WO2023015643A1 - 无线通信方法、装置、设备及存储介质 - Google Patents

无线通信方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2023015643A1
WO2023015643A1 PCT/CN2021/116971 CN2021116971W WO2023015643A1 WO 2023015643 A1 WO2023015643 A1 WO 2023015643A1 CN 2021116971 W CN2021116971 W CN 2021116971W WO 2023015643 A1 WO2023015643 A1 WO 2023015643A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
time
target
target cell
user group
Prior art date
Application number
PCT/CN2021/116971
Other languages
English (en)
French (fr)
Inventor
吕玲
杨中志
钱鹏鹤
Original Assignee
上海移远通信技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海移远通信技术股份有限公司 filed Critical 上海移远通信技术股份有限公司
Priority to EP21953252.0A priority Critical patent/EP4255059A4/en
Publication of WO2023015643A1 publication Critical patent/WO2023015643A1/zh
Priority to US18/117,744 priority patent/US11870526B2/en
Priority to US18/472,055 priority patent/US20240014874A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0452Multi-user MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/06Selective distribution of broadcast services, e.g. multimedia broadcast multicast service [MBMS]; Services to user groups; One-way selective calling services
    • H04W4/08User group management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present application relates to the technical field of communication, and in particular to a wireless communication method, device, equipment and storage medium.
  • the fifth-generation (5G) mobile standard calls for improvements such as higher data transfer speeds, greater number of connections and better coverage.
  • the 5G standard aims to provide each of tens of thousands of users with a data rate of tens of megabits per second.
  • Some wireless communication networks such as 5G or subsequent technological evolution, will support very high or even extremely high frequencies (EHF ) bands, such as those supporting millimeter wave (mmW) frequency bands, typically 1 mm to 10 mm wavelengths, or 30 to 300 terahertz (GHz). These extremely high frequency operations can support very high throughput.
  • EHF extremely high frequencies
  • mmW millimeter wave
  • GHz terahertz
  • the terminal equipment will be forced to consider beamforming in the analog domain, that is, the beam points to one direction at a specific moment. Therefore, the base station needs to often sweep the beam sets focused in different directions to transmit to the terminal equipment, but the way of sweeping the beam sets is expensive in terms of time, power consumption and air resources.
  • Embodiments of the present application provide a wireless communication method, device, device, and storage medium, which can shorten paging time, effectively reduce energy consumption, and save costs.
  • a wireless communication method which is applied to a base station, and the method includes: performing user group management on all terminals in the target cell; periodically updating user groups on all terminals in the target cell; according to The user groups initiate paging for different groups.
  • a wireless communication device in a second aspect, includes: a grouping module, configured to perform user group management on all terminals in the target cell; an update module, configured to periodically group all terminals in the target cell The terminal updates the user group; the paging module is used for initiating paging of different groups according to the user group.
  • a network device including a processor and a memory.
  • the memory is used to store a computer program
  • the processor is used to invoke and run the computer program stored in the memory to execute the wireless communication method described in the first aspect above.
  • a chip including: a processor, configured to call and run a computer program from a memory, so that a device installed with the chip executes the wireless communication method as described in the first aspect.
  • a fifth aspect provides a computer-readable storage medium, where the computer-readable storage medium stores a computer program, and the computer program is suitable for being loaded by a processor to execute the wireless communication method as described in the first aspect.
  • a sixth aspect provides a computer program product, including computer program instructions, the computer program instructions cause a computer to execute the wireless communication method described in the first aspect above.
  • a computer program which, when running on a computer, causes the computer to execute the wireless communication method described in the first aspect above.
  • Embodiments of the present application provide a wireless communication method, device, device, and storage medium.
  • the base station manages user groups for all terminals in the target cell, and periodically updates user groups for all terminals in the target cell, and then according to user Grouping initiates paging for different groups.
  • paging group management is performed on all users in a cell managed by a base station, and each beam manages a user group, and periodically updates user groups for all terminals in the target cell, and then initiates paging of different groups according to user groups Paging, the same paging, only initiates paging to the user group corresponding to the target beam, and does not initiate paging to the user group managed by other beams, which can shorten the paging time, reduce energy consumption, and save costs.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a scene for establishing an initial beam provided by an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a first scenario in which a base station manages user groups by group according to an embodiment of the present application.
  • FIG. 5 is another schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a second scenario in which a base station manages user groups by group according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of a third scenario in which a base station manages user groups by group according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of a fourth scenario in which a base station manages user groups by group according to an embodiment of the present application.
  • FIG. 9 is another schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 10 is a schematic diagram of an interaction scenario between a base station and a terminal provided in an embodiment of the present application.
  • FIG. 11 is another schematic flowchart of a wireless communication method provided by an embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • Fig. 14 is a schematic structural diagram of the device provided by the embodiment of the present application.
  • Embodiments of the present application can be applied to various communication systems, such as: Global System of Mobile communication (GSM) system, Code Division Multiple Access (CDMA) system, Wideband Code Division Multiple Access (Wideband Code Division Multiple Access (WCDMA) system, General Packet Radio Service (GPRS), Long Term Evolution (LTE) system, Advanced long term evolution (LTE-A) system, NR system , the evolution system of the NR system, the LTE (LTE-based access to unlicensed spectrum, LTE-U) system on the unlicensed spectrum, the NR (NR-based access to unlicensed spectrum, NR-U) system on the unlicensed spectrum, the general Mobile communication system (Universal Mobile Telecommunication System, UMTS), wireless local area network (Wireless Local Area Networks, WLAN), wireless fidelity (Wireless Fidelity, WiFi), next generation communication system or other communication systems, etc.
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Pack
  • the communication system not only supports traditional communication, but also supports, for example, Device to Device (Device to Device, D2D) communication, Machine to Machine (Machine to Machine, M2M) communication, Machine Type Communication (Machine Type Communication, MTC), and For vehicle to vehicle (Vehicle to Vehicle, V2V) communication, etc.
  • D2D Device to Device
  • M2M Machine to Machine
  • MTC Machine Type Communication
  • V2V Vehicle to Vehicle
  • the communication system in the embodiment of the present application can be applied to a carrier aggregation (Carrier Aggregation, CA) scenario, can also be applied to a dual connectivity (Dual Connectivity, DC) scenario, and can also be applied to an independent (Standalone, SA ) meshing scene.
  • Carrier Aggregation, CA Carrier Aggregation
  • DC Dual Connectivity
  • SA independent meshing scene
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system 100 may include: several terminal devices 110 and several network devices 120 .
  • the network device 120 can provide communication coverage for a specific geographical area, and can communicate with the terminal device 110 located in the coverage area.
  • Figure 1 exemplarily shows 3 network devices and 5 terminal devices.
  • the communication system may include multiple network devices and each network device may include other numbers of terminal devices within the coverage area. No limit.
  • the terminal device 110 may also be called user equipment (User Equipment, UE), access terminal, subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • User Equipment User Equipment
  • access terminal subscriber unit, subscriber station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal, wireless communication device, user agent or user device, etc.
  • the terminal equipment 110 can be a station (STAION, ST) in the WLAN, and can be a cellular phone, a cordless phone, a Session Initiation Protocol (Session Initiation Protocol, SIP) phone, a wireless local loop (Wireless Local Loop, WLL) station, a personal digital Processing (Personal Digital Assistant, PDA) devices, handheld devices with wireless communication functions, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, and next-generation communication systems, such as terminal devices in NR networks Or the terminal equipment in the public land mobile network (Public Land Mobile Network, PLMN) network that will evolve in the future.
  • STAION, ST Session Initiation Protocol
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • the terminal device 110 may also be a wearable device. Wearable devices can also be called wearable smart devices, which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • the terminal device 110 may also be a device of an unmanned aerial vehicle.
  • the terminal device 110 may also be a vehicle-mounted device, for example, a trip computer with a wireless communication function, or a wireless user device externally connected to the trip computer.
  • the terminal device 110 may also be a roadside device, for example, it may be a street lamp, a signal lamp, or other roadside devices with a wireless communication function.
  • Network equipment 120 can be the equipment that is used for communicating with mobile equipment, and network equipment 120 can be the access point (Access Point, AP) in WLAN, the base station (Base Transceiver Station, BTS) in GSM or CDMA, also can be WCDMA
  • the base station (NodeB, NB) in LTE can also be an evolved base station (Evolutional Node B, eNB or eNodeB), or a relay station or access point, or a vehicle device, a wearable device, and a network device in an NR network or Base station (gNB) or network equipment in the future evolved PLMN network, etc.
  • Evolutional Node B, eNB or eNodeB evolved base station
  • gNB NR network or Base station
  • the network device 120 provides services for the cell, and the terminal device 110 communicates with the network device 120 through the transmission resources (such as frequency domain resources and spectrum resources) used by the cell.
  • the cell may be the network device 120 (such as The cell corresponding to the base station) may belong to the macro base station or the base station corresponding to the small cell (Small cell).
  • the small cell here may include: Metro cell, Micro cell, Pico cell cell), Femto cell, etc. These small cells have the characteristics of small coverage and low transmission power, and are suitable for providing high-speed data transmission services.
  • a wireless connection may be established between the network device 120 and the terminal device 110 through a wireless air interface.
  • an end-to-end (End to End, E2E) connection may also be established between terminal devices 110.
  • E2E End to End
  • the communication system may further include a network management device 130 .
  • Several network devices 120 base stations are connected to the network management device 130 respectively.
  • the network management device 130 may be a core network device in a wireless communication system, for example, the network management device 130 may be a Mobility Management Entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC), MME).
  • EPC evolved Packet Core
  • the network management device can also be other core network devices, such as 5G core network, serving gateway (Serving GateWay, SGW), public data network gateway (Public Data Network GateWay, PGW), policy and charging rule functional unit ( Po l i cy and nd C ha rg i ng Rules F un c ti o n, PCR F) or Home Subscriber Server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present application.
  • user group management is performed on all terminals (terminal device 110) in the target cell of the base station (network device 120), and user groups are periodically updated for all terminals in the target cell, and then initiated according to the user group Paging for different groups.
  • paging group management is performed on all users in a cell managed by a base station, and each beam manages a user group, and periodically updates user groups for all terminals in the target cell, and then initiates paging of different groups according to user groups Paging, the same paging, only initiates paging to the user group corresponding to the target beam, and does not initiate paging to the user group managed by other beams, which can shorten the paging time, reduce energy consumption, and save costs.
  • the base station determines each terminal in the target cell according to the initial beam corresponding to each terminal in the target cell.
  • the initial user group where the terminal is located when the interval time N reaches the time threshold, the base station receives the channel state information CSI report reported by all terminals in the target cell; the base station predicts that each terminal in the target cell will be at K+N time according to the CSI report.
  • the corresponding estimated beam and the estimated user group where each terminal is located when the base station initiates paging to the target terminal, according to the estimated beam corresponding to each terminal in the target cell at K+N time and the user group where each terminal is located Estimating the user group, determining the target beam corresponding to the target terminal at K+N time and the target user group where the target terminal is located, wherein the target terminal is a terminal that needs to be paged, and the target terminal is located in the target cell;
  • the target user group sends
  • paging group management is performed on all users in a cell managed by a base station.
  • Each beam manages a user group, and the initial user group where each terminal is located is the user group managed by the initial beam of each terminal.
  • the interval time When the time threshold is reached, according to the CSI reports reported by all terminals, re-predict that the strongest beam corresponding to each terminal in the target cell at K+N time is the estimated beam, predict and the estimated user group where each terminal is located, when When the base station initiates paging to the target terminal, it determines the target beam of the UE and the target user group where the target terminal is located at the time K+N of the target terminal to be paged according to the above estimated beam and estimated user group, and only for the target terminal The target user group managed by the target beam corresponding to the terminal initiates paging, and does not initiate paging for users managed by other beams, thereby shortening paging time, reducing energy consumption, and saving costs.
  • FIG. 2 to Fig. 11, Fig. 2, Fig. 5, Fig. 9 and Fig. 11 are schematic flowcharts of the wireless communication method provided by the embodiment of the present application
  • Fig. 3, Fig. 4, Fig. 6 to Fig. 8 and Fig. 10 are the schematic diagrams of the present application
  • Step 201 perform user group management on all terminals in the target cell.
  • the user group management for all terminals in the target cell includes: when the base station establishes initial beams with all terminals in the target cell, according to the initial beam corresponding to each terminal in the target cell Determine the initial user group to which each terminal in the target cell belongs.
  • the target cell is a cell managed by the base station.
  • the target cell may be a new radio (new radio, NR) cell.
  • the primary synchronization signal Primary Synchronization Signal, PSS
  • secondary synchronization signal Secondary Synchronization Signal, SSS
  • the time-frequency resource Synchronization Signal Block, SSB
  • the upper limit of the number of SSBs used by the synchronization signal block set (SS Burst set) corresponding to the frequency band is different.
  • the SS Burst set will repeat in the time domain in a predetermined direction (beam) within a 5ms window, and each SS Burst set cycle is 20ms.
  • the scene schematic diagram of establishing initial beams assumes that an SS Burst set includes 5 SSBs, numbered RS-1 ⁇ RS-5.
  • the NR cell target cell transmits SSB in a beam scanning manner, and each SSB beam has different directions in space.
  • UE measures all SSBs in an SS Burst set, and finds the SSB with the best signal, which corresponds to the P1 (initialization beam selection) process shown in Figure 3.
  • the beam (BEAM) is optimized through the P2 (transmission beam change) process to find a beam narrower than the SSB beam for transmitting the Physical Downlink Shared Channel (PDSCH)/Physical Downlink Control Channel (Physical Downlink Control Channel) Channel, PDCCH).
  • the P3 process is used in the FR2 frequency band, and the UE also has the beamforming capability.
  • the base station establishes the initial beam with the UE, the multiple optimized beams transmitted by the base station within the time corresponding to one SSB use the same CSI reference signal resource, and the UE uses different beams to try to receive.
  • the SSB is associated with the downlink beam, and on the other hand, the SSB is also associated with resources such as uplink random access opportunities and preambles.
  • the base station can learn the downlink beam selected by the UE through random access, because the beam can only point to one direction at a specific time, and the downlink data sent to the UE in different directions needs to be arranged at different times, and the receiving beam is in a certain direction. It can only be received in one direction at a time, so that the base station and the UE can establish an initial beam pair.
  • a beam and a demodulation reference signal (Demodulation Reference Signal, DMRS) port/port group, or a transmission configuration number (Transmission Configuration Index, TCI), or a transmit-receive point (transmit-receive point, TRP), or a probe Corresponding to a reference signal resource indicator (SRS resource indicator, SRI), where the SRI is used for uplink data transmission.
  • DMRS Demodulation Reference Signal
  • SRI reference signal resource indicator
  • different beams may also be represented by different DMRS ports/port groups, or TCIs, or TRPs, or SRIs.
  • the UE will consider that the subsequent downlink transmission will always use the best received beam.
  • the frequency range of 5G NR is defined as different FRs: FR1 and FR2.
  • the frequency range FR1 generally refers to the 5G Sub-6GHz (below 6GHz) frequency band
  • the frequency range FR2 generally refers to the 5G millimeter wave frequency band.
  • Beamforming BeamForming is a technique for constructing antenna radiation patterns.
  • the initial access phase will be started.
  • the base station connects with terminal A appearing in the target cell to establish the initial beam process
  • the base station sends multiple SSBs to scan the synchronization signal and cell information through the beam, and these SSBs are sent in sequence and each SSB is carried on a different downlink beam , on the one hand, the SSB is associated with the downlink beam, and on the other hand, it is also associated with the uplink random opportunity, preamble and other resources.
  • the initial access phase will be started.
  • Terminal A initiates a random access request, and the terminal selects a specific downlink beam (initial beam) to beam according to the multiple SSBs sent by the base station. Matching and binding, so that the base station can learn the downlink beam selected by the terminal through random access, because the beam can only point in one direction at a specific time, and the downlink data sent for terminals in different directions needs to be arranged at different times. , the receiving beam can only be aligned in one direction for receiving at a certain moment, so that the base station and terminal A establish an initial beam pair. According to the downlink beam determined by terminal A as the initial beam a, then terminal A is assigned to the management of the initial beam a, subscribes to the user group of the initial beam a and becomes a member. All terminals in the target cell and the base station establish initial beams, so as to determine the initial user group to which each terminal in the target cell belongs according to the initial beam corresponding to each terminal in the target cell.
  • FIG. 4 a schematic diagram of the base station group management user group scenario, paging group management is performed on all users in a cell managed by a 5G base station (gNB), and the basis of grouping is to manage a user group based on each beam downlink of the base station.
  • gNB 5G base station
