WO2023013345A1 - Vehicle control device - Google Patents

Vehicle control device Download PDF

Info

Publication number
WO2023013345A1
WO2023013345A1 PCT/JP2022/026689 JP2022026689W WO2023013345A1 WO 2023013345 A1 WO2023013345 A1 WO 2023013345A1 JP 2022026689 W JP2022026689 W JP 2022026689W WO 2023013345 A1 WO2023013345 A1 WO 2023013345A1
Authority
WO
WIPO (PCT)
Prior art keywords
intersection
vehicle
traffic
stop line
entrance
Prior art date
Application number
PCT/JP2022/026689
Other languages
French (fr)
Japanese (ja)
Inventor
憲生 土田
康平 栃木
允彦 安達
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023013345A1 publication Critical patent/WO2023013345A1/en

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems

Definitions

  • the present disclosure relates to a vehicle control device.
  • Patent Literature 1 discloses a traffic signal detection device that detects a traffic signal from at least one of a narrow-angle image captured by a narrow-angle camera and a wide-angle image captured by a wide-angle camera.
  • the present disclosure has been made in view of the above problems, and the main purpose thereof is to provide a vehicle control device capable of improving technology for driving support regarding traveling at intersections.
  • This disclosure is A vehicle control device for recognizing traffic conditions in front of the vehicle based on an image captured by a camera that captures an image of the front of the vehicle, a target detection unit that detects, from the image, a target related to the passage or stop of the own vehicle at an intersection in front of the own vehicle; an entrance determination unit that determines an entrance position of the intersection based on the target detected by the target detection unit; Prepare.
  • Targets detected from the images captured by the camera while the vehicle is running include targets related to the vehicle passing or stopping at the intersection in front of the vehicle. By detecting such a target from the image and determining the entrance position of the intersection based on the target, the entrance position of the intersection can be properly determined. In addition, since the entrance position of the intersection can be properly grasped, the information can be used for various types of driving support.
  • FIG. 1 is a diagram showing a schematic configuration of a driving support device
  • FIG. 2 is a flowchart showing an overview of the signal determination process
  • FIG. 3 is a flowchart showing the entrance position determination process
  • FIG. 4 is a diagram for explaining the procedure for determining the stop line on the entrance side.
  • FIG. 5 is a diagram for explaining the procedure for determining an entrance-side stop line on a road with multiple lanes on one side.
  • FIG. 6 is a flowchart showing the process of setting the intersection recognition range;
  • FIG. 7 is a diagram for explaining the procedure for setting the intersection recognition range.
  • FIG. 1 is a diagram showing a schematic configuration of a driving support device
  • FIG. 2 is a flowchart showing an overview of the signal determination process
  • FIG. 3 is a flowchart showing the entrance position determination process
  • FIG. 4 is a diagram for explaining the procedure for determining the stop line on the entrance side.
  • FIG. 5 is a diagram for explaining the procedure for determining an entrance-side stop
  • FIG. 8 is a flowchart showing signal color determination processing;
  • FIG. 9 is a flowchart showing the signal color determination process following FIG.
  • FIG. 10 is a diagram for explaining the procedure for determining the signal color in the intersection recognition range.
  • FIG. 11 is a diagram for explaining the procedure for determining the signal color in the intersection recognition range.
  • FIG. 12 is a diagram for explaining target object detection when the own vehicle enters an intersection.
  • FIG. 13 is a diagram showing the arrangement of each traffic light at an intersection;
  • FIG. 14 is a diagram showing score values by color for three traffic lights,
  • FIG. 15 is a diagram showing the road in front of the intersection,
  • FIG. 16 is a flow chart showing determination processing of arrow lights.
  • the driving assistance device 10 includes a camera 11, a radar device 12, and an ECU 21 as a vehicle control device. From now on, the own vehicle on which the driving support device 10 is mounted is referred to as the own vehicle VE.
  • the camera 11 is a monocular camera.
  • the cameras 11 are attached, for example, to the front end, the rear end, and both side surfaces of the vehicle VE, and capture images of the surroundings of the vehicle.
  • the camera 11 transmits the image information of the captured image to the ECU 21 .
  • Camera 11 may be a compound eye camera.
  • the radar device 12 is a ranging device that transmits high-frequency signals in the millimeter wave band.
  • the radar devices 12 are mounted, for example, on the front end, rear end, and both side surfaces of the vehicle VE, and measure distances to objects around the vehicle.
  • a search wave is transmitted at predetermined intervals, and reflected waves are received by a plurality of antennas.
  • a plurality of detection points on the object are detected from the transmission time of the search wave and the reception time of the reflected wave, thereby measuring the distance to the object.
  • the azimuth of the object is calculated from the phase difference of the reflected waves received by the multiple antennas. If the distance to the object and the azimuth of the object can be calculated, the relative position of the object with respect to the own vehicle VE can be specified.
  • the radar device 12 calculates the relative velocity of the object from the frequency of the reflected wave reflected by the object, which is changed by the Doppler effect.
  • the object existing around the vehicle is detected as a stationary object or a moving object.
  • the object is detected as a stationary object, and the relative velocity of the object and the vehicle speed are detected as zero. If the sum is non-zero, the object is detected as moving.
  • the radar device 12 transmits detection information of stationary objects and moving objects around the own vehicle to the ECU 21 .
  • the ECU 21 is a control device equipped with a well-known microcomputer consisting of CPU, ROM, RAM, flash memory, and the like.
  • the ECU 21 acquires various signals and performs various controls based on the acquired information.
  • the ECU 21 detects objects around the vehicle based on the image captured by the camera 11 . Specifically, the ECU 21 calculates the relative position of each object captured by the camera 11 with respect to the own vehicle VE. Objects to be detected include moving objects such as other vehicles, pedestrians, and bicycles around the own vehicle, and fixed objects such as traffic lights, curbs, and guardrails provided around the road. Based on the image captured by the camera 11, the ECU 21 also recognizes lane marking information regarding lane markings on the road on which the vehicle VE is traveling. Specifically, the presence or absence of a white line or the like as a marking line is recognized, and the form (specifically, the type, position, width, length, curvature, etc. of the marking line) is recognized. In addition to lane markings, stop lines, pedestrian crossings, road arrows, and the like can be detected as road markings on the road.
  • the ECU 21 performs various controls based on detection information of objects around the vehicle transmitted from the radar device 12 and detection information of objects around the vehicle detected from the image captured by the camera 11 . For example, based on the detection information, the ECU 21 causes the display 31 provided in the instrument panel or the like in the vehicle to display information indicating the attention to the traffic light detected from the captured image of the camera 11, or An alarm device 32, such as a speaker or a buzzer installed in the room, is activated.
  • a yaw rate sensor 13, a steering angle sensor 14, and a vehicle speed sensor 15 are also connected to the ECU 21.
  • the yaw rate sensor 13 is provided, for example, at a central position of the vehicle VE, and outputs to the ECU 21 a signal indicating a yaw rate corresponding to the rate of change of the steering amount of the vehicle VE.
  • the steering angle sensor 14 is attached to, for example, a steering rod of the vehicle, and outputs a steering angle signal to the ECU 21 according to the amount of change in the steering angle of the steering wheel caused by the driver's operation.
  • the vehicle speed sensor 15 is attached, for example, to a wheel portion of the own vehicle VE, detects the rotation direction of the wheel, and outputs a vehicle speed signal corresponding to the wheel speed to the ECU 21 .
  • the ECU 21 which is the vehicle control device of the present embodiment, detects a target related to the passage or stop of the vehicle VE at the intersection in front of the vehicle from the image captured by the camera 11, and detects the target. , the entrance position of the intersection is determined. Further, a predetermined range on the far side from the entrance position is defined as an intersection recognition range CR that is recognized as being within the intersection, and the display color of the traffic light that the host vehicle VE should follow is determined within the intersection recognition range CR.
  • FIG. 2 is a flow chart showing an overview of the signal determination process executed by the ECU 21.
  • the traffic light determination process is a process of setting an intersection recognition range CR and determining the display color of the traffic light that the host vehicle VE should follow within the intersection recognition range CR. This process is repeatedly executed by the ECU 21 at a predetermined cycle.
  • the ECU 21 acquires an image in front of the own vehicle VE captured by the camera 11 (step S10).
  • the ECU 21 executes entrance position determination processing for determining the entrance position of the intersection based on the target detected from the acquired image (step S20).
  • the target here relates to the passage or stop of the own vehicle VE at the intersection in front of the own vehicle, and in the following description the target is also referred to as the intersection target.
  • a stop line, a traffic light, and a crosswalk at an intersection are detected as intersection targets.
  • the position determined as the entrance position of the intersection is the front side position of the intersection that exists in front of the vehicle VE.
  • the ECU 21 executes an intersection recognition range setting process for setting a predetermined range on the far side from the determined entrance position as the intersection recognition range CR (step S30).
  • the end position on the far side of the range set as the intersection recognition range CR is the position on the far side of the intersection that exists in front of the vehicle VE.
  • the ECU 21 executes signal color determination processing for determining the display color of the traffic light that the host vehicle VE should follow within the intersection recognition range CR (step S50).
  • the display color determined here is displayed on the display 31 .
  • Brake control and accelerator control as driving assistance may be performed according to the display color of the traffic light.
  • FIG. 3 is a flow chart showing the entrance position determination process in step S20 of FIG.
  • the ECU 21 determines whether a stop line is included as an intersection target detected from the image in front of the vehicle VE (step S21).
  • the ECU 21 determines whether or not the stop line is the stop line on the intersection entrance side (hereinafter also referred to as the entrance side stop line) (step S22).
  • step S22 that is, the procedure for determining that the stop line is the entrance-side stop line
  • the stop line on the entrance side is determined based on the positional relationship between the stop line and the traffic light.
  • the intersection target includes a stop line and a traffic light
  • the ECU 21 determines whether the stop line is on the entrance side on the condition that the distance between the stop line and the traffic light in the vehicle straight-ahead direction (longitudinal direction) is less than a predetermined distance TH1. Determine the stop line. More specifically, as shown in FIG.
  • the ECU 21 may determine whether or not the frontmost stop line 102 among the plurality of stop lines 102 is the entrance side stop line. .
  • the traffic signal 103 is arranged on the far side of the stop line 102. In some cases, it is arranged on the front side.
  • the traffic light 103 is arranged on the back side of the intersection 101. In terms of the mutual relationship between the stop line 102 and the traffic light 103, the stop line 102 is on the front side and the traffic light 103 is on the back side. ing.
  • the traffic signal 103 is arranged on the front side of the intersection 101. In terms of the mutual relationship between the stop line 102 and the traffic signal 103, the stop line 102 is on the back side and the traffic signal 103 is on the front side. It's becoming
  • the ECU 21 may differ in the predetermined distance TH1 for comparing and judging the vertical distance D1 between the stop line 102 and the traffic light 103 between the case of FIG. 4(b) and the case of FIG. 4(c).
  • the predetermined distance TH1 is set to "TH11”
  • the predetermined distance TH1 is set to "TH12" which is shorter than TH11.
  • TH11 is, for example, 40 m
  • TH12 is, for example, 20 m.
  • the stop line on the entrance side may be determined based on the positional relationship between the stop line 102 and the crosswalk 104. Specifically, as shown in FIG. 4( a ), when a stop line 102 and a crosswalk 104 are detected at an intersection 101 , the ECU 21 detects the longitudinal direction of the stop line 102 and crosswalk 104 . If the distance D2 is less than the predetermined distance TH2, it is determined that the stop line 102 is the entrance side stop line.
  • the stop line 102 When the stop line 102, the traffic light 103, and the pedestrian crossing 104 are detected at the intersection 101, the vertical distance D1 between the stop line 102 and the traffic light 103 is less than the predetermined distance TH1, and the stop line 102 is crossed. It is also possible to determine that the stop line 102 is the entrance-side stop line on the condition that the vertical distance D2 to the sidewalk 104 is less than the predetermined distance TH2.
  • step S22 it may be determined by the following procedure that the stop line 102 is the entrance-side stop line. Focusing on the fact that the position of the stop line may be different for each lane on a multi-lane road with multiple lanes running in the same direction, this study focused on the position of the stop line in the own lane and the adjacent lane. , the entrance-side stop line targeted by the own vehicle VE.
  • lane L3 is the own lane
  • lane L2 is the adjacent lane.
  • the ECU 21 uses the stop line position of the adjacent lane (L2) as a reference based on the fact that the stop line position of the adjacent lane (L2) is on the front side in the comparison between the own lane (L3) and the adjacent lane (L2). , and the selection area RY is defined in a predetermined range on the far side. Then, based on the fact that the stop line position of the own lane (L3) is within the selection area RY, the stop line 102 of the own lane (L3) is set as the entrance side stop line.
  • the lane L1 is the own lane and the lane L2 is the adjacent lane.
  • the ECU 21 uses the stop line position of the adjacent lane (L2) as a reference based on the fact that the stop line position of the adjacent lane (L2) is on the front side in the comparison between the own lane (L1) and the adjacent lane (L2). , and the selection area RY is defined in a predetermined range on the far side. Then, if there is no stop line position of the own lane (L1) within the selection area RY, the stop line 102 of the adjacent lane (L2) is set as the entrance side stop line.
  • the ECU 21 determines which of the plurality of stop lines 102 the vehicle VE A configuration may be adopted in which the stop line 102 closest to is determined to be the entrance-side stop line.
  • step S22 determines the entrance position of the intersection based on the stop line (step S23).
  • the position itself of the stop line in the straight-ahead direction of the vehicle VE is set as the entrance position of the intersection.
  • step S21: NO if the stop line is not included in the intersection target (step S21: NO) or if it is not determined that the stop line is the entrance-side stop line (step S22: NO), the ECU 21 (step S24). Then, if the traffic signal is included as the intersection target (step S24: YES), the ECU 21 determines the entrance position of the intersection based on the traffic signal (step S25). At this time, if a plurality of traffic lights are included in the intersection target, the intersection entrance position should be determined based on the traffic light closest to the vehicle (the side closest to the own vehicle VE) among the plurality of traffic lights.
  • step S24 determines whether or not the position of the traffic signal is estimated to be the extrapolated position. If the position of the traffic signal is estimated to be the extrapolated position (step S26: YES), the ECU 21 determines the entrance position of the intersection based on the traffic signal (step S25).
  • the traffic signal when a traffic signal is detected as an intersection target, if the traffic signal is out of the field of view of the image captured by the camera 11, or is hidden by trees, signboards, etc., and cannot be physically detected, the signal cannot be detected.
  • the state traffic light ie, the traffic light used to determine the entrance location
  • the position of the traffic light is estimated as an extrapolated position, and the extrapolated position of the traffic light is used to continue determining the entrance position.
  • the extrapolation position estimation result is preferably held until a predetermined period defined by the travel distance or travel time elapses.
  • the detected stop line may be lost.
  • the extrapolated position of the stop line may be estimated and the determination of the entrance position may be continued using the extrapolated position of the stop line.
  • the ECU 21 should determine whether the traffic signal is on the front side of the intersection or on the back side of the intersection, and determine the entrance position of the intersection based on the position of the traffic signal, taking into consideration the determination result.
  • the position of the traffic signal may be set as the entrance position, or a position shifted forward or backward by a predetermined distance may be set as the entrance position.
  • the entrance position may be set at a position shifted forward from the traffic signal by an assumed distance corresponding to the size of the intersection. It should be noted that the determination of whether the traffic signal is on the front side of the intersection or on the back side of the intersection may be made based on the positional relationship with the intersection center display and the positional relationship with the intersecting road at the intersection.
  • steps S21, S22, and S24 are negative, it is determined whether or not a crosswalk is included as an intersection target, and if a crosswalk is included as an intersection target , the intersection entrance position may be determined based on the crosswalk.
  • FIG. 6 is a flow chart showing the intersection recognition range setting process in step S30 of FIG.
  • the ECU 21 determines whether or not the entrance position of the intersection has been determined (step S31). If the intersection entrance position has already been determined (step S31: YES), the ECU 21 sets the intersection recognition range CR based on the intersection entrance position (steps S32 to S41).
  • 7A to 7C show two intersections 101 in front of the vehicle VE. Of the two intersections 101, the intersection 101 on the lower side of the drawing is the next intersection through which the vehicle VE passes. is the intersection 101 of .
  • P1 is the entrance position of the intersection in the vertical direction (the direction in which the vehicle travels straight).
  • a position a predetermined distance away from the entrance position P1 to the far side (rear) is provisionally set as the exit position P2
  • the range from P1 to P2 in the vertical direction is set as the provisional setting range CRa.
  • the distance between P1 and P2 is, for example, 80 m.
  • the intersection recognition range CR is set by appropriately correcting the provisional set range CRa according to the position of the back side target existing on the back side of the entrance position P1.
  • the traffic lights 103a and 103b in the same intersection are detected as the front side target on the front side of the intersection and the back side target on the back side of the intersection, respectively, in the temporary set range CRa.
  • the intersection recognition range CR is set by correcting the exit position P2 (end position of the temporary set range CRa) based on the vertical distance D11 between the traffic lights 103a and 103b. At this time, since the distance D11 between the traffic lights 103a and 103b has a relatively high degree of reliability in the vertical direction, it is possible to appropriately set the intersection recognition range CR.
  • the exit position P3 of the intersection is determined by the traffic light 103b on the far side of the intersection, and the range from P1 to P3 is set as the intersection recognition range CR. Note that the exit position P2 may be corrected based on the distance D11 on condition that the display colors of the traffic signals 103a and 103b are the same.
  • the exit position P2 of the provisional setting range CRa may be corrected based on. However, if the display colors of the traffic lights 103b and 103c are different in "red/yellow", the exit position P2 may not be corrected. In addition, the exit position P2 may be configured to be corrected forward by a predetermined processing distance.
  • the stop line 102a is detected as the near side target and the traffic light 103b is detected as the far side target in the provisional setting range CRa.
  • the intersection recognition range CR is set by correcting the exit position P2 based on the vertical distance D12 between the stop line 102a and the traffic light 103b. At this time, it is preferable to correct the exit position P2 when there is a traffic light 103b having a distance difference of a predetermined distance or more from the stop line 102a.
  • the exit position P3 of the intersection is determined by the traffic light 103b on the far side of the intersection, and the range from P1 to P3 is set as the intersection recognition range CR.
  • stop lines 102a and 102b at different intersections are detected as the near side target and the far side target in the temporary set range CRa, respectively.
  • the intersection recognition range CR is set by correcting the exit position P2 based on the vertical distance D13 between the stop lines 102a and 102b.
  • the exit position P3 of the intersection is determined by the position a predetermined distance in front of the stop line 102b on the far side, and the range from P1 to P3 is set as the intersection recognition range CR.
  • the exit position P3 of the intersection 101 is determined based on the target detected behind the entrance position P1, and the intersection recognition range CR is defined from the entrance position P1 to the exit position P3. is set.
  • the setting of each intersection recognition range CR in FIGS. 7A to 7C described above gives top priority to the setting of FIG. ) may be appropriately performed in the order of setting.
  • the lateral range of the intersection recognition range CR may include the road on which the own vehicle VE travels.
  • the width of the intersection recognition range CR may be a predetermined value. If the road width is known from map information or the like, the width of the intersection recognition range CR may be set from that road width. The width of the intersection recognition range CR may be set accordingly. A configuration may be used in which the road edge in the lateral direction of the road is recognized from the camera image or the detection information of the radar device 12, and the width of the intersection recognition range CR is set according to the recognition result.
  • the ECU 21 sets a predetermined range on the far side from the entrance position P1 as a provisional set range CRa (step S32). After that, the ECU 21 determines whether or not the front side traffic signal and the back side traffic signal within the same intersection are detected in the provisional setting range CRa (step S33). If the front traffic signal and the rear traffic signal are detected (step S33: YES), the ECU 21 determines whether or not the display colors of the front traffic signal and the rear traffic signal are the same (step S34).
  • step S34 If the display color is the same between the front traffic signal and the rear traffic signal (step S34: YES), the ECU 21 corrects the exit position P2 of the temporary set range CRa based on the vertical distance D11 between the traffic signals. Then, the intersection recognition range CR is set (step S35). This processing corresponds to the processing described with reference to FIG.
  • step S34 when the display colors are different between the front traffic signal and the rear traffic signal (step S34: NO), the ECU 21 corrects the exit position P2 of the provisional setting range CRa based on the position of the front traffic signal, and corrects the intersection recognition range CR. is set (step S36).
  • the intersection recognition range CR is set with the position of the traffic light 103b as the exit position.
  • step S33 determines whether the front side stop line and the rear side traffic signal are detected. If the near side stop line and the far side traffic signal are detected (step S37: YES), the ECU 21 determines the temporary set range CRa based on the vertical distance D12 between the near side stop line and the far side traffic signal. The exit position P2 is corrected and the intersection recognition range CR is set (step S38). This processing corresponds to the processing described with reference to FIG.
  • step S37 determines whether or not the near side stop line and the far side stop line are detected (step S39). ). If the near side stop line and the far side stop line are detected (step S39: YES), the ECU 21 temporarily sets the range based on the vertical distance D13 between the near side stop line and the far side stop line. The exit position P2 of CRa is corrected, and the intersection recognition range CR is set (step S40). This process corresponds to the process described in FIG. 7(c).
  • step S39 If the near side stop line and the far side stop line are not detected (step S39: NO), the ECU 21 does not correct the exit position P2 of the temporary set range CRa, and sets the temporary set range CRa as the intersection recognition range CR. Set (step S41).
  • step S51 determines whether or not the intersection recognition range CR has been set. If the intersection recognition range CR has been set (step S51: YES), the ECU 21 determines whether or not the own vehicle VE is traveling within the intersection recognition range CR (step S52).
  • step S52: NO the ECU 21, in steps S53 to S63 of FIG.
  • the display color of the traffic lights to be followed by the own vehicle VE among the traffic lights inside is determined. If the own vehicle VE is traveling within the intersection recognition range CR (step S52: YES), the ECU 21 restricts determination of the intersection entrance position in steps S71 to S75 of FIG.
  • the display color of the traffic lights to be followed by the own vehicle VE among the traffic lights in the CR is determined.
  • FIGS. 10A to 10C show, in the intersection recognition range CR, first, a traffic light 103a on the front side of the intersection (front side of the own vehicle VE) and a traffic light 103a on the back side of the intersection (the front side of the own vehicle VE) as intersection targets.
  • the traffic light 103b on the front rear side) is detected (FIG.
  • FIGS. 10(a) to (c) will be explained.
  • traffic lights 103a and 103b are detected within the intersection recognition range CR.
  • the traffic lights 103a and 103b are considered to be the traffic lights to which the host vehicle VE should follow, and the display colors of the traffic lights 103a and 103b are determined.
  • the own vehicle VE has moved forward from the state of FIG. 10(a), and the traffic light 103a on the near side is out of the angle of view of the camera, causing the traffic light 103a on the near side to be in a lost state.
  • the extrapolation position is estimated by extrapolation processing for the traffic signal 103a on the lost front side.
  • the relative position of the traffic signal 103a with respect to the vehicle VE is estimated based on the position of the traffic signal 103a immediately before the vehicle is lost and the vehicle speed of the vehicle VE.
  • the display color is determined for the traffic signal 103b, which remains in the detected state, out of the traffic signals 103a and 103b.
  • the traffic light 103b on the far side is also in the lost state.
  • the traffic lights 103a and 103b detected within the intersection recognition range CR are all lost.
  • the display color determined immediately before the traffic light 103b on the far side is lost is maintained.
  • the traffic light 103a on the front side of the intersection is detected as the intersection target within the intersection recognition range CR.
  • the traffic light 103a is considered to be the traffic light that the host vehicle should follow, and the display color of the traffic light 103a is determined.
  • the own vehicle VE has moved forward from the state of FIG. 11(a), and the traffic light 103a on the near side is out of the angle of view of the camera, so that the traffic light 103a on the near side is in a lost state. ing. In this case, the display color output of the traffic light is temporarily interrupted.
  • the state of FIG. 11(b) (that is, the state in which the traffic light 103a on the near side is lost) is switched to the state in which the traffic light 103b on the far side is newly detected. In this case, the display color of the traffic light 103b on the far side is determined.
  • the ECU 21 determines whether or not the intersection target detected within the intersection recognition range CR includes at least one of the front side traffic light and the back side traffic light (step S53). If at least one of the front traffic signal and the rear traffic signal is included (step S53: YES), the ECU 21 determines whether or not both the front traffic signal and the rear traffic signal are in the detection state (step S54). . If both the front side traffic light and the far side traffic light are in the detection state (step S54: YES), the ECU 21 determines the display color that the host vehicle VE should follow based on the respective traffic lights (step S55). In the situation shown in FIG. 10(a), the display colors of the traffic lights 103a and 103b are determined in step S55.
  • step S54 determines whether or not only the front traffic light is in the detection state (step S56). If only the front traffic light is in the detection state (step S56: YES), the ECU 21 determines the display color that the host vehicle VE should follow based on the front traffic light (step S57). In the situation shown in FIG. 11(a), the display color of the traffic signal 103a is determined in step S57.
  • step S56: NO If the front traffic light is not in the detection state (step S56: NO), in other words, if only the back traffic light is in the detection state, the ECU 21 determines whether or not the front traffic light is in the extrapolation estimation state (step S56: NO). S58). If the near side traffic light is in the extrapolation estimation state (step S58: YES), that is, if the far side traffic light is in the detection state and the near side traffic light is in the extrapolation estimation state, the ECU 21 , the display color to be followed by the own vehicle VE is determined (step S59). In the situations shown in FIGS. 10(b) and 11(c), the display color of the traffic signal 103b is determined in step S59.
  • step S58 If the near side traffic light is not in the extrapolation estimation state (step S58: NO), in other words, if the far side traffic light is in the detection state and the near side traffic light is in the non-detection state and not in the extrapolation estimation state, the ECU 21 It is determined whether or not the front side traffic signal has been detected in the previous process, that is, whether or not the far side traffic signal has been lost this time (step S60). Then, if the front traffic signal was detected in the previous process (step S60: YES), the ECU 21 estimates the extrapolated position of the front traffic signal (step S61). Also, the display color to be followed by the own vehicle VE is determined based on the far side traffic light (step S59). When shifting from the state shown in FIG. 10(a) to the state shown in FIG. 10(b), extrapolation processing in step S61 and color determination of the traffic light 103b in step S59 are performed.
  • step S60 NO
  • the ECU 21 terminates this processing as it is.
  • step S53 NO
  • the ECU 21 determines in the previous process that there is a back traffic signal and the front traffic signal is outside. It is determined whether or not it is in an interpolation estimation state (step S62). If there is a traffic signal on the far side and the traffic signal on the front side is in the extrapolation estimation state in the previous process (step S62: YES), the ECU 21 waits for a predetermined period defined by the travel distance or the travel time after entering that state. The previous signal color output is maintained until elapses (step S63). In the situation shown in FIG. 10(c), the display color of the traffic signal 103b is determined in step S59.
  • step S71 determines whether or not the intersection target detected within the intersection recognition range CR includes a traffic signal (step S71). If the intersection target includes a traffic signal (step S71: YES), the ECU 21 determines whether or not the rear traffic signal is detected (step S72). Then, if the far side traffic signal is detected (step S72: YES), the ECU 21 determines whether or not there is a lost history of the far side traffic signal.
  • the lost history of the far side traffic signal here means that the far side traffic signal was detected before the own vehicle VE entered the intersection recognition range CR, and the own vehicle VE entered the intersection recognition range CR. This is the history indicating that the far side traffic light is no longer detected.
  • step S73 If there is a lost history of the far side traffic light (step S73: YES), the ECU 21 does not determine the entrance position based on the far side traffic light (step S74). In other words, when the far side traffic signal that was detected before entering the intersection recognition range CR is once lost after entering the intersection recognition range CR and then redetected, the ECU 21 , the entrance position is not determined using the rear traffic light.
  • FIGS. 12(a) to 12(c) are diagrams showing, in chronological order, changes in the detection states of the traffic lights 103a and 103b when the own vehicle VE enters the intersection recognition range CR.
  • the traffic lights 103a and 103b on the front side and the back side of the intersection are detected in the own vehicle VE before entering the intersection recognition range CR.
  • the traffic signal 103a on the near side of the intersection is out of the angle of view of the camera and is lost, and the position of the traffic signal 103a is estimated by extrapolation.
  • the traffic signal 103b on the far side of the intersection is also lost. For example, when the traffic signal 103b on the far side is hidden by the preceding vehicle, the traffic signal 103b is lost.
  • a history is stored indicating that the traffic signal 103b on the far side of the intersection is no longer detected within the intersection recognition range CR.
  • the traffic light 103b on the far side of the intersection is redetected while the own vehicle VE has entered the intersection recognition range CR.
  • the entrance position of the intersection may be erroneously recognized. Therefore, the entrance position is not determined by the traffic light 103b re-detected after the own vehicle enters the intersection recognition range CR.
  • step S71 when the intersection target includes a traffic light (step S71: YES), after step S72 is denied or after step S74, the ECU 21 Of the traffic lights, the display color of the traffic lights that the host vehicle VE should follow is determined (step S75).
  • the display color of the traffic lights to be followed by the own vehicle VE (hereinafter also referred to as the own vehicle traffic light) should be determined based on the plurality of traffic lights.
  • the signal color may be determined by the following processing.
  • FIG. 13 is a diagram showing traffic lights that exist at the same intersection.
  • a plurality of traffic lights 103_1 to 103_6 are detected within the intersection recognition range CR, and the ECU 21 classifies each of these traffic lights 103_1 to 103_6 according to their positions and forms, and according to their display colors. Determine the display color of traffic lights.
  • the ECU 21 weights the traffic signals 103_1 to 103_6 according to their positions and display colors, and determines the display color of the vehicle traffic signal based on the weighted evaluation results.
  • Weighting is performed according to the position in the lateral direction with respect to the own vehicle VE (the lateral position with respect to the own vehicle center line LC), and the own vehicle traffic signal is specified. In other words, if the lateral position of the traffic signal 103 is excessively far from the own vehicle VE, there is a possibility that the traffic signal 103 is not the own vehicle signal. do. In FIG. 13, the traffic lights 103_1 to 103_4 are given a large weight, and the traffic lights 103_5 to 103_6 are given a small weight.
  • Each traffic signal 103 may be weighted according to whether the left lateral distance to the vehicle VE is greater than the reference distance DL or whether the right lateral distance to the vehicle VE is greater than the reference distance DR. .
  • the weight is increased if the lateral distance to the traffic light is smaller than the reference distance DL, and the weight is decreased if the lateral distance to the traffic light is greater than the reference distance DL.
  • the weight is increased if the lateral distance to the traffic light is smaller than the reference distance DR, and the weight is decreased if the lateral distance to the traffic light is greater than the reference distance DR.
  • the reference distance DL on the left side of the vehicle VE should be smaller than the reference distance DR on the right side. That is, for example, when comparing the traffic lights 103_5 and 103_3, the lateral distance to the vehicle VE is shorter for the traffic lights 103_5 than for the vehicle VE, but since DL ⁇ DR, the weight of the traffic lights 103_5 is lowered, and the traffic lights 103_3 are weighted. weight is increased.
  • Weighting is performed according to the vertical distance from the own vehicle VE to specify the own vehicle traffic signal. In other words, if the distance in the vertical direction to the own vehicle VE is excessively large, there is a possibility that the traffic signal is farther away than the next intersection. .
  • a traffic signal whose height position is lower than the predetermined first height may be a traffic signal for pedestrians, not for automobiles.
  • the pedestrian traffic light 105 is detected in front of the own vehicle VE, and the weight of the pedestrian traffic light 105 is reduced.
  • a traffic signal whose height position is higher than the predetermined second height may not be a traffic signal but a luminous object such as a street light or a light-emitting signboard, so the weight is reduced.
  • each of the traffic lights 103_1 to 103_6 in the intersection has different orientations (specifically, the orientation of the front of the traffic lights) with respect to the own vehicle VE.
  • the weight of the traffic signal that does not face the vehicle VE is reduced to reduce the possibility of being recognized as the traffic signal of the vehicle.
  • the ECU 21 performs at least one of the above weightings (1) to (5), and classifies traffic signals according to their position and form.
  • the traffic signal is the vehicle's traffic signal based on the map or locator results, and increase the weight if it is determined to be the vehicle's traffic signal.
  • Traffic lights basically light up in either red, yellow, or green. Therefore, for each traffic signal detected within the intersection recognition range CR, the display color is determined in a predetermined period within a predetermined period of time, and the number of times of determination is counted for each color. Then, the number of determinations for each color counted by each traffic light and the evaluation value indicating the degree of certainty of color determination in the image are summed for each color to calculate the score value for each display color. Also, the display color with the highest score value is determined as the display color of the vehicle traffic signal. The degree of certainty of color determination may be calculated, for example, by comparison with a predetermined color reference.
  • the score value is added to the weighting result to determine the display color of the vehicle's traffic signal.
  • the score value of each display color is corrected according to the weighting of (1) to (5) above, and the display color of the vehicle traffic light is determined based on the score value after the correction.
  • Figs. 14(a) and 14(b) show the results of counting the number of determinations by color for the traffic lights 103_1 to 103_3 in Fig. 13 .
  • the current signal color is "red” from the score value obtained by accumulating the number of determination times for each color of the traffic lights 103_1 to 103_3.
  • the color-specific score values are the same for “yellow” and “green”. In this case, it is preferable that the current signal color is determined to be the same as the previous determination.
  • the score values are the same as in FIG. 14B, the signal color may be determined according to the priority of green>yellow>red.
  • the final signal color when it is determined that the signal color has changed more than a predetermined number of times in succession.
  • some traffic lights are equipped with arrow lights that display arrows. It's not what it is. Therefore, when judging an arrow light, for each traffic light, it is judged whether the arrow light is turned on at a predetermined cycle within a predetermined time, and the number of lighting determinations is counted. Then, the total value of the number of lighting decision times of the arrow lights at each traffic light is taken as a score value, and if the score value is greater than a predetermined value, it is determined that the arrow lights are on.
  • the total value (score value) of the lighting determination times of the arrow lights is divided by the number of traffic lights having the arrow lights, and if the calculated value is greater than a predetermined value, it is determined that the arrow lights are lit. good too.
  • the intersection target related to the passage or stop of the vehicle VE at the intersection in front of the vehicle is detected, and the entrance position of the intersection is determined based on the intersection target. According to this configuration, since the entrance position of the intersection can be properly grasped, the information can be used for various kinds of driving support, and the technology for driving support can be improved regarding traveling at the intersection.
  • the stop line and traffic lights at the intersection are detected as intersection targets, and the entrance position is determined based on the detection results of the stop line and traffic lights. In this case, even if which of the stop line and the traffic signal can be detected changes depending on the shape of the road and the running condition of the own vehicle, the entrance position of the intersection can be determined appropriately.
  • a stop line is often set up on the front side of the intersection, and it is conceivable that the stop line directly indicates the entrance position of the intersection.
  • the stop line directly indicates the entrance position of the intersection.
  • the distance between the stop line and the traffic light in the straight-ahead direction of the vehicle VE is less than a predetermined distance.
  • the entrance position is determined (see FIGS. 4(a) to 4(c)). Thereby, the entrance position of the intersection can be determined appropriately.
  • intersection is detected based on the stop line on the condition that the distance between the stop line and the pedestrian crossing in the straight ahead direction of the vehicle VE is less than a predetermined distance. is determined (see FIG. 4(a)). Thereby, the entrance position of the intersection can be determined appropriately.
  • the camera image in front of the vehicle may contain multiple targets of the same type. For example, multiple stop lines and multiple traffic lights may be reflected.
  • the entrance position of the intersection is determined based on the closest target from the own vehicle VE among a plurality of targets of the same type, so the entrance position of the intersection can be determined appropriately.
  • the position of the stop line may be different for each lane on a multi-lane road with multiple lanes running in the same direction, it is possible to determine whether the position of the stop line is detected in the own lane or in the next lane.
  • the position of the entrance to the intersection is determined based on the position of the stop line while taking into account the position of the stop line (see FIGS. 5(a) to 5(c)). In other words, if the stop line position of the own lane is closer to the user than the stop line position of the own lane and the stop line position of the adjacent lane, the entrance position of the intersection is determined based on the stop line position of the own lane.
  • a selection area is defined in a predetermined range on the back side with reference to the stop line position of the next lane, and the stop line of the own lane is set in the selection area. If so, determine the intersection entrance position based on the own lane's stop line position; otherwise, determine the intersection entrance based on the next lane's stop line position if there is no stop line position for the own lane within the selected area. determined the position. As a result, even if the stop line position is detected in either the own lane or the adjacent lane on a road with multiple lanes on one side, the entrance position of the intersection can be determined appropriately.
  • the extrapolated position is used to determine the intersection entrance position. made it continue. As a result, even if the detected intersection target is lost due to the lack of the camera 11 or the like, the entrance position of the intersection can be continuously grasped.
  • intersection recognition range CR a predetermined range on the back side from the determined entrance position of the intersection.
  • the display color of the traffic light to be followed by the vehicle VE is determined within the intersection recognition range CR.
  • the traffic signal on the back side of the intersection (back traffic signal) and the traffic signal on the front side of the intersection (front traffic signal) are detected within the intersection recognition range CR.
  • the signals are lost due to different factors (see FIGS. 10(a) to 10(c)).
  • each traffic light is lost due to physical factors such as being cut off outside the angle of view of the camera or being hidden by other objects such as trees or other vehicles.
  • the traffic light position is estimated as an extrapolated position due to the loss of one of the traffic lights.
  • the display color of the traffic signal determined immediately before the loss of the other traffic signal is maintained. Thereby, regardless of the loss of each traffic signal, the display color of the traffic signal can be continuously recognized.
  • the front side traffic light is lost within the intersection recognition range CR, and then the rear side traffic light is detected (see FIGS. 11(a) to 11(c)).
  • the position of the traffic signal is estimated as an extrapolated position due to the loss of the traffic signal on the front side, and furthermore, a traffic signal on the back side is detected under that situation.
  • the display color of the traffic signal on the far side is determined as the display color of the traffic signal to which the own vehicle VE should follow.
  • the display color indicated by the far side traffic light is the display color of the traffic light that the vehicle VE should follow when passing through the intersection. Therefore, when the rear traffic signal is detected while the position of the traffic signal is estimated as an extrapolated position due to the loss of the front traffic signal, the display color indicated by the rear traffic signal is regarded as the display color of the traffic signal that the vehicle VE should follow. Therefore, it is possible to properly grasp the display color that the own vehicle VE should follow.
  • a rear traffic signal is detected before the own vehicle VE enters the intersection recognition range CR, and after the rear traffic signal is temporarily lost while the own vehicle VE has entered the intersection recognition range CR. It is conceivable that the far side traffic light may be detected again (see FIGS. 12(a) to (c)). In such a case, if the entrance position is determined based on the far side traffic light, there is a high possibility that the entrance position is not appropriate for setting the intersection recognition range CR. In this regard, in such a case, the proper entrance position can be maintained by not determining the entrance position based on the rear traffic light.
  • the intersection there may be traffic lights at positions separated laterally or longitudinally from the own vehicle VE, for example.
  • luminous objects such as street lights and luminous signboards that may be mistaken for traffic lights exist in intersections.
  • the plurality of traffic signals may include traffic signals for different routes, or that signal colors may differ due to variations in operation or the like.
  • all the traffic signals existing within the intersection recognition range CR are extracted, and the traffic signals to be followed by the own vehicle VE are determined from the results of classifying the extracted traffic signals by at least one of position, form, and display color. The display color is now judged. As a result, even if there are many traffic lights within the intersection recognition range CR, the display color of the traffic lights to be followed by the own vehicle VE can be properly determined.
  • FIG. 15 is a diagram showing the road in front of the intersection.
  • the road surface of the left lane is marked with a straight arrow indicating straight ahead, and the road surface of the right lane is marked with a right turn arrow indicating a right turn. That is, the left lane is the straight lane, and the right lane is the right-turning vehicle.
  • the traffic light 103 is provided with an arrow light in addition to the main light.
  • the arrow lights include a straight-ahead light and a right-turn light.
  • a right-turn arrow is detected as a road surface arrow display, and a right-turn light is detected as an arrow light of a traffic signal that the vehicle VE should follow. be.
  • FIG. 16 is a flow chart showing determination processing for arrow lights. This process is preferably executed, for example, when step S53 in FIG. 9 is affirmative.
  • the ECU 21 determines whether or not a road surface arrow display is detected on the road surface of the own lane on which the own vehicle VE travels (step S81).
  • the ECU 21 determines whether or not the arrow light in the lighting state is detected at the traffic signal in front of the vehicle (step S82). Then, if an arrow light in a lit state is detected at the traffic signal in front of the vehicle (step S82: YES), the ECU 21 displays the arrow light having the same arrow direction as the road arrow display as a signal display to be followed by the vehicle VE. (step S83).
  • the road arrow display is a right-turn arrow
  • the right-turn light of the traffic light is determined as the display of the own vehicle's traffic light
  • the road arrow display is a left-turn arrow
  • the left-turn light of the traffic light is determined as the display of the own vehicle's traffic light
  • the road surface arrow display is a straight arrow
  • the straight light of the traffic signal is determined as the display of the vehicle traffic signal.
  • the traffic light in front of the vehicle is not provided with an arrow light corresponding to the direction of the road arrow, the traffic light to which the vehicle VE should follow is determined according to the main light of the traffic light. display color of is determined.
  • the position of the road arrow display before being lost should be estimated by extrapolation processing.
  • Estimation of the road surface arrow display by extrapolation processing is either that the vehicle VE has traveled and reached an intersection, that another road surface arrow display has been detected in front of the vehicle, or that the vehicle VE has traveled a predetermined distance. should be terminated by
  • the road surface arrow of the own lane In addition to the display of the road surface arrow of the own lane, it may be configured to detect the display of the road surface arrow of the next lane. Further, when the own vehicle VE changes lanes during extrapolation of the road surface arrow display, the extrapolation information of the destination of the lane change may be recognized as the road surface arrow display of the own lane after the lane change. For example, when the vehicle changes lanes to the adjacent lane on the right, the extrapolation information of the road surface arrow of the adjacent lane on the right is used as the road surface arrow information of the own lane.
  • each of the multiple road arrow indications should be detected. If a plurality of road surface arrow indications in the same lane are lost, all of the road surface arrow indications should be estimated by extrapolation processing. Extrapolation should not be performed if there is another roadmark indication with a vertical distance difference.
  • the provisional setting range CRa when setting the intersection recognition range CR, the provisional setting range CRa is set with reference to the entrance position P1, and the provisional setting range CRa is set to the back side target on the back side of the entrance position P1. (See FIGS. 7A to 7C), but this may be changed.
  • the provisional setting range CRa is not set.
  • the ECU 21 determines the exit position of the intersection based on the position of the back side target on the back side of the entrance position after determining the entrance position from the stop line or the traffic signal, and determines the distance from the entrance position to the exit position. is set as the intersection recognition range CR.
  • the controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program.
  • the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits.
  • the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured.
  • the computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Theoretical Computer Science (AREA)
  • Traffic Control Systems (AREA)
  • Image Analysis (AREA)

Abstract

A driving assistance device (10) is provided with a camera (11), a radar device (12), and an ECU (21). The ECU (21) recognizes traffic conditions in front of a host vehicle on the basis of an image captured by the camera (11), which is for capturing the area in front of the host vehicle. The ECU (21) is provided with: a target detection unit for detecting, from an image of the camera (11), a target that pertains to the passage or stoppage of the host vehicle at an intersection in front of the host vehicle; and, an entrance determination unit for determining the entrance position of the intersection on the basis of the target detected by the target detection unit.

