WO2023014146A1 - 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치 - Google Patents

무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치 Download PDF

Info

Publication number
WO2023014146A1
WO2023014146A1 PCT/KR2022/011620 KR2022011620W WO2023014146A1 WO 2023014146 A1 WO2023014146 A1 WO 2023014146A1 KR 2022011620 W KR2022011620 W KR 2022011620W WO 2023014146 A1 WO2023014146 A1 WO 2023014146A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
prach
base station
bwp
preamble
Prior art date
Application number
PCT/KR2022/011620
Other languages
English (en)
French (fr)
Inventor
이영대
김재형
양석철
황승계
Original Assignee
엘지전자 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 엘지전자 주식회사 filed Critical 엘지전자 주식회사
Publication of WO2023014146A1 publication Critical patent/WO2023014146A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present disclosure relates to a wireless communication system, and more particularly, to a method and apparatus for performing a random access procedure in a wireless communication system.
  • Mobile communication systems have been developed to provide voice services while ensuring user activity.
  • the mobile communication system has expanded its scope to data services as well as voice.
  • the explosive increase in traffic causes a shortage of resources and users demand higher-speed services, so a more advanced mobile communication system is required. there is.
  • next-generation mobile communication system The requirements of the next-generation mobile communication system are to support explosive data traffic, drastic increase in transmission rate per user, significantly increased number of connected devices, very low end-to-end latency, and high energy efficiency.
  • Dual Connectivity Massive MIMO (Massive Multiple Input Multiple Output), In-band Full Duplex, Non-Orthogonal Multiple Access (NOMA), Super Wideband Wideband) support, various technologies such as device networking (Device Networking) are being studied.
  • Massive MIMO Massive Multiple Input Multiple Output
  • NOMA Non-Orthogonal Multiple Access
  • Super Wideband Wideband various technologies such as device networking (Device Networking) are being studied.
  • a technical problem of the present disclosure is to provide a method and apparatus for performing a random access procedure.
  • a technical problem of the present disclosure is to provide a method and apparatus for performing a random access procedure in consideration of a terminal with limited capabilities.
  • a method for performing random access by a terminal in a wireless communication system includes, from a base station, an initial bandwidth part (initial BWP) for a terminal having reduced capability. ) Receiving setting information for; and transmitting, to the base station, a physical random access channel (PRACH) preamble in the initial bandwidth portion based on the detection of a link failure.
  • PRACH physical random access channel
  • the PRACH preamble may be transmitted in a PRACH resource set related to the limited capability among the one or more PRACH resource sets.
  • a method for performing random access by a base station in a wireless communication system includes, in a terminal, an initial bandwidth part (initial BWP) for a terminal having reduced capability. ) Transmitting setting information for; and receiving a physical random access channel (PRACH) preamble from the terminal in the initial bandwidth part based on the detection of a link failure.
  • PRACH physical random access channel
  • the PRACH preamble may be received in a PRACH resource set related to the limited capability among the one or more PRACH resource sets.
  • a UE may initially identify a specific capability or a limited capability of the UE in a random access procedure of a base station by performing a random access procedure according to a random access configuration according to its capability.
  • FIG. 1 illustrates the structure of a wireless communication system to which the present disclosure may be applied.
  • FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
  • FIG 3 illustrates a resource grid in a wireless communication system to which the present disclosure may be applied.
  • FIG. 4 illustrates a physical resource block in a wireless communication system to which the present disclosure may be applied.
  • FIG. 5 illustrates a slot structure in a wireless communication system to which the present disclosure may be applied.
  • FIG. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
  • FIG. 7 is a diagram illustrating operations of a terminal for a method for performing a random access procedure according to an embodiment of the present disclosure.
  • FIG. 8 is a diagram illustrating an operation of a base station for a method of performing a random access procedure according to an embodiment of the present disclosure.
  • FIG. 9 illustrates a block configuration diagram of a wireless communication device according to an embodiment of the present disclosure.
  • first and second are used only for the purpose of distinguishing one component from another component and are not used to limit the components, unless otherwise specified. The order or importance among them is not limited. Accordingly, within the scope of the present disclosure, a first component in one embodiment may be referred to as a second component in another embodiment, and similarly, a second component in one embodiment may be referred to as a first component in another embodiment. can also be called
  • the present disclosure describes a wireless communication network or wireless communication system, and operations performed in the wireless communication network control the network and transmit or receive signals in a device (for example, a base station) in charge of the wireless communication network. It can be done in the process of receiving (receive) or in the process of transmitting or receiving signals from a terminal coupled to the wireless network to or between terminals.
  • a device for example, a base station
  • transmitting or receiving a channel includes the meaning of transmitting or receiving information or a signal through a corresponding channel.
  • transmitting a control channel means transmitting control information or a signal through the control channel.
  • transmitting a data channel means transmitting data information or a signal through the data channel.
  • downlink means communication from a base station to a terminal
  • uplink means communication from a terminal to a base station.
  • a transmitter may be part of a base station and a receiver may be part of a terminal.
  • a transmitter may be a part of a terminal and a receiver may be a part of a base station.
  • a base station may be expressed as a first communication device
  • a terminal may be expressed as a second communication device.
  • a base station includes a fixed station, a Node B, an evolved-NodeB (eNB), a Next Generation NodeB (gNB), a base transceiver system (BTS), an access point (AP), and a network (5G Network), AI (Artificial Intelligence) system/module, RSU (road side unit), robot, drone (UAV: Unmanned Aerial Vehicle), AR (Augmented Reality) device, VR (Virtual Reality) device, etc.
  • AI Artificial Intelligence
  • RSU road side unit
  • robot UAV: Unmanned Aerial Vehicle
  • AR Algmented Reality
  • VR Virtual Reality
  • a terminal may be fixed or mobile, and a user equipment (UE), a mobile station (MS), a user terminal (UT), a mobile subscriber station (MSS), a subscriber station (SS), and an advanced mobile (AMS) Station), WT (Wireless terminal), MTC (Machine-Type Communication) device, M2M (Machine-to-Machine) device, D2D (Device-to-Device) device, vehicle, RSU (road side unit), It can be replaced with terms such as robot, AI (Artificial Intelligence) module, drone (UAV: Unmanned Aerial Vehicle), AR (Augmented Reality) device, VR (Virtual Reality) device, etc.
  • AI Artificial Intelligence
  • drone UAV: Unmanned Aerial Vehicle
  • AR Algmented Reality
  • VR Virtual Reality
  • CDMA may be implemented with a radio technology such as Universal Terrestrial Radio Access (UTRA) or CDMA2000.
  • TDMA may be implemented with a radio technology such as Global System for Mobile communications (GSM)/General Packet Radio Service (GPRS)/Enhanced Data Rates for GSM Evolution (EDGE).
  • GSM Global System for Mobile communications
  • GPRS General Packet Radio Service
  • EDGE Enhanced Data Rates for GSM Evolution
  • OFDMA may be implemented with radio technologies such as IEEE 802.11 (Wi-Fi), IEEE 802.16 (WiMAX), IEEE 802-20, and Evolved UTRA (E-UTRA).
  • UTRA is part of the Universal Mobile Telecommunications System (UMTS).
  • 3rd Generation Partnership Project (3GPP) Long Term Evolution (LTE) is a part of Evolved UMTS (E-UMTS) using E-UTRA
  • LTE-A (Advanced) / LTE-A pro is an evolved version of 3GPP LTE.
  • 3GPP NR New Radio or New Radio Access Technology
  • 3GPP LTE/LTE-A/LTE-A pro is an evolved version of 3GPP LTE/LTE-A/LTE-A pro.
  • LTE refers to technology after 3GPP Technical Specification (TS) 36.xxx Release 8.
  • TS Technical Specification
  • LTE technology after 3GPP TS 36.xxx Release 10 is referred to as LTE-A
  • LTE technology after 3GPP TS 36.xxx Release 13 is referred to as LTE-A pro
  • 3GPP NR refers to technology after TS 38.xxx Release 15.
  • LTE/NR may be referred to as a 3GPP system.
  • "xxx" means standard document detail number.
  • LTE/NR may be collectively referred to as a 3GPP system.
  • TS 36.211 Physical Channels and Modulation
  • TS 36.212 Multiplexing and Channel Coding
  • TS 36.213 Physical Layer Procedures
  • TS 36.300 General Description
  • TS 36.331 Radio Resource Control
  • TS 38.211 Physical Channels and Modulation
  • TS 38.212 Multiplexing and Channel Coding
  • TS 38.213 Physical Layer Procedures for Control
  • TS 38.214 Physical Layer Procedures for Data
  • TS 38.300 General description of NR and New Generation-Radio Access Network (NG-RAN)
  • TS 38.331 Radio Resource Control Protocol Specification
  • channel state information - reference signal resource indicator channel state information - reference signal resource indicator
  • channel state information - reference signal channel state information - reference signal
  • Layer 1 reference signal received quality Layer 1 reference signal received quality
  • orthogonal frequency division multiplexing orthogonal frequency division multiplexing (orthogonal frequency division multiplexing)
  • radio resource control radio resource control
  • Synchronization signal block including primary synchronization signal (PSS), secondary synchronization signal (SSS) and physical broadcast channel (PBCH)
  • NR is an expression showing an example of 5G RAT.
  • a new RAT system including NR uses an OFDM transmission scheme or a transmission scheme similar thereto.
  • the new RAT system may follow OFDM parameters different from those of LTE.
  • the new RAT system follows the numerology of the existing LTE/LTE-A as it is, but may support a larger system bandwidth (eg, 100 MHz).
  • one cell may support a plurality of numerologies. That is, terminals operating with different numerologies can coexist in one cell.
  • a numerology corresponds to one subcarrier spacing in the frequency domain.
  • Different numerologies can be defined by scaling the reference subcarrier spacing by an integer N.
  • FIG. 1 illustrates the structure of a wireless communication system to which the present disclosure may be applied.
  • the NG-RAN is a NG-RA (NG-Radio Access) user plane (ie, a new AS (access stratum) sublayer / PDCP (Packet Data Convergence Protocol) / RLC (Radio Link Control) / MAC / PHY) and control plane (RRC) protocol termination to the UE.
  • the gNBs are interconnected through an Xn interface.
  • the gNB is also connected to a New Generation Core (NGC) through an NG interface. More specifically, the gNB is connected to an Access and Mobility Management Function (AMF) through an N2 interface and to a User Plane Function (UPF) through an N3 interface.
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • FIG. 2 illustrates a frame structure in a wireless communication system to which the present disclosure can be applied.
  • An NR system can support multiple numerologies.
  • numerology may be defined by subcarrier spacing and Cyclic Prefix (CP) overhead.
  • the multiple subcarrier spacing can be derived by scaling the basic (reference) subcarrier spacing by an integer N (or ⁇ ).
  • N or ⁇
  • the numerology used can be selected independently of the frequency band.
  • various frame structures according to a plurality of numerologies may be supported.
  • OFDM numerology and frame structure that can be considered in the NR system will be described.
  • Multiple OFDM numerologies supported in the NR system can be defined as shown in Table 1 below.
  • NR supports multiple numerologies (or subcarrier spacing (SCS)) to support various 5G services. For example, when the SCS is 15 kHz, it supports a wide area in traditional cellular bands, and when the SCS is 30 kHz/60 kHz, dense-urban, lower latency and a wider carrier bandwidth, and when the SCS is 60 kHz or higher, a bandwidth greater than 24.25 GHz is supported to overcome phase noise.
  • SCS subcarrier spacing
  • the NR frequency band is defined as two types of frequency ranges (FR1 and FR2).
  • FR1 and FR2 may be configured as shown in Table 2 below.
  • FR2 may mean millimeter wave (mmW).
  • ⁇ f max 480 10 3 Hz
  • N f 4096.
  • T TA (N TA +N TA,offset )T c before the start of the corresponding downlink frame in the corresponding terminal.
  • slots are numbered in increasing order of n s ⁇ ⁇ 0,..., N slot subframe, ⁇ -1 ⁇ within a subframe, and within a radio frame They are numbered in increasing order n s,f ⁇ ⁇ 0,..., N slot frame, ⁇ -1 ⁇ .
  • One slot is composed of consecutive OFDM symbols of N symb slots , and N symb slots are determined according to CP.
  • the start of slot n s ⁇ in a subframe is temporally aligned with the start of OFDM symbol n s ⁇ N symb slot in the same subframe. Not all terminals can simultaneously transmit and receive, which means that not all OFDM symbols in a downlink slot or uplink slot can be used.
  • Table 3 shows the number of OFDM symbols per slot (N symb slot ), the number of slots per radio frame (N slot frame, ⁇ ), and the number of slots per subframe (N slot subframe, ⁇ ) in the general CP.
  • Table 4 represents the number of OFDM symbols per slot, the number of slots per radio frame, and the number of slots per subframe in the extended CP.
  • one subframe may include 4 slots.
  • a mini-slot may contain 2, 4 or 7 symbols, more or fewer symbols.
  • an antenna port a resource grid, a resource element, a resource block, a carrier part, etc. can be considered Hereinafter, the physical resources that can be considered in the NR system will be described in detail.
  • the antenna port is defined such that the channel on which a symbol on the antenna port is carried can be inferred from the channel on which other symbols on the same antenna port are carried. If the large-scale properties of the channel on which the symbols on one antenna port are carried can be inferred from the channel on which the symbols on the other antenna port are carried, then the two antenna ports are quasi co-located or QC/QCL (quasi co-located or quasi co-location).
  • the wide range characteristic includes one or more of delay spread, Doppler spread, frequency shift, average received power, and received timing.
  • FIG 3 illustrates a resource grid in a wireless communication system to which the present disclosure may be applied.
  • a resource grid is composed of N RB ⁇ N sc RB subcarriers in the frequency domain, and one subframe is composed of 14 2 ⁇ OFDM symbols.
  • a transmitted signal is described by one or more resource grids consisting of N RB ⁇ N sc RB subcarriers and 2 ⁇ N symb ( ⁇ ) OFDM symbols.
  • N RB ⁇ ⁇ N RB max, ⁇ The N RB max, ⁇ represents the maximum transmission bandwidth, which may vary not only between numerologies but also between uplink and downlink.
  • one resource grid may be set for each ⁇ and antenna port p.
  • Each element of the resource grid for ⁇ and antenna port p is referred to as a resource element and is uniquely identified by an index pair (k, l').
  • l' 0,...,2 ⁇ N symb ( ⁇ ) -1 is a symbol in a subframe indicates the location of
  • an index pair (k, l) is used.
  • l 0,...,N symb ⁇ -1.
  • the resource element (k,l') for ⁇ and antenna port p corresponds to a complex value a k,l' (p, ⁇ ) .
  • indices p and ⁇ may be dropped, resulting in a complex value of a k,l' (p) or can be a k,l' .
  • Point A serves as a common reference point of the resource block grid and is obtained as follows.
  • OffsetToPointA for primary cell (PCell) downlink represents the frequency offset between point A and the lowest subcarrier of the lowest resource block overlapping the SS/PBCH block used by the UE for initial cell selection. It is expressed in resource block units assuming a 15 kHz subcarrier spacing for FR1 and a 60 kHz subcarrier spacing for FR2.
  • -absoluteFrequencyPointA represents the frequency-position of point A expressed as in ARFCN (absolute radio-frequency channel number).
  • Common resource blocks are numbered upward from 0 in the frequency domain for the subcarrier spacing ⁇ .
  • the center of subcarrier 0 of common resource block 0 for subcarrier spacing setting ⁇ coincides with 'point A'.
  • the relationship between the common resource block number n CRB ⁇ and the resource elements (k, l) for the subcarrier spacing ⁇ is given by Equation 1 below.
  • Physical resource blocks are numbered from 0 to N BWP,i size, ⁇ -1 within a bandwidth part (BWP), where i is the number of BWP.
  • BWP bandwidth part
  • Equation 2 The relationship between the physical resource block n PRB and the common resource block n CRB in BWP i is given by Equation 2 below.
  • N BWP,i start, ⁇ is a common resource block where BWP starts relative to common resource block 0.
  • Figure 4 illustrates a physical resource block in a wireless communication system to which the present disclosure may be applied.
  • Figure 5 illustrates a slot structure in a wireless communication system to which the present disclosure can be applied.
  • a slot includes a plurality of symbols in the time domain. For example, in the case of a normal CP, one slot includes 7 symbols, but in the case of an extended CP, one slot includes 6 symbols.
  • a carrier includes a plurality of subcarriers in the frequency domain.
  • a resource block (RB) is defined as a plurality of (eg, 12) consecutive subcarriers in the frequency domain.
  • a bandwidth part (BWP) is defined as a plurality of contiguous (physical) resource blocks in the frequency domain, and may correspond to one numerology (eg, SCS, CP length, etc.).
  • a carrier may include up to N (eg, 5) BWPs. Data communication is performed through an activated BWP, and only one BWP can be activated for one terminal.
  • Each element in the resource grid is referred to as a resource element (RE), and one complex symbol may be mapped.
  • RE resource element
  • the NR system can support up to 400 MHz per component carrier (CC). If a terminal operating in such a wideband CC always operates with radio frequency (RF) chips for the entire CC turned on, battery consumption of the terminal may increase.
  • a terminal operating in such a wideband CC always operates with radio frequency (RF) chips for the entire CC turned on, battery consumption of the terminal may increase.
  • RF radio frequency
  • different numerologies eg subcarrier spacing, etc.
  • the capability for the maximum bandwidth may be different for each terminal.
  • the base station may instruct the terminal to operate only in a part of the bandwidth rather than the entire bandwidth of the wideband CC, and the part of the bandwidth is defined as a bandwidth part (BWP) for convenience.
  • BWP may be composed of consecutive RBs on the frequency axis and may correspond to one numerology (eg, subcarrier spacing, CP length, slot/mini-slot period).
  • the base station may set multiple BWPs even within one CC configured for the terminal. For example, in a PDCCH monitoring slot, a BWP occupying a relatively small frequency domain may be set, and a PDSCH indicated by the PDCCH may be scheduled on a larger BWP. Alternatively, when UEs are concentrated in a specific BWP, some UEs may be set to other BWPs for load balancing. Alternatively, considering frequency domain inter-cell interference cancellation between neighboring cells, some of the spectrum among the entire bandwidth may be excluded and both BWPs may be configured even within the same slot. That is, the base station may configure at least one DL/UL BWP for a terminal associated with a wideband CC.
  • the base station may activate at least one DL/UL BWP among the configured DL/UL BWP(s) at a specific time (by L1 signaling or MAC Control Element (CE) or RRC signaling).
  • the base station may indicate switching to another configured DL / UL BWP (by L1 signaling or MAC CE or RRC signaling).
  • a timer value expires based on a timer, it may be switched to a predetermined DL/UL BWP.
  • the activated DL/UL BWP is defined as an active DL/UL BWP.
  • the terminal In situations such as when the terminal is performing an initial access process or before an RRC connection is set up, it may not be possible to receive the configuration for DL / UL BWP, so in this situation, the terminal This assumed DL/UL BWP is defined as the first active DL/UL BWP.
  • FIG. 6 illustrates physical channels used in a wireless communication system to which the present disclosure can be applied and a general signal transmission/reception method using them.
  • a terminal receives information from a base station through downlink, and the terminal transmits information to the base station through uplink.
  • Information transmitted and received between the base station and the terminal includes data and various control information, and various physical channels exist according to the type/use of the information transmitted and received by the base station and the terminal.
  • the terminal When the terminal is turned on or newly enters a cell, the terminal performs an initial cell search operation such as synchronizing with the base station (S601). To this end, the terminal synchronizes with the base station by receiving a primary synchronization signal (PSS) and a secondary synchronization signal (SSS) from the base station, and obtains information such as a cell identifier (ID: Identifier). can Thereafter, the UE may acquire intra-cell broadcast information by receiving a Physical Broadcast Channel (PBCH) from the base station. Meanwhile, the terminal may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell search step.
  • PSS primary synchronization signal
  • SSS secondary synchronization signal
  • ID cell identifier
  • the UE may acquire intra-cell broadcast information by receiving a Physical Broadcast Channel (PBCH) from the base station.
  • PBCH Physical Broadcast Channel
  • the terminal may check the downlink channel state by receiving a downlink reference signal (DL RS) in the initial cell
  • the UE After completing the initial cell search, the UE acquires more detailed system information by receiving a Physical Downlink Control Channel (PDCCH) and a Physical Downlink Control Channel (PDSCH) according to information carried on the PDCCH. It can (S602).
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Control Channel
  • the terminal may perform a random access procedure (RACH) to the base station (steps S603 to S606).
  • RACH random access procedure
  • the terminal may transmit a specific sequence as a preamble through a physical random access channel (PRACH) (S603 and S605), and receive a response message to the preamble through a PDCCH and a corresponding PDSCH ( S604 and S606).
  • PRACH physical random access channel
  • a contention resolution procedure may be additionally performed.
  • the UE receives PDCCH/PDSCH as a general uplink/downlink signal transmission procedure (S607) and Physical Uplink Shared Channel (PUSCH)/Physical Uplink Control Channel (PUCCH: Physical Uplink Control Channel) transmission (S608) may be performed.
  • the terminal receives downlink control information (DCI) through the PDCCH.
  • DCI downlink control information
  • the DCI includes control information such as resource allocation information for a terminal, and has different formats depending on its purpose of use.
  • the control information that the terminal transmits to the base station through the uplink or the terminal receives from the base station is a downlink / uplink ACK / NACK (Acknowledgement / Non-Acknowledgement) signal, CQI (Channel Quality Indicator), PMI (Precoding Matrix) Indicator), RI (Rank Indicator), etc.
  • a terminal may transmit control information such as the above-described CQI/PMI/RI through PUSCH and/or PUCCH.
  • Table 5 shows an example of a DCI format in the NR system.
  • DCI format uses 0_0 Scheduling of PUSCH in one cell 0_1 Scheduling of one or multiple PUSCHs in one cell, or indication of cell group (CG) downlink feedback information to the UE 0_2 Scheduling of PUSCH in one cell 1_0 Scheduling of PDSCH in one DL cell 1_1 Scheduling of PDSCH in one cell 1_2 Scheduling of PDSCH in one cell
  • DCI formats 0_0, 0_1, and 0_2 are resource information related to PUSCH scheduling (eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.), transport block ( TB: Transport Block) related information (eg, MCS (Modulation Coding and Scheme), NDI (New Data Indicator), RV (Redundancy Version), etc.), HARQ (Hybrid - Automatic Repeat and request) related information (eg, , process number, downlink assignment index (DAI), PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, DMRS sequence initialization information, antenna port, CSI request, etc.), power control information (eg, PUSCH power control, etc.), and control information included in each DCI format may be predefined.
  • PUSCH scheduling eg, UL/SUL (Supplementary UL), frequency resource allocation, time resource allocation, frequency hopping, etc.
  • DCI format 0_0 is used for PUSCH scheduling in one cell.
  • Information included in DCI format 0_0 is a cyclic redundancy check (CRC) by C-RNTI (Cell RNTI: Cell Radio Network Temporary Identifier), CS-RNTI (Configured Scheduling RNTI) or MCS-C-RNTI (Modulation Coding Scheme Cell RNTI) ) is scrambled and transmitted.
  • CRC cyclic redundancy check
  • C-RNTI Cell RNTI: Cell Radio Network Temporary Identifier
  • CS-RNTI Configured Scheduling RNTI
  • MCS-C-RNTI Modulation Coding Scheme Cell RNTI
  • DCI format 0_1 is used to instruct the UE to schedule one or more PUSCHs in one cell or configured grant (CG: configure grant) downlink feedback information.
  • Information included in DCI format 0_1 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI (Semi-Persistent CSI RNTI) or MCS-C-RNTI.
  • DCI format 0_2 is used for PUSCH scheduling in one cell.
  • Information included in DCI format 0_2 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI, SP-CSI-RNTI or MCS-C-RNTI.
  • DCI formats 1_0, 1_1, and 1_2 are resource information related to PDSCH scheduling (eg, frequency resource allocation, time resource allocation, VRB (virtual resource block)-PRB (physical resource block) mapping, etc.), transport block (TB) related information (eg, MCS, NDI, RV, etc.), HARQ related information (eg, process number, DAI, PDSCH-HARQ feedback timing, etc.), multi-antenna related information (eg, antenna port , transmission configuration indicator (TCI), sounding reference signal (SRS) request, etc.), PUCCH-related information (eg, PUCCH power control, PUCCH resource indicator, etc.), and the control information included in each DCI format can be predefined.
  • PDSCH scheduling eg, frequency resource allocation, time resource allocation, VRB (virtual resource block)-PRB (physical resource block) mapping, etc.
  • transport block (TB) related information eg, MCS, NDI, RV, etc.
  • HARQ related information
  • DCI format 1_0 is used for PDSCH scheduling in one DL cell.
  • Information included in DCI format 1_0 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI or MCS-C-RNTI.
  • DCI format 1_1 is used for PDSCH scheduling in one cell.
  • Information included in DCI format 1_1 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI or MCS-C-RNTI.
  • DCI format 1_2 is used for PDSCH scheduling in one cell.
  • Information included in DCI format 1_2 is transmitted after being CRC scrambled by C-RNTI, CS-RNTI or MCS-C-RNTI.
  • the terminal may obtain AS (Access Stratum)-information/NAS (Non Access Stratum)-information through a system information (SI) acquisition process.
  • SI acquisition process can be applied to terminals in RRC_IDLE state, RRC_INACTIVE state, and RRC_CONNECTED state.
  • a cell eg, a base station (BS) transmits a Master Information Block (MIB) to a terminal (eg, UE). Then, the cell may transmit System Information Block 1 (SIB1) to the terminal. Then, the terminal may transmit a System Information Request (System Information Request) to the cell, and accordingly, the cell may transmit System Information message (s) to the UE.
  • MIB Master Information Block
  • SIB1 System Information Block 1
  • SIB1 System Information Request
  • s System Information message
  • System information can be divided into MIB and multiple SIBs.
  • SI other than MIB may be referred to as Remaining Minimum System Information (RMSI) and Other System Information (OSI).
  • RMSI Remaining Minimum System Information
  • OSI Other System Information
  • RMSI corresponds to SIB1
  • SIB2 SIB2 and higher than SIB2.
  • the MIB includes information/parameters related to SIB1 reception and is transmitted through the PBCH of the SSB.
  • the MIB may include a common subcarrier space (eg, subCarrierSpacingCommon), a subcarrier offset of SSB (eg, ssb-SubcarrierOffset), and a PDCCH configuration for SBI1 (eg, pdcch-ConfigSIB1).
  • the UE Upon initial cell selection, the UE assumes that half-frames with SSBs are repeated at 20 ms intervals. The UE may check whether a Control Resource Set (CORESET) exists for the Type0-PDCCH common search space based on the MIB.
  • CORESET Control Resource Set
  • the Type0-PDCCH common search space is a type of PDCCH search space and is used to transmit a PDCCH for scheduling SI messages.
  • the UE uses (i) a plurality of contiguous RBs and one or more contiguous symbols constituting the CORESET and (ii) a PDCCH opportunity based on information in the MIB (eg, pdcch-ConfigSIB1) (ie, time domain location for PDCCH reception) may be determined.
  • pdcch-ConfigSIB1 is 8-bit information, (i) is determined based on 4 bits of MSB (Most Significant Bit), and (ii) is determined based on 4 bits of LSB (Least Significant Bit).
  • pdcch-ConfigSIB1 provides information about a frequency location where SSB/SIB1 exists and a frequency range where SSB/SIB1 does not exist.