  • the base station When the UE establishes a connection with the base station, the base station stores all UE id information (IMSI, TMSI, etc.) UEs receiving signals under a certain beam are classified into the same user group. However, due to reasons such as mobility and rotation of the UE, it is necessary to periodically re-evaluate whether the beam at the receiving end and the beam at the transmitting end are appropriate. Even if the UE is completely still, the movement of some objects in the surrounding environment may block the beam or some objects no longer block some beam pairs, which means that the beam must be adjusted to reduce the probability of paging failure. achieve the best quality of service.
  • IMSI UE id information
  • Step 202 Periodically update user groups for all terminals in the target cell.
  • the periodically updating user groups for all terminals in the target cell includes: receiving channel state information (CSI) reported by all terminals in the target cell when the interval N reaches a time threshold Reporting; predicting the estimated beam corresponding to each terminal in the target cell at time K+N according to the CSI report; determining the estimated user group where each terminal is located according to the estimated beam.
  • CSI channel state information
  • step 202 can be realized through steps 2021 to 2023, specifically:
  • Step 2021 when the interval time N reaches the time threshold, receive channel state information CSI reports reported by all terminals in the target cell.
  • Channel State Information acquisition (CSI acquisition) information includes: Reference Signal Received Power (Reference Signal Received Power, RSRP), Reference Signal Received Quality (Reference Signal Received Quality, RSRQ), channel quality indicator (channel-quality indicator, CQI), rank indicator (Rank Indicator, RI), precoding matrix indicator (precoding-matrix indicator, PMI), signal to interference plus noise ratio (signal to interference plus noise ratio, SINR), etc.
  • the UE When the UE uses the determined receiving beam to try to receive signals from different beams of the base station, the UE will generate a CSI report, which may include a CSI reference signal resource indicator (CSI-RS Resource Indicator, CRI), CSI reference signal resource
  • CRI CSI reference signal resource indicator
  • the indicator is used to indicate the strongest CSI reference signal, that is, to indicate the UE to identify and report the best downlink beam.
  • the CSI report may also include Layer 1 Reference Signal Received Power (Layer 1 Reference Signal Received Power, L1-RSRP) measured from the strongest CSI reference signal.
  • L1-RSRP Layer 1 Reference Signal Received Power
  • the UE may use one or more antenna panels to provide beamforming capability.
  • CSI reference signal repetition can be used to generate multiple transmissions of the same CSI reference signal beam.
  • the UE evaluates the best receiving beam by measuring these repeated CSI reference signals, that is, when the base station sends repeated CSI reference signals, the UE completes its own beam scanning at the same time, that is, when the UE is transmitting, the UE evaluates multiple from the base station To find out the beam direction based on the quality of the CSI reference signal of the beam, the UE evaluates the quality of the CSI reference signal from each of the multiple beams and selects the best beam.
  • the CSI reference signal transmission is time multiplexing.
  • the base station will instruct all UEs in the target cell to report the strengths of the M CSI reference signals.
  • M is smaller than the total number N of beams.
  • the reference signal set of different beams to be measured is defined by the non-zero-power channel state reference information (non-zero-power CSI reference signal, NZP-CSI-RS) resource group in the report configuration, and the NZP-CSI-RS resource group It includes a group of configured Channel State Information Reference Signals (CSI-RS) or SSB, and the number of resource groups is related to the capabilities of the UE.
  • CSI-RS Channel State Information Reference Signals
  • the BeamManagementSSB-CSI-RS parameter set (this parameter set belongs to the MIMO-ParametersPerBand UE capability information) describes the UE capability according to the number of reference signals supported by the beam management. For example, in 3GPP TS 38.306, when using the working frequency band of FR1, the UE must support At least 8 CSI reference signal resources. That is, the UE needs to perform measurement reporting for the M reference signals respectively.
  • the base station needs to set the reporting mode of the CSI report, which can be periodic reporting or triggered reporting, and the base station reaches an agreement with the target terminal at the beginning.
  • the CSI reports reported by all terminals in the target cell according to the first reporting instruction are received, wherein the first reporting instruction is between the base station and the An instruction sent by the base station to each terminal in the target cell when all terminals in the target cell establish an initial beam, and the first reporting instruction is used to indicate that each terminal in the target cell is at the interval time Automatically report the CSI report when the time threshold is reached.
  • the base station when the base station establishes initial beams with all terminals in the target cell, the base station sends a first report instruction to each terminal in the target cell, the first report instruction carries time threshold information, and is used All terminals in the target cell are instructed to automatically monitor the interval time, and when each terminal in the target cell detects that the interval time reaches a time threshold, each terminal in the target cell automatically reports a CSI report.
  • the interval time when the interval time reaches the time threshold, send a second report instruction to all terminals in the target cell, and receive the report reported by all terminals in the target cell according to the second report instruction CSI report.
  • the base station sends a second report instruction to all terminals in the target cell.
  • the second report instruction is used to instruct all terminals in the target cell to report CSI reports.
  • each terminal in the cell triggers each terminal in the target cell to immediately report the CSI report.
  • step 2021 before step 2021, it further includes: setting an interval time N.
  • the set interval time N is used to represent the interval time from establishing the initial beam to the current moment.
  • the time threshold includes at least one of the following: a time-frequency resource SSB; a period of the synchronization signal block set SS Burst set; a multiple of the period of the SS Burst set.
  • Step 2022 According to the CSI report, predict the estimated beam corresponding to each terminal in the target cell at time K+N.
  • the CSI report includes the CSI reference signals of M beams corresponding to each terminal in the target cell, and the layer 1 reference signal of the strongest beam determined by each terminal in the target cell receives The power L1-RSRP, and the difference between the reference signal received power of the remaining M-1 beams of each terminal in the target cell and the L1-RSRP of the strongest beam.
  • the CSI report reported by UE1 includes the CSI reference signals corresponding to the M beams matched by UE1 itself, the layer 1 reference signal received power L1-RSRP of the strongest beam determined by UE1, and the reference signal of the remaining M-1 beams of UE1.
  • the CSI report corresponding to UE2 includes the CSI reference signals corresponding to the M beams matched with UE2 itself, the layer 1 reference signal received power L1-RSRP of the strongest beam determined by UE2, and the reference signal received by the remaining M-1 beams of UE2 The difference between the power and the L1-RSRP of the strongest beam of UE2.
  • the predicting the estimated beam corresponding to each terminal in the target cell at time K+N according to the CSI report includes: determining each terminal in the target cell according to the CSI report The RSRP values of the M beams corresponding to a terminal at K time and K-1 time; according to the RSRP values of the M beams corresponding to each terminal in the target cell at K time and K-1 time, Calculate the RSRP value of the M beams corresponding to each terminal in the target cell at K+N time; calculate the RSRP value of the M beams corresponding to each terminal in the target cell at K+N time The beam corresponding to the maximum value among the values is determined as the estimated beam corresponding to each terminal in the target cell at time K+N.
  • the RSRP values of the M beams corresponding to each terminal in the target cell at time K and K-1 are stored in the register; according to the M beams corresponding to each terminal in the target cell at Calculate the RSRP values at time K+N of the M beams corresponding to each terminal in the target cell based on the RSRP values at time K and K-1, including: according to the target cell stored in the register Calculate the RSRP values of the M beams corresponding to each terminal in the target cell at K time and K-1 time, and calculate the RSRP value of the M beams corresponding to each terminal in the target cell at K+N time, where The time K and the time K-1 are the two times closest to the time K+N among all the times stored in the register.
  • determining the RSRP values of the M beams corresponding to each terminal in the target cell at time K and K-1 according to the CSI report includes: according to each terminal in the target cell The CSI reference signals of the M beams corresponding to a terminal, the layer 1 reference signal received power L1-RSRP of the strongest beam determined by each terminal in the target cell, and the L1-RSRP of each terminal in the target cell The difference between the reference signal received power of the remaining M-1 beams and the L1-RSRP of the strongest beam, and determine the M beams corresponding to each terminal in the target cell at time K and K-1 The RSRP value.
  • the base station instructs all UEs to report the reference signals corresponding to the M CSI beams measured by themselves, and the L1-RSRP of the strongest beam determined by the UE.
  • the measurement data reported above can be reported through the CSI report.
  • the base station receives the L1-RSRP of the strongest beam at time K reported by each UE on the determined beam, and the difference between the RSRP of the M-1 remaining beams and the L1-RSRP of the strongest beam.
  • the reported strongest beam L1-RSRP, and the difference between the RSRP of the M-1 remaining beams and the L1-RSRP of the strongest beam are used to determine the strength of the M beams as RSRP i .
  • the determined intensities of the M beams are RSRP i may include beam intensities at multiple moments.
  • M is an integer.
  • the movement of some objects in the surrounding environment may block the beam or some objects no longer block some beam pairs, which means that the beam must be adjusted to reduce the probability of paging failure. achieve the best quality
  • N represents the interval time
  • N is at least one SSB
  • N can also be the period of SS Burst set
  • N can also be a multiple of the period of SS Burst set.
  • N represents the interval time from the establishment of the initial beam to the current moment.
  • the M corresponding to each terminal in the target cell is calculated according to the RSRP values of the M beams corresponding to each terminal in the target cell at time K and K-1.
  • the base station stores the RSRP values of M beams reported by all UEs received at K time and K-1 time according to the register, and the base station based on the M beams corresponding to all UEs at K time and K- For the RSRP value at time 1, estimate the RSRP value of the M beams corresponding to each UE in the target cell at time K+N, which can be expressed as the following formula (1):
  • RSRP i (K+N) RSRP i (K)+N*[RSRP i (K)-RSRP i (K-1)] (1);
  • square brackets [] are rounding functions.
  • the RSRP value of the M beams corresponding to each UE at K time and K-1 time and the above formula can be used (1), traverse and calculate the RSRP value of the ith beam corresponding to each UE at time K+N.
  • time K and time K-1 are the two times closest to time K+N among all the times stored in the register, where time K is the closest to time K+N, and time K-1 is the time before time K , there is K time before K-1 time and K+N time.
  • Step 2023 Determine the estimated user group to which each terminal belongs according to the estimated beam.
  • the determining the estimated user group in which each terminal belongs according to the estimated beam includes: assigning the users managed by the estimated beam corresponding to each terminal in the target cell at time K+N The group is determined as an estimated user group where each terminal in the target cell is located at time K+N.
  • Step 203 Initiate paging for different groups according to the user groups.
  • the initiating paging of different groups according to the user group includes: sending paging information to the estimated user group to which each terminal belongs through the estimated beam corresponding to each terminal, to initiate paging for different groups.
  • User group 1 includes UE4, UE5, UE6, and UE7;
  • user group 3 includes UE1, UE2, and UE3.
  • the base station and the UE do not need to re-pair the beam and re-establish the beam.
  • the base station can predict according to this method Which user group the UE is in at time K+N, and initiates paging.
  • the user groups of UE1, UE6, and UE7 are changed, and a user group 2 is added, and UE1, UE6, and UE7 are adjusted from the original user group 3 and user group 1 to user group 2.
  • Calculate the adjustment time of the beam according to the period of the SSB set.
  • (1) is a beam that initiates paging to user group 1;
  • (2) is a beam that initiates paging to user group 2;
  • (3) is a beam that initiates paging to user group 3.
  • paging group management is performed on all users in a cell managed by a 5G base station, and the basis for grouping is to manage a user group based on each downlink beam of the base station.
  • the base station initiates paging, it only initiates paging for the user group managed by the corresponding beam, and does not initiate paging for users managed by other beams.
  • the base station when the base station initiates paging to the target terminal, according to the estimated beam corresponding to each terminal in the target cell at K+N time and the estimated user group where each terminal belongs to, determine The target beam corresponding to the target terminal at K+N time and the target user group where the target terminal is located, wherein the target terminal is a terminal that needs paging, and the target terminal is located in the target cell; through the The target beam sends paging information to the target user group, so as to page the target terminal.
  • step 203 may be implemented through steps 2031 to 2032, specifically:
  • Step 2031 when the base station initiates paging to the target terminal, determine the target terminal according to the estimated beam corresponding to each terminal in the target cell at K+N time and the estimated user group where each terminal belongs A target beam corresponding to the terminal at time K+N and a target user group where the target terminal is located, wherein the target terminal is a terminal requiring paging, and the target terminal is located in the target cell.
  • the core network when the core network wants to send downlink messages or data, it needs to return the UE to the connected mode (RRC_CONNECTED) state through paging.
  • the paging message belongs to that the UE being paged by the core network can correctly receive the paging information transmitted based on the scheduled Physical Downlink Control Channel (PDCCH).
  • PDCH Physical Downlink Control Channel
  • the core network node serving the terminal can initiate paging to all access network nodes (such as eNB or eNodeB) within the tracking area.
  • the access network node can receive the paging message sent by the core network node.
  • the paging message is used to page the target terminal.
  • the paging message may carry the target UE identity (UE_ID) of the target terminal that needs to be paged, and the target UE identity of the target terminal may include a terminal identity index value and an International Mobile Subscriber Identity (International Mobile Subscriber Identity) code of the target terminal.
  • UE_ID target UE identity
  • International Mobile Subscriber Identity International Mobile Subscriber Identity
  • IMSI Mobile Subscriber Identity
  • S-TMSI temporary mobile subscriber identity code
  • TMSI Temporal Mobile Station
  • step 2031 may include: when receiving the paging message transmitted by the 5G core network, according to the target UE identity of the target terminal that needs to be paged carried in the paging message, the target cell The terminal corresponding to the target UE identity among all the terminals in the terminal is determined as the target terminal; according to the estimated beam corresponding to the determined target terminal at K+N time, it is determined that the target terminal is at K+N time Determine the target user group where the target terminal is located based on the corresponding target beam and the determined estimated user group where the target terminal is at time K+N.
  • Step 2032 Send paging information to the target user group through the target beam to page the target terminal.
  • the paging message may carry the target UE identity (UE_ID) of the target terminal to be paged, and the target UE identity of the target terminal may include IMSI, S-TMSI) or TMSI.
  • UE_ID target UE identity
  • the target UE identity of the target terminal may include IMSI, S-TMSI) or TMSI.
  • the base station when the base station initiates paging to the target terminal, it only initiates paging to the user group managed by the target beam corresponding to the target terminal, and does not initiate paging to users managed by other beams.
  • paging information can be transmitted in a directional manner rather than by sweeping a set of beams, resulting in savings in time, power consumption, and over-the-air resource usage.
  • the UE's paging group management is also dynamic, that is, after the UE enters the cell, it does not remain in a certain user group, but changes dynamically with the different beams used by the base station to send signals.
  • paging information is sent to all terminals belonging to the target user group through the target beam to page the target terminal, and the target terminal belongs to the target user group.
  • the UE in the target user group hears the specific PI-RNTI indication carried in the DCI of the paging message, it starts to demodulate, and decodes the corresponding PDCCH and/or PDSCH to extract its own paging message.
  • the base station when the interval time N does not reach the time threshold, the base station still defaults to send the initial beam to the target terminal to remain unchanged, and the initial user group where the target terminal is located also remains unchanged. Therefore, when the interval time N does not reach the time threshold, pass The initial beam corresponding to the target terminal sends paging information to the initial user group corresponding to the target terminal, so as to page the target terminal.
  • the base station can transmit 32 SSBs and scan different predefined directions (beams) regularly.
  • the direction covered by the SSB can only be towards one predefined direction within a certain synchronization signal (Synchronization Signal, SS) burst interval.
  • SS Synchronization Signal
  • the maximum number of predefined directions (beams/SSBs) in the SS burst is related to frequency, such as "4 beams" for 3 GHz, "8 beams” for 3 GHz to 6 GHz, and "64 beams" for 6 GHz to 52.6 GHz.
  • the beam optimization process can be started. This beam optimization process can be used to select more directional, higher gain beams. More directional beams can improve the link budget, but also require more frequent switching between beams.
  • the beam information may be indicated through a Quasi Colocation (Quasi Colocation, QCL) relationship of antenna ports. Specifically, it may be indicated in the indication information that one resource (or antenna port) has a quasi-co-location relationship with another resource (or antenna port) to indicate that the beams corresponding to the two resources (or antenna ports) have the same spatial characteristics , can be received with the same receiving beam.
  • the indication information may be downlink control information (Downlink Control Information, DCI).
  • the beam can be represented by the identification of various signals in the protocol, for example, the resource index of the channel state information reference signal (CSI-RS), the synchronous signal/physical broadcast channel block (synchronous signal/physical broadcast channel block, which can be referred to as SS/PBCH block or SSB for short), the resource index of sounding reference signal (SRS), and the resource index of tracking reference signal (TRS).
  • CSI-RS channel state information reference signal
  • SS/PBCH block synchronous signal/physical broadcast channel block
  • SRS resource index of sounding reference signal
  • TRS resource index of tracking reference signal
  • the base station can obtain the estimated beam for initiating paging at K+N time through the resource index, and can use one or more resources indicated in the search space to transmit downlink data to the UE through the QCL.
  • the base station periodically performs beam scanning according to the downlink scanning cycle to send synchronization signals.
  • the synchronization signals include primary synchronization signal (PSS), secondary synchronization signal (SSS) and broadcast channel (PBCH), etc.
  • PSS, SSS and PBCH are used together as synchronization Signal transmission
  • terminal 1 and terminal 2 read and demodulate the synchronization signal through beam scanning, and send the preamble to the base station on the initially selected beam, and pass the preamble through the physical random access channel (Physical Random Access Channel, PRACH ) in a configurable subset of time slots to complete the random access process.