Description

車両制御装置vehicle controller 関連出願の相互参照Cross-reference to related applications
 本出願は、2021年8月2日に出願された日本出願番号2021-126947号に基づくもので、ここにその記載内容を援用する。 This application is based on Japanese Application No. 2021-126947 filed on August 2, 2021, and the contents thereof are incorporated herein.
 本開示は、車両制御装置に関する。 The present disclosure relates to a vehicle control device.
 自車両の前方を撮像するカメラが撮像した画像に基づいて自車両の前方の交通状況を認識する技術が知られている。例えば、特許文献1には、狭角カメラにより撮像された狭角画像および広角カメラにより撮像された広角画像の少なくともいずれかの画像から信号機を検出する信号機検出装置が開示されている。 A technology is known that recognizes the traffic situation in front of the own vehicle based on an image captured by a camera that captures an image of the area ahead of the own vehicle. For example, Patent Literature 1 discloses a traffic signal detection device that detects a traffic signal from at least one of a narrow-angle image captured by a narrow-angle camera and a wide-angle image captured by a wide-angle camera.
特許第6447722号公報Japanese Patent No. 6447722
 ところで、近年では、車両における運転支援技術が進化しており、自車両が交差点を安全に走行するための技術が望まれている。この場合、特許文献1における信号機検出以外にも、交差点に関する多様な情報を取得することが望ましいと考えられる。この点、未だ改善の余地があった。 By the way, in recent years, driving support technology for vehicles has evolved, and there is a demand for technology that allows the vehicle to drive safely through intersections. In this case, it is considered desirable to obtain a variety of information about intersections in addition to traffic signal detection in Patent Document 1. In this regard, there is still room for improvement.
 本開示は、上記課題に鑑みてなされたものであり、その主たる目的は、交差点の走行に関して運転支援のための技術改善を図ることができる車両制御装置を提供することである。 The present disclosure has been made in view of the above problems, and the main purpose thereof is to provide a vehicle control device capable of improving technology for driving support regarding traveling at intersections.
 本開示は、
 自車両の前方を撮像するカメラが撮像した画像に基づいて自車両の前方の交通状況を認識する車両制御装置であって、
 前記画像から、自車両前方の交差点における自車両の通過又は停止に関する物標を検出する物標検出部と、
 前記物標検出部により検出された前記物標に基づいて、前記交差点の入口位置を決定する入口決定部と、
を備える。
This disclosure is
A vehicle control device for recognizing traffic conditions in front of the vehicle based on an image captured by a camera that captures an image of the front of the vehicle,
a target detection unit that detects, from the image, a target related to the passage or stop of the own vehicle at an intersection in front of the own vehicle;
an entrance determination unit that determines an entrance position of the intersection based on the target detected by the target detection unit;
Prepare.
 自車両の走行中において、カメラが撮像した画像から検出される物標には、自車両前方の交差点における自車両の通過又は停止に関する物標が含まれている。そのような物標を画像から検出し、その物標に基づいて交差点の入口位置を決定することにより、交差点の入口位置を適正に決定できる。また、交差点の入口位置を適正に把握できることから、その情報を各種の運転支援に用いることができ、ひいては交差点の走行に関して運転支援のための技術改善を図ることができる。 Targets detected from the images captured by the camera while the vehicle is running include targets related to the vehicle passing or stopping at the intersection in front of the vehicle. By detecting such a target from the image and determining the entrance position of the intersection based on the target, the entrance position of the intersection can be properly determined. In addition, since the entrance position of the intersection can be properly grasped, the information can be used for various types of driving support.
 本開示についての上記目的およびその他の目的、特徴や利点は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。その図面は、
図1は、運転支援装置の概略構成を示す図であり、 図2は、信号機判定処理の概要を示すフローチャートであり、 図3は、入口位置決定処理を示すフローチャートであり、 図4は、入口側停止線を判定する手順を説明する図であり、 図5は、片側複数車線の道路において入口側停止線を判定する手順を説明する図であり、 図6は、交差点認識範囲の設定処理を示すフローチャートであり、 図7は、交差点認識範囲の設定手順を説明する図であり、 図8は、信号色判定処理を示すフローチャートであり、 図9は、図8に引き続き信号色判定処理を示すフローチャートであり、 図10は、交差点認識範囲における信号色の判定手順を説明する図であり、 図11は、交差点認識範囲における信号色の判定手順を説明する図であり、 図12は、自車両が交差点内に進入した際の物標検出を説明する図であり、 図13は、交差点における各信号機の配置を示す図であり、 図14は、3つの信号機について色別のスコア値を示す図であり、 図15は、交差点手前の道路を示す図であり、 図16は、矢印灯火の判定処理を示すフローチャートである。
The above and other objects, features and advantages of the present disclosure will become more apparent from the following detailed description with reference to the accompanying drawings. The drawing is
FIG. 1 is a diagram showing a schematic configuration of a driving support device, FIG. 2 is a flowchart showing an overview of the signal determination process; FIG. 3 is a flowchart showing the entrance position determination process, FIG. 4 is a diagram for explaining the procedure for determining the stop line on the entrance side. FIG. 5 is a diagram for explaining the procedure for determining an entrance-side stop line on a road with multiple lanes on one side. FIG. 6 is a flowchart showing the process of setting the intersection recognition range; FIG. 7 is a diagram for explaining the procedure for setting the intersection recognition range. FIG. 8 is a flowchart showing signal color determination processing; FIG. 9 is a flowchart showing the signal color determination process following FIG. FIG. 10 is a diagram for explaining the procedure for determining the signal color in the intersection recognition range. FIG. 11 is a diagram for explaining the procedure for determining the signal color in the intersection recognition range. FIG. 12 is a diagram for explaining target object detection when the own vehicle enters an intersection. FIG. 13 is a diagram showing the arrangement of each traffic light at an intersection; FIG. 14 is a diagram showing score values by color for three traffic lights, FIG. 15 is a diagram showing the road in front of the intersection, FIG. 16 is a flow chart showing determination processing of arrow lights.
 以下、本開示に係る車両制御装置を、車載の運転支援装置10に適用した実施形態について、図面を参照しつつ説明する。 An embodiment in which a vehicle control device according to the present disclosure is applied to an in-vehicle driving support device 10 will be described below with reference to the drawings.
 図1に示すように、本実施形態に係る運転支援装置10は、カメラ11と、レーダ装置12と、車両制御装置としてのECU21と、を備えている。これ以降、運転支援装置10が搭載された自車両を自車両VEとする。 As shown in FIG. 1, the driving assistance device 10 according to this embodiment includes a camera 11, a radar device 12, and an ECU 21 as a vehicle control device. From now on, the own vehicle on which the driving support device 10 is mounted is referred to as the own vehicle VE.
 カメラ11は、単眼カメラである。カメラ11は、例えば自車両VEの前端、後端、および両側面にそれぞれ取り付けられており、自車両周辺を撮像する。カメラ11は、撮像した撮像画像の画像情報をECU21に送信する。カメラ11は、複眼カメラであってもよい。 The camera 11 is a monocular camera. The cameras 11 are attached, for example, to the front end, the rear end, and both side surfaces of the vehicle VE, and capture images of the surroundings of the vehicle. The camera 11 transmits the image information of the captured image to the ECU 21 . Camera 11 may be a compound eye camera.
 レーダ装置12は、ミリ波帯の高周波信号を送信波とする測距装置である。レーダ装置12は、例えば、自車両VEの前端、後端、および両側面にそれぞれ搭載されており、自車両周辺の物体までの距離を計測する。具体的には、所定周期で探査波を送信し、複数のアンテナにより反射波を受信する。この探査波の送信時刻と反射波の受信時刻とにより、物体上の複数の検出点を検出し、これにより当該物体までの距離を計測する。加えて、複数のアンテナが受信した反射波の位相差により、物体の方位を算出する。物体までの距離および物体の方位が算出できれば、その物体の自車両VEに対する相対位置を特定することができる。 The radar device 12 is a ranging device that transmits high-frequency signals in the millimeter wave band. The radar devices 12 are mounted, for example, on the front end, rear end, and both side surfaces of the vehicle VE, and measure distances to objects around the vehicle. Specifically, a search wave is transmitted at predetermined intervals, and reflected waves are received by a plurality of antennas. A plurality of detection points on the object are detected from the transmission time of the search wave and the reception time of the reflected wave, thereby measuring the distance to the object. In addition, the azimuth of the object is calculated from the phase difference of the reflected waves received by the multiple antennas. If the distance to the object and the azimuth of the object can be calculated, the relative position of the object with respect to the own vehicle VE can be specified.
 また、レーダ装置12は、物体で反射された反射波の、ドップラー効果により変化した周波数により、物体の相対速度を算出する。これにより、自車両周辺に存在している物体が静止物又は移動物であると検出される。具体的には、物体の相対速度と自車両VEの車速である自車速度との和がゼロとなる場合に、物体が静止物であると検出され、物体の相対速度と自車速度との和がゼロでない場合に、物体が移動物であると検出される。レーダ装置12は、自車両周辺の静止物および移動物の検出情報をECU21に送信する。 Also, the radar device 12 calculates the relative velocity of the object from the frequency of the reflected wave reflected by the object, which is changed by the Doppler effect. As a result, the object existing around the vehicle is detected as a stationary object or a moving object. Specifically, when the sum of the relative velocity of the object and the vehicle speed, which is the vehicle speed of the vehicle VE, is zero, the object is detected as a stationary object, and the relative velocity of the object and the vehicle speed are detected as zero. If the sum is non-zero, the object is detected as moving. The radar device 12 transmits detection information of stationary objects and moving objects around the own vehicle to the ECU 21 .
 ECU21は、CPU、ROM、RAM、フラッシュメモリ等からなる周知のマイクロコンピュータを備えた制御装置である。ECU21は、各種信号を取得し、取得した情報に基づき、各種制御を実施する。 The ECU 21 is a control device equipped with a well-known microcomputer consisting of CPU, ROM, RAM, flash memory, and the like. The ECU 21 acquires various signals and performs various controls based on the acquired information.
 ECU21は、カメラ11の撮像画像に基づいて、自車両周辺の物体を検出する。具体的には、ECU21は、カメラ11の撮像画像に写る各物体の自車両VEに対する相対位置を算出する。検出対象となる物体には、自車両周辺の他車両、歩行者、自転車等の移動物や、道路周辺に設けられる信号機、縁石、ガードレール等の固定物が含まれる。また、ECU21は、カメラ11の撮像画像に基づいて、自車両VEが走行する道路上の区画線に関する区画線情報を認識する。具体的には、区画線として白線等の有無を認識するとともに、その形態(具体的には、区画線の種別、位置、幅、長さ、曲率等)を認識する。道路上の路面標示として検出されるものとしては、区画線以外に、停止線、横断歩道、路面矢印などが挙げられる。 The ECU 21 detects objects around the vehicle based on the image captured by the camera 11 . Specifically, the ECU 21 calculates the relative position of each object captured by the camera 11 with respect to the own vehicle VE. Objects to be detected include moving objects such as other vehicles, pedestrians, and bicycles around the own vehicle, and fixed objects such as traffic lights, curbs, and guardrails provided around the road. Based on the image captured by the camera 11, the ECU 21 also recognizes lane marking information regarding lane markings on the road on which the vehicle VE is traveling. Specifically, the presence or absence of a white line or the like as a marking line is recognized, and the form (specifically, the type, position, width, length, curvature, etc. of the marking line) is recognized. In addition to lane markings, stop lines, pedestrian crossings, road arrows, and the like can be detected as road markings on the road.
 ECU21は、レーダ装置12から送信される自車両周辺の物体の検出情報およびカメラ11の撮像画像から検出された自車両周辺の物体の検出情報に基づいて、各種制御を実施する。例えば、ECU21は、当該検出情報に基づいて、カメラ11の撮像画像から検出された信号機への注意喚起を示す情報を、車室内のインストルメントパネル等に設けられたディスプレイ31に表示させたり、車室内に設置されたスピーカやブザー等の聴覚的に報知する警報装置32を作動させたりする。 The ECU 21 performs various controls based on detection information of objects around the vehicle transmitted from the radar device 12 and detection information of objects around the vehicle detected from the image captured by the camera 11 . For example, based on the detection information, the ECU 21 causes the display 31 provided in the instrument panel or the like in the vehicle to display information indicating the attention to the traffic light detected from the captured image of the camera 11, or An alarm device 32, such as a speaker or a buzzer installed in the room, is activated.
 また、ECU21には、ヨーレートセンサ13、舵角センサ14、車速センサ15が接続されている。ヨーレートセンサ13は、たとえば自車両VEの中央位置に設けられており、自車両VEの操舵量の変化速度に応じたヨーレートを示す信号をECU21に出力する。舵角センサ14は、たとえば車両のステアリングロッドに取り付けられており、ドライバの操作に伴うステアリングホイールの舵角の変化量に応じた舵角信号をECU21に出力する。車速センサ15は、たとえば自車両VEのホイール部分に取り付けられており、車輪の回転方向を検出するとともに、車輪速度に応じた車速信号をECU21に出力する。 A yaw rate sensor 13, a steering angle sensor 14, and a vehicle speed sensor 15 are also connected to the ECU 21. The yaw rate sensor 13 is provided, for example, at a central position of the vehicle VE, and outputs to the ECU 21 a signal indicating a yaw rate corresponding to the rate of change of the steering amount of the vehicle VE. The steering angle sensor 14 is attached to, for example, a steering rod of the vehicle, and outputs a steering angle signal to the ECU 21 according to the amount of change in the steering angle of the steering wheel caused by the driver's operation. The vehicle speed sensor 15 is attached, for example, to a wheel portion of the own vehicle VE, detects the rotation direction of the wheel, and outputs a vehicle speed signal corresponding to the wheel speed to the ECU 21 .
 ところで、近年では、車両における運転支援技術が進化しており、自車両VEが交差点を安全に走行するための技術が望まれている。このような考えに基づき、本実施形態の車両制御装置であるECU21では、カメラ11が撮像した画像から、自車両前方の交差点における自車両VEの通過又は停止に関する物標を検出し、その物標に基づいて、交差点の入口位置を決定するようにしている。また、その入口位置から奥側の所定範囲を、交差点内であると認識する交差点認識範囲CRとし、その交差点認識範囲CR内において、自車両VEが従うべき信号機の表示色を判定するようにしている。 By the way, in recent years, driving support technology for vehicles has evolved, and there is a demand for technology that allows the own vehicle VE to drive safely through intersections. Based on this idea, the ECU 21, which is the vehicle control device of the present embodiment, detects a target related to the passage or stop of the vehicle VE at the intersection in front of the vehicle from the image captured by the camera 11, and detects the target. , the entrance position of the intersection is determined. Further, a predetermined range on the far side from the entrance position is defined as an intersection recognition range CR that is recognized as being within the intersection, and the display color of the traffic light that the host vehicle VE should follow is determined within the intersection recognition range CR. there is
 図2は、ECU21が実行する信号機判定処理の概要を示すフローチャートである。信号機判定処理は、交差点認識範囲CRを設定し、その交差点認識範囲CR内において自車両VEが従うべき信号機の表示色を判定する処理である。本処理は、ECU21により所定周期で繰り返し実行される。 FIG. 2 is a flow chart showing an overview of the signal determination process executed by the ECU 21. FIG. The traffic light determination process is a process of setting an intersection recognition range CR and determining the display color of the traffic light that the host vehicle VE should follow within the intersection recognition range CR. This process is repeatedly executed by the ECU 21 at a predetermined cycle.
 信号機判定処理が開始されると、まず初めに、ECU21は、カメラ11により撮像された自車両VE前方の画像を取得する(ステップS10)。次に、ECU21は、取得した画像から検出された物標に基づいて、交差点の入口位置を決定する入口位置決定処理を実行する(ステップS20)。ここでいう物標は、自車両前方の交差点における自車両VEの通過又は停止に関するものであり、以下の説明では物標を交差点物標ともいう。本実施形態では、交差点物標として、交差点での停止線、信号機及び横断歩道を検出することとしている。交差点の入口位置として決定される位置は、自車両VE前方に存在する交差点の手前側位置である。 When the traffic light determination process is started, first of all, the ECU 21 acquires an image in front of the own vehicle VE captured by the camera 11 (step S10). Next, the ECU 21 executes entrance position determination processing for determining the entrance position of the intersection based on the target detected from the acquired image (step S20). The target here relates to the passage or stop of the own vehicle VE at the intersection in front of the own vehicle, and in the following description the target is also referred to as the intersection target. In this embodiment, a stop line, a traffic light, and a crosswalk at an intersection are detected as intersection targets. The position determined as the entrance position of the intersection is the front side position of the intersection that exists in front of the vehicle VE.
 次に、ECU21は、決定された入口位置から奥側の所定範囲を交差点認識範囲CRとして設定する交差点認識範囲の設定処理を実行する(ステップS30)。交差点認識範囲CRとして設定された範囲のうち奥側の末端位置は、自車両VE前方に存在する交差点の奥側位置である。 Next, the ECU 21 executes an intersection recognition range setting process for setting a predetermined range on the far side from the determined entrance position as the intersection recognition range CR (step S30). The end position on the far side of the range set as the intersection recognition range CR is the position on the far side of the intersection that exists in front of the vehicle VE.
 次に、ECU21は、交差点認識範囲CR内において、自車両VEが従うべき信号機の表示色を判定する信号色判定処理を実行する(ステップS50)。ここで判定された表示色は、ディスプレイ31に表示される。当該信号機の表示色に応じて、運転支援としてのブレーキ制御やアクセル制御が行われてもよい。 Next, the ECU 21 executes signal color determination processing for determining the display color of the traffic light that the host vehicle VE should follow within the intersection recognition range CR (step S50). The display color determined here is displayed on the display 31 . Brake control and accelerator control as driving assistance may be performed according to the display color of the traffic light.
 以下に、ステップS20の入口位置決定処理、ステップS30の交差点認識範囲の設定処理、ステップS50の信号色判定処理について、具体的な処理内容を説明する。 Specific processing contents of the entrance position determination processing in step S20, the intersection recognition range setting processing in step S30, and the signal color determination processing in step S50 will be described below.
 図3は、図2のステップS20における入口位置決定処理を示すフローチャートである。図3において、ECU21は、自車両VE前方の画像から検出された交差点物標として停止線が含まれているか否かを判定する(ステップS21)。交差点物標として停止線が含まれている場合、ECU21は、その停止線が交差点入口側の停止線(以下、入口側停止線とも言う)であるか否かを判定する(ステップS22)。 FIG. 3 is a flow chart showing the entrance position determination process in step S20 of FIG. In FIG. 3, the ECU 21 determines whether a stop line is included as an intersection target detected from the image in front of the vehicle VE (step S21). When the stop line is included as the intersection target, the ECU 21 determines whether or not the stop line is the stop line on the intersection entrance side (hereinafter also referred to as the entrance side stop line) (step S22).
 ステップS22の具体的な内容、すなわち停止線が入口側停止線であることを判定する手順を以下に具体的に説明する。ここでは、道路上の各種の路面表示などが停止線として誤検出されることを回避すべく、停止線と信号機との位置関係に基づいて、入口側停止線の判定を行うようにしている。ECU21は、交差点物標に停止線および信号機が含まれる場合において、車両直進方向(縦方向)における停止線と信号機との距離が所定距離TH1未満であることを条件に、その停止線が入口側停止線である判定する。より具体的には、図4(a)に示すように、自車両VEの前方の交差点101において停止線102と信号機103とが検出されている場合に、それら停止線102と信号機103との縦方向の距離D1が所定距離TH1未満であれば、停止線102が入口側停止線であると判定する。なお、ECU21は、交差点物標に複数の停止線102が含まれていれば、その複数の停止線102のうち最も手前側の停止線102について入口側停止線であるか否かを判定するとよい。 The specific contents of step S22, that is, the procedure for determining that the stop line is the entrance-side stop line, will be specifically described below. Here, in order to avoid erroneous detection of various road surface markings on the road as stop lines, the stop line on the entrance side is determined based on the positional relationship between the stop line and the traffic light. When the intersection target includes a stop line and a traffic light, the ECU 21 determines whether the stop line is on the entrance side on the condition that the distance between the stop line and the traffic light in the vehicle straight-ahead direction (longitudinal direction) is less than a predetermined distance TH1. Determine the stop line. More specifically, as shown in FIG. 4A, when a stop line 102 and a traffic signal 103 are detected at an intersection 101 ahead of the host vehicle VE, the longitudinal direction of the stop line 102 and the traffic signal 103 is detected. If the directional distance D1 is less than the predetermined distance TH1, it is determined that the stop line 102 is the entrance-side stop line. If the intersection target includes a plurality of stop lines 102, the ECU 21 may determine whether or not the frontmost stop line 102 among the plurality of stop lines 102 is the entrance side stop line. .