  • SIB1 includes information related to availability and scheduling (eg, transmission period, SI-window size) of the remaining SIBs (hereinafter, SIBx, where x is an integer greater than or equal to 2). For example, SIB1 may inform whether SIBx is periodically broadcast or provided at the request of the terminal through an on-demand method. When SIBx is provided by an on-demand method, SIB1 may include information necessary for the UE to perform an SI request. SIB1 is transmitted through the PDSCH, the PDCCH scheduling SIB1 is transmitted through the Type0-PDCCH common search space, and SIB1 is transmitted through the PDSCH indicated by the PDCCH. SIBx is included in the SI message and transmitted through the PDSCH. Each SI message is transmitted within a periodically occurring time window (i.e., SI-window).
  • SI-window a periodically occurring time window
  • Random access in the NR system is 1) when the UE requests or resumes RRC connection, 2) when the UE performs handover to a neighboring cell or SCG addition, 3) scheduling request to the base station (Scheduling Request) , 4) when the base station instructs random access of the terminal in PDCCH order, 5) when beam failure or RRC connection failure is detected.
  • the random access procedure (i.e., RACH procedure) of LTE and NR is Msg1 (PRACH preamble) transmission of the UE, Msg2 (RAR, random access response) transmission of the base station, Msg3 (PUSCH) transmission of the UE, and Msg4 (PDSCH) transmission of the base station It can be composed of 4 steps of
  • the UE transmits a Physical Random Access Channel (PRACH) preamble and receives a Random Access Response (RAR) in response thereto.
  • PRACH Physical Random Access Channel
  • RAR Random Access Response
  • the preamble is a UE-dedicated resource, that is, in the case of CFRA (Contention Free Random Access)
  • the random access operation is terminated by receiving the RAR corresponding to the UE itself.
  • the preamble is a common resource, that is, in the case of CBRA (Contention Based Random Access)
  • RAPID RACH Preamble ID
  • Msg3 is transmitted through the PUSCH with the corresponding resource
  • the PDSCH After receiving a contention resolution message through , the random access operation is terminated.
  • time and frequency resources for mapping/transmitting the PRACH preamble signal are defined as RACH Occasion (RO)
  • time and frequency resources for mapping/transmitting the Msg3 PUSCH signal are defined as PO (PUSCH Occasion).
  • the two-step RACH procedure consists of transmission of MsgA (PRACH preamble + Msg3 PUSCH) of the terminal (UE) and transmission of MsgB (RAR + Msg4 PDSCH) of the base station (gNB).
  • MsgA PRACH preamble + Msg3 PUSCH
  • RAR + Msg4 PDSCH MsgB
  • the PRACH format for transmitting the PRACH preamble in the NR system consists of a format consisting of length 839 sequences (named long RACH format for convenience) and a format consisting of length 139 sequences (named short RACH format for convenience).
  • the sub-carrier spacing (SCS) of the corresponding short RACH format is defined as 15 or 30 kHz.
  • RACH may be transmitted by carrying 139 tones among 12 RBs (ie, 144 REs). In this case, 5 null tones can be considered (e.g. 2 null tones for the lower RE index and 3 null tones for the upper RE index).
  • the base station determines which PRACH format can be transmitted for a specific duration at a specific timing through higher layer signaling (eg, RRC signaling or MAC CE or DCI), and the corresponding slot ( The number of ROs (RACH occasions or PRACH occasions) in a slot) may be informed to the UE.
  • higher layer signaling eg, RRC signaling or MAC CE or DCI
  • the base station and/or terminal have several ROs in the corresponding RACH slot for each preamble format. is defined and information on how many OFDM symbols are occupied by each PRACH preamble for the corresponding preamble format.
  • the base station may also inform the terminal of information about when the RO starts from a point in the corresponding RACH slot by indicating a starting symbol of the first RO.
  • radio resource management Radio resource management
  • - SLIV Starting and Length Indicator Value (Indicative value for the starting symbol index and number of symbols in the slot of the PDSCH and / or PUSCH. Scheduling the corresponding PDSCH and / or PUSCH It can be set as a component of an entry constituting a TDRA field in a scheduling PDCCH.)
  • BandWidth Part may be composed of continuous resource blocks (RBs) on the frequency axis.
  • One numerology eg, SCS, CP length, slot / may correspond to mini-slot duration (slot/mini-slot duration, etc.
  • multiple BWPs may be set in one carrier (the number of BWPs per carrier may also be limited), but activated ( The number of activated BWPs may be limited to a part (eg, 1) per carrier.)
  • control resource set (CONtrol REsourse SET) (means a time-frequency resource area in which PDCCH can be transmitted, and the number of CORESETs per BWP may be limited.)
  • -SFI Slot Format Indicator (an indicator indicating a symbol level DL/UL direction within a specific slot(s), transmitted through a group common PDCCH).
  • QCL Quasi-Co-Location
  • RS reference signals
  • RS Reference Signal
  • RS Doppler shift
  • Doppler spread and average delay obtained from one RS
  • average spread delay spread
  • spatial reception parameter Spatial Rx parameter
  • QCL parameters can also be applied to other RS (or the antenna port (antenna port (s)) of the corresponding RS))
  • QCL types are defined as follows: 'typeA': ⁇ Doppler shift, Doppler spread, average delay, delay spread ⁇ , 'typeB': ⁇ Doppler shift, Doppler spread ⁇ , 'typeC ': ⁇ Doppler shift, average delay ⁇ , 'typeD': ⁇ Spatial Rx parameter ⁇ .
  • TCI state is one such as DM-RS ports of PDSCH, DM-RS ports of PDCCH, or CSI-RS port(s) of CSI-RS resources
  • TCI state index corresponding to each code point constituting the field
  • CE control element
  • the TCI state for each TCI state index is set through RRC signaling
  • the corresponding TCI state is set between DL RS
  • configuration between DL RS and UL RS or between UL RS and UL RS may be allowed.
  • UL RS include SRS, PUSCH DM-RS, and PUCCH DM-RS.
  • SRS resource indicator (SRS resource indicator) (Indicates one of the SRS resource index values set in 'SRS resource indicator' among fields in DCI scheduling PUSCH.
  • SRS resource indicator (Indicates one of the SRS resource index values set in 'SRS resource indicator' among fields in DCI scheduling PUSCH.
  • the PUSCH can be transmitted using the same spatial domain transmission filter used for reference signal transmission and reception, where the reference RS is transmitted to RRC signaling through the SRS-SpatialRelationInfo parameter for each SRS resource. It is set by, and SS/PBCH block, CSI-RS, or SRS can be set as reference RS.
  • PLMN ID Public Land Mobile Network identifier
  • UL-SCH uplink shared channel
  • CCCH common control channel
  • SDU service data unit
  • Special Cell In the case of Dual Connectivity operation, the term Special Cell refers to the MCG's PCell or SCG's PCell depending on whether the MAC entity is related to the MCG (master cell group) or SCG (secondary cell group), respectively. Indicates a PSCell. Otherwise, the term Special Cell refers to PCell. Special Cell supports PUCCH transmission and contention-based random access and is always active.
  • PCell PCell, PSCell, SCell (secondary cell).
  • Type 1 configured grant
  • Type 2 configured grant
  • - Fall-back DCI Indicates a DCI format that can be used for fall-back operation, for example, DCI formats 0_0 and 1_0 correspond.
  • Non-fall-back DCI Indicates a DCI format other than fall-back DCI, for example, DCI formats 0_1 and 1_1 are applicable.
  • frequency domain resource allocation (frequency domain resource allocation)
  • time domain resource allocation time domain resource allocation
  • A/N acknowledgenowledgement/negative acknowledgment information for data (eg, PDSCH) received from cell A
  • One DL CFR provides group common PDCCH and group common PDSCH transmission resources for MBS transmission and reception.
  • One UL CFR provides HARQ-ACK PUCCH resources for group common PDSCH reception.
  • One CFR is one MBS specific BWP or one UE specific BWP. Alternatively, one or a plurality of CFRs may be set within one UE specific BWP.
  • One CFR has a connection relationship with one UE specific BWP.
  • TMGI Temporary Mobile Group Identity. As an MBS service identifier, it indicates a specific service.
  • G-RNTI Group Radio Network Temporary Identifier. Indicates the terminal group identifier that receives the MBS.
  • '/' means 'and', 'or', or 'and/or' depending on the context.
  • RedCap reduced capability
  • CE coverage enhancement
  • a terminal supporting the limited capability as described above is referred to as an R terminal, an R-UE, or a RedCap UE/terminal
  • a terminal supporting the coverage enhancement capability is referred to as a CE terminal or a CE UE.
  • a RedCap terminal may support CE capability (ie, CE terminal) or may not support CE capability (ie, non-CE terminal).
  • a normal terminal may support CE capability
  • a RedCap terminal may support CE capability. Accordingly, the CE terminal may correspond to a general terminal or a RedCap terminal.
  • RedCap terminals or CE terminals are limited or support different terminal capabilities than existing terminals, it is necessary for the base station to initially identify a specific type of terminal in a random access process (ie, RACH process). may be needed
  • RACH process random access process
  • a terminal having a specific capability eg CE
  • a limited capability eg RedCap
  • RACH procedure a random access procedure
  • the corresponding RACH procedure may be performed for reasons such as initial access, handover, beam failure recovery (BFR), and RRC re-establishment.
  • the method proposed in this disclosure may be applied to all terminals or may be applied only to a specific type of terminal having a specific or limited capability.
  • the method proposed in this disclosure may be used/applied to identify the RedCap terminal type and the CE terminal type.
  • the base station is configured to different types of terminals to identify a general terminal that is a CE terminal, a general terminal that is a non-CE terminal, a RedCap terminal that is a CE terminal, and a RedCap terminal that is a non-CE terminal.
  • Different UL BWPs may be configured for each, or different PRACH preambles and/or PRACH resources (eg, PRACH occasions) may be allocated in the same BWP.
  • the base station may set/regulate to indicate an additional or specific terminal type through MSG3 on the random access procedure.
  • a general terminal that is a CE terminal means a general terminal that corresponds to a CE terminal (ie, has CE capability), and a general terminal that is a non-CE terminal corresponds to a non-CE terminal (ie, has CE capability). do not have) may mean a general terminal.
  • a RedCap terminal that is a CE terminal refers to a RedCap terminal corresponding to a CE terminal (ie, has CE capability), and a RedCap terminal that is a non-CE terminal corresponds to a non-CE terminal (ie, does not have CE capability).
  • a terminal that is a CE terminal is a terminal requesting / requesting msg3 PUSCH repetition, and may be replaced with the following terms.
  • a general terminal that is a CE terminal is replaced with a general terminal that requires MSG3 PUSCH repetition
  • a general terminal that is a non-CE terminal is replaced with a general terminal that does not require MSG3 PUSCH repetition
  • RedCap terminal which is a non-CE terminal, is replaced with a RedCap terminal that does not require MSG3 PUSCH repetition
  • the CE terminal corresponds to a CE terminal in terms of terminal capability, but can be divided into a CE terminal that does not request / request MSG3 PUSCH repetition and a CE terminal that requests MSG3 PUSCH repetition.
  • the CE terminal may mean both a CE terminal not requesting MSG3 PUSCH repetition and a CE terminal requesting MSG3 PUSCH repetition, or may mean only a CE terminal requesting MSG3 PUSCH repetition.
  • the base station is the terminal in the initial access (initial access), handover (hanover), BFR (Beam Failure Recovery), RRC reset (RRC Re-establishment) scenarios, etc.
  • initial access initial access
  • handover hanover
  • BFR Beam Failure Recovery
  • RRC reset RRC Re-establishment
  • a specific UL BWP may be an initial UL BWP in the case of an initial access scenario, may be a first active UL BWP (first active UL BWP) in a target cell in the case of a handover scenario, and In this case, it may be the terminal active BWP, initial UL BWP, or default UL BWP of the serving cell, and in the case of an RRC resetting scenario, it may be the initial UL BWP of the cell selected by the terminal.
  • first active UL BWP first active UL BWP
  • RRC resetting scenario it may be the initial UL BWP of the cell selected by the terminal.
  • a base station may or may not support a specific terminal type (eg, general terminal, RedCap terminal, CE terminal, etc.) in a specific cell. That is, a base station may support all types of terminals or only some types of terminals in a specific cell. For example, a specific cell may support only a terminal type combination according to one case among cases of embodiments described later (eg, embodiments 1 to 5).
  • a specific terminal type eg, general terminal, RedCap terminal, CE terminal, etc.
  • a base station may support a separate PRACH partitioning set for a specific terminal type.
  • the PRACH partitioning set may mean one, some, or all of separate PRACH resources, separate PRACH preambles, and separate RACH occasions (ROs).
  • a PRACH partitioning set may also be referred to as a PRACH resource set.
  • the base station may transmit configuration information for a separate PRACH partitioning set to the terminal (s) through system information block 1 (SIB1) or a specific SIB for a specific terminal type.
  • SIB1 system information block 1
  • SIB1 system information block 1
  • the 2-step RACH procedure is not set and the 4-step RACH procedure is set in the cases of embodiments (eg, embodiments 1 to 5) to be described later. If the 2-step RACH procedure is configured together with the 4-step RACH procedure, the base station needs to additionally configure a separate PRACH partitioning set for the purpose of the 2-step RACH procedure per BWP.
  • the UE uses contention-based RACH (Contention Based RACH, CBRA) Assume a set case.
  • contention-based RACH Contention Based RACH, CBRA
  • This embodiment relates to a method for performing a RACH procedure in a case where a specific cell supports all of a general terminal that is a CE terminal, a normal terminal that is a non-CE terminal, a RedCap terminal that is a CE terminal, and a RedCap terminal that is a non-CE terminal.
  • a base station that configures a 4-step RACH procedure without configuring a 2-step RACH procedure is based on at least one of the following methods (Methods 1a to 1c) for different UE types PRACH can be set.
  • Methods 1a to 1c for different UE types PRACH can be set.
  • the number of PRACH partitioning sets per BWP is set to 2
  • the RACH procedure must be set to be performed according to scheme 1a or scheme 1c, and scheme 1b cannot be set.
  • the number of PRACH partitioning sets per BWP is set to 4
  • the RACH procedure must be set to be performed according to scheme 1a or scheme 1b, and scheme 1c cannot be configured.
  • a method in which the number of PRACH partitioning sets set per BWP is 2 and UEs corresponding to different UE types perform RACH through different UL BWPs may be considered.
  • the RedCap terminal may be set to perform initial access through a separate UL BWP.
  • the base station may set the terminal to perform the RACH procedure as follows.
  • General terminals may be configured to perform initial access through UL BWP #1.
  • non-CE terminals which are normal terminals, perform the RACH procedure using PRACH partitioning set #1 of UL BWP #1
  • CE terminals which are RedCap terminals, use PRACH partitioning set #2 of UL BWP #1 to perform the RACH procedure can be performed.
  • RedCap terminals may be configured to perform initial access through UL BWP #2.
  • non-CE UEs that are RedCap UEs perform the RACH procedure using PRACH partitioning set #1 of UL BWP #2
  • CE UEs that are RedCap UEs perform RACH procedures using PRACH partitioning set #2 of UL BWP #2 can be performed.
  • a method in which the number of PRACH partitioning sets configured per BWP is 4 and UEs corresponding to different UE types perform RACH through the same UL BWP may be considered.
  • the RedCap terminal can be set to perform initial access through a separate PRACH resource without a separate UL BWP.
  • the base station may set the terminal to perform the RACH procedure as follows.
  • Non-CE UEs which are normal UEs, perform RACH procedures using PRACH partitioning set #1 of UL BWP #1
  • CE UEs which are RedCap UEs, perform RACH procedures using PRACH partitioning set #2 of UL BWP #1. can do.
  • Non-CE UEs that are RedCap UEs perform RACH procedures using PRACH partitioning set #3 of UL BWP #1, and CE UEs that are RedCap UEs perform RACH procedures using PRACH partitioning set #4 of UL BWP #1 can do.
  • a scheme in which a RedCap terminal, which is a CE terminal, and a RedCap terminal, which is a non-CE terminal, perform an RACH procedure using the same specific PRACH partitioning set may be considered.
  • the base station may configure the specific PRACH partitioning set exclusively for CE.
  • the base station provides a CE-only PRACH partitioning set without a separate PRACH partitioning set for the RedCap terminal
  • the RedCap terminal can always transmit the PRACH using the CE-only PRACH partitioning set regardless of whether or not the CE is present. That is, all RedCap terminals can transmit MSG1 through the PRACH resource of the CE-only PRACH partitioning set and the PRACH preamble.
  • a general terminal that is a CE terminal may also transmit a PRACH using a CE-specific PRACH partitioning set.
  • a general terminal that is a non-CE terminal may transmit a PRACH using a PRACH partitioning set other than CE-dedicated.
  • the RedCap terminal may transmit MSG3 through PUSCH according to the UL grant included in MSG2.
  • the MSG3 PUSCH transmission parameter value for CE and the MSG3 PUSCH transmission parameter value for non-CE may be different based on the setting of the base station. Accordingly, a RedCap terminal, which is a CE terminal, may transmit MSG3 PUSCH based on parameters for CE purposes, and a RedCap terminal, which is a non-CE terminal, may transmit MSG3 PUSCH based on parameters for non-CE purposes.
  • the CE terminal when the PUSCH repetition is set to 4 for the CE terminal, the CE terminal repeatedly performs PUSCH transmission carrying MSG3 4 times, but the non-CE terminal performs PUSCH transmission only once and then skips the remaining PUSCH transmissions. You can (skip). Therefore, the base station considers both the CE terminal and the non-CE terminal and transmits (downlink) a UL grant for retransmission for PUSCH transmission or a contention resolution MAC-CE for each terminal type.
  • the terminal may transmit/instruct information about whether the terminal transmitting MSG3 is a RedCap terminal or a general terminal through MSG3 to the base station. Additionally, the corresponding terminal may transmit/instruct information on whether the terminal is a CE terminal or a non-CE terminal to the base station.
  • such delivery/instruction may be included in a header or sub-header of the MAC PDU for MSG3.
  • a logical channel ID (LCID) field may be included in the subheader of the MAC PDU for MSG3, and a specific value of the corresponding LCID field is applicable to three terminal types (ie, [general terminal that is a CE terminal], [CE terminal) RedCap terminal] and [RedCap terminal that is a non-CE terminal]), or may indicate a RedCap terminal.
  • LCID logical channel ID
  • the base station transmits MSG3 to a general terminal that is a non-CE terminal.
  • MSG3 can be identified as corresponding to Alternatively, if it is set to indicate that it is a RedCap terminal, but the MSG3 received by the base station does not indicate that it is a RedCap terminal, the base station can identify that the terminal that transmitted MSG3 corresponds to a general terminal. In this case, the base station can identify whether the MSG1 is a normal terminal that is a CE terminal or a normal terminal that is a non-CE terminal according to the transmitted PRACH partitioning set.
  • This embodiment relates to a method for performing an RACH procedure in a case where a specific cell supports a general terminal that is a CE terminal, a normal terminal that is a non-CE terminal, and a RedCap terminal that is a non-CE terminal. That is, this embodiment corresponds to a case where a RedCap terminal, which is a CE terminal, is not supported in a specific cell.
  • the base station may configure/instruct to barred the RedCap terminal, which is the CE terminal, in the corresponding cell.
  • the setting/instruction information for this may be included in SIB1 information of the corresponding cell or may be included in DCI scheduling SIB1.
  • a base station that configures a 4-step RACH procedure without configuring a 2-step RACH procedure is based on at least one of the following methods (methods 2a and 2b) for different terminal types PRACH can be set.
  • method 2a and 2b for different terminal types PRACH can be set.
  • the number of PRACH partitioning sets per BWP is set to 2
  • the RACH procedure must be set to be performed according to scheme 2a, and scheme 2b cannot be set.
  • the number of PRACH partitioning sets per BWP is set to 3
  • the RACH procedure must be set to be performed according to scheme 2b, and scheme 2a cannot be set.
  • a method of configuring a separate UL BWP for a RedCap terminal may be considered.
  • a normal terminal and a RedCap terminal which is a non-CE terminal, may be configured to perform RACH in a separate UL BWP.
  • a general UE that is a non-CE UE transmits PRACH using PRACH partitioning set #1 of UL BWP #1
  • a general UE that is a CE UE transmits PRACH using PRACH partitioning set #2 of UL BWP #1.
  • a RedCap terminal that is a non-CE terminal may transmit PRACH using PRACH partitioning set #1 of UL BWP #2.
  • the base station can identify the terminal type through the UL BWP and PRACH partitioning set.
  • a method of not configuring a separate UL BWP for a RedCap terminal may be considered.
  • a normal terminal and a RedCap terminal which is a non-CE terminal, may be configured to perform RACH in the same UL BWP.
  • a general UE that is a non-CE UE transmits PRACH using PRACH partitioning set #1 of UL BWP #1
  • a general UE that is a CE UE transmits PRACH using PRACH partitioning set #2 of UL BWP #1.
  • a RedCap terminal that is a non-CE terminal may transmit PRACH using PRACH partitioning set #3 of UL BWP #1.
  • the base station can identify the terminal type only through the PRACH partitioning set.
  • This embodiment relates to a method of performing an RACH procedure in a case where a specific cell supports a general terminal that is a non-CE terminal and a RedCap terminal that is a non-CE terminal. That is, this embodiment corresponds to a case where a general terminal, which is a CE terminal, and a RedCap terminal, which is a CE terminal, are not supported in a specific cell.
  • This embodiment relates to a method for performing an RACH procedure in a case where a specific cell supports a general terminal that is a CE terminal, a normal terminal that is a non-CE terminal, and a RedCap terminal that is a non-CE terminal. That is, this embodiment corresponds to a case where a RedCap terminal, which is a CE terminal, is not supported in a specific cell.
  • the base station may configure / instruct to barred the CE terminal in the corresponding cell.
  • the setting/instruction information for this may be included in SIB1 information of the corresponding cell or may be included in DCI scheduling SIB1.
  • a base station that configures a 4-step RACH procedure without configuring a 2-step RACH procedure is based on at least one of the following methods (methods 3a and 3b) for different terminal types PRACH can be set.
  • methods 3a and 3b for different terminal types PRACH can be set.
  • the number of PRACH partitioning sets per BWP is set to 1
  • the RACH procedure must be set to be performed according to scheme 3a, and scheme 3b cannot be set.
  • the number of PRACH partitioning sets per BWP is set to 2
  • the RACH procedure must be set to be performed according to scheme 3b, and scheme 3a cannot be set.
  • a method of configuring a separate UL BWP for a RedCap terminal may be considered.
  • a normal terminal and a RedCap terminal corresponding to a non-CE terminal may be configured to perform RACH in a separate UL BWP.
  • a general terminal which is a non-CE terminal transmits PRACH using the PRACH partitioning set of UL BWP #1
  • a RedCap terminal which is a non-CE terminal transmits PRACH using the PRACH partitioning set of UL BWP #2.
  • the base station may identify the terminal type through UL BWP.
  • a method of not configuring a separate UL BWP for a RedCap terminal may be considered.
  • a normal terminal corresponding to a non-CE terminal and a RedCap terminal may be configured to perform RACH in the same UL BWP.
  • a general terminal that is a non-CE terminal transmits PRACH using PRACH partitioning set #1 of UL BWP #1, and a RedCap terminal that is a non-CE terminal uses PRACH partitioning set #2 of UL BWP #1. so that the PRACH can be transmitted.
  • the base station can identify the terminal type only through the PRACH partitioning set.
  • This embodiment relates to a method of performing an RACH procedure in a case where a specific cell supports a general terminal that is a non-CE terminal, a RedCap terminal that is a CE terminal, and a RedCap terminal that is a non-CE terminal. That is, this embodiment corresponds to a case in which a general terminal, which is a CE terminal, is not supported in a specific cell.
  • the base station may set/instruct to barred a general terminal that is a CE terminal in the corresponding cell.
  • the setting/instruction information for this may be included in SIB1 information of the corresponding cell or may be included in DCI scheduling SIB1.
  • a base station that configures a 4-step RACH procedure without configuring a 2-step RACH procedure is based on at least one of the following methods (methods 4a and 4b) for different terminal types PRACH can be set.
  • methods 4a and 4b for different terminal types PRACH can be set.
  • the number of PRACH partitioning sets per BWP is set to 2
  • the RACH procedure must be set to be performed according to scheme 4a, and scheme 4b cannot be set.
  • the number of PRACH partitioning sets per BWP is set to 3
  • the RACH procedure must be set to be performed according to scheme 4b, and scheme 4a cannot be set.
  • a method of configuring a separate UL BWP for a RedCap terminal may be considered.
  • a RedCap terminal and a normal terminal which is a non-CE terminal, may be configured to perform RACH in a separate UL BWP.
  • a general terminal that is a non-CE terminal may transmit a PRACH using a PRACH partitioning set of UL BWP #1.
  • RedCap terminal which is a non-CE terminal, transmits PRACH using PRACH partitioning set #1 of UL BWP #2
  • RedCap terminal which is a CE terminal
  • the base station may identify the terminal type through the UL BWP and PRACH partitioning set.
  • a method of configuring a separate UL BWP for a RedCap terminal may be considered.
  • all UEs can be configured to perform RACH in the same UL BWP.
  • a general terminal that is a non-CE terminal may transmit PRACH using PRACH partitioning set #1 of UL BWP #1.
  • RedCap terminal which is a non-CE terminal, transmits PRACH using PRACH partitioning set #2 of UL BWP #1
  • RedCap terminal which is a CE terminal
  • the base station can identify the terminal type only through the PRACH partitioning set.
  • This embodiment relates to a method of performing an RACH procedure in a case where a specific cell supports a general terminal that is a CE terminal, a normal terminal that is a non-CE terminal, and a RedCap terminal that is a CE terminal. That is, this embodiment corresponds to a case where a RedCap terminal, which is a non-CE terminal, is not supported in a specific cell.
  • the base station may configure/instruct to barred a RedCap terminal that is a non-CE terminal in a corresponding cell.
  • the setting/instruction information for this may be included in SIB1 information of the corresponding cell or may be included in DCI scheduling SIB1.
  • a base station that configures a 4-step RACH procedure without configuring a 2-step RACH procedure is based on at least one of the following methods (methods 5a to 5c) for different terminal types PRACH can be set.
  • methods 5a to 5c for different terminal types PRACH can be set.
  • the number of PRACH partitioning sets per BWP is set to 2
  • the RACH procedure must be set to be performed according to scheme 5a, and scheme 5b cannot be set.
  • the number of PRACH partitioning sets per BWP is set to 3
  • the RACH procedure must be set to be performed according to scheme 5b, and scheme 5a cannot be set.
  • a method of configuring a separate UL BWP for a RedCap terminal may be considered.
  • a normal terminal and a RedCap terminal which is a non-CE terminal, may be configured to perform RACH in a separate UL BWP.
  • a general UE that is a non-CE UE transmits PRACH using PRACH partitioning set #1 of UL BWP #1
  • a general UE that is a CE UE transmits PRACH using PRACH partitioning set #2 of UL BWP #1.
  • a RedCap terminal that is a CE terminal may transmit PRACH using PRACH partitioning set #1 of UL BWP #2.
  • the base station may identify the terminal type through the UL BWP and PRACH partitioning set.
  • a method of configuring a separate UL BWP for a RedCap terminal may be considered.
  • a normal terminal and a RedCap terminal which is a non-CE terminal, may be configured to perform RACH in the same UL BWP.
  • a general UE that is a non-CE UE transmits PRACH using PRACH partitioning set #1 of UL BWP #1
  • a general UE that is a CE UE transmits PRACH using PRACH partitioning set #2 of UL BWP #1.
  • a RedCap terminal that is a CE terminal may transmit PRACH using PRACH partitioning set #3 of UL BWP #1.
  • the base station can identify the terminal type only through the PRACH partitioning set.
  • a method in which both a general terminal, which is a CE terminal, and a RedCap terminal, which is a CE terminal, perform an RACH procedure using the same specific PRACH partitioning set may be considered.
  • the base station may configure the specific PRACH partitioning set exclusively for CE.
  • the base station provides a CE-only PRACH partitioning set without a separate PRACH partitioning set for the RedCap terminal
  • the general terminal which is a CE terminal
  • the RedCap terminal which is a CE terminal