  • PRACH Physical Random Access Channel
  • the base station determines the receiving beam of the terminal by reading the preamble, so as to know which beam management the terminal belongs to, and then determine the user group where the terminal is located.
  • the base station sets a time threshold. When the interval time reaches the time threshold, it will trigger terminal 1 and terminal 2 to report channel state information reference signal (CSI-RS), and re-estimate terminal 1 and terminal 2 according to the reported results.
  • CSI-RS channel state information reference signal
  • the strongest beams corresponding to terminal 2 at time K+N are used as the estimated target beams corresponding to terminal 1 and terminal 2 respectively, and then the user groups where terminal 1 and terminal 2 are located are determined, and the respective target beams are respectively determined to terminal 1 and terminal 2.
  • the user group where terminal 2 is located initiates paging, and identifies the Physical Downlink Control Channel (PDCCH) and Physical Downlink Shared Channel (Physical Downlink Control Channel) through QCI (QoS class identifier) or Downlink Control Information (DCI) Shared Channel, PDSCH) transmission beams and resources to ensure subsequent smooth transmission.
  • the time threshold may be at least one of the following: an SSB; a period of SS Burst set; a multiple of the period of SS Burst set.
  • the determination of the user group where the UE is located and the subscription are based on the beam determined by the user group and when the corresponding time threshold is reached, that is, the determination of the user group is determined based on the result of the CSI-RS measurement, and when the interval When the time reaches or exceeds the time threshold set by the system, the management of the user group will be re-determined.
  • the base station can estimate the time when the paging needs to be sent, the user group where the terminal is located, and the sending beam associated with the user group.
  • step 1101 when the base station and the UE connect to establish the initial beam process, the base station sends multiple SSBs, and these SSBs are sent in sequence and each SSB is carried on a different downlink
  • the SSB is associated with the downlink beam, and on the other hand, it is also associated with the uplink random opportunity, preamble and other resources.
  • the base station can learn the downlink beam selected by the terminal through random access, because the beam can only point in one direction at a specific time, and the downlink data sent for the terminal in different directions needs to be arranged at different times.
  • reception can only be directed in one direction, so that the base station and the terminal establish an initial beam pair.
  • step 1102 according to the downlink beam determined by the terminal, that is, the terminal belongs to the management of the beam, subscribes to the user group of the beam and becomes a member.
  • step 1103 it is judged whether the interval time N is equal to the time threshold; if not, execute step 1104; if yes, execute step 1105.
  • step 1104 if N is not equal to the time threshold, the base station still defaults to keep the beam sent to the terminal unchanged, and the user group to which the terminal belongs also remains unchanged.
  • step 1105 when N is equal to the time threshold, the base station re-estimates the strongest beam received by the UE at time K+N for each terminal according to the method proposed in the embodiment of this application.
  • step 1106 the base station re-determines the user group to which each terminal belongs according to the estimation result.
  • the time threshold may be the period of the SS Burst set or a multiple of the period of the SS Burst set.
  • user group management is performed on all terminals in the target cell of the base station, and user groups are periodically updated for all terminals in the target cell, and then different groups of paging are initiated according to the user groups.
  • paging group management is performed on all users in a cell managed by a base station, and each beam manages a user group, and periodically updates user groups for all terminals in the target cell, and then initiates paging of different groups according to user groups Paging, the same paging, only initiates paging to the user group corresponding to the target beam, and does not initiate paging to the user group managed by other beams, which can shorten the paging time, reduce energy consumption, and save costs.
  • the strongest beam corresponding to each terminal in the target cell at K+N time can be re-predicted as the estimated beam, and the prediction and each terminal's location
  • the base station initiates paging to the target terminal, determine the target beam of the UE and the target user where the target terminal is located at the time K+N of the target terminal to be paged according to the estimated beam and the estimated user group group, and only initiates paging for the target user group managed by the target beam corresponding to the target terminal, and does not initiate paging for users managed by other beams, thereby shortening the paging time, reducing energy consumption, and saving costs.
  • the embodiment of the present application also provides a wireless communication device.
  • FIG. 12 is a schematic structural diagram of a wireless communication device provided by an embodiment of the present application.
  • the wireless communication device 1200 includes:
  • a grouping module 1210 configured to perform user group management on all terminals in the target cell
  • An update module 1220 configured to periodically update user groups for all terminals in the target cell
  • the paging module 1230 is configured to initiate paging of different groups according to the user groups.
  • the grouping module 1210 can be configured to determine the initial beams in the target cell according to the initial beam corresponding to each terminal in the target cell when the base station establishes initial beams with all terminals in the target cell. The initial user group to which each terminal belongs.
  • the update module 1220 further includes:
  • a receiving unit configured to receive channel state information CSI reports reported by all terminals in the target cell when the interval time N reaches a time threshold;
  • a predicting unit configured to predict the estimated beam corresponding to each terminal in the target cell at time K+N according to the CSI report;
  • the first determining unit is configured to determine an estimated user group to which each terminal belongs according to the estimated beam.
  • the CSI report includes the CSI reference signals of M beams corresponding to each terminal in the target cell, and the layer 1 reference signal of the strongest beam determined by each terminal in the target cell receives The power L1-RSRP, and the difference between the reference signal received power of the remaining M-1 beams of each terminal in the target cell and the L1-RSRP of the strongest beam.
  • the prediction unit may be configured to: determine the RSRP values of the M beams corresponding to each terminal in the target cell at time K and K-1 according to the CSI report; The RSRP values of the M beams corresponding to each terminal at K time and K-1 time, calculating the RSRP values of the M beams corresponding to each terminal in the target cell at K+N time; The beam corresponding to the maximum value of the RSRP values of the M beams corresponding to each terminal in the target cell at time K+N is determined as the estimated value corresponding to each terminal in the target cell at time K+N beam.
  • the first determination unit may be configured to determine the estimated beam management user group corresponding to each terminal in the target cell at time K+N as each terminal in the target cell The estimated user group where the terminal is located at K+N time.
  • the prediction unit may further It is used to: store the RSRP values of the M beams corresponding to each terminal in the target cell at time K and K-1 in a register; The RSRP values of the M beams at K time and K-1 time are calculated, and the RSRP values of the M beams corresponding to each terminal in the target cell at K+N time are calculated, including: according to the register Store the RSRP values of the M beams corresponding to each terminal in the target cell at time K and K-1, and calculate the M beams corresponding to each terminal in the target cell at K+N time RSRP value, wherein the time K and the time K-1 are the two times closest to the time K+N among all the times stored in the register.
  • the prediction unit calculates the RSRP values of each terminal in the target cell according to the RSRP values of the M beams corresponding to each terminal in the target cell at time K and time K-1
  • the corresponding RSRP values of the M beams at K+N time can be used to: calculate the RSRP value of the i-th beam at K time corresponding to each terminal in the target cell and the i-th beam at K - the difference between the RSRP values at time 1; multiply the interval time N by the difference to obtain the first calculation result; according to the RSRP value of the i-th beam at time K and the first
  • the sum of the calculation results determines the RSRP value of the i-th beam corresponding to each terminal in the target cell at K+N time; according to the i-th beam corresponding to each terminal in the target cell at K
  • the receiving unit may be configured to: when the interval time reaches a time threshold, receive the CSI reports reported by all terminals in the target cell according to the first reporting instruction, wherein the first reporting The instruction is an instruction sent by the base station to each terminal in the target cell when the base station establishes initial beams with all terminals in the target cell, and the first reporting instruction is used to indicate Each terminal in the target cell automatically reports the CSI report when the interval time reaches the time threshold; or when the interval time reaches the time threshold, sends a second report instruction to all terminals in the target cell, and receives the The CSI report reported by all terminals in the target cell according to the second report instruction.
  • the first reporting The instruction is an instruction sent by the base station to each terminal in the target cell when the base station establishes initial beams with all terminals in the target cell, and the first reporting instruction is used to indicate Each terminal in the target cell automatically reports the CSI report when the interval time reaches the time threshold; or when the interval time reaches the time threshold, sends a second report instruction to
  • the paging module 1230 can be configured to send paging information to the estimated user group where each terminal is located through the estimated beam corresponding to each terminal, so as to initiate paging of different groups call.
  • the paging module 1230 further includes:
  • the second determining unit is configured to, when the base station initiates paging to the target terminal, according to the estimated beam corresponding to each terminal in the target cell at K+N time and the estimated user group where each terminal is located, Determining the target beam corresponding to the target terminal at time K+N and the target user group where the target terminal is located, where the target terminal is a terminal that needs paging, and the target terminal is located in the target cell;
  • a paging unit configured to send paging information to the target user group through the target beam, so as to page the target terminal.
  • the second determining unit may be configured to: when receiving a paging message transmitted by the 5G core network, according to the target UE identity of the target terminal that needs to be paged carried in the paging message, Determine the terminal corresponding to the target UE identity among all terminals in the target cell as the target terminal; determine the target terminal according to the estimated beam corresponding to the determined target terminal at K+N time Determine the target user group where the target terminal is located based on the target beam corresponding to time K+N and the determined estimated user group where the target terminal is at time K+N.
  • the paging unit may be configured to send paging information to all terminals belonging to the target user group through the target beam, so as to page the target terminal, and the target terminal belongs to the target user group the target user group.
  • the paging unit is further configured to send a paging message to the initial user group corresponding to the target terminal through the initial beam corresponding to the target terminal when the interval time N does not reach the time threshold call information to page the target terminal.
  • the time threshold includes at least one of the following: a time-frequency resource SSB; a period of SS Burst set; a multiple of the period of SS Burst set.
  • the device embodiment and the method embodiment may correspond to each other, and similar descriptions may refer to the method embodiment. To avoid repetition, details are not repeated here.
  • the device shown in FIG. 12 can execute the above wireless communication method embodiment, and the aforementioned and other operations and/or functions of each unit in the device respectively implement the corresponding process of the above method embodiment, for the sake of brevity, no longer repeat.
  • FIG. 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the communication device 1300 shown in FIG. 13 includes a processor 1310, and the processor 1310 can invoke and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the communication device 1300 may further include a memory 1320 .
  • the processor 1310 can invoke and run a computer program from the memory 1320, so as to implement the method in the embodiment of the present application.
  • the memory 1320 may be an independent device independent of the processor 1310 , or may be integrated in the processor 1310 .
  • the communication device 1300 may further include a transceiver 1330, and the processor 1310 may control the transceiver 1330 to communicate with other devices, specifically, to send information or data to other devices, or Receive messages or data from other devices.
  • the transceiver 1330 may include a transmitter and a receiver.
  • the transceiver 1330 may further include an antenna, and the number of antennas may be one or more.
  • the communication device 1300 may specifically be the network device of the embodiment of the present application, and the communication device 1300 may implement the corresponding processes implemented by the network device (such as a base station) in each method of the embodiment of the present application, for the sake of brevity , which will not be repeated here.
  • the network device such as a base station
  • Fig. 14 is a schematic structural diagram of the device provided by the embodiment of the present application.
  • the apparatus 1400 shown in FIG. 14 includes a processor 1410, and the processor 1410 can call and run a computer program from a memory, so as to implement the method in the embodiment of the present application.
  • the device 1400 may further include a memory 1420 .
  • the processor 1410 can invoke and run a computer program from the memory 1420, so as to implement the method in the embodiment of the present application.
  • the memory 1420 may be an independent device independent of the processor 1410 , or may be integrated in the processor 1410 .
  • the device 1400 may further include an input interface 1430 .
  • the processor 1410 can control the input interface 1430 to communicate with other devices or chips, specifically, can obtain information or data sent by other devices or chips.
  • the device 1400 may further include an output interface 1440 .
  • the processor 1410 can control the output interface 1440 to communicate with other devices or chips, specifically, can output information or data to other devices or chips.
  • the device can be applied to the network device in the embodiments of the present application, and the device can implement the corresponding processes implemented by the network device in the methods of the embodiments of the present application. For the sake of brevity, details are not repeated here.
  • the device mentioned in the embodiment of the present application may also be a chip. For example, it may be a system-on-a-chip, a system-on-a-chip, a system-on-a-chip, or a system-on-a-chip.
  • the processor in the embodiment of the present application may be an integrated circuit chip, which has a signal processing capability.
  • each step of the above-mentioned method embodiments may be completed by an integrated logic circuit of hardware in a processor or instructions in the form of software.
  • the above-mentioned processor can be a general-purpose processor, a digital signal processor (Digital Signal Processor, DSP), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), an off-the-shelf programmable gate array (Field Programmable Gate Array, FPGA) or other available Program logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • a general-purpose processor may be a microprocessor, or the processor may be any conventional processor, or the like.
  • the steps of the method disclosed in connection with the embodiments of the present application may be directly implemented by a hardware decoding processor, or implemented by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a mature storage medium in the field such as random access memory, flash memory, read-only memory, programmable read-only memory or electrically erasable programmable memory, register.
  • the storage medium is located in the memory, and the processor reads the information in the memory, and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiments of the present application may be a volatile memory or a nonvolatile memory, or may include both volatile and nonvolatile memories.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electronically programmable Erase Programmable Read-Only Memory (Electrically EPROM, EEPROM) or Flash.
  • the volatile memory can be Random Access Memory (RAM), which acts as external cache memory.
  • RAM Static Random Access Memory
  • SRAM Static Random Access Memory
  • DRAM Dynamic Random Access Memory
  • Synchronous Dynamic Random Access Memory Synchronous Dynamic Random Access Memory
  • SDRAM double data rate synchronous dynamic random access memory
  • Double Data Rate SDRAM, DDR SDRAM enhanced synchronous dynamic random access memory
  • Enhanced SDRAM, ESDRAM synchronous connection dynamic random access memory
  • Synchlink DRAM, SLDRAM Direct Memory Bus Random Access Memory
  • Direct Rambus RAM Direct Rambus RAM
  • the memory in the embodiment of the present application may also be a static random access memory (static RAM, SRAM), a dynamic random access memory (dynamic RAM, DRAM), Synchronous dynamic random access memory (synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (double data rate SDRAM, DDR SDRAM), enhanced synchronous dynamic random access memory (enhanced SDRAM, ESDRAM), synchronous connection Dynamic random access memory (synch link DRAM, SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DR RAM), etc. That is, the memory in the embodiments of the present application is intended to include, but not be limited to, these and any other suitable types of memory.
  • the embodiment of the present application also provides a computer-readable storage medium for storing computer programs.
  • the computer-readable storage medium can be applied to the network device or the base station in the embodiments of the present application, and the computer program enables the computer to execute the corresponding processes implemented by the network device or the base station in the various methods of the embodiments of the present application , for the sake of brevity, it is not repeated here.
  • the embodiment of the present application also provides a computer program product, including computer program instructions.
  • the computer program product can be applied to the network device or the base station in the embodiments of the present application, and the computer program instructions cause the computer to execute the corresponding processes implemented by the network device or the base station in the methods of the embodiments of the present application, For the sake of brevity, details are not repeated here.
  • the embodiment of the present application also provides a computer program.
  • the computer program can be applied to the network device or the base station in the embodiment of the present application.
  • the computer program executes the various methods in the embodiment of the present application implemented by the network device or the base station For the sake of brevity, the corresponding process will not be repeated here.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units or modules is only a logical function division.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units or modules described as separate components may or may not be physically separated, and the components displayed as units or modules may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple on the network unit. Part or all of the units or modules can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit or module in each embodiment of the present application may be integrated into one processing unit or module, each unit or module may exist separately physically, or two or more units may be integrated into one unit , or two or more modules are integrated in one module.
  • the functions are realized in the form of software functional units or modules and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Multimedia (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种无线通信方法、装置、设备及存储介质,该方法包括:基站对目标小区内的所有终端进行用户分组管理,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼。