 また、停止線102と信号機103との縦方向の距離D1に基づいて停止線102が入口側停止線であることを判定する場合、停止線102に対して信号機103が奥側に配置されている場合と手前側に配置されている場合とがある。例えば図4(b)では、交差点101の奥側に信号機103が配置されており、停止線102および信号機103の相互の関係で言えば、停止線102が手前側、信号機103が奥側となっている。また、図4(c)では、交差点101の手前側に信号機103が配置されており、停止線102および信号機103の相互の関係で言えば、停止線102が奥側、信号機103が手前側となっている。 Further, when it is determined that the stop line 102 is the entrance-side stop line based on the vertical distance D1 between the stop line 102 and the traffic signal 103, the traffic signal 103 is arranged on the far side of the stop line 102. In some cases, it is arranged on the front side. For example, in FIG. 4(b), the traffic light 103 is arranged on the back side of the intersection 101. In terms of the mutual relationship between the stop line 102 and the traffic light 103, the stop line 102 is on the front side and the traffic light 103 is on the back side. ing. In FIG. 4C, the traffic signal 103 is arranged on the front side of the intersection 101. In terms of the mutual relationship between the stop line 102 and the traffic signal 103, the stop line 102 is on the back side and the traffic signal 103 is on the front side. It's becoming
 この場合、ECU21は、図4(b)の場合と図4(c)の場合とで、停止線102と信号機103との縦方向の距離D1を比較判定する所定距離TH1を相違させるとよい。具体的には、図4(b)の場合には、所定距離TH1を「TH11」とし、図4(c)の場合には、所定距離TH1をTH11よりも短い「TH12」とする。TH11は例えば40mであり、TH12は例えば20mである。 In this case, the ECU 21 may differ in the predetermined distance TH1 for comparing and judging the vertical distance D1 between the stop line 102 and the traffic light 103 between the case of FIG. 4(b) and the case of FIG. 4(c). Specifically, in the case of FIG. 4B, the predetermined distance TH1 is set to "TH11", and in the case of FIG. 4C, the predetermined distance TH1 is set to "TH12" which is shorter than TH11. TH11 is, for example, 40 m, and TH12 is, for example, 20 m.
 停止線102と横断歩道104との位置関係に基づいて、入口側停止線の判定を行うようにしてもよい。具体的には、図4(a)に示すように、交差点101において停止線102と横断歩道104とが検出されている場合に、ECU21は、それら停止線102と横断歩道104との縦方向の距離D2が所定距離TH2未満であれば、停止線102が入口側停止線であると判定する。 The stop line on the entrance side may be determined based on the positional relationship between the stop line 102 and the crosswalk 104. Specifically, as shown in FIG. 4( a ), when a stop line 102 and a crosswalk 104 are detected at an intersection 101 , the ECU 21 detects the longitudinal direction of the stop line 102 and crosswalk 104 . If the distance D2 is less than the predetermined distance TH2, it is determined that the stop line 102 is the entrance side stop line.
 交差点101において停止線102と信号機103と横断歩道104とが検出されている場合には、停止線102と信号機103との縦方向の距離D1が所定距離TH1未満であり、かつ停止線102と横断歩道104との縦方向の距離D2が所定距離TH2未満であることを条件に、停止線102が入口側停止線であると判定することも可能である。 When the stop line 102, the traffic light 103, and the pedestrian crossing 104 are detected at the intersection 101, the vertical distance D1 between the stop line 102 and the traffic light 103 is less than the predetermined distance TH1, and the stop line 102 is crossed. It is also possible to determine that the stop line 102 is the entrance-side stop line on the condition that the vertical distance D2 to the sidewalk 104 is less than the predetermined distance TH2.
 また、ステップS22において、停止線102が入口側停止線であることを次の手順で判定する構成であってもよい。ここでは、進行方向が同一となる複数の車線を有する片側複数車線の道路において、車線ごとに停止線位置が異なる場合があることに着目し、自車線および隣車線での停止線位置に基づいて、自車両VEが対象とする入口側停止線を判定するようにしている。 Further, in step S22, it may be determined by the following procedure that the stop line 102 is the entrance-side stop line. Focusing on the fact that the position of the stop line may be different for each lane on a multi-lane road with multiple lanes running in the same direction, this study focused on the position of the stop line in the own lane and the adjacent lane. , the entrance-side stop line targeted by the own vehicle VE.
 図5(a)~(c)では、同一進行方向の3車線を想定しており、車線L1,L2,L3にはそれぞれ停止線102が設けられている。各車線の停止線102の位置は図示のとおり各々異なっている。図5(a)に示すように、自車両VEが車線L2を走行している場合、車線L2が自車線、車線L1,L3が隣車線である。ECU21は、自車線(L2)の停止線位置と隣車線(L1,L3)の停止線位置との比較において自車線(L2)の停止線位置が最も手前側であることに基づいて、自車線(L2)の停止線102を入口側停止線とする。  In Figures 5(a) to (c), three lanes are assumed to run in the same direction, and stop lines 102 are provided for each of the lanes L1, L2, and L3. The position of the stop line 102 for each lane is different as shown. As shown in FIG. 5(a), when the own vehicle VE is traveling in the lane L2, the lane L2 is the own lane, and the lanes L1 and L3 are adjacent lanes. The ECU 21 compares the stop line position of the own lane (L2) with the stop line positions of the adjacent lanes (L1, L3), based on the fact that the stop line position of the own lane (L2) is the frontmost side. Let the stop line 102 of (L2) be the entrance side stop line.
 また、図5(b)に示すように、自車両VEが車線L3を走行している場合、車線L3が自車線、車線L2が隣車線である。ECU21は、自車線(L3)と隣車線(L2)との比較において隣車線(L2)の停止線位置の方が手前側であることに基づいて、隣車線(L2)の停止線位置を基準にしてその奥側の所定範囲で選択領域RYを定める。そして、その選択領域RY内に自車線(L3)の停止線位置があることに基づいて、自車線(L3)の停止線102を入口側停止線とする。 Also, as shown in FIG. 5(b), when the own vehicle VE is traveling in lane L3, lane L3 is the own lane and lane L2 is the adjacent lane. The ECU 21 uses the stop line position of the adjacent lane (L2) as a reference based on the fact that the stop line position of the adjacent lane (L2) is on the front side in the comparison between the own lane (L3) and the adjacent lane (L2). , and the selection area RY is defined in a predetermined range on the far side. Then, based on the fact that the stop line position of the own lane (L3) is within the selection area RY, the stop line 102 of the own lane (L3) is set as the entrance side stop line.
 また、図5(c)に示すように、自車両VEが車線L1を走行している場合、車線L1が自車線、車線L2が隣車線である。ECU21は、自車線(L1)と隣車線(L2)との比較において隣車線(L2)の停止線位置の方が手前側であることに基づいて、隣車線(L2)の停止線位置を基準にしてその奥側の所定範囲で選択領域RYを定める。そして、その選択領域RY内に自車線(L1)の停止線位置がなければ、隣車線(L2)の停止線102を入口側停止線とする。 Also, as shown in FIG. 5(c), when the own vehicle VE is traveling in the lane L1, the lane L1 is the own lane and the lane L2 is the adjacent lane. The ECU 21 uses the stop line position of the adjacent lane (L2) as a reference based on the fact that the stop line position of the adjacent lane (L2) is on the front side in the comparison between the own lane (L1) and the adjacent lane (L2). , and the selection area RY is defined in a predetermined range on the far side. Then, if there is no stop line position of the own lane (L1) within the selection area RY, the stop line 102 of the adjacent lane (L2) is set as the entrance side stop line.
 上記図4,図5で説明した構成以外に、自車両VEの前方に交差点物標として複数の停止線102が検出されている場合において、ECU21が、それら複数の停止線102のうち自車両VEから最も近い停止線102を入口側停止線であると判定する構成であってもよい。 4 and 5, when a plurality of stop lines 102 are detected as intersection targets in front of the vehicle VE, the ECU 21 determines which of the plurality of stop lines 102 the vehicle VE A configuration may be adopted in which the stop line 102 closest to is determined to be the entrance-side stop line.
 図3の説明に戻り、交差点物標としての停止線が入口側停止線であると判定された場合(ステップS22:YES)、ECU21は、その停止線に基づいて交差点の入口位置を決定する(ステップS23)。本実施形態では、自車両VEの直進方向における停止線の位置自体を交差点の入口位置とする。ただし、停止線の位置よりも手前側にずれた位置、又は奥側にずれた位置を交差点の入口位置とすることも可能である。 Returning to the description of FIG. 3, when it is determined that the stop line as the intersection target is the entrance-side stop line (step S22: YES), the ECU 21 determines the entrance position of the intersection based on the stop line ( step S23). In this embodiment, the position itself of the stop line in the straight-ahead direction of the vehicle VE is set as the entrance position of the intersection. However, it is also possible to set a position shifted to the front side or a position shifted to the back side from the position of the stop line as the entrance position of the intersection.
 なお、停止線と信号機との位置関係に基づいて入口側停止線を判定する処理(図4(a)~(c))と、片側複数車線において車線ごとの停止線位置に基づいて入口側停止線を判定する処理(図5(a)~(c))とは、いずれか一方だけが行われてもよいし、両方が行われてもよい。両方の処理を行う場合には、例えば片側複数車線の各車線の停止線のうちいずれかを仮の入口側停止線として判定し、その後、その停止線と信号機との位置関係に基づいて、入口側停止線であることの最終判定を行うようにするとよい。 It should be noted that the process of determining the stop line on the entrance side based on the positional relationship between the stop line and the traffic light (Fig. 4 (a) to (c)), and the process of determining the stop line on the entrance side based on the stop line position for each lane in one-way multiple lanes Either one of the line determination processes (FIGS. 5A to 5C) may be performed, or both of them may be performed. When both processes are performed, for example, one of the stop lines of each lane of a plurality of lanes on one side is determined as a temporary entrance-side stop line. It is preferable to make a final determination that the vehicle is on the side stop line.
 一方、交差点物標に停止線が含まれていない場合(ステップS21:NO)、又は停止線が入口側停止線であると判定されなかった場合(ステップS22:NO)、ECU21は、交差点物標として信号機が含まれているか否かを判定する(ステップS24)。そして、交差点物標として信号機が含まれている場合(ステップS24:YES)、ECU21は、その信号機に基づいて交差点の入口位置を決定する(ステップS25)。このとき、交差点物標に複数の信号機が含まれていれば、その複数の信号機のうち最も手前側(最も自車両VEに近い側)の信号機に基づいて交差点入口位置が決定されるとよい。 On the other hand, if the stop line is not included in the intersection target (step S21: NO) or if it is not determined that the stop line is the entrance-side stop line (step S22: NO), the ECU 21 (step S24). Then, if the traffic signal is included as the intersection target (step S24: YES), the ECU 21 determines the entrance position of the intersection based on the traffic signal (step S25). At this time, if a plurality of traffic lights are included in the intersection target, the intersection entrance position should be determined based on the traffic light closest to the vehicle (the side closest to the own vehicle VE) among the plurality of traffic lights.
 また、交差点物標として信号機が含まれていない場合(ステップS24:NO)、ECU21は、信号機の位置が外挿位置と推定されている状態であるか否かを判定する(ステップS26)。そして、信号機の位置が外挿位置と推定されている場合(ステップS26:YES)、ECU21は、その信号機に基づいて交差点の入口位置を決定する(ステップS25)。 Also, if the traffic signal is not included as the intersection target (step S24: NO), the ECU 21 determines whether or not the position of the traffic signal is estimated to be the extrapolated position (step S26). If the position of the traffic signal is estimated to be the extrapolated position (step S26: YES), the ECU 21 determines the entrance position of the intersection based on the traffic signal (step S25).
 要するに、交差点物標として信号機が検出されている場合において、信号機がカメラ11で撮像した画像の画角外に見切れたり、樹木や看板等に隠れるなどして物理的に検出できなくなったりすると、検出状態の信号機(すなわち入口位置の決定に用いた信号機)がロストする。この場合、信号機の位置が外挿位置として推定されるとともに、その信号機の外挿位置を用いて、入口位置の決定が継続される。外挿位置の推定結果は、走行距離又は走行時間で規定される所定期間が経過するまでの間において保持されるとよい。 In short, when a traffic signal is detected as an intersection target, if the traffic signal is out of the field of view of the image captured by the camera 11, or is hidden by trees, signboards, etc., and cannot be physically detected, the signal cannot be detected. The state traffic light (ie, the traffic light used to determine the entrance location) is lost. In this case, the position of the traffic light is estimated as an extrapolated position, and the extrapolated position of the traffic light is used to continue determining the entrance position. The extrapolation position estimation result is preferably held until a predetermined period defined by the travel distance or travel time elapses.
 なお、交差点物標として停止線が検出され、その停止線に基づいて交差点の入口位置が決定されている場合において、検出状態の停止線がロストすることも考えられる。この場合、停止線の外挿位置が推定されるとともに、その停止線の外挿位置を用いて、入口位置の決定が継続されるようになっていてもよい。 In addition, when a stop line is detected as an intersection target and the entrance position of the intersection is determined based on the stop line, the detected stop line may be lost. In this case, the extrapolated position of the stop line may be estimated and the determination of the entrance position may be continued using the extrapolated position of the stop line.
 ECU21は、信号機が交差点手前側の信号機であるか、交差点奥側の信号機であるかを判定し、その判定結果を加味しつつ、信号機の位置から交差点の入口位置を決定するとよい。この場合、交差点手前側の信号機であれば、その信号機の位置を入口位置とする、又は信号機の位置を前後に所定距離だけずらした位置を入口位置とするとよい。また、交差点奥側の信号機であれば、その信号機から、交差点の大きさ相当の想定距離を手前側にずらした位置を入口位置とするとよい。なお、信号機が交差点手前側の信号機であるか、交差点奥側の信号機であるかの判定は、交差点中心表示との位置関係や、交差点の交差道路との位置関係に基づいて行われるとよい。 The ECU 21 should determine whether the traffic signal is on the front side of the intersection or on the back side of the intersection, and determine the entrance position of the intersection based on the position of the traffic signal, taking into consideration the determination result. In this case, if the traffic signal is on the front side of the intersection, the position of the traffic signal may be set as the entrance position, or a position shifted forward or backward by a predetermined distance may be set as the entrance position. In the case of a traffic signal on the back side of an intersection, the entrance position may be set at a position shifted forward from the traffic signal by an assumed distance corresponding to the size of the intersection. It should be noted that the determination of whether the traffic signal is on the front side of the intersection or on the back side of the intersection may be made based on the positional relationship with the intersection center display and the positional relationship with the intersecting road at the intersection.
 不図示とするが、ステップS21,S22,S24がいずれも否定される場合において、交差点物標として横断歩道が含まれているか否かを判定し、交差点物標として横断歩道が含まれている場合、その横断歩道に基づいて交差点の入口位置を決定する構成であってもよい。 Although not shown, if all of steps S21, S22, and S24 are negative, it is determined whether or not a crosswalk is included as an intersection target, and if a crosswalk is included as an intersection target , the intersection entrance position may be determined based on the crosswalk.
 図6は、図2のステップS30における交差点認識範囲の設定処理を示すフローチャートである。図6において、ECU21は、交差点の入口位置が決定済みであるか否かを判定する(ステップS31)。交差点の入口位置が決定済みである場合(ステップS31:YES)、ECU21は、交差点の入口位置に基づいて、交差点認識範囲CRを設定する(ステップS32~S41)。 FIG. 6 is a flow chart showing the intersection recognition range setting process in step S30 of FIG. In FIG. 6, the ECU 21 determines whether or not the entrance position of the intersection has been determined (step S31). If the intersection entrance position has already been determined (step S31: YES), the ECU 21 sets the intersection recognition range CR based on the intersection entrance position (steps S32 to S41).
 以下に、交差点認識範囲CRの設定手順の概要を、図7(a)~(c)に基づいて説明する。図7(a)~(c)では、自車両VEの前方に2つの交差点101が示されており、その2つの交差点101のうち図の下側の交差点101が、自車両VEが通過する次の交差点101である。また、図7(a)~(c)では、縦方向(車両直進方向)においてP1を交差点の入口位置としている。ここではまず、入口位置P1から奥側(後方)に所定距離だけ離れた位置が出口位置P2として仮設定され、縦方向においてP1~P2の範囲が仮設定範囲CRaとして設定される。P1~P2の距離は例えば80mである。そして、仮設定範囲CRaが、入口位置P1よりも奥側に存在する奥側物標の位置に応じて適宜補正されることで、交差点認識範囲CRが設定される。 The outline of the procedure for setting the intersection recognition range CR will be described below with reference to FIGS. 7(a) to 7(c). 7A to 7C show two intersections 101 in front of the vehicle VE. Of the two intersections 101, the intersection 101 on the lower side of the drawing is the next intersection through which the vehicle VE passes. is the intersection 101 of . In addition, in FIGS. 7A to 7C, P1 is the entrance position of the intersection in the vertical direction (the direction in which the vehicle travels straight). Here, first, a position a predetermined distance away from the entrance position P1 to the far side (rear) is provisionally set as the exit position P2, and the range from P1 to P2 in the vertical direction is set as the provisional setting range CRa. The distance between P1 and P2 is, for example, 80 m. Then, the intersection recognition range CR is set by appropriately correcting the provisional set range CRa according to the position of the back side target existing on the back side of the entrance position P1.
 図7(a)では、仮設定範囲CRaにおいて、交差点手前側の手前側物標と交差点奥側の奥側物標として同一交差点内の信号機103a,103bがそれぞれ検出されている。そして、それら各信号機103a,103bの間の縦方向の距離D11に基づいて出口位置P2(仮設定範囲CRaの末端位置)が補正されることにより、交差点認識範囲CRが設定される。このとき、信号機103a,103bの間の距離D11は縦方向の距離信頼度が比較的高いものであるため、交差点認識範囲CRの適正な設定が可能となっている。交差点奥側の信号機103bにより交差点の出口位置P3が決定され、P1からP3までの範囲が交差点認識範囲CRとして設定される。なお、信号機103a,103bの表示色が同一であることを条件に、距離D11による出口位置P2の補正が行われるようになっていてもよい。 In FIG. 7(a), the traffic lights 103a and 103b in the same intersection are detected as the front side target on the front side of the intersection and the back side target on the back side of the intersection, respectively, in the temporary set range CRa. The intersection recognition range CR is set by correcting the exit position P2 (end position of the temporary set range CRa) based on the vertical distance D11 between the traffic lights 103a and 103b. At this time, since the distance D11 between the traffic lights 103a and 103b has a relatively high degree of reliability in the vertical direction, it is possible to appropriately set the intersection recognition range CR. The exit position P3 of the intersection is determined by the traffic light 103b on the far side of the intersection, and the range from P1 to P3 is set as the intersection recognition range CR. Note that the exit position P2 may be corrected based on the distance D11 on condition that the display colors of the traffic signals 103a and 103b are the same.
 また、図7(a)において、同一交差点内で信号機103a,103bのうち奥側の信号機103bのみが検出され、それに伴い手前側物標として信号機103bが検出されるとともに、奥側物標として信号機103cが検出されることも考えられる。この場合、信号機103b,103cは異なる交差点に属することから表示色が異なることがあり、これら各信号機103b,103cの表示色が異なっていることを条件に、信号機103bの位置(手前信号機の位置)に基づいて、仮設定範囲CRaの出口位置P2が補正されるようになっていてもよい。ただし、各信号機103b,103cの表示色が「赤/黄」で異なっている場合には、出口位置P2の補正を行わないようにしてもよい。なお、出口位置P2が、予め定めた処理距離だけ手前側に補正される構成であってもよい。 In FIG. 7(a), only the signal 103b on the far side of the signals 103a and 103b in the same intersection is detected, and along with this, the signal 103b is detected as the target on the front side, and the signal 103b is detected as the target on the back side. It is also conceivable that 103c is detected. In this case, since the traffic signals 103b and 103c belong to different intersections, their display colors may differ. The exit position P2 of the provisional setting range CRa may be corrected based on. However, if the display colors of the traffic lights 103b and 103c are different in "red/yellow", the exit position P2 may not be corrected. In addition, the exit position P2 may be configured to be corrected forward by a predetermined processing distance.
 図7(b)では、仮設定範囲CRaにおいて、手前側物標として停止線102aが検出されるとともに、奥側物標として信号機103bが検出されている。そして、それら停止線102aおよび信号機103bの間の縦方向の距離D12に基づいて出口位置P2が補正されることにより、交差点認識範囲CRが設定される。このとき、停止線102aと所定以上の距離差がある信号機103bが存在している場合に、出口位置P2の補正が行われるとよい。交差点奥側の信号機103bにより交差点の出口位置P3が決定され、P1からP3までの範囲が交差点認識範囲CRとして設定される。 In FIG. 7(b), the stop line 102a is detected as the near side target and the traffic light 103b is detected as the far side target in the provisional setting range CRa. The intersection recognition range CR is set by correcting the exit position P2 based on the vertical distance D12 between the stop line 102a and the traffic light 103b. At this time, it is preferable to correct the exit position P2 when there is a traffic light 103b having a distance difference of a predetermined distance or more from the stop line 102a. The exit position P3 of the intersection is determined by the traffic light 103b on the far side of the intersection, and the range from P1 to P3 is set as the intersection recognition range CR.
 図7(c)では、仮設定範囲CRaにおいて、手前側物標および奥側物標として、異なる交差点の停止線102a,102bがそれぞれ検出されている。そして、それら各停止線102a,102bの間の縦方向の距離D13に基づいて出口位置P2が補正されることにより、交差点認識範囲CRが設定される。奥側の停止線102bに対して所定距離を手前側にした位置により交差点の出口位置P3が決定され、P1からP3までの範囲が交差点認識範囲CRとして設定される。 In FIG. 7(c), stop lines 102a and 102b at different intersections are detected as the near side target and the far side target in the temporary set range CRa, respectively. The intersection recognition range CR is set by correcting the exit position P2 based on the vertical distance D13 between the stop lines 102a and 102b. The exit position P3 of the intersection is determined by the position a predetermined distance in front of the stop line 102b on the far side, and the range from P1 to P3 is set as the intersection recognition range CR.
