a second radio frequency channel.
  • the first switching device is configured to conduct the first antenna unit and the first radio frequency channel
  • the first switching device is further configured to conduct the second antenna unit and the second radio frequency channel, and flow through the first antenna unit
  • the signal passing through the second antenna unit is the third signal
  • the signal flowing through the second antenna unit is the fourth signal.
  • the second radio frequency channel may correspond to the radio frequency channel RF1 involved in the following embodiments.
  • the electronic device can simultaneously receive two signals (such as the third signal and the fourth signal) through the first antenna unit and the second antenna unit. Compared with the common scenario of one signal, the throughput can be significantly improved.
  • the third signal and the fourth signal may correspond to two signals having the same frequency band.
  • the launch scenarios are similar, so a similar effect can be achieved.
  • the above description is based on the premise that the first radio frequency channel and the second radio frequency channel work in the same frequency band.
  • the two transmission channels of parallel data in the scenario, or the two transmission channels corresponding to the data transmitted synchronously in the carrier aggregation scenario, can achieve similar effects, that is, the number of signal streams can be significantly increased, thereby improving the communication quality.
  • a second aspect provides a foldable electronic device, comprising: a flexible display screen, and the wireless communication system according to any one of the first aspect and its possible designs.
  • the folded electronic device includes a first folded state and a second folded state, and in the first folded state, the wireless communication system is in the first state. In the first folded state, the wireless communication system is in the second state.
  • the flexible display screen may be a foldable display screen, may include one or more foldable display screens, or may include at least two non-foldable display screens at the same time.
  • the multiple states provided in the first aspect and its possible designs can respectively correspond to different folding states in the folding electronic device, thereby realizing different states (such as the folded state, and the unfolded state).
  • the flexible display screen includes a first part and a second part, and the first antenna unit is located in the first part.
  • the second antenna unit is located in the second part, and the first part and the second part rotate relative to each other.
  • the first antenna unit involved in this example is located on the first part.
  • the first antenna unit may be on the first part of the flexible display screen; in other implementations, the first antenna unit may also be located on the first part of the flexible display screen.
  • the first part of the flexible display screen corresponds to the projection area in the Z direction.
  • the positional relationship between the second antenna element and the second part is similar. It should be noted that this example only provides a possible positional relationship, that is, the two antenna units may be located on different folding screens. In other implementations, the two antenna units may also be located on the same folding screen.
  • a third aspect provides a wireless communication method, where the method is applied to an electronic device, where the electronic device is provided with the wireless communication system described in any one of the first aspect and its possible designs, and one or more processors.
  • the method includes: the processor sends first control information to the first switching device, where the first control information is used to control the first switching device to work in a first working state. In the first working state, the first switching device is configured to conduct the first antenna unit and the first radio frequency channel, and the first switching device is further configured to conduct the second antenna unit and the first radio frequency channel.
  • the processor sends second control information to the first switching device, where the second control information is used to control the first switching device to work in the second working state. In the first working state, the first switching device is configured to conduct the first antenna unit and the first radio frequency channel, and the second antenna unit and the first radio frequency channel are not conductive.
  • the signals flowing through the first antenna unit and the second antenna unit are both the first signals.
  • the signal flowing through the first antenna unit is the second signal, and the second signal does not flow through the second antenna unit.
  • the radio frequency parameter of the first signal when the first switching device is in the first working state, is the first parameter.
  • the radio frequency parameter of the second signal is the second parameter, wherein the first parameter and the second parameter are different.
  • the radio frequency parameters include reference signal received power RSRP and/or bit error rate.
  • the processor sends third control information to the first switching device, where the third control information is used to control the first switching device to work in a third working state.
  • the first switching device is configured to conduct the first antenna unit and the first radio frequency channel, and the first switching device is further configured to conduct the second antenna unit and the second radio frequency channel, and the first switching device is configured to conduct
  • the signal of the antenna unit is the third signal, and the signal flowing through the second antenna unit is the fourth signal.
  • a fourth aspect provides a processor, where the processor is arranged in an electronic device, and the processor is configured to execute the wireless communication method described in any one of the third aspect and its possible designs.
  • a fifth aspect provides an electronic device, the electronic device is provided with one or more processors as provided in the fourth aspect, a memory, and a wireless communication system as provided in the first aspect and possible designs thereof, one or more A plurality of processors are coupled to a memory having computer instructions stored thereon and to the wireless communication system.
  • the computer instructions when executed by one or more processors, cause an electronic device to perform the wireless communication method of any of the third aspect and possible designs thereof.
  • an antenna system which is applied to electronic equipment.
  • the antenna system includes: N switching devices, M antenna units, one switching device corresponding to at least two antenna units, and at least 2 antenna units corresponding to one switching device.
  • Each antenna unit constitutes one antenna pair.
  • N is a positive integer
  • M is an integer greater than N.
  • the output end of the first switching device is coupled to the first antenna pair, the first switching device is any one of the N switching devices, and at least two antenna units included in the first antenna pair are included in the M antenna units.
  • the first switching device has a first working state and a second working state. When the first switching device works in the first working state, the zero point direction of the directional diagram of the antenna system is the first direction. When the first switching device works in the second working state, the zero point direction of the directional diagram of the antenna system is the second direction, and the first direction is different from the second direction.
  • an antenna system capable of solving the communication obstruction problem caused by the null point of the pattern.
  • N switching devices are innovatively proposed.
  • the pattern of the antenna unit in the working state ie, the pattern of the antenna system
  • the pattern of the antenna system can be flexibly adjusted according to the environment.
  • the pattern of the antenna system may exhibit different distributions than the pattern of the antenna system in the second working state, so that the positions of the zero points of the pattern are also different in different working states.
  • the communication may be blocked, so the working state can be switched to another state, and the zero point of the pattern can be offset by reconstructing the pattern, thereby avoiding the signal
  • the direction coincides with the zero point of the pattern, thereby avoiding communication blockage due to the zero point of the pattern.
  • the coverage frequency bands of at least two antenna elements included in the first antenna pair partially or completely overlap.
  • an example of a possible antenna pair setup is provided.
  • two antenna elements constituting an antenna pair may have partially overlapping operating frequency bands. In this way, when signals are sent and received in the working frequency band, the pattern can be reconstructed by adjusting the number of antenna elements in the working state of the antenna alignment without affecting the signal transmission and reception.
  • the first switching device works in a first working state.
  • the reference signal received power RSRP is less than the first threshold.
  • the bit error rate is greater than the second threshold.
  • the working state of the first switching device is switched from the first working state to the second working state.
  • the number of antenna units that perform signal reception and/or transmission in the first antenna pair is the same as when the second switching device works at In the case of the first working state, the number of antenna units for signal reception and/or transmission in the first antenna pair is different.
  • a possible mechanism for realizing orientation map reconstruction is provided.
  • the reconstruction of the pattern can be realized by adjusting the number of the antenna units in the working state under different working states. It can be understood that the pattern of the antenna unit in only one working state is generally different from the pattern of other antenna units, and is also different from the pattern synthesized when the two antenna units work at the same time.
  • the reconstruction of the number of units realizes the reconstruction of the direction map.
  • the first switching device when the throughput rate of the electronic device is less than the third threshold, the first switching device works in the first working state.
  • the electronic device may control the first switching device to work in the first working state in the case where it is determined that a larger throughput rate is not required.
  • the electronic device may also control the first switching device to work in the second working state in a scenario where a large throughput rate is not required.
  • the first switching device also has a third working state.
  • the first switching device works in the third working state, the number of antenna units for signal reception and/or transmission in the first antenna pair is greater than when the first switching device is in the first working state or in the second working state , the number of antenna units for signal reception and/or transmission in the first antenna pair.
  • the throughput rate of the electronic device is greater than the fourth threshold, the first switching device operates in a third working state, wherein the fourth threshold is greater than or equal to the third threshold.
  • the two antenna units can be controlled to work at the same time to transmit and receive signals. For example, the signals received by each can be transmitted to the front end through different radio frequency channels, so as to achieve the effect of multi-streaming, thereby improving the throughput rate.
  • the antenna system further includes a second switching device and a second antenna pair.
  • the output end of the second switching device is coupled to the second antenna pair, the second switching device is any one of the N switching devices, and at least two antenna units included in the second antenna pair are included in the M antenna units.
  • the second switching device has at least a first working state and a second working state.
  • the first switching device works in the first working state
  • the zero point direction of the pattern of the antenna system is the first direction
  • the first switching device works in the second working state.
  • the direction of the zero point of the pattern of the antenna system is the second direction
  • the first direction is different from the second direction.
  • a seventh aspect provides a wireless communication system, the wireless communication system includes the antenna system described in any one of the sixth aspect and its possible designs, and a radio frequency module, the radio frequency module is respectively coupled to the input ends of the N switching devices .
  • the radio frequency module is used for transmitting the transmit signal to the antenna pair corresponding to the one or more switching devices through one or more switching devices in the N switching devices, so as to send the transmitting signal through the antenna.
  • received signals from the antenna pairs corresponding to the one or more switching devices are received and processed.
  • the radio frequency module includes a first radio frequency channel
  • the first antenna pair includes a first antenna unit and a second antenna unit
  • the working frequency band of the first antenna unit and the working frequency band of the second antenna unit are partially overlapped or completely coincide.
  • the first radio frequency channel is coupled to the first antenna unit, and when transmitting the transmit signal, the first radio frequency channel sends the transmit signal through the first antenna unit.
  • the first radio frequency channel receives the received signal received from the first antenna unit.
  • the first radio frequency channel is coupled to the first antenna unit and the second antenna unit, and when transmitting the transmit signal, the first radio frequency channel transmits the transmit signal through the first antenna unit and the second antenna unit.
  • the first radio frequency channel receives the received signal from the first antenna unit and the second antenna unit.
  • the radio frequency module includes a first radio frequency channel
  • the first antenna pair includes a first antenna unit and a second antenna unit
  • the working frequency band of the first antenna unit and the working frequency band of the second antenna unit are partially overlapped or completely coincide.
  • the first radio frequency channel is coupled to the first antenna unit
  • the second radio frequency channel is coupled to the second antenna unit.
  • the first radio frequency channel transmits the corresponding first transmit signal through the first antenna unit
  • the second radio frequency channel transmits the corresponding second transmit signal through the second antenna unit.
  • the first radio frequency channel receives the signal received from the first antenna unit
  • the second radio frequency channel receives the signal received from the second antenna unit.
  • a wireless communication method is provided, which is applied to an electronic device, wherein the electronic device is provided with the wireless communication system described in any one of the seventh aspect and its possible designs, and a control terminal with N switching devices. coupled processors.
  • the method includes: the processor controls the first switching device to work in a first working state by sending first control information to the first switching device.
  • the processor is in the case that the reference signal received power RSRP is less than the first threshold. Or, when the bit error rate is greater than the second threshold. Alternatively, when the RSRP is less than the first threshold and the bit error rate is greater than the second threshold, the second control information is sent to the first switching device to control the first switching device to work in the second working state.
  • the method before the processor sends the first control information to the first switching device, the method further includes: the processor determines that the throughput rate of the electronic device is less than a third threshold.
  • the processor when the processor determines that the throughput rate of the electronic device is greater than the fourth threshold, the processor sends third control information to the first switching device to control the first switching device to work in the third working state.
  • a ninth aspect provides a processor, where the processor is arranged in an electronic device, and the processor is configured to execute the wireless communication method described in any one of the eighth aspect and its possible designs.
  • a tenth aspect provides an electronic device, the electronic device is provided with one or more processors as provided in the ninth aspect, a memory, and the wireless communication system as described in any one of the seventh aspect and its possible designs,
  • the one or more processors are coupled to a memory having computer instructions stored thereon and to the wireless communication system.
  • the computer instructions when executed by one or more processors, cause an electronic device to perform the wireless communication method of any one of the eighth aspect and possible designs thereof.
  • an electronic device is provided, the electronic device is provided with a folding screen, and the wireless communication system according to any one of the seventh aspect and possible designs thereof.
  • the folding screen is in the first folding state
  • the first switching device in the wireless communication system works in the first working state.
  • the folding screen is in the second folding state
  • the first switching device in the wireless communication system works in the second working state.
  • the folding screen is in the second folding state
  • the first switching device in the wireless communication system works in the first working state.
  • the included angle between the first screen and the second screen in the folding screen is less than 90 degrees.
  • the angle between the first screen and the second screen of the folding screen is greater than 90 degrees.
  • a twelfth aspect provides a chip system, the chip system includes an interface circuit and a processor; the interface circuit and the processor are interconnected through a line; the interface circuit is used to receive a signal from a memory and send a signal to the processor, and the signal includes storage in the memory.
  • the computer instructions when the processor executes the computer instructions, the chip system executes the wireless communication method described in any one of the above examples.
  • a thirteenth aspect provides a computer-readable storage medium, where the computer-readable storage medium includes computer instructions, and when the computer instructions are executed, executes the wireless communication method described in any one of the foregoing examples.
  • a fourteenth aspect provides a computer program product, the computer program product includes instructions, when the computer program product runs on a computer, the computer can execute the wireless communication method described in any one of the above examples according to the instructions.
  • 1 is a schematic diagram of a pattern of a typical antenna
  • FIG. 2 is a schematic diagram of an antenna system
  • FIG. 3 is a schematic diagram of an antenna switching
  • FIG. 4 is a schematic diagram of a distributed antenna system
  • FIG. 5 is a schematic diagram of the composition of an electronic device provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of the composition of an antenna system according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a refined composition of an antenna system according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of antenna switching according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of yet another antenna switching provided by an embodiment of the present application.
  • FIG. 10 is a schematic flowchart of an antenna switching method provided by an embodiment of the present application.
  • FIG. 11 is a schematic diagram of an electronic device with a folding screen provided by an embodiment of the application.
  • FIG. 12 is a schematic diagram of another electronic device with a folding screen provided by an embodiment of the present application.
  • FIG. 13 is a schematic diagram of antenna distribution on an electronic device with a folding screen according to an embodiment of the application.
  • FIG. 14 is a schematic diagram of antenna switching on another electronic device with a folding screen provided by an embodiment of the application.
  • FIG. 15 is a schematic diagram for comparison of a pattern reconstruction effect provided by an embodiment of the present application.
  • 16 is a schematic diagram of antenna distribution on another electronic device with a folding screen provided by an embodiment of the present application.
  • 17 is a schematic diagram of antenna distribution on another electronic device with a folding screen provided by an embodiment of the present application.
  • FIG. 18 is a schematic diagram of antenna distribution on another electronic device with a folding screen provided by an embodiment of the present application.
  • FIG. 19 is a schematic diagram of another electronic device provided by an embodiment of the present application.
  • FIG. 20 is a schematic diagram of a chip system provided by an embodiment of the present application.
  • first and second are only used for descriptive purposes, and should not be construed as indicating or implying relative importance or implicitly indicating the number of indicated technical features.
  • a feature defined as “first” or “second” may expressly or implicitly include one or more of that feature.
  • plural means two or more.
  • One or more antenna units may be provided in the electronic device, and each antenna unit is coupled to a corresponding radio frequency module to implement signal transmission and reception.
  • the electronic device can convert the electromagnetic waves in the space into current signals with different characteristics through the antenna, and analyze the current signals through the radio frequency module, and the electronic device can obtain the information carried by the electromagnetic waves.
  • the electronic device can also feed an electrical signal loaded with the information to be sent to the antenna through the radio frequency module, so that the antenna can convert the electrical signal into electromagnetic waves of the corresponding frequency and transmit them, which are then received by other devices.
  • the electromagnetic wave When the electromagnetic wave is received, the electromagnetic wave can be received through the antenna provided therein, thereby realizing wireless transmission of information.
  • FIG. 2 shows a schematic diagram of an antenna system.
  • a plurality of antenna units may be provided (the antenna unit 1, the antenna unit 2, the antenna unit 3 and the antenna unit 4 as shown in FIG. 2).
  • the working frequency bands of any two antenna units can be the same or different.
  • the set of operating frequency bands of all four antenna units can cover the wireless communication frequency bands required by electronic equipment.
  • the antenna system can be used for signal transmission and reception. For example, take the control of the antenna unit 1 for signal transmission as an example.
  • the radio frequency module can feed the electrical signal with the frequency band f1 into the antenna unit 1 .
  • the working frequency band of the antenna unit 1 covers the frequency band f1.
  • the antenna unit 1 can convert the incoming electrical signals into electromagnetic waves for propagation in space, so as to realize the transmission of electrical signals.
  • the radio frequency module can control other antenna units (eg, antenna unit 2, antenna unit 3, and antenna unit 4) to transmit signals.
  • the antenna unit 1 can receive electromagnetic waves corresponding to its operating frequency band, and convert the electromagnetic waves into electrical signals having corresponding characteristics (eg, having corresponding amplitude and phase).
  • the electrical signal can be transmitted to the radio frequency module, so that the radio frequency module can analyze the electrical signal and obtain the information loaded in the electrical signal. The reception of the signal is thereby achieved.
  • other antenna units (such as antenna unit 2, antenna unit 3, and antenna unit 4) can also receive electromagnetic waves in corresponding frequency bands, and convert them into electrical signals to be analyzed by the radio frequency module, thereby realizing corresponding signal reception.
  • the working frequency bands of antenna unit 1 to antenna unit 4 are different (for example, the working frequency band of antenna unit 1 is frequency band 1, the working frequency band of antenna unit 2 is frequency band 2, and the working frequency band of antenna unit 3 is frequency band 2). is the frequency band 3, and the working frequency band of the antenna unit 4 is the frequency band 4) as an example.
  • the antenna unit 1 can be controlled to work.
  • the antenna unit 2 can be controlled to work.
  • the antenna unit 3 can be controlled to work.
  • the antenna unit 4 can be controlled to work.
  • the null point of the directional pattern of the antenna unit is relatively fixed. Different antennas all have pattern nulls, so that the influence of the pattern nulls in the communication process cannot be eliminated.
  • a switching device may be provided between the radio frequency module and the antenna.
  • the radio frequency module is connected to the antenna unit 1 and the antenna unit 2 through the switching device.
  • the switching device can connect the radio frequency module to the antenna unit 1 and disconnect the radio frequency module from the antenna unit 2 .
  • the electronic device uses the antenna unit 1 for transmission/reception.
  • the electronic device can control the radio frequency module to monitor the relevant parameters in the process of transmitting/receiving through the antenna unit 1 . When the relevant parameter is lower than the preset threshold, it indicates that the transmission/reception effect performed by the antenna unit 1 is currently poor.
  • the electronic device can control the switching device to disconnect the radio frequency module from the antenna unit 1 and connect it with the antenna unit. 2 connections. Further, it is switched to transmit/receive signals through the antenna unit 2 . Since the directions of the directional pattern nulls of the antenna unit 1 and the antenna unit 2 are generally different, the problem of poor communication quality caused by the directional pattern null of the antenna unit 1 can be appropriately avoided by switching the antenna units.
  • the antenna unit 2 also has a directional pattern null, there is also a hidden danger that the directional pattern null will affect the communication quality.
  • the pattern nulls of Antenna Unit 1 and Antenna Unit 2 are not different in all cases, and with the development of electronic equipment, the antenna space is deteriorating, which also makes the gain near the pattern null of a single antenna unit low. area becomes larger. For example, in a mobile phone with a folding screen, due to factors such as an increase in the screen ratio and a reduction in the thickness of the mobile phone, the space that can be used to set up the antenna is getting smaller and smaller, which will seriously affect the radiation performance of a single antenna.
  • Scheme 2 Distributed antenna scheme. It can be understood that, in a transmission scenario, when the same radio frequency signal is simultaneously input to two antenna units for transmission, the two antenna units can form a distributed antenna. Similarly, in a receiving scenario, when two antenna units transmit received signals to the radio frequency module at the same time, the two antenna units can form a distributed antenna.
  • a group of distributed antennas may include a feed network and two or more antenna units, wherein the multiple antenna units may be located at different positions of the electronic device, respectively. Referring to FIG. 4 , one feeding network connects two antenna units (eg, antenna unit 1 and antenna unit 2 ) as an example.
  • the radio frequency module (not shown in the figure) can feed the radio frequency signal into the distributed antenna.
  • the feed network in the distributed antenna can transmit the corresponding signals for the two antenna units respectively after matching and processing the radio frequency signal.
  • signal 1 is transmitted to antenna unit 1 and signal 2 is transmitted to antenna unit 2.
  • the signal 1 controls the antenna unit 1 to radiate, and the signal 2 controls the antenna unit 2 to radiate.
  • one of the two antenna units can compensate for the radiation of the zero point of the directional pattern of the other antenna unit, thereby achieving the purpose of improving the overall radiation effect.
  • the more antenna elements the better the overall radiation effect.
  • the more antenna elements the more space the antenna takes up in the electronic device.
  • distributed designs are becoming more and more difficult to implement. For example, in a mobile phone with a folding screen, due to limited space, the antennas may need to be arranged near different screens, which also increases the difficulty of implementing the distributed antenna scheme.
  • the above two schemes can solve the problem of poor communication quality caused by the null of the inherent antenna pattern within a certain range.
  • the above solution cannot significantly improve the communication quality.
  • the improvement of the communication quality can also be achieved by increasing the throughput rate (that is, increasing the number of received signal streams).
  • the more antenna units that work independently at the same time the more antenna units can provide signals to the RF module through their corresponding RF chains during the receiving process.
  • the radio frequency module can receive more valid signals, thereby achieving the purpose of improving the throughput rate.
  • the current antenna design in electronic equipment cannot provide better wireless communication quality because it cannot well avoid the zero point of the antenna pattern and can provide limited throughput. It should be noted that these problems are more significant in the case of higher space requirements (for example, in an electronic device provided with a folding screen).