  • both the normal terminal and the RedCap terminal can transmit MSG1 through the PRACH resource of the CE-specific PRACH partitioning set and the PRACH preamble.
  • a general terminal that is a CE terminal may also transmit a PRACH using a CE-specific PRACH partitioning set.
  • a general terminal that is a non-CE terminal may transmit a PRACH using a PRACH partitioning set other than CE-dedicated.
  • the RedCap terminal may transmit MSG3 through PUSCH according to the UL grant included in MSG2.
  • the MSG3 PUSCH transmission parameter value for CE and the MSG3 PUSCH transmission parameter value for non-CE may be different based on the setting of the base station.
  • the CE UE may transmit the MSG3 PUSCH based on the CE purpose parameter
  • the non-CE UE may transmit the MSG3 PUSCH based on the non-CE purpose parameter.
  • the CE terminal when the PUSCH repetition is set to 4 for the CE terminal, the CE terminal repeatedly performs PUSCH transmission carrying MSG3 4 times, but the non-CE terminal performs PUSCH transmission only once and then skips the remaining PUSCH transmissions. You can (skip). Therefore, the base station considers both the CE terminal and the non-CE terminal and transmits (downlink) a UL grant for retransmission for PUSCH transmission or a contention resolution MAC-CE for each terminal type.
  • the terminal may transmit/instruct information about whether the terminal transmitting MSG3 is a RedCap terminal or a general terminal through MSG3 to the base station. Additionally, the corresponding terminal may transmit/instruct information on whether the terminal is a CE terminal or a non-CE terminal to the base station.
  • such delivery/instruction may be included in a header or sub-header of the MAC PDU for MSG3.
  • a logical channel ID (LCID) field may be included in the subheader of the MAC PDU for MSG3, and a specific value of the LCID field may be used for two terminal types (ie, [general terminal that is a CE terminal] and [CE terminal). RedCap terminal]), or may indicate a RedCap terminal.
  • LCID logical channel ID
  • the base station transmits MSG3 to a general terminal that is a non-CE terminal.
  • MSG3 can be identified as corresponding to Alternatively, if it is set to indicate that it is a RedCap terminal, but the MSG3 received by the base station does not indicate that it is a RedCap terminal, the base station can identify that the terminal that transmitted MSG3 corresponds to a general terminal. In this case, the base station can identify whether the MSG1 is a normal terminal that is a CE terminal or a normal terminal that is a non-CE terminal according to the transmitted PRACH partitioning set.
  • the UE may be configured to perform/use a contention free RACH (CFRA) procedure.
  • CFRA contention free RACH
  • the UE may perform the RACH procedure based on the following methods (Methods 1 to 3). The methods described below are described on the assumption that the terminal performs a CFRA procedure, but the corresponding methods may be partially extended and applied even when the terminal performs a CBRA procedure (eg, the above-described embodiments of the present disclosure).
  • the target base station may transmit a handover command message to the UE through the source base station (eg source gNB).
  • the target base station may mean a base station to which the terminal performs handover
  • the source base station may mean a base station through which the terminal currently transmits and receives uplink and downlink (before completion of handover). there is.
  • the handover command message may include information on a dedicated preamble dedicated to the terminal.
  • the terminal is a RedCap terminal that is a CE terminal, a RedCap terminal that is a non-CE terminal, or a general terminal that is a CE terminal
  • the base station is configured according to the above-described embodiments (Embodiments 1 to 5) and detailed methods in the embodiments According to this, a specific UL BWP setting (eg UL BWP #2) and a specific PRACH partitioning set setting (eg PRACH partitioning set #2) suitable for the type of terminal are determined, and the determined settings are transmitted to the corresponding terminal through a handover command message. can transmit
  • the handover command message may include cell level PRACH configuration information of the target cell.
  • the UE may obtain other PRACH partitioning set settings of other UL BWPs (eg, PRACH partitioning set #1 of UL BWP #1) in addition to the specific PRACH partitioning set settings described above through the handover command message.
  • the UE which has received the specific UL BWP configuration and the specific PRACH partitioning set configuration along with information on the dedicated preamble dedicated to the UE through the handover command message, may perform the following RACH procedure in the target cell.
  • the SSB index of the target cell mapped to the dedicated preamble and/or the measurement quality (eg RSRP, etc.) of the CSI-RS resource for the UE is set by the base station. /Check whether it is above the specified threshold. If the corresponding measurement quality is equal to or greater than the threshold value, the UE may perform PRACH transmission using the dedicated preamble in the UL BWP to which the dedicated preamble corresponds.
  • the measurement quality eg RSRP, etc.
  • the UE when the measurement quality of the target cell's SSB index and/or CSI-RS resource mapped to the dedicated preamble during the RACH procedure is equal to or less than the threshold set/instructed by the base station, the UE performs PRACH transmission as follows. can For example, when the terminal receives a specific UL BWP setting (eg UL BWP #2) and/or a specific PRACH partitioning set setting (eg PRACH partitioning set #2) from the base station, the terminal receives the PRACH of UL BWP #2 PRACH transmission can be performed in UL BWP #2 using partitioning set #2.
  • a specific UL BWP setting eg UL BWP #2
  • a specific PRACH partitioning set setting eg PRACH partitioning set #2
  • the UE did not receive a specific UL BWP configuration or a specific PRACH partitioning set configuration from the base station, or SSB index and / or CSI-RS resource of the target cell mapped to the PRACH preamble of the specific PRACH partitioning set received from the base station.
  • the measurement quality for may be less than or equal to the threshold set/instructed by the base station.
  • the corresponding UE uses PRACH partitioning set #1 of UL BWP #1 according to another PRACH partitioning set setting of another UL BWP (eg, PRACH partitioning set #1 of UL BWP #1) in UL BWP #1.
  • PRACH transmission may be performed.
  • the base station may allocate a terminal-dedicated preamble for BFR to a specific terminal in case of beam failure. If the UE receives a specific PRACH partitioning set configuration in a specific UL BWP for BFR from the base station through BFR configuration information (eg, beamFailureRecoveryConfig), the UE performs the next step in the serving cell upon beam failure detection.
  • BFR configuration information eg, beamFailureRecoveryConfig
  • RedCap-specific initial UL BWP may be configured through BFR configuration information (eg, RedCap specific beamFailureRecoveryConfig) for the RedCap terminal.
  • the RedCap terminal may use the active BWP of the specific RedCap terminal to perform the RACH procedure in the target cell.
  • a RedCap specific BFR timer eg, RedCap specific beamFailureRecoveryTimer
  • a RedCap specific PRACH resource and/or a PRACH preamble may be configured for the active BWP of the terminal.
  • the SSB index of the serving cell mapped to the dedicated preamble and/or the measurement quality (eg RSRP, etc.) of the CSI-RS resource is set by the base station. /Check whether it is above the specified threshold. If the corresponding measurement quality is equal to or greater than the threshold value, the UE may perform PRACH transmission using the dedicated preamble in the UL BWP to which the dedicated preamble corresponds.
  • the measurement quality eg RSRP, etc.
  • the UE performs PRACH transmission as follows.
  • the terminal receives a specific UL BWP setting (eg UL BWP #2) and/or a specific PRACH partitioning set setting (eg PRACH partitioning set #2) from the base station, the terminal receives the PRACH of UL BWP #2 PRACH transmission can be performed in UL BWP #2 using partitioning set #2.
  • a specific UL BWP setting eg UL BWP #2
  • a specific PRACH partitioning set setting eg PRACH partitioning set #2
  • the terminal did not receive a specific UL BWP setting or a specific PRACH partitioning set setting from the base station, or SSB index and / or CSI-RS resource of the serving cell mapped to the PRACH preamble of the specific PRACH partitioning set received from the base station.
  • the measurement quality for may be less than or equal to the threshold set/instructed by the base station.
  • the corresponding UE uses PRACH partitioning set #1 of UL BWP #1 according to another PRACH partitioning set setting of another UL BWP (eg, PRACH partitioning set #1 of UL BWP #1) in UL BWP #1.
  • PRACH transmission may be performed.
  • the UE may trigger an RRC reconfiguration process.
  • RLF radio link failure
  • the UE may select a current cell or a new cell and perform the RACH procedure in the selected cell according to SIB1 information of the selected cell.
  • SIB1 may be SIB1 in NR Rel-15/16, or a separate SIB1 or separate SIB for supporting a specific terminal type.
  • the UE may perform PRACH transmission in UL BWP #2 using PRACH partitioning set #2 of UL BWP #2.
  • SSB of the serving cell mapped to the PRACH preamble of the specific PRACH partitioning set received from the base station, or the specific UL BWP configuration and / or specific PRACH partitioning set configuration for the specific UE type from SIB1 of the cell selected by the UE.
  • the measurement quality for the index and/or CSI-RS resource may be less than or equal to the threshold set/instructed by the base station.
  • the corresponding UE uses PRACH partitioning set #1 of UL BWP #1 according to another PRACH partitioning set setting of another UL BWP (eg, PRACH partitioning set #1 of UL BWP #1) in UL BWP #1.
  • PRACH transmission may be performed.
  • FIG. 7 is a diagram illustrating operations of a terminal for a method for performing a random access procedure according to an embodiment of the present disclosure.
  • FIG. 7 illustrates an operation of a terminal based on the previously proposed method (eg, any one or a plurality of combinations of embodiments 1 to 5 and detailed embodiments thereof).
  • the example of FIG. 7 is for convenience of description and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 7 may be omitted depending on circumstances and/or settings.
  • the terminal in FIG. 7 is only one example, and may be implemented as a device illustrated in FIG. 9 below.
  • the processor 102/202 of FIG. 9 uses the transceiver 106/206 to perform channel/signal/data/information, etc. (eg, RRC signaling, MAC CE, UL/DL scheduling). DCI, SRS, PDCCH, PDSCH, PUSCH, PUCCH, etc.) can be controlled to be transmitted and received, and transmitted or received channels/signals/data/information, etc. can be controlled to be stored in the memory 104/204.
  • channel/signal/data/information eg, RRC signaling,
  • the terminal may receive configuration information about an initial bandwidth portion (initial BWP) for a terminal having limited capabilities (eg, a RedCap terminal) from the base station.
  • initial BWP initial bandwidth portion
  • RedCap terminal a terminal having limited capabilities
  • a terminal configures a BWP configuration for a specific terminal type (eg, a RedCap terminal, a CE terminal, etc.) as a base station.
  • the BWP setting may include an initial BWP setting.
  • the corresponding BWP setting may be set through a separate message from the BWP setting for the general terminal, or may be set together through one message.
  • the UE may transmit the PRACH preamble to the base station in the above-described initial BWP.
  • the PRACH preamble is a PRACH related to the aforementioned limited capability (eg, RedCap) among the one or more PRACH resource sets. Can be transmitted in a set of resources.
  • configuration of one or more PRACH resource sets described above is performed in a PRACH resource set related to the above-described limited capability.
  • the PRACH resource set related to the limited capability may include PRACH resources and/or RACH opportunities for the limited capability.
  • the preamble may be set for a purpose for a terminal having the limited capability (eg, only for a RedCap terminal).
  • the link failure may correspond to a link failure detected in an RRC connected mode between the terminal and the base station.
  • the corresponding link failure may be at least one of radio link failure (RLF) and beam failure (BF).
  • the PRACH preamble may correspond to a PRACH preamble set in relation to recovery from a radio link failure (eg, dedicated to RLF recovery).
  • a radio link failure eg, dedicated to RLF recovery
  • the signal quality (eg, RSRP value) of the downlink signal (eg, SSB, CSI-RS, etc.) associated with the PRACH preamble is less than or equal to the threshold set by the base station
  • the corresponding PRACH preamble may be transmitted in another bandwidth part configured for the terminal (eg, a BWP other than the initial BWP for the RedCap terminal).
  • the PRACH preamble may correspond to a PRACH preamble set in relation to beam failure recovery (eg, dedicated for BFR use).
  • the signal quality (eg, RSRP value) of the downlink signal (eg, SSB, CSI-RS, etc.) associated with the PRACH preamble is less than or equal to the threshold set by the base station
  • the corresponding PRACH preamble may be transmitted in another bandwidth part configured for the terminal (eg, a BWP other than the initial BWP for the RedCap terminal).
  • the PRACH resource set related to the limited capability may be configured by the base station through configuration information related to beam failure recovery (eg, BFR related Config).
  • FIG. 8 is a diagram illustrating an operation of a base station for a method of performing a random access procedure according to an embodiment of the present disclosure.
  • FIG. 8 illustrates an operation of a terminal based on the previously proposed method (eg, any one or a plurality of combinations of embodiments 1 to 5 and detailed embodiments thereof).
  • the example of FIG. 8 is for convenience of description and does not limit the scope of the present disclosure. Some step(s) illustrated in FIG. 8 may be omitted depending on circumstances and/or settings.
  • the terminal in FIG. 8 is only one example, and may be implemented as a device illustrated in FIG. 9 below.
  • the processor 102/202 of FIG. 9 uses the transceiver 106/206 to perform channel/signal/data/information, etc. (eg, RRC signaling, MAC CE, UL/DL scheduling). DCI, SRS, PDCCH, PDSCH, PUSCH, PUCCH, etc.) can be controlled to be transmitted and received, and transmitted or received channels/signals/data/information, etc. can be controlled to be stored in the memory 104/204.
  • channel/signal/data/information eg, RRC signaling,
  • the base station may transmit configuration information about an initial bandwidth portion (initial BWP) for a terminal with limited capabilities (eg, a RedCap terminal) to the terminal.
  • initial BWP initial bandwidth portion
  • RedCap terminal a terminal with limited capabilities
  • the base station configures BWP configuration for a specific terminal type (eg, RedCap terminal, CE terminal, etc.) can be sent to
  • the BWP setting may include an initial BWP setting.
  • the corresponding BWP setting may be set through a message separate from the BWP setting for the general terminal, or may be set together through a single message.
  • the base station may receive a PRACH preamble from the terminal at the initial BWP described above.
  • the PRACH preamble is a PRACH related to the aforementioned limited capability (eg, RedCap) among the one or more PRACH resource sets. Can be transmitted in a set of resources.
  • configuration of one or more PRACH resource sets described above is performed in a PRACH resource set related to the above-described limited capability.
  • the PRACH resource set related to the limited capability may include PRACH resources and/or RACH opportunities for the limited capability.
  • the preamble may be set for a purpose for a terminal having the limited capability (eg, only for a RedCap terminal).
  • the link failure may correspond to a link failure detected in an RRC connected mode between the terminal and the base station.
  • the corresponding link failure may be at least one of radio link failure (RLF) and beam failure (BF).
  • the PRACH preamble may correspond to a PRACH preamble set in relation to recovery from a radio link failure (eg, dedicated to RLF recovery).
  • a radio link failure eg, dedicated to RLF recovery
  • the signal quality (eg, RSRP value) of the downlink signal (eg, SSB, CSI-RS, etc.) associated with the PRACH preamble is less than or equal to the threshold set by the base station
  • the corresponding PRACH preamble may be transmitted in another bandwidth part configured for the terminal (eg, a BWP other than the initial BWP for the RedCap terminal).
  • the PRACH preamble may correspond to a PRACH preamble set in relation to beam failure recovery (eg, dedicated for BFR use).
  • the signal quality (eg, RSRP value) of the downlink signal (eg, SSB, CSI-RS, etc.) associated with the PRACH preamble is less than or equal to the threshold set by the base station
  • the corresponding PRACH preamble may be transmitted in another bandwidth part configured for the terminal (eg, a BWP other than the initial BWP for the RedCap terminal).
  • the base station may set the PRACH resource set related to the limited capability to the terminal through configuration information related to beam failure recovery (eg, BFR related Config).
  • FIG. 9 illustrates a block configuration diagram of a wireless communication device according to an embodiment of the present disclosure.
  • the first wireless device 100 and the second wireless device 200 may transmit and receive radio signals through various radio access technologies (eg, LTE and NR).
  • various radio access technologies eg, LTE and NR.
  • the first wireless device 100 includes one or more processors 102 and one or more memories 104, and may additionally include one or more transceivers 106 and/or one or more antennas 108.
  • the processor 102 controls the memory 104 and/or the transceiver 106 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or flowcharts of operations set forth in this disclosure.
  • the processor 102 may process information in the memory 104 to generate first information/signal, and transmit a radio signal including the first information/signal through the transceiver 106.
  • the processor 102 may receive a radio signal including the second information/signal through the transceiver 106, and then store information obtained from signal processing of the second information/signal in the memory 104.
  • the memory 104 may be connected to the processor 102 and may store various information related to the operation of the processor 102 .
  • memory 104 may perform some or all of the processes controlled by processor 102, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this disclosure. It may store software codes including them.
  • the processor 102 and memory 104 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 106 may be coupled to the processor 102 and may transmit and/or receive wireless signals via one or more antennas 108 .
  • the transceiver 106 may include a transmitter and/or a receiver.
  • the transceiver 106 may be used interchangeably with a radio frequency (RF) unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • the second wireless device 200 includes one or more processors 202, one or more memories 204, and may further include one or more transceivers 206 and/or one or more antennas 208.
  • the processor 202 controls the memory 204 and/or the transceiver 206 and may be configured to implement the descriptions, functions, procedures, suggestions, methods and/or flowcharts of operations set forth in this disclosure.
  • the processor 202 may process information in the memory 204 to generate third information/signal, and transmit a radio signal including the third information/signal through the transceiver 206.
  • the processor 202 may receive a radio signal including the fourth information/signal through the transceiver 206 and store information obtained from signal processing of the fourth information/signal in the memory 204 .
  • the memory 204 may be connected to the processor 202 and may store various information related to the operation of the processor 202 .
  • memory 204 may perform some or all of the processes controlled by processor 202, or instructions for performing the descriptions, functions, procedures, suggestions, methods, and/or flowcharts of operations disclosed in this disclosure. It may store software codes including them.
  • the processor 202 and memory 204 may be part of a communication modem/circuit/chip designed to implement a wireless communication technology (eg, LTE, NR).
  • the transceiver 206 may be coupled to the processor 202 and may transmit and/or receive wireless signals via one or more antennas 208 .
  • the transceiver 206 may include a transmitter and/or a receiver.
  • the transceiver 206 may be used interchangeably with an RF unit.
  • a wireless device may mean a communication modem/circuit/chip.
  • one or more protocol layers may be implemented by one or more processors 102, 202.
  • one or more processors 102, 202 may implement one or more layers (eg, functional layers such as PHY, MAC, RLC, PDCP, RRC, SDAP).
  • One or more processors (102, 202) may generate one or more Protocol Data Units (PDUs) and/or one or more Service Data Units (SDUs) in accordance with the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed herein.
  • PDUs Protocol Data Units
  • SDUs Service Data Units
  • processors 102, 202 may generate messages, control information, data or information in accordance with the descriptions, functions, procedures, proposals, methods and/or operational flow diagrams set forth in this disclosure.
  • One or more processors 102, 202 may process PDUs, SDUs, messages, control information, data or signals containing information (e.g., baseband signals) according to the functions, procedures, proposals and/or methods disclosed herein. generated and provided to one or more transceivers (106, 206).
  • One or more processors 102, 202 may receive signals (e.g., baseband signals) from one or more transceivers 106, 206, the descriptions, functions, procedures, suggestions, methods and/or described in this disclosure.
  • PDUs, SDUs, messages, control information, data or information may be acquired according to the operational flowcharts.
  • One or more processors 102, 202 may be referred to as a controller, microcontroller, microprocessor or microcomputer.
  • One or more processors 102, 202 may be implemented by hardware, firmware, software, or a combination thereof.
  • ASICs Application Specific Integrated Circuits
  • DSPs Digital Signal Processors
  • DSPDs Digital Signal Processing Devices
  • PLDs Programmable Logic Devices
  • FPGAs Field Programmable Gate Arrays
  • the descriptions, functions, procedures, proposals, methods and/or operational flow charts disclosed in this disclosure may be implemented using firmware or software, and the firmware or software may be implemented to include modules, procedures, functions, and the like.
  • Firmware or software configured to perform the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed in this disclosure may be included in one or more processors (102, 202) or stored in one or more memories (104, 204). It can be driven by the above processors 102 and 202.
  • the descriptions, functions, procedures, suggestions, methods and/or operational flow diagrams disclosed in this disclosure may be implemented using firmware or software in the form of codes, instructions and/or sets of instructions.
  • One or more memories 104, 204 may be coupled with one or more processors 102, 202 and may store various types of data, signals, messages, information, programs, codes, instructions and/or instructions.
  • One or more memories 104, 204 may be comprised of ROM, RAM, EPROM, flash memory, hard drives, registers, cache memory, computer readable storage media, and/or combinations thereof.
  • One or more memories 104, 204 may be located internally and/or external to one or more processors 102, 202. Additionally, one or more memories 104, 204 may be coupled to one or more processors 102, 202 through various technologies, such as wired or wireless connections.
  • One or more transceivers 106, 206 may transmit user data, control information, radio signals/channels, etc., as referred to in the methods and/or operational flow charts of this disclosure, to one or more other devices.
  • the one or more transceivers 106, 206 may receive user data, control information, radio signals/channels, etc. referred to in the descriptions, functions, procedures, proposals, methods and/or operational flow charts, etc. disclosed in this disclosure from one or more other devices. there is.
  • one or more transceivers 106 and 206 may be connected to one or more processors 102 and 202 and transmit and receive wireless signals.
  • one or more processors 102, 202 may control one or more transceivers 106, 206 to transmit user data, control information, or radio signals to one or more other devices. Additionally, one or more processors 102, 202 may control one or more transceivers 106, 206 to receive user data, control information, or radio signals from one or more other devices. In addition, one or more transceivers 106, 206 may be coupled with one or more antennas 108, 208, and one or more transceivers 106, 206 may be connected to one or more antennas 108, 208, as described herein. , procedures, proposals, methods and / or operation flowcharts, etc. can be set to transmit and receive user data, control information, radio signals / channels, etc.
  • one or more antennas may be a plurality of physical antennas or a plurality of logical antennas (eg, antenna ports).
  • One or more transceivers (106, 206) convert the received radio signals/channels from RF band signals in order to process the received user data, control information, radio signals/channels, etc. using one or more processors (102, 202). It can be converted into a baseband signal.
  • One or more transceivers 106 and 206 may convert user data, control information, and radio signals/channels processed by one or more processors 102 and 202 from baseband signals to RF band signals.
  • one or more of the transceivers 106, 206 may include (analog) oscillators and/or filters.
  • the scope of the present disclosure is software or machine-executable instructions (eg, operating systems, applications, firmware, programs, etc.) that cause operations in accordance with the methods of various embodiments to be executed on a device or computer, and such software or It includes a non-transitory computer-readable medium in which instructions and the like are stored and executable on a device or computer. Instructions that may be used to program a processing system that performs the features described in this disclosure may be stored on/in a storage medium or computer-readable storage medium and may be viewed using a computer program product that includes such storage medium. Features described in the disclosure may be implemented.
  • the storage medium may include, but is not limited to, high speed random access memory such as DRAM, SRAM, DDR RAM or other random access solid state memory devices, one or more magnetic disk storage devices, optical disk storage devices, flash memory devices, or It may include non-volatile memory, such as other non-volatile solid state storage devices.
  • the memory optionally includes one or more storage devices located remotely from the processor(s).
  • the memory, or alternatively, the non-volatile memory device(s) within the memory includes non-transitory computer readable storage media.
  • Features described in this disclosure may be stored on any one of the machine readable media to control hardware of a processing system and to allow the processing system to interact with other mechanisms that utilize results according to embodiments of the present disclosure. It may be integrated into software and/or firmware.
  • Such software or firmware may include, but is not limited to, application code, device drivers, operating systems, and execution environments/containers.
  • the wireless communication technology implemented in the wireless devices 100 and 200 of the present disclosure may include Narrowband Internet of Things for low power communication as well as LTE, NR, and 6G.
  • NB-IoT technology may be an example of LPWAN (Low Power Wide Area Network) technology, and may be implemented in standards such as LTE Cat NB1 and / or LTE Cat NB2. no.
  • the wireless communication technology implemented in the wireless device (XXX, YYY) of the present disclosure may perform communication based on LTE-M technology.
  • LTE-M technology may be an example of LPWAN technology, and may be called various names such as eMTC (enhanced machine type communication).
  • LTE-M technologies are 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL (non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, and/or 7) It may be implemented in at least one of various standards such as LTE M, and is not limited to the above-mentioned names.
  • the wireless communication technology implemented in the wireless device (XXX, YYY) of the present disclosure includes at least one of ZigBee, Bluetooth, and Low Power Wide Area Network (LPWAN) considering low power communication. It may include any one, and is not limited to the above-mentioned names.
  • ZigBee technology can generate personal area networks (PANs) related to small/low-power digital communication based on various standards such as IEEE 802.15.4, and can be called various names.
  • PANs personal area networks
  • the method proposed in the present disclosure has been described focusing on examples applied to 3GPP LTE/LTE-A and 5G systems, but can be applied to various wireless communication systems other than 3GPP LTE/LTE-A and 5G systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Databases & Information Systems (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치가 개시된다. 본 개시의 일 실시예에 따른 무선 통신 시스템에서 단말에 의해서 랜덤 액세스(random access)를 수행하는 방법은, 기지국으로부터, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 수신하는 단계; 및 링크 실패(link failure)가 검출됨에 기반하여, 상기 기지국으로, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 전송하는 단계를 포함할 수 있다. 여기에서, 상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 전송될 수 있다.