Description

无线通信方法、装置、设备及存储介质
本申请要求于2021年08月10日提交的,申请名称为“无线通信方法、装置、设备及存储介质”的、中国专利申请号为“202110911958.6”的优先权,该中国专利申请的全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种无线通信方法、装置、设备及存储介质。
背景技术
第五代(5G)移动标准要求更高的数据传输速度、更大的连接数量和更好覆盖等改进。5G标准旨在为数万的用户中的每一个用户提供每秒几十兆比特的数据速率,一些无线通信网络,诸如5G或者后续技术演进,会支持在非常高、甚至是极高频率(EHF)带的操作,比如支撑毫米波(mmW)频带的操作,一般为1mm至10mm波长,或30至300太赫兹(GHz)。这些极高频率的操作,可以支持非常高的吞吐量。然而,在非常高或极高频率的无线通信中,高频通信可能会发生极大的传播损耗。在mmW频带,传播损耗可能比较严重。且在大量密集分布的天线单元中,会迫使终端设备考虑在模拟域进行波束赋形,即在一个特定的时刻波束指向一个方向。因此,基站需要经常通过扫掠在不同方向上聚焦的波束集合来向终端设备进行传送,但是扫掠波束集合的方式,在时间、功耗和空中资源方面具有昂贵的成本。
技术问题
本申请实施例提供一种无线通信方法、装置、设备及存储介质,可以缩短寻呼时间,有效降低能耗,以及节约成本。
技术解决方案
第一方面,提供了一种无线通信方法,应用于基站,所述方法包括:对目标小区内的所有终端进行用户分组管理;周期性地对所述目标小区内的所有终端更新用户分组;根据所述用户分组发起不同组的寻呼。
第二方面,提供了一种无线通信装置,所述装置包括:分组模块,用于对目标小区内的所有终端进行用户分组管理;更新模块,用于周期性地对所述目标小区内的所有终端更新用户分组;寻呼模块,用于根据所述用户分组发起不同组的寻呼。
第三方面,提供了一种网络设备,包括处理器和存储器。该存储器用于存储计算机程序,该处理器用于调用并运行该存储器中存储的计算机程序,执行上述第一方面所述的无线通信方法。
第四方面,提供了一种芯片,包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如第一方面所述的无线通信方法。
第五方面,提供了一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于处理器进行加载,以执行如第一方面所述的无线通信方法。
第六方面,提供了一种计算机程序产品,包括计算机程序指令,计算机程序指令使得计算机执行上述第一方面所述的无线通信方法。
第七方面,提供了一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一 方面所述的无线通信方法。
有益效果
本申请实施例提供一种无线通信方法、装置、设备及存储介质,基站通过对目标小区内的所有终端进行用户分组管理,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼。本申请实施例对一个基站管理的小区里所有用户进行寻呼分组管理,每一个波束管理一个用户组,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼,同一个寻呼,只对目标波束对应的用户组发起寻呼,而对其它波束管理的用户组不发起寻呼,进而可以缩短寻呼时间,降低能耗,以及节约成本。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的一种通信系统的结构示意图。
图2为本申请实施例提供的一种无线通信方法的流程示意图。
图3为本申请实施例提供的建立初始波束的场景示意图。
图4为本申请实施例提供的基站分组管理用户组的第一场景示意图。
图5为本申请实施例提供的一种无线通信方法的另一流程示意图。
图6为本申请实施例提供的基站分组管理用户组的第二场景示意图。
图7为本申请实施例提供的基站分组管理用户组的第三场景示意图。
图8为本申请实施例提供的基站分组管理用户组的第四场景示意图。
图9为本申请实施例提供的一种无线通信方法的又一流程示意图。
图10为本申请实施例提供的基站与终端的交互场景示意图。
图11为本申请实施例提供的一种无线通信方法的再一流程示意图。
图12为本申请实施例提供的无线通信装置的结构示意图。
图13为本申请实施例提供的通信设备的结构示意图。
图14为本申请实施例提供的装置的结构示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例可以应用于各种通信系统,例如:全球移动通讯(Global System of Mobile communication,GSM)系统、码分多址(Code Division Multiple Access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(General Packet Radio Service,GPRS)、长期演进(Long Term Evolution,LTE)系统、先进的长期演进(Advanced long term evolution,LTE-A)系统、NR系统、NR系统的演进系 统、免授权频谱上的LTE(LTE-based access to unlicensed spectrum,LTE-U)系统、免授权频谱上的NR(NR-based access to unlicensed spectrum,NR-U)系统、通用移动通信系统(Universal Mobile Telecommunication System,UMTS)、无线局域网(Wireless Local Area Networks,WLAN)、无线保真(Wireless Fidelity,WiFi)、下一代通信系统或其他通信系统等。
例如,通信系统不仅支持传统的通信,还支持例如,设备到设备(Device to Device,D2D)通信,机器到机器(Machine to Machine,M2M)通信,机器类型通信(Machine Type Communication,MTC),以及车辆间(Vehicle to Vehicle,V2V)通信等,本申请实施例也可以应用于这些通信系统。
在一些实施例中,本申请实施例中的通信系统可以应用于载波聚合(Carrier Aggregation,CA)场景,也可以应用于双连接(Dual Connectivity,DC)场景,还可以应用于独立(Standalone,SA)布网场景。
请参考图1,图1为本申请实施例提供的一种通信系统的结构示意图。该通信系统100可以包括:若干个终端设备110以及若干个网络设备120。网络设备120可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备110进行通信。图1示例性地示出了3个网络设备和5个终端设备,该通信系统可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
其中,终端设备110也可以称为用户设备(User Equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置等。终端设备110可以是WLAN中的站点(STAION,ST),可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)设备、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备以及下一代通信系统,例如,NR网络中的终端设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)网络中的终端设备等。
作为示例而非限定,该终端设备110还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。或者,该终端设备110也可以是无人飞行器的设备。或者,该终端设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,该终端设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
网络设备120可以是用于与移动设备通信的设备,网络设备120可以是WLAN中的接入点(Access Point,AP),GSM或CDMA中的基站(Base Transceiver Station,BTS),也可以是WCDMA中的基站(NodeB,NB),还可以是LTE中的演进型基站(Evolutional Node B,eNB或eNodeB),或者中继站或接入点,或者车载设备、可穿戴设备以及NR网络中的网络设备或者基站(gNB)或者未来演进的PLMN网络中的网络设备等。
在本申请实施例中,网络设备120为小区提供服务,终端设备110通过该小区使用的传输资源(比如频域资源、频谱资源)与网络设备120进行通信,该小区可以是网络设备120(例如基站)对应的小区,小区可以属于宏基站,也可以属于小小区(Small cell)对应的基站,这里的小小区可以包括:城市小区(Metro cell)、微小区(Micro cell)、微微小区(Pico cell)、毫微微小区(Femto cell)等,这些小小区具有覆盖范围小、发射功率低的特点,适用于提供高速率的数据传输服务。
其中,网络设备120和终端设备110之间可以通过无线空口建立无线连接。
例如,终端设备110之间还可以建立端到端(End to End,E2E)连接。
在一些实施例中,该通信系统还可以包括网络管理设备130。若干个网络设备120(基站)分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如5G核心网,服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Po l i cy a nd C ha rg i ng R ules F un c ti o n,PCR F)或者归属签约用户服务器(Hom eSubscriber Server,HSS)等。对于网络管理设备130的实现形态,本申请实施例不做限定。
在本申请实施例中,对基站(网络设备120)目标小区内的所有终端(终端设备110)进行用户分组管理,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼。本申请实施例对一个基站管理的小区里所有用户进行寻呼分组管理,每一个波束管理一个用户组,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼,同一个寻呼,只对目标波束对应的用户组发起寻呼,而对其它波束管理的用户组不发起寻呼,进而可以缩短寻呼时间,降低能耗,以及节约成本。
在一些实施例中,在基站(网络设备120)与目标小区内的所有终端(终端设备110)建立初始波束时,基站根据目标小区内的每一终端对应的初始波束确定目标小区内的每一终端所在的初始用户组;当间隔时间N达到时间门限时,基站接收目标小区内的所有终端上报的信道状态信息CSI报告;基站根据CSI报告,预测目标小区内的每一终端在K+N时刻对应的预估波束以及每一终端所在的预估用户组;当基站向目标终端发起寻呼时,根据目标小区内的每一终端在K+N时刻对应的预估波束以及每一终端所在的预估用户组,确定目标终端在K+N时刻对应的目标波束以及目标终端所在的目标用户组,其中,目标终端为需要寻呼的终端,目标终端位于所述目标小区内;通过目标波束向目标用户组发送寻呼信息,以寻呼目标终端。本申请实施例对一个基站管理的小区里所有用户进行寻呼分组管理,每一个波束管理一个用户组,每一终端所在的初始用户组为每一终端的初始波束管理的用户组,当间隔时间达到时间门限时,根据所有终端上报的CSI报告,重新预测目标小区内的每一终端在K+N时刻对应的最强波束为预估波束,预测以及每一终端所在的预估用户组,当基站向目标终端发起寻呼时,根据上述预估波束和预估用户组确定待寻呼的目标终端在K+N时刻时UE的目标波束以及目标终端所在的目标用户组,且仅对与目标终端对应的目标波束管理 的目标用户组发起寻呼,对其它波束管理的用户不发起寻呼,进而可以缩短寻呼时间,降低能耗,以及节约成本。
请参阅图2至图11,图2、图5、图9和图11为本申请实施例提供的无线通信方法的流程示意图,图3、图4、图6至图8和图10为本申请实施例提供的应用场景示意图。该方法应用于基站,该方法包括:
步骤201,对目标小区内的所有终端进行用户分组管理。
在一些实施例中,所述对目标小区内的所有终端进行用户分组管理,包括:在基站与目标小区内的所有终端建立初始波束时,根据所述目标小区内的每一终端对应的初始波束确定所述目标小区内的每一终端所在的初始用户组。
其中,目标小区为基站所管理的小区。例如,该目标小区可以为新无线(new radio,NR)小区。NR小区的主同步信号(Primary Synchronization Signal,PSS)和辅同步信号(Secondary Synchronization Signal,SSS)以及和广播信道(Physical Broadcast Channel,PBCH)组成的时频资源(Synchronization Signal Block,SSB),不同的频段对应的同步信号块集合(SS Burst set)使用的SSB数量的上限不同,SS Burst set将在5ms窗口内以预定的方向(波束)在时域内重复,每个SS Burst set周期为20ms。
例如,如图3所示的建立初始波束的场景示意图,假设一个SS Burst set包括5个SSB,编号为RS-1~RS-5。NR小区(目标小区)采用波束扫描方式发送SSB,每个SSB波束在空间的指向都不同。在UE搜索小区阶段,UE测量一个SS Burst set中全部的SSB,并找到信号最好的SSB,这对应图3所示的P1(初始化波束选择)过程。之后通过P2(发射波束改变)过程做波束(BEAM)优化,找到一个比SSB波束更窄的波束,用于传输物理下行共享信道(Physical Downlink Shared Channel,PDSCH)/物理下行控制信道(Physical Downlink Control Channel,PDCCH)。P3过程用于FR2频段,UE也具有波束赋形能力。在基站与UE建立初始波束时,基站在一个SSB对应的时间内发射的多个优化波束使用相同的CSI参考信号资源,UE采用不同的波束尝试接收,一方面SSB和下行波束相关联,另一方面SSB还和上行随机接入时机、前导码等资源相联系。这样基站就可以通过随机接入获知UE选择的下行波束,因为一个特定的时刻波束只能指向一个方向,为不同方向的UE发送的下行数据就需要安排在不同的时刻分别进行,接收波束在某一个时刻也只能对准一个方向进行接收,从而实现基站和UE建立初始波束对。并且一个波束与一个解调参考信号(Demodulatin Reference Signal,DMRS)端口/端口组、或一个传输配置编号(Transmission Configuration Index,TCI)、或一个收发点(transmit-receive point,TRP)、或一个探测参考信号资源指示(SRS resource indicator,SRI)对应,其中,SRI用于上行数据传输。例如,不同的波束也可以通过不同的DMRS端口/端口组、或TCI、或TRP、或SRI表示。当建立好后初始波束对后,在随后的通信过程中,UE会假设网络的下行传输会一直沿用相同的空间滤波器,也就是假定网络会一直保持被SSB使用的发射波束。因此,UE会认为后续的下行传输会一直沿用接收的最佳接收波束。其中,5G NR的频率范围分别定义为不同的FR:FR1与FR2。频率范围FR1通 常表示5G Sub-6GHz(6GHz以下)频段,频率范围FR2通常表示5G毫米波频段。波束赋形BeamForming是一种构造天线辐射方向图的技术。
例如,每当有终端在基站管理的目标小区范围内出现时,会启动初始接入阶段。例如在基站和出现在目标小区内的终端A连接建立初始波束过程时,基站发送多个SSB,通过波束扫描同步信号和小区信息,这些SSB依次发送并且每个SSB都承载在不同的下行波束上,一方面SSB与下行波束相关联,另一方面还与上行随机时机、前导码等资源相联系。当终端A在基站管理的目标小区范围内出现时,会启动初始接入阶段,终端A发起随机接入请求,且终端根据基站发送的多个SSB,选择特定的下行波束(初始波束)来波束匹配和绑定,这样基站就可以通过随机接入获知终端选择的下行波束,因为一个特定的时刻波束只能指向一个方向,为不同方向的终端发送的下行数据就需要安排在不同的时刻分别进行,接收波束在某一个时刻也只能对准一个方向进行接收,从而基站和终端A建立初始波束对。根据终端A所确定的下行波束作为初始波束a,然后将终端A归属于该初始波束a的管理下,订阅到该初始波束a的用户组里并成为一员。将目标小区内的所有终端与基站建立初始波束,以根据目标小区内的每一终端对应的初始波束确定目标小区内的每一终端所在的初始用户组。
如图4所示的基站分组管理用户组的场景示意图,对一个5G基站(gNB)管理的小区里所有用户进行寻呼分组管理,分组依据为基于基站下行每一个波束管理一个用户组。
在UE与基站建立连接时,基站存储有目标小区内所有UE id的信息(IMSI,TMSI等),当UE与基站完成初始波束的建立时,基站即知道UE在哪个波束下接收信号,即将在某个波束下接收信号的UE归入同一个用户组中。然而,因为UE的移动性、旋转性等原因,需要定期地重新评估接收端波束和发送端波束是否合适。即使UE完全静止不动,周围环境中的一些物体的移动也有可能会阻挡波束或者某些物体不再阻挡某些波束对,这就意味着必须调整波束,以降低寻呼失败的概率,才可以达到最优的服务质量。
步骤202,周期性地对所述目标小区内的所有终端更新用户分组。