  • an embodiment of the present application provides an antenna switching method.
  • the electronic device can adaptively reconstruct the number and/or pattern of the antenna units, so that when the communication environment is poor, the electronic device can radiate through a larger antenna aperture, thereby significantly avoiding the problem of fixed antennas.
  • the purpose of the effect of the zero point of the pattern on the communication quality When the communication environment is good, the electronic device can radiate through more antenna units, thereby improving the throughput.
  • the solutions provided by the embodiments of the present application can be applied to different electronic devices.
  • the electronic device may be a mobile phone, a tablet computer, a wearable device, an in-vehicle device, an augmented reality (AR)/virtual reality (VR) device, a laptop computer, an ultra-mobile personal computer (ultra-mobile personal computer) computer, UMPC), netbook, personal digital assistant (personal digital assistant, PDA) and other mobile terminals
  • the embodiments of the present application do not impose any restrictions on the specific types of electronic devices.
  • the solutions provided by the embodiments of the present application can be applied to electronic devices having a folding screen, and have the effect of significantly improving communication quality.
  • FIG. 5 is a schematic diagram of the composition of a communication system (or referred to as a wireless communication system) according to an embodiment of the present application.
  • the communication system can be set in the electronic device to realize the communication function of the electronic device.
  • the communication system may include a processor 100, a filter 200, a Low Noise Amplifier (LNA) 300, a Power Amplifier (PA) 400, a switch 500 and an antenna module 600.
  • the antenna module 600 may include one or more antennas (ANT) 601 .
  • the processor 100 may include one or more processing units, for example, the processor 100 may include an application processor (application processor, AP), a modem processor, a graphics processor (graphics processing unit, GPU), an image signal processor (image signal processor, ISP), neural-network processing unit (NPU), controller, video codec, digital signal processor (DSP), baseband, and/or radio frequency integrated circuit Wait.
  • the controller can generate an operation control signal according to the instruction operation code and timing signal, and complete the control of fetching and executing instructions.
  • a memory may be provided in the processor 100 for storing instructions and data.
  • the memory in the processor 100 includes cache memory.
  • the memory may hold instructions or data that have just been used or recycled by the processor 100 . If the processor 100 needs to use the instruction or data again, it can be called directly from the memory. Repeated accesses are avoided, and the waiting time of the processor 100 is reduced, thereby increasing the efficiency of the system.
  • the memory may also be located outside the processor and coupled to the processor 100 .
  • the processor 100 may include a baseband (Baseband, BB) processor 101 and a radio frequency integrated circuit (Radio Frequency Integrated Circuit, RFIC) 102 .
  • the baseband processor may be simply referred to as baseband.
  • the baseband 101 may be used to synthesize a baseband signal to be transmitted, or/and to decode a received baseband signal. Specifically, when transmitting, the baseband can encode a voice or other data signal into a baseband signal (baseband code) for transmission; when receiving, the baseband can decode the received baseband signal (baseband code) into voice or other data. Signal.
  • baseband 101 may include components such as encoders, decoders, and baseband controllers. The encoder is used to synthesize the baseband signal to be transmitted, and the decoder is used to decode the received baseband signal.
  • the baseband controller can be a microprocessor (Microprocessor or Micro Central Processing Unit, MCU), and the baseband controller can be used to control the encoder and decoder.
  • MCU Micro Central Processing Unit
  • the baseband controller can be used to complete the scheduling of encoding and decoding. Communication between decoders, and peripheral drivers (you can enable components other than baseband by sending enable signals to components other than baseband) and so on.
  • a radio frequency integrated circuit (Radio Frequency Integrated Circuit, RFIC) 102 is used to process the baseband signal to form a transmit (Transmit, TX) signal, and transmit the transmit signal to the power amplifier 400 for amplification; or/and, the radio frequency integrated circuit is used to
  • the received (Receive, RX) signal is processed to form a baseband signal, and the formed baseband signal is sent to the baseband 101 for decoding.
  • the baseband processor 101 can process digital signals such as baseband signals
  • the radio frequency integrated circuit 102 can be used to process analog signals such as radio frequency signals.
  • a digital-to-analog/analog-to-digital conversion component may be provided for digital-to-analog conversion/analog-to-digital conversion when data is transmitted between the baseband processor 101 and the radio frequency integrated circuit 102 .
  • the digital-to-analog/analog-to-digital conversion component may also be integrated in the baseband processor 101 or the radio frequency integrated circuit 102 .
  • the processor 100 may frequency modulate the signal according to a mobile communication technology or a wireless communication technology.
  • Mobile communication technologies may include global system for mobile communications (GSM), general packet radio service (GPRS), code division multiple access (CDMA), bandwidth code division Multiple access (wideband code division multiple access, WCDMA), time division code division multiple access (time-division code division multiple access, TD-SCDMA), long term evolution (long term evolution, LTE), emerging wireless communication technology (also known as It is the fifth generation mobile communication technology, English: 5th generation mobile networks or 5th generation wireless systems, 5th-Generation, 5th-Generation New Radio, referred to as 5G, 5G technology or 5G NR), etc.
  • Wireless communication technologies may include wireless local area networks (WLAN) (eg, wireless fidelity (Wi-Fi) networks), bluetooth (BT), global navigation satellite system (GNSS) , frequency modulation (frequency modulation, FM), near field communication technology (near field communication, NFC), infrared technology (infrared, IR) and so on.
  • WLAN wireless local area networks
  • Wi-Fi wireless fidelity
  • BT Bluetooth
  • GNSS global navigation satellite system
  • FM frequency modulation
  • FM frequency modulation
  • NFC near field communication technology
  • infrared technology infrared, IR
  • the processor 100 may include at least one baseband 101 and at least one radio frequency integrated circuit 102 .
  • each baseband 101 corresponds to a radio frequency integrated circuit 102 to frequency modulate the signal according to one or more communication technologies.
  • the first baseband and the first radio frequency integrated circuit frequency-modulate the signal according to the 5G technology
  • the second baseband and the second radio frequency integrated circuit frequency-modulate the signal according to the 4G technology
  • the third baseband and the third radio frequency integrated circuit according to the Wi-Fi technology The signal is frequency-modulated, the fourth baseband and the fourth radio frequency integrated circuit frequency-modulate the signal according to the Bluetooth technology, and so on.
  • the first baseband and the first radio frequency integrated circuit may frequency-modulate the signal according to the 4G technology and the 5G technology at the same time
  • the second baseband and the second radio frequency integrated circuit may frequency-modulate the signal according to the Wi-Fi technology, and so on.
  • one baseband 101 may also correspond to multiple radio frequency integrated circuits 102 to improve integration.
  • baseband 101 and radio frequency integrated circuit 102 may be integrated with other components of processor 100 in one integrated circuit.
  • the baseband 101 and the radio frequency integrated circuit 102 may each be an independent device independent of the processor 100 .
  • a baseband 101 and a radio frequency integrated circuit 102 may be integrated into a separate device from the processor 100 .
  • the baseband 101 and the radio frequency integrated circuit 102 are integrated in different integrated circuits, and the baseband 101 and the radio frequency integrated circuit 102 are packaged together, for example, in a System on a Chip (SOC).
  • SOC System on a Chip
  • different processing units may be independent devices, or may be integrated in one or more integrated circuits.
  • the antenna module 600 is used for transmitting radio frequency signals, and the antenna module 600 can also be used for receiving electromagnetic wave signals and converting the electromagnetic wave signals into radio frequency signals.
  • the antenna module 600 may include multiple antennas 601 or multiple sets of antennas (the multiple sets of antennas include more than two antennas), and each antenna 601 or multiple sets of antennas may be used to cover a single or multiple communication frequency bands. Any one of the multiple antennas may be a single-frequency or multi-frequency antenna.
  • the plurality of antennas may include an array antenna composed of a plurality of antenna elements.
  • the radiator of any one of the multiple antennas may include, but is not limited to, the metal frame of the electronic device, and/or the metal back shell, and/or the metal parts of other devices (such as cameras, etc.), etc., which have conductive properties. feature structure.
  • the radiator of any one of the plurality of antennas may also include a Flexible Printed Circuit (FPC) antenna, and/or a stamping (stamping) antenna, and/or Laser-Direct-structuring (LDS) ) components in the form of antennas, etc.
  • FPC Flexible Printed Circuit
  • stamping stamping
  • LDS Laser-Direct-structuring
  • any one of the plurality of antennas may also be an on-chip antenna.
  • an antenna circuit 602 may also be included in the antenna module 600 .
  • the antenna circuit 602 may also be referred to as a matching circuit.
  • the matching circuit may include one or more capacitors, and/or inductors, and/or resistors. Adjustable devices, such as adjustable inductors and/or adjustable capacitors, may also be included in the matching circuit.
  • the matching circuit can be used to adjust the impedance of the antenna 601 . Through the tuning of the matching circuit, the impedance of the antenna 601 can be made as close as possible to the impedance of the radio frequency signal within the working frequency range (eg, 50 ohms, or 75 ohms). This reduces the loss or reflection at the antenna port position when the radio frequency signal is transmitted to the antenna 601, thereby improving the radiation efficiency of the communication system.
  • the processor 100 is coupled with the antenna circuit 600 to implement various functions associated with transmitting and receiving radio frequency signals.
  • the baseband 101 can load the data to be transmitted on the digital signal by means of digital modulation, thereby acquiring the baseband signal corresponding to the data to be transmitted.
  • the baseband signal is converted into a transmission signal (radio frequency signal) by the radio frequency integrated circuit 102 , the transmission signal is amplified by the power amplifier 400 , and the amplified output signal output by the power amplifier 400 is transmitted to the switch 500 and transmitted through the antenna circuit 600 .
  • the path through which the transmission signal is sent by the processor 100 to the switch 500 is a transmission link (or referred to as a transmission path).
  • the antenna circuit 600 sends the received signal (radio frequency signal) to the switch 500, the switch 500 sends the radio frequency signal to the radio frequency integrated circuit 102, and the radio frequency integrated circuit 102 processes the radio frequency signal into a baseband signal and sends it To the baseband 101, the baseband 101 converts the processed baseband signal into data and sends it to the corresponding application processor.
  • the path through which the radio frequency signal is sent from the switch 500 to the processor 100 is a receive link (or referred to as a receive path).
  • the port connected to the transmit link in the processor 100 is the transmit port TX
  • the port connected to the receive link in the processor 100 is the receive port RX.
  • the toggle switch 500 may be configured to selectively electrically connect the antenna circuit 600 to the transmit link or the receive link.
  • toggle switch 500 may include multiple switches.
  • the toggle switch 500 may also be configured to provide additional functionality, including filtering and/duplexing of signals.
  • the filter 200 and the PA 300 may also be set on the TX link corresponding to the switch 500 , and may also be set on the RX link corresponding to the switch 500
  • TX links and/or RXs may be set in the communication system link.
  • the composition of components included in each TX chain is also not limited to the composition shown in FIG. 5 .
  • PA 300 may not be set on some TX links.
  • the signal on the link can be introduced into the PA 300 on other TX links through the radio frequency line to realize Time division/frequency division sharing of PA300.
  • the composition of components included in each RX chain is not limited to the composition shown in FIG. 5 .
  • the LNA 400 may not be included on the RX link corresponding to a frequency band with low signal quality requirements (such as a roaming frequency band), thereby achieving the effect of reducing hardware costs on the premise of meeting the signal quality requirements.
  • the RX chain includes the filter 200 and the LNA 400
  • the TX chain includes the filter 200 and the PA 300.
  • the components in the RX link and the set of components in the TX link included in the communication system may be referred to as a radio frequency module. It can be understood that, when the radio frequency module includes multiple RX chains and/or TX chains, one RX chain or one TX chain may also be referred to as one radio frequency channel. It should be noted that, in some implementation scenarios, when the RX link and the TX link are the same physical link, the physical link may also correspond to one radio frequency channel.
  • the communication system of the electronic device may include more or less components than shown, or some components are combined, or some components are separated, or different components are arranged.
  • the illustrated components may be implemented in hardware, software, or a combination of software and hardware.
  • the antenna module 600 shown in FIG. 5 is exemplarily described below with reference to FIG. 6 .
  • a schematic composition of an antenna module 600 (or called an antenna system) is shown.
  • the antenna system may have an electrical connection relationship with the radio frequency module.
  • N is an integer greater than or equal to 2.
  • two antennas with the same coverage frequency band can form an antenna pair. For example, take the example that the antenna unit A3 and the antenna unit A4 have the same coverage frequency band.
  • the first antenna channel including the antenna unit A3 and the feeding device A1 may form a first antenna pair with the second antenna channel including the antenna unit A4 and the feeding device A2.
  • other antenna paths can also be paired to form an antenna pair.
  • the feeding device may be a radio frequency transmission line (such as a radio frequency transmission line whose impedance is controlled at 50 ohms), a metal thimble, a metal shrapnel, etc., for the transmission between the power signal on the antenna path and the antenna radiator.
  • the feeding device may further include a phase shifter for adjusting the phase of the signal at the antenna port, so as to control the phase condition of the antenna radiation, for example, by adjusting the two antenna units operating at the same time
  • the corresponding phase shifters make the radiation phase of the two antenna units differ by 90 degrees, thereby achieving the dual-polarization radiation effect, thereby reducing the mutual influence when the two antenna units work at the same time, and improving the system signal quality.
  • other components may also be included on the antenna path.
  • it may include a matching circuit corresponding to the antenna provided on the antenna channel, and/or other radio frequency devices for realizing the antenna radiation function.
  • the matching circuit can adjust the impedance between the antenna unit and the radio frequency module, and the matching circuit can include one or more of capacitors, inductors and switches. In different states, the matching circuit can adjust its own capacitance and inductance values. and one or more of the switch states, so that the impedance between the antenna unit and the radio frequency module is matched.
  • the antenna path may also not include a feed.
  • the antenna system in FIG. 6 is only a possible composition example.
  • the antenna part coupled to the switching device 1 may include a feeding device A1, an antenna unit A3, a feeding device A2, and an antenna unit A4.
  • the antenna part coupled with the switching device 2 may include 2 feeding devices and 2 antenna elements. That is to say, in this example, the N switching devices included in the antenna system can be set independently. In other implementations of the present application, the N switching devices (eg, switching device 1 to switching device N) may also be partially or fully integrated into one component. 5, in other implementations, one or more of the N switching devices (eg, switching device 1-switching device N) included in the antenna system may also be integrated with the switch 500 and provided in the electronic device of.
  • the radio frequency module shown in FIG. 6 can be used to process radio frequency signals.
  • the radio frequency module may include at least one of a filter, a combiner, a power amplifier, or a linear amplifier.
  • each radio frequency channel may include a component for processing one radio frequency signal, for example, each radio frequency channel may include at least one of a filter, a combiner, a power amplifier or a linear amplifier.
  • one antenna pair may also correspond to one switching device, and the switching device may be disposed between the antenna path included in the antenna pair and the radio frequency module.
  • the electronic device can make the antenna pair work in different states by controlling the switching device.
  • the switching device may implement changes in its switching state based on different control modes.
  • the processor or baseband in the electronic device can adjust the state of the analog control signal on the GPIO control line to make The switching device works in different working states. For example, take the switching device controlled by 2 and GPIO control lines as an example.
  • the processor or baseband can control the analog control signal on the GPIO control line to work at high level or low level, the high level corresponds to 1, and the low level corresponds to 0, then the processor or baseband can control the switching device to work at 01, 10 , 00, 11 at least 4 working states.
  • the processor or the baseband in the electronic device can control the corresponding bits of the digital control signal transmitted on the MIPI signal line The state of the bit (eg set to 0 or set to 1) makes the switching device work in different working states.
  • control instructions of the switching device involved in the above examples may be stored in the internal storage area of the processor or the baseband, and are retrieved and sent to the switching device when the working state of the switching device needs to be adjusted.
  • the above-mentioned control instructions may also be stored in other components with a storage function of the electronic device, for example, the control instructions may be stored in the internal memory of the electronic device, or, for example, The control instructions may also be stored in an external memory of the electronic device. This embodiment of the present application does not limit the storage location of the control instruction.
  • the first radio frequency channel is the radio frequency channel RF2 and the second radio frequency channel is the radio frequency channel RF1 as an example for description.
  • the radio frequency module may include multiple radio frequency channels, and one radio frequency channel may be used to support at least one antenna channel to implement signal reception or transmission in one frequency band.
  • the first antenna channel may selectively correspond to the radio frequency channel RF1
  • the second antenna channel may selectively correspond to the radio frequency channel RF2.
  • the radio frequency channel RF1 when the first antenna channel corresponds to the radio frequency channel RF1 and the second antenna channel corresponds to the radio frequency channel RF2, during the transmission process, when the radio frequency channel RF1 is connected to the first antenna channel, the radio frequency channel RF1 can transmit the electrical signal It is transmitted to the antenna unit A3 through the feeding device A1 for radiation of the frequency band 1.
  • the signal of frequency band 1 received by the antenna unit 3 can be transmitted to the radio frequency channel RF1 through the power feeding device A1, so that the radio frequency channel RF1 can analyze the signal and realize the reception of the signal.
  • the radio frequency channel RF2 when the radio frequency channel RF2 is connected to the second antenna channel, the radio frequency channel RF2 can transmit the electrical signal to the antenna unit A4 through the feeding device A2 for radiation of frequency band 1.
  • the signal of frequency band 1 received by the antenna unit A4 can be transmitted to the radio frequency channel RF2 through the power feeding device A2, so that the radio frequency channel RF2 can analyze the signal and realize the signal reception.
  • the switching device 1 includes three single-pole single-throw switches (SPST), such as switch 1 , switch 2 and switch 3 as an example.
  • SPST single-pole single-throw switches
  • One end of the switch 1 is coupled to the radio frequency channel RF1, and the other end of the switch 1 is coupled to the feeding device A1.
  • One end of the switch 2 is coupled to the radio frequency channel RF2, and the other end of the switch 2 is coupled to the feeding device A2.
  • One end of the switch 3 is coupled to the radio frequency channel RF2, and the other end of the switch 3 is coupled to the feeding device A1.
  • the switching device realizes its switching function by three SPSTs.
  • the switching device may also realize its switching function through other components, for example,
  • the switching device may include one SPST and one 2SPST to realize its switching function.
  • the electronic device can control the first antenna pair to work in different working states by controlling the switching device 1 including the above three SPSTs.
  • the working mechanism of each working state of the first antenna pair in a transmission scenario is described below by example.
  • the electronic device can control the switch 1 in the switching device 1 to be turned off, and the switch 2 and the switch 3 to be turned on.
  • the radio frequency module can simultaneously radiate electrical signals through the antenna unit A3 and the antenna unit A4 through the radio frequency channel RF2.
  • the antenna unit A3 and the antenna unit A4 are combined into one antenna and radiate outward.
  • the transmit signal eg, transmit signal 1
  • the transmit signal 1 is routed to the second antenna path through the RF channel RF2 and switch 2
  • the transmit signal 1 is routed to the first antenna channel through the radio frequency channel RF2 and switch 3.
  • the single-channel transmission signal that is, the transmission signal 1
  • the two antenna units the antenna unit A3 and the antenna unit A4
  • the directional diagrams of the two antenna elements are superimposed in space to form the corresponding directional diagrams in the current working state (eg, state 1).
  • the zero point of the pattern of the pattern is different from that of the antenna unit A3 or the antenna unit A4, so the problem of communication quality degradation caused by the zero point of the pattern of the antenna unit A3 or the antenna unit A4 can be avoided.
  • the electronic device can control the switch 1 and the switch 2 in the switching device 1 to be turned on, and the switch 3 to be turned off.
  • the radio frequency module can transmit the transmit signal to the antenna unit A3 through the radio frequency channel RF1 for radiation.
  • the radio frequency module can also transmit the transmitted signal to the antenna unit A4 for radiation through the radio frequency channel RF2.
  • the transmit signal (transmit signal 2) from the radio frequency channel RF1 can be transmitted to the first antenna path through the switch 1 and radiated through the antenna unit A3.
  • the transmit signal (transmit signal 3 ) from the radio frequency channel RF2 can be transmitted to the second antenna path through the switch 2 and radiated through the antenna unit A4.
  • the radio frequency signals (eg, transmit signal 2 and transmit signal 3 ) transmitted to the antenna system by the radio frequency channel RF1 and the radio frequency channel RF2 may be the same. That is to say, in the transmission scenario, the RF module can use two antenna channels to transmit corresponding signals at the same time, which can significantly improve the throughput of the system compared to the state where only one antenna channel is used for transmission.
  • transmit signal 2 and transmit signal 3 may be two different transmit signals in a MIMO scenario; or, in some embodiments, transmit signal 2 and transmit signal 3 may be two in a dual connectivity scenario Different transmit signals, or, in other embodiments, transmit signal 2 and transmit signal 3 may be signals in different frequency bands that are simultaneously transmitted in a carrier aggregation (Carrier Aggregation, CA) scenario, and so on.
  • Carrier Aggregation, CA Carrier Aggregation
  • the transmitted signal is transmitted from the radio frequency module to the corresponding antenna channel in the antenna system for radiation.
  • the antenna unit on the antenna path receives the electromagnetic wave (received signal) in the corresponding frequency band in the space, and converts the electromagnetic wave into an analog signal and transmits it to the radio frequency module for analysis. It can be seen that the signal flows in the two processes of transmitting and receiving are opposite, so when the switching device is in different working states, the effects that can be achieved are also corresponding.
  • the antenna system can collect electromagnetic waves in more directions, so that the radio frequency module can obtain more complete signals for analysis, thereby improving the accuracy of signal analysis.
  • the antenna unit A3 and the antenna unit A4 work at the same time, they receive electromagnetic waves in the working frequency band, convert the electromagnetic waves into analog signals, and transmit them to the radio frequency channel RF1 and the radio frequency channel RF2 respectively for analysis. Therefore, the RF module can receive two signals at the same time for analysis, thereby improving the system throughput rate and improving the analysis accuracy by comparing the analog parameters of the two signals.
  • the transmitting scenario is taken as an example to describe the implementation process of the solution of the present application, and the beneficial effects in the receiving scenario correspond to it, and will not be repeated.
  • the electronic device can flexibly adjust the working state of the antenna according to different requirements for communication in the current environment according to the preset conditions, so that the antenna system can adaptively use the corresponding working state in the current environment.
  • the antenna system can adaptively use the corresponding working state in the current environment.
  • the electronic device can also control the first antenna pair to be in other working states:
  • the electronic equipment can control the switch 1 and the switch 3 in the switching device 1 to be turned off, and the switch 2 to be turned on. At this time, the second antenna channel works alone.
  • the radio frequency module can radiate electrical signals through the antenna unit A4 through the radio frequency channel RF2.
  • the electronic device can control the switch 1 and the switch 2 in the switching device 1 to be turned off, and the switch 3 to be turned on. At this time, the first antenna channel works alone.
  • the radio frequency module can radiate electrical signals through the antenna unit A3 through the radio frequency channel RF1.
  • the electronic device can know whether the current radiation is near the zero point of the pattern of the antenna unit A4 according to the current communication quality. If so, the electronic device can control the antenna unit A3 in the first antenna pair to radiate (ie, switch the working state to state 4), thereby avoiding the problem of communication quality degradation due to the null of the pattern of the antenna unit A3. Similarly, when the incoming wave direction is close to the zero point of the directional pattern of the antenna unit A4, the electronic device can switch the working state of the first antenna pair from state 4 to another state, such as state 3 or state 1, thereby achieving a change in the first antenna pair.
  • the pattern of the antenna in the current working state can avoid the problem of communication quality degradation caused by the zero point of the pattern.
  • the antenna unit A3 and the antenna unit A4 may be located in different positions of the electronic device.
  • the first antenna pair has been described in detail. It is easy to understand that for other antenna pairs as shown in Figure 6, the electronic device can control each antenna pair to work in different working states through a similar method, thereby avoiding the influence of the fixed antenna pattern null on the communication quality. .
  • the throughput can be improved by adjusting the working state of the antenna pair in the required scenarios. In this way, a significant improvement in the communication quality of the electronic device as a whole can be achieved.