 以上のように、本実施形態では、入口位置P1よりも奥側で検出された物標に基づいて交差点101の出口位置P3が決定され、入口位置P1から出口位置P3までが交差点認識範囲CRとして設定されるようになっている。上述した図7(a)~(c)における各々の交差点認識範囲CRの設定は、図7(a)の設定を最優先とし、その上で、図7(a)の設定、図7(a)の設定の順で適宜実施されるとよい。 As described above, in this embodiment, the exit position P3 of the intersection 101 is determined based on the target detected behind the entrance position P1, and the intersection recognition range CR is defined from the entrance position P1 to the exit position P3. is set. The setting of each intersection recognition range CR in FIGS. 7A to 7C described above gives top priority to the setting of FIG. ) may be appropriately performed in the order of setting.
 なお、交差点認識範囲CRの横方向の範囲は、自車両VEが走行する道路を含むものであればよい。例えば、交差点認識範囲CRの横幅は予め定められた所定値であるとよい。また、地図情報等により道路幅が既知であれば、その道路幅により交差点認識範囲CRの横幅が設定されるとよいし、地図情報等により道路の車線数が既知であれば、その車線数に応じて交差点認識範囲CRの横幅が設定されるとよい。カメラ画像やレーダ装置12の検出情報から道路の横方向の道路端を認識し、その認識結果に応じて交差点認識範囲CRの横幅を設定する構成であってもよい。 It should be noted that the lateral range of the intersection recognition range CR may include the road on which the own vehicle VE travels. For example, the width of the intersection recognition range CR may be a predetermined value. If the road width is known from map information or the like, the width of the intersection recognition range CR may be set from that road width. The width of the intersection recognition range CR may be set accordingly. A configuration may be used in which the road edge in the lateral direction of the road is recognized from the camera image or the detection information of the radar device 12, and the width of the intersection recognition range CR is set according to the recognition result.
 図6の説明に戻り、ECU21は、入口位置P1を基準として、その入口位置P1から奥側の所定範囲を、仮設定範囲CRaとして設定する(ステップS32)。その後、ECU21は、仮設定範囲CRaにおいて、同一交差点内の手前側信号機と奥側信号機とが検出されているか否かを判定する(ステップS33)。手前側信号機と奥側信号機とが検出されている場合(ステップS33:YES)、ECU21は、手前側信号機と奥側信号機とで表示色が同じであるか否かを判定する(ステップS34)。手前側信号機と奥側信号機とで表示色が同じである場合(ステップS34:YES)、ECU21は、それら各信号機の間の縦方向の距離D11に基づいて仮設定範囲CRaの出口位置P2を補正し、交差点認識範囲CRを設定する(ステップS35)。この処理が、図7(a)で説明した処理に相当する。 Returning to the description of FIG. 6, the ECU 21 sets a predetermined range on the far side from the entrance position P1 as a provisional set range CRa (step S32). After that, the ECU 21 determines whether or not the front side traffic signal and the back side traffic signal within the same intersection are detected in the provisional setting range CRa (step S33). If the front traffic signal and the rear traffic signal are detected (step S33: YES), the ECU 21 determines whether or not the display colors of the front traffic signal and the rear traffic signal are the same (step S34). If the display color is the same between the front traffic signal and the rear traffic signal (step S34: YES), the ECU 21 corrects the exit position P2 of the temporary set range CRa based on the vertical distance D11 between the traffic signals. Then, the intersection recognition range CR is set (step S35). This processing corresponds to the processing described with reference to FIG.
 また、手前側信号機と奥側信号機とで表示色が異なる場合(ステップS34:NO)、ECU21は、手前側信号機の位置に基づいて仮設定範囲CRaの出口位置P2を補正し、交差点認識範囲CRを設定する(ステップS36)。この場合、図7(a)では、信号機103bの位置を出口位置として、交差点認識範囲CRが設定される。 Further, when the display colors are different between the front traffic signal and the rear traffic signal (step S34: NO), the ECU 21 corrects the exit position P2 of the provisional setting range CRa based on the position of the front traffic signal, and corrects the intersection recognition range CR. is set (step S36). In this case, in FIG. 7A, the intersection recognition range CR is set with the position of the traffic light 103b as the exit position.
 また、手前側信号機と奥側信号機とが検出されていない場合(ステップS33:NO)、ECU21は、手前側停止線と奥側信号機とが検出されているか否かを判定する(ステップS37)。手前側停止線と奥側信号機とが検出されている場合(ステップS37:YES)、ECU21は、それら手前側停止線および奥側信号機の間の縦方向の距離D12に基づいて仮設定範囲CRaの出口位置P2を補正し、交差点認識範囲CRを設定する(ステップS38)。この処理が、図7(b)で説明した処理に相当する。 Also, if the front side traffic signal and the rear side traffic signal are not detected (step S33: NO), the ECU 21 determines whether the front side stop line and the rear side traffic signal are detected (step S37). If the near side stop line and the far side traffic signal are detected (step S37: YES), the ECU 21 determines the temporary set range CRa based on the vertical distance D12 between the near side stop line and the far side traffic signal. The exit position P2 is corrected and the intersection recognition range CR is set (step S38). This processing corresponds to the processing described with reference to FIG.
 また、手前側停止線と奥側信号機とが検出されていない場合(ステップS37:NO)、ECU21は、手前側停止線と奥側停止線とが検出されているか否かを判定する(ステップS39)。手前側停止線と奥側停止線とが検出されている場合(ステップS39:YES)、ECU21は、それら手前側停止線および奥側停止線の間の縦方向の距離D13に基づいて仮設定範囲CRaの出口位置P2を補正し、交差点認識範囲CRを設定する(ステップS40)。この処理が、図7(c)で説明した処理に相当する。 If the near side stop line and the far side traffic light are not detected (step S37: NO), the ECU 21 determines whether or not the near side stop line and the far side stop line are detected (step S39). ). If the near side stop line and the far side stop line are detected (step S39: YES), the ECU 21 temporarily sets the range based on the vertical distance D13 between the near side stop line and the far side stop line. The exit position P2 of CRa is corrected, and the intersection recognition range CR is set (step S40). This process corresponds to the process described in FIG. 7(c).
 手前側停止線と奥側停止線とが検出されていない場合(ステップS39:NO)、ECU21は、仮設定範囲CRaの出口位置P2の補正を行わず、仮設定範囲CRaを交差点認識範囲CRとして設定する(ステップS41)。 If the near side stop line and the far side stop line are not detected (step S39: NO), the ECU 21 does not correct the exit position P2 of the temporary set range CRa, and sets the temporary set range CRa as the intersection recognition range CR. Set (step S41).
 図8及び図9は、図2のステップS50における信号色判定処理を示すフローチャートである。図8において、ECU21は、交差点認識範囲CRが設定済みであるか否かを判定する(ステップS51)。交差点認識範囲CRが設定済みである場合(ステップS51:YES)、ECU21は、自車両VEが交差点認識範囲CR内を走行しているか否か判定する(ステップS52)。 8 and 9 are flowcharts showing the signal color determination process in step S50 of FIG. In FIG. 8, the ECU 21 determines whether or not the intersection recognition range CR has been set (step S51). If the intersection recognition range CR has been set (step S51: YES), the ECU 21 determines whether or not the own vehicle VE is traveling within the intersection recognition range CR (step S52).
 そして、自車両VEが交差点認識範囲CR内でなく、交差点認識範囲CRの手前側を走行している場合(ステップS52:NO)、ECU21は、図9のステップS53~S63において、交差点認識範囲CR内の信号機のうち自車両VEが従うべき信号機の表示色を判定する。また、自車両VEが交差点認識範囲CR内を走行している場合(ステップS52:YES)、ECU21は、図8のステップS71~S75において、交差点入口位置の決定の制限を行うとともに、交差点認識範囲CR内の信号機のうち自車両VEが従うべき信号機の表示色を判定する。 Then, if the host vehicle VE is not within the intersection recognition range CR but is traveling in front of the intersection recognition range CR (step S52: NO), the ECU 21, in steps S53 to S63 of FIG. The display color of the traffic lights to be followed by the own vehicle VE among the traffic lights inside is determined. If the own vehicle VE is traveling within the intersection recognition range CR (step S52: YES), the ECU 21 restricts determination of the intersection entrance position in steps S71 to S75 of FIG. The display color of the traffic lights to be followed by the own vehicle VE among the traffic lights in the CR is determined.
 以下に、自車両VEが交差点認識範囲CRの手前側を走行している場合における信号色の判定手順の概要を、図10(a)~(c)と図11(a)~(c)とに基づいて説明する。図10(a)~(c)、図11(a)~(c)はそれぞれ、交差点認識範囲CRにおいて自車両正面の信号機103a,103bの検出状態の変化を時系列で示す図である。このうち図10(a)~(c)は、交差点認識範囲CR内において、初めに交差点物標として交差点手前側(自車両VEの正面手前側)の信号機103aと交差点奥側(自車両VEの正面奥側)の信号機103bとが検出されており(図10(a))、その状態から時系列の変化が生じる場合について示している。また、図11(a)~(c)は、交差点認識範囲CR内において、初めに交差点物標として交差点手前側の信号機103aのみが検出されており(図11(a))、その状態から時系列の変化が生じる場合について示している。なお、図11(a)では、例えば、交差点奥側の信号機103bが先行車等により隠され、交差点手前側の信号機103aのみが検出される状況になっている。 10(a) to (c) and FIGS. will be explained based on FIGS. 10(a) to (c) and FIGS. 11(a) to (c) are diagrams showing, in chronological order, changes in the detection state of the traffic signals 103a and 103b in front of the vehicle in the intersection recognition range CR. Among them, FIGS. 10A to 10C show, in the intersection recognition range CR, first, a traffic light 103a on the front side of the intersection (front side of the own vehicle VE) and a traffic light 103a on the back side of the intersection (the front side of the own vehicle VE) as intersection targets. The traffic light 103b on the front rear side) is detected (FIG. 10(a)), and the case where a time-series change occurs from that state is shown. 11(a) to (c), only the traffic signal 103a on the front side of the intersection is detected as an intersection target in the intersection recognition range CR (FIG. 11(a)). It shows the case where a series change occurs. In FIG. 11A, for example, the traffic signal 103b on the far side of the intersection is hidden by a preceding vehicle or the like, and only the traffic signal 103a on the front side of the intersection is detected.
 まずは図10(a)~(c)について説明する。図10(a)では、交差点認識範囲CR内において信号機103a,103bが検出されている。この場合、信号機103a,103bが、自車両VEが従うべき信号機であるとみなされ、その信号機103a,103bの表示色が判定される。 First, FIGS. 10(a) to (c) will be explained. In FIG. 10(a), traffic lights 103a and 103b are detected within the intersection recognition range CR. In this case, the traffic lights 103a and 103b are considered to be the traffic lights to which the host vehicle VE should follow, and the display colors of the traffic lights 103a and 103b are determined.
 図10(b)では、図10(a)の状態から自車両VEが前方に移動しており、手前側の信号機103aがカメラ画角から外れることにより、手前側の信号機103aがロスト状態となっている。この場合、ロストした手前側の信号機103aについて外挿処理により外挿位置が推定される。外挿処理では、ロスト直前の信号機103aの位置と自車両VEの車速とに基づいて、自車両VEに対する信号機103aの相対位置が推定される。そして、信号機103a,103bのうち検出状態のままの信号機103bについて表示色が判定される。 In FIG. 10(b), the own vehicle VE has moved forward from the state of FIG. 10(a), and the traffic light 103a on the near side is out of the angle of view of the camera, causing the traffic light 103a on the near side to be in a lost state. ing. In this case, the extrapolation position is estimated by extrapolation processing for the traffic signal 103a on the lost front side. In the extrapolation process, the relative position of the traffic signal 103a with respect to the vehicle VE is estimated based on the position of the traffic signal 103a immediately before the vehicle is lost and the vehicle speed of the vehicle VE. Then, the display color is determined for the traffic signal 103b, which remains in the detected state, out of the traffic signals 103a and 103b.
 図10(c)では、図10(b)の状態、すなわち手前側の信号機103aがロストした状態から、さらに奥側の信号機103bもロスト状態となっている。つまり、交差点認識範囲CR内で検出された信号機103a,103bが全ロスト状態となっている。この場合、奥側の信号機103bのロスト直前に判定された表示色が維持される。 In FIG. 10(c), from the state of FIG. 10(b), that is, the state where the traffic light 103a on the front side is lost, the traffic light 103b on the far side is also in the lost state. In other words, the traffic lights 103a and 103b detected within the intersection recognition range CR are all lost. In this case, the display color determined immediately before the traffic light 103b on the far side is lost is maintained.
 なお、図10(a)の状態から信号機ロストが生じる状況としては、図10(b)に示すように、手前側の信号機103aがカメラ画角から外れることでロストする場合や、それ以外に、奥側の信号機103bが先行車や樹木により隠れてロストする場合が考えられる。この場合、ロストした奥側の信号機103bについて外挿位置が推定されるとともに、検出状態のままの手前側の信号機103aに基づいて信号色が判定されるとよい。 In addition, as a situation in which the traffic light is lost from the state of FIG. 10A, as shown in FIG. It is conceivable that the traffic signal 103b on the far side is hidden by the preceding vehicle or trees and lost. In this case, it is preferable to estimate the extrapolated position of the lost traffic signal 103b on the far side and to determine the color of the signal based on the traffic signal 103a on the near side that remains in the detected state.
 また、図11(a)では、交差点認識範囲CR内において、交差点物標として交差点手前側の信号機103aのみが検出されている。この場合、信号機103aが、自車両が従うべき信号機であるとみなされ、その信号機103aの表示色が判定される。 Also, in FIG. 11(a), only the traffic light 103a on the front side of the intersection is detected as the intersection target within the intersection recognition range CR. In this case, the traffic light 103a is considered to be the traffic light that the host vehicle should follow, and the display color of the traffic light 103a is determined.
 図11(b)では、図11(a)の状態から自車両VEが前方に移動しており、手前側の信号機103aがカメラ画角から外れることにより、手前側の信号機103aがロスト状態となっている。この場合、信号機の表示色出力は一時的に中断される。 In FIG. 11(b), the own vehicle VE has moved forward from the state of FIG. 11(a), and the traffic light 103a on the near side is out of the angle of view of the camera, so that the traffic light 103a on the near side is in a lost state. ing. In this case, the display color output of the traffic light is temporarily interrupted.
 図11(c)では、図11(b)の状態(すなわち、手前側の信号機103aがロストした状態)から、奥側の信号機103bが新たに検出される状態に切り替わっている。この場合、奥側の信号機103bの表示色が判定される。 In FIG. 11(c), the state of FIG. 11(b) (that is, the state in which the traffic light 103a on the near side is lost) is switched to the state in which the traffic light 103b on the far side is newly detected. In this case, the display color of the traffic light 103b on the far side is determined.
 図9の説明に戻り、ECU21は、交差点認識範囲CR内で検出された交差点物標に、手前側信号機および奥側信号機の少なくともいずれかが含まれているか否かを判定する(ステップS53)。手前側信号機および奥側信号機の少なくともいずれかが含まれている場合(ステップS53:YES)、ECU21は、手前側信号機および奥側信号機が共に検出状態であるか否かを判定する(ステップS54)。手前側信号機および奥側信号機が共に検出状態である場合(ステップS54:YES)、ECU21は、それら各信号機に基づいて、自車両VEが従うべき表示色を判定する(ステップS55)。図10(a)に示す状況では、ステップS55において信号機103a,103bの表示色が判定される。 Returning to the description of FIG. 9, the ECU 21 determines whether or not the intersection target detected within the intersection recognition range CR includes at least one of the front side traffic light and the back side traffic light (step S53). If at least one of the front traffic signal and the rear traffic signal is included (step S53: YES), the ECU 21 determines whether or not both the front traffic signal and the rear traffic signal are in the detection state (step S54). . If both the front side traffic light and the far side traffic light are in the detection state (step S54: YES), the ECU 21 determines the display color that the host vehicle VE should follow based on the respective traffic lights (step S55). In the situation shown in FIG. 10(a), the display colors of the traffic lights 103a and 103b are determined in step S55.
 手前側信号機および奥側信号機が共に検出状態でない場合(ステップS54:NO)、ECU21は、手前側信号機のみが検出状態であるか否かを判定する(ステップS56)。手前側信号機のみが検出状態である場合(ステップS56:YES)、ECU21は、手前側信号機に基づいて、自車両VEが従うべき表示色を判定する(ステップS57)。図11(a)に示す状況では、ステップS57において信号機103aの表示色が判定される。 If both the front and rear traffic lights are not in the detection state (step S54: NO), the ECU 21 determines whether or not only the front traffic light is in the detection state (step S56). If only the front traffic light is in the detection state (step S56: YES), the ECU 21 determines the display color that the host vehicle VE should follow based on the front traffic light (step S57). In the situation shown in FIG. 11(a), the display color of the traffic signal 103a is determined in step S57.
 手前側信号機が検出状態でない場合(ステップS56:NO)、換言すれば奥側信号機のみが検出状態である場合、ECU21は、手前側信号機が外挿推定状態であるか否かを判定する(ステップS58)。手前側信号機が外挿推定状態である場合(ステップS58:YES)、すなわち奥側信号機が検出状態であり、かつ手前側信号機が外挿推定状態である場合、ECU21は、奥側信号機に基づいて、自車両VEが従うべき表示色を判定する(ステップS59)。図10(b)、図11(c)に示す状況では、ステップS59において信号機103bの表示色が判定される。 If the front traffic light is not in the detection state (step S56: NO), in other words, if only the back traffic light is in the detection state, the ECU 21 determines whether or not the front traffic light is in the extrapolation estimation state (step S56: NO). S58). If the near side traffic light is in the extrapolation estimation state (step S58: YES), that is, if the far side traffic light is in the detection state and the near side traffic light is in the extrapolation estimation state, the ECU 21 , the display color to be followed by the own vehicle VE is determined (step S59). In the situations shown in FIGS. 10(b) and 11(c), the display color of the traffic signal 103b is determined in step S59.
 手前側信号機が外挿推定状態でない場合(ステップS58:NO)、換言すれば奥側信号機が検出状態であるとともに、手前側信号機が非検出状態でありかつ外挿推定状態でない場合、ECU21は、前回の処理において手前側信号機が検出されていたか否か、すなわち奥側信号機が今回ロストしたか否かを判定する(ステップS60)。そして、前回の処理において手前側信号機が検出されていた場合(ステップS60:YES)、ECU21は、手前側信号機の外挿位置を推定する(ステップS61)。また、奥側信号機に基づいて、自車両VEが従うべき表示色を判定する(ステップS59)。図10(a)に示す状態から図10(b)に示す状態に移行する際には、ステップS61での外挿処理、およびステップS59での信号機103bの色判定が行われる。 If the near side traffic light is not in the extrapolation estimation state (step S58: NO), in other words, if the far side traffic light is in the detection state and the near side traffic light is in the non-detection state and not in the extrapolation estimation state, the ECU 21 It is determined whether or not the front side traffic signal has been detected in the previous process, that is, whether or not the far side traffic signal has been lost this time (step S60). Then, if the front traffic signal was detected in the previous process (step S60: YES), the ECU 21 estimates the extrapolated position of the front traffic signal (step S61). Also, the display color to be followed by the own vehicle VE is determined based on the far side traffic light (step S59). When shifting from the state shown in FIG. 10(a) to the state shown in FIG. 10(b), extrapolation processing in step S61 and color determination of the traffic light 103b in step S59 are performed.
 前回の処理において手前側信号機が検出されていなかった場合(ステップS60:NO)、換言すれば奥側信号機のみが検出状態であるとともに、手前側信号機が前回、非検出であり、かつ外挿推定状態でもない場合、ECU21は、本処理をそのまま終了する。 If the front side traffic signal was not detected in the previous process (step S60: NO), in other words, only the back side traffic signal was detected, and the front side traffic signal was not detected last time, and extrapolation estimation is performed. If it is not in the state either, the ECU 21 terminates this processing as it is.
 また、交差点認識範囲CR内において、手前側信号機および奥側信号機が元に検出されていない場合(ステップS53:NO)、ECU21は、前回の処理において奥側信号機があり、かつ手前側信号機が外挿推定状態であるか否かを判定する(ステップS62)。前回の処理において奥側信号機があり、かつ手前側信号機が外挿推定状態である場合(ステップS62:YES)、ECU21は、その状態になってから、走行距離又は走行時間で規定される所定期間が経過するまでの間において前回の信号色出力を維持する(ステップS63)。図10(c)に示す状況では、ステップS59において信号機103bの表示色が判定される。 If neither the front traffic signal nor the back traffic signal is originally detected within the intersection recognition range CR (step S53: NO), the ECU 21 determines in the previous process that there is a back traffic signal and the front traffic signal is outside. It is determined whether or not it is in an interpolation estimation state (step S62). If there is a traffic signal on the far side and the traffic signal on the front side is in the extrapolation estimation state in the previous process (step S62: YES), the ECU 21 waits for a predetermined period defined by the travel distance or the travel time after entering that state. The previous signal color output is maintained until elapses (step S63). In the situation shown in FIG. 10(c), the display color of the traffic signal 103b is determined in step S59.