Description

무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
본 개시는 무선 통신 시스템에 관한 것으로서, 보다 상세하게 무선 통신 시스템에서 랜덤 액세스 절차(random access procedure)를 수행하는 방법 및 장치에 관한 것이다.
이동 통신 시스템은 사용자의 활동성을 보장하면서 음성 서비스를 제공하기 위해 개발되었다. 그러나 이동통신 시스템은 음성뿐 아니라 데이터 서비스까지 영역을 확장하였으며, 현재에는 폭발적인 트래픽의 증가로 인하여 자원의 부족 현상이 야기되고 사용자들이 보다 고속의 서비스에 대한 요구하므로, 보다 발전된 이동 통신 시스템이 요구되고 있다.
차세대 이동 통신 시스템의 요구 조건은 크게 폭발적인 데이터 트래픽의 수용, 사용자 당 전송률의 획기적인 증가, 대폭 증가된 연결 디바이스 개수의 수용, 매우 낮은 단대단 지연(End-to-End Latency), 고에너지 효율을 지원할 수 있어야 한다. 이를 위하여 이중 연결성(Dual Connectivity), 대규모 다중 입출력(Massive MIMO: Massive Multiple Input Multiple Output), 전이중(In-band Full Duplex), 비직교 다중접속(NOMA: Non-Orthogonal Multiple Access), 초광대역(Super wideband) 지원, 단말 네트워킹(Device Networking) 등 다양한 기술들이 연구되고 있다.
본 개시의 기술적 과제는 랜덤 액세스 절차(random access procedure)를 수행하는 방법 및 장치를 제공하는 것이다.
본 개시의 기술적 과제는 제한된 능력을 가진 단말을 고려하여 랜덤 액세스 절차를 수행하는 방법 및 장치를 제공하는 것이다.
본 개시에서 이루고자 하는 기술적 과제들은 이상에서 언급한 기술적 과제들로 제한되지 않으며, 언급하지 않은 또 다른 기술적 과제들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시의 일 양상에 따른 무선 통신 시스템에서 단말에 의해서 랜덤 액세스(random access)를 수행하는 방법은, 기지국으로부터, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 수신하는 단계; 및 링크 실패(link failure)가 검출됨에 기반하여, 상기 기지국으로, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 전송하는 단계를 포함할 수 있다. 여기에서, 상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 전송될 수 있다.
본 개시의 추가적인 양상에 따른 무선 통신 시스템에서 기지국에 의해서 랜덤 액세스(random access)를 수행하는 방법은, 단말로, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 전송하는 단계; 및 링크 실패(link failure)가 검출됨에 기반하여, 상기 단말로부터, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 수신하는 단계를 포함할 수 있다. 여기에서, 상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 수신될 수 있다.
본 개시의 실시예에 따르면, 단말은 자신의 능력에 따른 랜덤 액세스 설정에 따라 랜덤 액세스 절차를 수행하도록 하여, 기지국의 랜덤 액세스 절차에서 단말의 특정 능력 또는 제한된 능력을 초기에 식별할 수 있다.
본 개시에서 얻을 수 있는 효과는 이상에서 언급한 효과로 제한되지 않으며, 언급하지 않은 또 다른 효과들은 아래의 기재로부터 본 개시가 속하는 기술분야에서 통상의 지식을 가진 자에게 명확하게 이해될 수 있을 것이다.
본 개시에 관한 이해를 돕기 위해 상세한 설명의 일부로 포함되는, 첨부 도면은 본 개시에 대한 실시예를 제공하고, 상세한 설명과 함께 본 개시의 기술적 특징을 설명한다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다.
도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
도 7은 본 개시의 일 실시예에 따른 랜덤 액세스 절차 수행 방법에 대한 단말의 동작을 예시하는 도면이다.
도 8은 본 개시의 일 실시예에 따른 랜덤 액세스 절차 수행 방법에 대한 기지국의 동작을 예시하는 도면이다.
도 9는 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
이하, 본 개시에 따른 바람직한 실시 형태를 첨부된 도면을 참조하여 상세하게 설명한다. 첨부된 도면과 함께 이하에 개시될 상세한 설명은 본 개시의 예시적인 실시형태를 설명하고자 하는 것이며, 본 개시가 실시될 수 있는 유일한 실시형태를 나타내고자 하는 것이 아니다. 이하의 상세한 설명은 본 개시의 완전한 이해를 제공하기 위해서 구체적 세부사항을 포함한다. 그러나, 당업자는 본 개시가 이러한 구체적 세부사항 없이도 실시될 수 있음을 안다.
몇몇 경우, 본 개시의 개념이 모호해지는 것을 피하기 위하여 공지의 구조 및 장치는 생략되거나, 각 구조 및 장치의 핵심기능을 중심으로 한 블록도 형식으로 도시될 수 있다.
본 개시에 있어서, 어떤 구성요소가 다른 구성요소와 "연결", "결합" 또는 "접속"되어 있다고 할 때, 이는 직접적인 연결관계 뿐만 아니라, 그 사이에 또 다른 구성요소가 존재하는 간접적인 연결관계도 포함할 수 있다. 또한 본 개시에서 용어 "포함한다" 또는 "가진다"는 언급된 특징, 단계, 동작, 요소 및/또는 구성요소의 존재를 특정하지만, 하나 이상의 다른 특징, 단계, 동작, 요소, 구성요소 및/또는 이들의 그룹의 존재 또는 추가를 배제하지 않는다.
본 개시에 있어서, "제 1", "제 2" 등의 용어는 하나의 구성요소를 다른 구성요소로부터 구별하는 목적으로만 사용되고 구성요소들을 제한하기 위해서 사용되지 않으며, 특별히 언급되지 않는 한 구성요소들 간의 순서 또는 중요도 등을 한정하지 않는다. 따라서, 본 개시의 범위 내에서 일 실시예에서의 제 1 구성요소는 다른 실시예에서 제 2 구성요소라고 칭할 수도 있고, 마찬가지로 일 실시예에서의 제 2 구성요소를 다른 실시예에서 제 1 구성요소라고 칭할 수도 있다.
본 개시에서 사용된 용어는 특정 실시예에 대한 설명을 위한 것이며 청구범위를 제한하려는 것이 아니다. 실시예의 설명 및 첨부된 청구범위에서 사용되는 바와 같이, 단수 형태는 문맥상 명백하게 다르게 나타내지 않는 한 복수 형태도 포함하도록 의도한 것이다. 본 개시에 사용된 용어 "및/또는"은 관련된 열거 항목 중의 하나를 지칭할 수도 있고, 또는 그 중의 둘 이상의 임의의 및 모든 가능한 조합을 지칭하고 포함하는 것을 의미한다. 또한, 본 개시에서 단어들 사이의 "/"는 달리 설명되지 않는 한 "및/또는"과 동일한 의미를 가진다.
본 개시는 무선 통신 네트워크 또는 무선 통신 시스템을 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 동작은 해당 무선 통신 네트워크를 관할하는 장치(예를 들어 기지국)에서 네트워크를 제어하고 신호를 송신(transmit) 또는 수신(receive)하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 네트워크와의 또는 단말간의 신호를 송신 또는 수신하는 과정에서 이루어질 수 있다.
본 개시에서, 채널을 송신 또는 수신한다는 것은 해당 채널을 통해서 정보 또는 신호를 송신 또는 수신한다는 의미를 포함한다. 예를 들어, 제어 채널을 송신한다는 것은, 제어 채널을 통해서 제어 정보 또는 신호를 송신한다는 것을 의미한다. 유사하게, 데이터 채널을 송신한다는 것은, 데이터 채널을 통해서 데이터 정보 또는 신호를 송신한다는 것을 의미한다.
이하에서, 하향링크(DL: downlink)는 기지국에서 단말로의 통신을 의미하며, 상향링크(UL: uplink)는 단말에서 기지국으로의 통신을 의미한다. 하향링크에서 송신기는 기지국의 일부이고, 수신기는 단말의 일부일 수 있다. 상향링크에서 송신기는 단말의 일부이고, 수신기는 기지국의 일부일 수 있다. 기지국은 제1 통신 장치로, 단말은 제2 통신 장치로 표현될 수도 있다. 기지국(BS: Base Station)은 고정국(fixed station), Node B, eNB(evolved-NodeB), gNB(Next Generation NodeB), BTS(base transceiver system), 액세스 포인트(AP: Access Point), 네트워크(5G 네트워크), AI(Artificial Intelligence) 시스템/모듈, RSU(road side unit), 로봇(robot), 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어에 의해 대체될 수 있다. 또한, 단말(Terminal)은 고정되거나 이동성을 가질 수 있으며, UE(User Equipment), MS(Mobile Station), UT(user terminal), MSS(Mobile Subscriber Station), SS(Subscriber Station), AMS(Advanced Mobile Station), WT(Wireless terminal), MTC(Machine-Type Communication) 장치, M2M(Machine-to-Machine) 장치, D2D(Device-to-Device) 장치, 차량(vehicle), RSU(road side unit), 로봇(robot), AI(Artificial Intelligence) 모듈, 드론(UAV: Unmanned Aerial Vehicle), AR(Augmented Reality)장치, VR(Virtual Reality)장치 등의 용어로 대체될 수 있다.
이하의 기술은 CDMA, FDMA, TDMA, OFDMA, SC-FDMA 등과 같은 다양한 무선 접속 시스템에 사용될 수 있다. CDMA는 UTRA(Universal Terrestrial Radio Access)나 CDMA2000과 같은 무선 기술로 구현될 수 있다. TDMA는 GSM(Global System for Mobile communications)/GPRS(General Packet Radio Service)/EDGE(Enhanced Data Rates for GSM Evolution)와 같은 무선 기술로 구현될 수 있다. OFDMA는 IEEE 802.11(Wi-Fi), IEEE 802.16(WiMAX), IEEE 802-20, E-UTRA(Evolved UTRA) 등과 같은 무선 기술로 구현될 수 있다. UTRA는 UMTS(Universal Mobile Telecommunications System)의 일부이다. 3GPP(3rd Generation Partnership Project) LTE(Long Term Evolution)은 E-UTRA를 사용하는 E-UMTS(Evolved UMTS)의 일부이고 LTE-A(Advanced)/LTE-A pro는 3GPP LTE의 진화된 버전이다. 3GPP NR(New Radio or New Radio Access Technology)는 3GPP LTE/LTE-A/LTE-A pro의 진화된 버전이다.
설명을 명확하게 하기 위해, 3GPP 통신 시스템(예를 들어, LTE-A, NR)을 기반으로 설명하지만 본 개시의 기술적 사상이 이에 제한되는 것은 아니다. LTE는 3GPP TS(Technical Specification) 36.xxx Release 8 이후의 기술을 의미한다. 세부적으로, 3GPP TS 36.xxx Release 10 이후의 LTE 기술은 LTE-A로 지칭되고, 3GPP TS 36.xxx Release 13 이후의 LTE 기술은 LTE-A pro로 지칭된다. 3GPP NR은 TS 38.xxx Release 15 이후의 기술을 의미한다. LTE/NR은 3GPP 시스템으로 지칭될 수 있다. "xxx"는 표준 문서 세부 번호를 의미한다. LTE/NR은 3GPP 시스템으로 통칭될 수 있다. 본 개시의 설명에 사용된 배경기술, 용어, 약어 등에 관해서는 본 개시 이전에 공개된 표준 문서에 기재된 사항을 참조할 수 있다. 예를 들어, 다음 문서를 참조할 수 있다.
3GPP LTE의 경우, TS 36.211(물리 채널들 및 변조), TS 36.212(다중화 및 채널 코딩), TS 36.213(물리 계층 절차들), TS 36.300(전반적인 설명), TS 36.331(무선 자원 제어)을 참조할 수 있다.
3GPP NR의 경우, TS 38.211(물리 채널들 및 변조), TS 38.212(다중화 및 채널 코딩), TS 38.213(제어를 위한 물리 계층 절차들), TS 38.214(데이터를 위한 물리 계층 절차들), TS 38.300(NR 및 NG-RAN(New Generation-Radio Access Network) 전반적인 설명), TS 38.331(무선 자원 제어 프로토콜 규격)을 참조할 수 있다.
본 개시에서 사용될 수 있는 용어들의 약자는 다음과 같이 정의된다.
- BM: 빔 관리(beam management)
- CQI: 채널 품질 지시자(channel quality indicator)
- CRI: 채널 상태 정보 - 참조 신호 자원 지시자(channel state information - reference signal resource indicator)
- CSI: 채널 상태 정보(channel state information)
- CSI-IM: 채널 상태 정보 - 간섭 측정(channel state information - interference measurement)
- CSI-RS: 채널 상태 정보 - 참조 신호(channel state information - reference signal)
- DMRS: 복조 참조 신호(demodulation reference signal)
- FDM: 주파수 분할 다중화(frequency division multiplexing)
- FFT: 고속 푸리에 변환(fast Fourier transform)
- IFDMA: 인터리빙된 주파수 분할 다중 액세스(interleaved frequency division multiple access)
- IFFT: 역 고속 푸리에 변환(inverse fast Fourier transform)
- L1-RSRP: 제1 레이어 참조 신호 수신 파워(Layer 1 reference signal received power)
- L1-RSRQ: 제1 레이어 참조 신호 수신 품질(Layer 1 reference signal received quality)
- MAC: 매체 액세스 제어(medium access control)
- NZP: 논-제로 파워(non-zero power)
- OFDM: 직교 주파수 분할 다중화(orthogonal frequency division multiplexing)
- PDCCH: 물리 하향링크 제어 채널(physical downlink control channel)
- PDSCH: 물리 하향링크 공유 채널(physical downlink shared channel)
- PMI: 프리코딩 행렬 지시자(precoding matrix indicator)
- RE: 자원 요소(resource element)
- RI: 랭크 지시자(Rank indicator)
- RRC: 무선 자원 제어(radio resource control)
- RSSI: 수신 신호 강도 지시자(received signal strength indicator)
- Rx: 수신(Reception)
- QCL: 준-동일 위치(quasi co-location)
- SINR: 신호 대 간섭 및 잡음비(signal to interference and noise ratio)
- SSB (또는 SS/PBCH block): 동기 신호 블록(프라이머리 동기 신호(PSS: primary synchronization signal), 세컨더리 동기 신호(SSS: secondary synchronization signal) 및 물리 방송 채널(PBCH: physical broadcast channel)을 포함)
- TDM: 시간 분할 다중화(time division multiplexing)
- TRP: 전송 및 수신 포인트(transmission and reception point)
- TRS: 트래킹 참조 신호(tracking reference signal)
- Tx: 전송(transmission)
- UE: 사용자 장치(user equipment)
- ZP: 제로 파워(zero power)
시스템 일반
더욱 많은 통신 기기들이 더욱 큰 통신 용량을 요구하게 됨에 따라, 기존의 무선 액세스 기술(RAT: radio access technology)에 비해 향상된 모바일 브로드밴드(mobile broadband) 통신에 대한 필요성이 대두되고 있다. 또한 다수의 기기 및 사물들을 연결하여 언제 어디서나 다양한 서비스를 제공하는 매시브(massive) MTC(Machine Type Communications) 역시 차세대 통신에서 고려될 주요 이슈 중 하나이다. 뿐만 아니라 신뢰도(reliability) 및 지연(latency)에 민감한 서비스/단말을 고려한 통신 시스템 디자인이 논의되고 있다. 이와 같이 eMBB(enhanced mobile broadband communication), Mmtc(massive MTC), URLLC (Ultra-Reliable and Low Latency Communication) 등을 고려한 차세대 RAT의 도입이 논의되고 있으며, 본 개시에서는 편의상 해당 기술을 NR이라고 부른다. NR은 5G RAT의 일례를 나타낸 표현이다.
NR을 포함하는 새로운 RAT 시스템은 OFDM 전송 방식 또는 이와 유사한 전송 방식을 사용한다. 새로운 RAT 시스템은 LTE의 OFDM 파라미터들과는 다른 OFDM 파라미터들을 따를 수 있다. 또는 새로운 RAT 시스템은 기존의 LTE/LTE-A의 뉴머롤로지(numerology)를 그대로 따르나 더 큰 시스템 대역폭(예를 들어, 100MHz)를 지원할 수 있다. 또는 하나의 셀이 복수 개의 numerology들을 지원할 수도 있다. 즉, 서로 다른 numerology로 동작하는 하는 단말들이 하나의 셀 안에서 공존할 수 있다.
numerology는 주파수 영역에서 하나의 서브캐리어 간격(subcarrier spacing)에 대응한다. 참조 서브캐리어 간격(Reference subcarrier spacing)을 정수 N으로 스케일링(scaling)함으로써, 상이한 numerology가 정의될 수 있다.
도 1은 본 개시가 적용될 수 있는 무선 통신 시스템의 구조를 예시한다.
도 1을 참조하면, NG-RAN은 NG-RA(NG-Radio Access) 사용자 평면(즉, 새로운 AS(access stratum) 서브계층/PDCP(Packet Data Convergence Protocol)/RLC(Radio Link Control)/MAC/PHY) 및 UE에 대한 제어 평면(RRC) 프로토콜 종단을 제공하는 gNB들로 구성된다. 상기 gNB는 Xn 인터페이스를 통해 상호 연결된다. 상기 gNB는 또한, NG 인터페이스를 통해 NGC(New Generation Core)로 연결된다. 보다 구체적으로는, 상기 gNB는 N2 인터페이스를 통해 AMF(Access and Mobility Management Function)로, N3 인터페이스를 통해 UPF(User Plane Function)로 연결된다.
도 2는 본 개시가 적용될 수 있는 무선 통신 시스템에서 프레임 구조를 예시한다.
NR 시스템은 다수의 뉴머롤로지(numerology)들을 지원할 수 있다. 여기서, numerology는 서브캐리어 간격(subcarrier spacing)과 순환 전치(CP: Cyclic Prefix) 오버헤드에 의해 정의될 수 있다. 이때, 다수의 서브캐리어 간격은 기본(참조) 서브캐리어 간격을 정수 N(또는, μ)으로 스케일링(scaling) 함으로써 유도될 수 있다. 또한, 매우 높은 반송파 주파수에서 매우 낮은 서브캐리어 간격을 이용하지 않는다고 가정될지라도, 이용되는 numerology는 주파수 대역과 독립적으로 선택될 수 있다. 또한, NR 시스템에서는 다수의 numerology에 따른 다양한 프레임 구조들이 지원될 수 있다.
이하, NR 시스템에서 고려될 수 있는 OFDM numerology 및 프레임 구조를 살펴본다. NR 시스템에서 지원되는 다수의 OFDM numerology들은 아래 표 1과 같이 정의될 수 있다.
μ Δf=2μ·15 [kHz] CP
0 15 일반(Normal)
1 30 일반
2 60 일반, 확장(Extended)
3 120 일반
4 240 일반
NR은 다양한 5G 서비스들을 지원하기 위한 다수의 numerology(또는 서브캐리어 간격(SCS: subcarrier spacing))를 지원한다. 예를 들어, SCS가 15kHz인 경우, 전통적인 셀룰러 밴드들에서의 넓은 영역(wide area)를 지원하며, SCS가 30kHz/60kHz인 경우, 밀집한-도시(dense-urban), 더 낮은 지연(lower latency) 및 더 넓은 캐리어 대역폭(wider carrier bandwidth)를 지원하며, SCS가 60kHz 또는 그보다 높은 경우, 위상 잡음(phase noise)를 극복하기 위해 24.25GHz보다 큰 대역폭을 지원한다.
NR 주파수 밴드(frequency band)는 2가지 타입(FR1, FR2)의 주파수 범위(frequency range)로 정의된다. FR1, FR2는 아래 표 2와 같이 구성될 수 있다. 또한, FR2는 밀리미터 웨이브(mmW: millimeter wave)를 의미할 수 있다.
주파수 범위 지정(Frequency Range designation) 해당 주파수 범위(Corresponding frequency range) 서브캐리어 간격(Subcarrier Spacing)
FR1 410MHz - 7125MHz 15, 30, 60kHz
FR2 24250MHz - 52600MHz 60, 120, 240kHz
NR 시스템에서의 프레임 구조(frame structure)와 관련하여, 시간 영역의 다양한 필드의 크기는 Tc=1/(Δfmax·Nf) 의 시간 단위의 배수로 표현된다. 여기에서, Δfmax=480·103 Hz 이고, Nf=4096 이다. 하향링크(downlink) 및 상향링크(uplink) 전송은 Tf=1/(ΔfmaxNf/100)·Tc=10ms 의 구간을 가지는 무선 프레임(radio frame)으로 구성(organized)된다. 여기에서, 무선 프레임은 각각 Tsf=(ΔfmaxNf/1000)·Tc=1ms 의 구간을 가지는 10 개의 서브프레임(subframe)들로 구성된다. 이 경우, 상향링크에 대한 한 세트의 프레임들 및 하향링크에 대한 한 세트의 프레임들이 존재할 수 있다. 또한, 단말로부터의 상향링크 프레임 번호 i에서의 전송은 해당 단말에서의 해당 하향링크 프레임의 시작보다 TTA=(NTA+NTA,offset)Tc 이전에 시작해야 한다. 서브캐리어 간격 구성 μ 에 대하여, 슬롯(slot)들은 서브프레임 내에서 ns μ∈{0,..., Nslot subframe,μ-1} 의 증가하는 순서로 번호가 매겨지고, 무선 프레임 내에서 ns,f μ∈{0,..., Nslot frame,μ-1} 의 증가하는 순서로 번호가 매겨진다. 하나의 슬롯은 Nsymb slot 의 연속하는 OFDM 심볼들로 구성되고, Nsymb slot 는, CP에 따라 결정된다. 서브프레임에서 슬롯 ns μ 의 시작은 동일 서브프레임에서 OFDM 심볼 ns μNsymb slot 의 시작과 시간적으로 정렬된다. 모든 단말이 동시에 송신 및 수신을 할 수 있는 것은 아니며, 이는 하향링크 슬롯(downlink slot) 또는 상향링크 슬롯(uplink slot)의 모든 OFDM 심볼들이 이용될 수는 없다는 것을 의미한다.
표 3은 일반 CP에서 슬롯 별 OFDM 심볼의 개수(Nsymb slot), 무선 프레임 별 슬롯의 개수(Nslot frame,μ), 서브프레임 별 슬롯의 개수(Nslot subframe,μ)를 나타내며, 표 4는 확장 CP에서 슬롯 별 OFDM 심볼의 개수, 무선 프레임 별 슬롯의 개수, 서브프레임 별 슬롯의 개수를 나타낸다.
μ Nsymb slot Nslot frame,μ Nslot subframe,μ
0 14 10 1
1 14 20 2
2 14 40 4
3 14 80 8
4 14 160 16
μ Nsymb slot Nslot frame,μ Nslot subframe,μ
2 12 40 4
도 2는, μ=2인 경우(SCS가 60kHz)의 일례로서, 표 3을 참고하면 1 서브프레임(subframe)은 4개의 슬롯(slot)들을 포함할 수 있다. 도 2에 도시된 1 subframe={1,2,4} slot은 일례로서, 1 subframe에 포함될 수 있는 slot(들)의 개수는 표 3 또는 표 4와 같이 정의된다. 또한, 미니 슬롯(mini-slot)은 2, 4 또는 7 심볼들을 포함하거나 그 보다 더 많은 또는 더 적은 심볼들을 포함할 수 있다.
NR 시스템에서의 물리 자원(physical resource)과 관련하여, 안테나 포트(antenna port), 자원 그리드(resource grid), 자원 요소(resource element), 자원 블록(resource block), 캐리어 파트(carrier part) 등이 고려될 수 있다. 이하, NR 시스템에서 고려될 수 있는 상기 물리 자원들에 대해 구체적으로 살펴본다.
먼저, 안테나 포트와 관련하여, 안테나 포트는 안테나 포트 상의 심볼이 운반되는 채널이 동일한 안테나 포트 상의 다른 심볼이 운반되는 채널로부터 추론될 수 있도록 정의된다. 하나의 안테나 포트 상의 심볼이 운반되는 채널의 광범위 특성(large-scale property)이 다른 안테나 포트 상의 심볼이 운반되는 채널로부터 유추될 수 있는 경우, 2 개의 안테나 포트는 QC/QCL(quasi co-located 혹은 quasi co-location) 관계에 있다고 할 수 있다. 여기서, 상기 광범위 특성은 지연 확산(Delay spread), 도플러 확산(Doppler spread), 주파수 쉬프트(Frequency shift), 평균 수신 파워(Average received power), 수신 타이밍(Received Timing) 중 하나 이상을 포함한다.
도 3은 본 개시가 적용될 수 있는 무선 통신 시스템에서 자원 그리드(resource grid)를 예시한다.
도 3을 참조하면, 자원 그리드가 주파수 영역 상으로 NRB μNsc RB 서브캐리어들로 구성되고, 하나의 서브프레임이 14·2μ OFDM 심볼들로 구성되는 것을 예시적으로 기술하나, 이에 한정되는 것은 아니다. NR 시스템에서, 전송되는 신호(transmitted signal)는 NRB μNsc RB 서브캐리어들로 구성되는 하나 또는 그 이상의 자원 그리드들 및 2μNsymb (μ) 의 OFDM 심볼들에 의해 설명된다. 여기서, NRB μ≤NRB max,μ 이다. 상기 NRB max,μ 는 최대 전송 대역폭을 나타내고, 이는, numerology들 뿐만 아니라 상향링크와 하향링크 간에도 달라질 수 있다. 이 경우, μ 및 안테나 포트 p 별로 하나의 자원 그리드가 설정될 수 있다. μ 및 안테나 포트 p에 대한 자원 그리드의 각 요소는 자원 요소(resource element)로 지칭되며, 인덱스 쌍 (k,l')에 의해 고유적으로 식별된다. 여기에서, k=0,...,NRB μNsc RB-1 는 주파수 영역 상의 인덱스이고, l'=0,...,2μNsymb (μ)-1 는 서브프레임 내에서 심볼의 위치를 지칭한다. 슬롯에서 자원 요소를 지칭할 때에는, 인덱스 쌍 (k,l) 이 이용된다. 여기서, l=0,...,Nsymb μ-1 이다. μ 및 안테나 포트 p에 대한 자원 요소 (k,l') 는 복소 값(complex value) ak,l' (p,μ) 에 해당한다. 혼동(confusion)될 위험이 없는 경우 혹은 특정 안테나 포트 또는 numerology가 특정되지 않은 경우에는, 인덱스들 p 및 μ 는 드롭(drop)될 수 있으며, 그 결과 복소 값은 ak,l' (p) 또는 ak,l' 이 될 수 있다. 또한, 자원 블록(resource block, RB)은 주파수 영역 상의 Nsc RB=12 연속적인 서브캐리어들로 정의된다.
포인트(point) A는 자원 블록 그리드의 공통 기준 포인트(common reference point)로서 역할을 하며 다음과 같이 획득된다.
- 프라이머리 셀(PCell: Primary Cell) 다운링크에 대한 offsetToPointA는 초기 셀 선택을 위해 단말에 의해 사용된 SS/PBCH block과 겹치는 가장 낮은 자원 블록의 가장 낮은 서브 캐리어와 point A 간의 주파수 오프셋을 나타낸다. FR1에 대해 15kHz 서브캐리어 간격 및 FR2에 대해 60kHz 서브캐리어 간격을 가정한 리소스 블록 단위(unit)들로 표현된다.
- absoluteFrequencyPointA는 ARFCN(absolute radio-frequency channel number)에서와 같이 표현된 point A의 주파수-위치를 나타낸다.
공통 자원 블록(common resource block)들은 서브캐리어 간격 설정 μ 에 대한 주파수 영역에서 0부터 위쪽으로 numbering된다. 서브캐리어 간격 설정 μ 에 대한 공통 자원 블록 0의 subcarrier 0의 중심은 'point A'와 일치한다. 주파수 영역에서 공통 자원 블록 번호 nCRB μ 와 서브캐리어 간격 설정 μ 에 대한 자원 요소(k,l)와의 관계는 아래 수학식 1과 같이 주어진다.
Figure PCTKR2022011620-appb-img-000001
수학식 1에서, k는 k=0이 point A를 중심으로 하는 서브캐리어에 해당하도록 point A에 상대적으로 정의된다. 물리 자원 블록들은 대역폭 파트(BWP: bandwidth part) 내에서 0부터 NBWP,i size,μ-1 까지 번호가 매겨지고, i는 BWP의 번호이다. BWP i에서 물리 자원 블록 nPRB 와 공통 자원 블록 nCRB 간의 관계는 아래 수학식 2에 의해 주어진다.
Figure PCTKR2022011620-appb-img-000002
NBWP,i start,μ 는 BWP가 공통 자원 블록 0에 상대적으로 시작하는 공통 자원 블록이다.
도 4는 본 개시가 적용될 수 있는 무선 통신 시스템에서 물리 자원 블록(physical resource block)을 예시한다. 그리고, 도 5는 본 개시가 적용될 수 있는 무선 통신 시스템에서 슬롯 구조를 예시한다.
도 4 및 도 5를 참조하면, 슬롯은 시간 도메인에서 복수의 심볼을 포함한다. 예를 들어, 보통 CP의 경우 하나의 슬롯이 7개의 심볼을 포함하나, 확장 CP의 경우 하나의 슬롯이 6개의 심볼을 포함한다.
반송파는 주파수 도메인에서 복수의 부반송파를 포함한다. RB(Resource Block)는 주파수 도메인에서 복수(예를 들어, 12)의 연속한 부반송파로 정의된다. BWP(Bandwidth Part)는 주파수 도메인에서 복수의 연속한 (물리) 자원 블록으로 정의되며, 하나의 numerology(예를 들어, SCS, CP 길이 등)에 대응될 수 있다. 반송파는 최대 N개(예를 들어, 5개)의 BWP를 포함할 수 있다. 데이터 통신은 활성화된 BWP를 통해서 수행되며, 하나의 단말한테는 하나의 BWP만 활성화될 수 있다. 자원 그리드에서 각각의 요소는 자원요소(RE: Resource Element)로 지칭되며, 하나의 복소 심볼이 매핑될 수 있다.
NR 시스템은 하나의 컴포넌트 캐리어(CC: Component Carrier) 당 최대 400 MHz까지 지원될 수 있다. 이러한 광대역 CC(wideband CC)에서 동작하는 단말이 항상 CC 전체에 대한 무선 주파수(RF: radio frequency) 칩(chip)를 켜둔 채로 동작한다면 단말 배터리 소모가 커질 수 있다. 혹은 하나의 광대역 CC 내에 동작하는 여러 활용 케이스들(예를 들어, eMBB, URLLC, Mmtc, V2X 등)을 고려할 때 해당 CC 내에 주파수 대역 별로 서로 다른 numerology(예를 들어, 서브캐리어 간격 등)가 지원될 수 있다. 혹은 단말 별로 최대 대역폭에 대한 능력(capability)이 다를 수 있다. 이를 고려하여 기지국은 광대역 CC의 전체 bandwidth이 아닌 일부 bandwidth에서만 동작하도록 단말에게 지시할 수 있으며, 해당 일부 bandwidth를 편의상 대역폭 부분(BWP: bandwidth part)로 정의한다. BWP는 주파수 축 상에서 연속한 RB들로 구성될 수 있으며, 하나의 numerology(예를 들어, 서브캐리어 간격, CP 길이, 슬롯/미니-슬롯 구간)에 대응될 수 있다.