在一些实施例中,所述周期性地对所述目标小区内的所有终端更新用户分组,包括:当间隔时间N达到时间门限时,接收所述目标小区内的所有终端上报的信道状态信息CSI报告;根据所述CSI报告,预测所述目标小区内的每一终端在K+N时刻对应的预估波束;根据所述预估波束确定每一终端所在的预估用户组。
如图5所示,步骤202可以通过步骤2021至步骤2023来实现,具体为:
步骤2021,当间隔时间N达到时间门限时,接收所述目标小区内的所有终端上报的信道状态信息CSI报告。
其中,当UE采用确定好的接收波束(比如初始波束)尝试接收来自基站的不同波束的信号时,基站设置信道状态信息(Channel State Information,CSI)报告框架,并将报告数量设置为“cri-RSRP”。信道状态信息获取(CSI acquisition)信息包括:参考信号接收功率(Reference Signal Received Power,RSRP),参考信号接收质量(Reference SignalReceived Quality,RSRQ),信道质量指示(channel-quality indicator,CQI),秩指示(Rank Indicator,RI),预编码矩阵指示(precoding-matrix indicator,PMI),信号与干扰噪声比(signal to interference  plus noise ratio,SINR)等。当UE采用确定好的接收波束尝试接收来自基站的不同波束的信号时,UE会生成CSI报告,该CSI报告可以包括CSI参考信号资源指示符(CSI-RS Resource Indicator,CRI),CSI参考信号资源指示符用于指示最强的CSI参考信号,即指示UE标识并报告最好的下行链路波束。例如,该CSI报告还可以包括从最强的CSI参考信号中测到的层1参考信号接收功率(Layer 1Reference Signal Received Power,L1-RSRP)。对于FR2频段,在这种情况下,UE可能使用一个或多个天线面板来提供波束赋形能力。CSI参考信号重复可用于生成同一个CSI参考信号波束的多个传输。UE通过测量这些重复的CSI参考信号来评估最佳的接收波束,即在基站发送重复CSI参考信号时,UE同时完成自身的波束扫描,即当UE正在发送时,UE通过评估来自基站的多个波束的CSI参考信号的质量来找出波束方向,UE评估来自多个波束中的每个波束的CSI参考信号的质量并选择最佳波束。其中,CSI参考信号传输为时间复用。
例如,基站会指示目标小区内的所有UE上报M个CSI参考信号的强度。M小于波束的总个数N。其中,由报告配置中的非零功率信道状态参考信息(non-zero-power CSI reference signal,NZP-CSI-RS)资源组定义待测量的不同波束的参考信号集合,NZP-CSI-RS资源组包括一组配置的信道状态信息参考信号(CSI-RS)或SSB,资源组的多少与UE的能力有关。BeamManagementSSB-CSI-RS参数集(该参数集属于MIMO-ParametersPerBand UE能力信息)根据波束管理支持的参考信号数量来说明UE能力,例如,在3GPP TS 38.306指定当使用FR1的工作频带时,UE必须支持至少8个CSI参考信号资源。即UE需要针对M个参考信号分别进行测量上报。
其中,基站需要设定CSI报告的上报方式,CSI报告的上报方式可以是周期上报或者触发上报,基站在开始就与目标终端达成一致。
在一些实施例中,当间隔时间达到时间门限时,接收所述目标小区内的所有终端根据第一上报指令上报的所述CSI报告,其中所述第一上报指令为在所述基站与所述目标小区内的所有终端建立初始波束时所述基站向所述目标小区内的每一终端发送的指令,所述第一上报指令用于指示所述目标小区内的每一终端在所述间隔时间达到所述时间门限时自动上报所述CSI报告。
例如,对应周期上报的方式,在基站与目标小区内的所有终端建立初始波束时,基站向目标小区内的每一终端发送的第一上报指令,该第一上报指令携带有时间门限信息,用于指示目标小区内的所有终端自动监测间隔时间,当目标小区内的每一终端监测到间隔时间达到时间门限时,目标小区内的每一终端自动上报CSI报告。
在一些实施例中,当间隔时间达到时间门限时,向所述目标小区内的所有终端发送第二上报指令,以及接收所述目标小区内的所有终端根据所述第二上报指令上报的所述CSI报告。
例如,对应触发上报的方式,当间隔时间达到时间门限时,基站向目标小区内的所有终端发送的第二上报指令,第二上报指令用于指示目标小区内的所有终端上报CSI报告,当目标小区内的每一终端接收到第二上报指令时,触发目标小区内的每一终端立即上报CSI报告。
在一些实施例中,在步骤2021之前,还包括:设定间隔时间N。其中,设定的该间隔 时间N,用于表示从建立初始波束到当前时刻的间隔时间。
在一些实施例中,所述时间门限包括以下至少一种:一个时频资源SSB;同步信号块集合SS Burst set的周期;SS Burst set周期的倍数。
步骤2022,根据所述CSI报告,预测所述目标小区内的每一终端在K+N时刻对应的预估波束。
在一些实施例中,所述CSI报告包括所述目标小区内的每一终端对应的M个波束的CSI参考信号,所述目标小区内的每一终端确定的最强波束的层1参考信号接收功率L1-RSRP,以及所述目标小区内的每一终端的剩余M-1个波束的参考信号接收功率和所述最强波束的L1-RSRP的差值。
例如,UE1上报的CSI报告包括与UE1自身匹配的M个波束对应的CSI参考信号,UE1确定的最强波束的层1参考信号接收功率L1-RSRP,以及UE1的剩余M-1个波束的参考信号接收功率和UE1的最强波束的L1-RSRP的差值。UE2对应的CSI报告包括与UE2自身匹配的M个波束对应的CSI参考信号,UE2确定的最强波束的层1参考信号接收功率L1-RSRP,以及UE2的剩余M-1个波束的参考信号接收功率和UE2的最强波束的L1-RSRP的差值。
在一些实施例中,所述根据所述CSI报告,预测所述目标小区内的每一终端在K+N时刻对应的预估波束,包括:根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值;根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值;将所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值中的最大值对应的波束确定为所述目标小区内的每一终端在K+N时刻对应的预估波束。
在一些实施例中,在所述根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值之后,还包括:将所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值存储至寄存器中;所述根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,包括:根据所述寄存器中存储的所述目标小区内的每一终端对应的M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,其中所述K时刻和K-1时刻为所述寄存器中存储的所有时刻中与所述K+N时刻最接近的两个时刻。
在一些实施例中,根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,包括:根据所述目标小区内的每一终端对应的所述M个波束的CSI参考信号,所述目标小区内的每一终端确定的最强波束的层1参考信号接收功率L1-RSRP,以及所述目标小区内的每一终端的剩余M-1个波束的参考信号接收功率和所述最强波束的L1-RSRP的差值,确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值。
例如,基站指示所有的UE上报自身所测量的M个CSI波束对应的参考信号,以及UE确定的最强波束的L1-RSRP,对于剩余M-1个波束的测量,上报剩余波束的RSRP和最强波束的L1-RSRP的差值,上述上报的测量数据可以通过CSI报告进行上报。例如,基站接收到各个UE在接收确定的波束上上报的K时刻强度为最强波束L1-RSRP,以及M-1个剩余波束的RSRP和最强波束的L1-RSRP的差值,基站根据UE上报的最强波束L1-RSRP,以及M-1个剩余波束的RSRP和最强波束的L1-RSRP的差值,来确定M个波束的强度为RSRP i。其中,被确定的M个波束的强度为RSRP i可以包括多个时刻的波束强度。
其中,基站可设置寄存器,用于存储K时刻及K时刻之前(比如K-1时刻)所有的终端设备UE_ID上报的M个波束的强度为RSRP i,其中,i=0,1,2……M-1;基站有有L个下行波束,每一个波束管理的UE组成一个组,因此有L个用户组,M>0,且M为整数。然而,因为UE的移动性、旋转性等原因,周期地重新评估发送端波束是否合适。即使UE完全静止不动,周围环境中的一些物体的移动也有可能会阻挡波束或者某些物体不再阻挡某些波束对,这就意味着必须调整波束,以降低寻呼失败的概率,才可以达到最优的服务质量。
其中,在寻呼下发时刻(K+N)时,基站(Base Station,BS)需要重新调整用于下发寻呼的波束。其中,N表示间隔时间,N最小为一个SSB,N也可以是SS Burst set的周期,N也可是SS Burst set周期的倍数。N表示从建立初始波束到当前时刻的间隔时间。
在一些实施例中,根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,包括:计算所述目标小区内的每一终端对应的第i个波束在K时刻的RSRP值与第i个波束在K-1时刻的RSRP值之间的差值;将所述间隔时间N与所述差值相乘,得到第一计算结果;根据所述第i个波束在K时刻的RSRP值与所述第一计算结果的和,确定所述目标小区内的每一终端对应的第i个波束在K+N时刻的RSRP值;根据所述目标小区内的每一终端对应的所述第i个波束在K+N时刻的RSRP值,确定所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,其中,i=0,1,2…M-1。
其中,在K时刻和K-1时刻,基站根据寄存器存储K时刻和K-1时刻接收的所有UE上报的M个波束的RSRP值,基站基于所有UE对应的M个波束在K时刻和K-1时刻的RSRP值,估算目标小区内的每个UE对应的M个波束在K+N时刻的RSRP值,可以表示为以下公式(1):
RSRP i(K+N)=RSRP i(K)+N*[RSRP i(K)-RSRP i(K-1)]      (1);
其中,N表示间隔时间;i表示波束编号,i=0,1,2…M-1;RSRP i(k+N)表示第i个波束在K+N时刻的RSRP值;RSRP i(K)表示第i个波束在K时刻的RSRP值;RSRP i(K-1)表示第i个波束在K-1时刻的RSRP值;RSRP i(K+N)表示第i个波束在K+N时刻的RSRP值。其中,中括号[]为取整函数。
其中,在估算目标小区内的每个UE对应的M个波束在K+N时刻的RSRP值时,可以采用每个UE对应的M个波束在K时刻和K-1时刻的RSRP值及上述公式(1),遍历计算每个UE对应的第i个波束在K+N时刻的RSRP值。
其中,K时刻和K-1时刻为寄存器中存储的所有时刻中与K+N时刻最接近的两个时刻,其中K时刻与K+N时刻最接近,K-1时刻为K时刻之前的时刻,K-1时刻与K+N时刻之前存在K时刻。
其中,对于当前估算的某个UE在K+N时刻对应的预估波束,基于该UE对应的M个波束的RSRP的值序列为[RSRP i(K+N)] i=0,1,2…M,该序列中取最大值max|RSRP i(K+N)|为该UE在K+N时刻预计的该UE上报的最强的波束强度,将该序列中取最大值max|RSRP i(K+N)|对应的波束确定为该UE的预估波束。若基站需向该UE发起寻呼,则基站将会发送寻呼在这个UE对应的预估波束上。也就是基站预测在K+N时刻UE将会在该预估波束覆盖的用户组内,并可以知晓UE的位置。随后可使用该预测的UE位置来定向地向UE传送寻呼信息。
步骤2023,根据所述预估波束确定每一终端所在的预估用户组。
在一些实施例中,所述根据所述预估波束确定每一终端所在的预估用户组,包括:将所述目标小区内的每一终端在K+N时刻对应的预估波束管理的用户组确定为所述目标小区内的每一终端在K+N时刻所在的预估用户组。
步骤203,根据所述用户分组发起不同组的寻呼。
在一些实施例中,所述根据所述用户分组发起不同组的寻呼,包括:通过每一终端对应的所述预估波束向每一终端所在的所述预估用户组发送寻呼信息,以发起不同组的寻呼。
例如,如图6所示,在建立初始波束时开始确定该小区有两个用户组:用户组1和用户组3。用户组1包括UE4、UE5、UE6和UE7;用户组3包括UE1、UE2和UE3。
在给定的时间内,尤其UE RRC在去激活(inactive)状态下,基站和UE无需进行波束的再次配对和波束的重新建立过程,当隔时间N达到时间门限时,基站可以根据该方法预测UE在K+N时刻时位于哪一个用户组里,并且发起寻呼。在图7或者图8中,UE1,UE6,UE7的用户分组发生改变,增加了一个用户组2,UE1,UE6,UE7从原来的用户组3和用户组1调整到用户组2,其中,可以根据SSB set的周期计算波束的调整时间。其中,(1)为向用户组1发起寻呼的波束;(2)为向用户组2发起寻呼的波束;(3)为向用户组3发起寻呼的波束。
如图7或图8所示,对一个5G基站管理的小区里所有用户进行寻呼分组管理,分组依据为基于基站下行每一个波束管理一个用户组。当基站发起寻呼时,仅对对应波束管理的用户组发起寻呼,其它波束管理的用户不发起寻呼。
在一些实施例中,当所述基站向目标终端发起寻呼时,根据所述目标小区内的每一终端在K+N时刻对应的预估波束以及每一终端所在的预估用户组,确定所述目标终端在K+N时刻对应的目标波束以及所述目标终端所在的目标用户组,其中,所述目标终端为需要寻呼的终端,所述目标终端位于所述目标小区内;通过所述目标波束向所述目标用户组发送寻呼信息,以寻呼所述目标终端。
在一些实施例中,如图9所示,步骤203可以通过步骤2031至步骤2032来实现,具体为:
步骤2031,当所述基站向目标终端发起寻呼时,根据所述目标小区内的每一终端在K+N 时刻对应的预估波束以及每一终端所在的预估用户组,确定所述目标终端在K+N时刻对应的目标波束以及所述目标终端所在的目标用户组,其中,所述目标终端为需要寻呼的终端,所述目标终端位于所述目标小区内。
其中,当核心网络想要发送下行消息或数据的时候,需要通过寻呼的方式让UE回到连接模式(RRC_CONNECTED)状态。寻呼消息属于被核心网寻呼的UE能够正确地接收基于调度的物理下行控制信道(Physical Downlink Control Channel,PDCCH)来传输的寻呼信息。
其中,当网络需要对目标终端进行寻呼时,为终端服务的核心网节点(比如移动管理实体MME)可以向跟踪区域范围内所有的接入网节点(比如,或者基站eNB、eNodeB)发起寻呼流程,此时接入网节点便可以接收核心网节点发送的寻呼消息。该寻呼消息用于寻呼目标终端。其中,该寻呼消息中可以携带需要寻呼的目标终端的目标UE身份标识(UE_ID),该目标终端的目标UE身份标识可以包括终端标识索引值和该目标终端的国际移动用户识别码(International Mobile SubscriberIdentity,IMSI),或需要寻呼的目标终端的终端标识索引值和临时移动用户识别码(S-TemporaryMobile Subscriber Identity,S-TMSI),或者需要寻呼的临时移动台识别码(Temperate Mobile Station Identity,TMSI)。
在一些实施例中,步骤2031可以包括:在接收到5G核心网传输的寻呼消息时,根据所述寻呼消息中携带的需要寻呼的目标终端的目标UE身份标识,将所述目标小区内的所有终端中与所述目标UE身份标识对应的终端确定为所述目标终端;根据所述确定的目标终端在K+N时刻对应的预估波束确定为所述目标终端在K+N时刻对应的目标波束,以及根据所述确定的目标终端在K+N时刻所在的预估用户组,确定所述目标终端所在的目标用户组。
步骤2032,通过所述目标波束向所述目标用户组发送寻呼信息,以寻呼所述目标终端。
例如,其中,该寻呼消息中可以携带需要寻呼的目标终端的目标UE身份标识(UE_ID),该目标终端的目标UE身份标识可以包括IMSI、S-TMSI)或者TMSI。
其中,基站向目标终端发起寻呼时,仅对与目标终端对应的目标波束管理的用户组发起寻呼,对其它波束管理的用户不发起寻呼。通过该方法,寻呼信息可以以定向方式被传送,而不是通过扫掠波束集合,从而实现时间、功耗、空中资源使用的节省。从整个小区来看,UE的寻呼分组管理也是动态的,即UE进入小区后不是一成不变的在某一用户组里,而是随着基站发送信号的波束不同而动态的发生变化。
在一些实施例中,通过所述目标波束向属于所述目标用户组内的所有终端发送寻呼信息,以寻呼所述目标终端,所述目标终端属于所述目标用户组。
其中,当目标用户组内的UE监听到寻呼消息DCI内部携带特定的PI-RNTI指示后,就开始解调,解码相应的PDCCH和/或PDSCH以提取自己的寻呼消息。
在一些实施例中,当所述间隔时间N未达到所述时间门限时,通过所述初始波束向所述目标终端对应的初始用户组发送寻呼信息,以寻呼所述目标终端。
例如,当间隔时间N未达到时间门限时,基站依然默认发送给目标终端的初始波束保持不变,目标终端所在的初始用户组也不变,因此,当间隔时间N未达到时间门限时,通过目标终端对应的初始波束向目标终端对应的初始用户组发送寻呼信息,以寻呼目标终端。
例如,基站可以传输32个SSB,并定期扫描不同的预定义方向(波束),SSB覆盖的方向在某一个同步信号(Synchronization Signal,SS)突发间隔内只能是朝向一个预定义方向,下一个SS突发间隔内朝向另外一个预定义方向。SS突发集中预定义方向(波束/SSB)的最大个数与频率有关,如3ghz的“4波束”,从3ghz到6ghz的“8波束”,以及从6ghz到52.6GHz的“64波束”。