 また、自車両VEが交差点認識範囲CR内を走行している場合(図8のステップS52:YES)、ステップS71に移行する。ECU21は、交差点認識範囲CR内で検出された交差点物標に信号機が含まれているか否かを判定する(ステップS71)。交差点物標に信号機が含まれている場合(ステップS71:YES)、ECU21は、奥側信号機を検出しているか否かを判定する(ステップS72)。そして、奥側信号機を検出している場合(ステップS72:YES)、ECU21は、奥側信号機のロスト履歴があるか否か判定する。ここでいう奥側信号機のロスト履歴とは、交差点認識範囲CR内への自車両VEの進入前に奥側信号機が検出されており、かつ交差点認識範囲CR内へ自車両VEが進入した状態で奥側信号機が検出されなくなったことを示す履歴である。 Also, if the host vehicle VE is traveling within the intersection recognition range CR (step S52 in FIG. 8: YES), the process proceeds to step S71. The ECU 21 determines whether or not the intersection target detected within the intersection recognition range CR includes a traffic signal (step S71). If the intersection target includes a traffic signal (step S71: YES), the ECU 21 determines whether or not the rear traffic signal is detected (step S72). Then, if the far side traffic signal is detected (step S72: YES), the ECU 21 determines whether or not there is a lost history of the far side traffic signal. The lost history of the far side traffic signal here means that the far side traffic signal was detected before the own vehicle VE entered the intersection recognition range CR, and the own vehicle VE entered the intersection recognition range CR. This is the history indicating that the far side traffic light is no longer detected.
 奥側信号機のロスト履歴がある場合(ステップS73:YES)、ECU21は、奥側信号機に基づく入口位置の決定を行わない(ステップS74)。換言すれば、交差点認識範囲CRに進入する前に検出されていた奥側信号機が、交差点認識範囲CR内に進入してから一旦検出されなくなった(ロストした)後に再検出された場合、ECU21は、その奥側信号機を用いて入口位置の決定を行わないということである。 If there is a lost history of the far side traffic light (step S73: YES), the ECU 21 does not determine the entrance position based on the far side traffic light (step S74). In other words, when the far side traffic signal that was detected before entering the intersection recognition range CR is once lost after entering the intersection recognition range CR and then redetected, the ECU 21 , the entrance position is not determined using the rear traffic light.
 ステップS72~S74の処理について、図12(a)~(c)を用いて具体的に説明する。図12(a)~(c)は、自車両VEが交差点認識範囲CRに進入する際における各信号機103a,103bの検出状態の変化を時系列で示す図である。 The processing of steps S72 to S74 will be specifically described using FIGS. 12(a) to (c). FIGS. 12(a) to 12(c) are diagrams showing, in chronological order, changes in the detection states of the traffic lights 103a and 103b when the own vehicle VE enters the intersection recognition range CR.
 図12(a)では、交差点認識範囲CR内への進入前の自車両VEにおいて交差点手前側及び交差点奥側の信号機103a,103bが検出されている。その後、図12(b)では、交差点手前側の信号機103aについてカメラ画角から外れてロスト(見切れ)が生じ、外挿処理による信号機103aの位置推定が行われた状態となっている。そして、この状態でさらに交差点奥側の信号機103bのロストが生じている。例えば、先行車により奥側の信号機103bが隠されることにより、信号機103bのロストが生じる。このとき、交差点認識範囲CR内で交差点奥側の信号機103bが検出されなくなったことを示す履歴が記憶される。 In FIG. 12(a), the traffic lights 103a and 103b on the front side and the back side of the intersection are detected in the own vehicle VE before entering the intersection recognition range CR. After that, in FIG. 12B, the traffic signal 103a on the near side of the intersection is out of the angle of view of the camera and is lost, and the position of the traffic signal 103a is estimated by extrapolation. In this state, the traffic signal 103b on the far side of the intersection is also lost. For example, when the traffic signal 103b on the far side is hidden by the preceding vehicle, the traffic signal 103b is lost. At this time, a history is stored indicating that the traffic signal 103b on the far side of the intersection is no longer detected within the intersection recognition range CR.
 その後、図12(c)では、自車両VEが交差点認識範囲CR内に進入した状態で、交差点奥側の信号機103bが再検出されている。ただしこの場合、その信号機103bに基づいて次の交差点の入口位置を決定しようとすると、その交差点の入口位置が誤って認識されるおそれが生じる。そのため、交差点認識範囲CR内への自車両進入後に再検出された信号機103bによる入口位置の決定が行われないようになっている。 After that, in FIG. 12(c), the traffic light 103b on the far side of the intersection is redetected while the own vehicle VE has entered the intersection recognition range CR. However, in this case, if an attempt is made to determine the entrance position of the next intersection based on the traffic light 103b, the entrance position of the intersection may be erroneously recognized. Therefore, the entrance position is not determined by the traffic light 103b re-detected after the own vehicle enters the intersection recognition range CR.
 図8の説明に戻り、交差点物標に信号機が含まれている場合(ステップS71:YES)において、ステップS72が否定された後、又はステップS74の処理後に、ECU21は、交差点認識範囲CR内の信号機のうち自車両VEが従うべき信号機の表示色を判定する(ステップS75)。 Returning to the description of FIG. 8, when the intersection target includes a traffic light (step S71: YES), after step S72 is denied or after step S74, the ECU 21 Of the traffic lights, the display color of the traffic lights that the host vehicle VE should follow is determined (step S75).
 交差点認識範囲CR内において複数の信号機が検出される場合には、その複数の信号機により、自車両VEが従うべき信号機(以下、自車信号機とも言う)の表示色が判定されるといよい。例えば、図8のステップS55や図9のステップS75において、下記の処理により信号色が判定されるとよい。 When multiple traffic lights are detected within the intersection recognition range CR, the display color of the traffic lights to be followed by the own vehicle VE (hereinafter also referred to as the own vehicle traffic light) should be determined based on the plurality of traffic lights. For example, in step S55 of FIG. 8 or step S75 of FIG. 9, the signal color may be determined by the following processing.
 図13は、同一交差点で存在する信号機を示す図である。図13では、交差点認識範囲CR内で複数の信号機103_1~103_6が検出されており、ECU21は、これら各信号機103_1~103_6について位置や形態による分別、表示色による分別を行った結果から、自車信号機の表示色を判定する。この場合、ECU21は、各信号機103_1~103_6について位置や表示色などに応じた重み付けを行い、その重み付けによる評価結果に基づいて、自車信号機の表示色を判定する。 FIG. 13 is a diagram showing traffic lights that exist at the same intersection. In FIG. 13, a plurality of traffic lights 103_1 to 103_6 are detected within the intersection recognition range CR, and the ECU 21 classifies each of these traffic lights 103_1 to 103_6 according to their positions and forms, and according to their display colors. Determine the display color of traffic lights. In this case, the ECU 21 weights the traffic signals 103_1 to 103_6 according to their positions and display colors, and determines the display color of the vehicle traffic signal based on the weighted evaluation results.
 信号機の位置や形態による分別について説明する。  Explain the classification according to the position and form of traffic lights.
 (1)自車両VEに対する横方向の位置(自車両中心線LCを基準とする横位置)に応じて重み付けを行い、自車信号機を特定する。つまり、自車両VEに対して信号機103の横位置が過剰に離れていると、その信号機103が自車信号機でない可能性があるため、重みを下げ、自車信号機と認定される可能性を低くする。図13では、信号機103_1~103_4について重みを大きくし、信号機103_5~103_6について重みを小さくする。 (1) Weighting is performed according to the position in the lateral direction with respect to the own vehicle VE (the lateral position with respect to the own vehicle center line LC), and the own vehicle traffic signal is specified. In other words, if the lateral position of the traffic signal 103 is excessively far from the own vehicle VE, there is a possibility that the traffic signal 103 is not the own vehicle signal. do. In FIG. 13, the traffic lights 103_1 to 103_4 are given a large weight, and the traffic lights 103_5 to 103_6 are given a small weight.
 各信号機103に対する重み付けは、自車両VEに対する左側の横距離が基準距離DLよりも大きいか否か、又は自車両VEに対する右側の横距離が基準距離DRよりも大きいか否かにより行われるとよい。この場合、自車両VEの左側では、信号機までの横距離が基準距離DLよりも小さければ重みが上げられ、信号機までの横距離が基準距離DLよりも大きければ重みが下げられる。また、自車両VEの右側では、信号機までの横距離が基準距離DRよりも小さければ重みが上げられ、信号機までの横距離が基準距離DRよりも大きければ重みが下げられる。より詳しくは、道路における通行車線の形態、すなわち図示の道路が例えば左側通行であることを想定すると、自車両VEの左側の基準距離DLが、右側の基準距離DRよりも小さいとよい。つまり、例えば信号機103_5と信号機103_3とを比べると、自車両VEに対する横距離は、信号機103_5の方が信号機103_3よりも短いが、DL<DRであるため、信号機103_5の重みが下げられ、信号機103_3の重みが上げられるようになっている。 Each traffic signal 103 may be weighted according to whether the left lateral distance to the vehicle VE is greater than the reference distance DL or whether the right lateral distance to the vehicle VE is greater than the reference distance DR. . In this case, on the left side of the host vehicle VE, the weight is increased if the lateral distance to the traffic light is smaller than the reference distance DL, and the weight is decreased if the lateral distance to the traffic light is greater than the reference distance DL. On the right side of the vehicle VE, the weight is increased if the lateral distance to the traffic light is smaller than the reference distance DR, and the weight is decreased if the lateral distance to the traffic light is greater than the reference distance DR. More specifically, assuming the shape of the traffic lane on the road, ie, the road shown in the drawing, for example, is left-hand traffic, the reference distance DL on the left side of the vehicle VE should be smaller than the reference distance DR on the right side. That is, for example, when comparing the traffic lights 103_5 and 103_3, the lateral distance to the vehicle VE is shorter for the traffic lights 103_5 than for the vehicle VE, but since DL<DR, the weight of the traffic lights 103_5 is lowered, and the traffic lights 103_3 are weighted. weight is increased.
 (2)自車両VEに対する縦方向の距離に応じて重み付けを行い、自車信号機を特定する。つまり、自車両VEに対して縦方向の距離が過剰に大きいと、次の交差点よりも遠方の信号機である可能性があるため、重みを下げ、自車信号機と認定される可能性を低くする。 (2) Weighting is performed according to the vertical distance from the own vehicle VE to specify the own vehicle traffic signal. In other words, if the distance in the vertical direction to the own vehicle VE is excessively large, there is a possibility that the traffic signal is farther away than the next intersection. .
 (3)信号機の高さに応じて重み付けを行い、自車信号機を特定する。つまり、高さ位置が所定の第1高さよりも低い信号機は、自動車用でなく歩行者用の信号機である可能性があるため、重みを下げ、自車信号機と認定される可能性を低くする。図13では、自車両VEの前方に歩行者用信号機105が検出されており、その歩行者用信号機105について重みを小さくする。また、高さ位置が所定の第2高さよりも高い信号機は、そもそも信号機でなく街路灯や発光看板などの発光物である可能性があるため、重みを小さくする。 (3) Weighting is performed according to the height of the traffic signal, and the own vehicle's traffic signal is specified. In other words, a traffic signal whose height position is lower than the predetermined first height may be a traffic signal for pedestrians, not for automobiles. . In FIG. 13, the pedestrian traffic light 105 is detected in front of the own vehicle VE, and the weight of the pedestrian traffic light 105 is reduced. In addition, a traffic signal whose height position is higher than the predetermined second height may not be a traffic signal but a luminous object such as a street light or a light-emitting signboard, so the weight is reduced.
 (4)自車両VEに対する信号機の向きに応じて重み付けを行い、自車信号機を特定する。つまり、図13に示すように、交差点内の各信号機103_1~103_6は、自車両VEに対する向き(詳しくは信号機前面の向き)が各々異なる。この場合、自車両VEの側を向いていない信号機について重みを下げ、自車信号機と認定される可能性を低くする。 (4) Weighting is performed according to the direction of the traffic signal with respect to the own vehicle VE, and the own vehicle traffic signal is specified. That is, as shown in FIG. 13, each of the traffic lights 103_1 to 103_6 in the intersection has different orientations (specifically, the orientation of the front of the traffic lights) with respect to the own vehicle VE. In this case, the weight of the traffic signal that does not face the vehicle VE is reduced to reduce the possibility of being recognized as the traffic signal of the vehicle.
 (5)信号機の形状認識として、灯火部を有する筐体が検出されているか否かを判定する。この場合、信号機の筐体が検出されず、かつ発光(灯火)のみが検出されていれば、信号機が誤認識されている可能性があるため、重みを下げる。 (5) Determine whether or not a housing having a lighting part is detected as the shape recognition of the traffic light. In this case, if the housing of the traffic light is not detected and only the light emission (lamp) is detected, the traffic light may be misrecognized, so the weight is reduced.
 ECU21は、上記(1)~(5)による重み付けの少なくとも1つを行い、信号機の位置や形態による分別を行う。 The ECU 21 performs at least one of the above weightings (1) to (5), and classifies traffic signals according to their position and form.
 なお、上記以外に、地図やロケータの結果に基づいて自車信号機であるか否かを判定し、自車信号機であると判定された場合に、重みを上げる構成にすることも可能である。 In addition to the above, it is also possible to determine whether or not the traffic signal is the vehicle's traffic signal based on the map or locator results, and increase the weight if it is determined to be the vehicle's traffic signal.
 次に、信号機の表示色による分別について説明する。 Next, we will explain the separation based on the display color of traffic lights.
 信号機(信号機の主灯火)は、基本的に赤、黄、緑のいずれかの表示色で点灯する。そこで、交差点認識範囲CR内で検出された信号機ごとに、所定時間内において所定周期で表示色を判定するとともに、色別で判定回数をカウントする。そして、各信号機でカウントされた色別の判定回数や、画像における色判定の確からしさの度合いを示す評価値を色ごとに合算し、各表示色のスコア値を算出する。また、スコア値が最も大きい表示色を、自車信号機の表示色として判定する。色判定の確からしさの度合いは、例えば予め定めた色基準との対比により算出されるとよい。 Traffic lights (main lights of traffic lights) basically light up in either red, yellow, or green. Therefore, for each traffic signal detected within the intersection recognition range CR, the display color is determined in a predetermined period within a predetermined period of time, and the number of times of determination is counted for each color. Then, the number of determinations for each color counted by each traffic light and the evaluation value indicating the degree of certainty of color determination in the image are summed for each color to calculate the score value for each display color. Also, the display color with the highest score value is determined as the display color of the vehicle traffic signal. The degree of certainty of color determination may be calculated, for example, by comparison with a predetermined color reference.
 このとき、上記(1)~(5)の重み付けによる分別が行われた信号機(重み調整後の信号機)について、信号機の色別のスコア判定が行われるとよい。この場合、重み付けの結果に対してスコア値が上乗せされて、自車信号機の表示色が判定される。換言すれば、各表示色のスコア値に対して、上記(1)~(5)の重み付けに応じた補正が行われ、その補正後のスコア値に基づいて、自車信号機の表示色が判定されるものであるとよい。 At this time, for the traffic lights (traffic lights after weight adjustment) that have undergone classification by weighting in (1) to (5) above, it is preferable to perform score determination for each color of the traffic lights. In this case, the score value is added to the weighting result to determine the display color of the vehicle's traffic signal. In other words, the score value of each display color is corrected according to the weighting of (1) to (5) above, and the display color of the vehicle traffic light is determined based on the score value after the correction. It should be
 図14(a),(b)は、図13の信号機103_1~103_3について色別の判定回数をカウントした結果を示すものである。図14(a)では、各信号機103_1~103_3の色別の判定回数を積算したスコア値から、今回の信号色が「赤」であると判定される。また、図14(b)では、色別のスコア値が「黄」と「緑」とで同一になっている。この場合、今回の信号色が前回判定時と同じであると判定されるとよい。又は、図14(b)のようにスコア値が同一となる場合、緑>黄>赤の優先度で信号色が判定されるとよい。ただし、信号色の誤判定を防ぐべく、信号色の切り替わり時には、連続で所定回数以上、信号色が変わったと判定された場合に最終的な信号色が確定されるとよい。  Figs. 14(a) and 14(b) show the results of counting the number of determinations by color for the traffic lights 103_1 to 103_3 in Fig. 13 . In FIG. 14A, it is determined that the current signal color is "red" from the score value obtained by accumulating the number of determination times for each color of the traffic lights 103_1 to 103_3. In addition, in FIG. 14(b), the color-specific score values are the same for “yellow” and “green”. In this case, it is preferable that the current signal color is determined to be the same as the previous determination. Alternatively, when the score values are the same as in FIG. 14B, the signal color may be determined according to the priority of green>yellow>red. However, in order to prevent misjudgment of the signal color, when the signal color is switched, it is preferable to determine the final signal color when it is determined that the signal color has changed more than a predetermined number of times in succession.
 なお、信号機には、3色(赤、黄、緑)の主灯火に加え、矢印表示を行う矢印灯火が設けられる場合があるが、矢印灯火は、主灯火と異なり各信号機で常に点灯しているものではない。そのため、矢印灯火を判定する場合には、信号機ごとに、所定時間内において所定周期で矢印灯火の点灯を判定するとともに、点灯判定回数をカウントする。そして、各信号機での矢印灯火の点灯判定回数の合算値をスコア値とし、そのスコア値が所定値よりも大きければ、矢印灯火の点灯有りと判定する。又は、矢印灯火の点灯判定回数の合算値(スコア値)を、矢印灯火を有する信号機の数で割り、その算出値が所定値よりも大きければ、矢印灯火の点灯有りと判定する構成であってもよい。 In addition to the main lights of three colors (red, yellow, and green), some traffic lights are equipped with arrow lights that display arrows. It's not what it is. Therefore, when judging an arrow light, for each traffic light, it is judged whether the arrow light is turned on at a predetermined cycle within a predetermined time, and the number of lighting determinations is counted. Then, the total value of the number of lighting decision times of the arrow lights at each traffic light is taken as a score value, and if the score value is greater than a predetermined value, it is determined that the arrow lights are on. Alternatively, the total value (score value) of the lighting determination times of the arrow lights is divided by the number of traffic lights having the arrow lights, and if the calculated value is greater than a predetermined value, it is determined that the arrow lights are lit. good too.
 以上説明した実施形態によれば、以下の優れた効果が得られる。 According to the embodiment described above, the following excellent effects can be obtained.
 カメラ11が撮像した画像から、自車両前方の交差点における自車両VEの通過又は停止に関する交差点物標を検出し、その交差点物標に基づいて、交差点の入口位置を決定する構成とした。この構成によれば、交差点の入口位置を適正に把握できることから、その情報を各種の運転支援に用いることができ、ひいては交差点の走行に関して運転支援のための技術改善を図ることができる。 From the image captured by the camera 11, the intersection target related to the passage or stop of the vehicle VE at the intersection in front of the vehicle is detected, and the entrance position of the intersection is determined based on the intersection target. According to this configuration, since the entrance position of the intersection can be properly grasped, the information can be used for various kinds of driving support, and the technology for driving support can be improved regarding traveling at the intersection.
 交差点物標として、交差点における停止線および信号機を検出し、停止線および信号機の検出結果に基づいて入口位置を決定するようにした。この場合、道路の形態や自車両の走行状況によって、停止線および信号機のうちいずれが検出できるかが変わったとしても、交差点の入口位置を適正に決定することができる。  The stop line and traffic lights at the intersection are detected as intersection targets, and the entrance position is determined based on the detection results of the stop line and traffic lights. In this case, even if which of the stop line and the traffic signal can be detected changes depending on the shape of the road and the running condition of the own vehicle, the entrance position of the intersection can be determined appropriately.
 交差点では、その交差点の手前側に停止線が設けられていることが多く、その停止線が交差点の入口位置を直接的に示していることが考えられる。ただし、道路には停止線の他に各種の路面表示があること等を想定すると、そのような路面表示が停止線として誤検出されることが懸念される。この点、交差点において停止線と信号機とが検出されている場合に、自車両VEの直進方向における停止線と信号機との距離が所定距離未満であることを条件に、停止線に基づいて交差点の入口位置を決定するようにした(図4(a)~(c)参照)。これにより、交差点の入口位置を適正に決定することができる。 At intersections, a stop line is often set up on the front side of the intersection, and it is conceivable that the stop line directly indicates the entrance position of the intersection. However, assuming that there are various road markings on the road in addition to the stop line, there is concern that such road markings may be erroneously detected as the stop line. In this regard, when a stop line and a traffic light are detected at an intersection, the distance between the stop line and the traffic light in the straight-ahead direction of the vehicle VE is less than a predetermined distance. The entrance position is determined (see FIGS. 4(a) to 4(c)). Thereby, the entrance position of the intersection can be determined appropriately.
 また、交差点において停止線と横断歩道とが検出されている場合に、自車両VEの直進方向における停止線と横断歩道との距離が所定距離未満であることを条件に、停止線に基づいて交差点の入口位置を決定するようにした(図4(a)参照)。これにより、交差点の入口位置を適正に決定することができる。 Also, when a stop line and a pedestrian crossing are detected at an intersection, the intersection is detected based on the stop line on the condition that the distance between the stop line and the pedestrian crossing in the straight ahead direction of the vehicle VE is less than a predetermined distance. is determined (see FIG. 4(a)). Thereby, the entrance position of the intersection can be determined appropriately.
 自車両前方におけるカメラ画像には、同一種類で複数の物標が写り込んでいる場合がある。例えば、複数の停止線や複数の信号機が写り込んでいる場合がある。この場合、同一種類の複数の物標のうち自車両VEから最も近い物標に基づいて、交差点の入口位置を決定するようにしたため、交差点の入口位置を適正に決定することができる。 The camera image in front of the vehicle may contain multiple targets of the same type. For example, multiple stop lines and multiple traffic lights may be reflected. In this case, the entrance position of the intersection is determined based on the closest target from the own vehicle VE among a plurality of targets of the same type, so the entrance position of the intersection can be determined appropriately.