한편, 기지국은 단말에게 설정된 하나의 CC 내에서도 다수의 BWP를 설정할 수 있다. 예를 들어, PDCCH 모니터링 슬롯에서는 상대적으로 작은 주파수 영역을 차지하는 BWP를 설정하고, PDCCH에서 지시하는 PDSCH는 그보다 큰 BWP 상에 스케줄링될 수 있다. 혹은, 특정 BWP에 UE 들이 몰리는 경우 로드 밸런싱(load balancing)을 위해 일부 단말들을 다른 BWP로 설정할 수 있다. 혹은, 이웃 셀 간의 주파수 도메인 셀간 간섭 제거(frequency domain inter-cell interference cancellation) 등을 고려하여 전체 bandwidth 중 가운데 일부 스펙트럼(spectrum)을 배제하고 양쪽 BWP들을 동일 슬롯 내에서도 설정할 수 있다. 즉, 기지국은 광대역 CC와 연관된(association) 단말에게 적어도 하나의 DL/UL BWP를 설정할 수 있다. 기지국은 특정 시점에 설정된 DL/UL BWP(들) 중 적어도 하나의 DL/UL BWP를 (L1 시그널링 또는 MAC CE(Control Element) 또는 RRC 시그널링 등에 의해) 활성화시킬 수 있다. 또한, 기지국은 다른 설정된 DL/UL BWP로 스위칭을 (L1 시그널링 또는 MAC CE 또는 RRC 시그널링 등에 의해) 지시할 수 있다. 또는, 타이머 기반으로 타이머 값이 만료되면 정해진 DL/UL BWP로 스위칭될 수도 있다. 이때, 활성화된 DL/UL BWP를 활성(active) DL/UL BWP로 정의한다. 하지만, 단말이 최초 접속(initial access) 과정을 수행하는 중이거나, 혹은 RRC 연결이 셋업(set up)되기 전 등의 상황에서는 DL/UL BWP에 대한 설정을 수신하지 못할 수 있으므로, 이러한 상황에서 단말이 가정하는 DL/UL BWP는 최초 활성 DL/UL BWP라고 정의한다.
도 6은 본 개시가 적용될 수 있는 무선 통신 시스템에서 이용되는 물리 채널들 및 이들을 이용한 일반적인 신호 송수신 방법을 예시한다.
무선 통신 시스템에서 단말은 기지국으로부터 하향링크(Downlink)를 통해 정보를 수신하고, 단말은 기지국으로 상향링크(Uplink)를 통해 정보를 전송한다. 기지국과 단말이 송수신하는 정보는 데이터 및 다양한 제어 정보를 포함하고, 이들이 송수신 하는 정보의 종류/용도에 따라 다양한 물리 채널이 존재한다.
단말은 전원이 켜지거나 새로이 셀에 진입한 경우 기지국과 동기를 맞추는 등의 초기 셀 탐색(Initial cell search) 작업을 수행한다(S601). 이를 위해, 단말은 기지국으로부터 주 동기 신호(PSS: Primary Synchronization Signal) 및 부 동기 채널(SSS: Secondary Synchronization Signal)을 수신하여 기지국과 동기를 맞추고, 셀 식별자(ID: Identifier) 등의 정보를 획득할 수 있다. 그 후, 단말은 기지국으로부터 물리 방송 채널(PBCH: Physical Broadcast Channel)를 수신하여 셀 내 방송 정보를 획득할 수 있다. 한편, 단말은 초기 셀 탐색 단계에서 하향링크 참조 신호(DL RS: Downlink Reference Signal)를 수신하여 하향링크 채널 상태를 확인할 수 있다.
초기 셀 탐색을 마친 단말은 물리 하향링크 제어 채널(PDCCH: Physical Downlink Control Channel) 및 상기 PDCCH에 실린 정보에 따라 물리 하향링크 공유 채널(PDSCH: Physical Downlink Control Channel)을 수신함으로써 좀더 구체적인 시스템 정보를 획득할 수 있다(S602).
한편, 기지국에 최초로 접속하거나 신호 송신을 위한 무선 자원이 없는 경우 단말은 기지국에 대해 임의 접속 과정(RACH: Random Access Procedure)을 수행할 수 있다(단계 S603 내지 단계 S606). 이를 위해, 단말은 물리 임의 접속 채널(PRACH: Physical Random Access Channel)을 통해 특정 시퀀스를 프리앰블로 송신하고(S603 및 S605), PDCCH 및 대응하는 PDSCH를 통해 프리앰블에 대한 응답 메시지를 수신할 수 있다(S604 및 S606). 경쟁 기반 RACH의 경우, 추가적으로 충돌 해결 절차(Contention Resolution Procedure)를 수행할 수 있다.
상술한 바와 같은 절차를 수행한 단말은 이후 일반적인 상/하향링크 신호 송신 절차로서 PDCCH/PDSCH 수신(S607) 및 물리 상향링크 공유 채널(PUSCH: Physical Uplink Shared Channel)/물리 상향링크 제어 채널(PUCCH: Physical Uplink Control Channel) 송신(S608)을 수행할 수 있다. 특히 단말은 PDCCH를 통하여 하향링크 제어 정보(DCI: Downlink Control Information)를 수신한다. 여기서 DCI는 단말에 대한 자원 할당 정보와 같은 제어 정보를 포함하며, 그 사용 목적에 따라 포맷이 서로 다르다.
한편, 단말이 상향링크를 통해 기지국에 송신하는 또는 단말이 기지국으로부터 수신하는 제어 정보는 하향링크/상향링크 ACK/NACK(Acknowledgement/Non-Acknowledgement) 신호, CQI(Channel Quality Indicator), PMI(Precoding Matrix Indicator), RI(Rank Indicator) 등을 포함한다. 3GPP LTE 시스템의 경우, 단말은 상술한 CQI/PMI/RI 등의 제어 정보를 PUSCH 및/또는 PUCCH를 통해 송신할 수 있다.
표 5는 NR 시스템에서의 DCI 포맷(format)의 일례를 나타낸다.
DCI 포맷 활용
0_0 하나의 셀 내 PUSCH의 스케줄링
0_1 하나의 셀 내 하나 또는 다중 PUSCH의 스케줄링, 또는 UE에게 셀 그룹(CG: cell group) 하향링크 피드백 정보의 지시
0_2 하나의 셀 내 PUSCH의 스케줄링
1_0 하나의 DL 셀 내 PDSCH의 스케줄링
1_1 하나의 셀 내 PDSCH의 스케줄링
1_2 하나의 셀 내 PDSCH의 스케줄링
표 5를 참조하면, DCI format 0_0, 0_1 및 0_2는 PUSCH의 스케줄링에 관련된 자원 정보(예를 들어, UL/SUL(Supplementary UL), 주파수 자원 할당, 시간 자원 할당, 주파수 호핑 등), 전송 블록(TB: Transport Block) 관련 정보(예를 들어, MCS(Modulation Coding and Scheme), NDI(New Data Indicator), RV(Redundancy Version) 등), HARQ(Hybrid - Automatic Repeat and request) 관련 정보(예를 들어, 프로세스 번호, DAI(Downlink Assignment Index), PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, DMRS 시퀀스 초기화 정보, 안테나 포트, CSI 요청 등), 전력 제어 정보(예를 들어, PUSCH 전력 제어 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.
DCI format 0_0은 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI 포맷 0_0에 포함된 정보는 C-RNTI(Cell RNTI: Cell Radio Network Temporary Identifier) 또는 CS-RNTI(Configured Scheduling RNTI) 또는 MCS-C-RNTI(Modulation Coding Scheme Cell RNTI)에 의해 CRC(cyclic redundancy check) 스크램블링되어 전송된다.
DCI format 0_1은 하나의 셀에서 하나 이상의 PUSCH의 스케줄링, 또는 설정된 그랜트(CG: configure grant) 하향링크 피드백 정보를 단말에게 지시하는 데 사용된다. DCI format 0_1에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI(Semi-Persistent CSI RNTI) 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 0_2는 하나의 셀에서 PUSCH의 스케줄링에 사용된다. DCI format 0_2에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 SP-CSI-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
다음으로, DCI format 1_0, 1_1 및 1_2는 PDSCH의 스케줄링에 관련된 자원 정보(예를 들어, 주파수 자원 할당, 시간 자원 할당, VRB(virtual resource block)-PRB(physical resource block) 매핑 등), 전송블록(TB) 관련 정보(예를 들어, MCS, NDI, RV 등), HARQ 관련 정보(예를 들어, 프로세스 번호, DAI, PDSCH-HARQ 피드백 타이밍 등), 다중 안테나 관련 정보(예를 들어, 안테나 포트, TCI(transmission configuration indicator), SRS(sounding reference signal) 요청 등), PUCCH 관련 정보(예를 들어, PUCCH 전력 제어, PUCCH 자원 지시자 등)을 포함할 수 있으며, DCI 포맷 각각에 포함되는 제어 정보들은 미리 정의될 수 있다.
DCI format 1_0은 하나의 DL 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_0에 포함된 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_1은 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_1에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
DCI format 1_2는 하나의 셀에서 PDSCH의 스케줄링을 위해 사용된다. DCI format 1_2에 포함되는 정보는 C-RNTI 또는 CS-RNTI 또는 MCS-C-RNTI에 의해 CRC 스크램블링되어 전송된다.
시스템 정보 획득
단말은 시스템 정보(System Information, SI) 획득 과정을 통해 AS(Access Stratum)-정보/NAS(Non Access Stratum)-정보를 획득할 수 있다. 이와 같은 SI 획득 과정은 RRC_IDLE 상태, RRC_INACTIVE 상태, 및 RRC_CONNECTED 상태의 단말에게 적용될 수 있다.
시스템 정보 획득 과정은 다음과 같다. 셀(예: 기지국(base station, BS)은 단말(예: UE)에게 MIB(Master Information Block)을 전송한다. 이후, 셀은 단말에게 SIB1(System Information Block 1)을 전송할 수 있다. 이후, 단말은 셀에게 시스템 정보 요청(System Information Request)을 전송할 수 있다. 이에 따라, 셀은 단말에게 시스템 정보 메시지(들)(System Information message(s))을 전송할 수 있다.
시스템 정보는 MIB와 다수의 SIB로 구분될 수 있다. MIB 외의 SI는 RMSI(Remaining Minimum System Information)와 OSI(Other System Information)으로 지칭될 수 있다. 여기에서, RMSI는 SIB1에 해당하며, OSI는 SIB1 이외에 나머지 SIB2 이상의 SIB들을 지칭한다.
구체적으로, MIB는 SIB1 수신과 관련된 정보/파라미터를 포함하며 SSB의 PBCH를 통해 전송된다. MIB는 공통 서브캐리어 공간(예: subCarrierSpacingCommon), SSB의 서브캐리어 오프셋(예: ssb-SubcarrierOffset) 및 SBI1에 대한 PDCCH 설정(예: pdcch-ConfigSIB1)을 포함할 수 있다.
초기 셀 선택 시, 단말은 SSB를 갖는 하프-프레임이 20ms 주기로 반복된다고 가정한다. 단말은 MIB에 기반하여 Type0-PDCCH 공통 탐색 공간(common search space)을 위한 CORESET(Control Resource Set)이 존재하는지 확인할 수 있다. Type0-PDCCH 공통 탐색 공간은 PDCCH 탐색 공간의 일종이며, SI 메세지를 스케줄링 하는 PDCCH를 전송하는데 사용된다. Type0-PDCCH 공통 탐색 공간이 존재하는 경우, 단말은 MIB 내의 정보(예, pdcch-ConfigSIB1)에 기반하여 (i) CORESET을 구성하는 복수의 연속된 RB와 하나 이상의 연속된 심볼과 (ii) PDCCH 기회(즉, PDCCH 수신을 위한 시간 도메인 위치)를 결정할 수 있다. 구체적으로, pdcch-ConfigSIB1는 8비트 정보이며, (i)은 MSB(Most Significant Bit) 4비트에 의해 기반하여 결정되고, (ii)는 LSB(Least Significant Bit) 4비트에 의해 기반하여 결정된다. Type0-PDCCH 공통 탐색 공간이 존재하지 않는 경우, pdcch-ConfigSIB1은 SSB/SIB1이 존재하는 주파수 위치와 SSB/SIB1이 존재하지 않는 주파수 범위에 관한 정보를 제공한다.
SIB1은 나머지 SIB들(이하, SIBx, x는 2 이상의 정수)의 가용성 및 스케줄링(예, 전송 주기, SI-윈도우 사이즈)과 관련된 정보를 포함한다. 예를 들어, SIB1은 SIBx가 주기적으로 방송되는지 on-demand 방식에 의해 단말의 요청에 의해 제공되는지 여부를 알려줄 수 있다. SIBx가 on-demand 방식에 의해 제공되는 경우, SIB1은 단말이 SI 요청을 수행하는데 필요한 정보를 포함할 수 있다. SIB1은 PDSCH를 통해 전송되며, SIB1을 스케줄링 하는 PDCCH는 Type0-PDCCH 공통 탐색 공간을 통해 전송되며, SIB1은 상기 PDCCH에 의해 지시되는 PDSCH를 통해 전송된다. SIBx는 SI 메세지에 포함되며 PDSCH를 통해 전송된다. 각각의 SI 메세지는 주기적으로 발생하는 시간 윈도우(즉, SI-윈도우) 내에서 전송된다.
랜덤 액세스 동작 및 관련 동작
기지국이 할당한 PUSCH 전송 자원(즉, Uplink Grant)이 없을 경우, 단말은 랜덤 액세스(Random Access) 동작을 수행할 수 있다. NR 시스템의 랜덤 액세스는 1) 단말이 RRC 연결을 요청 또는 재개하는 경우, 2) 단말이 인접 셀로 핸드오버나 Secondary Cell Group 추가(SCG addition)을 할 경우, 3) 기지국에게 스케줄링 요청 (Scheduling Request)을 할 경우, 4) 기지국이 PDCCH order로 단말의 랜덤 접속을 지시한 경우, 5) 빔실패 (Beam Failure) 혹은 RRC 연결실패가 감지된 경우에 발생할 수 있다.
LTE와 NR의 랜덤 액세스 절차(즉, RACH 절차)는 단말의 Msg1 (PRACH preamble) 전송, 기지국의 Msg2 (RAR, random access response) 전송, 단말의 Msg3 (PUSCH) 전송, 기지국의 Msg4 (PDSCH) 전송의 4 step으로 구성될 수 있다.
즉, 단말은 PRACH(Physical Random Access Channel) 프리앰블(preamble)을 전송하고, 이에 대한 응답으로 RAR(Random Access Response)을 수신한다. Preamble이 단말 전용 자원인 경우, 즉 CFRA (Contention Free Random Access) 경우에는 단말 자신에게 해당하는 RAR 수신으로 랜덤 접속 동작을 종료한다. Preamble이 공용 자원인 경우, 즉 CBRA (Contention Based Random Access) 경우에는 단말이 선택한 RACH Preamble ID (RAPID)와 상향링크 PUSCH 자원을 포함하는 RAR 수신 후, 해당 자원으로 Msg3을 PUSCH를 통해 전송하고, PDSCH를 통해 경쟁해결 (Contention Resolution) 메시지를 수신한 후에 랜덤 접속 동작을 종료한다. 이때, PRACH preamble 신호가 매핑/전송되는 시간 및 주파수 자원을 RO (RACH Occasion)로 정의하고, Msg3 PUSCH 신호가 매핑/전송되는 시간 및 주파수 자원을 PO (PUSCH Occasion)로 정의한다.
한편, NR Rel-16 표준화 및 NR-U에서는 상술한 4 step RACH procedure의 과정을 단순화한 2 step RACH procedure가 도입되었다. 2 step RACH procedure는 단말(UE)의 MsgA (PRACH preamble + Msg3 PUSCH) 전송과 기지국(gNB)의 MsgB (RAR + Msg4 PDSCH) 전송으로 이루어 진다.
NR 시스템에서 PRACH preamble을 전송하기 위한 PRACH format 은 length 839 sequence 로 구성된 format (편의상 long RACH format 으로 명명) 과 length 139 sequence 로 구성된 format (편의상 short RACH format 으로 명명)으로 구성된다. 예를 들어, FR1 (frequency range 1) 에서는 해당 short RACH format 의 sub-carrier spacing (SCS) 는 15 또는 30 kHz 로 정의된다. 또한, RACH는 12 RBs (즉, 144 REs) 중 139 tones 에 실려서 전송될 수 있다. 이 경우, 5개의 null tones가 고려될 수 있다(예: lower RE index 에 2 null tones, upper RE index 에 3 null tones).
한편, 기지국은 상위 계층 시그널링(higher layer signalling)(예: RRC signalling 또는 MAC CE 또는 DCI 등)을 통해 특정 시점(timing)에 어떤 PRACH format을 특정 구간(duration) 만큼 전송할 수 있는지, 그리고 해당 슬롯(slot)에 RO (RACH occasion 또는 PRACH occasion)가 몇 개 인지까지 단말에게 알려줄 수 있다.
예를 들어, 미리 정해진 규격을 참고하면(예: 3GPP TS 38.211 표준의 Table 6.3.3.2-2 내지 Table 6.3.3.2-4), 기지국 및/또는 단말은 각 preamble format 별로 해당 RACH 슬롯에 몇 개의 RO가 정의되어 있는지에 대한 정보와 해당 preamble format에 대한 각 PRACH preamble이 몇 개의 OFDM symbol을 점유하고 있는지에 대한 정보까지 알 수 있다. 또한, 기지국은 최초 RO의 시작 심볼(starting symbol)을 지시해줌으로써 해당 RACH 슬롯의 어느 시점부터 RO가 시작하는지에 대한 정보도 단말에게 알려줄 수 있다.
제한된 능력(reduced capability)를 가지는 단말을 고려한 랜덤 액세스 절차 수행 방법
- PUCCH: 물리 상향링크 제어 채널(Physical Uplink Control channel)
- PUSCH: 물리 상향링크 공유 채널(Physical Uplink Shared Channel)
- MCCH: Multicast Control Channel
- MTCH: Multicast Traffic Channel
- RRM: 무선 자원 관리(Radio resource management)
- RLM: 무선 링크 모니터링(Radio link monitoring)
- SCS: 서브캐리어 간격(Sub-carrier spacing)
- RLM: 무선 링크 모니터링(Radio link monitoring)
- DCI: 하향링크 제어 정보(Downlink Control Information)
- CAP: 채널 액세스 절차(Channel Access Procedure)
- Ucell: 비면허 셀(Unlicensed cell)
- PCell: 프라이머리 셀(Primary Cell)
- PSCell: 프라이머리 SCG 셀(Primary SCG Cell)
- TBS: 전송 블록 크기(Transport Block Size)
- TDRA: 시간 도메인 자원 할당(Time Domain Resource Allocation)
- SLIV: 시작 및 길이 지시자 값(Starting and Length Indicator Value) (PDSCH 및/혹은 PUSCH의 슬롯(slot) 내 시작 심볼 인덱스(index) 및 심볼 개수에 대한 지시 값이다. 해당 PDSCH 및/혹은 PUSCH를 스케줄링(scheduling)하는 PDCCH 내에 TDRA 필드(field)를 구성하는 항목(entry)의 구성 요소로 설정될 수 있다.)
- BWP: 대역폭 부분(BandWidth Part) (주파수 축 상에서 연속한 자원 블록(RB: resource block) 들로 구성될 수 있다. 하나의 뉴머롤로지(numerology) (예를 들어, SCS, CP 길이, 슬롯/미니-슬롯 구간(slot/mini-slot duration) 등)에 대응될 수 있다. 또한 하나의 캐리어(carrier)에서 다수의 BWP 가 설정(carrier 당 BWP 개수 역시 제한될 수 있음)될 수 있으나, 활성화(activation)된 BWP 개수는 carrier 당 그 일부 (예를 들어, 1 개) 로 제한될 수 있다.)
- CORESET: 제어 자원 세트(COntrol REsourse SET) (PDCCH 가 전송될 수 있는 시간 주파수 자원 영역을 의미하며, BWP 당 CORESET 개수가 제한될 수 있다.)
- REG: 자원 요소 그룹(Resource element group)
- SFI: 슬롯 포맷 지시자(Slot Format Indicator) (특정 slot(들) 내의 심볼 레벨 DL/UL 방향(direction)을 지시해주는 지시자로써, 그룹 공통 PDCCH(group common PDCCH)를 통해 전송된다.)
- COT: 채널 점유 시간(Channel occupancy time)
- SPS: 반-지속적 스케줄링(Semi-persistent scheduling)
- QCL: Quasi-Co-Location (두 참조 신호(RS: reference signal) 간 QCL 관계라 함은, 하나의 RS로부터 획득한 도플러 시프트(Doppler shift), 도플러 스프레드(Doppler spread), 평균 지연(average delay), 평균 스프레드(delay spread), 공간 수신 파라미터(Spatial Rx parameter) 등과 같은 QCL 파라미터(parameter)가 다른 RS (혹은 해당 RS의 안테나 포트(antenna port)(들))에도 적용할 수 있음을 의미할 수 있다. NR 시스템에서 다음과 같이 4 개의 QCL type 이 정의되고 있다. 'typeA': {Doppler shift, Doppler spread, average delay, delay spread}, 'typeB': {Doppler shift, Doppler spread}, 'typeC': {Doppler shift, average delay}, 'typeD': {Spatial Rx parameter}. 어떤 DL RS antenna port(들)에 대해 제 1 DL RS 가 QCL type X (X=A, B, C, 또는 D)에 대한 reference로 설정되고, 추가로 제 2 DL RS가 QCL type Y (Y=A, B, C, 또는 D, 다만 X≠Y) 에 대한 reference로 설정될 수 있다.)
- TCI: 전송 설정 지시(Transmission Configuration Indication) (하나의 TCI 상태(state)는 PDSCH의 DM-RS 포트들, PDCCH의 DM-RS 포트, 혹은 CSI-RS 자원의 CSI-RS 포트(들) 등과 하나 혹은 복수 DL RS 간 QCL 관계를 포함하고 있다. PDSCH를 스케줄링하는 DCI 내의 field들 중 'Transmission Configuration Indication'에 대해서는, 해당 field를 구성하는 각 코드 포인트(code point)에 대응되는 TCI 상태 인덱스(state index)는 MAC 제어 요소(CE: control element)에 의해 활성화되며, 각 TCI state index 별 TCI state 설정은 RRC 시그널링(signaling)을 통해 설정된다. Rel-16 NR 시스템에서, 해당 TCI state는 DL RS 간 설정되지만, 향후 release에서 DL RS 와 UL RS 간 혹은 UL RS 와 UL RS 간 설정이 허용될 수 있다. UL RS의 예로써, SRS, PUSCH DM-RS, PUCCH DM-RS 등이 있다.)
- SRI: SRS 자원 지시자(SRS resource indicator) (PUSCH 를 스케줄링하는 DCI 내의 field들 중 'SRS resource indicator'에서 설정된 SRS resource index 값들 중 하나를 지시한다. 단말은 PUSCH 전송 시, 해당 SRS resource와 연동된 reference signal 송수신에 사용된 것과 동일한 공간 도메인 전송 필터(spatial domain transmission filter)를 활용하여 PUSCH를 전송할 수 있다. 여기서, SRS resource 별로 SRS 공간 관계 정보(SRS-SpatialRelationInfo) 파라미터를 통해 reference RS가 RRC signaling에 의해 설정되며, SS/PBCH block, CSI-RS, 혹은 SRS 등이 reference RS 로 설정될 수 있다.)
- TRP: 전송 및 수신 포인트(Transmission and Reception Point)
- PLMN ID: 공중 육상 모바일 네트워크 식별자(Public Land Mobile Network identifier)
- RACH: 랜덤 액세스 채널(Random Access Channel)
- RAR: 랜덤 액세스 응답(Random Access Response)
- Msg3: C-RNTI MAC CE 또는 CCCH(common control channel) 서비스 데이터 유닛(SDU: service data unit)를 포함하는 UL-SCH(uplink shared channel)를 통해 전송되고, 상위 계층으로부터 제공되며, 랜덤 액세스 절차의 일부로 UE 경쟁 해소 식별자(UE Contention Resolution Identity)와 연관되는 메시지이다.
- 특별 셀(Special Cell): 이중 연결(Dual Connectivity) 동작의 경우 Special Cell이라는 용어는 MAC 엔터티가 MCG(master cell group) 또는 SCG(secondary cell group)에 각각 연관되는지에 따라 MCG의 PCell 또는 SCG의 PSCell을 나타낸다. 그렇지 않으면 Special Cell이라는 용어는 PCell을 나타냅니다. Special Cell은 PUCCH 전송 및 경쟁 기반 랜덤 액세스를 지원하며 항상 활성화된다.
- 서빙 셀(Serving Cell): PCell, PSCell, SCell(secondary cell)을 포함한다.
- CG: 설정된 그랜트(Configured Grant)
- Type 1 CG 또는 Type 2 CG: 타입 1 configured grant 또는 타입 2 configured grant
- 폴백(Fall-back) DCI: fall-back 동작을 위해 사용될 수 있는 DCI 포맷(format)을 나타내며, 예를 들어, DCI format 0_0, 1_0이 해당된다.
- 논-폴백(non fall-back) DCI: fall-back DCI 이외의 DCI format을 나타내며, 예를 들어, DCI format 0_1, 1_1이 해당된다.
- SS: 서치 스페이스(search space)
- FDRA: 주파수 도메인 자원 할당(frequency domain resource allocation)
- TDRA: 시간 도메인 자원 할당(time domain resource allocation)
- LP, HP: 낮은 우선순위(Low(er) priority), 높은(High(er) priority)
- 셀 A에 대한 A/N: 셀 A에서 수신된 데이터(예를 들어, PDSCH)에 대한 A/N(acknowledgement/negative acknowledgement) 정보
- UL CI: 상향링크 취소 지시(Uplink cancelation indication)
- CFR: MBS(multicast and broadcast service)를 위한 고옹 주파수 자원(common frequency resource). 하나의 DL CFR은 MBS 송수신을 위한 그룹 공통(group common) PDCCH와 group common PDSCH 전송자원을 제공한다. 하나의 UL CFR은 group common PDSCH 수신에 대한 HARQ-ACK PUCCH 자원을 제공한다. 하나의 CFR은 하나의 MBS 특정(specific) BWP이거나 하나의 UE specific BWP이다. 혹은 하나의 UE specific BWP 내에 하나 또는 복수의 CFR이 설정될 수 있다. 하나의 CFR은 하나의 UE specific BWP와 연결 관계가 있다.
- TMGI: 임시 모바일 그룹 식별자(Temporary Mobile Group Identity). MBS 서비스 식별자로서 특정 서비스를 나타낸다.
- G-RNTI: 그룹 무선 네트워크 임시 식별자(Group Radio Network Temporary Identifier). MBS를 수신하는 단말그룹 식별자를 나타낸다.
앞서 살핀 내용들(3GPP system, frame structure, NR 시스템 등)은 후술할 본 개시에서 제안하는 방법들과 결합되어 적용될 수 있으며, 또는 본 개시에서 제안하는 방법들의 기술적 특징을 명확하게 하는데 보충될 수 있다. 본 개시에서 ‘/’는 문맥에 따라 ‘및(and)’, ‘또는(or)’, 혹은 ‘및/또는(and/or)’을 의미한다.
NR Rel-17 표준화에서는, 종래 NR 시스템의 단말보다 작은 송수신 대역폭(bandwidth) 크기 및/또는 송수신 안테나 개수 등 제한된 능력(reduced capability, RedCap)을 지원하는 새로운 유형의 단말을 지원하고자 한다. 또한, 일반 단말이 지원하는 셀 커버리지 대비 더 넓은 커버리지를 지원하기 위한 커버리지 향상(coverage enhancement, CE) 능력을 지원하는 단말도 지원하고자 한다.
본 개시에서는, 설명의 편의를 위하여, 상술한 바와 같이 제한된 능력을 지원하는 단말을 R 단말, R-UE, 또는 RedCap UE/단말로 지칭하며, 커버리지 향상 능력을 지원하는 단말을 CE 단말, CE UE로 지칭한다.
RedCap 단말은 CE 능력을 지원하거나(즉, CE 단말), CE 능력을 지원하지 않을 수 있다(즉, non-CE 단말). 또한, 일반 단말이 CE 능력을 지원할 수도 있고, RedCap 단말이 CE 능력을 지원할 수도 있다. 따라서, CE 단말은 일반 단말에 해당하거나, RedCap 단말에 해당할 수도 있다.
이와 관련하여, RedCap 단말 또는 CE 단말은 기존의 단말보다 제한되거나, 다른 단말 능력을 지원하기 때문에, 기지국은 랜덤 액세스 과정(즉, RACH 과정)에서 초기에 특정한 유형(type)의 단말을 식별하는 것이 필요할 수 있다. 다만, 종래 기술의 경우, 기지국은 랜덤 액세스 과정 상에서 RedCap 단말 또는 CE 단말을 초기에 식별하지 못하는 문제가 있다.
따라서, 본 개시에서는, 상술한 바와 같이 특정 능력(예: CE) 또는 제한된 능력(예: RedCap)을 가진 단말이 하나의 셀을 통해 무선 네트워스 시스템에 랜덤 액세스 절차(즉, RACH 절차)를 수행할 경우, 해당 단말의 특정 능력 또는 제한된 능력을 식별하여 해당 능력에 적합하게 RACH 절차를 완료하는 방법을 제안한다. 여기에서, 해당 RACH 절차는 초기 접속(initial access), 핸드오버(handover), BFR(Beam Failure Recovery), RRC 재설정(RRC Re-establishment) 등을 이유로 수행되는 것일 수 있다.
본 개시에서 제안하는 방법은 모든 단말에게 적용될 수 있거나, 특정 능력 또는 제한된 능력을 가지는 특정 유형의 단말에게만 적용될 수도 있다. 본 개시에서 제안하는 방법은 RedCap 단말 유형과 CE 단말 유형을 식별하기 위해 이용/적용되는 것일 수 있다.
본 개시에서 제안하는 방법과 관련하여, 기지국은 CE 단말인 일반 단말, non-CE 단말인 일반 단말, CE 단말인 RedCap 단말, non-CE 단말인 RedCap 단말을 식별할 수 있도록, 서로 다른 단말 유형에 대해 서로 다른 UL BWP를 설정하거나, 동일한 BWP에서의 서로 다른 PRACH 프리앰블(preamble) 및/또는 PRACH 자원들(예: PRACH occasions)을 할당할 수 있다. 또한, 기지국은 필요한 경우, 랜덤 액세스 절차 상의 MSG3를 통해 추가적인 또는 구체적인 단말 유형을 지시하도록 설정/규정할 수 있다.
본 개시에서, CE 단말인 일반 단말은 CE 단말에 해당하는(즉, CE 능력을 가지는) 일반 단말을 의미하고, non-CE 단말인 일반 단말은 non-CE 단말에 해당하는(즉, CE 능력을 가지지 않는) 일반 단말을 의미할 수 있다. 또한, CE 단말인 RedCap 단말은 CE 단말에 해당하는(즉, CE 능력을 가지는) RedCap 단말을 의미하고, non-CE 단말인 RedCap 단말은 non-CE 단말에 해당하는(즉, CE 능력을 가지지 않는) RedCap 단말을 의미할 수 있다.
또한, 본 개시에서 제안하는 방법과 관련하여, CE 단말인 단말은 msg3 PUSCH repetition을 요청/요구하는 단말로서, 하기 용어로 대체될 수 있다.
- CE 단말인 일반 단말은 MSG3 PUSCH repetition을 요구하는 일반 단말로 대체
- non-CE 단말인 일반 단말은 MSG3 PUSCH repetition을 요구하지 않는 일반 단말로 대체
- CE 단말인 RedCap 단말은 MSG3 PUSCH repetition을 요구하는 RedCap 단말로 대체
- non-CE 단말인 RedCap 단말은 MSG3 PUSCH repetition을 요구하지 않는 RedCap 단말로 대체
또한, 단말 능력 상으로 CE 단말에 해당하지만, MSG3 PUSCH repetition을 요청/요구하지 않는 CE 단말과 MSG3 PUSCH repetition을 요청하는 CE 단말로 구분될 수 있다. 이 경우, 본 개시에서 CE 단말은 MSG3 PUSCH repetition을 요청하지 않는 CE 단말과 MSG3 PUSCH repetition을 요청하는 CE 단말을 모두 의미할 수도 있고, MSG3 PUSCH repetition을 요청하는 CE 단말만을 의미할 수도 있다.
앞서 언급한 바와 같이, 본 개시에서 제안하는 방법과 관련하여, 기지국은 초기 접속(initial access), 핸드오버(hanover), BFR(Beam Failure Recovery), RRC 재설정(RRC Re-establishment) 시나리오 등에서 단말이 RACH 절차를 수행할 경우, 단말 유형을 식별할 필요가 있다. 해당 시나리오들과 관련하여, 단말은 특정 UL BWP에서 RACH 절차를 수행할 수 있다. 예를 들어, 특정 UL BWP는, 초기 접속 시나리오의 경우 초기(initial) UL BWP일 수 있고, 핸드오버 시나리오의 경우 타겟 셀에서의 첫번째 활성 UL BWP(first active UL BWP)일 수 있고, BFR 시나리오의 경우 서빙 셀의 단말 active BWP, 초기 UL BWP 또는 디폴트(default) UL BWP일 수 있고, RRC 재설정 시나리오의 경우 단말이 선택한 셀의 초기 UL BWP일 수 있다.
기지국은 특정 셀에서 특정 단말 유형(예: 일반 단말, RedCap 단말, CE 단말 등)을 지원하거나, 지원하지 않을 수 있다. 즉, 기지국은 특정 셀에서 여러 단말 유형들을 모두 지원하거나, 일부 단말 유형만을 지원할 수도 있다. 일 예로, 특정 셀에서 후술되는 실시예들(예: 실시예 1 내지 실시예 5)의 Case들 중 하나의 Case에 따른 단말 유형 조합만을 지원할 수 있다.
또한, 본 개시에서 제안하는 방법과 관련하여, 기지국은 특정 단말 유형을 위해 별도의 PRACH partitioning set을 지원할 수 있다. 여기에서, PRACH partitioning set은 별도의 PRACH 자원들, 별도의 PRACH 프리앰블들, 별도의 RACH occasion(RO)들 중 하나, 또는 일부 또는 전부를 의미할 수 있다. PRACH partitioning set은 PRACH 자원 집합으로 지칭될 수도 있다. 기지국은 SIB1(system information block 1) 또는 특정 단말 유형을 위한 특정 SIB를 통해 별도의 PRACH partitioning set에 대한 설정 정보를 단말(들)에게 전송할 수 있다.
설명의 편의를 위하여, 후술되는 실시예들(예: 실시예 1 내지 실시예 5)의 Case들은 2-step RACH 절차가 설정되지 않고, 4-step RACH 절차가 설정된 경우를 가정한다. 만일, 2-step RACH 절차가 4-step RACH 절차와 함께 설정되었다면, 기지국은 BWP 당 별도의 2-step RACH 절차 용도의 PRACH partitioning set을 추가로 설정할 필요가 있다.
또한, 후술되는 실시예들(예: 실시예 1 내지 실시예 5)의 경우, 초기 접속, 핸드오버, BFR 또는 RRC 재설정 등의 시나리오에서 단말이 경쟁 기반 RACH(Contention Based RACH, CBRA)를 이용하도록 설정된 경우를 가정한다.
실시예 1
본 실시예는 특정 셀에서 CE 단말인 일반 단말과 non-CE 단말인 일반 단말, CE 단말인 RedCap 단말, non-CE 단말인 RedCap 단말을 모두 지원하는 경우에서의 RACH 절차 수행 방식에 대한 것이다.
본 실시예와 관련하여, 2-step RACH 절차를 설정하지 않고 4-step RACH 절차를 설정한 기지국은 서로 다른 단말 유형을 위해 다음과 같은 방식들(방식 1a 내지 방식 1c) 중 적어도 하나에 기반하여 PRACH를 설정할 수 있다. 이때, BWP 당 PRACH partitioning set의 개수가 2로 설정된 경우, 방식 1a 또는 방식 1c에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 1b를 설정할 수 없다. 또한, BWP 당 PRACH partitioning set의 개수가 4로 설정된 경우, 방식 1a 또는 방식 1b에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 1c를 설정할 수 없다.
(방식 1a)
BWP 당 설정된 PRACH partitioning set의 개수가 2이고, 서로 다른 단말 유형에 해당하는 단말들이 서로 다른 별도의 UL BWP를 통해 RACH를 수행하는 방식이 고려될 수 있다. 이 경우, 기지국은 서로 다른 4가지 유형의 단말들을 지원할 경우, PRACH partitioning set의 개수가 2이면, RedCap 단말은 별도의 UL BWP를 통해 초기 접속을 수행하도록 설정할 수 있다.
예를 들어, 기지국은 다음과 같이 단말이 RACH 절차를 수행하도록 설정할 수 있다.
일반 단말들은 UL BWP #1을 통해 초기 접속을 수행하도록 설정될 수 있다. 이때, 일반 단말인 non-CE 단말들은 UL BWP #1의 PRACH partitioning set #1을 이용하여 RACH 절차를 수행하고, RedCap 단말인 CE 단말들은 UL BWP #1의 PRACH partitioning set #2를 이용하여 RACH 절차를 수행할 수 있다.
RedCap 단말들은 UL BWP #2를 통해 초기 접속을 수행하도록 설정될 수 있다. 이때, RedCap 단말인 non-CE 단말들은 UL BWP #2의 PRACH partitioning set #1을 이용하여 RACH 절차를 수행하고, RedCap 단말인 CE 단말들은 UL BWP #2의 PRACH partitioning set #2를 이용하여 RACH 절차를 수행할 수 있다.
(방식 1b)
BWP 당 설정된 PRACH partitioning set의 개수가 4이고, 서로 다른 단말 유형에 해당하는 단말들이 동일한 UL BWP를 통해 RACH를 수행하는 방식이 고려될 수 있다. 이 경우, 기지국은 서로 다른 4가지 유형의 단말들을 지원할 경우, PRACH partitioning set의 개수가 4이면, RedCap 단말은 별도의 UL BWP 없이, 별도의 PRACH 자원을 통해 초기 접속을 수행하도록 설정할 수 있다.
예를 들어, 기지국은 다음과 같이 단말이 RACH 절차를 수행하도록 설정할 수 있다.
일반 단말인 non-CE 단말들은 UL BWP #1의 PRACH partitioning set #1을 이용하여 RACH 절차를 수행하고, RedCap 단말인 CE 단말들은 UL BWP #1의 PRACH partitioning set #2를 이용하여 RACH 절차를 수행할 수 있다.
RedCap 단말인 non-CE 단말들은 UL BWP #1의 PRACH partitioning set #3을 이용하여 RACH 절차를 수행하고, RedCap 단말인 CE 단말들은 UL BWP #1의 PRACH partitioning set #4를 이용하여 RACH 절차를 수행할 수 있다.
(방식 1c)
CE 단말인 RedCap 단말과 non-CE 단말인 RedCap 단말이 모두 동일한 특정 PRACH partitioning set을 이용하여 RACH 절차를 수행하는 방식이 고려될 수 있다.
해당 방식에서 기지국은 CE 전용으로 상기 특정 PRACH partitioning set을 설정할 수 있다. 이와 같이, 기지국이 RedCap 단말을 위한 별도의 PRACH partitioning set 없이 CE 전용의 PRACH partitioning set을 제공할 경우, CE 여부와 관계 없이, RedCap 단말은 항상 CE 전용 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다. 즉, 모든 RedCap 단말은 CE 전용 PRACH partitioning set의 PRACH 자원과 PRACH 프리앰블을 통해 MSG1을 전송할 수 있다.
또한, CE 단말인 일반 단말도 CE 전용의 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다. 다만, non-CE 단말인 일반 단말은 CE 전용이 아닌 다른 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다.
단말이 상술한 MSG1에 대한 응답을 포함한 MSG2(즉, RAR)을 수신한 경우, RedCap 단말은 MSG2에 포함된 UL grant에 따른 PUSCH를 통해 MSG3를 전송할 수 있다. 이때, 기지국의 설정 등에 기반하여 CE를 위한 MSG3 PUSCH 전송 파라미터 값과 non-CE를 위한 MSG3 PUSCH 전송 파라미터 값이 다를 수 있다. 이에 따라, CE 단말인 RedCap 단말은 CE 용도의 파라미터에 기반하여 MSG3 PUSCH를 전송하고, non-CE 단말인 RedCap 단말은 non-CE 용도의 파라미터에 기반하여 MSG3 PUSCH를 전송할 수 있다. 또한, CE 단말을 위해 PUSCH repetition이 4로 설정되는 경우, CE 단말은 MSG3를 전달하는 PUSCH 전송을 4번 반복 수행하지만, non-CE 단말은 1번만 PUSCH 전송을 수행한 후, 나머지 PUSCH 전송을 스킵(skip)할 수 있다. 따라서, 기지국은 CE 단말과 non-CE 단말을 모두 고려하여, 각각의 단말 유형에 대해서 PUSCH 전송에 대한 재전송 용도의 UL grant 또는 경쟁 해소(contention resolution) MAC-CE를 (하향링크) 전송할 수 있다.
또한, 기지국이 SIB 등으로 설정한 경우, 단말은 MSG3를 통해 MSG3를 전송하는 단말이 RedCap 단말인지, 또는 일반 단말인지 여부에 대한 정보를 기지국에게 전달/지시할 수 있다. 추가적으로, 해당 단말은 CE 단말인지, non-CE 단말인지 여부에 대한 정보를 기지국에게 전달/지시할 수도 있다.
일 예로, MSG3에 대한 MAC PDU의 헤더(header) 또는 서브 헤더(sub-header)에 이와 같은 전달/지시가 포함될 수 있다. 구체적인 예로, MSG3에 대한 MAC PDU의 서브 헤더에는 LCID(Logical Channel ID) 필드가 포함될 수 있으며, 해당 LCID 필드의 특정 값이 3가지 단말 유형들(즉, [CE 단말인 일반 단말], [CE 단말인 RedCap 단말] 및 [non-CE 단말인 RedCap 단말]) 중 하나의 단말 유형을 지시하거나, RedCap 단말임을 지시할 수 있다.
만일 상기 3가지 단말 유형들 중 하나를 지시하도록 설정되었으나, 기지국이 수신한 MSG3가 상기 3가지 단말 유형들 중 하나를 지시하지 않는 경우, 기지국은 MSG3를 전송한 단말이 non-CE 단말인 일반 단말에 해당하는 것으로 식별할 수 있다. 또는, 만일 RedCap 단말임을 지시하도록 설정되었으나, 기지국이 수신한 MSG3가 RedCap 단말임을 지시하지 않는 경우, 기지국은 MSG3를 전송한 단말이 일반 단말에 해당하는 것으로 식별할 수 있다. 이 경우, 기지국은 MSG1이 전송된 PRACH partitioning set에 따라 CE 단말인 일반 단말인지, 또는 non-CE 단말인 일반 단말인지 여부를 식별할 수 있다.
실시예 2
본 실시예는 특정 셀에서 CE 단말인 일반 단말과 non-CE 단말인 일반 단말, non-CE 단말인 RedCap 단말을 지원하는 경우에서의 RACH 절차 수행 방식에 대한 것이다. 즉, 본 실시예는 특정 셀에서 CE 단말인 RedCap 단말이 지원되지 않는 경우에 해당한다.
이 경우, 기지국은 해당 셀에서 CE 단말인 RedCap 단말을 차단(barred)하도록 설정/지시할 수 있다. 이에 대한 설정/지시 정보는 해당 셀의 SIB1 정보에 포함되거나, SIB1을 스케줄링하는 DCI에 포함될 수 있다.
본 실시예와 관련하여, 2-step RACH 절차를 설정하지 않고 4-step RACH 절차를 설정한 기지국은 서로 다른 단말 유형을 위해 다음과 같은 방식들(방식 2a 및 방식 2b) 중 적어도 하나에 기반하여 PRACH를 설정할 수 있다. 이때, BWP 당 PRACH partitioning set의 개수가 2로 설정된 경우, 방식 2a에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 2b를 설정할 수 없다. 또한, BWP 당 PRACH partitioning set의 개수가 3으로 설정된 경우, 방식 2b에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 2a를 설정할 수 없다.
(방식 2a)
RedCap 단말을 위해 별도의 UL BWP를 설정하는 방식이 고려될 수 있다. 해당 방식에서, 일반 단말과 non-CE 단말인 RedCap 단말은 별도의 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #1을 이용하여 PRACH를 전송하고, CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #2를 이용하여 PRACH를 전송할 수 있다. 반면, non-CE 단말인 RedCap 단말은 UL BWP #2의 PRACH partitioning set #1을 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 UL BWP와 PRACH partitioning set을 통해 단말 유형을 식별할 수 있다.
(방식 2b)
RedCap 단말을 위해 별도의 UL BWP를 설정하지 않는 방식이 고려될 수 있다. 해당 방식에서, 일반 단말과 non-CE 단말인 RedCap 단말은 동일한 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #1을 이용하여 PRACH를 전송하고, CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #2를 이용하여 PRACH를 전송할 수 있다. 또한, non-CE 단말인 RedCap 단말은 UL BWP #1의 PRACH partitioning set #3을 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 PRACH partitioning set만을 통해 단말 유형을 식별할 수 있다.
실시예 3
본 실시예는 특정 셀에서 non-CE 단말인 일반 단말과 non-CE 단말인 RedCap 단말을 지원하는 경우에서의 RACH 절차 수행 방식에 대한 것이다. 즉, 본 실시예는 특정 셀에서 CE 단말인 일반 단말과 CE 단말인 RedCap 단말이 지원되지 않는 경우에 해당한다.
본 실시예는 특정 셀에서 CE 단말인 일반 단말과 non-CE 단말인 일반 단말, non-CE 단말인 RedCap 단말을 지원하는 경우에서의 RACH 절차 수행 방식에 대한 것이다. 즉, 본 실시예는 특정 셀에서 CE 단말인 RedCap 단말이 지원되지 않는 경우에 해당한다.
이 경우, 기지국은 해당 셀에서 CE 단말을 차단(barred)하도록 설정/지시할 수 있다. 이에 대한 설정/지시 정보는 해당 셀의 SIB1 정보에 포함되거나, SIB1을 스케줄링하는 DCI에 포함될 수 있다.
본 실시예와 관련하여, 2-step RACH 절차를 설정하지 않고 4-step RACH 절차를 설정한 기지국은 서로 다른 단말 유형을 위해 다음과 같은 방식들(방식 3a 및 방식 3b) 중 적어도 하나에 기반하여 PRACH를 설정할 수 있다. 이때, BWP 당 PRACH partitioning set의 개수가 1로 설정된 경우, 방식 3a에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 3b를 설정할 수 없다. 또한, BWP 당 PRACH partitioning set의 개수가 2로 설정된 경우, 방식 3b에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 3a를 설정할 수 없다.
(방식 3a)
RedCap 단말을 위해 별도의 UL BWP를 설정하는 방식이 고려될 수 있다. 해당 방식에서, non-CE 단말에 해당하는 일반 단말과 RedCap 단말은 별도의 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set을 이용하여 PRACH를 전송하고, non-CE 단말인 RedCap 단말은 UL BWP #2의 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 UL BWP를 통해 단말 유형을 식별할 수 있다.
(방식 3b)
RedCap 단말을 위해 별도의 UL BWP를 설정하지 않는 방식이 고려될 수 있다. 해당 방식에서, non-CE 단말에 해당하는 일반 단말과 RedCap 단말은 동일한 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #1을 이용하여 PRACH를 전송하고, non-CE 단말인 RedCap 단말은 UL BWP #1의 PRACH partitioning set #2를 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 PRACH partitioning set만을 통해 단말 유형을 식별할 수 있다.
실시예 4
본 실시예는 특정 셀에서 non-CE 단말인 일반 단말, CE 단말인 RedCap 단말, non-CE 단말인 RedCap 단말을 지원하는 경우에서의 RACH 절차 수행 방식에 대한 것이다. 즉, 본 실시예는 특정 셀에서 CE 단말인 일반 단말이 지원되지 않는 경우에 해당한다.
이 경우, 기지국은 해당 셀에서 CE 단말인 일반 단말을 차단(barred)하도록 설정/지시할 수 있다. 이에 대한 설정/지시 정보는 해당 셀의 SIB1 정보에 포함되거나, SIB1을 스케줄링하는 DCI에 포함될 수 있다.
본 실시예와 관련하여, 2-step RACH 절차를 설정하지 않고 4-step RACH 절차를 설정한 기지국은 서로 다른 단말 유형을 위해 다음과 같은 방식들(방식 4a 및 방식 4b) 중 적어도 하나에 기반하여 PRACH를 설정할 수 있다. 이때, BWP 당 PRACH partitioning set의 개수가 2로 설정된 경우, 방식 4a에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 4b를 설정할 수 없다. 또한, BWP 당 PRACH partitioning set의 개수가 3으로 설정된 경우, 방식 4b에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 4a를 설정할 수 없다.
(방식 4a)
RedCap 단말을 위해 별도의 UL BWP를 설정하는 방식이 고려될 수 있다. 해당 방식에서, RedCap 단말과 non-CE 단말인 일반 단말은 별도의 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다. 반면, non-CE 단말인 RedCap 단말은 UL BWP #2의 PRACH partitioning set #1을 이용하여 PRACH를 전송하고, CE 단말인 RedCap 단말은 UL BWP #2의 PRACH partitioning set #2를 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 UL BWP 및 PRACH partitioning set을 통해 단말 유형을 식별할 수 있다.
(방식 4b)
RedCap 단말을 위해 별도의 UL BWP를 설정하는 방식이 고려될 수 있다. 해당 방식에서, 모든 단말들은 동일한 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #1을 이용하여 PRACH를 전송할 수 있다. 또한, non-CE 단말인 RedCap 단말은 UL BWP #1의 PRACH partitioning set #2를 이용하여 PRACH를 전송하고, CE 단말인 RedCap 단말은 UL BWP #1의 PRACH partitioning set #3을 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 PRACH partitioning set만을 통해 단말 유형을 식별할 수 있다.
실시예 5
본 실시예는 특정 셀에서 CE 단말인 일반 단말, non-CE 단말인 일반 단말, CE 단말인 RedCap 단말을 지원하는 경우에서의 RACH 절차 수행 방식에 대한 것이다. 즉, 본 실시예는 특정 셀에서 non-CE 단말인 RedCap 단말이 지원되지 않는 경우에 해당한다.
이 경우, 기지국은 해당 셀에서 non-CE 단말인 RedCap 단말을 차단(barred)하도록 설정/지시할 수 있다. 이에 대한 설정/지시 정보는 해당 셀의 SIB1 정보에 포함되거나, SIB1을 스케줄링하는 DCI에 포함될 수 있다.
본 실시예와 관련하여, 2-step RACH 절차를 설정하지 않고 4-step RACH 절차를 설정한 기지국은 서로 다른 단말 유형을 위해 다음과 같은 방식들(방식 5a 내지 방식 5c) 중 적어도 하나에 기반하여 PRACH를 설정할 수 있다. 이때, BWP 당 PRACH partitioning set의 개수가 2로 설정된 경우, 방식 5a에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 5b를 설정할 수 없다. 또한, BWP 당 PRACH partitioning set의 개수가 3으로 설정된 경우, 방식 5b에 따라 RACH 절차가 수행되도록 설정해야 하며, 방식 5a를 설정할 수 없다.
(방식 5a)
RedCap 단말을 위해 별도의 UL BWP를 설정하는 방식이 고려될 수 있다. 해당 방식에서, 일반 단말과 non-CE 단말인 RedCap 단말은 별도의 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #1을 이용하여 PRACH를 전송하고, CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #2를 이용하여 PRACH를 전송할 수 있다. 반면, CE 단말인 RedCap 단말은 UL BWP #2의 PRACH partitioning set #1을 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 UL BWP 및 PRACH partitioning set을 통해 단말 유형을 식별할 수 있다.
(방식 5b)
RedCap 단말을 위해 별도의 UL BWP를 설정하는 방식이 고려될 수 있다. 해당 방식에서, 일반 단말과 non-CE 단말인 RedCap 단말은 동일한 UL BWP에서 RACH를 수행하도록 설정될 수 있다.
예를 들어, non-CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #1을 이용하여 PRACH를 전송하고, CE 단말인 일반 단말은 UL BWP #1의 PRACH partitioning set #2를 이용하여 PRACH를 전송할 수 있다. 또한, CE 단말인 RedCap 단말은 UL BWP #1의 PRACH partitioning set #3을 이용하여 PRACH를 전송할 수 있다. 이 경우, 기지국은 PRACH partitioning set만을 통해 단말 유형을 식별할 수 있다.
(방식 5c)
CE 단말인 일반 단말과 CE 단말인 RedCap 단말이 모두 동일한 특정 PRACH partitioning set을 이용하여 RACH 절차를 수행하는 방식이 고려될 수 있다.
해당 방식에서 기지국은 CE 전용으로 상기 특정 PRACH partitioning set을 설정할 수 있다. 이와 같이, 기지국이 RedCap 단말을 위한 별도의 PRACH partitioning set 없이 CE 전용의 PRACH partitioning set을 제공할 경우, CE 단말인 일반 단말과 CE 단말인 RedCap 단말은 항상 CE 전용 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다. 즉, CE를 지원하는 경우, 일반 단말과 RedCap 단말 모두는 CE 전용 PRACH partitioning set의 PRACH 자원과 PRACH 프리앰블을 통해 MSG1을 전송할 수 있다.
또한, CE 단말인 일반 단말도 CE 전용의 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다. 다만, non-CE 단말인 일반 단말은 CE 전용이 아닌 다른 PRACH partitioning set을 이용하여 PRACH를 전송할 수 있다.
단말이 상술한 MSG1에 대한 응답을 포함한 MSG2(즉, RAR)을 수신한 경우, RedCap 단말은 MSG2에 포함된 UL grant에 따른 PUSCH를 통해 MSG3를 전송할 수 있다. 이때, 기지국의 설정 등에 기반하여 CE를 위한 MSG3 PUSCH 전송 파라미터 값과 non-CE를 위한 MSG3 PUSCH 전송 파라미터 값이 다를 수 있다. 이에 따라, CE 단말은 CE 용도의 파라미터에 기반하여 MSG3 PUSCH를 전송하고, non-CE 단말은 non-CE 용도의 파라미터에 기반하여 MSG3 PUSCH를 전송할 수 있다. 또한, CE 단말을 위해 PUSCH repetition이 4로 설정되는 경우, CE 단말은 MSG3를 전달하는 PUSCH 전송을 4번 반복 수행하지만, non-CE 단말은 1번만 PUSCH 전송을 수행한 후, 나머지 PUSCH 전송을 스킵(skip)할 수 있다. 따라서, 기지국은 CE 단말과 non-CE 단말을 모두 고려하여, 각각의 단말 유형에 대해서 PUSCH 전송에 대한 재전송 용도의 UL grant 또는 경쟁 해소(contention resolution) MAC-CE를 (하향링크) 전송할 수 있다.
또한, 기지국이 SIB 등으로 설정한 경우, 단말은 MSG3를 통해 MSG3를 전송하는 단말이 RedCap 단말인지, 또는 일반 단말인지 여부에 대한 정보를 기지국에게 전달/지시할 수 있다. 추가적으로, 해당 단말은 CE 단말인지, non-CE 단말인지 여부에 대한 정보를 기지국에게 전달/지시할 수도 있다.
일 예로, MSG3에 대한 MAC PDU의 헤더(header) 또는 서브 헤더(sub-header)에 이와 같은 전달/지시가 포함될 수 있다. 구체적인 예로, MSG3에 대한 MAC PDU의 서브 헤더에는 LCID(Logical Channel ID) 필드가 포함될 수 있으며, 해당 LCID 필드의 특정 값이 2가지 단말 유형들(즉, [CE 단말인 일반 단말] 및 [CE 단말인 RedCap 단말]) 중 하나의 단말 유형을 지시하거나, RedCap 단말임을 지시할 수 있다.
만일 상기 2가지 단말 유형들 중 하나를 지시하도록 설정되었으나, 기지국이 수신한 MSG3가 상기 2가지 단말 유형들 중 하나를 지시하지 않는 경우, 기지국은 MSG3를 전송한 단말이 non-CE 단말인 일반 단말에 해당하는 것으로 식별할 수 있다. 또는, 만일 RedCap 단말임을 지시하도록 설정되었으나, 기지국이 수신한 MSG3가 RedCap 단말임을 지시하지 않는 경우, 기지국은 MSG3를 전송한 단말이 일반 단말에 해당하는 것으로 식별할 수 있다. 이 경우, 기지국은 MSG1이 전송된 PRACH partitioning set에 따라 CE 단말인 일반 단말인지, 또는 non-CE 단말인 일반 단말인지 여부를 식별할 수 있다.
또한, 본 개시에서 상술한 실시예들과 관련하여, 초기 접속, 핸드오버, BFR 또는 RRC 재설정 등의 시나리오에서 단말은 비경쟁 랜덤 액세스(contention free RACH, CFRA) 절차를 수행/사용하도록 설정될 수 있다. 이 경우, 해당 단말은 다음과 같은 방법들(방법 1 내지 방법 3)에 기반하여 RACH 절차를 수행할 수 있다. 이하 설명되는 방법들은 단말이 CFRA 절차를 수행함을 가정하여 설명되지만, 해당 방법들은 단말이 CBRA 절차를 수행하는 경우(예: 상술한 본 개시의 실시예들)에도 일부 확장하여 적용될 수도 있다.
(방법 1. 핸드오버 시나리오에서의 RACH 절차 수행 방법)
타겟 기지국(예: target gNB)는 소스 기지국(예: source gNB)를 통해 단말에게 핸드오버 명령 메시지를 전송할 수 있다. 여기에서, 타겟 기지국은 단말이 핸드오버를 수행하는 대상이 되는 기지국을 의미하며, 소스 기지국은 단말이 현재(즉, 핸드오버 완료 이전에) 상향링크 및 하향링크 송수신을 수행하는 기지국을 의미할 수 있다.
이 때, 핸드오버 명령 메시지는 단말 전용의 전용(dedicated) 프리앰블에 대한 정보를 포함할 수 있다. 또한, 해당 단말이 CE 단말인 RedCap 단말이거나, non-CE 단말인 RedCap 단말 또는 CE 단말인 일반 단말인 경우, 기지국은 상술한 실시예들(실시예 1 내지 실시예 5) 및 실시예 내 세부 방식에 따라, 단말 유형에 적합한 특정 UL BWP 설정(예: UL BWP #2) 및 특정 PRACH partitioning set 설정(예: PRACH partitioning set #2)를 결정하며, 결정된 설정들을 핸드오버 명령 메시지를 통해 해당 단말에게 전송할 수 있다.
또한, 핸드오버 명령 메시지는 타겟 셀의 셀 수준(cell level) PRACH 설정 정보를 포함할 수 있다. 이 경우, 단말은 핸드오버 명령 메시지를 통해 상술한 특정 PRACH partitioning set 설정 이외에 다른 UL BWP의 다른 PRACH partitioning set 설정(예: UL BWP #1의 PRACH partitioning set #1)도 획득할 수 있다.
상술한 핸드오버 명령 메시지를 통해 단말 전용의 dedicated 프리앰블에 대한 정보와 함께 상기 특정 UL BWP 설정 및 상기 특정 PRACH partitioning set 설정을 수신한 단말은, 타겟 셀에서 다음과 같이 RACH 절차를 수행할 수 있다.
단말이 단말 전용의 dedicated 프리앰블에 대한 정보를 수신한 경우, 해당 단말은 dedicated 프리앰블에 매핑되는 타겟 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질(예: RSRP 등)이 기지국에 의해 설정/지시된 임계값(threshold) 이상인지 여부를 확인한다. 만일, 해당 측정 품질이 임계값 이상인 경우, 단말은 dedicated 프리앰블이 해당되는 UL BWP에서 dedicated 프리앰블을 이용하여, PRACH 전송을 수행할 수 있다.
반면, RACH 절차 수행 중에 dedicated 프리앰블에 매핑되는 타겟 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질이 기지국에 의해 설정/지시된 임계값 이하인 경우, 단말은 다음과 같이 PRACH 전송을 수행할 수 있다. 일 예로, 단말이 기지국으로부터 특정 UL BWP 설정(예: UL BWP #2) 및/또는 특정 PRACH partitioning set 설정(예: PRACH partitioning set #2)을 수신한 경우, 해당 단말은 UL BWP #2의 PRACH partitioning set #2를 이용하여 UL BWP #2에서 PRACH 전송을 수행할 수 있다. 다른 예로, 단말이 기지국으로부터 특정 UL BWP 설정 또는 특정 PRACH partitioning set 설정을 수신하지 못하였거나, 기지국으로부터 수신한 특정 PRACH partitioning set의 PRACH 프리앰블에 매핑되는 타겟 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질이 기지국에 의해 설정/지시된 임계값 이하일 수도 있다. 이 경우, 해당 단말은 다른 UL BWP의 다른 PRACH partitioning set 설정(예: UL BWP #1의 PRACH partitioning set #1)에 따라, UL BWP #1의 PRACH partitioning set #1을 이용하여 UL BWP #1에서 PRACH 전송을 수행할 수 있다.
(방법 2. BFR 시나리오에서의 RACH 절차 수행 방법)
기지국은 빔 실패(beam failure)가 발생할 경우를 대비하여, 특정 단말에게 BFR을 위한 단말 전용의 dedicated 프리앰블을 할당할 수 있다. 만일, 단말이 BFR 설정 정보(예: beamFailureRecoveryConfig)를 통해 BFR을 위한 특정 UL BWP에서의 특정 PRACH partitioning set 설정을 기지국으로부터 수신하였다면, 해당 단말은 빔 실패 검출(beam failure detection) 시, 서빙 셀에서 다음과 같이 RACH 절차를 수행할 수 있다.
RedCap 단말을 위한 BFR 설정 정보(예: RedCap specific beamFailureRecoveryConfig)를 통해 RedCap 특정 초기 UL BWP가 설정될 수 있다. 이 경우, RedCap 단말은 타겟 셀에서 RACH 절차를 수행하기 위하여, RedCap 특정 단말의 active BWP를 이용할 수 있다. 또한, RedCap 단말을 위한 BFR 설정 정보를 통해, RedCap 특정 BFR 타이머(예: RedCap specific beamFailureRecoveryTimer)가 설정될 수 있다. 또한, RedCap 단말을 위한 BFR 설정 정보를 통해, RedCap 특정 PRACH 자원 및/또는 PRACH 프리앰블이 단말의 active BWP에 대해 설정될 수 있다.
단말이 단말 전용의 dedicated 프리앰블에 대한 정보를 수신한 경우, 해당 단말은 dedicated 프리앰블에 매핑되는 서빙 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질(예: RSRP 등)이 기지국에 의해 설정/지시된 임계값(threshold) 이상인지 여부를 확인한다. 만일, 해당 측정 품질이 임계값 이상인 경우, 단말은 dedicated 프리앰블이 해당되는 UL BWP에서 dedicated 프리앰블을 이용하여, PRACH 전송을 수행할 수 있다.
반면, RACH 절차 수행 중에 dedicated 프리앰블에 매핑되는 서빙 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질이 기지국에 의해 설정/지시된 임계값 이하인 경우, 단말은 다음과 같이 PRACH 전송을 수행할 수 있다. 일 예로, 단말이 기지국으로부터 특정 UL BWP 설정(예: UL BWP #2) 및/또는 특정 PRACH partitioning set 설정(예: PRACH partitioning set #2)을 수신한 경우, 해당 단말은 UL BWP #2의 PRACH partitioning set #2를 이용하여 UL BWP #2에서 PRACH 전송을 수행할 수 있다. 다른 예로, 단말이 기지국으로부터 특정 UL BWP 설정 또는 특정 PRACH partitioning set 설정을 수신하지 못하였거나, 기지국으로부터 수신한 특정 PRACH partitioning set의 PRACH 프리앰블에 매핑되는 서빙 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질이 기지국에 의해 설정/지시된 임계값 이하일 수도 있다. 이 경우, 해당 단말은 다른 UL BWP의 다른 PRACH partitioning set 설정(예: UL BWP #1의 PRACH partitioning set #1)에 따라, UL BWP #1의 PRACH partitioning set #1을 이용하여 UL BWP #1에서 PRACH 전송을 수행할 수 있다.
(방법 3. RRC 재설정 시나리오에서의 RACH 절차 수행 방법)
서빙 셀에서 무선 링크 실패(radio link failure, RLF)가 검출되면, 단말은 RRC 재설정 과정을 트리거할 수 있다. 여기에서, 해당 단말은 기지국과 연결 모드(connected mode)인 것이 전제될 수 있다.
이 경우, 단말은 현재 셀 또는 새로운 셀을 선택하고, 선택한 셀의 SIB1 정보에 따라 선택한 셀에서 RACH 절차를 수행할 수 있다. 이때, SIB1은 NR Rel-15/16에서의 SIB1이거나, 특정 단말 유형을 지원하기 위한 별도의 SIB1 또는 별도의 SIB일 수 있다.
만일, 단말이 선택한 셀의 SIB1으로부터 단말에게 해당되는 특정 단말 유형에 대한 특정 UL BWP 설정(예: UL BWP #2) 및/또는 특정 PRACH partitioning set 설정(예: PRACH partitioning set #2)을 수신한 경우, 해당 단말은 UL BWP #2의 PRACH partitioning set #2를 이용하여 UL BWP #2에서 PRACH 전송을 수행할 수 있다.
또는, 단말이 선택한 셀의 SIB1으로부터 특정 단말 유형에 대한 특정 UL BWP 설정 및/또는 특정 PRACH partitioning set 설정을 수신하지 못하였거나, 기지국으로부터 수신한 특정 PRACH partitioning set의 PRACH 프리앰블에 매핑되는 서빙 셀의 SSB 인덱스 및/또는 CSI-RS 자원에 대한 측정 품질이 기지국에 의해 설정/지시된 임계값 이하일 수도 있다. 이 경우, 해당 단말은 다른 UL BWP의 다른 PRACH partitioning set 설정(예: UL BWP #1의 PRACH partitioning set #1)에 따라, UL BWP #1의 PRACH partitioning set #1을 이용하여 UL BWP #1에서 PRACH 전송을 수행할 수 있다.
도 7은 본 개시의 일 실시예에 따른 랜덤 액세스 절차 수행 방법에 대한 단말의 동작을 예시하는 도면이다.
도 7에서는 앞서 제안한 방법(예를 들어, 실시예 1 내지 실시예 5 및 이에 대한 세부 실시예들 중 어느 하나 또는 복수의 조합)에 기반한 단말의 동작을 예시한다. 도 7의 예시는 설명의 편의를 위한 것이며, 본 개시의 범위를 제한하는 것은 아니다. 도 7에서 예시된 일부 단계(들)은 상황 및/또는 설정에 따라 생략될 수 있다. 또한, 도 7에서 단말은 하나의 예시일 뿐, 아래 도 9에서 예시된 장치로 구현될 수 있다. 예를 들어, 도 9의 프로세서(processor)(102/202)는 트랜시버(106/206)을 이용하여 채널/신호/데이터/정보 등(예를 들어, RRC 시그널링, MAC CE, UL/DL 스케줄링을 위한 DCI, SRS, PDCCH, PDSCH, PUSCH, PUCCH 등)을 송수신하도록 제어할 수 있으며, 전송할 또는 수신한 채널/신호/데이터/정보 등을 메모리(104/204)에 저장하도록 제어할 수도 있다.
단계 S710에서, 단말은 기지국으로부터 제한된 능력을 가지는 단말(예: RedCap 단말)을 위한 초기 대역폭 부분(initial BWP)에 대한 설정 정보를 수신할 수 있다.
예를 들어, 상술한 실시예들(예: 실시예 1 내지 실시예 5, 및 관련 예시 방법들)과 같이, 단말은 특정 단말 유형(예: RedCap 단말, CE 단말 등)을 위한 BWP 설정을 기지국으로부터 수신할 수 있다. 여기에서, 상기 BWP 설정은 초기 BWP 설정을 포함하는 것일 수 있다. 또한, 해당 BWP 설정은 일반 단말을 위한 BWP 설정과 별도의 메시지 등을 통해 설정되거나, 하나의 메시지 등을 통해 함께 설정될 수도 있다.
단계 S720에서, 링크 실패(link failure)가 검출되는 경우, 단말은 기지국으로 상술한 초기 BWP에서 PRACH 프리앰블을 전송할 수 있다. 여기에서, 상기 초기 BWP가 하나 이상의 PRACH 자원 집합(예: 상술한 PRACH partitioning set 등)과 연관되는 경우, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상술한 제한된 능력(예: RedCap)과 관련된 PRACH 자원 집합에서 전송될 수 있다.
예를 들어, 상술한 실시예들(예: 실시예 1 내지 실시예 5, 및 관련 예시 방법들)과 같이, 상술한 하나 이상의 PRACH 자원 집합에 대한 설정은 상술한 제한된 능력과 관련된 PRACH 자원 집합에 대한 개별적 설정을 포함할 수 있다. 여기에서, 제한된 능력과 관련된 PRACH 자원 집합은 제한된 능력을 위한 PRACH 자원 및/또는 RACH 기회(occasion) 등을 포함할 수 있다. 또한, 상기 프리앰블은 상기 제한된 능력을 가진 단말을 위한 용도(예: RedCap 단말 전용)로 설정될 수 있다.
또한, 예를 들어, 상기 링크 실패는 단말과 기지국 간의 RRC 연결 모드(connected mode)에서 검출되는 링크 실패에 해당할 수 있다. 구체적인 예로, 해당 링크 실패는 무선 링크 실패(radio link failure, RLF) 또는 빔 실패(beam failure, BF) 중 적어도 하나일 수 있다.
해당 링크 실패가 무선 링크 실패에 해당하는 경우, 상기 PRACH 프리앰블은 무선 링크 실패의 복구와 관련하여 설정된(예: RLF 복구 용도의 전용) PRACH 프리앰블에 해당할 수 있다. 이때, 상기 PRACH 프리앰블에 연관된 하향링크 신호(예: SSB, CSI-RS 등)에 대한 신호 품질(예: RSRP 값)이 상기 기지국에 의해 설정된 임계 값(threshold)보다 작거나 같은 경우, 해당 PRACH 프리앰블은 상기 단말에 대해 설정된 다른 대역폭 부분(예: RedCap 단말을 위한 초기 BWP가 아닌 다른 BWP)에서 전송될 수 있다.
또는, 해당 링크 실패가 빔 실패에 해당하는 경우, 상기 PRACH 프리앰블은 빔 실패의 복구와 관련하여 설정된(예: BFR 용도의 전용) PRACH 프리앰블에 해당할 수 있다. 이때, 상기 PRACH 프리앰블에 연관된 하향링크 신호(예: SSB, CSI-RS 등)에 대한 신호 품질(예: RSRP 값)이 상기 기지국에 의해 설정된 임계 값(threshold)보다 작거나 같은 경우, 해당 PRACH 프리앰블은 상기 단말에 대해 설정된 다른 대역폭 부분(예: RedCap 단말을 위한 초기 BWP가 아닌 다른 BWP)에서 전송될 수 있다. 또한, 상기 제한된 능력과 관련된 PRACH 자원 집합은 빔 실패 복구와 관련된 설정 정보(예: BFR 관련 Config)를 통해 기지국에 의해 설정될 수 있다.
도 8은 본 개시의 일 실시예에 따른 랜덤 액세스 절차 수행 방법에 대한 기지국의 동작을 예시하는 도면이다.
도 8에서는 앞서 제안한 방법(예를 들어, 실시예 1 내지 실시예 5 및 이에 대한 세부 실시예들 중 어느 하나 또는 복수의 조합)에 기반한 단말의 동작을 예시한다. 도 8의 예시는 설명의 편의를 위한 것이며, 본 개시의 범위를 제한하는 것은 아니다. 도 8에서 예시된 일부 단계(들)은 상황 및/또는 설정에 따라 생략될 수 있다. 또한, 도 8에서 단말은 하나의 예시일 뿐, 아래 도 9에서 예시된 장치로 구현될 수 있다. 예를 들어, 도 9의 프로세서(processor)(102/202)는 트랜시버(106/206)을 이용하여 채널/신호/데이터/정보 등(예를 들어, RRC 시그널링, MAC CE, UL/DL 스케줄링을 위한 DCI, SRS, PDCCH, PDSCH, PUSCH, PUCCH 등)을 송수신하도록 제어할 수 있으며, 전송할 또는 수신한 채널/신호/데이터/정보 등을 메모리(104/204)에 저장하도록 제어할 수도 있다.
단계 S810에서, 기지국은 단말에게 제한된 능력을 가지는 단말(예: RedCap 단말)을 위한 초기 대역폭 부분(initial BWP)에 대한 설정 정보를 전송할 수 있다.
예를 들어, 상술한 실시예들(예: 실시예 1 내지 실시예 5, 및 관련 예시 방법들)과 같이, 기지국은 특정 단말 유형(예: RedCap 단말, CE 단말 등)을 위한 BWP 설정을 단말에게 전송할 수 있다. 여기에서, 상기 BWP 설정은 초기 BWP 설정을 포함하는 것일 수 있다. 또한, 해당 BWP 설정은 일반 단말을 위한 BWP 설정과 별도의 메시지 등을 통해 설정되거나, 하나의 메시지 등을 통해 함께 설정될 수도 있다.
단계 S820에서, 링크 실패(link failure)가 검출되는 경우, 기지국은 단말로부터 상술한 초기 BWP에서 PRACH 프리앰블을 수신할 수 있다. 여기에서, 상기 초기 BWP가 하나 이상의 PRACH 자원 집합(예: 상술한 PRACH partitioning set 등)과 연관되는 경우, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상술한 제한된 능력(예: RedCap)과 관련된 PRACH 자원 집합에서 전송될 수 있다.
예를 들어, 상술한 실시예들(예: 실시예 1 내지 실시예 5, 및 관련 예시 방법들)과 같이, 상술한 하나 이상의 PRACH 자원 집합에 대한 설정은 상술한 제한된 능력과 관련된 PRACH 자원 집합에 대한 개별적 설정을 포함할 수 있다. 여기에서, 제한된 능력과 관련된 PRACH 자원 집합은 제한된 능력을 위한 PRACH 자원 및/또는 RACH 기회(occasion) 등을 포함할 수 있다. 또한, 상기 프리앰블은 상기 제한된 능력을 가진 단말을 위한 용도(예: RedCap 단말 전용)로 설정될 수 있다.
또한, 예를 들어, 상기 링크 실패는 단말과 기지국 간의 RRC 연결 모드(connected mode)에서 검출되는 링크 실패에 해당할 수 있다. 구체적인 예로, 해당 링크 실패는 무선 링크 실패(radio link failure, RLF) 또는 빔 실패(beam failure, BF) 중 적어도 하나일 수 있다.
해당 링크 실패가 무선 링크 실패에 해당하는 경우, 상기 PRACH 프리앰블은 무선 링크 실패의 복구와 관련하여 설정된(예: RLF 복구 용도의 전용) PRACH 프리앰블에 해당할 수 있다. 이때, 상기 PRACH 프리앰블에 연관된 하향링크 신호(예: SSB, CSI-RS 등)에 대한 신호 품질(예: RSRP 값)이 상기 기지국에 의해 설정된 임계 값(threshold)보다 작거나 같은 경우, 해당 PRACH 프리앰블은 상기 단말에 대해 설정된 다른 대역폭 부분(예: RedCap 단말을 위한 초기 BWP가 아닌 다른 BWP)에서 전송될 수 있다.
또는, 해당 링크 실패가 빔 실패에 해당하는 경우, 상기 PRACH 프리앰블은 빔 실패의 복구와 관련하여 설정된(예: BFR 용도의 전용) PRACH 프리앰블에 해당할 수 있다. 이때, 상기 PRACH 프리앰블에 연관된 하향링크 신호(예: SSB, CSI-RS 등)에 대한 신호 품질(예: RSRP 값)이 상기 기지국에 의해 설정된 임계 값(threshold)보다 작거나 같은 경우, 해당 PRACH 프리앰블은 상기 단말에 대해 설정된 다른 대역폭 부분(예: RedCap 단말을 위한 초기 BWP가 아닌 다른 BWP)에서 전송될 수 있다. 또한, 기지국은 상기 제한된 능력과 관련된 PRACH 자원 집합을 빔 실패 복구와 관련된 설정 정보(예: BFR 관련 Config)를 통해 단말에게 설정할 수 있다.
본 개시가 적용될 수 있는 장치 일반
도 9는 본 개시의 일 실시예에 따른 무선 통신 장치의 블록 구성도를 예시한다.
도 9를 참조하면, 제1 무선 기기(100)와 제2 무선 기기(200)는 다양한 무선 접속 기술(예를 들어, LTE, NR)을 통해 무선 신호를 송수신할 수 있다.
제1 무선 기기(100)는 하나 이상의 프로세서(102) 및 하나 이상의 메모리(104)를 포함하며, 추가적으로 하나 이상의 송수신기(106) 및/또는 하나 이상의 안테나(108)을 더 포함할 수 있다. 프로세서(102)는 메모리(104) 및/또는 송수신기(106)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(102)는 메모리(104) 내의 정보를 처리하여 제1 정보/신호를 생성한 뒤, 송수신기(106)을 통해 제1 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(102)는 송수신기(106)를 통해 제2 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제2 정보/신호의 신호 처리로부터 얻은 정보를 메모리(104)에 저장할 수 있다. 메모리(104)는 프로세서(102)와 연결될 수 있고, 프로세서(102)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(104)는 프로세서(102)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(102)와 메모리(104)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(106)는 프로세서(102)와 연결될 수 있고, 하나 이상의 안테나(108)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(106)는 송신기 및/또는 수신기를 포함할 수 있다. 송수신기(106)는 RF(Radio Frequency) 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
제2 무선 기기(200)는 하나 이상의 프로세서(202), 하나 이상의 메모리(204)를 포함하며, 추가적으로 하나 이상의 송수신기(206) 및/또는 하나 이상의 안테나(208)를 더 포함할 수 있다. 프로세서(202)는 메모리(204) 및/또는 송수신기(206)를 제어하며, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 구현하도록 구성될 수 있다. 예를 들어, 프로세서(202)는 메모리(204) 내의 정보를 처리하여 제3 정보/신호를 생성한 뒤, 송수신기(206)를 통해 제3 정보/신호를 포함하는 무선 신호를 전송할 수 있다. 또한, 프로세서(202)는 송수신기(206)를 통해 제4 정보/신호를 포함하는 무선 신호를 수신한 뒤, 제4 정보/신호의 신호 처리로부터 얻은 정보를 메모리(204)에 저장할 수 있다. 메모리(204)는 프로세서(202)와 연결될 수 있고, 프로세서(202)의 동작과 관련한 다양한 정보를 저장할 수 있다. 예를 들어, 메모리(204)는 프로세서(202)에 의해 제어되는 프로세스들 중 일부 또는 전부를 수행하거나, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들을 수행하기 위한 명령들을 포함하는 소프트웨어 코드를 저장할 수 있다. 여기서, 프로세서(202)와 메모리(204)는 무선 통신 기술(예를 들어, LTE, NR)을 구현하도록 설계된 통신 모뎀/회로/칩의 일부일 수 있다. 송수신기(206)는 프로세서(202)와 연결될 수 있고, 하나 이상의 안테나(208)를 통해 무선 신호를 송신 및/또는 수신할 수 있다. 송수신기(206)는 송신기 및/또는 수신기를 포함할 수 있다 송수신기(206)는 RF 유닛과 혼용될 수 있다. 본 개시에서 무선 기기는 통신 모뎀/회로/칩을 의미할 수도 있다.
이하, 무선 기기(100, 200)의 하드웨어 요소에 대해 보다 구체적으로 설명한다. 이로 제한되는 것은 아니지만, 하나 이상의 프로토콜 계층이 하나 이상의 프로세서(102, 202)에 의해 구현될 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 계층(예를 들어, PHY, MAC, RLC, PDCP, RRC, SDAP와 같은 기능적 계층)을 구현할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 하나 이상의 PDU(Protocol Data Unit) 및/또는 하나 이상의 SDU(Service Data Unit)를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 메시지, 제어정보, 데이터 또는 정보를 생성할 수 있다. 하나 이상의 프로세서(102, 202)는 본 개시에 개시된 기능, 절차, 제안 및/또는 방법에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 포함하는 신호(예를 들어, 베이스밴드 신호)를 생성하여, 하나 이상의 송수신기(106, 206)에게 제공할 수 있다. 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)로부터 신호(예를 들어, 베이스밴드 신호)를 수신할 수 있고, 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들에 따라 PDU, SDU, 메시지, 제어정보, 데이터 또는 정보를 획득할 수 있다.
하나 이상의 프로세서(102, 202)는 컨트롤러, 마이크로 컨트롤러, 마이크로 프로세서 또는 마이크로 컴퓨터로 지칭될 수 있다. 하나 이상의 프로세서(102, 202)는 하드웨어, 펌웨어, 소프트웨어, 또는 이들의 조합에 의해 구현될 수 있다. 일 예로, 하나 이상의 ASIC(Application Specific Integrated Circuit), 하나 이상의 DSP(Digital Signal Processor), 하나 이상의 DSPD(Digital Signal Processing Device), 하나 이상의 PLD(Programmable Logic Device) 또는 하나 이상의 FPGA(Field Programmable Gate Arrays)가 하나 이상의 프로세서(102, 202)에 포함될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있고, 펌웨어 또는 소프트웨어는 모듈, 절차, 기능 등을 포함하도록 구현될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 수행하도록 설정된 펌웨어 또는 소프트웨어는 하나 이상의 프로세서(102, 202)에 포함되거나, 하나 이상의 메모리(104, 204)에 저장되어 하나 이상의 프로세서(102, 202)에 의해 구동될 수 있다. 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도들은 코드, 명령어 및/또는 명령어의 집합 형태로 펌웨어 또는 소프트웨어를 사용하여 구현될 수 있다.
하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 다양한 형태의 데이터, 신호, 메시지, 정보, 프로그램, 코드, 지시 및/또는 명령을 저장할 수 있다. 하나 이상의 메모리(104, 204)는 ROM, RAM, EPROM, 플래시 메모리, 하드 드라이브, 레지스터, 캐쉬 메모리, 컴퓨터 판독 저장 매체 및/또는 이들의 조합으로 구성될 수 있다. 하나 이상의 메모리(104, 204)는 하나 이상의 프로세서(102, 202)의 내부 및/또는 외부에 위치할 수 있다. 또한, 하나 이상의 메모리(104, 204)는 유선 또는 무선 연결과 같은 다양한 기술을 통해 하나 이상의 프로세서(102, 202)와 연결될 수 있다.
하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치에게 본 개시의 방법들 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 전송할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 다른 장치로부터 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 수신할 수 있다. 예를 들어, 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)와 연결될 수 있고, 무선 신호를 송수신할 수 있다. 예를 들어, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치에게 사용자 데이터, 제어 정보 또는 무선 신호를 전송하도록 제어할 수 있다. 또한, 하나 이상의 프로세서(102, 202)는 하나 이상의 송수신기(106, 206)가 하나 이상의 다른 장치로부터 사용자 데이터, 제어 정보 또는 무선 신호를 수신하도록 제어할 수 있다. 또한, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)와 연결될 수 있고, 하나 이상의 송수신기(106, 206)는 하나 이상의 안테나(108, 208)를 통해 본 개시에 개시된 설명, 기능, 절차, 제안, 방법 및/또는 동작 순서도 등에서 언급되는 사용자 데이터, 제어 정보, 무선 신호/채널 등을 송수신하도록 설정될 수 있다. 본 개시에서, 하나 이상의 안테나는 복수의 물리 안테나이거나, 복수의 논리 안테나(예를 들어, 안테나 포트)일 수 있다. 하나 이상의 송수신기(106, 206)는 수신된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 하나 이상의 프로세서(102, 202)를 이용하여 처리하기 위해, 수신된 무선 신호/채널 등을 RF 밴드 신호에서 베이스밴드 신호로 변환(Convert)할 수 있다. 하나 이상의 송수신기(106, 206)는 하나 이상의 프로세서(102, 202)를 이용하여 처리된 사용자 데이터, 제어 정보, 무선 신호/채널 등을 베이스밴드 신호에서 RF 밴드 신호로 변환할 수 있다. 이를 위하여, 하나 이상의 송수신기(106, 206)는 (아날로그) 오실레이터 및/또는 필터를 포함할 수 있다.
이상에서 설명된 실시예들은 본 개시의 구성요소들과 특징들이 소정 형태로 결합된 것들이다. 각 구성요소 또는 특징은 별도의 명시적 언급이 없는 한 선택적인 것으로 고려되어야 한다. 각 구성요소 또는 특징은 다른 구성요소나 특징과 결합되지 않은 형태로 실시될 수 있다. 또한, 일부 구성요소들 및/또는 특징들을 결합하여 본 개시의 실시예를 구성하는 것도 가능하다. 본 개시의 실시예들에서 설명되는 동작들의 순서는 변경될 수 있다. 어느 실시예의 일부 구성이나 특징은 다른 실시예에 포함될 수 있고, 또는 다른 실시예의 대응하는 구성 또는 특징과 교체될 수 있다. 특허청구범위에서 명시적인 인용 관계가 있지 않은 청구항들을 결합하여 실시예를 구성하거나 출원 후의 보정에 의해 새로운 청구항으로 포함시킬 수 있음은 자명하다.
본 개시는 본 개시의 필수적 특징을 벗어나지 않는 범위에서 다른 특정한 형태로 구체화될 수 있음은 당업자에게 자명하다. 따라서, 상술한 상세한 설명은 모든 면에서 제한적으로 해석되어서는 아니 되고 예시적인 것으로 고려되어야 한다. 본 개시의 범위는 첨부된 청구항의 합리적 해석에 의해 결정되어야 하고, 본 개시의 등가적 범위 내에서의 모든 변경은 본 개시의 범위에 포함된다.
본 개시의 범위는 다양한 실시예의 방법에 따른 동작이 장치 또는 컴퓨터 상에서 실행되도록 하는 소프트웨어 또는 머신-실행가능한 명령들(예를 들어, 운영체제, 애플리케이션, 펌웨어(firmware), 프로그램 등), 및 이러한 소프트웨어 또는 명령 등이 저장되어 장치 또는 컴퓨터 상에서 실행 가능한 비-일시적 컴퓨터-판독가능 매체(non-transitory computer-readable medium)를 포함한다. 본 개시에서 설명하는 특징을 수행하는 프로세싱 시스템을 프로그래밍하기 위해 사용될 수 있는 명령은 저장 매체 또는 컴퓨터 판독가능 저장 매체 상에/내에 저장될 수 있고, 이러한 저장 매체를 포함하는 컴퓨터 프로그램 제품을 이용하여 본 개시에서 설명하는 특징이 구현될 수 있다. 저장 매체는 DRAM, SRAM, DDR RAM 또는 다른 랜덤 액세스 솔리드 스테이트 메모리 디바이스와 같은 고속 랜덤 액세스 메모리를 포함할 수 있지만, 이에 제한되지 않으며, 하나 이상의 자기 디스크 저장 디바이스, 광 디스크 저장 장치, 플래시 메모리 디바이스 또는 다른 비-휘발성 솔리드 스테이트 저장 디바이스와 같은 비-휘발성 메모리를 포함할 수 있다. 메모리는 선택적으로 프로세서(들)로부터 원격에 위치한 하나 이상의 저장 디바이스를 포함한다. 메모리 또는 대안적으로 메모리 내의 비-휘발성 메모리 디바이스(들)는 비-일시적 컴퓨터 판독가능 저장 매체를 포함한다. 본 개시에서 설명하는 특징은, 머신 판독가능 매체 중 임의의 하나에 저장되어 프로세싱 시스템의 하드웨어를 제어할 수 있고, 프로세싱 시스템이 본 개시의 실시예에 따른 결과를 활용하는 다른 메커니즘과 상호작용하도록 하는 소프트웨어 및/또는 펌웨어에 통합될 수 있다. 이러한 소프트웨어 또는 펌웨어는 애플리케이션 코드, 디바이스 드라이버, 운영 체제 및 실행 환경/컨테이너를 포함할 수 있지만 이에 제한되지 않는다.
여기서, 본 개시의 무선 기기(100, 200)에서 구현되는 무선 통신 기술은 LTE, NR 및 6G뿐만 아니라 저전력 통신을 위한 Narrowband Internet of Things를 포함할 수 있다. 이때, 예를 들어 NB-IoT 기술은 LPWAN(Low Power Wide Area Network) 기술의 일례일 수 있고, LTE Cat NB1 및/또는 LTE Cat NB2 등의 규격으로 구현될 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 무선 기기(XXX, YYY)에서 구현되는 무선 통신 기술은 LTE-M 기술을 기반으로 통신을 수행할 수 있다. 이때, 일 예로, LTE-M 기술은 LPWAN 기술의 일례일 수 있고, eMTC(enhanced Machine Type Communication) 등의 다양한 명칭으로 불릴 수 있다. 예를 들어, LTE-M 기술은 1) LTE CAT 0, 2) LTE Cat M1, 3) LTE Cat M2, 4) LTE non-BL(non-Bandwidth Limited), 5) LTE-MTC, 6) LTE Machine Type Communication, 및/또는 7) LTE M 등의 다양한 규격 중 적어도 어느 하나로 구현될 수 있으며 상술한 명칭에 한정되는 것은 아니다. 추가적으로 또는 대체적으로, 본 개시의 무선 기기(XXX, YYY)에서 구현되는 무선 통신 기술은 저전력 통신을 고려한 지그비(ZigBee), 블루투스(Bluetooth) 및 저전력 광역 통신망(Low Power Wide Area Network, LPWAN) 중 적어도 어느 하나를 포함할 수 있으며, 상술한 명칭에 한정되는 것은 아니다. 일 예로 ZigBee 기술은 IEEE 802.15.4 등의 다양한 규격을 기반으로 소형/저-파워 디지털 통신에 관련된 PAN(personal area networks)을 생성할 수 있으며, 다양한 명칭으로 불릴 수 있다.
본 개시에서 제안하는 방법은 3GPP LTE/LTE-A, 5G 시스템에 적용되는 예를 중심으로 설명하였으나, 3GPP LTE/LTE-A, 5G 시스템 이외에도 다양한 무선 통신 시스템에 적용하는 것이 가능하다.

Claims (15)

  1. 무선 통신 시스템에서 단말에 의해서 랜덤 액세스(random access)를 수행하는 방법에 있어서, 상기 방법은:
    기지국으로부터, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 수신하는 단계; 및
    링크 실패(link failure)가 검출됨에 기반하여, 상기 기지국으로, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 전송하는 단계를 포함하며,
    상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 전송되는, 방법.
  2. 제1항에 있어서,
    상기 링크 실패는 상기 단말과 상기 기지국 간의 RRC(Radio Resource Control) 연결 모드(connected mode)에서 검출되는, 방법.
  3. 제1항에 있어서,
    상기 하나 이상의 PRACH 자원 집합에 대한 설정은, 상기 제한된 능력과 관련된 PRACH 자원 집합에 대한 개별적 설정을 포함하며,
    상기 제한된 능력과 관련된 PRACH 자원 집합은, 상기 제한된 능력을 위한 PRACH 자원 또는 RACH 기회(occasion) 중 적어도 하나를 포함하는, 방법.
  4. 제1항에 있어서,
    상기 링크 실패는 무선 링크 실패(Radio Link Failure) 또는 빔 실패(beam failure) 중 적어도 하나에 해당하는, 방법.
  5. 제4항에 있어서,
    상기 링크 실패가 무선 링크 실패에 해당함에 기반하여, 상기 PRACH 프리앰블은 상기 무선 링크 실패의 복구와 관련하여 설정된 PRACH 프리앰블에 해당하는, 방법.
  6. 제5항에 있어서,
    상기 PRACH 프리앰블에 연관된 하향링크 신호에 대한 신호 품질이 상기 기지국에 의해 설정된 임계 값보다 작거나 같음에 기반하여, 상기 단말에 대해 설정된 다른 대역폭 부분에서 PRACH 프리앰블을 전송하는 단계를 더 포함하는, 방법.
  7. 제4항에 있어서,
    상기 링크 실패가 빔 실패에 해당함에 기반하여, 상기 PRACH 프리앰블은 상기 빔 실패의 복구와 관련하여 설정된 PRACH 프리앰블에 해당하는, 방법.
  8. 제4항에 있어서,
    상기 링크 실패가 빔 실패에 해당함에 기반하여, 상기 제한된 능력과 관련된 PRACH 자원 집합은 빔 실패 복구와 관련된 설정 정보를 통해 상기 기지국에 의해 설정되는, 방법.
  9. 제8항에 있어서,
    상기 PRACH 프리앰블에 연관된 하향링크 신호에 대한 신호 품질이 상기 기지국에 의해 설정된 임계 값보다 작거나 같음에 기반하여, 상기 단말에 대해 설정된 다른 대역폭 부분에서 PRACH 프리앰블을 전송하는 단계를 더 포함하는, 방법.
  10. 제1항에 있어서,
    상기 PRACH 프리앰블은 상기 제한된 능력을 가진 단말을 위한 용도로 설정되는, 방법.
  11. 무선 통신 시스템에서 랜덤 액세스(random access)를 수행하는 방법에 있어서 단말에 있어서, 상기 단말은:
    하나 이상의 송수신기; 및
    상기 하나 이상의 송수신기와 연결된 하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는:
    기지국으로부터, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 수신하고;
    링크 실패(link failure)가 검출됨에 기반하여, 상기 기지국으로, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 전송하도록 설정하되,
    상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 전송되는, 단말.
  12. 무선 통신 시스템에서 기지국에 의해서 랜덤 액세스(random access)를 수행하는 방법에 있어서, 상기 방법은:
    단말로, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 전송하는 단계; 및
    링크 실패(link failure)가 검출됨에 기반하여, 상기 단말로부터, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 수신하는 단계를 포함하며,
    상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 수신되는, 방법.
  13. 무선 통신 시스템에서 랜덤 액세스(random access)를 수행하는 기지국에 있어서, 상기 기지국은:
    하나 이상의 송수신기; 및
    상기 하나 이상의 송수신기와 연결된 하나 이상의 프로세서를 포함하고,
    상기 하나 이상의 프로세서는:
    단말로, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 전송하고;
    링크 실패(link failure)가 검출됨에 기반하여, 상기 단말로부터, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 수신하도록 설정하되,
    상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 수신되는, 기지국.
  14. 무선 통신 시스템에서 랜덤 액세스(random access)를 수행하기 위해 단말을 제어하도록 설정되는 프로세싱 장치에 있어서, 상기 프로세싱 장치는:
    하나 이상의 프로세서; 및
    상기 하나 이상의 프로세서에 동작 가능하게 연결되고, 상기 하나 이상의 프로세서에 의해 실행됨에 기반하여, 동작들을 수행하는 명령들을 저장하는 하나 이상의 컴퓨터 메모리를 포함하며,
    상기 동작들은:
    기지국으로부터, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 수신하는 동작; 및
    링크 실패(link failure)가 검출됨에 기반하여, 상기 기지국으로, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 전송하는 동작을 포함하며,
    상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 전송되는, 프로세싱 장치.
  15. 하나 이상의 명령을 저장하는 하나 이상의 비-일시적(non-transitory) 컴퓨터 판독가능 매체로서,
    상기 하나 이상의 명령은 하나 이상의 프로세서에 의해서 실행되어, 무선 통신 시스템에서 랜덤 액세스(random access)를 수행하는 장치가:
    기지국으로부터, 제한된 능력(reduced capability)을 가지는 단말을 위한 초기 대역폭 부분(initial bandwidth part, initial BWP)에 대한 설정 정보를 수신하고;
    링크 실패(link failure)가 검출됨에 기반하여, 상기 기지국으로, 상기 초기 대역폭 부분에서 물리 랜덤 액세스 채널(physical random access channel, PRACH) 프리앰블을 전송하되,
    상기 초기 대역폭 부분이 하나 이상의 PRACH 자원 집합과 연관됨에 기반하여, 상기 PRACH 프리앰블은 상기 하나 이상의 PRACH 자원 집합 중 상기 제한된 능력과 관련된 PRACH 자원 집합에서 전송되는, 컴퓨터 판독가능 매체.
PCT/KR2022/011620 2021-08-05 2022-08-05 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치 WO2023014146A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2021-0103449 2021-08-05
KR20210103449 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023014146A1 true WO2023014146A1 (ko) 2023-02-09

Family

ID=85155962

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011620 WO2023014146A1 (ko) 2021-08-05 2022-08-05 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치

Country Status (1)

Country Link
WO (1) WO2023014146A1 (ko)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051726A (ko) * 2017-09-08 2020-05-13 콘비다 와이어리스, 엘엘씨 Nr에 대한 동적 대역폭을 이용한 다수의 trp 및 패널 송신
KR20200136021A (ko) * 2018-03-29 2020-12-04 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보를 보고하는 방법 및 장치, 대역폭 파트에 기초한 동작 방법 및 장치
US20200413454A1 (en) * 2017-09-28 2020-12-31 Apple Inc. Early data transmission in wireless communication system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200051726A (ko) * 2017-09-08 2020-05-13 콘비다 와이어리스, 엘엘씨 Nr에 대한 동적 대역폭을 이용한 다수의 trp 및 패널 송신
US20200413454A1 (en) * 2017-09-28 2020-12-31 Apple Inc. Early data transmission in wireless communication system
KR20200136021A (ko) * 2018-03-29 2020-12-04 베이징 시아오미 모바일 소프트웨어 컴퍼니 리미티드 정보를 보고하는 방법 및 장치, 대역폭 파트에 기초한 동작 방법 및 장치

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Identification and access restriction for reduced capability NR devices", 3GPP DRAFT; R1-2008838, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20201026 - 20201113, 22 October 2020 (2020-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051941589 *
ERICSSON: "RACH partitioning for Rel-17 features", 3GPP DRAFT; R2-2104933, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210519, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006675 *

Similar Documents

Publication Publication Date Title
WO2021182863A1 (ko) 무선 통신 시스템에서 무선 링크 품질 평가 방법 및 장치
WO2021201623A1 (ko) 무선 통신 시스템에서 pdcch 송수신 방법 및 장치
WO2022149774A1 (ko) 무선 통신 시스템에서 빔 실패 복구 방법 및 장치
WO2021162264A1 (ko) 무선 통신 시스템에서 상향링크 채널 반복 전송 방법 및 장치
WO2022240197A1 (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
WO2022030906A1 (ko) 무선 통신 시스템에서 시간 단위의 그룹 기반 송수신 방법 및 장치
WO2024025218A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2023055179A1 (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
WO2022211355A1 (ko) 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치
WO2022158825A1 (ko) 무선 통신 시스템에서 상향링크 송수신 방법 및 장치
WO2022071672A1 (ko) 무선 통신 시스템에서 빔 실패 복구 방법 및 장치
WO2021230640A1 (ko) 무선 통신 시스템에서 csi-rs 송수신 방법 및 장치
WO2022030909A1 (ko) 무선 통신 시스템에서 상향링크 또는 하향링크 송수신 방법 및 장치
WO2021157910A1 (ko) 무선 통신 시스템에서 다중 송수신 포인트에 대한 상향링크 채널 전송 방법 및 장치
WO2021194217A1 (ko) 무선 통신 시스템에서 공간 파라미터 기반 상향링크 송수신 방법 및 장치
WO2023014146A1 (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
WO2024034922A1 (ko) 무선 통신 시스템에서 랜덤 액세스 절차 수행 방법 및 장치
WO2024029781A1 (ko) 무선 통신 시스템에서 pusch 송수신 방법 및 장치
WO2023287184A2 (ko) 무선 통신 시스템에서 주파수 자원 설정 기반의 무선 신호 송수신 방법 및 장치
WO2023210985A1 (ko) 무선 통신 시스템에서 사이드링크 송수신 방법 및 장치
WO2023054943A1 (ko) 무선 통신 시스템에서 참조 신호 송수신 방법 및 장치
WO2023014069A1 (ko) 무선 통신 시스템에서 랜덤 액세스 방법 및 장치
WO2022186632A1 (ko) 무선 통신 시스템에서 통신을 수행하는 방법 및 장치
WO2023080660A1 (ko) 무선 통신 시스템에서 하향링크 송수신을 수행하는 방법 및 장치
WO2023191372A1 (ko) 무선 통신 시스템에서 상향링크 송수신을 수행하는 방법 및 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853521

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022853521

Country of ref document: EP

Effective date: 20240305