  • an embodiment of the present application further provides an antenna switching method, which can be applied to an electronic device.
  • the electronic device is a mobile phone as an example for description.
  • the method can include:
  • the mobile phone determines whether a switching condition is satisfied.
  • the mobile phone after the mobile phone is turned on, it can acquire the communication parameters in the current communication process in real time, so as to determine whether it is necessary to switch the working state of the antenna according to the communication parameters and the corresponding preset threshold.
  • the communication parameters may include reference signal received power (Reference Signal Receiving Power, RSRP), received signal strength indication (Received Signal Strength Indication, RSSI), and the like. Take the communication parameter including RSRP as an example.
  • the mobile phone can judge the relationship between the RSRP of the current communication and the preset corresponding threshold of the RSRP in real time.
  • the mobile phone can determine that the current working state of the antenna can meet the communication requirement, so the switching condition is not met, and the working state of the antenna does not need to be switched.
  • the RSRP of the current communication is less than the preset RSRP corresponding threshold, the mobile phone can determine that the current working state of the antenna cannot provide better communication quality, so the switching conditions are met, and the working state of the antenna needs to be switched.
  • the communication parameter may also be a bit error rate.
  • the mobile phone can determine whether the handover condition is satisfied according to the relationship between the bit error rate in the current communication process and the preset bit error rate threshold. For example, when the bit error rate of the current communication is greater than the preset bit error rate threshold, it is considered that the handover condition is satisfied. When the bit error rate of the current communication is less than the preset bit error rate threshold, it is considered that handover is unnecessary.
  • the communication parameters may also include bit error rate and RSRP, so that the mobile phone can comprehensively judge the current communication situation and make a more accurate judgment. For example, when the bit error rate is greater than the bit error rate threshold and the RSRP is greater than the RSRP threshold, the mobile phone determines that the handover condition is met.
  • the mobile phone monitors the communication parameters in real time as an example for description.
  • the mobile phone can also monitor the communication parameters by sampling at a preset time interval. Therefore, the power consumption caused by monitoring the communication parameters can be appropriately reduced while determining whether the switching condition is satisfied in time.
  • the S1001 may be repeatedly performed.
  • the following S1002 may be performed.
  • the mobile phone switches the current working state to the target working state.
  • the sets of switch states may include the states shown in FIG. 8 and/or FIG. 9 .
  • the mobile phone can determine the working state to be switched, that is, the target switching state, through various solutions.
  • the S1002 may include S1002A and S1002B.
  • the mobile phone determines the target working state.
  • the mobile phone switches the current working state to the target working state.
  • the mobile phone can directly switch the current working state to the preset first working state when it is determined that the switching condition is met. state, then when it is determined that the switching condition is met, the mobile phone can directly switch the current working state of the antenna system to the state indicated by (b) in FIG. 9 .
  • the mobile phone may perform the above S1001 cyclically. If the switching condition is still satisfied, the mobile phone can switch the current state to the state shown in (a) of FIG. 8 .
  • the mobile phone can switch to a working state with a higher priority that is different from the current working state in the preconfigured working state based on a preset priority. Thereby, the effect of switching the working state of the antenna is realized.
  • the mobile phone can control the antenna system to work in each preset switch state respectively when it is determined that the switching condition is satisfied, and monitor the magnitude of the communication parameter (such as RSRP) in different switch states (in this example , the method may also be called polling for preset switch states).
  • the mobile phone can obtain the working effect of each switch state in the current communication environment.
  • the mobile phone may determine the working state of the antenna corresponding to the corresponding maximum switch state of RSRP as the target working state. By looking up the table, the mobile phone can determine the control signal of the switch logic corresponding to the target working state, so that the mobile phone can switch the current working state to the target working state according to the control signal.
  • the mobile phone can determine the working state with the best working effect in the current communication environment as the target working state, and then control the antenna system to switch to the target working loading.
  • the mobile phone can also control the antenna systems to work in different preset switch states to obtain the corresponding RSRP, and when the RSRP is greater than the preset RSRP threshold, stop the polling of the preset switch state, The working state corresponding to the switch state in which the current RSRP is greater than the preset RSRP threshold is taken as the target working state.
  • the mobile phone can determine the control signal of the switch logic corresponding to the target working state, so that the mobile phone can switch the current working state to the target working state according to the control signal.
  • the acquisition and determination of communication parameters changes with the change of the communication environment where the mobile phone is located, that is to say, the determination and switching of the above working states are based on the mobile phone. It adapts to changes in the communication environment. As a result, the mobile phone can take the current communication environment as a reference, and switch the working state of the antenna to the optimum in order to provide better communication quality. It is easy to understand that the switching of different working states causes the change of the pattern of the antenna system, which enables the poor communication quality caused by the zero point of the pattern to be changed by switching the working state of the antenna to change the pattern of the antenna system, thereby changing the pattern of the antenna system. Avoid the impact on the communication quality caused by the zero point of the pattern.
  • the mobile phone can also flexibly adjust the working state of the antenna according to the requirement for the throughput rate in the current scenario.
  • the mobile phone may execute S1003-S1004 shown in FIG. 10 before executing the above S1001.
  • the mobile phone determines whether it is a high throughput scenario.
  • the high throughput rate scenario may be preset in the mobile phone. For example, when the mobile phone determines that the current uplink or downlink throughput rate is greater than the preset throughput rate threshold, it determines that the current working scene is a high throughput rate scene. For another example, when the mobile phone determines that it is currently in a video call scenario, it determines that the current working scenario is a high throughput scenario.
  • the mobile phone may perform the following S1004. If it is determined that the current work scenario is not a high throughput scenario, the mobile phone may perform S1001 as shown in FIG. 10 .
  • the high throughput rate scenario may be a scenario that requires a relatively large throughput, or a scenario that requires low latency, such as scenarios such as video, live broadcast, autonomous driving, or mobile medical care.
  • the mobile phone sets the current working state to a high throughput state.
  • the mobile phone can control the working state of the antenna to be in a corresponding high throughput rate state.
  • the mobile phone can set one or more antenna pairs in its antenna system to the working state shown in (b) in Fig. 8, thereby realizing dual-channel transmission and reception, thereby achieving an improved throughput rate. Purpose.
  • the electronic device can adaptively adjust the working state of the antenna according to the requirements of the current communication environment, so as to achieve the reconstruction effect of the number of antennas and/or the antenna pattern, so as to achieve the purpose of improving the communication quality.
  • the solution is exemplarily described below by taking the electronic device as an electronic device with a folding screen as an example.
  • the folding screen (also referred to as a folding device) provided in the electronic device can be folded to form at least two screens.
  • a folding screen can be folded to form a first screen and a second screen.
  • the at least two screens formed after the folding screen is folded may be multiple screens that exist independently, or may be a complete screen with an integrated structure, but are folded to form at least two parts.
  • the parameters of the folding screen will change, for example, the angle between the first screen and the second screen will change, and the folding speed, folding direction, and folding acceleration of the folded screen will also occur.
  • the above-mentioned folded screen may be a screen that is rotated when the user performs a folding operation in the first screen and the second screen.
  • the angle between the first screen and the second screen formed during the folding process of the folding screen, the folding speed of the folded screen, the folding acceleration, and the folding direction can be changed.
  • the electronic equipment can use different combinations of antennas to work in different forms, and realize the function of adaptively adjusting the working antenna according to the form of the electronic equipment, and then achieve different forms. In this way, the reconstruction of the number of antennas and/or the antenna pattern is realized, thereby improving the wireless communication performance.
  • the folding screen may be a flexible folding screen.
  • the flexible folding screen includes a folding edge made of a flexible material. Part or all of the flexible folding screen is made of flexible materials. For example, only the foldable part (such as the folded edge) of the flexible folding screen is made of flexible material, and the other parts are made of rigid material; or, the flexible folding screen is all made of flexible material.
  • the folding screen can be folded along the folding edge to form multiple (two or more) screens.
  • the folding screen shown in (a) of FIG. 11 is a flexible folding screen.
  • the folding screen shown in (a) of FIG. 11 is a complete display screen, and the display screen includes a folding edge made of a flexible material. After the folding screen is folded along the folding side, the A screen 1101 and the B screen 1102 shown in (b) of FIG. 11 can be formed.
  • the folding screen shown in (a) of FIG. 12 is also a flexible folding screen.
  • the folding screen shown in (a) of FIG. 12 is a complete display screen, and the display screen includes a folding edge made of a flexible material. After the folding screen is folded along the folding side, the A screen 1201, the B screen 1202 and the C screen 1203 shown in (b) of FIG. 12 can be formed.
  • FIG. 11 and (a) in FIG. 12 are schematic diagrams of the shape when the folding screen is unfolded (it can also be said that the folding screen is in the unfolded state).
  • FIG. 11 and (b) in FIG. 12 are both schematic diagrams of the shape of the folding screen in a half-folded state.
  • FIG. 11 is a schematic diagram of the shape of the folding screen in a closed state.
  • the states of the folding screen include three states: an unfolded state, a closed state, and a half-folded state.
  • the unfolded state means that the folding screen is unfolded, that is, the angle between any two screens in the folding screen is 180°.
  • the closed state means that the folding screen is completely folded, that is, the angle between any two screens in the folding screen is 0°.
  • the state between the expanded state and the closed state is the half-folded state.
  • the folding screen may be a multi-screen folding screen.
  • the multi-screen folding screen may include multiple (two or more) screens. It should be noted that these multiple screens are multiple separate display screens.
  • the plurality of screens can be connected in turn through the folding shaft. Each screen can be rotated around the folding axis connected to it to realize the folding of the multi-screen folding screen.
  • the multi-screen folding screen includes two separate screens, such as screen A and screen B, respectively.
  • Screen A and screen B are connected by a folding shaft, and screen A and screen B can be rotated around the folding shaft to realize the folding of a multi-screen folding screen.
  • the multi-screen folding screen may also include three or more screens, and the specific shape and folding method thereof may refer to FIG. 13 and related descriptions, and will not be repeated here.
  • the included angle between adjacent screens when the folding screen is in a closed state, the included angle between adjacent screens is 0°.
  • the angle ⁇ between the A screen and the B screen shown in (c) of FIG. 11 is 0°.
  • the angle between adjacent screens is 180°.
  • the angle ⁇ between the A screen and the B screen shown in (a) of FIG. 11 is 180°.
  • the value range of the included angle between adjacent screens may be (0°, 180°).
  • the included angle ⁇ (0°, 180°) between the A screen 1101 and the B screen 1102 shown in (b) of FIG. 11 when the folding screen is in a closed state, the included angle between adjacent screens is 0°.
  • the angle ⁇ between the A screen and the B screen shown in (c) of FIG. 11 is 0°.
  • the angle ⁇ between the A screen and the B screen shown in (a) of FIG. 11 is 180°.
  • the value range of the included angle between adjacent screens may be (0°, 180°).
  • the folding screen of the electronic device is folded vertically to realize the folding of the folding screen.
  • the folding screen of the electronic device can also be folded horizontally to realize the folding of the folding screen.
  • FIGS. 11-12 are schematic diagrams in which the value range of the included angle between adjacent screens of the folding screen is [0°, 180°].
  • the value range of the included angle between adjacent screens of the folding screen may also include (180°, 360°].
  • the folding screen shown in FIG. 11 as an example, shown in (a) of FIG. 11
  • the folding screen is folded along the folding edge to form screen A and screen B.
  • the included angle of any two screens in the folding screen is 360°, it can also be considered that the folding screen is in closed state.
  • a plurality of antennas may be respectively provided on the casing corresponding to the A screen (such as the A casing) and the casing corresponding to the B screen (such as the B casing) of the mobile phone.
  • an antenna unit 1 , an antenna unit 3 , an antenna unit 5 , and an antenna unit 7 may be provided on the A case.
  • An antenna unit 2 , an antenna unit 4 , an antenna unit 6 , and an antenna unit 8 may be provided on the B shell.
  • the positions of the antenna unit 1 and the antenna unit 2 may be aligned with respect to the folded edge.
  • the positions of the antenna unit 3 and the antenna unit 4 may be aligned with respect to the folded edge.
  • the positions of the antenna unit 5 and the antenna unit 6 may be aligned with respect to the folded edge.
  • the positions of the antenna unit 7 and the antenna unit 8 may be aligned with respect to the folded edge.
  • FIG. 13 (b) when the mobile phone is in a closed state, the projection areas of the antenna unit 1 and the antenna unit 2 on the display screen may be the same or similar.
  • the projection areas of the antenna unit 3 and the antenna unit 4 on the display screen may be the same or similar.
  • the projection areas of the antenna unit 5 and the antenna unit 6 on the display screen may be the same or similar.
  • the projection areas of the antenna unit 7 and the antenna unit 8 on the display screen may be the same or similar.
  • the antenna unit 1 and the antenna unit 2 can form an antenna pair
  • the antenna unit 3 and the antenna unit 4 can form an antenna pair
  • the antenna unit 5 and the antenna unit 6 can form an antenna pair
  • the antenna unit 7 and the antenna unit 8 can form an antenna pair an antenna pair.
  • the mobile phone when the antenna switching method provided according to the embodiment of the present application is applied to the mobile phone as shown in FIG. 13, the mobile phone can control the antenna system including the antenna unit 1-antenna unit 8 Each antenna pair in , switches between at least 4 states.
  • antenna unit 1 eg, referred to as E1
  • antenna unit 2 eg, referred to as E2
  • the four states of the antenna pair are shown in Figure 14.
  • state 1 the radio frequency channel RF1 and E2 are connected, and the mobile phone transmits and receives signals through E2.
  • state 2 the radio frequency channel RF2 is connected to E1, and the mobile phone transmits and receives signals through E1. It can be seen that the switching from state 1 to state 2 (or the switching from state 2 to state 1), due to the change of the working antenna, in the case where the patterns of E1 and E2 are different, it is realized for this antenna pair
  • the orientation map reconstruction of .
  • the radio frequency is connected to E1 and E2 at the same time, and the mobile phone receives signals through E1 and E2 at the same time.
  • the pattern of the antenna pair can be regarded as a superposition of the pattern of E1 and E2.
  • FIG. 15 shows a distribution of patterns of state 1, state 2 and state 3. Obviously, the result of the superposition of the pattern in state 3 is different from the pattern when E2 works alone in state 1, and the pattern distribution when E1 works alone in state 2. That is, the pattern zero in state 3 is not the same as the pattern zero in either state 1 or state 2.
  • the mobile phone can switch between these three states to avoid the influence of the zero point of the pattern on the communication quality in the current communication state.
  • the antenna pair may also have an operating state as shown in state 4 .
  • the radio frequency channel RF1 transmits and receives signals through E1
  • the radio frequency channel RF2 transmits and receives signals through E2. Therefore, when the frequency bands of the signals transmitted and received by the two channels are the same, the simultaneous transmission and reception of the two channels is realized, thereby achieving the effect of increasing the throughput rate.
  • the two antenna units in the same antenna pair are set in symmetrical positions relative to the folded edge , so that when the two antennas work at the same time, the mutual influence between the two antennas can be reduced, and an optimal communication effect can be achieved.
  • the mobile phone can determine the working state of the corresponding antenna according to the electrical parameters in the current communication.
  • the mobile phone since the solution is used on a mobile phone with a folding screen, and the mobile phone is in different folding states (such as unfolded state and closed state), the communication environment in which the antenna system is located is obviously different. Therefore, in some implementation manners of the present application, the mobile phone can also determine and adjust the working state of the antenna according to the current folding state. For example, when the mobile phone is in the unfolded state, the antenna system can be controlled to work in state 4. So that the mobile phone can provide greater throughput for communication. For another example, when the mobile phone is in a closed state, the antenna system can be controlled to work in state 3. So that the mobile phone can improve the communication quality by avoiding the zero point of the pattern.
  • the two antenna units in the same antenna pair may also be arranged in asymmetric positions.
  • FIG. 16 continue to take the mobile phone with 8 antenna units as an example.
  • the antenna unit 1 , the antenna unit 3 , the antenna unit 5 , and the antenna unit 7 are provided on the A case.
  • the B shell is provided with an antenna unit 2 , an antenna unit 4 , an antenna unit 6 , and an antenna unit 8 .
  • the projections of the antenna units on the mobile phone on the screen are respectively staggered. For example, referring to (b) in FIG.
  • the projections of the antenna unit 1 and the antenna unit 2 are located on the upper part of the mobile phone in the closed state. Also, the projections of the antenna element 1 and the antenna element 2 do not overlap each other. Similarly, the projections of the antenna unit 3 and the antenna unit 4 are located on the side of the mobile phone in the closed state. The projections of the antenna unit 3 and the antenna unit 4 are located on the upper part of the mobile phone in the closed state. The projections of the antenna unit 5 and the antenna unit 6 are located on the side of the mobile phone in the closed state. The projections of the antenna unit 5 and the antenna unit 6 are located on the upper part of the mobile phone in the closed state. The projections of the antenna unit 7 and the antenna unit 8 are located on the side of the mobile phone in the closed state. The projections of the antenna unit 7 and the antenna unit 8 are located at the lower part of the mobile phone in the closed state.
  • antenna unit 1 and antenna unit 2 may form an antenna pair
  • antenna unit 3 and antenna unit 4 may form an antenna pair
  • antenna unit 5 and antenna unit 6 may form an antenna pair
  • antenna unit 7 and antenna unit 8 may form an antenna pair an antenna pair.
  • the radio frequency module can provide a maximum of 6 multiple input and output (Multi Input Multi Output, MIMO) ports to realize multiple input and output communication.
  • MIMO Multiple Input Multi Output
  • the antenna unit 1 eg, E1
  • Main main antenna
  • the antenna unit 2 such as E2
  • it can be coupled with the radio frequency channel corresponding to MIMO 3 to realize the working effect of the frequency band corresponding to MIMO 3.
  • the antenna unit 3 (eg, E3 ) works alone, it can be coupled with the radio frequency channel corresponding to the diversity (Div), so as to realize the working effect of the frequency band corresponding to the Div.
  • the antenna unit 4 (such as E4) works alone, it can be coupled with the radio frequency channel corresponding to the MIMO 4 to realize the working effect of the frequency band corresponding to the MIMO 4.
  • the antenna unit 5 (such as E5) works alone, it can be coupled with the radio frequency channel corresponding to MIMO 1 to realize the working effect of the frequency band corresponding to MIMO 1.
  • the antenna unit 6 (such as E6) works alone, it can be coupled with the radio frequency channel corresponding to the MIMO 5 to realize the working effect of the frequency band corresponding to the MIMO 5.
  • the antenna unit 7 (such as E7) works alone, it can be coupled with the radio frequency channel corresponding to MIMO 2 to realize the working effect of the frequency band corresponding to MIMO 2.
  • the antenna unit 8 (such as E8) works alone, it can be coupled with the radio frequency channel corresponding to the MIMO 6 to realize the working effect of the frequency band corresponding to the MIMO 6.
  • the mobile phone as shown in FIG. 16 can provide a variety of different working states to meet the needs of various communication environments.
  • the mobile phone can control each antenna unit to conduct conduction with the corresponding radio frequency channel, so as to realize the normal operation of a single channel corresponding to a single antenna.
  • E1 is coupled to the radio frequency channel corresponding to Main to perform main antenna radiation.
  • E2 is coupled to MIMO 3 to perform radiation in the frequency band corresponding to MIMO 3.
  • E3 is coupled to Div for diversity radiation.
  • E4 is coupled with MIMO 4 to perform radiation of the frequency band corresponding to MIMO 4.
  • E5 is coupled to MIMO 1 to perform radiation in the frequency band corresponding to MIMO 1.
  • E6 is coupled with MIMO 5 to perform radiation of the frequency band corresponding to MIMO 5.
  • E7 is coupled with MIMO 2 to perform radiation of the frequency band corresponding to MIMO 2.
  • E8 is coupled with MIMO 6 to perform radiation of the frequency band corresponding to MIMO 6. It can be seen that, in this example, 8 antenna units are respectively coupled to different radio frequency channels, so a maximum 8*8 MIMO multiple input and output mechanism can be provided.
  • the mobile phone can also control the antenna channels corresponding to E1-E8 to reconstruct the number and/or pattern, which has provided better communication quality.
  • the mobile phone can control the two antenna units in each antenna pair to be coupled to the same radio frequency channel, so as to realize the pattern reconstruction of the antenna system.
  • E1 and E2 can be connected to Main to realize the reconstruction of the pattern of the main antenna, and to overcome the degradation of communication quality caused by the zero point of the pattern of E1.
  • E3 and E4 can be turned on with Div to realize the pattern reconstruction of diversity, and overcome the communication quality degradation caused by the zero point of the pattern of E3.
  • E5 and E6 can be connected to MIMO 1 to realize the reconstruction of the pattern of the corresponding antenna of MIMO 1, and to overcome the communication quality degradation caused by the zero point of the pattern of E5.
  • E7 and E8 can be connected to MIMO 2 to realize the reconstruction of the pattern of the main antenna corresponding to MIMO 2, and to overcome the communication quality degradation caused by the zero point of the pattern of E7. It can be seen that in this example, 8 antenna units are respectively coupled to 4 radio frequency channels, so a maximum 4*4 MIMO multiple input and output mechanism can be provided.
  • the mobile phone can also control the two antenna units in each antenna pair to reconstruct the quantity to realize the adaptive adjustment of the throughput rate.
  • the scheme is similar to the above example and will not be listed here.
  • FIGS. 13 to 18 respectively illustrate examples in which the two antenna units in the antenna pair are symmetric and asymmetric with respect to the folding axis.
  • an antenna pair with symmetrically arranged antenna elements may be included, and an antenna pair with asymmetrically arranged antenna elements may also be included.
  • the specific selection rule can be flexibly selected according to the actual situation.
  • the method for pattern reconstruction and quantity reconstruction of the antenna system is similar to the description in the above example, and will not be repeated here.
  • FIG. 19 shows a schematic diagram of the composition of an electronic device 1900 .
  • the electronic device 1900 may include: a processor 1901 and a memory 1902 .
  • the memory 1902 is used to store computer-implemented instructions.
  • the processor 1901 executes the instructions stored in the memory 1902, the electronic device 1900 can be caused to execute the antenna switching method shown in any one of the foregoing embodiments.
  • the electronic device 1900 may also include the communication system shown in FIG. 5 .
  • the antenna module 600 in the communication system may be composed of the antenna shown in FIG. 6 .
  • the systems are the same or similar.
  • the memory 1902 in the electronic device 1900 may include an external memory interface, and/or an internal memory.
  • the electronic device 1900 may further include a universal serial bus (USB) interface, a charge management module, a power management module, a battery, a mobile communication module, a wireless communication module, an audio module, a speaker, a receiver, a microphone, an earphone jack, Sensor modules, buttons, motors, indicators, cameras, display screens, and subscriber identification module (SIM) card interfaces, etc.
  • USB universal serial bus
  • the sensor module may include a pressure sensor, a gyro sensor, an air pressure sensor, a magnetic sensor, an acceleration sensor, a distance sensor, a proximity light sensor, a fingerprint sensor, a temperature sensor, a touch sensor, an ambient light sensor, a bone conduction sensor, and the like.
  • FIG. 20 shows a schematic diagram of the composition of a chip system 2000 .
  • the chip system 2000 may include: a processor 2001 and a communication interface 2002, which are used to support related devices to implement the functions involved in the above embodiments.
  • the chip system further includes a memory for storing necessary program instructions and data of the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the communication interface 2002 may also be referred to as an interface circuit.
  • the functions or actions or operations or steps in the above embodiments may be implemented in whole or in part by software, hardware, firmware or any combination thereof.
  • a software program When implemented using a software program, it can be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer instructions. When the computer program instructions are loaded and executed on the computer, all or part of the processes or functions described in the embodiments of the present application are generated.
  • the computer may be a general purpose computer, special purpose computer, computer network, or other programmable device.
  • the computer instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be downloaded from a website site, computer, server, or data center Transmission to another website site, computer, server, or data center by wire (eg, coaxial cable, optical fiber, digital subscriber line, DSL) or wireless (eg, infrared, wireless, microwave, etc.).
  • the computer-readable storage medium can be any available medium that can be accessed by a computer or data storage devices including one or more servers, data centers, etc. that can be integrated with the medium.
  • the usable media may be magnetic media (eg, floppy disks, hard disks, magnetic tapes), optical media (eg, DVDs), or semiconductor media (eg, solid state disks (SSDs)), and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Radio Transmission System (AREA)

Abstract

本申请实施例公开了天线系统、无线通信系统和电子设备,涉及通信领域,通过天线系统中设置的切换单元,灵活调整天线对与射频模块电连接关系,解决天线固有方向图零点对通信的影响。具体方案为:无线通信系统包括:第一射频通道;第一天线单元;第二天线单元;以及第一切换装置,被配置为选择性地将第一天线单元和第二天线单元中的至少一个与第一射频通道导通;其中,在第一状态,第一切换装置被配置为导通第一天线单元和第一射频通道,第一切换装置还被配置为导通第二天线单元和第一射频通道;在第二状态,第一切换装置被配置为导通第一天线单元和第一射频通道,第二天线单元和第一射频通道不导通。

Description

天线系统、无线通信系统和电子设备
本申请要求于2020年12月29日提交国家知识产权局、申请号为202011599529.1、申请名称为“天线系统、无线通信系统和电子设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及天线系统、无线通信系统和电子设备。
背景技术
电子设备可以通过其中设置的一个或多个天线实现与其他设备的无线通信。因此,天线在电子设备的通信过程中起到了非常重要的作用。
一般而言,天线的辐射能力在空间中的分布可以通过方向图(或称为增益方向图)标识。例如,图1示出了一种天线的方向图的示意。如图1所示,天线在不同角度(Angle)的增益(Gain)是不同的,有些角度增益较大,有些角度增益较小。增益越大,天线在该角度的辐射(如发射或者接收)能力就越强。对应的,增益越小,天线在该角度的辐射能力越弱。在本申请中,可以将增益远小于最大增益的角度称为“方向图零点”。
可以理解的是,由于方向图零点的存在,当无线通信的信号来波方向与方向图零点对应时,那么由于在该方向上天线的辐射能力较弱,因此会使得信号来波的接收出现误码率率高甚至无法正常接收的情况。与之类似的,当需要在该方向图零点对应的角度或者该角度附近的其他角度进行信号发射时,也会出现信号无法被正常发射的情况。由此,对于电子设备的无线通信造成严重影响。
发明内容
本申请实施例提供天线系统、无线通信系统和电子设备。可以通过天线系统中设置的切换单元,灵活调整天线对与射频模块电连接关系,由此达到天线方向图重构的效果,由此解决天线固有方向图零点对通信的影响。进一步的,通过天线系统中设置的切换单元,还可以灵活调整天线对与射频模块电连接关系,由此达到天线工作数量的重构效果,由此提升吞吐率需求较大场景下的吞吐率。
为了达到上述目的,本申请实施例采用如下技术方案:
第一方面,提供一种无线通信系统,应用于电子设备,无线通信系统包括:第一射频通道。第一天线单元。第二天线单元。以及第一切换装置,被配置为选择性地将第一天线单元和第二天线单元中的至少一个与第一射频通道导通。其中,在第一状态,第一切换装置被配置为导通第一天线单元和第一射频通道,第一切换装置还被配置为导通第二天线单元和第一射频通道。在第二状态,第一切换装置被配置为导通第一天线单元和第一射频通道,第二天线单元和第一射频通道不导通。
基于该方案,在无线通信系统中设置有切换装置(如第一切换装置)。通过控制第一切换装置处于不同的工作状态,使得无线通信系统工作在不同的状态(如第一状态或第二状态)。在第一切换装置处于不同的工作状态下时,耦接在第一切换装置的前端和后端的射频通道与天线单元可以具有不同的电连接状态。比如,在第一状态下, 第一射频通道与第一天线单元耦接,第一射频通道还与第二天线单元耦接。又如,在第二状态下,第一射频通道仅与第一天线单元耦接。可以理解的是,由于在不同状态下,第一射频通道耦接的天线单元不同,因此在不同的状态下,无线通信系统对应的辐射方向图也不同,由此,可以在由于方向图零点的存在导致在某一状态下的通信受阻时,通过将第一状态切换到第二状态,或者将第二状态切换到第一状态,或者从其他状态切换到第一状态(或第二状态),或者将第一状态(或者第二状态)切换到其他状态,实现方向图的重构。可以理解的是,在辐射方向图不同的情况下,对应的方向图零点也不同,因此,通过方向图重构,可以使得原本处于方向图零点的来波方向(或者辐射方向)不再对应方向图零点,进而改进由于方向图零点导致的通信受阻的问题。需要说明的是,在本示例中,第一射频通道可以对应到实施例中涉及的射频通道RF2。
在一种可能的设计中,在第一状态,流经第一天线单元和第二天线单元的信号均为第一信号。在第二状态,流经第一天线单元的信号为第二信号,第二信号不流经第二天线单元。基于该方案,提供了在第一状态和第二状态下的信号流分布示例。示例性的,在第一状态下,由于第一切换装置将第一天线单元和第二天线单元均与第一射频通道导通。因此,在发射场景下,来自于第一射频通道的第一信号,可以分别流向第一天线单元和第二天线单元进行辐射。对应的,在接收场景下,第一天线单元和第二天线单元所接收到的电磁波也可分别被转换成模拟信号(比如分别对应一路第一信号)传输给第一射频通道。而在第二状态下类似,由于第一切换装置将第一天线单元与第一射频通道导通,同时,第二天线单元与第一射频通道不导通,因此,只有第一天线单元可以用于支持第一射频通道的信号传输。比如,在发射场景下,第一射频通道可以将第二信号通过第一天线单元发送出去。又如,在接收场景下,第二信号可以是被第一天线单元由接收到的电磁波转换生成的,并被传输给第一射频通道。在一种可能的设计中,在第一状态,第一信号的射频参数为第一参数。在第二状态,第二信号的射频参数为第二参数,其中,第一参数和第二参数不同。基于该方案,提供了一种区分第一状态和第二状态的方案。比如,可以通过射频参数为第一参数或者第二参数来区分第一状态和第二状态。进一步的,电子设备可以根据该射频参数,通过将当前的工作状态调整为第一状态或者第二状态,达到改善通信过程中射频参数的效果。可以理解的是,在射频参数得到改善的同时,也就意味着通信质量得到了提升。
在一种可能的设计中,射频参数包括参考信号接收功率RSRP和/或误码率。基于该方案,提供了一种射频参数的具体示例。比如,该射频参数可以包括RSRP,或者误码率,或者RSRP和误码率等。当然,在另一些实现中,该射频参数还可以包括更多其他的参数,如接收信号强度(RSSI)等。本示例对于射频参数的具体内容并不构成限定。
在一种可能的设计中,无线通信系统还包括第二射频通道。在第三状态,第一切换装置被配置为导通第一天线单元和第一射频通道,第一切换装置还被配置为导通第二天线单元和第二射频通道,流经第一天线单元的信号为第三信号,流经第二天线单元的信号为第四信号。基于该方案,提供了该无线通信系统的一种普适性的扩展。可以理解的是,在前述设计中,说明了第一射频通道在无线系统中的耦接关系的变化以 及对应的效果。可以理解的是,在无线通信系统中可以包括更多的射频通道,比如,可以包括该第二射频通道。该第二射频通道可以对应到如下实施例中涉及的射频通道RF1。在该第三状态下,由于第一切换装置将第一射频通道与第一天线单元耦接,将第二射频通道与第二天线单元耦接,因此,在第一射频通道和第二射频通道工作在相同的频段时,那么针对接收场景,电子设备就能够同时通过第一天线单元和第二天线单元接收到两路信号(如第三信号和第四信号),因此相对于只能接收到一路信号的普通场景相比,能够显著地提升吞吐率。需要说明的是,在该场景下,第三信号和第四信号可以对应到具有相同频段的两路信号。发射场景类似,因此能够达到类似的效果。可以理解的是,上述说明是基于第一射频通道和第二射频通道工作在相同的频段为前提的,可以理解的是,第一射频通道和第二射频通道还可以是分别对应到多输入输出场景下的两路并行数据的传输通道,或者载波聚合场景下同步传输的数据分别对应的两路传输通道,其能够到达到的效果类似,即能够显著增加信号流数,由此提升通信质量。
第二方面,提供一种折叠电子设备,包括:柔性显示屏,以及如第一方面及其可能的设计中任一项所述的无线通信系统。折叠电子设备包括第一折叠状态和第二折叠状态,在第一折叠状态下,无线通信系统处于第一状态。在第一折叠状态下,无线通信系统处于第二状态。
基于该方案,提供了一种如第一方面所述的无线通信系统的在折叠电子设备中的应用。其中,柔性显示屏可以为折叠显示屏,可以包括一块或多块可折叠的显示屏,或者可以同时包括至少2块不可折叠的显示屏。示例性的,第一方面及其可能的设计中提供的多种状态,可以分别对应到折叠电子设备中的不同折叠状态下,由此实现在不同形态下(如折叠状态,又如展开状态),通过重构天线单元的数量,解决方向图零点产生的通信受阻的问题,进而达到对于通信质量的提升效果。
在一种可能的设计中,柔性显示屏包括第一部分和第二部分,第一天线单元位于第一部分。第二天线单元位于第二部分,第一部分与第二部分相对转动。基于该方案,提供了一种柔性显示屏与天线单元的对应关系示例。在该示例中涉及的第一天线单元位于第一部分,在具体实现中,该第一天线单元可以是在柔性显示屏的第一部分上;在另一些实现中,该第一天线单元也可以是在柔性显示屏的第一部分对应在Z方向的投影区域中。第二天线单元与第二部分的位置关系类似。需要说明的是,本示例仅提供了一种可能的位置关系对应,即两个天线单元可以位于不同的折叠屏上。在另一些实现中,两个天线单元也可以是位于相同的一个折叠屏上。
第三方面,提供一种无线通信方法,方法应用于电子设备,电子设备设置有第一方面及其可能的设计中任一项所述的无线通信系统,以及一个或多个处理器。该方法包括:处理器向第一切换装置发送第一控制信息,第一控制信息用于控制第一切换装置工作在第一工作状态。在第一工作状态下,第一切换装置被配置为导通第一天线单元和第一射频通道,第一切换装置还被配置为导通第二天线单元和第一射频通道。处理器向第一切换装置发送第二控制信息,第二控制信息用于控制第一切换装置工作在第二工作状态。在第一工作状态下,第一切换装置被配置为导通第一天线单元和第一射频通道,第二天线单元和第一射频通道不导通。
在一种可能的设计中,在第一切换装置处于第一工作状态的情况下,流经第一天线单元和第二天线单元的信号均为第一信号。在第一切换装置处于第二工作状态的情况下,流经第一天线单元的信号为第二信号,第二信号不流经第二天线单元。
在一种可能的设计中,在第一切换装置处于第一工作状态的情况下,第一信号的射频参数为第一参数。在第一切换装置处于第二工作状态的情况下,第二信号的射频参数为第二参数,其中,第一参数和第二参数不同。
在一种可能的设计中,射频参数包括参考信号接收功率RSRP和/或误码率。
在一种可能的设计中,处理器向第一切换装置发送第三控制信息,第三控制信息用于控制第一切换装置工作在第三工作状态。在第三工作状态下,第一切换装置被配置为导通第一天线单元和第一射频通道,第一切换装置还被配置为导通第二天线单元和第二射频通道,流经第一天线单元的信号为第三信号,流经第二天线单元的信号为第四信号。
第四方面,提供一种处理器,处理器设置在电子设备中,处理器用于执行如第三方面及其可能的设计中任一项所述的无线通信方法。
第五方面,提供一种电子设备,电子设备设置有一个或多个如第四方面提供的处理器,存储器,以及如权利要求第一方面及其可能的设计中提供的无线通信系统,一个或多个处理器与存储器以及无线通信系统耦合,存储器存储有计算机指令。当一个或多个处理器执行计算机指令时,使得电子设备执行如第三方面及其可能的设计中任一项所述的无线通信方法。
应当理解的是,上述第三方面,第四方面,第五方面提供的技术方案,其技术特征均可对应到第一方面及其可能的设计中提供的技术方案,因此能够达到的有益效果类似,此处不再赘述。
第六方面,提供一种天线系统,应用于电子设备,该天线系统包括:N个切换装置,M个天线单元,1个切换装置对应至少2个天线单元,对应于1个切换装置的至少2个天线单元构成1个天线对。N为正整数,M为大于N的整数。第一切换装置的输出端与第一天线对耦接,第一切换装置是N个切换装置中的任意一个,第一天线对包括的至少2个天线单元包括在M个天线单元中。第一切换装置具有第一工作状态和第二工作状态,第一切换装置工作在第一工作状态下时,天线系统的方向图零点方向为第一方向。第一切换装置工作在第二工作状态下时,天线系统的方向图零点方向为第二方向,第一方向与第二方向不同。
基于该方案,提供了能够解决方向图零点导致的通信受阻问题的天线系统。在该天线系统中,创新性地提出了设置的N个切换装置,通过控制该切换装置的工作状态,可以根据环境灵活调整处于工作状态的天线单元的方向图(即天线系统的方向图)。比如,在第一工作状态下,天线系统的方向图可以与在第二工作状态下天线系统的方向图呈现不同的分布,由此使得在不同的工作状态下方向图零点的位置也不同。这样,在一个状态下由于方向图零点与信号方向相近时可能产生通信受阻,那么就可以将工作状态切换为另一个状态,通过重构方向图,使得方向图零点出现偏移,由此避免信号方向与方向图零点重合,进而避免由于方向图零点导致的通信受阻。
在一种可能的设计中,第一天线对中包括的至少2个天线单元覆盖频段部分重合 或者全部重合。基于该方案,提供了一种可能的天线对的设置示例。比如,组成天线对的两个天线单元可以具有部分重合的工作频段。这样,在该工作频段下进行信号的收发时,就可以实现不影响信号的收发的同时,通过调整天线对中工作状态的天线单元的数量,实现方向图的重构。
在一种可能的设计中,第一切换装置工作在第一工作状态。在参考信号接收功率RSRP小于第一阈值的情况下。或者,在误码率大于第二阈值的情况下。或者,在RSRP小于第一阈值,并且误码率大于第二阈值的情况下,第一切换装置的工作状态由第一工作状态,切换为第二工作状态。基于该方案,提供了一种可能的工作状态与其他参数的对应关系。基于该对应关系,电子设备可以根据参数(如射频参数)的变化情况,灵活选取对应的工作状态,以实现根据通信环境灵活进行方向图重构的效果。
在一种可能的设计中,在第一切换装置工作在第一工作状态下的情况下,第一天线对中进行信号接收和/或发送的天线单元的数量,与在第二切换装置工作在第一工作状态下的情况下,第一天线对中进行信号接收和/或发送的天线单元的数量不同。基于该方案,提供了一种可能的实现方向图重构的机制。比如,可以通过调整不同工作状态下,处于工作状态的天线单元的数量,实现方向图的重构。可以理解的是,在只有一个工作状态天线单元的方向图,一般与其他天线单元的方向图不同,也不同于两个天线单元同时工作时合成的方向图,因此,可以通过工作状态下的天线单元数量的重构,实现方向图的重构。
在一种可能的设计中,在电子设备的吞吐率小于第三阈值的情况下,第一切换装置工作在第一工作状态。基于该方案,提供了一种确定工作状态的机制的示例。在该示例中,电子设备可以在确定不需要较大的吞吐率的场景下,控制第一切换装置工作在第一工作状态。当然在另一些实现中,电子设备也可以在不需要较大的吞吐率的场景下,控制第一切换装置工作在第二工作状态。
在一种可能的设计中,第一切换装置还具有第三工作状态。在第一切换装置工作在第三工作状态下时,第一天线对中进行信号接收和/或发送的天线单元的数量,大于第一切换装置处于第一工作状态或处于第二工作状态下时,第一天线对中进行信号接收和/或发送的天线单元的数量。在电子设备的吞吐率大于第四阈值的情况下,第一切换装置工作在第三工作状态,其中,第四阈值大于或等于第三阈值。基于该方案,提供了又一种灵活简便地提升吞吐率的方案示例。在该示例中,可以通过控制两个天线单元同时工作,进行信号的收发,比如将各自接收的信号分别通过不同的射频通道传输给前端,以实现多流的效果,由此提升吞吐率。
在一种可能的设计中,天线系统中还包括第二切换装置以及第二天线对。第二切换装置的输出端与第二天线对耦接,第二切换装置是N个切换装置中的任意一个,第二天线对包括的至少2个天线单元包括在M个天线单元中。第二切换装置至少具有第一工作状态和第二工作状态,第一切换装置工作在第一工作状态下时,天线系统的方向图零点方向为第一方向,第一切换装置工作在第二工作状态下时,天线系统的方向图零点方向为第二方向,第一方向与第二方向不同。基于该方案,提供了一种包括更多切换装置以及对应的天线对的机制。可以理解的是,在电子设备的天线系统中,可以设置有更多的上述示例中提及的第一切换装置以及对应的天线对,并进行类似的工 作,由此为电子设备提供更加灵活的通信质量提升方案。
第七方面,提供一种无线通信系统,无线通信系统包括第六方面及其可能的设计中任一项所述的天线系统,以及射频模块,射频模块分别与N个切换装置的输入端耦接。射频模块用于通过N个切换装置中的一个或多个切换装置,向一个或多个切换装置对应的天线对传输发射信号,以便于通过天线发出发射信号。或者,通过N个切换装置中的一个或多个切换装置,接收并处理来自一个或多个切换装置对应的天线对的接收信号。
在一种可能的设计中,射频模块包括第一射频通道,第一天线对包括第一天线单元和第二天线单元,第一天线单元的工作频段和第二天线单元的工作频段部分重合或者全部重合。在第一切换装置工作在第一工作状态时,第一射频通道与第一天线单元耦接,在进行发射信号的发射时,第一射频通道将发射信号通过第一天线单元发出。在进行接收信号的接收时,第一射频通道接收来自第一天线单元接收的接收信号。在第一切换装置工作在第二工作状态时,第一射频通道与第一天线单元和第二天线单元耦接,在进行发射信号的发射时,第一射频通道将发射信号通过第一天线单元和第二天线单元发出。在进行接收信号的接收时,第一射频通道接收来自第一天线单元和第二天线单元接收的接收信号。
在一种可能的设计中,射频模块包括第一射频通道,第一天线对包括第一天线单元和第二天线单元,第一天线单元的工作频段和第二天线单元的工作频段部分重合或者全部重合。在第一切换装置工作在第三工作状态时,第一射频通道与第一天线单元耦接,第二射频通道与第二天线单元耦接。在进行发射信号的发射时,第一射频通道将对应的第一发射信号通过第一天线单元发出,第二射频通道将对应的第二发射信号通过第二天线单元发出。在进行接收信号的接收时,第一射频通道接收来自第一天线单元接收的信号,第二射频通道接收来自第二天线单元接收的信号。
第八方面,提供一种无线通信方法,该方法应用于电子设备,电子设备设置有第七方面及其可能的设计中任一项所述的无线通信系统,以及与N个切换装置的控制端耦接的处理器。该方法包括:处理器通过向第一切换装置发送第一控制信息,控制第一切换装置工作在第一工作状态。处理器在参考信号接收功率RSRP小于第一阈值的情况下。或者,在误码率大于第二阈值的情况下。或者,在RSRP小于第一阈值,并且误码率大于第二阈值的情况下,向第一切换装置发送第二控制信息,控制第一切换装置工作在第二工作状态。
在一种可能的设计中,处理器通过向第一切换装置发送第一控制信息前,方法还包括:处理器确定电子设备的吞吐率小于第三阈值。
在一种可能的设计中,处理器确定电子设备的吞吐率大于第四阈值的情况下,向第一切换装置发送第三控制信息,控制第一切换装置工作在第三工作状态。
第九方面,提供一种处理器,处理器设置在电子设备中,处理器用于执行如第八方面及其可能的设计中任一项所述的无线通信方法。
第十方面,提供一种电子设备,电子设备设置有一个或多个如第九方面提供的处理器,存储器,以及如第七方面及其可能的设计中任一项所述的无线通信系统,一个或多个处理器与存储器以及无线通信系统耦合,存储器存储有计算机指令。当一个或 多个处理器执行计算机指令时,使得电子设备执行如第八方面及其可能的设计中任一项所述的无线通信方法。
应当理解的是,上述第七方面,第八方面,第九方面,第十方面提供的技术方案,其技术特征均可对应到第六方面及其可能的设计中提供的技术方案,因此能够达到的有益效果类似,此处不再赘述。
第十一方面,提供一种电子设备,电子设备设置有折叠屏,以及如第七方面及其可能的设计中任一项所述的无线通信系统。折叠屏在处于第一折叠状态下时,无线通信系统中的第一切换装置工作在第一工作状态。在折叠屏在处于第二折叠状态下时,无线通信系统中的第一切换装置工作在第二工作状态。或者,折叠屏在处于第一折叠状态下时,无线通信系统中的第一切换装置工作在第二工作状态。在折叠屏在处于第二折叠状态下时,无线通信系统中的第一切换装置工作在第一工作状态。其中,在第一折叠状态下时,折叠屏中的第一屏和第二屏的夹角小于90度。在第二折叠状态下时,折叠屏的第一屏和第二屏的夹角大于90度。
第十二方面,提供一种芯片系统,芯片系统包括接口电路和处理器;接口电路和处理器通过线路互联;接口电路用于从存储器接收信号,并向处理器发送信号,信号包括存储器中存储的计算机指令;当处理器执行计算机指令时,芯片系统执行上述示例中涉及的任一项所述的无线通信方法。
第十三方面,提供一种计算机可读存储介质,计算机可读存储介质包括计算机指令,当计算机指令运行时,执行上述示例中涉及的任一项所述的无线通信方法。
第十四方面,提供一种计算机程序产品,计算机程序产品中包括指令,当计算机程序产品在计算机上运行时,使得计算机可以根据指令执行上述示例中涉及的任一项所述的无线通信方法。
附图说明
图1为一种典型天线的方向图的示意图;
图2为一种天线系统的示意图;
图3为一种天线切换的示意图;
图4为一种分布式天线系统的示意图;
图5为本申请实施例提供的一种电子设备的组成示意图;
图6为本申请实施例提供的一种天线系统的组成示意图;
图7为本申请实施例提供的一种天线系统的细化组成示意图;
图8为本申请实施例提供的一种天线切换的示意图;
图9为本申请实施例提供的又一种天线切换的示意图;
图10为本申请实施例提供的一种天线切换方法的流程示意图;
图11为本申请实施例提供的一种具有折叠屏的电子设备的示意图;
图12为本申请实施例提供的又一种具有折叠屏的电子设备的示意图;
图13为本申请实施例提供的一种具有折叠屏的电子设备上天线分布的示意图;
图14为本申请实施例提供的又一种具有折叠屏的电子设备上天线切换的示意图;
图15为本申请实施例提供的一种方向图重构效果的对比示意图;
图16为本申请实施例提供的又一种具有折叠屏的电子设备上天线分布的示意图;
图17为本申请实施例提供的又一种具有折叠屏的电子设备上天线分布的示意图;
图18为本申请实施例提供的又一种具有折叠屏的电子设备上天线分布的示意图;
图19为本申请实施例提供的又一种电子设备的示意图;
图20为本申请实施例提供的一种芯片系统的示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述。其中,在本申请实施例的描述中,除非另有说明,“/”表示或的意思,例如,A/B可以表示A或B;本文中的“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,在本申请实施例的描述中,“多个”是指两个或多于两个。
以下,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本实施例的描述中,除非另有说明,“多个”的含义是两个或两个以上。
电子设备中可以设置有一个或多个天线单元,各个天线单元与对应的射频模块耦接,实现信号的发射和接收。示例性的,在接收过程中,电子设备可以通过天线将空间中的电磁波转换为具有不同特征的电流信号,通过射频模块对该电流信号进行解析,电子设备就可以获取电磁波所携带的信息。在发射过程中,电子设备还可以通过射频模块,向天线馈入加载有想要发出的信息的电信号,以便天线可以将该电信号转换为对应频率的电磁波发射出去,进而在其他设备接收到该电磁波时可以通过其中设置的天线接收该电磁波,由此实现信息的无线传输。
作为一种示例,请参考图2,示出了一种天线系统的示意。如图2所示,在该天线系统中,可以设置有多个天线单元(如图2所示的天线单元1,天线单元2,天线单元3以及天线单元4)。任意两个天线单元的工作频段可以相同,也可不同。所有四个天线单元的工作频段的集合能够覆盖电子设备所需要的无线通信频段。该天线系统能够用于进行信号的发射与接收。例如,以控制天线单元1进行信号发射为例。射频模块可以将频段为f1的电信号馈入天线单元1。其中,天线单元1的工作频段覆盖该频段f1。天线单元1可以将馈入的电信号转换为电磁波在空间进行传播,实现对于电信号的发送。类似的,射频模块可以控制其他天线单元(如天线单元2,天线单元3以及天线单元4)进行信号的发送。又如,以控制天线单元1进行信号接收为例。天线单元1可以接收其工作频段对应的电磁波,并将该电磁波转换为具有对应特征(如具有对应幅度和相位)的电信号。该电信号可以被传输给射频模块,以便射频模块对该电信号进行解析,获取该电信号中加载的信息。由此实现信号的接收。类似的,其他天线单元(如天线单元2,天线单元3以及天线单元4)也可以接收对应频段的电磁波,并转换为电信号被射频模块解析,由此实现对应的信号接收。
在固定天线辐射的方案中,对于不同频率信号的接收/发射是由固定的天线完成的。例如,继续结合图1,以天线单元1到天线单元4的工作频段各不相同(比如,天线单元1的工作频段为频段1,天线单元2的工作频段为频段2,天线单元3的工作频段为频段3,天线单元4的工作频段为频段4)为例。在电子设备需要进行频段1或频段 1中某个子频段中的发射/接收时,可以控制天线单元1进行工作。类似的,在电子设备需要进行频段2或频段2中某个子频段中的发射/接收时,可以控制天线单元2进行工作。在电子设备需要进行频段3或频段3中某个子频段中的发射/接收时,可以控制天线单元3进行工作。在电子设备需要进行频段4或频段4中某个子频段中的发射/接收时,可以控制天线单元4进行工作。
在上述方案中,由于天线单元在工作时,其上电流分布情况基本不变,由此也就导致天线单元的方向图零点相对固定。而不同天线均存在方向图零点,这样就会使得方向图零点在通信过程中的影响无法被消除。
为了解决上述问题,可以通过如下两种方案降低方向图零点对于无线通信的影响。
方案1、多天线选择(Multi-antenna-selection,MAS)方案。在该方案中,射频模块和天线之间可以设置有切换装置。结合图3。射频模块通过切换装置与天线单元1和天线单元2连接为例。默认情况下,切换装置可以将射频模块与天线单元1连接,将射频模块与天线单元2断开。也就是说,在默认情况下,电子设备采用天线单元1进行发射/接收。电子设备可以控制射频模块监测通过天线单元1进行的发射/接收过程中的相关参数。在该相关参数低于预设的阈值时,则表明当前采用天线单元1进行的发射/接收效果较差,此时电子设备可以控制切换装置将射频模块与天线单元1断开,并与天线单元2连接。进而切换为通过天线单元2进行信号的发射/接收。由于天线单元1和天线单元2的方向图零点方向一般不同,因此,能够通过切换天线单元适当规避由于天线单元1的方向图零点带来的通信质量差的问题。
然而,由于天线单元2也存在方向图零点,因此也会存在方向图零点对于通信质量影响的隐患。另外,由于天线单元1和天线单元2的方向图零点并非在所有情况下都不同,而随着电子设备的发展,天线空间愈发恶化,这也使得单个天线单元的方向图零点附近增益较低的区域变得更大。比如,在具有折叠屏的手机中,由于屏占比的提升、手机厚度的降低等因素影响,能够用于设置天线的空间越来越小,由此会使得单个天线的辐射性能受到严重影响。可以理解的是,在该增益较低区域中进行的通信过程质量也会出现类似的问题。因此,通过上述MAS方案只能在有限的范围内规避方向图零点带来的通信质量差的问题,但是无法较好地解决该问题。
方案2、分布式天线方案。可以理解的是,在发射场景中,在将同一路射频信号同时输入给两个天线单元进行发射时,那么这两个天线单元就可以构成一个分布式天线。类似的,在接收场景中,两个天线单元同时将接收到的信号传输给射频模块时,那么这两个天线单元就可以构成一个分布式天线。示例性的,一组分布式天线可以包括一个馈电网络以及两个或多个天线单元,其中,多个天线单元可以分别位于电子设备的不同位置。结合图4,其中一个馈电网络连接两个天线单元(如天线单元1和天线单元2)为例。在进行信号发射时,射频模块(图中未示出)可以将射频信号馈入分布式天线。分布式天线中的馈电网络可以将该射频信号匹配处理后分别为两个天线单元传输对应的信号。例如,给天线单元1传输信号1,给天线单元2传输信号2。其中,信号1控制天线单元1进行辐射,信号2控制天线单元2进行辐射。通过两个天线单元同时工作,使得两个天线单元其中的一个能够补偿另一个天线单元的方向图零点的辐射,由此实现提升整体辐射效果的目的。
可以理解的是,在分布式天线设计中,天线单元越多,则整体的辐射效果越好。但是,天线单元越多,就会使得天线在电子设备中占用的空间越多。然而,由于目前的电子设备(特别是便携式电子设备)中能够用于布置天线单元的空间都很有限,因此,分布式设计也越来越难以实现。比如,在具有折叠屏的手机中,由于空间受限,天线可能需要被设置在不同的屏幕附近,这也增加了分布式天线方案的实现难度。
可以看到,以上两种方案(如MAS方案以及分布式天线方案),能够在一定范围内解决由于天线固有方向图零点导致的通信质量差的问题。但是,由于天线空间、成本等因素的限制,使得该上述方案无法使得通信质量得到显著的提升。
需要说明的是,通信质量的提升还可以通过提升吞吐率(即提升接收信号流数)实现。例如,在同一时刻独立工作的天线单元数量越多,那么在接收过程中,各个天线单元就能够分别通过其对应的射频链路(RF chain)向射频模块提供信号。由此使得射频模块能够接收到更多的有效信号,进而达到提升吞吐率的目的。结合上述方案说明,通过MAS方案,由于其本质是单天线的切换,也就是说在同一时刻工作的天线数量不会发生变化,因此对于提升吞吐率没有任何帮助。而采用上述分布式天线方案时,多个天线(如图4中的天线单元1和天线单元2)在组成分布式天线时,其前端对应到相同的射频链路,因此也就相当于将天线单元1和天线单元2组成一个天线在工作,因此也就无法提升吞吐率。
综合上述说明,目前在电子设备中的天线设计由于无法较好地规避天线的方向图零点,能够提供的吞吐量有限,因此无法提供较好的无线通信质量。需要说明的是,这些问题在空间要求较高的情况下(比如在设置有折叠屏的电子设备中)更加显著。
为了解决上述问题,本申请实施例提供一种天线切换方法。电子设备可以自适应地对天线单元进行数量和/或方向图的重构,使得在通信环境较差时,电子设备可以通过较大的天线口径进行辐射,由此起到显著的规避固定天线的方向图零点对于通信质量影响的目的。而在通信环境较好时,电子设备可以通过较多的天线单元进行辐射,由此起到提升吞吐量的目的。
需要说明的是,本申请实施例提供的方案,能够应用于不同的电子设备中。比如,该电子设备可以是手机、平板电脑、可穿戴设备、车载设备、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、笔记本电脑、超级移动个人计算机(ultra-mobile personal computer,UMPC)、上网本、个人数字助理(personal digital assistant,PDA)等移动终端,本申请实施例对电子设备的具体类型不作任何限制。在一些实现方式中,本申请实施例提供的方案能够应用于具有折叠屏的电子设备中,并起到显著的提升通信质量的效果。
以下结合附图对本申请实施例提供的方案进行详细说明。
请参考图5,为本申请实施例提供的一种通信系统(或称为无线通信系统)的组成示意图。该通信系统可以设置在电子设备中,用于实现电子设备的通信功能。如图1所示,该通信系统可以包括处理器100、滤波器200、低噪声放大器(Low Noise Amplifier,LNA)300、功率放大器(Power Amplifier,PA)400、切换开关(switch)500和天线模块600。在一些实现方式中,该天线模块600可以包括一个或多个天线(antenna,ANT)601。
处理器100可以包括一个或多个处理单元,例如:处理器100可以包括应用处理器(application processor,AP),调制解调处理器,图形处理器(graphics processing unit,GPU),图像信号处理器(image signal processor,ISP),神经网络处理器(neural-network processing unit,NPU),控制器,视频编解码器,数字信号处理器(digital signal processor,DSP),基带,和/或射频集成电路等。控制器可以根据指令操作码和时序信号,产生操作控制信号,完成取指令和执行指令的控制。
处理器100中可以设置存储器,用于存储指令和数据。在一些实施例中,处理器100中的存储器为包括高速缓冲存储器。该存储器可以保存处理器100刚用过或循环使用的指令或数据。如果处理器100需要再次使用该指令或数据,可从所述存储器中直接调用。避免了重复存取,减少了处理器100的等待时间,因而提高了系统的效率。在一些实施例中,存储器还可以设置在处理器外,并与处理器100相耦合。
如图5所示,在本示例中,处理器100可以包括基带(Baseband,BB)处理器101以及射频集成电路(Radio Frequency Integrated Circuit,RFIC)102。在本示例中,可以将基带处理器简称为基带。
示例性的,基带101可以用于合成即将发射的基带信号,或/和用于对接收到的基带信号进行解码。具体地说,就是发射时,基带可以把语音或其他数据信号编码成用来发射的基带信号(基带码);接收时,基带可以把收到的基带信号(基带码)解码为语音或其他数据信号。在一些实现中,基带101可以包括编码器、解码器和基带控制器等部件。编码器用来合成即将发射的基带信号,解码器用于对接收到的基带信号进行解码。基带控制器可以为微处理器(Microprocessor或Micro Central Processing Unit,MCU),基带控制器可以用于控制编码器和解码器,例如,基带控制器可以用于完成编码和解码的调度,编码器和解码器之间的通信,以及外设驱动(可以通过向基带以外的部件发送使能信号,以使能基带以外的部件)等等。
射频集成电路(Radio Frequency Integrated Circuit,RFIC)102用于将基带信号进行处理以形成发送(Transmit,TX)信号,并将发送信号传递给功率放大器400进行放大;或/和,射频集成电路用于将接收(Receive,RX)信号进行处理以形成基带信号,并将形成的基带信号发送基带101进行解码。可以理解的是,基带处理器101可以对基带信号等数字信号进行处理,而射频集成电路102可以用于对射频信号等模拟信号进行处理。在基带处理器101和射频集成电路102之间,可以设置有数模/模数转换部件,用于数据在基带处理器101以及射频集成电路102之间进行传输时的数模转换/模数转换。当然,在另一些实现方式中,该数模/模数转换部件也可以是集成在基带处理器101或者射频集成电路102中的。
处理器100可以根据移动通信技术或无线通信技术对信号进行调频。移动通信技术可以包括全球移动通讯系统(global system for mobile communications,GSM),通用分组无线服务(general packet radio service,GPRS),码分多址接入(code division multiple access,CDMA),带宽码分多址(wideband code division multiple access,WCDMA),时分码分多址(time-division code division multiple access,TD-SCDMA),长期演进(long term evolution,LTE),新兴的无线通信技术(又可称为第五代移动通信技术,英语:5th generation mobile networks或5th generation wireless systems、 5th-Generation、5th-Generation New Radio,简称5G、5G技术或5G NR)等。无线通信技术可以包括无线局域网(wireless local area networks,WLAN)(如无线保真(wireless fidelity,Wi-Fi)网络),蓝牙(bluetooth,BT),全球导航卫星系统(global navigation satellite system,GNSS),调频(frequency modulation,FM),近距离无线通信技术(near field communication,NFC),红外技术(infrared,IR)等。
处理器100可以包括至少一个基带101和至少一个射频集成电路102。在一些实施例中,每个基带101对应一个射频集成电路102,以根据一种或多种通信技术对信号进行调频。例如,第一基带和第一射频集成电路根据5G技术对信号进行调频,第二基带和第二射频集成电路根据4G技术对信号进行调频,第三基带和第三射频集成电路根据Wi-Fi技术对信号进行调频,第四基带和第四射频集成电路根据蓝牙技术对信号进行调频,等等。或者,第一基带和第一射频集成电路可以同时根据4G技术和5G技术对信号进行调频,第二基带和第二射频集成电路根据Wi-Fi技术对信号进行调频,等等。在一些实施例中,还可以一个基带101对应多个射频集成电路102,以提高集成度。
在一些实施例中,基带101和射频集成电路102可以与处理器100的其它部件集成在一个集成电路中。在一些实施例中,基带101和射频集成电路102可以分别为独立于处理器100的一个独立器件。在一些实施例中,可以一个基带101与一个射频集成电路102可以集成一个与处理器100独立的器件中。在一些实施例中,基带101与射频集成电路102集成在不同的集成电路中,基带101与射频集成电路102封装在一起,例如封装在一个系统级芯片(System on a Chip,SOC)中。
在处理器100中,不同的处理单元可以是独立的器件,也可以集成在一个或多个集成电路中。
天线模块600用于发射射频信号,天线模块600还可以用于接收电磁波信号,并将电磁波信号转换为射频信号。天线模块600中可以包括多个天线601或多组天线(多组天线包括两个以上的天线),每个天线601或多组天线可用于覆盖单个或多个通信频带。多个天线中任一个天线可以为单频或者多频天线。在一些实现方式中,该多个天线可以包括由多个天线振子组成的阵列天线。在具体实现中,该多个天线中任一个天线的辐射体可以包括但不限于电子设备的金属边框、和/或金属后壳、和/或其他器件(如摄像头等)的金属部件等具有导电特性的结构。该多个天线中的任一个天线的辐射体也可以包括柔性电路板(Flexible Printed Circuit,FPC)天线,和/或冲压件(stamping)天线,和/或激光蚀刻(Laser-Direct-structuring,LDS)天线等形式的部件。在一些实现中,该多个天线中的任意一个天线也可以是片上(on-chip)天线。
如图5所示,在天线模块600中还可以包括天线电路602。该天线电路602也可以称为匹配电路。该匹配电路中可以包括一个或多个电容、和/或电感、和/或电阻。在匹配电路中还可以包括可调器件,比如可调电感、和/或可调电容等。该匹配电路可以用于调节天线601的阻抗。通过匹配电路的调谐,可以使得天线601的在工作频段范围内尽量接近射频信号的阻抗(比如50欧姆,又如75欧姆)。由此使得降低射频信号被传输给天线601时,在天线端口位置的损耗或者反射,从而提升通信系统的辐射效率。
在本申请实施例中,处理器100与天线电路600相耦合,以实现发射和接收射频信号相关联的各种功能。例如,当电子设备发射信号时,基带101可以通过数字调制的方式,将待发射的数据加载在数字信号上,由此获取与待发射的数据对应的基带信号。基带信号由射频集成电路102转化为发送信号(射频信号),发送信号经功率放大器400进行放大,功率放大器400输出的放大输出信号传递给切换开关500,并经天线电路600发射出去。发送信号由处理器100发送到切换开关500的路径为发射链路(或称为发射路径)。当电子设备需要接收信号时,天线电路600将接收信号(射频信号)发送给切换开关500,切换开关500将射频信号发送给射频集成电路102,射频集成电路102将射频信号处理为基带信号并发送给基带101,基带101将处理后的基带信号转化为数据后,发送给相应的应用处理器。射频信号由切换开关500发送到处理器100的路径为接收链路(或称为接收路径)。处理器100中连接发射链路的端口为发射端口TX,处理器100中连接接收链路的端口为接收端口RX。
切换开关500可以被配置为选择性的将天线电路600电连接到发射链路或接收链路。在一些实施例中,切换开关500可以包括多个开关。切换开关500还可以被配置为提供额外的功能,包括对信号进行滤波和/转接(duplexing)。如图5所示,在本申请实施例的一些实现中,在切换开关500对应的TX链路上还可以设置有滤波器200以及PA 300,在切换开关500对应的RX链路上还可设置有滤波器200以及LNA 400。可以理解的是,滤波器200,PA 300以及LNA 400可以用于在对应链路上对射频信号进行处理,以达到提升信号质量的效果。需要说明的是,如图5所示的组成仅为一种示例,在本申请的另一些实现方式中,针对不同的工作频段,在通信系统中可以设置有不同的TX链路和/或RX链路。各个TX链路中包括部件的组成也不限于图5所示的组成。比如,在一些TX链路上可以不设置有PA 300,在需要对该链路的信号进行放大时,可以通过射频线将该链路上的信号引入其他TX链路上的PA 300,以实现PA300的分时/分频共用。类似的,各个RX链路中包括部件的组成也不限于图5所示的组成。比如,对于信号质量要求不高的频段(比如漫游频段)对应的RX链路上可以不包括LNA 400,由此达到在满足信号质量要求的前提下,降低硬件成本的效果。
为了便于说明,以下以RX链路包括滤波器200以及LNA 400,TX链路包括滤波器200以及PA 300为例。在本申请实施例中,可以将通信系统中包括的RX链路中的部件,以及TX链路中的部件的集合,称为射频模块。可以理解的是,在射频模块中包括多个RX链路和/或TX链路时,一个RX链路或者一个TX链路也可称为一个射频通道。需要说明的是,在一些实现场景下,在RX链路和TX链路为同一物理链路时,该物理链路也可对应到一个射频通道。
在本申请另一些实施例中,电子设备的通信系统可以包括比图示更多或更少的部件,或者组合某些部件,或者拆分某些部件,或者不同的部件布置。图示的部件可以以硬件,软件或软件和硬件的组合实现。
为了能够更加清楚地说明本申请实施例提供的通信系统的组成,以下结合图6对图5所示的天线模块600进行示例性说明。参考图6,示出了一种天线模块600(或称为天线系统)的组成示意。如图6所示,该天线系统可以与射频模块具有电连接关系。在天线系统中,可以设置有与射频模块耦接的2*N路天线,其中,N为大于或等于2 的整数。在这2N路天线中,具有相同覆盖频段的两个天线可以构成天线对。例如,以天线单元A3和天线单元A4具有相同覆盖频段为例。包括天线单元A3、馈电装置A1的第一天线通路,可以与包括天线单元A4、馈电装置A2的第二天线通路组成第一天线对。类似的,其他天线通路也可两两一组构成天线对。其中,馈电装置可以为射频传输线(比如阻抗控制在50欧姆的射频传输线),金属顶针,金属弹片等,用于天线通路上电信号与天线辐射体之间的传输。在本申请的一些实现方式中,该馈电装置还可包括移相器,用于调节天线端口处的信号的相位,以便控制天线辐射的相位情况,比如,通过调整同时工作的两个天线单元分别对应的移相器,使得两个天线单元的辐射相位相差90度,由此达到双极化的辐射效果,进而降低两个天线单元同时工作时的相互影响,提升系统信号质量。需要说明的是,在天线通路上,还可以包括其他部件。比如,可以包括与天线通路上设置的天线对应的匹配电路,和/或其他用于实现天线辐射功能的射频器件。其中,匹配电路可以调节天线单元与射频模块之间的阻抗,匹配电路可以包括电容、电感和开关中的一种或几种,在不同的状态时,匹配电路可以调节自身的电容值、电感值和开关状态中的一种或几种,从而使得天线单元与射频模块之间的阻抗匹配。在一些实施例中,天线通路还可以不包括馈电装置。
需要说明的是,图6中的天线系统仅为一种可能的组成示例。比如,天线系统中,与切换装置1耦接的天线部分部件可以包括馈电装置A1,天线单元A3以及馈电装置A2,天线单元A4。类似的,与切换装置2耦接的天线部分部件可以包括2个馈电装置以及2个天线单元。也就是说,在该示例中,天线系统中包括的N个切换装置可以单独设置的。在本申请的另一些实现方式中,这N个切换装置(如切换装置1-切换装置N)也可以是部分或者全部集成在一个部件中的。结合图5,在另一些实现中,天线系统中包括的N个切换装置(如切换装置1-切换装置N)中的一个或多个也可以是与切换开关500集成在一起设置在电子设备中的。
另外,结合上述针对射频模块的说明,在如图6所示的射频模块,可以用于对射频信号进行处理。例如,射频模块可以包括滤波器、合路器、功率放大器或线性放大器中的至少一个。具体的,每个射频通道均可以包括用于对一个射频信号进行处理的部件,例如,每个射频通道均可以包括滤波器、合路器、功率放大器或线性放大器中的至少一个。
在本示例中,1个天线对中还可以对应1个切换装置,该切换装置可以设置在天线对所包括天线通路与射频模块之间。电子设备可以通过控制切换装置,使得天线对工作在不同状态。在本申请的不同实现方式中,该切换装置可以基于不同的控制模式实现其切换状态的变化。在一些实现方式中,对于通过通用输入输出接口(General-purpose input/output,GPIO)控制的切换装置,电子设备中的处理器或基带可以通过调整GPIO控制线上的模拟控制信号的状态,使得切换装置工作在不同的工作状态。比如,以切换装置通过2跟GPIO控制线控制为例。处理器或基带可以控制GPIO控制线上的模拟控制信号工作在高电平或低电平,高电平对应1,低电平对应0,则处理器或基带可以控制切换装置工作在01,10,00,11至少4个工作状态。在另一些实现方式中,对于通过移动产业处理器接口(Mobile Industry Processor Interface,MIPI)控制的切换装置,电子设备中的处理器或基带可以通过控制MIPI信号线上传 输的数字控制信号的对应比特位的状态(如置0或置1),使得切换装置工作在不同的工作状态。
需要说明的是,上述示例中涉及的切换装置的控制指令,可以是存储在处理器或者基带的内部存储区域中,在需要调整切换装置的工作状态时调取下发给切换装置的。在本申请的另一些实现方式中,上述控制指令也可以是存储在电子设备的其他具备存储功能的部件中的,比如,该控制指令可以是存储在电子设备的内部存储器中的,又如,该控制指令也可以存储在电子设备的外部存储器中的。本申请实施例对于控制指令的存储位置不作限制。
示例性的,结合图7,以图6所示天线系统中的第一天线对为例,对电子设备控制切换装置调整天线对工作状态进行说明。在以下实施例中,以第一射频通道为射频通道RF2,第二射频通道为射频通道RF1为例进行说明。
如图7所示,在射频模块中可以包括多个射频通道,一个射频通道可以用于支持至少一个天线通路实现一个频段的信号接收或发射。比如,第一天线通路可以选择性对应到射频通道RF1,第二天线通路可以选择性对应到射频通道RF2。在该示例中,当第一天线通路对应到射频通道RF1,第二天线通路对应到射频通道RF2时,在发射过程中,射频通道RF1与第一天线通路连通时,射频通道RF1可以将电信号通过馈电装置A1传输给天线单元A3进行频段1的辐射。在接收过程中,通过天线单元3接收的频段1的信号,可以通过馈电装置A1传输给射频通道RF1,以便射频通道RF1可以对该信号进行解析,实现信号的接收。类似的,在发射过程中,射频通道RF2与第二天线通路连通时,射频通道RF2可以将电信号通过馈电装置A2传输给天线单元A4进行频段1的辐射。在接收过程中,通过天线单元A4接收的频段1的信号,可以通过馈电装置A2传输给射频通道RF2,以便射频通道RF2可以对该信号进行解析,实现信号的接收。
在图7中,以切换装置1包括3个单刀单掷开关(single-pole single-throw,SPST),比如开关1,开关2以及开关3为例。开关1的一端与射频通道RF1耦接,开关1的另一端与馈电装置A1耦接。开关2的一端与射频通道RF2耦接,开关2的另一端与馈电装置A2耦接。开关3的一端与射频通道RF2耦接,开关3的另一端与馈电装置A1耦接。需要说明的是,在本示例的说明中,均以切换装置由3个SPST实现其切换功能为例,在另一些实现方式中,切换装置还可以是通过其他部件实现其切换功能的,比如,该切换装置中可以包括1个SPST和1个2SPST以实现其切换功能。
在本示例中,电子设备可以通过控制包括上述三个SPST的切换装置1,控制第一天线对工作在不同的工作状态下。以下对第一天线对的各个工作状态在发射场景中的工作机制进行举例说明。
状态1:请参考图8中的(a)。电子设备可以控制切换装置1中的开关1断开,开关2和开关3导通。在该状态下,射频模块可以通过射频通道RF2将电信号同时通过天线单元A3和天线单元A4进行辐射。此时,天线单元A3和天线单元A4组合成为一个天线向外辐射。在该状态1下,发送信号(如称为发送信号1)经过射频通道RF2、开关2路由至第二天线通路,同时,发送信号1经过射频通道RF2、开关3路由至第一天线通路。由此实现单路发送信号(即发送信号1)通过两个天线单元(天 线单元A3和天线单元A4)进行辐射的效果。由于天线单元A3和天线单元A4同时工作,因此两个天线单元的方向图在空间中叠加形成当前工作状态(如状态1)下对应的方向图。该方向图的方向图零点不同于天线单元A3或天线单元A4,因此能够避免天线单元A3或者天下单元A4的方向图零点所引入的通信质量下降的问题。
状态2:请参考图8中的(b)。电子设备可以控制切换装置1中的开关1和开关2导通,开关3断开。在该状态下,射频模块可以通过射频通道RF1将发送信号传输给天线单元A3进行辐射。同时,射频模块还可以通过射频通道RF2将发送信号传输给天线单元A4进行辐射。在该状态2下,来自射频通道RF1的发送信号(发送信号2)可以通过开关1传输给第一天线通路,并通过天线单元A3进行辐射。类似的,来自射频通道RF2的发送信号(发送信号3)可以通过开关2传输给第二天线通路,并通过天线单元A4进行辐射。在该状态下,射频通道RF1和射频通道RF2传输给天线系统的射频信号(如发送信号2和发送信号3)可以是相同的。也就是说,在发射场景下,射频模块可以同时使用两路天线通路进行对应信号的发射,由此相比于只采用一路天线通路进行发射的状态,能够显著地提升系统的吞吐率。
在一些实施例中,发送信号2和发送信号3可以为MIMO场景中的两个不同的发送信号;或者,在一些实施例中,发送信号2和发送信号3可以为双连接场景中的两个不同的发送信号,或者,在另一些实施例中,发送信号2和发送信号3可以为载波聚合(Carrier Aggregation,CA)场景下同时进行发送的不同频段的信号,等等。
可以理解的是,发射场景下,发送信号从射频模块传输给天线系统中对应的天线通路进行辐射。而在接收场景下,天线通路上的天线单元接收空间中对应频段的电磁波(接收信号),并将该电磁波转换成模拟信号传输给射频模块进行解析。可以看到,发射和接收两个过程中的信号流向相反,因此在切换装置处于不同的工作状态下时,其能够达到的效果也是对应的。以接收场景为例,比如,在上述状态1下,由于两个天线单元(如天线单元A3和天线单元A4)同时工作,接收工作频段的电磁波,并将该电磁波转换为模拟信号传输给射频通道RF2进行解析。因此,相比于只有一个天线单元工作的状态,能够使得天线系统采集更多方向的电磁波,从而使得射频模块可以获取更加完整的信号进行解析,由此能够达到提升信号解析准确度的效果。又如,在上述状态2下,由于天线单元A3和天线单元A4同时工作,接收工作频段的电磁波,并将该电磁波转换为模拟信号分别传输给射频通道RF1和射频通道RF2进行解析。因此,射频模块可以同时接收到2路信号进行解析,由此在提升系统吞吐率的同时,也能够通过对比两路信号的模拟参数,提升解析准确度。为了便于说明,以下实施例中,均以发射场景为例,对本申请方案的实施过程进行说明,接收场景下的有益效果与之对应,不再赘述。
在本申请实施例中,电子设备可以根据预设的条件,灵活地根据当前环境下对于通信的不同需求,调整天线的工作状态,使得天线系统能够自适应地以对应的工作状态,在当前环境下提供对应的高质量通信服务。
可以理解的是,具有如图7所示的逻辑连接,电子设备还可以控制第一天线对处于其他的工作状态:
状态3:请参考图9中的(a)。电子设备可以控制切换装置1中的开关1和开关 3断开,开关2导通。此时,第二天线通路单独工作。射频模块可以通过射频通道RF2将电信号通过天线单元A4进行辐射。
状态4:请参考图9中的(b)。电子设备可以控制切换装置1中的开关1和开关2断开,开关3导通。此时,第一天线通路单独工作。射频模块可以通过射频通道RF1将电信号通过天线单元A3进行辐射。
电子设备可以在使用天线单元A4进行辐射时(即第一天线对工作在状态3下),根据当前通信质量,知晓当前辐射是否位于天线单元A4的方向图零点附近。如果是,那么电子设备可以控制第一天线对中的天线单元A3进行辐射(即将工作状态切换为状态4),由此避免由于天线单元A3的方向图零点导致的通信质量下降的问题。类似的,当来波方向接近天线单元A4的方向图零点附近时,电子设备可以将第一天线对的工作状态由状态4切换为其他状态,比如状态3或者状态1,由此达到改变第一天线对当前工作状态下的方向图,避免由于方向图零点导致的通信质量下降的问题。
其中,天线单元A3和天线单元A4可以位于电子设备的不同位置。以上说明中,是以第一天线对为对象进行详细说明的。容易理解的是,针对如图6所示的其他天线对,电子设备可以通过类似的方法,控制各个天线对工作在不同的工作状态下,由此避免固定天线的方向图零点对于通信质量的影响。同时,在需要的场景下通过调整天线对的工作状态实现吞吐率的提升。由此,即可实现电子设备整体上通信质量的显著提升。
基于上述如图6-图9的说明,本申请实施例还提供一种天线切换方法,能够应用于电子设备中。请参考图10,其中以电子设备为手机为例进行说明。该方法可以包括:
S1001、手机判断是否满足切换条件。
示例性的,手机可以在开机后,实时地获取当前通信过程中的通信参数,以便根据该通信参数以及对应的预设阈值,确定是否需要进行天线工作状态的切换。比如,该通信参数可以包括参考信号接收功率(Reference Signal Receiving Power,RSRP),接收的信号强度指示(Received Signal Strength Indication,RSSI)等。以通信参数包括RSRP为例。手机可以实时地判断当前通信的RSRP与预设的RSRP对应阈值之间的关系。在当前通信的RSRP大于预设的RSRP对应阈值的情况下,手机可以确定当前天线的工作状态能够满足通信需求,因此不满足切换条件,不需要进行天线工作状态的切换。在当前通信的RSRP小于预设的RSRP对应阈值的情况下,手机可以确定当前天线的工作状态并不能提供较好的通信质量,因此满足切换条件,需要进行天线工作状态的切换。
在本示例的另一些实现方式中,该通信参数还可以为误码率。手机可以根据当前通信过程中的误码率大小,与预设的误码率阈值的大小关系,确定是否满足切换条件。比如,在当前通信的误码率大于预设的误码率阈值时,则认为满足切换条件。在当前通信的误码率小于预设的误码率阈值时,则认为不需要进行切换。当然,在本申请的另一些实现方式中,通信参数还可同时包括误码率和RSRP,以便于手机综合判断当前通信的情况,并作出更加准确的判断。比如,在误码率大于误码率阈值,并且RSRP大于RSRP阈值时,手机才确定满足切换条件。
需要说明的是,在上述示例中,是以手机实时监测通信参数为例进行说明的。在 本申请的另一些实现方式中,手机还可以预设的时间间隔,间隔采样实现对通信参数的监测。由此可以在及时地判断是否满足切换条件的同时,适当降低由于监测通信参数引入的功耗。
在手机确定不满足切换条件时,可以重复执行该S1001。在手机确定满足切换条件时,可以执行以下S1002。
S1002、手机将当前工作状态切换为目标工作状态。
可以理解的是,在手机出厂时,其内部可以预先配置有多组开关状态。比如,该多组开关状态可以包括图8和/或图9所示的状态。在本示例中,手机可以通过多种方案,确定需要切换的工作状态,即目标切换状态。比如,结合图10,该S1002可以包括S1002A以及S1002B。
S1002A、手机确定目标工作状态。
S1002B、手机将当前工作状态切换为目标工作状态。
示例性的,在一些实现方式中,手机可以在确定满足切换条件时,直接将当前工作状态切换为预设的第一工作状态,比如,如果当前工作状态为图9中的(a)标识的状态,那么在确定满足切换条件时,手机可以直接将天线系统的当前工作状态切换为如图9中的(b)标识的状态。在切换为如图9中的(b)所示的状态后,手机可以循环执行以上S1001。如果依然满足切换条件,那么手机可以将当前状态切换为如图8中的(a)所示的状态。类似的,如果当前工作状态为其他状态,那么手机可以在预先配置的工作状态中根于预设的优先级切换为与当前工作状态不同的,优先级较高的工作状态。由此实现天线工作状态切换的效果。
在另一些实现方式中,手机可以在确定满足切换条件时,分别控制天线系统工作在预设的各个开关状态下,并监测在不同开关状态下,通信参数(如RSRP)的大小(本示例中,该方法也可称为对预设开关状态的轮询)。由此,手机即可获取在当前通信环境下,各个开关状态的工作效果。在本实例中,手机可以将对应的RSRP最大开关状态对应天线的工作状态,确定为目标工作状态。通过查表,手机即可确定该目标工作状态对应的开关逻辑的控制信号,由此手机即可根据该控制信号,将当前工作状态切换为目标工作状态。需要说明的是,通过上述方案,手机可以将当前通信环境中,工作效果最好的工作状态确定为目标工作状态,进而控制天线系统切换为该目标工作装填。在另一些示例中,手机还可以控制天线系统分别工作在不同的预设开关状态下时,获取对应的RSRP,在RSRP大于预设的RSRP阈值时,则停止对预设开关状态的轮询,将当前RSRP大于预设的RSRP阈值的开关状态对应的工作状态,作为目标工作状态。进而通过查表,手机即可确定该目标工作状态对应的开关逻辑的控制信号,由此手机即可根据该控制信号,将当前工作状态切换为目标工作状态。
应当理解的是,基于上述S1001-S1002的说明,由于通信参数的获取以及确定,是随着手机所处通信环境的变化而变化的,也就是说,上述工作状态的确定以及切换,是根据手机所处通信环境的变化而适应性变化的。由此使得手机能够以当前通信环境为参考,将天线的工作状态切换到最优以便提供更好的通信质量。容易理解的是,不同工作状态的切换,引起对于天线系统方向图的变化,由此能够使得将由于方向图零点导致的通信质量差的情况,通过切换天线工作状态,改变天线系统方向图,进而规 避由于方向图零点对通信质量造成的影响。
需要说明的是,在本申请另一些实现方式中,手机还可以根据当前场景下对于吞吐率的需求,灵活调整天线的工作状态。比如,手机可以在执行上述S1001之前,执行如图10所示的S1003-S1004。
S1003、手机判断是否为大吞吐率场景。
其中,大吞吐率场景可以为预设在手机中的。比如,当手机确定当前上行或下行吞吐率大于预设的吞吐率阈值时,则确定当前工作场景为大吞吐率场景。又如,当手机确定当前处于视频通话的场景下时,则确定当前工作场景为大吞吐率场景。
在确定当前工作场景为大吞吐率场景后,手机可以执行以下S1004。如果确定当前工作场景并非大吞吐率场景,那么手机可以执行如图10所示的S1001。
在一些实施例中,大吞吐率场景可以为对吞吐量需求比较大的场景,或需要低延时的场景,例如视频、直播、自动驾驶或移动医疗等场景。
S1004、手机将当前工作状态设置为大吞吐率状态。
在确定有提升吞吐率的需求时,手机可以控制天线的工作状态处于对应的大吞吐率状态。比如,结合图8,手机可以将其天线系统中的一个或多个天线对,设置为如图8中的(b)所示的工作状态,由此实现双通道收发,进而达到提升吞吐率的目的。
通过如图10所示的方案,本领域技术人员应当容易理解本申请实施例的具体操作步骤。基于上述方案,能够实现电子设备自适应地根据当前通信环境的需求,对天线的工作状态进行调整,达到天线数量和/或天线方向图的重构效果,以实现提升通信质量的目的。
为了能够对本申请实施例所示出的方案进行更加详细的说明,以下以电子设备为具有折叠屏的电子设备为例,对该方案进行示例性说明。
其中,在该电子设备中设置的折叠屏(也可以称为折叠设备)可折叠形成至少两个屏。例如,折叠屏可折叠形成第一屏和第二屏。需要说明的是,该折叠屏被折叠后形成的至少两个屏,可以为独立存在的多个屏,也可以为一体结构的一个完整屏,只是被折叠形成了至少两部分。
其中,折叠屏被折叠的过程中,折叠屏的参数会发生变化,如第一屏和第二屏之间的夹角发生变化,被折叠屏的折叠速度,折叠方向,折叠加速度等也会发生变化。其中,上述被折叠屏可为第一屏和第二屏中,用户执行折叠操作时转动的屏。
综上所述,本申请实施例中,可将折叠屏折叠过程中形成的第一屏与第二屏之间的夹角、被折叠屏的折叠速度、折叠加速度以及折叠方向等参数的变化,与电子设备中不同工作天线的设置对应起来,使得电子设备的能够在不同的形态下采用不同组合的天线进行工作,实现根据电子设备的形态自适应地调节工作天线的作用,进而达到在不同形态下实现对于天线数量和/或天线方向图的重构,由此提升无线通信性能。
示例性的,在本申请一些实施例中,折叠屏可以为柔性折叠屏。其中,柔性折叠屏包括采用柔性材质制作的折叠边。该柔性折叠屏的部分或全部采用柔性材质制作。例如:该柔性折叠屏中只有可折叠的部分(如折叠边)采用柔性材质制作,其它部分采用刚性材质制作;或者,该柔性折叠屏全部采用柔性材质制作。该折叠屏可沿折叠边折叠形成多个(两个或两个以上)屏。
例如,图11中的(a)所示的折叠屏是柔性折叠屏。图11中的(a)所示的折叠屏是一个完整的显示屏,该显示屏包括采用柔性材质制作的折叠边。该折叠屏沿折叠边折叠后,可形成图11中的(b)所示的A屏1101和B屏1102。
又例如,图12中的(a)所示的折叠屏也是柔性折叠屏。图12中的(a)所示的折叠屏是一个完整的显示屏,该显示屏包括采用柔性材质制作的折叠边。该折叠屏沿折叠边折叠后,可形成图12中的(b)所示的A屏1201、B屏1202和C屏1203。
其中,图11中的(a)和图12中的(a)均是折叠屏展开(也可以说,折叠屏处于展开状态)时的形态示意图。图11中的(b)和图12中的(b)均是折叠屏处于半折叠状态的形态示意图。图11中的(c)是折叠屏处于闭合状态的形态示意图。需要说明的是,本申请各实施例中,折叠屏的状态包括三种:展开状态、闭合状态和半折叠状态。展开状态表示折叠屏展开,即折叠屏中的任意两个屏的夹角为180°。闭合状态表示折叠屏完全折叠,即折叠屏中的任意两个屏的夹角为0°。介于展开状态和闭合状态之间的状态,为半折叠状态。
在本申请另一些实施例中,折叠屏可以为多屏折叠屏。该多屏折叠屏可包括多个(两个或两个以上)屏。需要注意的是,这多个屏是多个单独的显示屏。这多个屏可依次通过折叠轴连接。每个屏可以绕与其连接的折叠轴转动,实现多屏折叠屏的折叠。
在本申请的一些实现中,多屏折叠屏包括两个单独的屏,比如分别称为A屏和B屏。A屏和B屏通过折叠轴连接,且A屏和B屏可绕着折叠轴转动,实现多屏折叠屏的折叠。多屏折叠屏也可以包括三个或三个以上的屏,其具体形态及折叠方式可参考图13及相关描述,此处不再赘述。
其中,折叠屏处于闭合状态下,相邻屏之间的夹角为0°。例如,图11中的(c)所示的A屏和B屏之间的夹角α为0°。折叠屏处于展开状态下,相邻屏之间的夹角为180°。例如,图11中的(a)所示的A屏和B屏之间的夹角α为180°。折叠屏处于半折叠状态下,相邻屏之间的夹角的取值范围可以是(0°,180°)。例如,图11中的(b)所示的A屏1101和B屏1102之间的夹角α∈(0°,180°)。
上述图11-图12中是将电子设备的折叠屏纵向折叠,实现折叠屏的折叠的。当然,也可以将电子设备的折叠屏横向折叠,以实现折叠屏的折叠。
另外,上述图11-图12中是折叠屏的相邻屏之间的夹角的取值范围是[0°,180°]的示意图。当然,折叠屏的相邻屏之间的夹角的取值范围还可以包括(180°,360°]。例如,以图11所示的折叠屏为例,图11中的(a)所示的折叠屏沿折叠边折叠,可形成A屏和B屏。需要说明的是,在本申请实施例中,折叠屏中的任意两个屏的夹角为360°时,也可以认为折叠屏处于闭合状态。
以折叠设备为设置有折叠屏的手机为例。在该手机的A屏对应壳体(如称为A壳)上,和B屏对应壳体(如称为B壳)上,可以分别设置有多个天线。比如,如图13中的(a)所示,在A壳上可以设置有天线单元1、天线单元3、天线单元5、天线单元7。在B壳上可以设置有天线单元2、天线单元4、天线单元6、天线单元8。在该示例中,天线单元1和天线单元2的位置可以相对于折叠边对阵设置。类似的,天线单元3和天线单元4的位置可以相对于折叠边对阵设置。天线单元5和天线单元6的位置可以相对于折叠边对阵设置。天线单元7和天线单元8的位置可以相对于折叠边 对阵设置。如图,参考图13中的(b),在手机处于闭合状态时,天线单元1和天线单元2在显示屏上的投影区域可以相同或相近。类似的,天线单元3和天线单元4在显示屏上的投影区域可以相同或相近。天线单元5和天线单元6在显示屏上的投影区域可以相同或相近。天线单元7和天线单元8在显示屏上的投影区域可以相同或相近。
其中,天线单元1和天线单元2可以构成一个天线对,天线单元3和天线单元4可以构成一个天线对,天线单元5和天线单元6可以构成一个天线对,天线单元7和天线单元8可以构成一个天线对。
结合上述针对图6-图10的说明,在根据本申请实施例提供的天线切换方法应用在如图13所示的手机上时,可以该手机可以控制包括天线单元1-天线单元8的天线系统中的每个天线对,在至少4个状态之间进行切换。
比如,以天线单元1(如称为E1)和天线单元2(如称为E2)组成的天线对为例。该天线对的4个状态如图14所示。在状态1下,射频通道RF1与E2导通,手机通过E2进行信号的收发。在状态2下,射频通道RF2与E1导通,手机通过E1进行信号的收发。可以看到,从状态1到状态2的切换(或者从状态2向状态1的切换),由于工作天线发生了变化,在E1和E2的方向图不同的情况下,就实现了对于该天线对的方向图重构。在状态3下,射频通到2同时与E1和E2导通,手机通过E1和E2同时进行信号的收到。可以理解的是,在该状态3下,由于E1和E2同时工作,因此,该天线对的方向图可以看作E1和E2的方向图叠加。图15示出了一种状态1、状态2以及状态3的方向图分布情况。显而易见的,在状态3下方向图叠加的结果,与状态1下E2单独工作时的方向图,以及状态2下E1独工作时的方向图分布均不相同。也就是说,在状态3下的方向图零点与状态1或状态2下的方向图零点均不相同。因此,手机可以通过在这3个状态之间进行切换,以避免当前通信状态下方向图零点对于通信质量的影响。接续结合图14,该天线对还可具有状态4所示的工作状态。在该状态4中,射频通道RF1通过E1进行信号收发,射频通道RF2通过E2进行信号收发。由此,在两个通道收发的信号频段相同时,就实现了双通道的同时收发,进而达到了增加吞吐率的效果。
需要说明的是,为了达到如图15所示的方向图分布效果,在如图13-图14的说明中,将同一个天线对中的两个天线单元设置在了相对于折叠边对称的位置,由此使得在两个天线同时工作时,能够减小两个天线之间的相互影响,达到最优的通信效果。
结合图10所示的方法,手机可以根据当前通信中的电参数确定对应的天线的工作状态。在本示例中,由于该方案使用在折叠屏的手机上,而手机处于不同的折叠状态(如展开状态以及闭合状态)下,天线系统所处的通信环境明显不同。因此,在本申请的一些实现方式中,手机还可以根据当前的折叠状态,确定并调整天线的工作状态。比如,在手机处于展开状态时,可以控制天线系统工作在状态4。以便于手机能够提供更大的吞吐率进行通信。又如,在手机处于闭合状态时,可以控制天线系统工作在状态3。以便于手机能够通过规避方向图零点提升通信质量。
在本申请的另一些实现方式中,同一天线对中的两个天线单元也可以设置在不对称的位置。比如,结合图16,继续以手机中设置有8个天线单元为例。在图16的示例中,如图16中的(a)所示,A壳上设置有天线单元1、天线单元3、天线单元5、 天线单元7。B壳上设置有天线单元2、天线单元4、天线单元6、天线单元8。在手机处于闭合状态下时,手机上的天线单元在屏幕上的投影各自错开。比如,参考图16中的(b),天线单元1和天线单元2的投影位于闭合状态下手机的上部。并且,天线单元1和天线单元2的投影互不重叠。类似的,天线单元3和天线单元4的投影位于闭合状态下手机的侧边。天线单元3和天线单元4的投影位于闭合状态下手机的上部。天线单元5和天线单元6的投影位于闭合状态下手机的侧边。天线单元5和天线单元6的投影位于闭合状态下手机的上部。天线单元7和天线单元8的投影位于闭合状态下手机的侧边。天线单元7和天线单元8的投影位于闭合状态下手机的下部。
在该示例中,两两天线也可组成天线对。比如,天线单元1和天线单元2可以构成一个天线对,天线单元3和天线单元4可以构成一个天线对,天线单元5和天线单元6可以构成一个天线对,天线单元7和天线单元8可以构成一个天线对。
需要说明的是,在该示例中,射频模块可以提供最大6个多输入输出(Multi Input Multi Output,MIMO)端口,实现多输入输出通信。其中,天线单元1(如E1)单独工作时,可以作为主天线(Main)与对应的射频通道耦接,实现主天线的工作效果。天线单元2(如E2)单独工作时,可以与MIMO 3对应的射频通道耦接,实现MIMO 3对应频段的工作效果。天线单元3(如E3)单独工作时,可以与分集(Div)对应的射频通道耦接,实现Div对应频段的工作效果。天线单元4(如E4)单独工作时,可以与MIMO 4对应的射频通道耦接,实现MIMO 4对应频段的工作效果。天线单元5(如E5)单独工作时,可以与MIMO 1对应的射频通道耦接,实现MIMO 1对应频段的工作效果。天线单元6(如E6)单独工作时,可以与MIMO 5对应的射频通道耦接,实现MIMO 5对应频段的工作效果。天线单元7(如E7)单独工作时,可以与MIMO 2对应的射频通道耦接,实现MIMO 2对应频段的工作效果。天线单元8(如E8)单独工作时,可以与MIMO 6对应的射频通道耦接,实现MIMO 6对应频段的工作效果。
结合上述对本方案的说明,如图16所示的手机可以提供多种不同的工作状态,以适应各种不同的通信环境需求。例如,手机可以控制各个天线单元分别与对应的射频通道导通,实现单通道对应单天线的正常工作。比如,结合图17,E1与Main对应的射频通道耦接,进行主天线辐射。E2与MIMO 3耦接,进行MIMO 3对应频段的辐射。E3与Div耦接,进行分集辐射。E4与MIMO 4耦接,进行MIMO 4对应频段的辐射。E5与MIMO 1耦接,进行MIMO 1对应频段的辐射。E6与MIMO 5耦接,进行MIMO 5对应频段的辐射。E7与MIMO 2耦接,进行MIMO 2对应频段的辐射。E8与MIMO 6耦接,进行MIMO 6对应频段的辐射。可以看到,在该示例中,8个天线单元分别耦接到不同的射频通道,因此能够提供最大8*8MIMO的多输入输出机制。
在上述工作状态之外,手机还可控制E1-E8对应的天线通路进行数量和/或方向图的重构,已提供更好的通信质量。
手机可以控制各个天线对中的两个天线单元耦接到同一个射频通道上,以实现天线系统的方向图重构。比如,如图18所示,其中,E1和E2可以与Main导通,以实现主天线的方向图重构,克服E1的方向图零点导致的通信质量下降。类似的,E3和E4可以与Div导通,以实现分集的方向图重构,克服E3的方向图零点导致的通信质量下降。E5和E6可以与MIMO 1导通,以实现MIMO 1对应天线的方向图重构,克 服E5的方向图零点导致的通信质量下降。E7和E8可以与MIMO 2导通,以实现MIMO 2对应主天线的方向图重构,克服E7的方向图零点导致的通信质量下降。可以看到,在该示例中,8个天线单元中分别耦接到4个的射频通道,因此能够提供最大4*4MIMO的多输入输出机制。
此外,手机还可以控制各个天线对中的两个天线单元进行数量重构,以实现吞吐率的适应性调整。该方案与上述示例类似,此处不再一一列出。
应当理解的是,上述图13-图18的说明,分别举出了天线对中的两个天线单元关于折叠轴对称以及不对称的示例,在本申请的另一些实现中,电子设备中的多个天线对中,可以同时包括具有对称设置的天线单元的天线对,也可以包括具有不对称设置的天线单元的天线对。具体的选取规则可以根据实际情况灵活选取,各种不同组成中,对于天线系统的方向图重构以及数量重构方法与上述示例中的说明类似,此处不再赘述。
图19示出了的一种电子设备1900的组成示意图。如图19所示,该电子设备1900可以包括:处理器1901和存储器1902。该存储器1902用于存储计算机执行指令。示例性的,在一些实施例中,当该处理器1901执行该存储器1902存储的指令时,可以使得该电子设备1900执行上述实施例中任一种所示的天线切换方法。
需要说明的是,在本示例的一些实现方式中,该电子设备1900还可以包括如图5所示的通信系统,比如,该通信系统中的天线模块600的组成可以与图6所示的天线系统相同或相似。在另一些实现中,该电子设备1900中的存储器1902可以包括外部存储器接口,和/或内部存储器。该电子设备1900还可以包括通用串行总线(universal serial bus,USB)接口,充电管理模块,电源管理模块,电池,移动通信模块,无线通信模块,音频模块,扬声器,受话器,麦克风,耳机接口,传感器模块,按键,马达,指示器,摄像头,显示屏,以及用户标识模块(subscriber identification module,SIM)卡接口等。作为一种示例,传感器模块可以包括压力传感器,陀螺仪传感器,气压传感器,磁传感器,加速度传感器,距离传感器,接近光传感器,指纹传感器,温度传感器,触摸传感器,环境光传感器,骨传导传感器等。
图20示出了的一种芯片系统2000的组成示意图。该芯片系统2000可以包括:处理器2001和通信接口2002,用于支持相关设备实现上述实施例中所涉及的功能。在一种可能的设计中,芯片系统还包括存储器,用于保存终端必要的程序指令和数据。该芯片系统,可以由芯片构成,也可以包含芯片和其他分立器件。需要说明的是,在本申请的一些实现方式中,该通信接口2002也可称为接口电路。
需要说明的是,上述图19和图20所示出的方案所有相关内容均可以援引到对应功能模块的功能描述,因此能够获取对应的有益效果,在此不再赘述。
在上述实施例中的功能或动作或操作或步骤等,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件程序实现时,可以全部或部分地以计算机程序产品的形式来实现。该计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行计算机程序指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储 介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或者数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包括一个或多个可以用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带),光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
尽管结合具体特征及其实施例对本申请进行了描述,显而易见的,在不脱离本申请的精神和范围的情况下,可对其进行各种修改和组合。相应地,本说明书和附图仅仅是所附权利要求所界定的本申请的示例性说明,且视为已覆盖本申请范围内的任意和所有修改、变化、组合或等同物。显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包括这些改动和变型在内。

Claims (21)

  1. 一种无线通信系统,其特征在于,应用于电子设备,所述无线通信系统包括:
    第一射频通道;
    第一天线单元;
    第二天线单元;以及
    第一切换装置,被配置为选择性地将所述第一天线单元和所述第二天线单元中的至少一个与所述第一射频通道导通;其中,
    在第一状态,所述第一切换装置被配置为导通所述第一天线单元和所述第一射频通道,所述第一切换装置还被配置为导通所述第二天线单元和所述第一射频通道;
    在第二状态,所述第一切换装置被配置为导通所述第一天线单元和所述第一射频通道,所述第二天线单元和所述第一射频通道不导通。
  2. 根据权利要求1所述的无线通信系统,其特征在于,在所述第一状态,流经所述第一天线单元和所述第二天线单元的信号均为第一信号;
    在所述第二状态,流经所述第一天线单元的信号为第二信号,所述第二信号不流经所述第二天线单元。
  3. 根据权利要求2所述的无线通信系统,其特征在于,在所述第一状态,所述第一信号的射频参数为第一参数;在所述第二状态,所述第二信号的射频参数为第二参数,其中,所述第一参数和所述第二参数不同。
  4. 根据权利要求3所述的无线通信系统,其特征在于,所述射频参数包括参考信号接收功率RSRP和/或误码率。
  5. 根据权利要求1-4中任一项所述的无线通信系统,其特征在于,所述无线通信系统还包括第二射频通道;
    在第三状态,所述第一切换装置被配置为导通所述第一天线单元和所述第一射频通道,所述第一切换装置还被配置为导通所述第二天线单元和所述第二射频通道,流经所述第一天线单元的信号为第三信号,流经所述第二天线单元的信号为第四信号。
  6. 一种折叠电子设备,其特征在于,包括:柔性显示屏,以及如权利要求1至5中任一所述无线通信系统;
    所述折叠电子设备包括第一折叠状态和第二折叠状态,
    在所述第一折叠状态下,所述无线通信系统处于所述第一状态;
    在所述第一折叠状态下,所述无线通信系统处于所述第二状态。
  7. 根据权利要求6所述的折叠电子设备,其特征在于,所述柔性显示屏包括第一部分和第二部分,所述第一天线单元位于所述第一部分;所述第二天线单元位于所述第二部分,所述第一部分与所述第二部分相对转动。
  8. 一种无线通信方法,其特征在于,所述方法应用于电子设备,所述电子设备设置有如权利要求1-5中任一项所述的无线通信系统,以及一个或多个处理器;所述方法包括:
    所述处理器向所述第一切换装置发送第一控制信息,所述第一控制信息用于控制所述第一切换装置工作在第一工作状态;
    在所述第一工作状态下,所述第一切换装置被配置为导通所述第一天线单元和所 述第一射频通道,所述第一切换装置还被配置为导通所述第二天线单元和所述第一射频通道;
    所述处理器向所述第一切换装置发送第二控制信息,所述第二控制信息用于控制所述第一切换装置工作在第二工作状态;
    在所述第一工作状态下,所述第一切换装置被配置为导通所述第一天线单元和所述第一射频通道,所述第二天线单元和所述第一射频通道不导通。
  9. 根据权利要求8所述的无线通信方法,其特征在于,在所述第一切换装置处于第一工作状态的情况下,流经所述第一天线单元和所述第二天线单元的信号均为第一信号;
    在所述第一切换装置处于第二工作状态的情况下,流经所述第一天线单元的信号为第二信号,所述第二信号不流经所述第二天线单元。
  10. 根据权利要求9所述的无线通信方法,其特征在于,在所述第一切换装置处于第一工作状态的情况下,所述第一信号的射频参数为第一参数;在所述第一切换装置处于第二工作状态的情况下,所述第二信号的射频参数为第二参数,其中,所述第一参数和所述第二参数不同。
  11. 根据权利要求10所述的无线通信方法,其特征在于,所述射频参数包括参考信号接收功率RSRP和/或误码率。
  12. 根据权利要求8-11中任一项所述的无线通信方法,其特征在于,
    所述处理器向所述第一切换装置发送第三控制信息,所述第三控制信息用于控制所述第一切换装置工作在第三工作状态;
    在所述第三工作状态下,所述第一切换装置被配置为导通所述第一天线单元和所述第一射频通道,所述第一切换装置还被配置为导通所述第二天线单元和所述第二射频通道,流经所述第一天线单元的信号为第三信号,流经所述第二天线单元的信号为第四信号。
  13. 一种处理器,所述处理器设置在电子设备中,所述处理器用于执行如权利要求8-12中任一项所述的无线通信方法。
  14. 一种电子设备,所述电子设备设置有一个或多个如权利要求13所述的处理器,存储器,以及如权利要求1-5中任一项所述的无线通信系统,
    所述一个或多个处理器与所述存储器以及所述无线通信系统耦合,所述存储器存储有计算机指令;
    当所述一个或多个处理器执行所述计算机指令时,使得所述电子设备执行如权利要求8-12中任一项所述的无线通信方法。
  15. 一种天线系统,其特征在于,应用于电子设备,所述天线系统包括:
    N个切换装置,M个天线单元,1个所述切换装置对应至少2个天线单元,对应于1个所述切换装置的至少2个所述天线单元构成1个天线对;N为正整数,M为大于N的整数;
    第一切换装置的输出端与第一天线对耦接,所述第一切换装置是N个所述切换装置中的任意一个,所述第一天线对包括的至少2个所述天线单元包括在M个所述天线单元中;
    所述第一切换装置具有第一工作状态和第二工作状态,所述第一切换装置工作在所述第一工作状态下时,所述天线系统的方向图零点方向为第一方向;所述第一切换装置工作在所述第二工作状态下时,所述天线系统的方向图零点方向为第二方向,所述第一方向与所述第二方向不同。
  16. 根据权利要求15所述的天线系统,其特征在于,所述第一天线对中包括的至少2个所述天线单元覆盖频段部分重合或者全部重合。
  17. 根据权利要求15或16所述的天线系统,其特征在于,所述第一切换装置工作在所述第一工作状态;
    在参考信号接收功率RSRP小于第一阈值的情况下;或者,在误码率大于第二阈值的情况下;或者,在RSRP小于第一阈值,并且误码率大于第二阈值的情况下,
    所述第一切换装置的工作状态由所述第一工作状态,切换为所述第二工作状态。
  18. 根据权利要求15-17中任一项所述的天线系统,其特征在于,
    在所述第一切换装置工作在第一工作状态下的情况下,所述第一天线对中进行信号接收和/或发送的天线单元的数量,与在所述第二切换装置工作在第一工作状态下的情况下,所述第一天线对中进行信号接收和/或发送的天线单元的数量不同。
  19. 根据权利要求15-18中任一项所述的天线系统,其特征在于,
    在所述电子设备的吞吐率小于第三阈值的情况下,所述第一切换装置工作在所述第一工作状态。
  20. 根据权利要求19所述的天线系统,其特征在于,所述第一切换装置还具有第三工作状态;在所述第一切换装置工作在所述第三工作状态下时,所述第一天线对中进行信号接收和/或发送的天线单元的数量,大于所述第一切换装置处于第一工作状态或处于第二工作状态下时,所述第一天线对中进行信号接收和/或发送的天线单元的数量;
    在所述电子设备的吞吐率大于第四阈值的情况下,所述第一切换装置工作在所述第三工作状态,其中,所述第四阈值大于或等于所述第三阈值。
  21. 根据权利要求15-20中任一项所述的天线系统,其特征在于,所述天线系统中还包括第二切换装置以及第二天线对;
    所述第二切换装置的输出端与所述第二天线对耦接,所述第二切换装置是N个所述切换装置中的任意一个,所述第二天线对包括的至少2个所述天线单元包括在M个所述天线单元中;
    所述第二切换装置至少具有第一工作状态和第二工作状态,所述第一切换装置工作在所述第一工作状态下时,所述天线系统的方向图零点方向为第一方向,所述第一切换装置工作在所述第二工作状态下时,所述天线系统的方向图零点方向为第二方向,所述第一方向与所述第二方向不同。
PCT/CN2021/137837 2020-12-29 2021-12-14 天线系统、无线通信系统和电子设备 WO2022143148A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21913889.8A EP4243200A4 (en) 2020-12-29 2021-12-14 ANTENNA SYSTEM, WIRELESS COMMUNICATION SYSTEM AND ELECTRONIC DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011599529.1A CN114696064A (zh) 2020-12-29 2020-12-29 天线系统、无线通信系统和电子设备
CN202011599529.1 2020-12-29

Publications (1)

Publication Number Publication Date
WO2022143148A1 true WO2022143148A1 (zh) 2022-07-07

Family

ID=82133283

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/137837 WO2022143148A1 (zh) 2020-12-29 2021-12-14 天线系统、无线通信系统和电子设备

Country Status (3)

Country Link
EP (1) EP4243200A4 (zh)
CN (1) CN114696064A (zh)
WO (1) WO2022143148A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116961687B (zh) * 2023-09-21 2023-12-19 浪潮(山东)计算机科技有限公司 一种通信装置及其广播通信设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187174A1 (en) * 2012-12-31 2014-07-03 Futurewei Technologies, Inc. Smart Antenna Platform for Indoor Wireless Local Area Networks
CN110324480A (zh) * 2018-03-28 2019-10-11 西安中兴新软件有限责任公司 多屏幕折叠终端的天线切换方法、装置、终端及存储介质
CN110739534A (zh) * 2018-07-19 2020-01-31 华硕电脑股份有限公司 天线装置及其控制方法
CN112072327A (zh) * 2020-08-27 2020-12-11 Oppo广东移动通信有限公司 一种天线装置及电子设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110250926A1 (en) * 2009-12-21 2011-10-13 Qualcomm Incorporated Dynamic antenna selection in a wireless device
CN107123863B (zh) * 2017-04-25 2019-03-12 Oppo广东移动通信有限公司 天线系统及移动终端
CN107465433A (zh) * 2017-08-31 2017-12-12 珠海格力电器股份有限公司 一种可折叠移动终端
CN108768434B (zh) * 2018-06-06 2021-02-12 维沃移动通信有限公司 一种射频电路、终端及信号发射控制方法
EP3618184A1 (en) * 2018-08-29 2020-03-04 Guangdong Oppo Mobile Telecommunications Corp., Ltd. Electronic device with antenna mechanism

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140187174A1 (en) * 2012-12-31 2014-07-03 Futurewei Technologies, Inc. Smart Antenna Platform for Indoor Wireless Local Area Networks
CN110324480A (zh) * 2018-03-28 2019-10-11 西安中兴新软件有限责任公司 多屏幕折叠终端的天线切换方法、装置、终端及存储介质
CN110739534A (zh) * 2018-07-19 2020-01-31 华硕电脑股份有限公司 天线装置及其控制方法
CN112072327A (zh) * 2020-08-27 2020-12-11 Oppo广东移动通信有限公司 一种天线装置及电子设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4243200A4

Also Published As

Publication number Publication date
EP4243200A1 (en) 2023-09-13
EP4243200A4 (en) 2024-05-01
CN114696064A (zh) 2022-07-01

Similar Documents

Publication Publication Date Title
JP6955103B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
WO2020019876A1 (zh) 射频系统、天线切换控制方法及相关产品
US8774068B2 (en) Dual swapping switches to meet linearity demands of carrier aggregation
WO2017113693A1 (zh) 天线复用装置以及移动终端
JP7038212B2 (ja) マルチウェイスイッチ、無線周波数システム及び無線通信装置
EP3540961B1 (en) Multiway switch, radio frequency system, and wireless communication device
US11601166B2 (en) Antenna switching on MIMO devices
US10623027B2 (en) Multiway switch, radio frequency system, and communication device
EP3540956B1 (en) Multiway switch, radio frequency system, and communication device
WO2022160934A1 (zh) 射频PA Mid器件、射频系统和通信设备
KR20120108019A (ko) 무선 디바이스에서의 동적 안테나 선택
WO2011084716A1 (en) Antenna selection based on measurements in a wireless device
WO2011084717A1 (en) Antenna selection based on performance metrics in a wireless device
US20130273975A1 (en) Multi-band multi-path receiving and transmitting device and method, and base station system
WO2022156599A1 (zh) 射频电路及电子设备
WO2022143086A1 (zh) 射频前端模块、以及控制射频前端模块的方法和装置
WO2024087558A1 (zh) 一种实现天线复用的电路
WO2022143148A1 (zh) 天线系统、无线通信系统和电子设备
WO2022042169A1 (zh) 一种用于传输多频段信号的射频电路
WO2022062586A1 (zh) 射频drx器件、射频系统和通信设备
WO2011137611A1 (zh) 一种双模智能手机的天线装置及其应用终端
CN115378444B (zh) 射频系统和通信设备
WO2022100432A1 (zh) 射频系统和客户前置设备
US20210336337A1 (en) High-gain reconfigurable antenna
CN111490813A (zh) 天线复用射频装置以及移动终端

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21913889

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021913889

Country of ref document: EP

Effective date: 20230607

NENP Non-entry into the national phase

Ref country code: DE