 進行方向が同一となる複数の車線を有する片側複数車線の道路において、車線ごとに停止線位置が異なる場合があることを想定し、自車線および隣車線のいずれで停止線位置が検出されたかを加味しつつ、その停止線位置に基づいて交差点の入口位置を決定するようにした(図5(a)~(c)参照)。すなわち、自車線の停止線位置と隣車線の停止線位置との比較において自車線の停止線位置の方が手前側である場合に、自車線の停止線位置に基づいて交差点の入口位置を決定するようにした。また、隣車線の停止線位置の方が手前側である場合に、隣車線の停止線位置を基準にしてその奥側に所定範囲で選択領域を定め、その選択領域内に自車線の停止線位置があれば、自車線の停止線位置に基づいて交差点の入口位置を決定する一方、その選択領域内に自車線の停止線位置がなければ、隣車線の停止線位置に基づいて交差点の入口位置を決定するようにした。これにより、片側複数車線の道路において自車線および隣車線のいずれで停止線位置が検出されたとしても、交差点の入口位置を適正に決定することができる。 Assuming that the position of the stop line may be different for each lane on a multi-lane road with multiple lanes running in the same direction, it is possible to determine whether the position of the stop line is detected in the own lane or in the next lane. The position of the entrance to the intersection is determined based on the position of the stop line while taking into account the position of the stop line (see FIGS. 5(a) to 5(c)). In other words, if the stop line position of the own lane is closer to the user than the stop line position of the own lane and the stop line position of the adjacent lane, the entrance position of the intersection is determined based on the stop line position of the own lane. I made it In addition, when the stop line position of the next lane is on the front side, a selection area is defined in a predetermined range on the back side with reference to the stop line position of the next lane, and the stop line of the own lane is set in the selection area. If so, determine the intersection entrance position based on the own lane's stop line position; otherwise, determine the intersection entrance based on the next lane's stop line position if there is no stop line position for the own lane within the selected area. determined the position. As a result, even if the stop line position is detected in either the own lane or the adjacent lane on a road with multiple lanes on one side, the entrance position of the intersection can be determined appropriately.
 交差点の入口位置の決定に用いた交差点物標がロストし、かつその交差点物標の位置が外挿位置として推定されている場合に、その外挿位置を用いて、交差点の入口位置の決定を継続するようにした。これにより、検出済みの交差点物標がカメラ11の見切れ等によりロストしても、交差点の入口位置を継続的に把握することができる。 When the intersection target used to determine the intersection entrance position is lost and the position of the intersection target is estimated as an extrapolated position, the extrapolated position is used to determine the intersection entrance position. made it continue. As a result, even if the detected intersection target is lost due to the lack of the camera 11 or the like, the entrance position of the intersection can be continuously grasped.
 交差点での自車両VEの通過又は停止を適正に判断するには、自車両VEが従うべき信号機の表示色を適正に把握することが望ましい。この点、決定された交差点の入口位置から奥側の所定範囲を交差点認識範囲CRとし、その交差点認識範囲CR内において、自車両VEが従うべき信号機の表示色を判定するようにした。これにより、自車両VEが従うべき信号機を適正に把握しつつ、その信号機の表示色を適正に把握することができる。  In order to properly determine whether the own vehicle VE should pass or stop at an intersection, it is desirable to properly understand the display color of the traffic light that the own vehicle VE should follow. In this regard, a predetermined range on the back side from the determined entrance position of the intersection is defined as an intersection recognition range CR, and the display color of the traffic light to be followed by the vehicle VE is determined within the intersection recognition range CR. As a result, it is possible to properly grasp the display color of the traffic signal while properly grasping the traffic signal to which the own vehicle VE should follow.
 決定された交差点の入口位置よりも奥側に存在する交差点物標(奥側物標)に基づいて交差点の出口位置を決定し、それら入口位置から出口位置までを交差点認識範囲CRとして設定する構成とした(図7(a)~(c)参照)。そして、その交差点認識範囲CR内において、自車両VEが従うべき信号機の表示色を判定するようにした。これにより、自車両VEが従うべき信号機を適正に把握しつつ、その信号機の表示色を適正に把握することができる。 A configuration in which the exit position of the intersection is determined based on the intersection target existing on the back side of the determined entrance position of the intersection (back side target), and the range from the entrance position to the exit position is set as the intersection recognition range CR. (see FIGS. 7(a) to (c)). Then, the display color of the traffic signal to which the own vehicle VE should follow is determined within the intersection recognition range CR. As a result, it is possible to properly grasp the display color of the traffic signal while properly grasping the traffic signal to which the own vehicle VE should follow.
 自車両VEが交差点に進入する際には、交差点認識範囲CR内において交差点奥側の信号機(奥側信号機)と交差点手前側の信号機(手前側信号機)とが検出されている状態から、それら各信号が、各々別の要因でそれぞれロストすることが考えられる(図10(a)~(c)参照)。例えば、各信号機が、カメラの画角外に見切れる、又は樹木や他車両等の他物体により隠れるといった物理的要因によりロストすることが考えられる。この点、交差点認識範囲CR内において奥側信号機と手前側信号機とが検出されている状態から、それら各信号機のうち一方の信号機のロストにより信号機位置が外挿位置として推定され、さらにその状況下で他方の信号機のロストが生じた場合に、他方の信号機のロスト直前に判定された信号機の表示色を維持するようにした。これにより、各信号機のロストにかかわらず、信号機の表示色を継続的に認識することができる。 When the own vehicle VE enters the intersection, the traffic signal on the back side of the intersection (back traffic signal) and the traffic signal on the front side of the intersection (front traffic signal) are detected within the intersection recognition range CR. It is conceivable that the signals are lost due to different factors (see FIGS. 10(a) to 10(c)). For example, it is conceivable that each traffic light is lost due to physical factors such as being cut off outside the angle of view of the camera or being hidden by other objects such as trees or other vehicles. In this regard, from the state in which the far side traffic light and the near side traffic light are detected within the intersection recognition range CR, the traffic light position is estimated as an extrapolated position due to the loss of one of the traffic lights. , the display color of the traffic signal determined immediately before the loss of the other traffic signal is maintained. Thereby, regardless of the loss of each traffic signal, the display color of the traffic signal can be continuously recognized.
 また、自車両VEが交差点に進入する際には、交差点認識範囲CR内において手前側信号機が検出されている状態からロストし、その後、奥側信号機が検出状態になることがあると考えられる(図11(a)~(c)参照)。この点、交差点認識範囲CR内において手前側信号機が検出されている状態から、その手前側信号機のロストにより信号機位置が外挿位置として推定され、さらにその状況下で奥側信号機が検出された場合に、奥側信号機の表示色を自車両VEが従うべき信号機の表示色として当該信号機の表示色を判定するようにした。この場合、奥側信号機が示す表示色は、交差点を通過する際に自車両VEが従うべき信号機の表示色である蓋然性が高い。したがって、手前側信号機のロストにより信号機位置が外挿位置として推定された状態で奥側信号機が検出された場合、奥側信号機が示す表示色を自車両VEが従うべき信号機の表示色とみなすことにより、自車両VEが従うべき表示色を適正に把握することができる。 Also, when the own vehicle VE enters the intersection, it is conceivable that the front side traffic light is lost within the intersection recognition range CR, and then the rear side traffic light is detected ( (see FIGS. 11(a) to 11(c)). In this regard, when a traffic signal on the front side is detected within the intersection recognition range CR, the position of the traffic signal is estimated as an extrapolated position due to the loss of the traffic signal on the front side, and furthermore, a traffic signal on the back side is detected under that situation. Second, the display color of the traffic signal on the far side is determined as the display color of the traffic signal to which the own vehicle VE should follow. In this case, it is highly probable that the display color indicated by the far side traffic light is the display color of the traffic light that the vehicle VE should follow when passing through the intersection. Therefore, when the rear traffic signal is detected while the position of the traffic signal is estimated as an extrapolated position due to the loss of the front traffic signal, the display color indicated by the rear traffic signal is regarded as the display color of the traffic signal that the vehicle VE should follow. Therefore, it is possible to properly grasp the display color that the own vehicle VE should follow.
 交差点認識範囲CR内への自車両VEの進入前に奥側信号機が検出されており、かつ、その交差点認識範囲CR内へ自車両VEが進入した状態で、奥側信号機が一旦ロストされた後に奥側信号機が再検出されることがあると考えられる(図12(a)~(c)参照)。かかる場合において、奥側信号機に基づいて入口位置を決定すると、その入口位置は、交差点認識範囲CRを設定する上で適正なものでない可能性が高い。この点、そのような場合には、奥側信号機に基づいて入口位置を決定しないようにすることで、適正な入口位置を維持することができる。 A rear traffic signal is detected before the own vehicle VE enters the intersection recognition range CR, and after the rear traffic signal is temporarily lost while the own vehicle VE has entered the intersection recognition range CR. It is conceivable that the far side traffic light may be detected again (see FIGS. 12(a) to (c)). In such a case, if the entrance position is determined based on the far side traffic light, there is a high possibility that the entrance position is not appropriate for setting the intersection recognition range CR. In this regard, in such a case, the proper entrance position can be maintained by not determining the entrance position based on the rear traffic light.
 交差点内には、例えば自車両VEに対して横方向に離れた位置、又は縦方向に離れた位置にそれぞれ信号機が存在することがある。また、交差点内には、街路灯や発光看板など、信号機に間違えられるおそれのある発光物が存在することも考えられる。さらに、複数の信号機として異なる路線用の信号機が含まれていたり、作動ばらつき等により信号色に違いが生じたりすることが考えられる。これらを加味し、交差点認識範囲CR内に存在する全ての信号機を抽出するとともに、その抽出した信号機について位置、形態及び表示色の少なくともいずれかにより分別した結果から、自車両VEが従うべき信号機の表示色を判定するようにした。これにより、交差点認識範囲CR内に多数の信号機が存在していても、自車両VEが従うべき信号機の表示色を適正に判定することができる。 Within the intersection, there may be traffic lights at positions separated laterally or longitudinally from the own vehicle VE, for example. In addition, it is conceivable that luminous objects such as street lights and luminous signboards that may be mistaken for traffic lights exist in intersections. Furthermore, it is conceivable that the plurality of traffic signals may include traffic signals for different routes, or that signal colors may differ due to variations in operation or the like. In consideration of these factors, all the traffic signals existing within the intersection recognition range CR are extracted, and the traffic signals to be followed by the own vehicle VE are determined from the results of classifying the extracted traffic signals by at least one of position, form, and display color. The display color is now judged. As a result, even if there are many traffic lights within the intersection recognition range CR, the display color of the traffic lights to be followed by the own vehicle VE can be properly determined.
 上記実施形態を、例えば次のように変更してもよい。 The above embodiment may be modified, for example, as follows.
 ・交差点よりも手前側において路面矢印表示を検出し、その路面矢印表示の検出結果と、交差点認識範囲CR内で検出される信号機とを対応させ、自車両VEが従うべき信号機について矢印灯火を含む信号表示の判定を行う構成としてもよい。図15は、交差点手前の道路を示す図であり、左車線の路面には直進を示す直進矢印が付され、右車線の路面には右折を示す右折矢印が付されている。つまり、左車線が直進車線であり、右車線が右折車である。信号機103には、主灯火に加え、矢印灯火が設けられている。本例では、矢印灯火として直進灯火と右折灯火とを有する。ここで、例えば、自車両VEが右車線(右折車線)を走行する場合には、路面矢印表示として右折矢印が検出される一方、自車両VEが従うべき信号機の矢印灯火として右折灯火が検出される。 Detecting the road surface arrow display on the near side of the intersection, matching the detection result of the road surface arrow display with the traffic signal detected within the intersection recognition range CR, and including the arrow light for the traffic light that the vehicle VE should follow. A configuration may be adopted in which signal display determination is performed. FIG. 15 is a diagram showing the road in front of the intersection. The road surface of the left lane is marked with a straight arrow indicating straight ahead, and the road surface of the right lane is marked with a right turn arrow indicating a right turn. That is, the left lane is the straight lane, and the right lane is the right-turning vehicle. The traffic light 103 is provided with an arrow light in addition to the main light. In this example, the arrow lights include a straight-ahead light and a right-turn light. Here, for example, when the vehicle VE travels in the right lane (right-turn lane), a right-turn arrow is detected as a road surface arrow display, and a right-turn light is detected as an arrow light of a traffic signal that the vehicle VE should follow. be.
 図16は、矢印灯火の判定処理を示すフローチャートである。本処理は、例えば図9のステップS53が肯定された場合に実行されるとよい。 FIG. 16 is a flow chart showing determination processing for arrow lights. This process is preferably executed, for example, when step S53 in FIG. 9 is affirmative.
 ECU21は、自車両VEが走行する自車線の路面において路面矢印表示が検出されているか否かを判定する(ステップS81)。路面矢印表示が検出されている場合(ステップS81:YES)、ECU21は、自車両前方の信号機において点灯状態の矢印灯火が検出されているか否かを判定する(ステップS82)。そして、自車両前方の信号機において点灯状態の矢印灯火が検出されている場合(ステップS82:YES)、ECU21は、路面矢印表示と矢印の向きが同じ矢印灯火を、自車両VEが従うべき信号表示であると判定する(ステップS83)。例えば、路面矢印表示が右折矢印であれば、信号機の右折灯火を自車信号機の表示として判定し、路面矢印表示が左折矢印であれば、信号機の左折灯火を自車信号機の表示として判定し、路面矢印表示が直進矢印であれば、信号機の直進灯火を自車信号機の表示として判定する。 The ECU 21 determines whether or not a road surface arrow display is detected on the road surface of the own lane on which the own vehicle VE travels (step S81). When the road arrow display is detected (step S81: YES), the ECU 21 determines whether or not the arrow light in the lighting state is detected at the traffic signal in front of the vehicle (step S82). Then, if an arrow light in a lit state is detected at the traffic signal in front of the vehicle (step S82: YES), the ECU 21 displays the arrow light having the same arrow direction as the road arrow display as a signal display to be followed by the vehicle VE. (step S83). For example, if the road arrow display is a right-turn arrow, the right-turn light of the traffic light is determined as the display of the own vehicle's traffic light, and if the road arrow display is a left-turn arrow, the left-turn light of the traffic light is determined as the display of the own vehicle's traffic light, If the road surface arrow display is a straight arrow, the straight light of the traffic signal is determined as the display of the vehicle traffic signal.
 なお、路面矢印表示が検出された場合において、自車両前方の信号機に、路面矢印の向きに該当する矢印灯火が設けられていなければ、信号機の主灯火に応じて、自車両VEが従うべき信号機の表示色が判定されればよい。 When the road arrow display is detected, if the traffic light in front of the vehicle is not provided with an arrow light corresponding to the direction of the road arrow, the traffic light to which the vehicle VE should follow is determined according to the main light of the traffic light. display color of is determined.
 路面矢印表示が検出された後において、その路面矢印表示がカメラ画角の見切れや他車両等によりロストした場合には、ロスト前の路面矢印表示の位置が外挿処理により推定されるとよい。外挿処理による路面矢印表示の推定は、自車両VEが走行し交差点に到達したこと、自車両前方に別の路面矢印表示が検出されたこと、自車両VEが所定距離走行したことのいずれかにより終了されるとよい。 After the road arrow display is detected, if the road arrow display is lost due to the camera's angle of view being cut off or another vehicle, etc., the position of the road arrow display before being lost should be estimated by extrapolation processing. Estimation of the road surface arrow display by extrapolation processing is either that the vehicle VE has traveled and reached an intersection, that another road surface arrow display has been detected in front of the vehicle, or that the vehicle VE has traveled a predetermined distance. should be terminated by
 自車線の路面矢印表示に加え、隣車線の路面矢印表示を検出する構成としてもよい。また、路面矢印表示の外挿中に自車両VEがレーンチェンジを実施した場合は、レーンチェンジ先の外挿情報が、レーンチェンジ後の自車線の路面矢印表示として認識されるとよい。例えば、右隣車線にレーンチェンジした場合には、右隣車線の路面矢印の外挿情報が、自車線の路面矢印情報として持ち替えられる。 In addition to the display of the road surface arrow of the own lane, it may be configured to detect the display of the road surface arrow of the next lane. Further, when the own vehicle VE changes lanes during extrapolation of the road surface arrow display, the extrapolation information of the destination of the lane change may be recognized as the road surface arrow display of the own lane after the lane change. For example, when the vehicle changes lanes to the adjacent lane on the right, the extrapolation information of the road surface arrow of the adjacent lane on the right is used as the road surface arrow information of the own lane.
 同一車線内に複数の路面矢印表示が存在する場合には、その複数の路面矢印表示がそれぞれ検出されるとよい。同一車線内の複数の路面矢印表示がロストする場合には、それら全ての路面矢印表示が外挿処理により推定されるとよい。縦方向に距離差のある別の路面矢印表示が存在する場合は、外挿が実施されないとよい。 If there are multiple road arrow indications in the same lane, each of the multiple road arrow indications should be detected. If a plurality of road surface arrow indications in the same lane are lost, all of the road surface arrow indications should be estimated by extrapolation processing. Extrapolation should not be performed if there is another roadmark indication with a vertical distance difference.
 ・上記実施形態では、交差点認識範囲CRを設定する際に、入口位置P1を基準にして仮設定範囲CRaを設定し、その仮設定範囲CRaを、入口位置P1よりも奥側の奥側物標に応じて適宜補正する構成したが(図7(a)~(c)参照)、これを変更してもよい。例えば、仮設定範囲CRaの設定を行わない構成とする。具体的には、ECU21は、停止線や信号機により入口位置を決定した後に、入口位置よりも奥側の奥側物標の位置に基づいて交差点の出口位置を決定し、入口位置から出口位置までの範囲を交差点認識範囲CRとして設定する。 In the above-described embodiment, when setting the intersection recognition range CR, the provisional setting range CRa is set with reference to the entrance position P1, and the provisional setting range CRa is set to the back side target on the back side of the entrance position P1. (See FIGS. 7A to 7C), but this may be changed. For example, the provisional setting range CRa is not set. Specifically, the ECU 21 determines the exit position of the intersection based on the position of the back side target on the back side of the entrance position after determining the entrance position from the stop line or the traffic signal, and determines the distance from the entrance position to the exit position. is set as the intersection recognition range CR.
 ・交差点の入口位置が決定された場合に、その入口位置をディスプレイ31に表示させたり、自車両VEからその入口位置までの距離に応じて警報装置32を作動させたりすることも可能である。 · When the entrance position of the intersection is determined, it is possible to display the entrance position on the display 31 or to activate the warning device 32 according to the distance from the own vehicle VE to the entrance position.
 本開示に記載の制御部及びその手法は、コンピュータプログラムにより具体化された一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリを構成することによって提供された専用コンピュータにより、実現されてもよい。あるいは、本開示に記載の制御部及びその手法は、一つ以上の専用ハードウエア論理回路によってプロセッサを構成することによって提供された専用コンピュータにより、実現されてもよい。もしくは、本開示に記載の制御部及びその手法は、一つ乃至は複数の機能を実行するようにプログラムされたプロセッサ及びメモリと一つ以上のハードウエア論理回路によって構成されたプロセッサとの組み合わせにより構成された一つ以上の専用コンピュータにより、実現されてもよい。また、コンピュータプログラムは、コンピュータにより実行されるインストラクションとして、コンピュータ読み取り可能な非遷移有形記録媒体に記憶されていてもよい。 The controller and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring a processor and memory programmed to perform one or more functions embodied by the computer program. may be Alternatively, the controls and techniques described in this disclosure may be implemented by a dedicated computer provided by configuring the processor with one or more dedicated hardware logic circuits. Alternatively, the control units and techniques described in this disclosure can be implemented by a combination of a processor and memory programmed to perform one or more functions and a processor configured by one or more hardware logic circuits. It may also be implemented by one or more dedicated computers configured. The computer program may also be stored as computer-executable instructions on a computer-readable non-transitional tangible recording medium.
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。 Although the present disclosure has been described with reference to examples, it is understood that the present disclosure is not limited to those examples or structures. The present disclosure also includes various modifications and modifications within the equivalent range. In addition, various combinations and configurations, as well as other combinations and configurations, including single elements, more, or less, are within the scope and spirit of this disclosure.