本申请实施例提供的方法,当UE进入RRC连接模式时,可以启动该波束优化过程。该波束优化过程可用于选择方向性更大、增益更高的波束。更多的定向波束可以改善链路预算,但也需要更频繁地在波束间做切换。
另外,波束信息可通过天线端口准共址(Quasi Colocation,QCL)关系来进行指示。具体地,可以在指示信息中指示一个资源(或天线端口)与另一个资源(或天线端口)具有准共址关系,来表示这两个资源(或天线端口)对应的波束具有相同的空间特征,可以采用同一个接收波束来接收。例如,指示信息可以为下行控制信息(Downlink Control Information,DCI)。其中,波束在协议中可以通过各种信号的标识来表示,例如,信道状态信息参考信号(channel state information reference signal,CSI-RS)的资源索引,同步信号广播信道块(synchronous signal/physical broadcast channel block,可以简称为SS/PBCH block,也可以简称为SSB)的索引,探测参考信号(sounding reference signal,SRS)的资源索引,跟踪参考信号(tracking reference signal,TRS)的资源索引。基站通过资源索引可以获得K+N时候发起寻呼的预估波束,并通过QCL,可使用在搜索空间中指示的一个或多个资源向UE传送下行数据。
为了更好地说明本申请实施例,请参阅如图10所示的基站与终端的交互场景示意图。基站按照下行扫描周期周期性地进行波束扫描,以发送同步信号,同步信号包括主同步信号(PSS)、辅同步信号(SSS)以及广播信道(PBCH)等,将PSS、SSS与PBCH一起作为同步信号发送,终端1和终端2通过波束扫描读取和解调同步信号后,并在初始选定的波束上向基站发送前导码,将前导码通过物理随机接入信道(Physical Random Access Channel,PRACH)时隙可配置的子集中进行发送,以完成随机接入过程。基站通过读取前导码确定终端的接收波束,从而知道终端属于哪一个波束管理之下,进而确定终端所在的用户组。基站设定一个时间门限,当间隔时间达到时间门限时,会触发终端1和终端2进行信道状态信息参考信号(channel state information reference signal,CSI-RS)上报,根据上报的结果重新估计终端1和终端2在K+N时刻分别对应的最强波束作为估计终端1和终端2分别对应的目标波束,进而确定终端1和终端2所在的用户组,在分别确定的目标波束上分别向终端1和终端2所在的用户组发起寻呼,并通过QCI(QoS class identifier)或者下行控制信息(Downlink Control Information,DCI)标识物理下行控制信道(Physical Downlink Control Channel,PDCCH)和物理下行共享信道(Physical Downlink Shared Channel,PDSCH)传输的波束和资源,以 保证后续顺利的传输。例如,该时间门限可以为以下至少一种:一个SSB;SS Burst set的周期;SS Burst set周期的倍数。
其中,对于用户组,UE所在用户组的确定以及订阅是基于用户组确定的波束以及在达到相应的时间门限条件下,即用户组的确定是基于CSI-RS测量的结果确定的,且当间隔时间达到或超过系统设定的时间门限时,会重新确定用户组的管理。通过本申请实施例所提的方法,无论用户是否移动,基站可以预估需要发送寻呼时刻,终端所在的用户群以及用户群所关联的发送波束。
例如,如图11所示,对于用户组的确定,在步骤1101中,在基站和UE连接建立初始波束过程时,基站发送多个SSB,这些SSB依次发送并且每个SSB都承载在不同的下行波束上,一方面SSB与下行波束相关联,另一方面还与上行随机时机、前导码等资源相联系。这样基站就可以通过随机接入获知终端选择的下行波束,因为一个特定的时刻波束只能指向一个方向,为不同方向的终端发送的下行数据就需要安排在不同的时刻分别进行,接收波束在某一个时刻也只能对准一个方向进行接收,从而基站和终端建立初始波束对。在步骤1102中,根据终端所确定的下行波束,即终端归属于该波束的管理下,订阅到该波束的用户组里并成为一员。在步骤1103中,判断间隔时间N是否等于时间门限;若否,则执行步骤1104;若是,则执行步骤1105。在步骤1104中,如果N不等于时间门限,基站依然默认发送给终端的波束保持不变,终端所在的用户组也不变。在步骤1105中,当N等于时间门限时,基站根据本申请实施例提出的方法重新估计每一终端K+N时刻时UE接收的最强波束。在步骤1106中,基站根据估算结果重新确定每一终端所在的用户组。在该实施例中,时间门限可以为SS Burst set的周期或者SS Burst set周期的倍数,当从建立初始波束到当前时刻的间隔时间N等于SS Burst set的周期或者SS Burst set周期的倍数时,需重新估计每一终端K+N时刻时UE接收的最强波束;当从建立初始波束到当前时刻的间隔时间N不等于SS Burst set的周期或者SS Burst set周期的倍数时,默认发送给终端的波束保持不变,
上述所有的技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
本申请实施例通过对基站目标小区内的所有终端进行用户分组管理,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼。本申请实施例对一个基站管理的小区里所有用户进行寻呼分组管理,每一个波束管理一个用户组,并周期性地对目标小区内的所有终端更新用户分组,然后根据用户分组发起不同组的寻呼,同一个寻呼,只对目标波束对应的用户组发起寻呼,而对其它波束管理的用户组不发起寻呼,进而可以缩短寻呼时间,降低能耗,以及节约成本。具体的,当间隔时间达到时间门限时,可以根据所有终端上报的CSI报告,重新预测目标小区内的每一终端在K+N时刻对应的最强波束为预估波束,预测以及每一终端所在的预估用户组,当基站向目标终端发起寻呼时,根据上述预估波束和预估用户组确定待寻呼的目标终端在K+N时刻时UE的目标波束以及目标终端所在的目标用户组,且仅对与目标终端对应的目标波束管理的目标用户组发起寻呼,对其它波束管理的用户不发起寻呼,进而可以缩短寻呼时间,降低能耗,以及节约成本。
为便于更好的实施本申请实施例的无线通信方法,本申请实施例还提供一种无线通信装 置。请参阅图12,图12为本申请实施例提供的无线通信装置的结构示意图。其中,该无线通信装置1200包括:
分组模块1210,用于对目标小区内的所有终端进行用户分组管理;
更新模块1220,用于周期性地对所述目标小区内的所有终端更新用户分组;
寻呼模块1230,用于根据所述用户分组发起不同组的寻呼。
在一些实施例中,所述分组模块1210,可以用于在基站与目标小区内的所有终端建立初始波束时,根据所述目标小区内的每一终端对应的初始波束确定所述目标小区内的每一终端所在的初始用户组。
在一些实施例中,所述更新模块1220,还包括:
接收单元,用于当间隔时间N达到时间门限时,接收所述目标小区内的所有终端上报的信道状态信息CSI报告;
预测单元,用于根据所述CSI报告,预测所述目标小区内的每一终端在K+N时刻对应的预估波束;
第一确定单元,用于根据所述预估波束确定每一终端所在的预估用户组。
在一些实施例中,所述CSI报告包括所述目标小区内的每一终端对应的M个波束的CSI参考信号,所述目标小区内的每一终端确定的最强波束的层1参考信号接收功率L1-RSRP,以及所述目标小区内的每一终端的剩余M-1个波束的参考信号接收功率和所述最强波束的L1-RSRP的差值。
所述预测单元,可以用于:根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值;根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值;将所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值中的最大值对应的波束确定为所述目标小区内的每一终端在K+N时刻对应的预估波束。
在一些实施例中,所述第一确定单元,可以用于将所述目标小区内的每一终端在K+N时刻对应的预估波束管理的用户组确定为所述目标小区内的每一终端在K+N时刻所在的预估用户组。
在一些实施例中,所述预测单元在所述根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值之后,还可以用于:将所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值存储至寄存器中;所述根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,包括:根据所述寄存器中存储的所述目标小区内的每一终端对应的M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,其中所述K时刻和K-1时刻为所述寄存器中存储的所有时刻中与所述K+N时刻最接近的两个时刻。
在一些实施例中,所述预测单元在根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N 时刻的RSRP值时,可以用于:计算所述目标小区内的每一终端对应的第i个波束在K时刻的RSRP值与第i个波束在K-1时刻的RSRP值之间的差值;将所述间隔时间N与所述差值相乘,得到第一计算结果;根据所述第i个波束在K时刻的RSRP值与所述第一计算结果的和,确定所述目标小区内的每一终端对应的第i个波束在K+N时刻的RSRP值;根据所述目标小区内的每一终端对应的所述第i个波束在K+N时刻的RSRP值,确定所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,其中,i=0,1,2…M-1。
在一些实施例中,所述接收单元,可以用于:当间隔时间达到时间门限时,接收所述目标小区内的所有终端根据第一上报指令上报的所述CSI报告,其中所述第一上报指令为在所述基站与所述目标小区内的所有终端建立初始波束时所述基站向所述目标小区内的每一终端发送的指令,所述第一上报指令用于指示所述目标小区内的每一终端在所述间隔时间达到所述时间门限时自动上报所述CSI报告;或者当间隔时间达到时间门限时,向所述目标小区内的所有终端发送第二上报指令,以及接收所述目标小区内的所有终端根据所述第二上报指令上报的所述CSI报告。
在一些实施例中,所述寻呼模块1230,可以用于通过每一终端对应的所述预估波束向每一终端所在的所述预估用户组发送寻呼信息,以发起不同组的寻呼。
在一些实施例中,所述寻呼模块1230,还包括:
第二确定单元,用于当所述基站向目标终端发起寻呼时,根据所述目标小区内的每一终端在K+N时刻对应的预估波束以及每一终端所在的预估用户组,确定所述目标终端在K+N时刻对应的目标波束以及所述目标终端所在的目标用户组,其中,所述目标终端为需要寻呼的终端,所述目标终端位于所述目标小区内;
寻呼单元,用于通过所述目标波束向所述目标用户组发送寻呼信息,以寻呼所述目标终端。
在一些实施例中,所述第二确定单元,可以用于:收到5G核心网传输的寻呼消息时,根据所述寻呼消息中携带的需要寻呼的目标终端的目标UE身份标识,将所述目标小区内的所有终端中与所述目标UE身份标识对应的终端确定为所述目标终端;根据所述确定的目标终端在K+N时刻对应的预估波束确定为所述目标终端在K+N时刻对应的目标波束,以及根据所述确定的目标终端在K+N时刻所在的预估用户组,确定所述目标终端所在的目标用户组。
在一些实施例中,所述寻呼单元,可以用于通过所述目标波束向属于所述目标用户组内的所有终端发送寻呼信息,以寻呼所述目标终端,所述目标终端属于所述目标用户组。
在一些实施例中,所述寻呼单元,还用于当所述间隔时间N未达到所述时间门限时,通过所述目标终端对应的初始波束向所述目标终端对应的初始用户组发送寻呼信息,以寻呼所述目标终端。
在一些实施例中,所述时间门限包括以下至少一种:一个时频资源SSB;SS Burst set的周期;SS Burst set周期的倍数。
上述所有的技术方案,可以采用任意结合形成本申请的可选实施例,在此不再一一赘述。
应理解的是,装置实施例与方法实施例可以相互对应,类似的描述可以参照方法实施例。 为避免重复,此处不再赘述。具体地,图12所示的装置可以执行上述无线通信方法实施例,并且装置中的各个单元的前述和其它操作和/或功能分别实现上述方法实施例的相应流程,为了简洁,在此不再赘述。
图13为本申请实施例提供的一种通信设备的结构示意图。图13所示的通信设备1300包括处理器1310,处理器1310可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图13所示,通信设备1300还可以包括存储器1320。其中,处理器1310可以从存储器1320中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1320可以是独立于处理器1310的一个单独的器件,也可以集成在处理器1310中。
在一些实施例中,如图13所示,通信设备1300还可以包括收发器1330,处理器1310可以控制该收发器1330与其他设备进行通信,具体地,可以向其他设备发送信息或数据,或接收其他设备发送的信息或数据。
其中,收发器1330可以包括发射机和接收机。收发器1330还可以进一步包括天线,天线的数量可以为一个或多个。
在一些实施例中,该通信设备1300具体可为本申请实施例的网络设备,并且该通信设备1300可以实现本申请实施例的各个方法中由网络设备(比如基站)实现的相应流程,为了简洁,在此不再赘述。
图14为本申请实施例提供的装置的结构示意图。图14所示的装置1400包括处理器1410,处理器1410可以从存储器中调用并运行计算机程序,以实现本申请实施例中的方法。
在一些实施例中,如图14所示,装置1400还可以包括存储器1420。其中,处理器1410可以从存储器1420中调用并运行计算机程序,以实现本申请实施例中的方法。
其中,存储器1420可以是独立于处理器1410的一个单独的器件,也可以集成在处理器1410中。
在一些实施例中,该装置1400还可以包括输入接口1430。其中,处理器1410可以控制该输入接口1430与其他设备或芯片进行通信,具体地,可以获取其他设备或芯片发送的信息或数据。
在一些实施例中,该装置1400还可以包括输出接口1440。其中,处理器1410可以控制该输出接口1440与其他设备或芯片进行通信,具体地,可以向其他设备或芯片输出信息或数据。在一些实施例中,该装置可应用于本申请实施例中的网络设备,并且该装置可以实现本申请实施例的各个方法中由网络设备实现的相应流程,为了简洁,在此不再赘述。在一些实施例中,本申请实施例提到的装置也可以是芯片。例如可以是系统级芯片,系统芯片,芯片系统或片上系统芯片等。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor, DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
应理解,上述存储器为示例性但不是限制性说明,例如,本申请实施例中的存储器还可以是静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synch link DRAM,SLDRAM)以及直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)等等。也就是说,本申请实施例中的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供了一种计算机可读存储介质,用于存储计算机程序。
在一些实施例中,该计算机可读存储介质可应用于本申请实施例中的网络设备或者基站,且该计算机程序使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序产品,包括计算机程序指令。
在一些实施例中,该计算机程序产品可应用于本申请实施例中的网络设备或者基站,且该计算机程序指令使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供了一种计算机程序。
在一些实施例中,该计算机程序可应用于本申请实施例中的网络设备或者基站,当该计算机程序在计算机上运行时,使得计算机执行本申请实施例的各个方法中由网络设备或者基站实现的相应流程,为了简洁,在此不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元或模块的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元、模块或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元或模块可以是或者也可以不是物理上分开的,作为单元或模块显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元或模块来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元或模块可以集成在一个处理单元或模块中,也可以是各个单元或模块单独物理存在,也可以两个或两个以上单元集成在一个单元中,或者两个或两个以上模块集成在一个模块中。
所述功能如果以软件功能单元或模块的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。针对这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (21)

  1. 一种无线通信方法,其中,应用于基站,所述方法包括:
    对目标小区内的所有终端进行用户分组管理;
    周期性地对所述目标小区内的所有终端更新用户分组;
    根据所述用户分组发起不同组的寻呼。
  2. 如权利要求1所述的无线通信方法,其中,所述对目标小区内的所有终端进行用户分组管理,包括:
    在基站与目标小区内的所有终端建立初始波束时,根据所述目标小区内的每一终端对应的初始波束确定所述目标小区内的每一终端所在的初始用户组。
  3. 如权利要求2所述的方法,其中,所述周期性地对所述目标小区内的所有终端更新用户分组,包括:
    当间隔时间N达到时间门限时,接收所述目标小区内的所有终端上报的信道状态信息CSI报告;
    根据所述CSI报告,预测所述目标小区内的每一终端在K+N时刻对应的预估波束;
    根据所述预估波束确定每一终端所在的预估用户组。
  4. 如权利要求3所述的无线通信方法,其中,所述CSI报告包括所述目标小区内的每一终端对应的M个波束的CSI参考信号,所述目标小区内的每一终端确定的最强波束的层1参考信号接收功率L1-RSRP,以及所述目标小区内的每一终端的剩余M-1个波束的参考信号接收功率和所述最强波束的L1-RSRP的差值。
  5. 如权利要求4所述的无线通信方法,其中,所述根据所述CSI报告,预测所述目标小区内的每一终端在K+N时刻对应的预估波束,包括:
    根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值;
    根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值;
    将所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值中的最大值对应的波束确定为所述目标小区内的每一终端在K+N时刻对应的预估波束。
  6. 如权利要求5所述的无线通信方法,其中,所述根据所述预估波束确定每一终端所在的预估用户组,包括:
    将所述目标小区内的每一终端在K+N时刻对应的预估波束管理的用户组确定为所述目标小区内的每一终端在K+N时刻所在的预估用户组。
  7. 如权利要求5所述的无线通信方法,其中,在所述根据所述CSI报告确定所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSPR值之后,还包括:
    将所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSPR值存储至寄存器中;
    所述根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSPR值, 计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSPR值,包括:
    根据所述寄存器中存储的所述目标小区内的每一终端对应的M个波束在K时刻和K-1时刻的RSPR值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSPR值,其中所述K时刻和K-1时刻为所述寄存器中存储的所有时刻中与所述K+N时刻最接近的两个时刻。
  8. 如权利要求5所述的无线通信方法,其中,根据所述目标小区内的每一终端对应的所述M个波束在K时刻和K-1时刻的RSRP值,计算所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,包括:
    计算所述目标小区内的每一终端对应的第i个波束在K时刻的RSRP值与第i个波束在K-1时刻的RSRP值之间的差值;
    将所述间隔时间N与所述差值相乘,得到第一计算结果;
    根据所述第i个波束在K时刻的RSRP值与所述第一计算结果的和,确定所述目标小区内的每一终端对应的第i个波束在K+N时刻的RSRP值;
    根据所述目标小区内的每一终端对应的所述第i个波束在K+N时刻的RSRP值,确定所述目标小区内的每一终端对应的所述M个波束在K+N时刻的RSRP值,其中,i=0,1,2…M-1。
  9. 如权利要求3所述的无线通信方法,其中,所述当间隔时间N达到时间门限时,接收所述目标小区内的所有终端上报的CSI报告,包括:
    当间隔时间达到时间门限时,接收所述目标小区内的所有终端根据第一上报指令上报的所述CSI报告,其中所述第一上报指令为在所述基站与所述目标小区内的所有终端建立初始波束时所述基站向所述目标小区内的每一终端发送的指令,所述第一上报指令用于指示所述目标小区内的每一终端在所述间隔时间达到所述时间门限时自动上报所述CSI报告;或者
    当间隔时间达到时间门限时,向所述目标小区内的所有终端发送第二上报指令,以及接收所述目标小区内的所有终端根据所述第二上报指令上报的所述CSI报告。
  10. 如权利要求3-9任一项所述的无线通信方法,其中,所述根据所述用户分组发起不同组的寻呼,包括:
    通过每一终端对应的所述预估波束向每一终端所在的所述预估用户组发送寻呼信息,以发起不同组的寻呼。
  11. 如权利要求10所述的无线通信方法,其中,所述方法还包括:
    当所述基站向目标终端发起寻呼时,根据所述目标小区内的每一终端在K+N时刻对应的预估波束以及每一终端所在的预估用户组,确定所述目标终端在K+N时刻对应的目标波束以及所述目标终端所在的目标用户组,其中,所述目标终端为需要寻呼的终端,所述目标终端位于所述目标小区内;
    通过所述目标波束向所述目标用户组发送寻呼信息,以寻呼所述目标终端。
  12. 如权利要求11所述的无线通信方法,其中,所述当所述基站向目标终端发起寻呼时,根据所述目标小区内的每一终端在K+N时刻对应的预估波束以及每一终端所在的预估用户组,确定所述目标终端在K+N时刻对应的目标波束以及所述目标终端所在的目标用户组,包 括:
    收到5G核心网传输的寻呼消息时,根据所述寻呼消息中携带的需要寻呼的目标终端的目标UE身份标识,将所述目标小区内的所有终端中与所述目标UE身份标识对应的终端确定为所述目标终端;
    根据所述确定的目标终端在K+N时刻对应的预估波束确定为所述目标终端在K+N时刻对应的目标波束,以及根据所述确定的目标终端在K+N时刻所在的预估用户组,确定所述目标终端所在的目标用户组。
  13. 如权利要求11所述的无线通信方法,其中,所述通过所述目标波束向所述目标用户组发送寻呼信息,以寻呼所述目标终端,包括:
    通过所述目标波束向属于所述目标用户组内的所有终端发送寻呼信息,以寻呼所述目标终端,所述目标终端属于所述目标用户组。
  14. 如权利要求11所述的无线通信方法,其中,所述方法还包括:
    当所述间隔时间N未达到所述时间门限时,通过所述目标终端对应的初始波束向所述目标终端对应的初始用户组发送寻呼信息,以寻呼所述目标终端。
  15. 如权利要求3所述的无线通信方法,其中,所述时间门限包括以下至少一种:
    一个时频资源SSB;
    同步信号块集合SS Burst set的周期;
    SS Burst set周期的倍数。
  16. 一种无线通信装置,其包括:
    分组模块,用于对目标小区内的所有终端进行用户分组管理;
    更新模块,用于周期性地对所述目标小区内的所有终端更新用户分组;
    寻呼模块,用于根据所述用户分组发起不同组的寻呼。
  17. 一种网络设备,其包括:处理器和存储器,该存储器用于存储计算机程序,所述处理器用于调用并运行所述存储器中存储的计算机程序,执行如权利要求1至15中任一项所述的无线通信方法。
  18. 一种芯片,其包括:处理器,用于从存储器中调用并运行计算机程序,使得安装有所述芯片的设备执行如权利要求1至15中任一项所述的无线通信方法。
  19. 一种计算机可读存储介质,其中,所述计算机可读存储介质存储有计算机程序,所述计算机程序适于处理器进行加载,以执行如权利要求1至15任一项所述的无线通信方法。
  20. 一种计算机程序产品,其中,包括计算机程序指令,该计算机程序指令使得计算机执行如权利要求1至15任一项所述的无线通信方法。
  21. 一种计算机程序,其中,所述计算机程序使得计算机执行如权利要求1至15任一项所述的无线通信方法。
PCT/CN2021/116971 2021-08-10 2021-09-07 无线通信方法、装置、设备及存储介质 WO2023015643A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP21953252.0A EP4255059A4 (en) 2021-08-10 2021-09-07 WIRELESS COMMUNICATION METHOD, APPARATUS AND DEVICE, AND RECORDING MEDIUM
US18/117,744 US11870526B2 (en) 2021-08-10 2023-03-06 Wireless communication method and apparatus, device, and storage medium
US18/472,055 US20240014874A1 (en) 2021-08-10 2023-09-21 Wireless communication method and apparatus, device, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110911958.6A CN113677003B (zh) 2021-08-10 2021-08-10 无线通信方法、装置、设备及存储介质
CN202110911958.6 2021-08-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/117,744 Continuation US11870526B2 (en) 2021-08-10 2023-03-06 Wireless communication method and apparatus, device, and storage medium

Publications (1)

Publication Number Publication Date
WO2023015643A1 true WO2023015643A1 (zh) 2023-02-16

Family

ID=78541995

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116971 WO2023015643A1 (zh) 2021-08-10 2021-09-07 无线通信方法、装置、设备及存储介质

Country Status (4)

Country Link
US (2) US11870526B2 (zh)
EP (1) EP4255059A4 (zh)
CN (1) CN113677003B (zh)
WO (1) WO2023015643A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013905A (zh) * 2009-09-29 2011-04-13 大唐移动通信设备有限公司 协同调度的方法及设备
US20190007844A1 (en) * 2015-12-23 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for controlling beam transmission to grouped user equipment (ues)
CN109391905A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 寻呼方法及装置、可读存储介质、基站、用户设备
CN111466142A (zh) * 2017-11-17 2020-07-28 捷开通讯(深圳)有限公司 寻呼系统
US20210195521A1 (en) * 2017-05-05 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Wake-Up Monitoring for Discontinuous Reception Mode in a Wireless Communication System

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107295483A (zh) * 2016-03-31 2017-10-24 展讯通信(上海)有限公司 一种基站及其组呼数据的传输方法
US10959206B2 (en) * 2017-01-09 2021-03-23 Qualcomm Incorporated Conveying paging group information through control channel transmissions
US11564183B2 (en) * 2017-02-06 2023-01-24 Nokia Technologies Oy Scheduling beam sweeping resource for transmitting control information for wireless networks
US10548136B2 (en) * 2017-02-08 2020-01-28 Qualcomm Incorporated Paging response in beamformed systems
CN107018496B (zh) * 2017-03-23 2019-11-08 北京小米移动软件有限公司 寻呼方法及装置
CN109151849B (zh) * 2017-06-16 2021-12-24 展讯通信(上海)有限公司 实现寻呼监测的方法及装置、基站及用户设备
US11395331B2 (en) * 2017-07-07 2022-07-19 Huawei Technolgoies Co., Ltd. Random access method, terminal device, and network device
IT201700083557A1 (it) * 2017-07-21 2019-01-21 Telecom Italia Spa Metodo e sistema per gestire interferenze ue-ue in una rete di telecomunicazioni mobile
KR102013694B1 (ko) * 2017-09-22 2019-08-23 에스케이텔레콤 주식회사 기지국장치 및 그 장치의 페이징 수행 방법, 단말장치 및 그 장치의 페이징 지원 방법
CN110896550A (zh) * 2018-09-12 2020-03-20 索尼公司 用于无线通信的电子设备和方法、计算机可读存储介质
KR20210058207A (ko) * 2019-11-13 2021-05-24 삼성전자주식회사 무선 통신 시스템에서 다중 사용자 스케줄링을 위한 방법 및 장치
US11770794B2 (en) * 2020-04-10 2023-09-26 Qualcomm Incorporated Indication of system information update via a downlink shared channel
US11627574B2 (en) * 2020-06-09 2023-04-11 Qualcomm Incorporated Grouping user equipment based on downlink power
CN113810089B (zh) * 2020-06-11 2023-09-29 华为技术有限公司 一种通信方法及装置
CN111869156B (zh) * 2020-06-16 2023-10-03 北京小米移动软件有限公司 参考信号资源的配置方法、装置、通信设备及存储介质

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102013905A (zh) * 2009-09-29 2011-04-13 大唐移动通信设备有限公司 协同调度的方法及设备
US20190007844A1 (en) * 2015-12-23 2019-01-03 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for controlling beam transmission to grouped user equipment (ues)
US20210195521A1 (en) * 2017-05-05 2021-06-24 Telefonaktiebolaget Lm Ericsson (Publ) Wake-Up Monitoring for Discontinuous Reception Mode in a Wireless Communication System
CN109391905A (zh) * 2017-08-11 2019-02-26 北京展讯高科通信技术有限公司 寻呼方法及装置、可读存储介质、基站、用户设备
CN111466142A (zh) * 2017-11-17 2020-07-28 捷开通讯(深圳)有限公司 寻呼系统

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
3GPP TS 38.306
See also references of EP4255059A4

Also Published As

Publication number Publication date
CN113677003A (zh) 2021-11-19
EP4255059A1 (en) 2023-10-04
US11870526B2 (en) 2024-01-09
CN113677003B (zh) 2022-05-31
EP4255059A4 (en) 2024-06-05
US20230208491A1 (en) 2023-06-29
US20240014874A1 (en) 2024-01-11

Similar Documents

Publication Publication Date Title
CN112602356B (zh) 用于在功率节省模式下进行信令传递的装置和方法
JP7040617B2 (ja) シグナリング指示及び受信方法、装置及び通信システム
CN110809894A (zh) 在bwp中使用参考信号测量rsrq的方法和执行该方法的终端
EP3621238B1 (en) Methods and devices for receiving and sending aperiodic csi-rs for tracking
US11546044B2 (en) Wireless communication method, terminal device and network device
EP4145925A1 (en) Multi-carrier communication method, terminal device, and network device
US20230179374A1 (en) Channel transmission method, terminal device, and network device
CN113840375B (zh) 用于寻呼的方法和装置
US10869214B2 (en) Wireless communication device and a method therein for reporting signal quality measurements
US20230026501A1 (en) Communication method and apparatus
EP4075905A1 (en) Wireless communication method, terminal device and network device
US20210144564A1 (en) Techniques for indicating directional information for wireless communications
US20220078726A1 (en) Techniques for switching receive beams for cell measurement in wireless communications
CN115606231A (zh) 邻区测量的方法、终端设备和网络设备
US20240007889A1 (en) Measurement protocol for restricted multi-link devices
WO2023015643A1 (zh) 无线通信方法、装置、设备及存储介质
WO2022027684A1 (zh) 信息上报方法、信息处理方法、终端设备和网络设备
CN116250328A (zh) 状态切换的方法、终端设备和网络设备
CN116325914A (zh) 无线通信的方法、终端设备和网络设备
US20200107368A1 (en) Control info tunneling to increase pdcch coverage
US20230199855A1 (en) Methods of sending ue screaming signal in private networks with local licensed spectrum
WO2023102732A1 (zh) 一种测量配置方法及装置、网络设备
US20220337306A1 (en) Method for beam selection, terminal device, and network device
US20230336260A1 (en) Method for signal processing, terminal device, and network device
US12003979B2 (en) Methods and apparatus for base station signaling for interference estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21953252

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021953252

Country of ref document: EP

Effective date: 20230626

NENP Non-entry into the national phase

Ref country code: DE