Claims (14)

  1.  自車両の前方を撮像するカメラ(11)が撮像した画像に基づいて自車両の前方の交通状況を認識する車両制御装置(21)であって、
     前記画像から、自車両前方の交差点における自車両の通過又は停止に関する物標を検出する物標検出部と、
     前記物標検出部により検出された前記物標に基づいて、前記交差点の入口位置を決定する入口決定部と、
    を備える、車両制御装置。
    A vehicle control device (21) for recognizing traffic conditions in front of the own vehicle based on an image captured by a camera (11) for imaging the front of the own vehicle,
    a target detection unit that detects, from the image, a target related to the passage or stop of the own vehicle at an intersection in front of the own vehicle;
    an entrance determination unit that determines an entrance position of the intersection based on the target detected by the target detection unit;
    A vehicle control device.
  2.  前記物標検出部は、前記物標として、前記交差点における停止線および信号機の少なくともいずれかを検出するものであり、
     前記入口決定部は、前記停止線および前記信号機の少なくともいずれかの検出結果に基づいて、前記入口位置を決定する、請求項1に記載の車両制御装置。
    The target detection unit detects at least one of a stop line and a traffic light at the intersection as the target,
    The vehicle control device according to claim 1, wherein said entrance determination unit determines said entrance position based on a detection result of at least one of said stop line and said traffic light.
  3.  前記入口決定部は、前記物標検出部により検出された前記物標に、前記停止線および前記信号機が含まれる場合において、自車両の直進方向における前記停止線と前記信号機との距離が所定距離未満であることを条件に、前記停止線に基づいて前記入口位置を決定する、請求項2に記載の車両制御装置。 When the targets detected by the target detection unit include the stop line and the traffic light, the entrance determination unit determines that the distance between the stop line and the traffic light in the straight-ahead direction of the vehicle is a predetermined distance. 3. The vehicle control device according to claim 2, wherein the entrance position is determined based on the stop line on condition that the distance is less than the stop line.
  4.  前記物標検出部は、前記物標として、前記交差点における停止線および横断歩道をそれぞれ検出するものであり、
     前記入口決定部は、自車両の直進方向における前記停止線と前記横断歩道との距離が所定距離未満であることを条件に、前記停止線に基づいて前記入口位置を決定する、請求項1~3のいずれか一項に記載の車両制御装置。
    The target detection unit detects, as the target, a stop line and a pedestrian crossing at the intersection,
    The entrance determination unit determines the entrance position based on the stop line on condition that the distance between the stop line and the pedestrian crossing in the straight-ahead direction of the vehicle is less than a predetermined distance. 4. The vehicle control device according to any one of 3.
  5.  前記入口決定部は、前記物標検出部により検出された前記物標として、同一種類で複数の物標が含まれる場合に、それら同一種類の複数の物標のうち前記自車両から最も近い物標に基づいて、前記交差点の入口位置を決定する、請求項1~4のいずれか一項に記載の車両制御装置。 When a plurality of targets of the same type are included as the targets detected by the target detection section, the entrance determining section determines which of the plurality of targets of the same type is closest to the own vehicle. The vehicle control device according to any one of claims 1 to 4, wherein the entrance position of the intersection is determined based on the landmark.
  6.  前記物標検出部は、進行方向が同一となる複数の車線を有する片側複数車線において車線ごとに前記物標としての停止線を検出するものであり、
     前記入口決定部は、
     自車両が走行する自車線の停止線位置と前記自車線の隣の隣車線の停止線位置との比較において、前記自車線の停止線位置の方が手前側である場合に、前記自車線の停止線位置に基づいて前記入口位置を決定し、
     前記隣車線の停止線位置の方が手前側である場合に、前記隣車線の停止線位置を基準にしてその奥側の所定範囲で選択領域を定め、その選択領域内に前記自車線の停止線位置があれば、前記自車線の停止線位置に基づいて前記入口位置を決定する一方、その選択領域内に前記自車線の停止線位置がなければ、前記隣車線の停止線位置に基づいて前記入口位置を決定する、請求項1~5のいずれか一項に記載の車両制御装置。
    The target detection unit detects a stop line as the target for each lane in a plurality of lanes on one side having a plurality of lanes in which the traveling direction is the same,
    The entrance determination unit
    When the stop line position of the own lane in which the own vehicle travels is compared with the stop line position of the adjacent lane adjacent to the own lane, if the stop line position of the own lane is on the near side, determining the entry location based on the stop line location;
    When the stop line position of the adjacent lane is on the front side, a selection area is defined in a predetermined range on the back side with reference to the stop line position of the adjacent lane, and the own lane is stopped within the selection area. If there is a line position, the entrance position is determined based on the stop line position of the own lane, and if there is no stop line position of the own lane within the selected area, based on the stop line position of the adjacent lane. The vehicle control device according to any one of claims 1 to 5, wherein the entrance position is determined.
  7.  前記物標検出部は、検出状態の前記物標がロストした場合に当該物標の位置を外挿位置として推定するものであり、
     前記入口決定部は、前記入口位置の決定に用いた前記物標がロストし、かつ当該物標の位置が外挿位置として推定されている場合に、その外挿位置を用いて、前記入口位置の決定を継続する、請求項1~6のいずれか一項に記載の車両制御装置。
    The target detection unit estimates the position of the target as an extrapolation position when the target in the detected state is lost,
    When the target used to determine the entrance position is lost and the position of the target is estimated as an extrapolated position, the entrance determination unit uses the extrapolated position to determine the entrance position. 7. The vehicle control device according to any one of claims 1 to 6, further comprising a determination of .
  8.  前記入口決定部により決定された前記入口位置から奥側の所定範囲を、交差点内であると認識する交差点認識範囲とし、その交差点認識範囲内において、自車両が従うべき信号機の表示色を判定する信号表示判定部を備える、請求項1~7のいずれか一項に記載の車両制御装置。 A predetermined range on the back side from the entrance position determined by the entrance determination unit is used as an intersection recognition range to be recognized as being in the intersection, and the display color of the traffic light to be followed by the vehicle is determined within the intersection recognition range. The vehicle control device according to any one of claims 1 to 7, comprising a signal display determination section.
  9.  前記物標検出部は、前記入口決定部により決定された前記入口位置よりも奥側に存在する前記物標を、奥側物標として検出する奥側物標検出部と、
     前記奥側物標検出部により検出された奥側物標に基づいて、前記交差点の出口位置を決定する出口決定部と、を備え、
     前記信号表示判定部は、前記入口決定部により決定された前記入口位置から、前記出口決定部により決定された前記出口位置までを前記交差点認識範囲とし、その交差点認識範囲内において、自車両が従うべき信号機の表示色を判定する、請求項8に記載の車両制御装置。
    a back side target detection unit configured to detect, as a back side target, the target existing on the back side of the entrance position determined by the entrance determination unit;
    an exit determination unit that determines an exit position of the intersection based on the far side target detected by the far side target detection unit;
    The signal display determination unit defines the intersection recognition range from the entrance position determined by the entrance determination unit to the exit position determined by the exit determination unit, and the vehicle follows within the intersection recognition range. 9. The vehicle control device according to claim 8, wherein the display color of the signal is determined.
  10.  前記物標検出部は、前記物標として少なくとも信号機を検出する一方、検出状態の信号機がロストした場合に当該信号機の位置を外挿位置として推定するものであり、
     前記信号表示判定部は、前記交差点認識範囲内において、前記物標検出部により、交差点奥側の信号機である奥側信号機と交差点手前側の信号機である手前側信号機とが検出されている状態から、それら各信号機のうち一方の信号機のロストにより信号機位置が外挿位置として推定され、さらにその状況下で他方の信号機のロストが生じた場合に、当該他方の信号機のロスト直前に判定された表示色を維持する、請求項8又は9に記載の車両制御装置。
    The target detection unit detects at least a traffic signal as the target, and estimates the position of the traffic signal as an extrapolated position when the detected traffic signal is lost,
    The signal display determination unit detects a signal on the back side of the intersection and a front signal on the front side of the intersection by the target detection unit within the intersection recognition range. , the signal position is estimated as an extrapolated position due to the loss of one of these signals, and if the other signal is lost under that situation, the display determined immediately before the loss of the other signal. 10. The vehicle control device according to claim 8 or 9, which maintains color.
  11.  前記物標検出部は、前記物標として少なくとも信号機を検出する一方、検出状態の信号機がロストした場合に当該信号機の位置を外挿位置として推定するものであり、
     前記信号表示判定部は、前記交差点認識範囲内において、前記物標検出部により交差点手前側の信号機である手前側信号機が検出されている状態から、その手前側信号機のロストにより信号機位置が外挿位置として推定され、さらにその状況下で交差点奥側の信号機である奥側信号機が検出された場合に、前記奥側信号機の表示色を自車両が従うべき信号機の表示色として当該信号機の表示色を判定する、請求項8~10のいずれか一項に記載の車両制御装置。
    The target detection unit detects at least a traffic signal as the target, and estimates the position of the traffic signal as an extrapolated position when the detected traffic signal is lost,
    The signal display determination unit extrapolates the position of the traffic signal from the state in which the front traffic signal, which is the traffic signal on the front side of the intersection, is detected by the target detection unit within the intersection recognition range, based on the loss of the front traffic signal. Further, when a rear traffic signal, which is a traffic signal on the rear side of the intersection, is detected under the situation, the display color of the traffic signal to be followed by the own vehicle is set as the display color of the traffic signal. The vehicle control device according to any one of claims 8 to 10, which determines the
  12.  前記物標検出部は、前記物標として少なくとも信号機を検出するものであり、
     前記入口決定部は、前記交差点認識範囲内への自車両の進入前に、前記物標検出部により交差点奥側の信号機である奥側信号機が検出されており、かつ、当該交差点認識範囲内へ自車両が進入した状態で、前記奥側信号機が一旦ロストされた後に当該奥側信号機が再検出された場合、前記奥側信号機に基づく前記入口位置の決定を行わない、請求項8~11のいずれか一項に記載の車両制御装置。
    The target detection unit detects at least a traffic light as the target,
    The entrance determination unit determines that, before the vehicle enters the intersection recognition range, the target detection unit detects a back-side traffic signal that is a back-side traffic signal of the intersection, and the vehicle enters the intersection recognition range. Claims 8 to 11, wherein the entrance position is not determined based on the far side traffic signal when the far side traffic signal is once lost and the far side traffic signal is re-detected while the own vehicle has entered the vehicle. The vehicle control device according to any one of claims 1 to 3.
  13.  前記信号表示判定部は、前記交差点認識範囲内に存在する全ての信号機を抽出するとともに、その抽出した信号機について位置、形態及び表示色の少なくともいずれかにより分別した結果から、自車両が従うべき信号機の表示色を判定する、請求項8~12のいずれか一項に記載の車両制御装置。 The traffic signal display determination unit extracts all traffic signals existing within the intersection recognition range, and classifies the extracted traffic signals according to at least one of position, form, and display color, and determines the traffic signals to be followed by the vehicle. 13. The vehicle control device according to any one of claims 8 to 12, wherein the display color of is determined.
  14.  自車両の直進方向において交差点よりも手前側の路面に付された路面矢印表示を検出する矢印表示検出部を備え、
     前記信号表示判定部は、前記路面矢印表示の検出結果と、前記交差点認識範囲内で検出される信号機とを対応させ、自車両が従うべき信号機について矢印灯火を含む信号表示の判定を行う、請求項8~13のいずれか一項に記載の車両制御装置。
    An arrow display detection unit that detects a road surface arrow display attached to the road surface on the front side of the intersection in the straight ahead direction of the vehicle,
    The signal display determining unit associates the detection result of the road surface arrow display with the traffic light detected within the intersection recognition range, and determines the signal display including the arrow light for the traffic light to be followed by the own vehicle. 14. The vehicle control device according to any one of items 8 to 13.
PCT/JP2022/026689 2021-08-02 2022-07-05 Vehicle control device WO2023013345A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021126947A JP2023021835A (en) 2021-08-02 2021-08-02 vehicle controller
JP2021-126947 2021-08-02

Publications (1)

Publication Number Publication Date
WO2023013345A1 true WO2023013345A1 (en) 2023-02-09

Family

ID=85155843

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/026689 WO2023013345A1 (en) 2021-08-02 2022-07-05 Vehicle control device

Country Status (2)

Country Link
JP (1) JP2023021835A (en)
WO (1) WO2023013345A1 (en)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170154A (en) * 2003-12-09 2005-06-30 Denso Corp Vehicle drive assisting device
JP2008040795A (en) * 2006-08-07 2008-02-21 Hitachi Ltd Vehicle driving support control apparatus and method
JP2011123535A (en) * 2009-12-08 2011-06-23 Toyota Motor Corp Obstacle detection device
JP2016122362A (en) * 2014-12-25 2016-07-07 本田技研工業株式会社 Traffic support device
WO2017038173A1 (en) * 2015-09-04 2017-03-09 三菱自動車工業株式会社 Following control device
JP2020166487A (en) * 2019-03-29 2020-10-08 本田技研工業株式会社 Driving assist system for vehicles
US20200341466A1 (en) * 2019-04-26 2020-10-29 Nvidia Corporation Intersection pose detection in autonomous machine applications
JP2021018737A (en) * 2019-07-23 2021-02-15 トヨタ自動車株式会社 Signal indication estimation system

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005170154A (en) * 2003-12-09 2005-06-30 Denso Corp Vehicle drive assisting device
JP2008040795A (en) * 2006-08-07 2008-02-21 Hitachi Ltd Vehicle driving support control apparatus and method
JP2011123535A (en) * 2009-12-08 2011-06-23 Toyota Motor Corp Obstacle detection device
JP2016122362A (en) * 2014-12-25 2016-07-07 本田技研工業株式会社 Traffic support device
WO2017038173A1 (en) * 2015-09-04 2017-03-09 三菱自動車工業株式会社 Following control device
JP2020166487A (en) * 2019-03-29 2020-10-08 本田技研工業株式会社 Driving assist system for vehicles
US20200341466A1 (en) * 2019-04-26 2020-10-29 Nvidia Corporation Intersection pose detection in autonomous machine applications
JP2021018737A (en) * 2019-07-23 2021-02-15 トヨタ自動車株式会社 Signal indication estimation system

Also Published As

Publication number Publication date
JP2023021835A (en) 2023-02-14

Similar Documents

Publication Publication Date Title
US10994730B2 (en) Traveling assistance method and traveling assistance device
US10730503B2 (en) Drive control system
US9150223B2 (en) Collision mitigation apparatus
US7676094B2 (en) Road surface reflection detecting apparatus
US7791459B2 (en) Vehicle light control system
US20190333373A1 (en) Vehicle Behavior Prediction Method and Vehicle Behavior Prediction Apparatus
CN109204311B (en) Automobile speed control method and device
US20120314070A1 (en) Lane sensing enhancement through object vehicle information for lane centering/keeping
US20170066445A1 (en) Vehicle control apparatus
US20210086768A1 (en) Driving assistance control apparatus, driving assistance system, and driving assistance control method for vehicle
US9372262B2 (en) Device and method for judging likelihood of collision between vehicle and target, vehicle collision avoidance system, and method for avoiding collision between vehicle and target
KR20180117207A (en) Scenario Recognition System for Automobiles
US20180259636A1 (en) Monitoring device and monitoring method
JP6468136B2 (en) Driving support device and driving support method
JP2019046413A (en) Collision avoidance system
US10930153B2 (en) Vehicle external notification device
JP6363518B2 (en) Lane marking recognition system
US20190346557A1 (en) Vehicle control device and vehicle control method
WO2020209363A1 (en) Road category determination device and drive assist device
US20200035102A1 (en) Drive assist device and drive assist method
US11042759B2 (en) Roadside object recognition apparatus
US20210201057A1 (en) Traffic light recognition system and method thereof
JP2011048641A (en) Object detection device and driving support device
WO2018070335A1 (en) Movement detection device, movement detection method
JP5355209B2 (en) Navigation device, determination method and determination program for traveling lane of own vehicle

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852771

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE