WO2023013295A1 - Anti-fog layer and use thereof - Google Patents
Anti-fog layer and use thereof Download PDFInfo
- Publication number
- WO2023013295A1 WO2023013295A1 PCT/JP2022/025488 JP2022025488W WO2023013295A1 WO 2023013295 A1 WO2023013295 A1 WO 2023013295A1 JP 2022025488 W JP2022025488 W JP 2022025488W WO 2023013295 A1 WO2023013295 A1 WO 2023013295A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- antifogging layer
- fine particles
- layer
- antifogging
- organic fine
- Prior art date
Links
- 239000010419 fine particle Substances 0.000 claims abstract description 104
- 230000009477 glass transition Effects 0.000 claims abstract description 52
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 43
- 239000000178 monomer Substances 0.000 claims description 76
- 229920005989 resin Polymers 0.000 claims description 72
- 239000011347 resin Substances 0.000 claims description 72
- 239000000203 mixture Substances 0.000 claims description 58
- 239000000758 substrate Substances 0.000 claims description 35
- 239000007787 solid Substances 0.000 claims description 32
- 230000003746 surface roughness Effects 0.000 claims description 28
- 229920001577 copolymer Polymers 0.000 claims description 21
- 239000003960 organic solvent Substances 0.000 claims description 21
- 239000000839 emulsion Substances 0.000 claims description 5
- 229920003023 plastic Polymers 0.000 claims description 5
- 239000004033 plastic Substances 0.000 claims description 5
- 230000003287 optical effect Effects 0.000 claims description 4
- 230000000379 polymerizing effect Effects 0.000 claims 1
- 239000002904 solvent Substances 0.000 abstract description 5
- 239000010410 layer Substances 0.000 description 193
- 239000003795 chemical substances by application Substances 0.000 description 54
- 125000000524 functional group Chemical group 0.000 description 32
- 239000002245 particle Substances 0.000 description 27
- 239000011248 coating agent Substances 0.000 description 25
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 description 17
- 229920001519 homopolymer Polymers 0.000 description 17
- 239000010954 inorganic particle Substances 0.000 description 16
- HRPVXLWXLXDGHG-UHFFFAOYSA-N Acrylamide Chemical compound NC(=O)C=C HRPVXLWXLXDGHG-UHFFFAOYSA-N 0.000 description 14
- 239000000126 substance Substances 0.000 description 14
- 238000012360 testing method Methods 0.000 description 14
- CERQOIWHTDAKMF-UHFFFAOYSA-N Methacrylic acid Chemical compound CC(=C)C(O)=O CERQOIWHTDAKMF-UHFFFAOYSA-N 0.000 description 13
- 230000001965 increasing effect Effects 0.000 description 13
- 238000000034 method Methods 0.000 description 13
- 239000003973 paint Substances 0.000 description 13
- 238000000576 coating method Methods 0.000 description 12
- 150000001875 compounds Chemical class 0.000 description 12
- 239000006185 dispersion Substances 0.000 description 12
- 239000010408 film Substances 0.000 description 12
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 11
- NIXOWILDQLNWCW-UHFFFAOYSA-N 2-Propenoic acid Natural products OC(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 10
- -1 alkoxide compound Chemical class 0.000 description 10
- 239000002253 acid Substances 0.000 description 9
- 238000001938 differential scanning calorimetry curve Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 238000002834 transmittance Methods 0.000 description 8
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 7
- 238000000113 differential scanning calorimetry Methods 0.000 description 7
- 239000002250 absorbent Substances 0.000 description 6
- 230000002745 absorbent Effects 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 6
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 5
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 5
- 125000003277 amino group Chemical group 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 239000004927 clay Substances 0.000 description 5
- 238000004132 cross linking Methods 0.000 description 5
- 230000006866 deterioration Effects 0.000 description 5
- 238000001035 drying Methods 0.000 description 5
- 238000011156 evaluation Methods 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N phenol group Chemical group C1(=CC=CC=C1)O ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 5
- 229920000515 polycarbonate Polymers 0.000 description 5
- 239000004417 polycarbonate Substances 0.000 description 5
- 229920001225 polyester resin Polymers 0.000 description 5
- 239000004645 polyester resin Substances 0.000 description 5
- 229920000642 polymer Polymers 0.000 description 5
- 239000012855 volatile organic compound Substances 0.000 description 5
- 239000004593 Epoxy Substances 0.000 description 4
- MCMNRKCIXSYSNV-UHFFFAOYSA-N Zirconium dioxide Chemical compound O=[Zr]=O MCMNRKCIXSYSNV-UHFFFAOYSA-N 0.000 description 4
- 239000000470 constituent Substances 0.000 description 4
- LYCAIKOWRPUZTN-UHFFFAOYSA-N ethylene glycol Natural products OCCO LYCAIKOWRPUZTN-UHFFFAOYSA-N 0.000 description 4
- 239000011521 glass Substances 0.000 description 4
- 230000001771 impaired effect Effects 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 229910052751 metal Inorganic materials 0.000 description 4
- SMZOUWXMTYCWNB-UHFFFAOYSA-N 2-(2-methoxy-5-methylphenyl)ethanamine Chemical compound COC1=CC=C(C)C=C1CCN SMZOUWXMTYCWNB-UHFFFAOYSA-N 0.000 description 3
- POAOYUHQDCAZBD-UHFFFAOYSA-N 2-butoxyethanol Chemical compound CCCCOCCO POAOYUHQDCAZBD-UHFFFAOYSA-N 0.000 description 3
- 150000003926 acrylamides Chemical class 0.000 description 3
- 238000003915 air pollution Methods 0.000 description 3
- 229920000180 alkyd Polymers 0.000 description 3
- 238000004630 atomic force microscopy Methods 0.000 description 3
- 239000008119 colloidal silica Substances 0.000 description 3
- 230000002708 enhancing effect Effects 0.000 description 3
- 150000002148 esters Chemical class 0.000 description 3
- IQPQWNKOIGAROB-UHFFFAOYSA-N isocyanate group Chemical group [N-]=C=O IQPQWNKOIGAROB-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000005011 phenolic resin Substances 0.000 description 3
- 238000002360 preparation method Methods 0.000 description 3
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- DAFHKNAQFPVRKR-UHFFFAOYSA-N (3-hydroxy-2,2,4-trimethylpentyl) 2-methylpropanoate Chemical compound CC(C)C(O)C(C)(C)COC(=O)C(C)C DAFHKNAQFPVRKR-UHFFFAOYSA-N 0.000 description 2
- 229920002818 (Hydroxyethyl)methacrylate Polymers 0.000 description 2
- LMDZBCPBFSXMTL-UHFFFAOYSA-N 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide Chemical compound CCN=C=NCCCN(C)C LMDZBCPBFSXMTL-UHFFFAOYSA-N 0.000 description 2
- XLPJNCYCZORXHG-UHFFFAOYSA-N 1-morpholin-4-ylprop-2-en-1-one Chemical compound C=CC(=O)N1CCOCC1 XLPJNCYCZORXHG-UHFFFAOYSA-N 0.000 description 2
- 125000003504 2-oxazolinyl group Chemical group O1C(=NCC1)* 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 2
- SOGAXMICEFXMKE-UHFFFAOYSA-N Butylmethacrylate Chemical compound CCCCOC(=O)C(C)=C SOGAXMICEFXMKE-UHFFFAOYSA-N 0.000 description 2
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 2
- WOBHKFSMXKNTIM-UHFFFAOYSA-N Hydroxyethyl methacrylate Chemical compound CC(=C)C(=O)OCCO WOBHKFSMXKNTIM-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- XLOMVQKBTHCTTD-UHFFFAOYSA-N Zinc monoxide Chemical compound [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 description 2
- 125000003647 acryloyl group Chemical group O=C([*])C([H])=C([H])[H] 0.000 description 2
- IBVAQQYNSHJXBV-UHFFFAOYSA-N adipic acid dihydrazide Chemical compound NNC(=O)CCCCC(=O)NN IBVAQQYNSHJXBV-UHFFFAOYSA-N 0.000 description 2
- 125000005370 alkoxysilyl group Chemical group 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 2
- 239000007864 aqueous solution Substances 0.000 description 2
- 125000004069 aziridinyl group Chemical group 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- VPKDCDLSJZCGKE-UHFFFAOYSA-N carbodiimide group Chemical group N=C=N VPKDCDLSJZCGKE-UHFFFAOYSA-N 0.000 description 2
- 150000001718 carbodiimides Chemical class 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 238000013329 compounding Methods 0.000 description 2
- 238000006482 condensation reaction Methods 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000002296 dynamic light scattering Methods 0.000 description 2
- 125000003700 epoxy group Chemical group 0.000 description 2
- 238000007710 freezing Methods 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 229910044991 metal oxide Inorganic materials 0.000 description 2
- 150000004706 metal oxides Chemical class 0.000 description 2
- 239000011859 microparticle Substances 0.000 description 2
- 229920001568 phenolic resin Polymers 0.000 description 2
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 2
- 229920000139 polyethylene terephthalate Polymers 0.000 description 2
- 239000005020 polyethylene terephthalate Substances 0.000 description 2
- 238000006116 polymerization reaction Methods 0.000 description 2
- 239000004926 polymethyl methacrylate Substances 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000000047 product Substances 0.000 description 2
- 125000005372 silanol group Chemical group 0.000 description 2
- 229910021647 smectite Inorganic materials 0.000 description 2
- 239000008279 sol Substances 0.000 description 2
- 238000004381 surface treatment Methods 0.000 description 2
- 239000004094 surface-active agent Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 125000003396 thiol group Chemical group [H]S* 0.000 description 2
- LDHQCZJRKDOVOX-UHFFFAOYSA-N trans-crotonic acid Natural products CC=CC(O)=O LDHQCZJRKDOVOX-UHFFFAOYSA-N 0.000 description 2
- 230000007704 transition Effects 0.000 description 2
- 238000011282 treatment Methods 0.000 description 2
- 239000004034 viscosity adjusting agent Substances 0.000 description 2
- BDNKZNFMNDZQMI-UHFFFAOYSA-N 1,3-diisopropylcarbodiimide Chemical compound CC(C)N=C=NC(C)C BDNKZNFMNDZQMI-UHFFFAOYSA-N 0.000 description 1
- YKEGOEUSKXVSPN-UHFFFAOYSA-N 2,2-bis[3-(2-methylaziridin-1-yl)propanoyloxymethyl]butyl 3-(2-methylaziridin-1-yl)propanoate Chemical compound C1C(C)N1CCC(=O)OCC(COC(=O)CCN1C(C1)C)(CC)COC(=O)CCN1CC1C YKEGOEUSKXVSPN-UHFFFAOYSA-N 0.000 description 1
- CMCLUJRFBZBVSW-UHFFFAOYSA-N 2-(2-hydroxyethoxy)-1-methoxyethanol;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(O)COCCO CMCLUJRFBZBVSW-UHFFFAOYSA-N 0.000 description 1
- JAHNSTQSQJOJLO-UHFFFAOYSA-N 2-(3-fluorophenyl)-1h-imidazole Chemical compound FC1=CC=CC(C=2NC=CN=2)=C1 JAHNSTQSQJOJLO-UHFFFAOYSA-N 0.000 description 1
- DPBJAVGHACCNRL-UHFFFAOYSA-N 2-(dimethylamino)ethyl prop-2-enoate Chemical group CN(C)CCOC(=O)C=C DPBJAVGHACCNRL-UHFFFAOYSA-N 0.000 description 1
- IZXIZTKNFFYFOF-UHFFFAOYSA-N 2-Oxazolidone Chemical group O=C1NCCO1 IZXIZTKNFFYFOF-UHFFFAOYSA-N 0.000 description 1
- XSXYESVZDBAKKT-UHFFFAOYSA-N 2-hydroxybenzohydrazide Chemical compound NNC(=O)C1=CC=CC=C1O XSXYESVZDBAKKT-UHFFFAOYSA-N 0.000 description 1
- 125000000954 2-hydroxyethyl group Chemical group [H]C([*])([H])C([H])([H])O[H] 0.000 description 1
- KXGFMDJXCMQABM-UHFFFAOYSA-N 2-methoxy-6-methylphenol Chemical compound [CH]OC1=CC=CC([CH])=C1O KXGFMDJXCMQABM-UHFFFAOYSA-N 0.000 description 1
- HFCUBKYHMMPGBY-UHFFFAOYSA-N 2-methoxyethyl prop-2-enoate Chemical compound COCCOC(=O)C=C HFCUBKYHMMPGBY-UHFFFAOYSA-N 0.000 description 1
- FPQQSJJWHUJYPU-UHFFFAOYSA-N 3-(dimethylamino)propyliminomethylidene-ethylazanium;chloride Chemical compound Cl.CCN=C=NCCCN(C)C FPQQSJJWHUJYPU-UHFFFAOYSA-N 0.000 description 1
- VWIIJDNADIEEDB-UHFFFAOYSA-N 3-methyl-1,3-oxazolidin-2-one Chemical compound CN1CCOC1=O VWIIJDNADIEEDB-UHFFFAOYSA-N 0.000 description 1
- WHNPOQXWAMXPTA-UHFFFAOYSA-N 3-methylbut-2-enamide Chemical compound CC(C)=CC(N)=O WHNPOQXWAMXPTA-UHFFFAOYSA-N 0.000 description 1
- WRNODTYYEUSETK-UHFFFAOYSA-N 3-prop-2-enyl-1,3-oxazolidin-2-one Chemical compound C=CCN1CCOC1=O WRNODTYYEUSETK-UHFFFAOYSA-N 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- NLHHRLWOUZZQLW-UHFFFAOYSA-N Acrylonitrile Chemical compound C=CC#N NLHHRLWOUZZQLW-UHFFFAOYSA-N 0.000 description 1
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- NOWKCMXCCJGMRR-UHFFFAOYSA-N Aziridine Chemical compound C1CN1 NOWKCMXCCJGMRR-UHFFFAOYSA-N 0.000 description 1
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920001634 Copolyester Polymers 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- GYCMBHHDWRMZGG-UHFFFAOYSA-N Methylacrylonitrile Chemical compound CC(=C)C#N GYCMBHHDWRMZGG-UHFFFAOYSA-N 0.000 description 1
- CNCOEDDPFOAUMB-UHFFFAOYSA-N N-Methylolacrylamide Chemical compound OCNC(=O)C=C CNCOEDDPFOAUMB-UHFFFAOYSA-N 0.000 description 1
- WHNWPMSKXPGLAX-UHFFFAOYSA-N N-Vinyl-2-pyrrolidone Chemical compound C=CN1CCCC1=O WHNWPMSKXPGLAX-UHFFFAOYSA-N 0.000 description 1
- 239000002202 Polyethylene glycol Substances 0.000 description 1
- OFOBLEOULBTSOW-UHFFFAOYSA-N Propanedioic acid Natural products OC(=O)CC(O)=O OFOBLEOULBTSOW-UHFFFAOYSA-N 0.000 description 1
- XTXRWKRVRITETP-UHFFFAOYSA-N Vinyl acetate Chemical compound CC(=O)OC=C XTXRWKRVRITETP-UHFFFAOYSA-N 0.000 description 1
- 239000006096 absorbing agent Substances 0.000 description 1
- 230000002378 acidificating effect Effects 0.000 description 1
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000002411 adverse Effects 0.000 description 1
- 239000012670 alkaline solution Substances 0.000 description 1
- 125000000217 alkyl group Chemical group 0.000 description 1
- QGZKDVFQNNGYKY-UHFFFAOYSA-N ammonia Natural products N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 1
- 239000002518 antifoaming agent Substances 0.000 description 1
- 239000007798 antifreeze agent Substances 0.000 description 1
- 229940121375 antifungal agent Drugs 0.000 description 1
- 239000003429 antifungal agent Substances 0.000 description 1
- 239000003963 antioxidant agent Substances 0.000 description 1
- 229920006187 aquazol Polymers 0.000 description 1
- 239000012861 aquazol Substances 0.000 description 1
- 239000000440 bentonite Substances 0.000 description 1
- 229910000278 bentonite Inorganic materials 0.000 description 1
- SVPXDRXYRYOSEX-UHFFFAOYSA-N bentoquatam Chemical compound O.O=[Si]=O.O=[Al]O[Al]=O SVPXDRXYRYOSEX-UHFFFAOYSA-N 0.000 description 1
- UTTHLMXOSUFZCQ-UHFFFAOYSA-N benzene-1,3-dicarbohydrazide Chemical compound NNC(=O)C1=CC=CC(C(=O)NN)=C1 UTTHLMXOSUFZCQ-UHFFFAOYSA-N 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- QHIWVLPBUQWDMQ-UHFFFAOYSA-N butyl prop-2-enoate;methyl 2-methylprop-2-enoate;prop-2-enoic acid Chemical compound OC(=O)C=C.COC(=O)C(C)=C.CCCCOC(=O)C=C QHIWVLPBUQWDMQ-UHFFFAOYSA-N 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000002734 clay mineral Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 238000003851 corona treatment Methods 0.000 description 1
- 239000007822 coupling agent Substances 0.000 description 1
- LDHQCZJRKDOVOX-NSCUHMNNSA-N crotonic acid Chemical compound C\C=C\C(O)=O LDHQCZJRKDOVOX-NSCUHMNNSA-N 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- ZWLIYXJBOIDXLL-UHFFFAOYSA-N decanedihydrazide Chemical compound NNC(=O)CCCCCCCCC(=O)NN ZWLIYXJBOIDXLL-UHFFFAOYSA-N 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000018044 dehydration Effects 0.000 description 1
- 238000006297 dehydration reaction Methods 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 125000004663 dialkyl amino group Chemical group 0.000 description 1
- GUJOJGAPFQRJSV-UHFFFAOYSA-N dialuminum;dioxosilane;oxygen(2-);hydrate Chemical compound O.[O-2].[O-2].[O-2].[Al+3].[Al+3].O=[Si]=O.O=[Si]=O.O=[Si]=O.O=[Si]=O GUJOJGAPFQRJSV-UHFFFAOYSA-N 0.000 description 1
- 238000003618 dip coating Methods 0.000 description 1
- 239000002270 dispersing agent Substances 0.000 description 1
- 239000002612 dispersion medium Substances 0.000 description 1
- 239000012153 distilled water Substances 0.000 description 1
- GRGBENNNGZARRZ-UHFFFAOYSA-N dodecanedihydrazide Chemical compound NNC(=O)CCCCCCCCCCC(=O)NN GRGBENNNGZARRZ-UHFFFAOYSA-N 0.000 description 1
- 239000000975 dye Substances 0.000 description 1
- 239000003995 emulsifying agent Substances 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- SUPCQIBBMFXVTL-UHFFFAOYSA-N ethyl 2-methylprop-2-enoate Chemical compound CCOC(=O)C(C)=C SUPCQIBBMFXVTL-UHFFFAOYSA-N 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 230000004907 flux Effects 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 125000003827 glycol group Chemical group 0.000 description 1
- WGCNASOHLSPBMP-UHFFFAOYSA-N hydroxyacetaldehyde Natural products OCC=O WGCNASOHLSPBMP-UHFFFAOYSA-N 0.000 description 1
- 239000008235 industrial water Substances 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- LDHQCZJRKDOVOX-IHWYPQMZSA-N isocrotonic acid Chemical compound C\C=C/C(O)=O LDHQCZJRKDOVOX-IHWYPQMZSA-N 0.000 description 1
- 239000012948 isocyanate Substances 0.000 description 1
- 150000002513 isocyanates Chemical class 0.000 description 1
- NLYAJNPCOHFWQQ-UHFFFAOYSA-N kaolin Chemical compound O.O.O=[Al]O[Si](=O)O[Si](=O)O[Al]=O NLYAJNPCOHFWQQ-UHFFFAOYSA-N 0.000 description 1
- 238000007561 laser diffraction method Methods 0.000 description 1
- 239000011254 layer-forming composition Substances 0.000 description 1
- VZCYOOQTPOCHFL-UPHRSURJSA-N maleic acid Chemical compound OC(=O)\C=C/C(O)=O VZCYOOQTPOCHFL-UPHRSURJSA-N 0.000 description 1
- 239000011976 maleic acid Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- FQPSGWSUVKBHSU-UHFFFAOYSA-N methacrylamide Chemical compound CC(=C)C(N)=O FQPSGWSUVKBHSU-UHFFFAOYSA-N 0.000 description 1
- LVHBHZANLOWSRM-UHFFFAOYSA-N methylenebutanedioic acid Natural products OC(=O)CC(=C)C(O)=O LVHBHZANLOWSRM-UHFFFAOYSA-N 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052901 montmorillonite Inorganic materials 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- XLDBGFGREOMWSL-UHFFFAOYSA-N n,n'-bis[2,6-di(propan-2-yl)phenyl]methanediimine Chemical compound CC(C)C1=CC=CC(C(C)C)=C1N=C=NC1=C(C(C)C)C=CC=C1C(C)C XLDBGFGREOMWSL-UHFFFAOYSA-N 0.000 description 1
- QNILTEGFHQSKFF-UHFFFAOYSA-N n-propan-2-ylprop-2-enamide Chemical compound CC(C)NC(=O)C=C QNILTEGFHQSKFF-UHFFFAOYSA-N 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 229910052757 nitrogen Inorganic materials 0.000 description 1
- 239000003002 pH adjusting agent Substances 0.000 description 1
- 239000006179 pH buffering agent Substances 0.000 description 1
- 239000012466 permeate Substances 0.000 description 1
- 239000000049 pigment Substances 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 239000004014 plasticizer Substances 0.000 description 1
- 229920002401 polyacrylamide Polymers 0.000 description 1
- 229920006122 polyamide resin Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920001123 polycyclohexylenedimethylene terephthalate Polymers 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001223 polyethylene glycol Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 229920000915 polyvinyl chloride Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000003755 preservative agent Substances 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 239000000376 reactant Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229920003987 resole Polymers 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical compound O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 239000000377 silicon dioxide Substances 0.000 description 1
- 239000000243 solution Substances 0.000 description 1
- 238000005507 spraying Methods 0.000 description 1
- 239000012756 surface treatment agent Substances 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- VZCYOOQTPOCHFL-UHFFFAOYSA-N trans-butenedioic acid Natural products OC(=O)C=CC(O)=O VZCYOOQTPOCHFL-UHFFFAOYSA-N 0.000 description 1
- 229920002554 vinyl polymer Polymers 0.000 description 1
- 239000013053 water resistant agent Substances 0.000 description 1
- 239000011787 zinc oxide Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B32—LAYERED PRODUCTS
- B32B—LAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
- B32B27/00—Layered products comprising a layer of synthetic resin
- B32B27/18—Layered products comprising a layer of synthetic resin characterised by the use of special additives
- B32B27/20—Layered products comprising a layer of synthetic resin characterised by the use of special additives using fillers, pigments, thixotroping agents
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D201/00—Coating compositions based on unspecified macromolecular compounds
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D5/00—Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
- C09D5/02—Emulsion paints including aerosols
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09K—MATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
- C09K3/00—Materials not provided for elsewhere
- C09K3/18—Materials not provided for elsewhere for application to surfaces to minimize adherence of ice, mist or water thereto; Thawing or antifreeze materials for application to surfaces
Definitions
- the present invention relates to an anti-fogging layer and its use.
- Patent Document 1 describes an antifogging thin film formed from a solution in which a metal alkoxide compound, oxide fine particles having a low equilibrium vapor pressure, and photocatalytically active anatase crystal titania fine particles are dispersed. .
- Patent Document 2 describes a water-absorbing anti-fogging member having a fine uneven structure on its surface smaller than the wavelength ⁇ of light to be transmitted.
- Patent Document 3 describes an antifogging layer-forming composition containing a copolymer and a hydrolyzate containing specific structural units.
- Patent Document 4 describes a coating film containing a metal oxide and polymer particles and having a ten-point average roughness of 5 nm or more and 300 nm or less.
- VOCs causes air pollution. Therefore, in 2004, a revised Air Pollution Control Law was issued in Japan, requiring a reduction in the amount of VOCs generated.
- the paint and ink industry uses large amounts of organic solvents to reduce viscosity during coating operations. Furthermore, of the 700,000 tons of VOC emissions in Japan, the paint industry accounts for about 40% and the ink industry accounts for about 5%. As described above, VOC countermeasures are an issue in the paint and ink industries.
- Solvent-based paints are currently used for anti-fogging paints for headlamps. However, in order to reduce the amount of organic solvent used, it is necessary to switch to a water-based paint. However, anti-fogging paints for headlamps are required to have heat resistance. Until now, no water-based anti-fogging paint could meet the heat resistance standards.
- Patent Document 1 the method of forming an antifogging thin film by forming a composition containing a metal alkoxide compound requires baking at about 650°C after coating on a glass substrate. Therefore, the method cannot be used for plastic applications.
- Patent Document 2 describes an anti-fogging member having a fine uneven structure on the surface as described above, it is actually difficult to form an uneven structure on the surface with a water-absorbing anti-fogging film. .
- composition for forming an antifogging layer described in Patent Document 3 has difficulty in maintaining antifogging properties after a heat resistance test. Furthermore, since an organic solvent is required in the production of the copolymer in the antifogging layer, it is difficult to eliminate the organic solvent and use a water-based paint.
- One aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide an antifogging layer that can be produced using an aqueous solvent and has excellent heat resistance.
- the antifogging layer according to one aspect of the present invention contains organic fine particles (A) and has a glass transition temperature of 60°C or higher.
- an antifogging layer that uses an aqueous solvent and has excellent heat resistance.
- FIG. 10 is an AFM (Atomic Force Microscopy) view of the antifogging layer of Example 32;
- (meth)acrylic acid means either one or both of “acrylic acid” and “methacrylic acid”
- (meth)acrylate copolymer means "(meth) It means a resin containing acrylic acid and its derivatives as main constituent units.
- “(meth)acrylic acid” and “derivatives of (meth)acrylic acid” are collectively referred to as “(meth)acrylic monomers”
- “derivatives of (meth)acrylic acid” include (meth) ) acrylates ((meth)acrylic acid esters) and (meth)acrylamides.
- An antifogging layer contains organic fine particles (A) and has a glass transition temperature of 60° C. or higher.
- the antifogging layer preferably contains organic fine particles (A), a curing agent (B) and a resin (C), and may contain other components.
- the heat resistance of the anti-fogging layer is evaluated by the change in the anti-fogging property of the anti-fogging layer due to exposure to heat.
- the anti-fogging layer contains organic fine particles (A) and is an anti-fogging layer that is less likely to deteriorate in anti-fogging properties due to exposure to heat.
- A organic fine particles
- the antifogging layer has a glass transition temperature (Tg) of 60° C. or higher, preferably 80° C. or higher, preferably 90° C. or higher, and 100° C. or higher. is more preferably 110° C. or higher, and most preferably 120° C. or higher. Thereby, the heat resistance of the antifogging layer can be enhanced.
- Tg glass transition temperature
- the organic fine particles (A) described later should be selected, and the organic fine particles (A) should be added to the curing agent (B) and/or the resin (C). It is preferable to contain a large amount in the layer.
- the method for evaluating the glass transition temperature of the antifogging layer is evaluated by differential scanning calorimetry (DSC) analysis, which conforms to the method for measuring the glass transition temperature of the organic fine particles (A) described later.
- the contact angle of water of the antifogging layer according to one aspect of the present invention is preferably 10° or less, more preferably 5° or less.
- the antifogging layer can have high antifogging properties.
- the water contact angle of the antifogging layer can be evaluated using a test piece left at room temperature of 23° C. and a relative humidity of 50%.
- the antifogging layer according to one aspect of the present invention preferably has a surface roughness Ra of 5 nm or more and 200 nm or less. According to one aspect of the present invention, since an antifogging layer having excellent antifogging properties can be produced using water, the amount of organic solvent used can be reduced. As a result, the causes of air pollution and the generation of VOCs can be suppressed. Therefore, according to one aspect of the present invention, it is possible to reduce the adverse effects on the atmospheric environment, so it is possible to contribute to Goal 11 of the Sustainable Development Goals (SDGs) led by the United Nations, "Sustainable urban development.” It becomes possible.
- SDGs Sustainable Development Goals
- the surface roughness Ra of the antifogging layer is 5 nm or more, and more preferably 10 nm or more.
- the specific surface area of the antifogging layer surface can be increased, thereby enhancing the antifogging property of the antifogging layer.
- the surface roughness Ra of the anti-fogging layer is less than 5 nm, the irregularities formed on the surface of the anti-fogging layer become smaller, and as a result, the surface area resulting from the fine irregularities becomes smaller, and the anti-fogging layer becomes thinner. Less water permeates.
- the surface roughness Ra of the antifogging layer is 200 nm or less, preferably 150 nm or less, more preferably 100 nm or less, even more preferably 70 nm or less, and preferably 50 nm or less. Most preferred. Since the surface roughness Ra of the antifogging layer is finer at 200 nm or less, it prevents the light transmittance of the antifogging layer from decreasing due to the scattering of visible light on the unevenness present on the surface of the antifogging layer. can. Therefore, the light transmittance of the antifogging layer can be enhanced. That is, the antifogging layer has a surface roughness Ra of 5 nm or more and 200 nm or less, so that it can have both high antifogging properties and high light transmittance.
- the "arithmetic mean roughness Ra" defined in JIS-B-0601:2013 is adopted for the "surface roughness Ra" of the antifogging layer.
- a surface roughness measuring instrument [manufactured by Kosaka Laboratory Ltd., model name Surfcorer SE500] was used, and the surface roughness Ra was obtained under the conditions of a scanning range of 4 mm and a scanning speed of 0.2 mm/s.
- the main component of the anti-fogging layer is the solid content containing the materials contained in the composition for producing the anti-fogging layer and their reaction products.
- the "solid content” preferably contains the organic fine particles (A), the curing agent (B), and the resin (C).
- the solid organic fine particles (A) and resin (C) and the curing agent (B) can react with each other to form a reactant in the antifogging layer.
- the anti-fogging layer contains, as a solid content, inorganic particles, an absorbent, and others described later in addition to the organic fine particles (A), the curing agent (B), and the resin (C), as long as the effects of the present invention are not impaired. may contain components of
- Organic fine particles (A) are resin microparticles having a polar group, and have a glass transition temperature of 60° C. or higher, preferably 80° C. or higher, preferably 90° C. or higher, and 100° C. or higher. is more preferably 110° C. or higher, and most preferably 120° C. or higher.
- the organic fine particles (A) are contained in the antifogging layer while maintaining the shape of the particles, and have a glass transition temperature of 60° C. or higher, so that the particles retain their shape even when the antifogging layer is heated. It can be included in the antifogging layer while maintaining the Thereby, for example, even if it is exposed to heat of 80° C.
- the resin constituting the organic fine particles (A) is not particularly limited as long as it has a glass transition temperature of 250° C. or less.
- the content of the organic fine particles (A) in the antifogging layer may be 58% by mass or more, preferably 65% by mass or more, and preferably 75% by mass, based on the total amount of solids contained in the antifogging layer as 100% by mass. % or more, and most preferably 80 mass % or more.
- the surface roughness Ra of the antifogging layer can be increased, thereby improving the antifogging effect. can enhance sexuality.
- the heat resistance of the antifogging layer can be further enhanced by containing a larger amount of the organic fine particles (A) having a glass transition temperature of 60° C. or higher within the range of 58 to 99% by mass.
- the coating strength of the antifogging layer can be further increased.
- the component that binds the organic fine particles (A) together can be increased, and the antifogging layer can be preferably formed.
- the content of the organic fine particles (A) in the antifogging layer means the content as a solid content that does not substantially contain a dispersion medium.
- the organic fine particles (A) should be selected based on the glass transition temperature (Tg), the particle diameter D50, and the average SP value of the monomers contained as structural units in the resin of the organic fine particles (A).
- the glass transition temperature of the organic fine particles (A) can be obtained from a DSC curve evaluated according to JIS-K-7122:2012 by differential scanning calorimetry (DSC) analysis.
- DSC differential scanning calorimetry
- the temperature scanning range for obtaining the DSC curve and the evaluation conditions such as the temperature scanning speed are described in detail in Examples, so please refer to them.
- the glass transition temperature of the organic fine particles (A) may be roughly calculated as the average value of the glass transition temperatures of the homopolymers of the monomers contained as structural units in the organic fine particles (A).
- the glass transition temperature of the organic fine particles (A) is obtained by multiplying, for each monomer, the glass transition temperature of the homopolymer of the monomer and the mass ratio (% by mass) of each monomer contained in the resin as a structural unit. It is approximated as the sum of the values obtained by
- the glass transition temperature of the homopolymer may refer to the value calculated by the Fox formula described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)].
- the glass transition temperature of the homopolymer which is about 100,000, may be obtained from the DSC curve according to JIS-K-7122:2012, similarly to the method for measuring the glass transition temperature of the organic fine particles (A) described above.
- the organic fine particles (A) can increase the glass transition temperature of the organic fine particles (A) by containing a large number of monomers having a higher homopolymer glass transition temperature as structural units, thereby forming an antifogging layer. can increase the heat resistance of From the viewpoint of increasing the glass transition temperature of the organic fine particles (A), the homopolymer of the monomer contained as a structural unit in the organic fine particles (A) may have a glass transition temperature of 60° C. or higher, and may be 80° C. or higher.
- the temperature is preferably 90° C. or higher, more preferably 100° C. or higher, still more preferably 110° C. or higher, and most preferably 120° C. or higher.
- the glass transition temperature of the homopolymer of the monomer contained as a structural unit in the organic fine particles (A) may be 250° C. or lower.
- (meth)acrylamide-based monomers having a high homopolymer glass transition temperature include acrylamide (homopolymer Tg: 153°C) and acryloylmorpholine (homopolymer Tg: 145°C).
- the organic fine particles (A) contain structural units derived from a monomer having a glass transition temperature of 60° C. or higher in the homopolymer. It is preferably contained in an amount of 60% by mass or more, more preferably 80% by mass or more, based on 100% by mass of the constituting copolymer.
- the organic fine particles (A) contain 60% by mass or more of structural units derived from a monomer having a high glass transition temperature of 80° C. or higher in a homopolymer, and the glass in the homopolymer The constituent unit derived from a monomer having a transition temperature lower than 80° C.
- the organic fine particles (A) contain structural units derived from a monomer having a polyethylene glycol chain such as methoxypolyethylene glycol methacrylate. preferably. However, structural units derived from monomers such as methoxypolyethylene glycol methacrylate have a low homopolymer glass transition temperature.
- the constituent units of the homopolymer having a low glass transition temperature are contained in the organic fine particles (A), and the total amount of the constituent units is 100% by mass. , 40% by mass or less.
- the glass transition temperature of the structural unit of the homopolymer having a low glass transition temperature may be ⁇ 40° C. or lower, preferably 0° C. or lower, more preferably 40° C. or lower, and lower than 80° C. is most preferred.
- the organic fine particles (A) can adjust the surface roughness Ra of the antifogging layer by the particle diameter thereof.
- the particle diameter D50 of the organic fine particles (A) is a particle diameter corresponding to cumulative 50% on a volume basis, and the particle diameter D50 is sometimes referred to as a median particle diameter or a median diameter.
- the volume-based particle diameter D50 is preferably determined by a laser diffraction method using a dynamic light scattering particle size distribution analyzer or the like.
- the particle diameter D50 of the organic fine particles (A) is preferably 5 nm or more and 200 nm or less, more preferably 10 nm or more and 150 nm or less, and 15 nm or more and 100 nm or less. is more preferred.
- the surface roughness Ra of the antifogging layer can be further increased by the unevenness caused by the organic fine particles (A) having a larger particle diameter D50 within the range of 5 nm to 200 nm. That is, the organic fine particles (A) can make the surface roughness Ra of the antifogging layer within the range of 5 nm or more and 200 nm or less.
- the organic fine particles (A) can provide the antifogging layer with a surface roughness Ra of 5 nm or more and 200 nm or less. Therefore, the antifogging property of the antifogging layer can be enhanced. Further, by using the organic fine particles (A) having a smaller particle diameter D50 within the range of 5 nm or more and 200 nm or less, the light transmittance of the antifogging layer can be further enhanced.
- SP value The average value of the SP values of the monomers contained as structural units in the resin constituting the organic fine particles (A) is the mass ratio of each monomer contained in the resin as a structural unit ( (% by mass)).
- the SP value of each monomer is determined by the following formula (1) based on the Fedors calculation method (see “Polymer Engineering and Science", Vol. 14, No. 2 (1974), pp. 148-154). be able to.
- ⁇ is the solubility parameter (SP value)
- ⁇ i ⁇ ei is the molar evaporation energy of the monomer (cal/mol)
- ⁇ i ⁇ vi is the molar volume of the monomer (cm 3 /mol).
- the hydrophilicity of the organic fine particles (A) can be confirmed using the average SP value of the monomers contained as structural units in the organic fine particles (A) as an indicator.
- the average SP value of each monomer contained as a structural unit in the organic fine particles (A) can be 21 MPa 1/2 or more, preferably 24 MPa 1/2 or more, and is 26 MPa 1/2 or more. is preferred, and 27 MPa 1/2 or more is more preferred. Further, the organic fine particles (A) preferably have an SP value of 32 MPa 1/2 or less. From the viewpoint of making the SP value of water (47.9) closer to the SP value of water (47.9) in order to increase the hydrophilicity of the organic fine particles (A), the average SP value of the monomer should be higher with a lower limit of 21 MPa 1/2 . preferable. Moreover, the SP value of the monomer obtained from the formula (1) is not limited as long as it is close to the SP value of water (47.9 MPa 1/2 ), but it can be 32 MPa 1/2 or less.
- a monomer contained as a structural unit in the resin may be a (meth)acrylic monomer, and the (meth)acrylic monomer includes, for example, a (meth)acrylamide monomer, a (meth)acrylate and (meth)acrylic acid-based monomers, and may contain other monomers described later.
- (Meth) acrylic monomers such as (meth) acrylamide monomers and (meth) acrylate monomers may have a crosslinkable functional group.
- a crosslinkable functional group other than an unsaturated double bond group such as a vinyl group or a (meth)acryloyl group that contributes to the monomer being included as a structural unit of the resin that constitutes the organic fine particle (A). means.
- (Meth)acrylamide-based monomers are preferred as monomers with high SP values. That is, by including a structural unit derived from a (meth)acrylamide-based monomer in the (meth)acrylate copolymer, the SP value of the resin can be increased, and the hydrophilicity of the organic fine particles (A) can be increased. can be done.
- Examples of (meth)acrylamide-based monomers include acrylamide, acryloylmorpholine, methacrylamide, dialkyl(meth)acrylamides such as dimethylacrylamide, and monoalkyl(meth)acrylamides such as isopropylacrylamide.
- the structural units derived from the (meth)acrylamide-based monomer are the total structural units derived from the monomers contained in the (meth)acrylate copolymer. Based on 100% by mass, the content is preferably 5 to 100% by mass, more preferably 50 to 95% by mass.
- the (meth)acrylamide-based monomer may have a crosslinkable functional group, like the (meth)acrylate-based monomer described later.
- (Meth) crosslinkable functional groups possessed by acrylamide-based monomers include, for example, N-methylol groups, N-alkoxymethylol groups, N-methylol ether groups and the like, and having such crosslinkable functional groups ( Examples of meth)acrylamide-based monomers include N-methylolacrylamide and N-methylolamethacrylamide.
- (Meth)acrylate-based monomers include (meth)acrylate-based monomers having no crosslinkable functional group and (meth)acrylate-based monomers having a crosslinkable functional group. be done.
- Examples of (meth)acrylate monomers having no crosslinkable functional group include alkyl (meth)acrylates such as butyl methacrylate and ethyl methacrylate; dialkylamino groups such as dimethylaminoethyl acrylate ( meth)acrylate; (meth)acrylate monomers having a structure derived from (poly)alkylene glycol such as methoxyethyl acrylate and methoxydiethylene glycol acrylate.
- Structural units derived from (meth)acrylate-based monomers having no crosslinkable functional groups in the fine particle resin are, for example, within a range in which the average SP value of the above monomers is 21 MPa 1/2 or more. should be included in
- Examples of the crosslinkable functional group possessed by the (meth)acrylate monomer include a hydroxyl group, a carboxyl group, a mercapto group, a phenol group, an amino group, a silanol group, and a crosslinkable functional group such as an alkoxysilyl group.
- Examples of (meth)acrylate monomers having crosslinkable functional groups include 2-hydroxyethyl (meth)acrylate.
- (Meth)acrylate monomers having crosslinkable functional groups other than unsaturated double bond groups such as vinyl groups and (meth)acryloyl groups are included as structural units in the (meth)acrylate copolymer.
- the crosslinkable functional group can react with, for example, a curing agent (B) described later, inorganic particles, or the like.
- a curing agent (B) described later inorganic particles, or the like.
- structural units derived from a (meth)acrylamide-based monomer having an N-methylol group, an N-alkoxymethylol group, or an N-methylol ether group a dehydration condensation reaction and a dealcoholization condensation reaction are carried out to form organic fine particles (A).
- the (meth)acrylic monomer having a crosslinkable functional group is not limited, but the total of structural units derived from the monomers contained in the (meth)acrylate copolymer is 100 mass. %, preferably 1 to 100% by mass, more preferably 5 to 90% by mass.
- (Meth)acrylic acid-based monomers include, for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, and the like.
- the (meth)acrylic acid-based monomer is preferably acrylic acid or methacrylic acid.
- These (meth)acrylic acid-based monomers may also be monomers capable of reacting with, for example, a curing agent (B) described later, in that they have a carboxyl group as a crosslinkable functional group.
- monomers include monomers such as acrylonitrile and methacrylonitrile, and vinyl-based monomers such as vinyl acetate, styrene, N-vinylpyrrolidone, and vinylmethyloxazolidinone.
- Methyloxazolidinone can be a monomer having an oxazolidinone group as a crosslinkable functional group.
- Organic fine particles (A) are typically derived from (meth)acrylamide-based monomers, (meth)acrylate-based monomers, and (meth)acrylic acid-based monomers as main structural units. It may be fine particles of a (meth)acrylate copolymer containing a structural unit that The (meth)acrylate copolymer can suitably impart hydrophilicity to the organic fine particles (A) by containing a structural unit derived from a monomer having a high SP value.
- the organic fine particles (A) can be obtained from Takamatsu Yushi Co., Ltd., for example, as a powder or a dispersion liquid.
- Table 1 below shows examples of representative monomers that can be contained as structural units in the resin of the organic fine particles (A), and the glass transition temperatures and SP values of their homopolymers. From the glass transition temperatures and SP values of the homopolymers of the monomers exemplified in Table 1, it can be confirmed that the (meth)acrylamide-based monomer is preferable in that it has a high glass transition temperature and a high SP value.
- the antifogging layer preferably contains a curing agent (B).
- Curing agent (B) preferably contains a compound having at least one crosslinkable functional group.
- the anti-fogging layer may also be a layer formed by a cross-linking reaction product of a compound having a cross-linkable functional group contained in the curing agent (B) and the organic fine particles (A).
- the curing agent (B) itself may be a compound that undergoes a cross-linking polymerization reaction, but it should cross-link with the cross-linking functional group of the (meth)acrylate-based monomer, which is the structural unit of the organic fine particles (A). is preferably a compound having a functional group capable of The compound contained in the curing agent (B) preferably has at least one, preferably two or more crosslinkable functional groups in its chemical structure. As long as the curing agent (B) has at least one or more crosslinkable functional groups, the compound may be a monomeric compound, an oligomer, or a polymer.
- the content of the curing agent (B) is preferably in the range of 1% by mass or more and 30% by mass or less in terms of solid content, assuming that the total solid content of the antifogging layer is 100% by mass. Within this range, the higher the content of the curing agent (B), the higher the film strength of the antifogging layer. Further, in the range of 1% by mass or more and 30% by mass or less, the smaller the amount, the higher the antifogging property can be imparted to the antifogging layer.
- the functional group that the compound contained in the curing agent (B) has and is capable of undergoing a cross-linking reaction with the cross-linkable functional group of the organic fine particles (A) is a functional group that cross-links with each other. Synonymous.
- Examples of crosslinkable functional groups possessed by the curing agent (B) include carbodiimide groups, epoxy groups, isocyanate groups, blocked isocyanate groups, oxazoline groups, hydrazide groups, and aziridine groups.
- crosslinkable functional groups are N-methylol groups, N-alkoxymethylol groups, N-methylol ether groups, and hydroxyl groups, silanol groups, alkoxysilyl groups, which the above (meth)acrylate monomers may have, It can preferably react with a crosslinkable functional group such as a carboxyl group, a mercapto group, a phenol group and an amino group.
- the compound having such a crosslinkable functional group is not limited, it is preferably a water-soluble compound that dissolves in an aqueous system or a water-dispersible compound that disperses in an aqueous system. That is, curing agent (B) is available as an aqueous solution, aqueous dispersion, or emulsion and can be included in the composition for forming the antifogging layer.
- the curing agent (B) may contain an organic solvent as long as the effects of the present invention are not impaired.
- the curing agent (B) includes, for example, a curing agent having a carbodiimide group, such as Carbodilite (registered trademark) (manufactured by Nisshinbo Chemical Co., Ltd.), Carbosista (registered trademark) (manufactured by Teijin Limited), N,N'- Dicyclohexylcarbodiimide (available from Tokyo Chemical Industry Co., Ltd.), N,N'-diisopropylcarbodiimide (available from Fujifilm Wako Pure Chemical Industries, Ltd.), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide ( available from Fujifilm Wako Pure Chemical Industries, Ltd.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (available from Fujifilm Wako Pure Chemical Industries, Ltd.), bis(2,6-diisopropylphenyl)carbodiimide (available from
- Curing agents having an epoxy group include, for example, Denacol (registered trademark) (manufactured by Nagase ChemteX Corporation), water-based epoxy resin jER (registered trademark) series (manufactured by Mitsubishi Chemical Corporation), ADEKA RESIN (registered trademark) EM series ( manufactured by ADEKA Corporation) and the like.
- Curing agents having a blocked isocyanate group include, for example, Duranate (registered trademark) (manufactured by Asahi Kasei Corporation), Coronate (registered trademark) series (manufactured by Tosoh Corporation), and the like.
- Curing agents having an oxazoline group include, for example, Epocross (registered trademark) (manufactured by Nippon Shokubai Co., Ltd.), poly(2-ethyl-2-oxazoline) (available from FUJIFILM Wako Pure Chemical Industries, Ltd.), and the like.
- Curing agents having a hydrazide group include adipic acid dihydrazide (available from Tokyo Kasei Co., Ltd.), sebacic acid dihydrazide, dodecanediohydrazide, isophthalic acid dihydrazide, and salicylic acid hydrazide (all available from Otsuka Chemical Co., Ltd.). is mentioned.
- Chemitite registered trademark
- Nippon Shokubai Co., Ltd. trimethylolpropane tris [3-(2-methylaziridin-1-yl) propionate] (available from Nippon Daikei Energy Co., Ltd.) etc.
- the antifogging layer preferably contains a resin (C) in addition to the organic fine particles (A) and the curing agent (B) described above. Since the antifogging layer contains the resin (C), the resin (C) and the curing agent (B) can be reacted to form a stronger coating. In addition, by including the resin (C), the adhesion to the substrate can be enhanced.
- the resin (C) preferably has a crosslinkable functional group so as to react with at least the curing agent (B).
- the crosslinkable functional group is, for example, an acid group such as a carboxyl group, a hydroxyl group, a phenol group, an amino group, or the like, from the viewpoint that the water solubility or water dispersibility of the resin (C) itself can be improved.
- the resin (C) include polyester resins, polycarbonate-based urethane resins, epoxy ester resins, alkyd resins, water-soluble phenol resins, and the like. It can be an emulsion.
- the anti-fogging layer can be suitably prepared as an aqueous coating agent by containing the resin (C).
- the acid value of the resin (C) is preferably in the range of 1 to 200 mgKOH/g, more preferably 2 to 60 mgKOH/g. preferable. Accordingly, within the range of the acid value, the higher the acid value, the higher the water solubility of the resin (C) and the higher the heat resistance of the antifogging layer. Further, the higher the acid value, the more the composition described below can be made into an aqueous solvent-based composition. In addition, the lower the acid value, the higher the water resistance of the antifogging layer containing the resin (C).
- the hydroxyl value of the resin (C) is preferably in the range of 1 to 200 mgKOH/g, preferably 2 to 120 mgKOH/g. Accordingly, within the range of the hydroxyl value, the higher the hydroxyl value, the higher the water solubility of the resin (C) and the higher the heat resistance of the antifogging layer. Moreover, the higher the hydroxyl value, the more the composition described later can be made into an aqueous solvent-based composition. In addition, the lower the hydroxyl value, the higher the water resistance of the antifogging layer containing the resin (C).
- the resin (C) is a resin having a phenol group or an amino group
- the resin (C) having a carboxyl group and a hydroxyl group the water solubility of the resin (C) and the heat resistance of the antifogging layer to be produced are , and the water resistance of the antifogging layer, the amount of phenol groups or amino groups in the resin (C) may be designed.
- the resin (C) preferably has a glass transition temperature of 20°C or higher, more preferably 50°C or higher. Thereby, the heat resistance of the antifogging layer can be further enhanced.
- the compounding ratio of the curing agent (B) and the resin (C) is such that the cured product of the curing agent (B) and the resin (C) has a high glass transition temperature.
- an appropriate compounding ratio may be determined from the acid value and/or the hydroxyl value.
- the antifogging layer is contained in the antifogging layer such that the total amount of the curing agent (B) and the resin (C) is 2% by mass or more and 43% by mass or less in terms of the solid content contained in the antifogging layer. Within this range, the smaller the amount, the better the heat resistance of the antifogging layer.
- the total content of the curing agent (B) and the resin (C) in the antifogging layer is preferably 43% by mass or less, more preferably 20% by mass or less in terms of solid content. Moreover, when the total content of the curing agent (B) and the resin (C) in the antifogging layer is 2% by mass or more, the film strength of the antifogging layer can be increased.
- the resin (C) is obtained as an aqueous solution, aqueous dispersion, or emulsion, and can be included in the composition described below.
- Examples of the resin (C) include polyester resins such as Pes resin series (manufactured by Takamatsu Yushi Co., Ltd.) and Aronmelt (registered trademark) PES-1000, 2000 series (manufactured by Toa Gosei Co., Ltd.).
- Examples of water-based phenolic resins include Phenolite (registered trademark) TD-4304 (manufactured by DIC Corporation).
- Polycarbonate-based urethane resins include Hydran (registered trademark) (manufactured by DIC Corporation), epoxy ester resins, and alkyd resins such as Watersol (registered trademark) (manufactured by DIC Corporation).
- the antifogging layer may contain inorganic particles as another component.
- the inorganic particles contained in the antifogging layer are preferably, for example, alumina, silica, zirconia, titania, zinc oxide, other metal oxide fine particles, carbon, etc.
- Alumina sol, colloidal silica, silica sol, zirconia sol, titania sol, other metal are available as colloidal particles such as sols of fine oxide particles.
- the colloidal particles can be acidic sols, alkaline sols, or neutral stabilized sols.
- the inorganic particles can be crosslinked with the curing agent (B) and/or the resin (C) described above, and the inorganic particles can also be crosslinked with each other.
- the inorganic particles may have a volume-based particle diameter D50 of 2 nm or more, preferably 3 nm or more. This can prevent the surface roughness of the antifogging layer from being damaged. Further, the inorganic particles preferably have a particle diameter D50 of 200 nm or less from the viewpoint of imparting high light transmittance to the antifogging layer.
- the content of the inorganic particles is, for example, preferably in the range of 0.1% by mass or more and 10.0% by mass or less when the total amount of solids contained in the antifogging layer is 100% by mass.
- the content of the inorganic particles is 10.0% by mass or less, it is possible to suitably prevent deterioration of the antifogging properties due to the inorganic particles.
- the anti-fogging layer has the effect of imparting heat resistance as high light transmittance.
- the inorganic particles may be obtained as powder, dispersion, or sol, and may contain an organic solvent such as alcohol to the extent that the effects of the present invention are not impaired.
- examples of such inorganic particles include Aluminasol 10A (manufactured by Kawaken Fine Chemicals Co., Ltd.), and colloidal silica such as Snowtech (registered trademark) series (manufactured by Nissan Chemical Industries, Ltd.).
- the anti-fogging layer may contain an absorbent, a film-increasing aid, and an anti-freezing agent as other components.
- Absorbents include, for example, mixed layer clay.
- the mixed bed clay may preferably be an industrially synthesized synthetic clay, such as smectite, bentonite, montmorillonite, and the like.
- an absorbent By adding an absorbent, the function of absorbing and retaining water in the antifogging layer can be added, and the antifogging performance can be enhanced.
- These mixed bed clays may be included in the compositions described below as anti-settling agents and/or viscosity modifiers, in addition to being absorbents.
- the mixed layer clay is not limited, for example, it is preferable to use one with a particle diameter D50 of 200 nm or less in the long axis.
- the content of the mixed layer clay may be appropriately designed within a range that does not impair the effects of the present invention. It is preferably in the range of mass % or less.
- Mixed layer clay minerals include, for example, smectites such as Sumecton (registered trademark) and Kunipia (registered trademark) (both manufactured by Kunimine Industries Co., Ltd.).
- the film-increasing aid includes water-soluble organic solvents having a boiling point higher than that of water, such as butyl cellosolve (ethylene glycol-monobutyl ether), texanol (2,2,4-trimethylpentane-1,3-diol monoisobutyrate) and other organic solvents.
- the antifreeze agent is typically ethylene glycol.
- a water-soluble organic solvent refers to an organic solvent that dissolves in water at room temperature (23° C.) at a concentration of at least 4.0% by mass.
- the film-increasing aid and the antifreezing agent are also organic solvents, and the content of the film-increasing aid in the antifogging layer is preferably 4.0% by mass or less, preferably 2% by mass or less, and 0 It is preferably 0.5% by mass or less, more preferably 0.1% by mass or less.
- it is possible to prevent the heat resistance of the anti-fogging layer from being impaired, in other words, the deterioration of the anti-fogging property due to exposure to heat.
- the organic fine particles (A) themselves can be prevented from being dissolved by the organic solvent, and the surface roughness Ra of the antifogging layer can be maintained. This is expected to prevent deterioration of antifogging properties caused by surface roughness.
- the antifogging layer includes surfactants such as leveling agents, antifoaming agents, dispersants, and emulsifiers, viscosity modifiers, antioxidants, UV absorbers, plasticizers, and preservatives. , an antifungal agent, and a water-resistant agent. Some of these surfactants and additives may be included as solids in the composition for making the antifogging layer.
- the anti-fogging layer may contain coloring agents such as coloring pigments and dyes in order to impart a beautiful appearance to the substrate within a range that does not impair the effects of the present invention.
- the antifogging layer may contain, for example, a pH adjuster, a pH buffering agent, etc. derived from the composition for producing the antifogging layer.
- a substrate according to one aspect of the present invention comprises a substrate layer (a) and an antifogging layer (b), wherein the antifogging layer (b) is disposed on the substrate layer (a).
- the antifogging layer (b) is the antifogging layer according to one aspect of the present invention described above.
- the description of the antifogging layer (b) conforms to the description of the antifogging layer according to one aspect of the present invention, and the same description will not be repeated.
- the substrate layer (a) is a layer for placing the antifogging layer (b) thereon.
- the material of the substrate layer (a) can be appropriately selected according to the use of the substrate.
- Examples of the substrate layer (a) include glass, resin materials, metals, ceramics, and the like, and composite materials thereof may also be used. Among them, a plastic having optical transparency is more preferable.
- plastics having optical transparency include molding polycarbonate resins, acrylic resins, polyester resins, polystyrene resins, ABS resins, polyvinyl chloride resins, polyamide resins, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), Polycyclohexylene dimethylene terephthalate copolyester resin (Tritan (registered trademark): manufactured by Eastman Chemical Company) and the like.
- the shape of the substrate layer (a) is not limited as long as the substrate according to one aspect of the present invention is provided with the antifogging layer (b). That is, the substrate according to one aspect of the present invention can be a substrate molded into a desired shape depending on the application.
- the substrate may be, for example, a light-transmitting substrate that constitutes a part of a vehicle such as a passenger car, a lighting device such as a headlamp or a tail lamp in a ship, an aircraft, or the like, or a spectacle lens.
- the method of arranging the antifogging layer (b) on the substrate layer (a) is not particularly limited.
- the composition may be cured.
- the method for curing the composition may be appropriately selected according to the components of the composition, and for example, the composition may be cured by drying by heating.
- the surface on which the antifogging layer (b) is formed is subjected to a surface treatment to improve the wettability and/or adhesion of the antifogging layer (b). good too.
- Surface treatments include, for example, corona discharge treatment, chemical conversion treatment, plasma treatment, acid and alkaline solution treatment, and the like.
- the surface of the substrate layer (a) on which the antifogging layer (b) is formed may be coated with a surface treatment agent such as a primer and a coupling agent.
- a known method can be adopted as a method for applying the composition according to one aspect of the present invention.
- the application method includes a spray coating method, a dip coating method, a roll coating method, a bar coater method, and the like. mentioned.
- drying and curing after applying the composition according to one aspect of the present invention may be appropriately designed according to the type of the curing agent (B) or the resin (C), and is not limited. , 60° C. or higher, preferably 100° C. or higher.
- the organic fine particles (A) contained in the composition have a high glass transition temperature, so that the aqueous solvent is sufficiently dried and the curing agent (B) is sufficiently cross-linked.
- the application and drying of the composition according to one aspect of the present invention and the heating may be performed once, or may be repeated multiple times so as to obtain the desired film thickness.
- the antifogging layer may be produced by repeating the application and drying of the composition according to one aspect of the present invention a plurality of times and heating once.
- the film thickness of the composition according to one aspect of the present invention after coating and drying is preferably, for example, 20 nm to 10000 nm on the surface of the substrate.
- the film thickness of the antifogging layer is 20 nm or more, suitable antifogging properties can be imparted to the substrate covered with the antifogging layer.
- the film thickness of the antifogging layer is 10000 nm or less, high light transmittance can be imparted to the antifogging layer.
- compositions for producing an antifogging layer according to one aspect of the present invention contain organic fine particles (A) and water,
- the glass transition temperature of the organic fine particles (A) is preferably 60° C. or higher. That is, the composition, the organic fine particles (A) may be a water-based composition.
- the description of the configuration of the composition according to one aspect of the present invention conforms to the description regarding the antifogging layer according to one aspect of the present invention, and the same description will not be repeated.
- the antifogging layer according to one aspect of the present invention can be suitably produced.
- the composition according to one aspect of the present invention more preferably contains a curing agent (B).
- the content of the curing agent (B) is more preferably 1% by mass or more and 30% by mass or less in terms of solid content.
- the composition according to one aspect of the present invention preferably further contains a curing agent (B) and a resin (C). Further, it is more preferable that the total amount of the curing agent (B) and the resin (C) is 2% by mass or more and 43% by mass or less in terms of solid content.
- the total amount of the curing agent (B) and the resin (C) is 2% by mass or more, the adhesion of the antifogging layer to the substrate is obtained, and the total amount of the curing agent (B) and the resin (C) is 43% by mass. % or less, a surface roughness for enhancing the antifogging property of the antifogging layer can be obtained.
- the content of the organic fine particles (A) is more preferably 58% by mass or more and 99% by mass or less in terms of solid content. This is for suitably producing the antifogging layer according to one aspect of the present invention.
- the content of the organic solvent is less than 4.0% by mass relative to the solid content.
- an antifogging layer having excellent antifogging properties can be produced using water, so that the amount of organic solvent used can be reduced.
- the organic solvent include water-soluble organic solvents having a boiling point higher than that of water, which are used as film-increasing aids or freezing agents.
- the composition according to one aspect of the present invention as a composition for producing an antifogging layer, preferably contains 30 to 50000 parts by mass of water as a solvent with a total solid content of 100 parts by mass. This makes it possible to obtain a composition (coating agent) for producing an antifogging layer that can suitably exhibit antifogging properties of the organic fine particles (A).
- Water as a solvent can be, for example, deionized water, distilled water, tap water, industrial water, and the like.
- solid content is distinguished from water that evaporates from the composition and volatile solvents, and is included as a composition in the antifogging layer produced using the composition according to one aspect of the present invention. A component need not necessarily be "solid".
- an anti-fogging layer containing organic fine particles (A) and having a surface roughness Ra of 5 nm or more and 200 nm or less is produced.
- a method of manufacturing a cloudy layer is also within the scope of the present invention.
- the antifogging layer according to one aspect of the present invention can be suitably produced.
- the substrate to which the composition is applied may be appropriately selected according to the purpose of the antifogging layer.
- the antifogging layer according to aspect 1 of the present invention contains organic fine particles (A) and has a glass transition temperature (Tg) of 60° C. or higher.
- the content of the organic fine particles (A) is 58% by mass or more and 99% by mass or less in terms of solid content.
- the anti-fogging layer according to aspect 3 of the present invention preferably has a water contact angle of less than 10°.
- the glass transition temperature of the organic fine particles (A) is preferably 60°C or higher.
- the antifogging layer according to aspect 5 of the present invention in any one of aspects 1 to 4, preferably has a surface roughness Ra of 5 nm or more and 200 nm or less.
- a substrate according to aspect 6 of the present invention comprises a substrate layer (a) and an antifogging layer (b), wherein the antifogging layer (b) is the antifogging layer according to any one of aspects 1 to 5. layer and is disposed on said substrate layer (a).
- the substrate layer (a) is a plastic having optical transparency.
- a composition according to aspect 8 of the present invention is a composition for producing an antifogging layer according to any one of aspects 1 to 5, comprising organic fine particles (A) and water.
- composition according to aspect 9 of the present invention in aspect 8, preferably has an organic solvent content of less than 4.0% by mass relative to the solid content of the antifogging layer.
- the organic fine particles (A) are a (meth)acrylate copolymer, and the (meth)acrylate copolymer is a monomer mixture. It is preferably a copolymer obtained by polymerization.
- composition according to aspect 11 of the present invention in any one of aspects 8 to 10, further comprises a resin (C), and the resin (C) is a water-soluble resin, a water-dispersible resin, and a resin emulsion. is preferably selected.
- the coating agents of Examples 1-37 and the coating agents of Comparative Examples 1-4 were prepared, and the anti-fogging layers produced from these coating agents were evaluated.
- each coating agent is as follows.
- Alumina sol Alumina sol 10A (solid content 10% by mass, manufactured by Kawaken Fine Chemicals Co., Ltd.) Colloidal silica: Snowtex (registered trademark) OXS (solid content 10% by mass, manufactured by Nissan Chemical Co., Ltd.) (Organic fine particles: resin (C))
- Polyester resin Pesresin A-640; manufactured by Takamatsu Oil Co., Ltd., solid content 25% Pesresin A-645GH; manufactured by Takamatsu Oil Co., Ltd., solid content 30%
- Polycarbonate-based urethane resin Hydran (registered trademark) WLS-210; manufactured by DIC Corporation, epoxy ester resin with a solid content of 35%: Watersol (registered trademark) EFD-5560; manufactured by DIC Corporation, alkyd resin with a solid content of 40%: Water Sol (registered trademark) BCD-3100; manufactured by DIC Corporation, solid content 43% water-soluble phenolic resin: Water-soluble resole PE-602, manufactured by DIC Corporation,
- Example 1 The coating of Example 1 was prepared by the following procedure. First, 500 g of an aqueous dispersion of (meth)acrylate copolymer fine particles was prepared, and 20 g of an aqueous dispersion of a polyester resin was added to the aqueous dispersion. Next, 10 g of an aqueous dispersion of alumina sol and 10 g of carbodiimide in terms of solid content as a curing agent were added to the aqueous dispersion of the (meth)acrylate copolymer fine particles.
- Example 1 [Production of anti-fogging layer] Using bar coater #2, the coating agent of Example 1 was applied to a polycarbonate test piece (thickness: 2 mm). Then, the coating agent was dried and cured by heating the test piece coated with the coating agent at a temperature of 90° C. for 20 minutes. As a result, a test piece having an antifogging layer with a thickness of about 1 ⁇ m was produced. Test pieces with antifogging layers of Examples 2 to 37 and Comparative Examples 1 to 4 were prepared according to the same procedure as the preparation of the antifogging layer from the coating agent of Example 1.
- the particle diameter (unit: nm) of the organic fine particles was evaluated as the particle diameter corresponding to cumulative 50% on a volume basis.
- the particle size of the organic fine particles was measured with a dynamic light scattering particle size distribution analyzer (device name: Nanotrac Wave II UT151, manufactured by Microtrac Bell). Nanotrac is a registered trademark of the company.
- Glass transition temperature (Tg) of organic fine particles The glass transition temperature (Tg) of the organic fine particles was measured using DSC (differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.). The glass transition temperature (Tg) of the organic fine particles was obtained by measuring a DSC curve according to JIS-K-7122:2012 and obtaining the DSC curve. The mass of the sample used for DSC measurement was 5 mg. The first scan ramped the temperature range from ⁇ 10° C. to 300° C. at a rate of 20° C./min, then cooled the sample using liquid nitrogen, followed by a second scan from ⁇ 10° C. to The temperature range up to 300° C. was heated at a rate of 20° C./min, and the glass transition temperature of the organic fine particles was derived from the DSC curve obtained by the second scan.
- DSC differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.
- the surface roughness Ra of the anti-fogging layer was measured in accordance with JIS-B-0601-2013 using a surface roughness measuring instrument [manufactured by Kosaka Laboratory Ltd., model name Surfcorer SE500], scanning range 4 mm, scanning speed 0. It was obtained under the condition of .2 mm/s.
- Glass transition temperature (Tg) of antifogging layer Glass transition temperature (Tg) of antifogging layer
- Tg of the antifogging layer was measured by DSC (differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.).
- the sample mass of the antifogging layer was 5 mg, and the temperature range, heating rate, and number of scans for obtaining the DSC curve were the same as the conditions for obtaining the DSC curve of the glass transition temperature (Tg) of the organic fine particles. Therefore, the description is omitted.
- the contact angle of the antifogging layer to water was measured using a contact angle meter (device name: CV-DT A type, manufactured by Kyowa Interface Science Co., Ltd.).
- the coating film transparency (light transmittance) of the test piece provided with the antifogging layer was measured using a haze meter ("HAZE METER NDH5000", manufactured by Nippon Denshoku Industries Co., Ltd.).
- the HAZE value is measured according to JIS-K7361-1: 1997 under the conditions that the light source is a white LED and the luminous flux is 14 mm. It was evaluated as more preferable.
- the HAZE value of the 2 mm-thick polycarbonate test piece itself was 0.30.
- the HAZE value was 0.40 or more and less than 0.50.
- x HAZE value was 0.50 or more.
- Test piece was allowed to stand for 240 hours under temperature conditions of 80° C., 100° C., and 110° C., and then allowed to stand for 1 hour in a constant temperature chamber air-conditioned at a temperature of 23° C. and a humidity of 50%. After that, antifogging properties and light transmission properties were evaluated.
- gloss value The gloss value was measured using a 3-angle surface gloss meter (apparatus name: Micro Trigloss, manufactured by BYK) under the condition of an incident angle of 60°. The gloss value is measured by stacking 10 sheets of A4 copy paper (manufactured by Itochu Pulp & Paper Co., Ltd., whiteness 92%), and setting the test piece on which the antifogging layer of each example and comparative example is prepared. measured in
- the Tg of the antifogging layer is 60°C or higher, more preferably 110°C or higher, so that after the heat resistance test, It was also shown that the anti-fogging property is excellent.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Wood Science & Technology (AREA)
- Combustion & Propulsion (AREA)
- Dispersion Chemistry (AREA)
- Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
- Laminated Bodies (AREA)
- Paints Or Removers (AREA)
- Surface Treatment Of Glass (AREA)
Abstract
Provided is an anti-fog layer that uses a water-based solvent and has superior heat resistance. This anti-fog layer includes organic fine particles (A) and has a glass transition temperature of 60°C or greater.
Description
本発明は、防曇層、及びその利用に関する。
The present invention relates to an anti-fogging layer and its use.
特許文献1には、金属アルコキシド系化合物と平衡水蒸気圧が低い酸化物微粒子及び光触媒活性なアナタ-ゼ結晶形のチタニア微粒子を分散した溶液から成膜してなる防曇性薄膜が記載されている。
Patent Document 1 describes an antifogging thin film formed from a solution in which a metal alkoxide compound, oxide fine particles having a low equilibrium vapor pressure, and photocatalytically active anatase crystal titania fine particles are dispersed. .
特許文献2には、透過すべき光の波長λより小さい微細凹凸構造を表面に有する吸水性防曇部材が記載されている。
Patent Document 2 describes a water-absorbing anti-fogging member having a fine uneven structure on its surface smaller than the wavelength λ of light to be transmitted.
特許文献3には、特定の構造単位を含む共重合体及び加水分解物を含む防曇層形成用組成物が記載されている。
Patent Document 3 describes an antifogging layer-forming composition containing a copolymer and a hydrolyzate containing specific structural units.
特許文献4には、金属酸化物と重合体粒子とを含み、十点平均粗さが、5nm以上300nm以下である、塗膜が記載されている。
Patent Document 4 describes a coating film containing a metal oxide and polymer particles and having a ten-point average roughness of 5 nm or more and 300 nm or less.
VOCの発生は大気汚染の原因となる。そのため、2004年には、日本において改正大気汚染防止法が交付され、VOCの発生量の削減が求められている。塗料及びインキ業界では、コーティング作業時の粘度低下を目的として大量の有機溶剤を使用している。さらに、日本におけるVOC発生量の70万トンの内、塗料業界が約40%、インキ業界が約5%のVOC発生量を占める。このように塗料業界及びインキ業界ではVOC対策が課題である。
The generation of VOCs causes air pollution. Therefore, in 2004, a revised Air Pollution Control Law was issued in Japan, requiring a reduction in the amount of VOCs generated. The paint and ink industry uses large amounts of organic solvents to reduce viscosity during coating operations. Furthermore, of the 700,000 tons of VOC emissions in Japan, the paint industry accounts for about 40% and the ink industry accounts for about 5%. As described above, VOC countermeasures are an issue in the paint and ink industries.
塗料のコーティング作業においては、有機溶剤の使用量を減らすため様々な対策が行われている。例えば、有機溶剤系塗料から水系塗料への転換である。
In paint coating work, various measures are taken to reduce the amount of organic solvents used. For example, there is a shift from organic solvent-based paints to water-based paints.
ヘッドランプ向けの防曇塗料について、現在は溶剤系の塗料が使用されている。しかし、有機溶剤の使用量を減らすためには水系塗料への転換が必要である。しかし、ヘッドランプ向けの防曇塗料には、耐熱性が求められる。これまで水系の防曇塗料で耐熱性の規格をクリアできるものは無かった。
Solvent-based paints are currently used for anti-fogging paints for headlamps. However, in order to reduce the amount of organic solvent used, it is necessary to switch to a water-based paint. However, anti-fogging paints for headlamps are required to have heat resistance. Until now, no water-based anti-fogging paint could meet the heat resistance standards.
また、特許文献1のように、金属アルコキシド系化合物を含む組成物を成膜して防曇性薄膜を作る方法では、ガラス基板上に塗布後、約650℃での焼成が必要である。そのため、当該方法は、プラスチック用途には使えない。
In addition, as in Patent Document 1, the method of forming an antifogging thin film by forming a composition containing a metal alkoxide compound requires baking at about 650°C after coating on a glass substrate. Therefore, the method cannot be used for plastic applications.
特許文献2には、前述のように微細凹凸構造を表面に有する防曇部材が記載されてはいるが、吸水性の防曇膜で凹凸構造を表面に作製することは実際には困難である。
Although Patent Document 2 describes an anti-fogging member having a fine uneven structure on the surface as described above, it is actually difficult to form an uneven structure on the surface with a water-absorbing anti-fogging film. .
特許文献3に記載の防曇層形成用組成物は、耐熱試験後に防曇性を維持することが困難である。さらに防曇層中の共重合体の製造において有機溶剤を必要とするため、有機溶剤をなくして水系塗料を用いることも難しい。
The composition for forming an antifogging layer described in Patent Document 3 has difficulty in maintaining antifogging properties after a heat resistance test. Furthermore, since an organic solvent is required in the production of the copolymer in the antifogging layer, it is difficult to eliminate the organic solvent and use a water-based paint.
特許文献4に記載の塗膜は、耐熱試験後に防曇性を維持するのは難しい。
It is difficult for the coating film described in Patent Document 4 to maintain antifogging properties after the heat resistance test.
本発明の一態様は、このような事情に鑑みてなされたものであり、水系溶媒を用いて作製でき、かつ、耐熱性が優れる防曇層を提供することを目的とする。
One aspect of the present invention has been made in view of such circumstances, and an object thereof is to provide an antifogging layer that can be produced using an aqueous solvent and has excellent heat resistance.
上記の課題を解決するために、本発明の一態様に係る防曇層は、有機微粒子(A)を含み、ガラス転移温度が60℃以上である。
In order to solve the above problems, the antifogging layer according to one aspect of the present invention contains organic fine particles (A) and has a glass transition temperature of 60°C or higher.
本発明の一態様によれば、水系溶媒を用い、かつ、耐熱性が優れる防曇層を提供できる。
According to one aspect of the present invention, it is possible to provide an antifogging layer that uses an aqueous solvent and has excellent heat resistance.
以下、本発明の一実施形態について、詳細に説明する。
An embodiment of the present invention will be described in detail below.
本明細書中において「(メタ)アクリル酸」とは、「アクリル酸」及び「メタクリル酸」の何れか一方又は両方を意味し、「(メタ)アクリレート共重合体」とは、「(メタ)アクリル酸、及びその誘導体を主たる構成単位として含む樹脂」のことを意味する。ここで、「(メタ)アクリル酸」及び「(メタ)アクリル酸の誘導体」は、「(メタ)アクリル系単量体」として総称され、「(メタ)アクリル酸の誘導体」には、(メタ)アクリレート((メタ)アクリル酸エステル)及び(メタ)アクリルアミドが例示される。
As used herein, "(meth)acrylic acid" means either one or both of "acrylic acid" and "methacrylic acid", and "(meth)acrylate copolymer" means "(meth) It means a resin containing acrylic acid and its derivatives as main constituent units. Here, "(meth)acrylic acid" and "derivatives of (meth)acrylic acid" are collectively referred to as "(meth)acrylic monomers", and "derivatives of (meth)acrylic acid" include (meth) ) acrylates ((meth)acrylic acid esters) and (meth)acrylamides.
<防曇層>
本発明の一実施形態に係る防曇層は、有機微粒子(A)を含み、ガラス転移温度が60℃以上である。また、防曇層は、有機微粒子(A)を含み、硬化剤(B)及び樹脂(C)を含んでいることが好ましく、その他の成分を含んでいてもよい。 <Anti-fog layer>
An antifogging layer according to one embodiment of the present invention contains organic fine particles (A) and has a glass transition temperature of 60° C. or higher. The antifogging layer preferably contains organic fine particles (A), a curing agent (B) and a resin (C), and may contain other components.
本発明の一実施形態に係る防曇層は、有機微粒子(A)を含み、ガラス転移温度が60℃以上である。また、防曇層は、有機微粒子(A)を含み、硬化剤(B)及び樹脂(C)を含んでいることが好ましく、その他の成分を含んでいてもよい。 <Anti-fog layer>
An antifogging layer according to one embodiment of the present invention contains organic fine particles (A) and has a glass transition temperature of 60° C. or higher. The antifogging layer preferably contains organic fine particles (A), a curing agent (B) and a resin (C), and may contain other components.
防曇層の耐熱性は、熱に曝されることによる、当該防曇層の防曇性の変化により評価され、防曇性の低下が少ない程、耐熱性が高いと評価される。防曇層は、有機微粒子(A)を含み、熱に曝されることによる防曇性の低下が少ない防曇層である。当該防曇層の耐熱性の評価方法については実施例の記載を参照されたい。
The heat resistance of the anti-fogging layer is evaluated by the change in the anti-fogging property of the anti-fogging layer due to exposure to heat. The anti-fogging layer contains organic fine particles (A) and is an anti-fogging layer that is less likely to deteriorate in anti-fogging properties due to exposure to heat. For the evaluation method of the heat resistance of the antifogging layer, refer to the description in Examples.
(防曇層のガラス転移温度)
本発明の一態様に係る防曇層は、ガラス転移温度(Tg)が、60℃以上であり、80℃以上であるとよりよく、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが最も好ましい。これにより、防曇層の耐熱性を高めることができる。 (Glass transition temperature of antifogging layer)
The antifogging layer according to one aspect of the present invention has a glass transition temperature (Tg) of 60° C. or higher, preferably 80° C. or higher, preferably 90° C. or higher, and 100° C. or higher. is more preferably 110° C. or higher, and most preferably 120° C. or higher. Thereby, the heat resistance of the antifogging layer can be enhanced.
本発明の一態様に係る防曇層は、ガラス転移温度(Tg)が、60℃以上であり、80℃以上であるとよりよく、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが最も好ましい。これにより、防曇層の耐熱性を高めることができる。 (Glass transition temperature of antifogging layer)
The antifogging layer according to one aspect of the present invention has a glass transition temperature (Tg) of 60° C. or higher, preferably 80° C. or higher, preferably 90° C. or higher, and 100° C. or higher. is more preferably 110° C. or higher, and most preferably 120° C. or higher. Thereby, the heat resistance of the antifogging layer can be enhanced.
防曇層のガラス転移温度(Tg)を高めるには、後述する有機微粒子(A)を選択すること、硬化剤(B)及び/又は樹脂(C)に対して有機微粒子(A)を防曇層に多く含有させることが好ましい。防曇層のガラス転移温度の評価方法は、示差走査熱量(DSC)分析法により評価され、後述する有機微粒子(A)のガラス転移温度の測定方法に準じている。
In order to increase the glass transition temperature (Tg) of the antifogging layer, the organic fine particles (A) described later should be selected, and the organic fine particles (A) should be added to the curing agent (B) and/or the resin (C). It is preferable to contain a large amount in the layer. The method for evaluating the glass transition temperature of the antifogging layer is evaluated by differential scanning calorimetry (DSC) analysis, which conforms to the method for measuring the glass transition temperature of the organic fine particles (A) described later.
(対水接触角)
本発明の一態様に係る防曇層の対水接触角は、10°以下であることが好ましく、5°以下であることがより好ましい。防曇層の対水接触角が10°以下であることにより、当該防曇層は高い防曇性を備え得る。防曇層の対水接触角は、室温23℃、相対湿度50%に静置した試験片を用いて評価すればよい。 (water contact angle)
The contact angle of water of the antifogging layer according to one aspect of the present invention is preferably 10° or less, more preferably 5° or less. When the antifogging layer has a water contact angle of 10° or less, the antifogging layer can have high antifogging properties. The water contact angle of the antifogging layer can be evaluated using a test piece left at room temperature of 23° C. and a relative humidity of 50%.
本発明の一態様に係る防曇層の対水接触角は、10°以下であることが好ましく、5°以下であることがより好ましい。防曇層の対水接触角が10°以下であることにより、当該防曇層は高い防曇性を備え得る。防曇層の対水接触角は、室温23℃、相対湿度50%に静置した試験片を用いて評価すればよい。 (water contact angle)
The contact angle of water of the antifogging layer according to one aspect of the present invention is preferably 10° or less, more preferably 5° or less. When the antifogging layer has a water contact angle of 10° or less, the antifogging layer can have high antifogging properties. The water contact angle of the antifogging layer can be evaluated using a test piece left at room temperature of 23° C. and a relative humidity of 50%.
(表面粗さRa)
本発明の一態様に係る防曇層は、表面粗さRaが5nm以上、200nm以下の範囲内であることが好ましい。本発明の一態様によれば、水を用いて、防曇性に優れる防曇層を作製することができるので、有機溶剤の使用量を減らすことができる。その結果、大気汚染の原因とVOCの発生を抑制することができる。従って、本発明の一態様によれば、大気環境に対する悪影響を軽減することができるので、国連が主導する持続可能な開発目標(SDGs)の目標11「住み続けられるまちづくりを」に貢献することが可能となる。 (Surface roughness Ra)
The antifogging layer according to one aspect of the present invention preferably has a surface roughness Ra of 5 nm or more and 200 nm or less. According to one aspect of the present invention, since an antifogging layer having excellent antifogging properties can be produced using water, the amount of organic solvent used can be reduced. As a result, the causes of air pollution and the generation of VOCs can be suppressed. Therefore, according to one aspect of the present invention, it is possible to reduce the adverse effects on the atmospheric environment, so it is possible to contribute to Goal 11 of the Sustainable Development Goals (SDGs) led by the United Nations, "Sustainable urban development." It becomes possible.
本発明の一態様に係る防曇層は、表面粗さRaが5nm以上、200nm以下の範囲内であることが好ましい。本発明の一態様によれば、水を用いて、防曇性に優れる防曇層を作製することができるので、有機溶剤の使用量を減らすことができる。その結果、大気汚染の原因とVOCの発生を抑制することができる。従って、本発明の一態様によれば、大気環境に対する悪影響を軽減することができるので、国連が主導する持続可能な開発目標(SDGs)の目標11「住み続けられるまちづくりを」に貢献することが可能となる。 (Surface roughness Ra)
The antifogging layer according to one aspect of the present invention preferably has a surface roughness Ra of 5 nm or more and 200 nm or less. According to one aspect of the present invention, since an antifogging layer having excellent antifogging properties can be produced using water, the amount of organic solvent used can be reduced. As a result, the causes of air pollution and the generation of VOCs can be suppressed. Therefore, according to one aspect of the present invention, it is possible to reduce the adverse effects on the atmospheric environment, so it is possible to contribute to Goal 11 of the Sustainable Development Goals (SDGs) led by the United Nations, "Sustainable urban development." It becomes possible.
防曇層の表面粗さRaは5nm以上であり、また、10nm以上であることがより好ましい。防曇層の表面粗さRaは、5nm以上においてより粗いことによって、防曇層表面の比表面積を大きくすることができ、これにより防曇層の防曇性を高めることができる。言い換えれば、防曇層の表面粗さRaが5nm未満である場合、防曇層の表面に形成される凹凸形状が小さくなり、その結果、微細凹凸に起因した表面積が小さくなることで防曇層へ浸透する水分量が少なくなる。このため、防曇層の防曇性が低下する。また、防曇層の表面粗さRaは200nm以下であり、また、150nm以下であることが好ましく、100nm以下であることがより好ましく、70nm以下であることがさらに好ましく、50nm以下であることが最も好ましい。防曇層の表面粗さRaは、200nm以下においてより細かいことにより、防曇層表面に存在する凹凸における可視光線の散乱に起因して、当該防曇層の光透過性が低下することを防止できる。このため、防曇層の光透過性を高めることができる。すなわち、防曇層は、表面粗さRaが、5nm以上、200nm以下であることにより、高い防曇性と、高い光透過性とを兼ね備え得る。
The surface roughness Ra of the antifogging layer is 5 nm or more, and more preferably 10 nm or more. When the surface roughness Ra of the antifogging layer is 5 nm or more, the specific surface area of the antifogging layer surface can be increased, thereby enhancing the antifogging property of the antifogging layer. In other words, when the surface roughness Ra of the anti-fogging layer is less than 5 nm, the irregularities formed on the surface of the anti-fogging layer become smaller, and as a result, the surface area resulting from the fine irregularities becomes smaller, and the anti-fogging layer becomes thinner. Less water permeates. Therefore, the antifogging property of the antifogging layer is lowered. The surface roughness Ra of the antifogging layer is 200 nm or less, preferably 150 nm or less, more preferably 100 nm or less, even more preferably 70 nm or less, and preferably 50 nm or less. Most preferred. Since the surface roughness Ra of the antifogging layer is finer at 200 nm or less, it prevents the light transmittance of the antifogging layer from decreasing due to the scattering of visible light on the unevenness present on the surface of the antifogging layer. can. Therefore, the light transmittance of the antifogging layer can be enhanced. That is, the antifogging layer has a surface roughness Ra of 5 nm or more and 200 nm or less, so that it can have both high antifogging properties and high light transmittance.
防曇層の「表面粗さRa」には、JIS-B-0601:2013で定義される「算術平均粗さRa」が採用されている。表面粗さ測定器[株式会社小坂研究所製、型名Surfcorer SE500]が使用され、走査範囲4mm、走査速度0.2mm/sの条件において表面粗さRaが求められた。
The "arithmetic mean roughness Ra" defined in JIS-B-0601:2013 is adopted for the "surface roughness Ra" of the antifogging layer. A surface roughness measuring instrument [manufactured by Kosaka Laboratory Ltd., model name Surfcorer SE500] was used, and the surface roughness Ra was obtained under the conditions of a scanning range of 4 mm and a scanning speed of 0.2 mm/s.
防曇層は、防曇層を作製するための組成物に含まれる材料及びその反応物を含んでなる固形分を主たる成分とする。「固形分」は、有機微粒子(A)、硬化剤(B)を含み、樹脂(C)を含んでいることが好ましい。防曇層において固形分である有機微粒子(A)及び樹脂(C)と硬化剤(B)とは互いに反応し、防曇層内において反応物を生成し得る。また、防曇層は、固形分として、有機微粒子(A)、硬化剤(B)、樹脂(C)の他に、本発明の効果が損なわれない範囲で無機粒子、吸収剤及び後述するその他の成分を含み得る。
The main component of the anti-fogging layer is the solid content containing the materials contained in the composition for producing the anti-fogging layer and their reaction products. The "solid content" preferably contains the organic fine particles (A), the curing agent (B), and the resin (C). In the antifogging layer, the solid organic fine particles (A) and resin (C) and the curing agent (B) can react with each other to form a reactant in the antifogging layer. In addition, the anti-fogging layer contains, as a solid content, inorganic particles, an absorbent, and others described later in addition to the organic fine particles (A), the curing agent (B), and the resin (C), as long as the effects of the present invention are not impaired. may contain components of
(有機微粒子(A))
有機微粒子(A)は極性基を備える樹脂の微粒子であり、ガラス転移温度が60℃以上であり得、80℃以上であるとよりよく、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが最も好ましい。有機微粒子(A)は、粒子の形状を維持した状態にて防曇層に含まれ、ガラス転移温度が60℃以上であることにより、当該防曇層が加熱されたときにおいても、粒子の形状を維持した状態にて防曇層に含まれ得る。これにより、例えば、80℃の熱に長時間曝されたとしても、防曇層が有する所望の表面粗さRaを維持することができる。有機微粒子(A)を構成する樹脂は、限定されるものではないがガラス転移温度が250℃以下であればよい。防曇層における有機微粒子(A)の含有量は、防曇層に含まれる固形分の総量を100質量%として、58質量%以上であり得、65質量%以上であることが好ましく、75質量%以上であることがさらに好ましく、80質量%以上であることが最も好ましい。防曇層における有機微粒子(A)の含有量が、58~99質量%の範囲内においてより多いことにより、当該防曇層の表面粗さRaをより大きくすることができ、これにより、防曇性を高めることができる。また、ガラス転移温度が60℃以上である有機微粒子(A)を、58~99質量%の範囲内においてより多く含有することで、防曇層の耐熱性をより高めることができる。また、防曇層における有機微粒子(A)の含有量が、99質量%の範囲内においてより少ないことにより、防曇層の被膜強度をより高めることができる。よって、99質量%以下においてより少ないことにより、有機微粒子(A)同士を結合する成分を多くでき、防曇層を好適に形成できる。なお、防曇層における有機微粒子(A)の含有量は実質的に分散媒を含まない固形分としての含有量を意味している。 (Organic fine particles (A))
The organic microparticles (A) are resin microparticles having a polar group, and have a glass transition temperature of 60° C. or higher, preferably 80° C. or higher, preferably 90° C. or higher, and 100° C. or higher. is more preferably 110° C. or higher, and most preferably 120° C. or higher. The organic fine particles (A) are contained in the antifogging layer while maintaining the shape of the particles, and have a glass transition temperature of 60° C. or higher, so that the particles retain their shape even when the antifogging layer is heated. It can be included in the antifogging layer while maintaining the Thereby, for example, even if it is exposed to heat of 80° C. for a long time, the desired surface roughness Ra of the antifogging layer can be maintained. The resin constituting the organic fine particles (A) is not particularly limited as long as it has a glass transition temperature of 250° C. or less. The content of the organic fine particles (A) in the antifogging layer may be 58% by mass or more, preferably 65% by mass or more, and preferably 75% by mass, based on the total amount of solids contained in the antifogging layer as 100% by mass. % or more, and most preferably 80 mass % or more. By increasing the content of the organic fine particles (A) in the antifogging layer within the range of 58 to 99% by mass, the surface roughness Ra of the antifogging layer can be increased, thereby improving the antifogging effect. can enhance sexuality. In addition, the heat resistance of the antifogging layer can be further enhanced by containing a larger amount of the organic fine particles (A) having a glass transition temperature of 60° C. or higher within the range of 58 to 99% by mass. In addition, when the content of the organic fine particles (A) in the antifogging layer is smaller within the range of 99% by mass, the coating strength of the antifogging layer can be further increased. Therefore, if the amount is less than 99% by mass, the component that binds the organic fine particles (A) together can be increased, and the antifogging layer can be preferably formed. The content of the organic fine particles (A) in the antifogging layer means the content as a solid content that does not substantially contain a dispersion medium.
有機微粒子(A)は極性基を備える樹脂の微粒子であり、ガラス転移温度が60℃以上であり得、80℃以上であるとよりよく、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが最も好ましい。有機微粒子(A)は、粒子の形状を維持した状態にて防曇層に含まれ、ガラス転移温度が60℃以上であることにより、当該防曇層が加熱されたときにおいても、粒子の形状を維持した状態にて防曇層に含まれ得る。これにより、例えば、80℃の熱に長時間曝されたとしても、防曇層が有する所望の表面粗さRaを維持することができる。有機微粒子(A)を構成する樹脂は、限定されるものではないがガラス転移温度が250℃以下であればよい。防曇層における有機微粒子(A)の含有量は、防曇層に含まれる固形分の総量を100質量%として、58質量%以上であり得、65質量%以上であることが好ましく、75質量%以上であることがさらに好ましく、80質量%以上であることが最も好ましい。防曇層における有機微粒子(A)の含有量が、58~99質量%の範囲内においてより多いことにより、当該防曇層の表面粗さRaをより大きくすることができ、これにより、防曇性を高めることができる。また、ガラス転移温度が60℃以上である有機微粒子(A)を、58~99質量%の範囲内においてより多く含有することで、防曇層の耐熱性をより高めることができる。また、防曇層における有機微粒子(A)の含有量が、99質量%の範囲内においてより少ないことにより、防曇層の被膜強度をより高めることができる。よって、99質量%以下においてより少ないことにより、有機微粒子(A)同士を結合する成分を多くでき、防曇層を好適に形成できる。なお、防曇層における有機微粒子(A)の含有量は実質的に分散媒を含まない固形分としての含有量を意味している。 (Organic fine particles (A))
The organic microparticles (A) are resin microparticles having a polar group, and have a glass transition temperature of 60° C. or higher, preferably 80° C. or higher, preferably 90° C. or higher, and 100° C. or higher. is more preferably 110° C. or higher, and most preferably 120° C. or higher. The organic fine particles (A) are contained in the antifogging layer while maintaining the shape of the particles, and have a glass transition temperature of 60° C. or higher, so that the particles retain their shape even when the antifogging layer is heated. It can be included in the antifogging layer while maintaining the Thereby, for example, even if it is exposed to heat of 80° C. for a long time, the desired surface roughness Ra of the antifogging layer can be maintained. The resin constituting the organic fine particles (A) is not particularly limited as long as it has a glass transition temperature of 250° C. or less. The content of the organic fine particles (A) in the antifogging layer may be 58% by mass or more, preferably 65% by mass or more, and preferably 75% by mass, based on the total amount of solids contained in the antifogging layer as 100% by mass. % or more, and most preferably 80 mass % or more. By increasing the content of the organic fine particles (A) in the antifogging layer within the range of 58 to 99% by mass, the surface roughness Ra of the antifogging layer can be increased, thereby improving the antifogging effect. can enhance sexuality. In addition, the heat resistance of the antifogging layer can be further enhanced by containing a larger amount of the organic fine particles (A) having a glass transition temperature of 60° C. or higher within the range of 58 to 99% by mass. In addition, when the content of the organic fine particles (A) in the antifogging layer is smaller within the range of 99% by mass, the coating strength of the antifogging layer can be further increased. Therefore, if the amount is less than 99% by mass, the component that binds the organic fine particles (A) together can be increased, and the antifogging layer can be preferably formed. The content of the organic fine particles (A) in the antifogging layer means the content as a solid content that does not substantially contain a dispersion medium.
有機微粒子(A)は、ガラス転移温度(Tg)、その粒子径D50、及び、有機微粒子(A)の樹脂に構成単位として含まれる単量体のSP値の平均値に基づき、選択するとよい。
The organic fine particles (A) should be selected based on the glass transition temperature (Tg), the particle diameter D50, and the average SP value of the monomers contained as structural units in the resin of the organic fine particles (A).
有機微粒子(A)のガラス転移温度は、示差走査熱量(DSC)分析法により、JIS-K-7122:2012に従って評価したDSC曲線から求めることができる。DSC曲線を求めるための温度の走査範囲、及び温度の走査速度等の評価条件は、実施例に詳細に記載されているので参照されたい。
The glass transition temperature of the organic fine particles (A) can be obtained from a DSC curve evaluated according to JIS-K-7122:2012 by differential scanning calorimetry (DSC) analysis. The temperature scanning range for obtaining the DSC curve and the evaluation conditions such as the temperature scanning speed are described in detail in Examples, so please refer to them.
また、有機微粒子(A)のガラス転移温度は、有機微粒子(A)に構成単位として含まれる各単量体のホモポリマーのガラス転移温度の平均値として概算してもよい。有機微粒子(A)のガラス転移温度は、単量体ごとに、当該単量体のホモポリマーのガラス転移温度と、各単量体が構成単位として樹脂に含まれる質量割合(質量%)を乗じて得られる値の総和として概算される。ここで、ホモポリマーのガラス転移温度は、ポリマーハンドブック[Polymer Hand Book(J.Brandrup,Interscience 1989)]に記載のFoxの式で計算した値を参照してもよく、例えば、数平均分子量が5000~100000程度であるホモポリマーのガラス転移温度を、上述の有機微粒子(A)のガラス転移温度の測定方法と同じく、JIS-K-7122:2012に従って、DSC曲線から求めてもよい。有機微粒子(A)は、ホモポリマーのガラス転移温度がより高い単量体を構成単位として多く含むことにより、当該有機微粒子(A)のガラス転移温度を高めることができ、これにより、防曇層の耐熱性を高めることができる。有機微粒子(A)は、ガラス転移温度を高めるという観点から、有機微粒子(A)に構成単位として含まれる単量体のホモポリマーにおけるガラス転移温度は、60℃以上であり得、80℃以上であるとよりよく、90℃以上であることが好ましく、100℃以上であることがより好ましく、110℃以上であることがさらに好ましく、120℃以上であることが最も好ましい。また、限定されるものではいなが、有機微粒子(A)に構成単位として含まれる単量体のホモポリマーにおけるガラス転移温度は、250℃以下であってもよい。ホモポリマーのガラス転移温度が高い(メタ)アクリルアミド系単量体としては、アクリルアミド(ホモポリマーのTg:153℃)、アクリロイルモルフォリン(ホモポリマーのTg:145℃)等が挙げられる。有機微粒子(A)のガラス転移温度を高めるという観点から、有機微粒子(A)は、ホモポリマーにおけるガラス転移温度が60℃以上である単量体に由来する構成単位を、有機微粒子(A)を構成する共重合体を100質量%として、60質量%以上含んでいることが好ましく、80質量%以上含んでいることがより好ましい。また、限定されるものではないが、有機微粒子(A)は、ホモポリマーにおけるガラス転移温度が高く、80℃以上である単量体に由来する構成単位を60質量%以上含み、ホモポリマーにおけるガラス転移温度が80℃よりも低い単量体に由来する構成単位を、有機微粒子(A)を構成する共重合体を100質量%として、40質量%以下にすることで有機微粒子(A)のガラス転移温度を高めてもよい。例えば、有機微粒子(A)は、有機微粒子(A)自身の水系における分散安定性を高めるという観点から、メトキシポリエチレングリコールメタクリレート等が有するポリエチレングリコール鎖を有する単量体に由来する構成単位として含んでいることが好ましい。ただし、メトキシポリエチレングリコールメタクリレート等の単量体に由来する構成単位は、ホモポリマーのガラス転移温度が低い。このため、有機微粒子(A)の耐熱性を低くすることにも寄与することがあり、その結果、熱に曝された後における防曇性を低くする傾向がある。有機微粒子(A)は、防曇性の熱による低下を防止するという観点から、ホモポリマーのガラス転移温度が低い構成単位は、有機微粒子(A)に含まれる構成単位の全量を100質量%として、40質量%以下であることが好ましい。ガラス転移温度が低いホモポリマーの構成単位の当該ガラス転移温度は、-40℃以下であり得、0℃以下であることが好ましく、40℃以下であることがさらに好ましく、80℃よりも低いことが最も好ましい。
Also, the glass transition temperature of the organic fine particles (A) may be roughly calculated as the average value of the glass transition temperatures of the homopolymers of the monomers contained as structural units in the organic fine particles (A). The glass transition temperature of the organic fine particles (A) is obtained by multiplying, for each monomer, the glass transition temperature of the homopolymer of the monomer and the mass ratio (% by mass) of each monomer contained in the resin as a structural unit. It is approximated as the sum of the values obtained by Here, the glass transition temperature of the homopolymer may refer to the value calculated by the Fox formula described in the Polymer Handbook [Polymer Hand Book (J. Brandrup, Interscience 1989)]. The glass transition temperature of the homopolymer, which is about 100,000, may be obtained from the DSC curve according to JIS-K-7122:2012, similarly to the method for measuring the glass transition temperature of the organic fine particles (A) described above. The organic fine particles (A) can increase the glass transition temperature of the organic fine particles (A) by containing a large number of monomers having a higher homopolymer glass transition temperature as structural units, thereby forming an antifogging layer. can increase the heat resistance of From the viewpoint of increasing the glass transition temperature of the organic fine particles (A), the homopolymer of the monomer contained as a structural unit in the organic fine particles (A) may have a glass transition temperature of 60° C. or higher, and may be 80° C. or higher. The temperature is preferably 90° C. or higher, more preferably 100° C. or higher, still more preferably 110° C. or higher, and most preferably 120° C. or higher. Further, although not limited, the glass transition temperature of the homopolymer of the monomer contained as a structural unit in the organic fine particles (A) may be 250° C. or lower. Examples of (meth)acrylamide-based monomers having a high homopolymer glass transition temperature include acrylamide (homopolymer Tg: 153°C) and acryloylmorpholine (homopolymer Tg: 145°C). From the viewpoint of increasing the glass transition temperature of the organic fine particles (A), the organic fine particles (A) contain structural units derived from a monomer having a glass transition temperature of 60° C. or higher in the homopolymer. It is preferably contained in an amount of 60% by mass or more, more preferably 80% by mass or more, based on 100% by mass of the constituting copolymer. In addition, although not limited thereto, the organic fine particles (A) contain 60% by mass or more of structural units derived from a monomer having a high glass transition temperature of 80° C. or higher in a homopolymer, and the glass in the homopolymer The constituent unit derived from a monomer having a transition temperature lower than 80° C. is 40% by mass or less relative to 100% by mass of the copolymer constituting the organic fine particle (A), thereby forming the glass of the organic fine particle (A). The transition temperature may be increased. For example, from the viewpoint of enhancing the dispersion stability of the organic fine particles (A) themselves in an aqueous system, the organic fine particles (A) contain structural units derived from a monomer having a polyethylene glycol chain such as methoxypolyethylene glycol methacrylate. preferably. However, structural units derived from monomers such as methoxypolyethylene glycol methacrylate have a low homopolymer glass transition temperature. For this reason, it may also contribute to lowering the heat resistance of the organic fine particles (A), and as a result, there is a tendency for the antifogging property after being exposed to heat to be lower. In the organic fine particles (A), from the viewpoint of preventing deterioration of the antifogging property due to heat, the constituent units of the homopolymer having a low glass transition temperature are contained in the organic fine particles (A), and the total amount of the constituent units is 100% by mass. , 40% by mass or less. The glass transition temperature of the structural unit of the homopolymer having a low glass transition temperature may be −40° C. or lower, preferably 0° C. or lower, more preferably 40° C. or lower, and lower than 80° C. is most preferred.
(粒子径(D50))
有機微粒子(A)は、その粒子径により、防曇層の表面粗さRaを調整することができる。ここで、有機微粒子(A)の粒子径D50は、体積基準における累積50%相当の粒子径であり、粒子径D50は、中位粒子径、メディアン径と称されることもある。体積基準の粒子径D50は、動的光散乱式粒子径分布測定装置等を用いるレーザー回折法によって求めるとよい。 (Particle size (D50))
The organic fine particles (A) can adjust the surface roughness Ra of the antifogging layer by the particle diameter thereof. Here, the particle diameter D50 of the organic fine particles (A) is a particle diameter corresponding to cumulative 50% on a volume basis, and the particle diameter D50 is sometimes referred to as a median particle diameter or a median diameter. The volume-based particle diameter D50 is preferably determined by a laser diffraction method using a dynamic light scattering particle size distribution analyzer or the like.
有機微粒子(A)は、その粒子径により、防曇層の表面粗さRaを調整することができる。ここで、有機微粒子(A)の粒子径D50は、体積基準における累積50%相当の粒子径であり、粒子径D50は、中位粒子径、メディアン径と称されることもある。体積基準の粒子径D50は、動的光散乱式粒子径分布測定装置等を用いるレーザー回折法によって求めるとよい。 (Particle size (D50))
The organic fine particles (A) can adjust the surface roughness Ra of the antifogging layer by the particle diameter thereof. Here, the particle diameter D50 of the organic fine particles (A) is a particle diameter corresponding to cumulative 50% on a volume basis, and the particle diameter D50 is sometimes referred to as a median particle diameter or a median diameter. The volume-based particle diameter D50 is preferably determined by a laser diffraction method using a dynamic light scattering particle size distribution analyzer or the like.
有機微粒子(A)の粒子径D50は、5nm以上、200nm以下の範囲内であることが好ましく、10nm以上、150nm以下の範囲内であることがより好ましく、15nm以上、100nm以下の範囲内であることがさらに好ましい。粒子径D50が、5nm以上200nmの範囲内においてより大きい有機微粒子(A)によってもたらされる凹凸により、防曇層の表面粗さRaをより大きくすることができる。すなわち、有機微粒子(A)によって、防曇層の表面粗さRaを5nm以上、200nm以下の範囲内にすることができる。すなわち、有機微粒子(A)によって、防曇層の5nm以上、200nm以下という表面粗さRaはもたらされ得る。よって、防曇層の防曇性を高めることができる。また、粒子径D50が、5nm以上200nm以下の範囲内においてより小さい有機微粒子(A)を用いることにより、防曇層の光透過性をより高めることができる。
The particle diameter D50 of the organic fine particles (A) is preferably 5 nm or more and 200 nm or less, more preferably 10 nm or more and 150 nm or less, and 15 nm or more and 100 nm or less. is more preferred. The surface roughness Ra of the antifogging layer can be further increased by the unevenness caused by the organic fine particles (A) having a larger particle diameter D50 within the range of 5 nm to 200 nm. That is, the organic fine particles (A) can make the surface roughness Ra of the antifogging layer within the range of 5 nm or more and 200 nm or less. That is, the organic fine particles (A) can provide the antifogging layer with a surface roughness Ra of 5 nm or more and 200 nm or less. Therefore, the antifogging property of the antifogging layer can be enhanced. Further, by using the organic fine particles (A) having a smaller particle diameter D50 within the range of 5 nm or more and 200 nm or less, the light transmittance of the antifogging layer can be further enhanced.
(SP値)
有機微粒子(A)を構成する樹脂に構成単位として含まれる単量体のSP値の平均値は、単量体のSP値ごとに、各単量体が構成単位として樹脂に含まれる質量割合(質量%)を乗じて得られる値の総和として求められる。各単量体のSP値は、Fedorsの算出法(「Polymer Engineering and Science」、第14巻、第2号(1974)、148~154頁を参照する)に基づき、下記数式(1)で求めることができる。
数式(1)中、δは溶解度パラメータ(SP値)であり、ΣiΔeiは、単量体が有するモル蒸発エネルギー(cal/mol)であり、ΣiΔviは単量体のモル体積(cm3/mol)である。なお、上記数式(1)から求められる溶解度パラメータの単位は(cal/cm3)1/2であり、本明細書では、2.0455×(cal/cm3)1/2=(J/cm3)1/2=MPa1/2であるとして、SP値の単位にMPa1/2を採用する。有機微粒子(A)が有する親水性は、有機微粒子(A)に構成単位として含まれる単量体のSP値の平均値を指標として確認するとよい。
(SP value)
The average value of the SP values of the monomers contained as structural units in the resin constituting the organic fine particles (A) is the mass ratio of each monomer contained in the resin as a structural unit ( (% by mass)). The SP value of each monomer is determined by the following formula (1) based on the Fedors calculation method (see "Polymer Engineering and Science", Vol. 14, No. 2 (1974), pp. 148-154). be able to.
In formula (1), δ is the solubility parameter (SP value), Σ i Δei is the molar evaporation energy of the monomer (cal/mol), and Σ i Δvi is the molar volume of the monomer (cm 3 /mol). The unit of the solubility parameter obtained from the above formula (1) is (cal/cm 3 ) 1/2 , and in this specification, 2.0455×(cal/cm 3 ) 1/2 = (J/cm 3 ) Assuming that 1/2 = MPa 1/2 , MPa 1/2 is adopted as the unit of the SP value. The hydrophilicity of the organic fine particles (A) can be confirmed using the average SP value of the monomers contained as structural units in the organic fine particles (A) as an indicator.
有機微粒子(A)を構成する樹脂に構成単位として含まれる単量体のSP値の平均値は、単量体のSP値ごとに、各単量体が構成単位として樹脂に含まれる質量割合(質量%)を乗じて得られる値の総和として求められる。各単量体のSP値は、Fedorsの算出法(「Polymer Engineering and Science」、第14巻、第2号(1974)、148~154頁を参照する)に基づき、下記数式(1)で求めることができる。
The average value of the SP values of the monomers contained as structural units in the resin constituting the organic fine particles (A) is the mass ratio of each monomer contained in the resin as a structural unit ( (% by mass)). The SP value of each monomer is determined by the following formula (1) based on the Fedors calculation method (see "Polymer Engineering and Science", Vol. 14, No. 2 (1974), pp. 148-154). be able to.
有機微粒子(A)に構成単位として含まれる各単量体のSP値の平均値は、21MPa1/2以上であり得、24MPa1/2以上であることが好ましく、26MPa1/2以上であることが好ましく、27MPa1/2以上であることがより好ましい。また、有機微粒子(A)は、SP値が32MPa1/2以下であるとよい。有機微粒子(A)の親水性を高めるべく、水のSP値(47.9)により近づけるという観点から、単量体のSP値の平均値は、21MPa1/2を下限値としてより高い方が好ましい。また、数式(1)から求められる単量体のSP値は、水のSP値(47.9MPa1/2)に近ければ限定されるものではないが、32MPa1/2以下であり得る。
The average SP value of each monomer contained as a structural unit in the organic fine particles (A) can be 21 MPa 1/2 or more, preferably 24 MPa 1/2 or more, and is 26 MPa 1/2 or more. is preferred, and 27 MPa 1/2 or more is more preferred. Further, the organic fine particles (A) preferably have an SP value of 32 MPa 1/2 or less. From the viewpoint of making the SP value of water (47.9) closer to the SP value of water (47.9) in order to increase the hydrophilicity of the organic fine particles (A), the average SP value of the monomer should be higher with a lower limit of 21 MPa 1/2 . preferable. Moreover, the SP value of the monomer obtained from the formula (1) is not limited as long as it is close to the SP value of water (47.9 MPa 1/2 ), but it can be 32 MPa 1/2 or less.
樹脂に構成単位として含まれる単量体は、(メタ)アクリル系単量体であり得、(メタ)アクリル系単量体には、例えば、(メタ)アクリルアミド系単量体、(メタ)アクリレート系単量体、(メタ)アクリル酸系単量体が挙げられ、後述するその他の単量体を含んでいてもよい。(メタ)アクリルアミド系単量体、(メタ)アクリレート系単量体等を始めとする(メタ)アクリル系単量体は、架橋性官能基を有していてもよく、架橋性官能基とは、単量体が、有機微粒子(A)を構成する樹脂の構成単位として含まれるために寄与するビニル基、(メタ)アクリロイル基等の不飽和二重結合基以外の架橋性官能基のことを意味する。
A monomer contained as a structural unit in the resin may be a (meth)acrylic monomer, and the (meth)acrylic monomer includes, for example, a (meth)acrylamide monomer, a (meth)acrylate and (meth)acrylic acid-based monomers, and may contain other monomers described later. (Meth) acrylic monomers such as (meth) acrylamide monomers and (meth) acrylate monomers may have a crosslinkable functional group. A crosslinkable functional group other than an unsaturated double bond group such as a vinyl group or a (meth)acryloyl group that contributes to the monomer being included as a structural unit of the resin that constitutes the organic fine particle (A). means.
(メタ)アクリルアミド系単量体は、SP値が高い単量体として好ましい単量体である。すなわち、(メタ)アクリレート共重合体が(メタ)アクリルアミド系単量体に由来する構成単位を含むことにより、当該樹脂のSP値を高めることができ、有機微粒子(A)の親水性を高めることができる。(メタ)アクリルアミド系単量体には、例えば、アクリルアミド、アクリロイルモルフォリン、メタクリルアミド、並びに、ジメチルアクリルアミド等のジアルキル(メタ)アクリルアミド、及びイソプロピルアクリルアミド等のモノアルキル(メタ)アクリルアミド等が挙げられる。(メタ)アクリルアミド系単量体に由来する構成単位は、有機微粒子(A)の親水性を高めるという観点から、(メタ)アクリレート共重合体に含まれる単量体に由来する構成単位の合計を100質量%として、5~100質量%含まれていることが好ましく、50~95質量%含まれていることがより好ましい。(メタ)アクリルアミド系単量体は、後述する(メタ)アクリレート系単量体と同じく、架橋性官能基を有していてもよい。
(Meth)acrylamide-based monomers are preferred as monomers with high SP values. That is, by including a structural unit derived from a (meth)acrylamide-based monomer in the (meth)acrylate copolymer, the SP value of the resin can be increased, and the hydrophilicity of the organic fine particles (A) can be increased. can be done. Examples of (meth)acrylamide-based monomers include acrylamide, acryloylmorpholine, methacrylamide, dialkyl(meth)acrylamides such as dimethylacrylamide, and monoalkyl(meth)acrylamides such as isopropylacrylamide. From the viewpoint of increasing the hydrophilicity of the organic fine particles (A), the structural units derived from the (meth)acrylamide-based monomer are the total structural units derived from the monomers contained in the (meth)acrylate copolymer. Based on 100% by mass, the content is preferably 5 to 100% by mass, more preferably 50 to 95% by mass. The (meth)acrylamide-based monomer may have a crosslinkable functional group, like the (meth)acrylate-based monomer described later.
(メタ)アクリルアミド系単量体が有する架橋性官能基には、例えば、N-メチロール基、N-アルコキシメチロール基、N-メチロールエーテル基等が挙げられ、このような架橋性官能基を有する(メタ)アクリルアミド系単量体には、例えば、N-メチロールアクリルアミド、N-メチロールメタクリルアミド等が挙げられる。
(Meth) crosslinkable functional groups possessed by acrylamide-based monomers include, for example, N-methylol groups, N-alkoxymethylol groups, N-methylol ether groups and the like, and having such crosslinkable functional groups ( Examples of meth)acrylamide-based monomers include N-methylolacrylamide and N-methylolamethacrylamide.
(メタ)アクリレート系単量体には、架橋性官能基を有していない(メタ)アクリレート系単量体、および、架橋性官能基を有している(メタ)アクリレート系単量体が挙げられる。架橋性官能基を有していない(メタ)アクリレート系単量体には、例えば、メタクリル酸ブチル、メタクリル酸エチル等のアルキル(メタ)アクリレート;、ジメチルアミノエチルアクリレート等のジアルキルアミノ基を有する(メタ)アクリレート;、メトキシエチルアクリレート、メトキシジエチレングリコールアクリレート等の(ポリ)アルキレングリコールに由来する構造を有する(メタ)アクリレート系単量体が挙げられる。微粒子の樹脂において架橋性官能基を有していない(メタ)アクリレート系単量体に由来する構成単位は、例えば、上記単量体のSP値の平均値が21MPa1/2以上となる範囲内にて含まれていればよい。
(Meth)acrylate-based monomers include (meth)acrylate-based monomers having no crosslinkable functional group and (meth)acrylate-based monomers having a crosslinkable functional group. be done. Examples of (meth)acrylate monomers having no crosslinkable functional group include alkyl (meth)acrylates such as butyl methacrylate and ethyl methacrylate; dialkylamino groups such as dimethylaminoethyl acrylate ( meth)acrylate; (meth)acrylate monomers having a structure derived from (poly)alkylene glycol such as methoxyethyl acrylate and methoxydiethylene glycol acrylate. Structural units derived from (meth)acrylate-based monomers having no crosslinkable functional groups in the fine particle resin are, for example, within a range in which the average SP value of the above monomers is 21 MPa 1/2 or more. should be included in
(メタ)アクリレート系単量体が有する架橋性官能基には、例えば、ヒドロキシル基、カルボキシル基、メルカプト基、フェノール基、アミノ基、シラノール基、アルコキシシリル基等の架橋性官能基が挙げられ、これら架橋性官能基を有する(メタ)アクリレート系単量体として、2-ヒドロキシエチル(メタ)アクリレート等が挙げられる。
Examples of the crosslinkable functional group possessed by the (meth)acrylate monomer include a hydroxyl group, a carboxyl group, a mercapto group, a phenol group, an amino group, a silanol group, and a crosslinkable functional group such as an alkoxysilyl group. Examples of (meth)acrylate monomers having crosslinkable functional groups include 2-hydroxyethyl (meth)acrylate.
これらビニル基、(メタ)アクリロイル基等の不飽和二重結合基以外に架橋性官能基を有している(メタ)アクリレート系単量体は、(メタ)アクリレート共重合体に構成単位として含まれたとき、当該架橋性官能基が、例えば、後述する硬化剤(B)、または無機粒子等と反応し得る。また、N-メチロール基、N-アルコキシメチロール基、N-メチロールエーテル基を有する(メタ)アクリルアミド系単量体に由来する構成単位については脱水縮合反応、脱アルコール縮合反応によって有機微粒子(A)内で架橋し、有機微粒子(A)の形状が安定することにより、防曇層の表面粗さRaが維持されやすくなると予想されるため、好ましい。架橋性官能基を有している(メタ)アクリル系単量体は、限定されるものではないが、(メタ)アクリレート共重合体に含まれる単量体に由来する構成単位の合計を100質量%として、1~100質量%含まれていることが好ましく、5~90質量%含まれていることがより好ましい。
(Meth)acrylate monomers having crosslinkable functional groups other than unsaturated double bond groups such as vinyl groups and (meth)acryloyl groups are included as structural units in the (meth)acrylate copolymer. When formed, the crosslinkable functional group can react with, for example, a curing agent (B) described later, inorganic particles, or the like. In addition, regarding structural units derived from a (meth)acrylamide-based monomer having an N-methylol group, an N-alkoxymethylol group, or an N-methylol ether group, a dehydration condensation reaction and a dealcoholization condensation reaction are carried out to form organic fine particles (A). It is expected that the surface roughness Ra of the antifogging layer will be easily maintained by cross-linking with and the shape of the organic fine particles (A) will be stabilized. The (meth)acrylic monomer having a crosslinkable functional group is not limited, but the total of structural units derived from the monomers contained in the (meth)acrylate copolymer is 100 mass. %, preferably 1 to 100% by mass, more preferably 5 to 90% by mass.
(メタ)アクリル酸系単量体には、例えば、アクリル酸、メタクリル酸、イタコン酸、クロトン酸、イソクロトン酸、及びマレイン等が挙げられる。(メタ)アクリル酸系単量体は、好ましくは、アクリル酸、又はメタクリル酸であり得る。これら(メタ)アクリル酸系単量体も、架橋性官能基としてカルボキシル基を有している点において、例えば、後述する硬化剤(B)等と反応し得る単量体であり得る。
(Meth)acrylic acid-based monomers include, for example, acrylic acid, methacrylic acid, itaconic acid, crotonic acid, isocrotonic acid, maleic acid, and the like. The (meth)acrylic acid-based monomer is preferably acrylic acid or methacrylic acid. These (meth)acrylic acid-based monomers may also be monomers capable of reacting with, for example, a curing agent (B) described later, in that they have a carboxyl group as a crosslinkable functional group.
その他の単量体には、アクリロニトリル、及びメタクリロニトリル等の単量体、並びに、酢酸ビニル、スチレン、N-ビニルピロリドン、及びビニルメチルオキサゾリジノン等のビニル系単量体が挙げられ、例えば、ビニルメチルオキサゾリジノンは、オキサゾリジノン基を架橋性官能基として有する単量体であり得る。
Other monomers include monomers such as acrylonitrile and methacrylonitrile, and vinyl-based monomers such as vinyl acetate, styrene, N-vinylpyrrolidone, and vinylmethyloxazolidinone. Methyloxazolidinone can be a monomer having an oxazolidinone group as a crosslinkable functional group.
有機微粒子(A)は、典型的には、主たる構成単位として、上述のような(メタ)アクリルアミド系単量体、(メタ)アクリレート系単量体、(メタ)アクリル酸系単量体に由来する構成単位を含む(メタ)アクリレート共重合体の微粒子であり得る。(メタ)アクリレート共重合体は、高いSP値を有する単量体に由来する構成単位を含むことにより、有機微粒子(A)に好適に親水性を付与することができる。
Organic fine particles (A) are typically derived from (meth)acrylamide-based monomers, (meth)acrylate-based monomers, and (meth)acrylic acid-based monomers as main structural units. It may be fine particles of a (meth)acrylate copolymer containing a structural unit that The (meth)acrylate copolymer can suitably impart hydrophilicity to the organic fine particles (A) by containing a structural unit derived from a monomer having a high SP value.
有機微粒子(A)は、例えば、粉体、又は分散液として、高松油脂株式会社から入手することができる。
The organic fine particles (A) can be obtained from Takamatsu Yushi Co., Ltd., for example, as a powder or a dispersion liquid.
以下の表1に、有機微粒子(A)の樹脂に構成単位として含まれ得る、代表的な単量体と、そのホモポリマーのガラス転移温度、及びSP値を例示する。表1に例示される単量体のホモポリマーのガラス転移温度及びSP値から、(メタ)アクリルアミド系単量体が高いガラス転移温度及び高いSP値を有する点において好ましいことが確認できる。
Table 1 below shows examples of representative monomers that can be contained as structural units in the resin of the organic fine particles (A), and the glass transition temperatures and SP values of their homopolymers. From the glass transition temperatures and SP values of the homopolymers of the monomers exemplified in Table 1, it can be confirmed that the (meth)acrylamide-based monomer is preferable in that it has a high glass transition temperature and a high SP value.
(硬化剤(B))
防曇層は、硬化剤(B)を含んでいることが好ましい。これにより、層内において有機微粒子(A)を構成する個々の粒子を、硬化剤(B)を介して互いに固定してなる防曇層が得ることができる。硬化剤(B)は、少なくとも1つの架橋性官能基を有する化合物を含んでいるとよい。防曇層は、硬化剤(B)に含まれる架橋性官能基を有する化合物と、有機微粒子(A)との架橋反応物により形成された層でもあり得る。硬化剤(B)はそれ自身が架橋重合反応する化合物であってもよいが、有機微粒子(A)の構成単位である(メタ)アクリレート系単量体が有する架橋性官能基と架橋反応することができる官能基を有する化合物であることが好ましい。硬化剤(B)に含まれる化合物は、少なくとも1つ、好ましくは、2つ以上の架橋性官能基を、その化学構造に備えていることが好ましい。硬化剤(B)は、少なくとも1つ以上の架橋性官能基を備えていれば、その化合物は、単量体化合物、オリゴマー、及びポリマーの何れであってもよい。 (Curing agent (B))
The antifogging layer preferably contains a curing agent (B). As a result, an antifogging layer can be obtained in which the individual particles constituting the organic fine particles (A) are fixed to each other via the curing agent (B) in the layer. Curing agent (B) preferably contains a compound having at least one crosslinkable functional group. The anti-fogging layer may also be a layer formed by a cross-linking reaction product of a compound having a cross-linkable functional group contained in the curing agent (B) and the organic fine particles (A). The curing agent (B) itself may be a compound that undergoes a cross-linking polymerization reaction, but it should cross-link with the cross-linking functional group of the (meth)acrylate-based monomer, which is the structural unit of the organic fine particles (A). is preferably a compound having a functional group capable of The compound contained in the curing agent (B) preferably has at least one, preferably two or more crosslinkable functional groups in its chemical structure. As long as the curing agent (B) has at least one or more crosslinkable functional groups, the compound may be a monomeric compound, an oligomer, or a polymer.
防曇層は、硬化剤(B)を含んでいることが好ましい。これにより、層内において有機微粒子(A)を構成する個々の粒子を、硬化剤(B)を介して互いに固定してなる防曇層が得ることができる。硬化剤(B)は、少なくとも1つの架橋性官能基を有する化合物を含んでいるとよい。防曇層は、硬化剤(B)に含まれる架橋性官能基を有する化合物と、有機微粒子(A)との架橋反応物により形成された層でもあり得る。硬化剤(B)はそれ自身が架橋重合反応する化合物であってもよいが、有機微粒子(A)の構成単位である(メタ)アクリレート系単量体が有する架橋性官能基と架橋反応することができる官能基を有する化合物であることが好ましい。硬化剤(B)に含まれる化合物は、少なくとも1つ、好ましくは、2つ以上の架橋性官能基を、その化学構造に備えていることが好ましい。硬化剤(B)は、少なくとも1つ以上の架橋性官能基を備えていれば、その化合物は、単量体化合物、オリゴマー、及びポリマーの何れであってもよい。 (Curing agent (B))
The antifogging layer preferably contains a curing agent (B). As a result, an antifogging layer can be obtained in which the individual particles constituting the organic fine particles (A) are fixed to each other via the curing agent (B) in the layer. Curing agent (B) preferably contains a compound having at least one crosslinkable functional group. The anti-fogging layer may also be a layer formed by a cross-linking reaction product of a compound having a cross-linkable functional group contained in the curing agent (B) and the organic fine particles (A). The curing agent (B) itself may be a compound that undergoes a cross-linking polymerization reaction, but it should cross-link with the cross-linking functional group of the (meth)acrylate-based monomer, which is the structural unit of the organic fine particles (A). is preferably a compound having a functional group capable of The compound contained in the curing agent (B) preferably has at least one, preferably two or more crosslinkable functional groups in its chemical structure. As long as the curing agent (B) has at least one or more crosslinkable functional groups, the compound may be a monomeric compound, an oligomer, or a polymer.
硬化剤(B)の含有量は、防曇層の固形分の合計を100質量%として、固形分換算で、1質量%以上、30質量%以下の範囲内であることが好ましい。当該範囲内において、硬化剤(B)の含有量が多い程、防曇層の被膜強度を高めることができる。また、1質量%以上、30質量%以下の範囲内において、より少ない程、防曇層により高い防曇性を付与できる。
The content of the curing agent (B) is preferably in the range of 1% by mass or more and 30% by mass or less in terms of solid content, assuming that the total solid content of the antifogging layer is 100% by mass. Within this range, the higher the content of the curing agent (B), the higher the film strength of the antifogging layer. Further, in the range of 1% by mass or more and 30% by mass or less, the smaller the amount, the higher the antifogging property can be imparted to the antifogging layer.
硬化剤(B)に含まれる化合物が有する、上述の有機微粒子(A)が有する架橋性官能基と架橋反応することができる官能基とは、互いに架橋する官能基である故に架橋性官能基と同義である。硬化剤(B)が有する架橋性官能基には、例えば、カルボジイミド基、エポキシ基、イソシアネート基、ブロックイソシアネート基、オキサゾリン基、ヒドラジド基、及びアジリジン基等が挙げられる。これら架橋性官能基は、上述の(メタ)アクリレート系単量体が有し得る、N-メチロール基、N-アルコキシメチロール基、N-メチロールエーテル基、及びヒドロキシル基、シラノール基、アルコキシシリル基、カルボキシル基、メルカプト基、フェノール基、アミノ基等の架橋性官能基と好適に反応し得る。
The functional group that the compound contained in the curing agent (B) has and is capable of undergoing a cross-linking reaction with the cross-linkable functional group of the organic fine particles (A) is a functional group that cross-links with each other. Synonymous. Examples of crosslinkable functional groups possessed by the curing agent (B) include carbodiimide groups, epoxy groups, isocyanate groups, blocked isocyanate groups, oxazoline groups, hydrazide groups, and aziridine groups. These crosslinkable functional groups are N-methylol groups, N-alkoxymethylol groups, N-methylol ether groups, and hydroxyl groups, silanol groups, alkoxysilyl groups, which the above (meth)acrylate monomers may have, It can preferably react with a crosslinkable functional group such as a carboxyl group, a mercapto group, a phenol group and an amino group.
このような架橋性官能基を有する化合物は、限定されるものではないが、水系に溶解する水溶性化合物、又は水系に分散する水分散性を有する化合物であることが好ましい。すなわち、硬化剤(B)は、水溶液、水分散液、又はエマルションとして入手され、防曇層を形成するための組成物に含まれ得る。硬化剤(B)は、本発明の効果を阻害しない範囲内において、有機溶剤を含んでいてもよい。
Although the compound having such a crosslinkable functional group is not limited, it is preferably a water-soluble compound that dissolves in an aqueous system or a water-dispersible compound that disperses in an aqueous system. That is, curing agent (B) is available as an aqueous solution, aqueous dispersion, or emulsion and can be included in the composition for forming the antifogging layer. The curing agent (B) may contain an organic solvent as long as the effects of the present invention are not impaired.
硬化剤(B)には、例えば、カルボジイミド基を有する硬化剤として、例えば、カルボジライト(登録商標)(日清紡ケミカル株式会社製)、カルボジスタ(登録商標)(帝人株式会社製)、N,N'-ジシクロヘキシルカルボジイミド(東京化成工業株式会社から入手可能)、N,N'-ジイソプロピルカルボジイミド(富士フイルム和光純薬株式会社から入手可能)、1-[3-(ジメチルアミノ)プロピル]-3-エチルカルボジイミド(富士フイルム和光純薬株式会社から入手可能)、塩酸1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(富士フイルム和光純薬株式会社から入手可能)、ビス(2,6-ジイソプロピルフェニル)カルボジイミド(川口化学工業株式会社から入手可能)等が挙げられる。エポキシ基を有する硬化剤には、例えば、デナコール(登録商標)(ナガセケムテックス株式会社製)、水系エポキシ樹脂jER(登録商標)シリーズ(三菱ケミカル株式会社製)、アデカレジン(登録商標)EMシリーズ(株式会社ADEKA製)等が挙げられる。ブロックイソシアネート基を有する硬化剤には、例えば、デュラネート(登録商標)(旭化成株式会社製)、コロネート(登録商標)シリーズ(東ソー株式会社製)等が挙げられる。オキサゾリン基を有する硬化剤には、例えば、エポクロス(登録商標)(株式会社日本触媒製)、ポリ(2-エチル-2-オキサゾリン)(富士フイルム和光純薬株式会社から入手可能)等が挙げられる。また、ヒドラジド基を有する硬化剤としては、アジピン酸ジヒドラジド(東京化成株式会社から入手可能)、セバシン酸ジヒドラジド、ドデカンジオヒドラジド、イソフタル酸ジヒドラジド、サリチル酸ヒドラジド(いずれも大塚化学株式会社から入手可能)等が挙げられる。アジリジン基を有する硬化剤として、ケミタイト(登録商標)(株式会社日本触媒製)、トリメチロールプロパントリス[3-(2-メチルアジリジン-1-イル)プロピオナート](日本大慶エネルギー株式会社から入手可能)等が挙げられる。
The curing agent (B) includes, for example, a curing agent having a carbodiimide group, such as Carbodilite (registered trademark) (manufactured by Nisshinbo Chemical Co., Ltd.), Carbosista (registered trademark) (manufactured by Teijin Limited), N,N'- Dicyclohexylcarbodiimide (available from Tokyo Chemical Industry Co., Ltd.), N,N'-diisopropylcarbodiimide (available from Fujifilm Wako Pure Chemical Industries, Ltd.), 1-[3-(dimethylamino)propyl]-3-ethylcarbodiimide ( available from Fujifilm Wako Pure Chemical Industries, Ltd.), 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide hydrochloride (available from Fujifilm Wako Pure Chemical Industries, Ltd.), bis(2,6-diisopropylphenyl)carbodiimide (available from Kawaguchi Chemical Industry Co., Ltd.) and the like. Curing agents having an epoxy group include, for example, Denacol (registered trademark) (manufactured by Nagase ChemteX Corporation), water-based epoxy resin jER (registered trademark) series (manufactured by Mitsubishi Chemical Corporation), ADEKA RESIN (registered trademark) EM series ( manufactured by ADEKA Corporation) and the like. Curing agents having a blocked isocyanate group include, for example, Duranate (registered trademark) (manufactured by Asahi Kasei Corporation), Coronate (registered trademark) series (manufactured by Tosoh Corporation), and the like. Curing agents having an oxazoline group include, for example, Epocross (registered trademark) (manufactured by Nippon Shokubai Co., Ltd.), poly(2-ethyl-2-oxazoline) (available from FUJIFILM Wako Pure Chemical Industries, Ltd.), and the like. . Curing agents having a hydrazide group include adipic acid dihydrazide (available from Tokyo Kasei Co., Ltd.), sebacic acid dihydrazide, dodecanediohydrazide, isophthalic acid dihydrazide, and salicylic acid hydrazide (all available from Otsuka Chemical Co., Ltd.). is mentioned. As a curing agent having an aziridine group, Chemitite (registered trademark) (manufactured by Nippon Shokubai Co., Ltd.), trimethylolpropane tris [3-(2-methylaziridin-1-yl) propionate] (available from Nippon Daikei Energy Co., Ltd.) etc.
(樹脂(C))
防曇層は、上述の有機微粒子(A)、硬化剤(B)の他に、樹脂(C)を含んでいることが好ましい。防曇層は、樹脂(C)を含んでいることにより、樹脂(C)と硬化剤(B)とを反応させ、より強固な被膜を形成することができる。また、樹脂(C)を含んでいることにより、基板への密着性を高めることができる。 (Resin (C))
The antifogging layer preferably contains a resin (C) in addition to the organic fine particles (A) and the curing agent (B) described above. Since the antifogging layer contains the resin (C), the resin (C) and the curing agent (B) can be reacted to form a stronger coating. In addition, by including the resin (C), the adhesion to the substrate can be enhanced.
防曇層は、上述の有機微粒子(A)、硬化剤(B)の他に、樹脂(C)を含んでいることが好ましい。防曇層は、樹脂(C)を含んでいることにより、樹脂(C)と硬化剤(B)とを反応させ、より強固な被膜を形成することができる。また、樹脂(C)を含んでいることにより、基板への密着性を高めることができる。 (Resin (C))
The antifogging layer preferably contains a resin (C) in addition to the organic fine particles (A) and the curing agent (B) described above. Since the antifogging layer contains the resin (C), the resin (C) and the curing agent (B) can be reacted to form a stronger coating. In addition, by including the resin (C), the adhesion to the substrate can be enhanced.
すなわち、樹脂(C)は、少なくとも硬化剤(B)と反応するべく、架橋性官能基を有しているとよい。なかでも、樹脂(C)自身の水溶性、又は水分散性を高めることができるという観点から、架橋性官能基は、例えば、カルボキシル基等の酸基、ヒドロキシル基、フェノール基、アミノ基等であることがより好ましい。樹脂(C)には、例えば、ポリエステル樹脂、ポリカーボネート系ウレタン樹脂、エポキシエステル樹脂、アルキド樹脂、水溶性フェノール樹脂等が例示され、樹脂(C)は、水溶性樹脂、水分散性樹脂、又は樹脂エマルションであり得る。防曇層は、樹脂(C)を含むことによって、水性コーティング剤として好適に調製し得る。
That is, the resin (C) preferably has a crosslinkable functional group so as to react with at least the curing agent (B). Among them, the crosslinkable functional group is, for example, an acid group such as a carboxyl group, a hydroxyl group, a phenol group, an amino group, or the like, from the viewpoint that the water solubility or water dispersibility of the resin (C) itself can be improved. It is more preferable to have Examples of the resin (C) include polyester resins, polycarbonate-based urethane resins, epoxy ester resins, alkyd resins, water-soluble phenol resins, and the like. It can be an emulsion. The anti-fogging layer can be suitably prepared as an aqueous coating agent by containing the resin (C).
樹脂(C)がカルボキシル基等の酸基を有している場合、樹脂(C)の酸価は、1~200mgKOH/gの範囲内であることが好ましく、2~60mgKOH/gであることが好ましい。これにより、当該酸価の範囲内において、酸価がより高い程、樹脂(C)の水溶性を高めることができ、防曇層の耐熱性を高めることができる。また、酸価がより高い程、後述する組成物を水溶媒系組成物とすることができる。また、酸価がより低い程、樹脂(C)を含む、防曇層の耐水性を高めることができる。
When the resin (C) has an acid group such as a carboxyl group, the acid value of the resin (C) is preferably in the range of 1 to 200 mgKOH/g, more preferably 2 to 60 mgKOH/g. preferable. Accordingly, within the range of the acid value, the higher the acid value, the higher the water solubility of the resin (C) and the higher the heat resistance of the antifogging layer. Further, the higher the acid value, the more the composition described below can be made into an aqueous solvent-based composition. In addition, the lower the acid value, the higher the water resistance of the antifogging layer containing the resin (C).
樹脂(C)が水酸基を有している場合、樹脂(C)の水酸基価は、1~200mgKOH/gの範囲内であることが好ましく、2~120mgKOH/gであることが好ましい。これにより、当該水酸基価の範囲内において、水酸基価がより高い程、樹脂(C)の水溶性を高めることができ、防曇層の耐熱性を高めることができる。また、水酸基価がより高い程、後述する組成物を水溶媒系組成物とすることができる。また、水酸基価がより低い程、樹脂(C)を含む、防曇層の耐水性を高めることができる。
When the resin (C) has hydroxyl groups, the hydroxyl value of the resin (C) is preferably in the range of 1 to 200 mgKOH/g, preferably 2 to 120 mgKOH/g. Accordingly, within the range of the hydroxyl value, the higher the hydroxyl value, the higher the water solubility of the resin (C) and the higher the heat resistance of the antifogging layer. Moreover, the higher the hydroxyl value, the more the composition described later can be made into an aqueous solvent-based composition. In addition, the lower the hydroxyl value, the higher the water resistance of the antifogging layer containing the resin (C).
その他、樹脂(C)がフェノール基、又はアミノ基を有する樹脂である場合、カルボキシル基及び水酸基を有する樹脂(C)と同じく、樹脂(C)の水溶性、作製される防曇層の耐熱性、及び防曇層の耐水性を考慮し、樹脂(C)のフェノール基又はアミノ基の量を設計すればよい。
In addition, when the resin (C) is a resin having a phenol group or an amino group, as with the resin (C) having a carboxyl group and a hydroxyl group, the water solubility of the resin (C) and the heat resistance of the antifogging layer to be produced are , and the water resistance of the antifogging layer, the amount of phenol groups or amino groups in the resin (C) may be designed.
樹脂(C)は、ガラス転移温度が、20℃以上であることが好ましく、50℃以上であることがより好ましい。これにより、防曇層の耐熱性をより高めることができる。
The resin (C) preferably has a glass transition temperature of 20°C or higher, more preferably 50°C or higher. Thereby, the heat resistance of the antifogging layer can be further enhanced.
硬化剤(B)及び樹脂(C)の配合比は、硬化剤(B)及び樹脂(C)の硬化物のガラス転移温度が高くなるように、硬化剤(B)及び樹脂(C)の種類に応じ、例えば、酸価、及び/又は水酸基価から適切な配合比を決定すればよい。
The compounding ratio of the curing agent (B) and the resin (C) is such that the cured product of the curing agent (B) and the resin (C) has a high glass transition temperature. For example, an appropriate compounding ratio may be determined from the acid value and/or the hydroxyl value.
防曇層は、硬化剤(B)及び樹脂(C)の総量が、防曇層に含まれる固形分換算で、2質量%以上、43質量%以下であるように防曇層に含まれていることが好ましく、当該範囲内においてより少ない方が、防曇層の耐熱性を高めることができる。また、防曇層における硬化剤(B)及び樹脂(C)の総量の含有量は、固形分換算として、43質量%以下であることが好ましく、20質量%以下であることがより好ましい。また、防曇層における硬化剤(B)及び樹脂(C)の総量の含有量が、2質量%以上であることにより、防曇層の被膜強度を高めることができる。
The antifogging layer is contained in the antifogging layer such that the total amount of the curing agent (B) and the resin (C) is 2% by mass or more and 43% by mass or less in terms of the solid content contained in the antifogging layer. Within this range, the smaller the amount, the better the heat resistance of the antifogging layer. The total content of the curing agent (B) and the resin (C) in the antifogging layer is preferably 43% by mass or less, more preferably 20% by mass or less in terms of solid content. Moreover, when the total content of the curing agent (B) and the resin (C) in the antifogging layer is 2% by mass or more, the film strength of the antifogging layer can be increased.
樹脂(C)は、例えば、樹脂(C)は、水溶液、水分散液、又はエマルションとして入手され、後述する組成物に含まれ得る。
For example, the resin (C) is obtained as an aqueous solution, aqueous dispersion, or emulsion, and can be included in the composition described below.
樹脂(C)には、例えば、ポリエステル樹脂として、ペスレジンシリーズ(高松油脂株式会社製)、及びアロンメルト(登録商標)PES-1000、2000シリーズ(東亜合成株式会社製)等が挙げられる。また、水性フェノール樹脂として、フェノライト(登録商標)TD-4304(DIC株式会社製)等が挙げられる。ポリカーボネート系ウレタン樹脂として、ハイドラン(登録商標)(DIC株式会社製)、エポキシエステル樹脂、及び、アルキド樹脂としてウォーターゾール(登録商標)(DIC株式会社製)等が挙げられる。
Examples of the resin (C) include polyester resins such as Pes resin series (manufactured by Takamatsu Yushi Co., Ltd.) and Aronmelt (registered trademark) PES-1000, 2000 series (manufactured by Toa Gosei Co., Ltd.). Examples of water-based phenolic resins include Phenolite (registered trademark) TD-4304 (manufactured by DIC Corporation). Polycarbonate-based urethane resins include Hydran (registered trademark) (manufactured by DIC Corporation), epoxy ester resins, and alkyd resins such as Watersol (registered trademark) (manufactured by DIC Corporation).
(無機粒子)
防曇層は、その他の成分として、無機粒子を含んでいてもよい。防曇層に含まれる無機粒子は、例えば、アルミナ、シリカ、ジルコニア、チタニア、酸化亜鉛、その他の金属酸化物微粒子、カーボン等が好ましく、アルミナゾル、コロイダルシリカ、シリカゾル、ジルコニアゾル、チタニアゾル、その他の金属酸化物微粒子のゾル等といったコロイド粒子として入手し得る。コロイド粒子は、酸性ゾル、アルカリ性ゾル、又は中性域で安定化したゾルであり得る。無機粒子は、上述の硬化剤(B)及び/又は樹脂(C)と架橋し得、無機粒子同士も架橋し得る。 (Inorganic particles)
The antifogging layer may contain inorganic particles as another component. The inorganic particles contained in the antifogging layer are preferably, for example, alumina, silica, zirconia, titania, zinc oxide, other metal oxide fine particles, carbon, etc. Alumina sol, colloidal silica, silica sol, zirconia sol, titania sol, other metal They are available as colloidal particles such as sols of fine oxide particles. The colloidal particles can be acidic sols, alkaline sols, or neutral stabilized sols. The inorganic particles can be crosslinked with the curing agent (B) and/or the resin (C) described above, and the inorganic particles can also be crosslinked with each other.
防曇層は、その他の成分として、無機粒子を含んでいてもよい。防曇層に含まれる無機粒子は、例えば、アルミナ、シリカ、ジルコニア、チタニア、酸化亜鉛、その他の金属酸化物微粒子、カーボン等が好ましく、アルミナゾル、コロイダルシリカ、シリカゾル、ジルコニアゾル、チタニアゾル、その他の金属酸化物微粒子のゾル等といったコロイド粒子として入手し得る。コロイド粒子は、酸性ゾル、アルカリ性ゾル、又は中性域で安定化したゾルであり得る。無機粒子は、上述の硬化剤(B)及び/又は樹脂(C)と架橋し得、無機粒子同士も架橋し得る。 (Inorganic particles)
The antifogging layer may contain inorganic particles as another component. The inorganic particles contained in the antifogging layer are preferably, for example, alumina, silica, zirconia, titania, zinc oxide, other metal oxide fine particles, carbon, etc. Alumina sol, colloidal silica, silica sol, zirconia sol, titania sol, other metal They are available as colloidal particles such as sols of fine oxide particles. The colloidal particles can be acidic sols, alkaline sols, or neutral stabilized sols. The inorganic particles can be crosslinked with the curing agent (B) and/or the resin (C) described above, and the inorganic particles can also be crosslinked with each other.
無機粒子は、体積基準の粒子径D50が、2nm以上であり得、3nm以上であることが好ましい。これにより、防曇層の表面粗さが損なわれることを防止できる。また、無機粒子は、粒子径D50が、200nm以下であることが、高い光透過性を防曇層に付与するという観点から好ましい。
The inorganic particles may have a volume-based particle diameter D50 of 2 nm or more, preferably 3 nm or more. This can prevent the surface roughness of the antifogging layer from being damaged. Further, the inorganic particles preferably have a particle diameter D50 of 200 nm or less from the viewpoint of imparting high light transmittance to the antifogging layer.
無機粒子の含有量は、例えば、防曇層に含まれる固形分の総量を100質量%とし、0.1質量%以上、10.0質量%以下の範囲内で含まれていることが好ましい。無機粒子の含有量が、10.0質量%以下であることにより、無機粒子に起因する防曇性の低下を好適に防止することができる。また、無機粒子の含有量は、0.1質量%以上とすることで、防曇層により高い光透過性としての耐熱性を付与できるという効果を奏する。
The content of the inorganic particles is, for example, preferably in the range of 0.1% by mass or more and 10.0% by mass or less when the total amount of solids contained in the antifogging layer is 100% by mass. When the content of the inorganic particles is 10.0% by mass or less, it is possible to suitably prevent deterioration of the antifogging properties due to the inorganic particles. In addition, when the content of the inorganic particles is set to 0.1% by mass or more, the anti-fogging layer has the effect of imparting heat resistance as high light transmittance.
無機粒子は、粉体、分散液、又はゾルとして入手すればよく、本発明の効果を阻害しない範囲で、アルコール等の有機溶剤が含まれていてもよい。このような、無機粒子は、例えば、アルミナゾル10A(川研ファインケミカル社製)、コロイダルシリカとしてスノーテック(登録商標)シリーズ(日産化学株式会社製)等が挙げられる。
The inorganic particles may be obtained as powder, dispersion, or sol, and may contain an organic solvent such as alcohol to the extent that the effects of the present invention are not impaired. Examples of such inorganic particles include Aluminasol 10A (manufactured by Kawaken Fine Chemicals Co., Ltd.), and colloidal silica such as Snowtech (registered trademark) series (manufactured by Nissan Chemical Industries, Ltd.).
(その他の成分)
防曇層は、その他の成分として、吸収剤、増膜助剤、凍結防止剤を含んでいてもよい。 (other ingredients)
The anti-fogging layer may contain an absorbent, a film-increasing aid, and an anti-freezing agent as other components.
防曇層は、その他の成分として、吸収剤、増膜助剤、凍結防止剤を含んでいてもよい。 (other ingredients)
The anti-fogging layer may contain an absorbent, a film-increasing aid, and an anti-freezing agent as other components.
吸収剤には、例えば、混合層粘土等が挙げられる。混合層粘土は、好ましくは、工業的に合成された合成粘土であり得、例えば、スメクタイト、ベントナイト、モンモリロナイト等が挙げられる。吸収剤を添加することによって防曇層に吸水して水を保持する機能を追加することができ、防曇性能を高めることができる。これら、混合層粘土は、吸収剤として以外に、沈降防止剤、及び/又は粘度調整剤として、後述する組成物に含まれ得る。
Absorbents include, for example, mixed layer clay. The mixed bed clay may preferably be an industrially synthesized synthetic clay, such as smectite, bentonite, montmorillonite, and the like. By adding an absorbent, the function of absorbing and retaining water in the antifogging layer can be added, and the antifogging performance can be enhanced. These mixed bed clays may be included in the compositions described below as anti-settling agents and/or viscosity modifiers, in addition to being absorbents.
混合層粘土は、限定されるものではないが、例えば、長径における粒子径D50が、200nm以下のものを用いることが好ましい。混合層粘土の含有量は、本発明の効果を阻害しない範囲において適宜設計すればよく、例えば、防曇層に含まれる固形分の総計を100質量%として、0.1質量%以上5.0質量%以下の範囲内であることが好ましい。
Although the mixed layer clay is not limited, for example, it is preferable to use one with a particle diameter D50 of 200 nm or less in the long axis. The content of the mixed layer clay may be appropriately designed within a range that does not impair the effects of the present invention. It is preferably in the range of mass % or less.
混合層粘度鉱物には、例えば、スメクタイトとしてスメクトン(登録商標)、クニピア(登録商標)(ともにクニミネ工業株式会社製)等が挙げられる。
Mixed layer clay minerals include, for example, smectites such as Sumecton (registered trademark) and Kunipia (registered trademark) (both manufactured by Kunimine Industries Co., Ltd.).
増膜助剤には、沸点が水より高く、かつ水溶性の有機溶剤が挙げられ、例えば、ブチルセロソルブ(エチレングリコール-モノブチルエーテル)、テキサノール(2,2,4-トリメチルペンタン-1,3-ジオールモノイソブチラート)等の有機溶剤が挙げられる。また、凍結防止剤は、典型的には、エチレングリコールである。水溶性の有機溶剤とは、室温(23℃)の水に、少なくとも4.0質量%の濃度にて溶解する有機溶剤のことを指す。増膜助剤及び凍結防止剤は、有機溶剤でもあり、防曇層における増膜助剤の含有量は4.0質量%以下であることが好ましく、2質量%以下であることが好ましく、0.5質量%以下であることが好ましく、0.1質量%以下であることがさらに好ましい。また、4.0質量%以下にすることにより、防曇層の耐熱性が損なわれること、言い換えれば、熱に曝されることによる防曇性の低下を防止できる。また、4.0質量%以下にすることで、有機微粒子(A)自身が有機溶剤によって溶解することを防止でき、防曇層の表面粗さRaを維持できる。これにより、表面粗さによりもたらされる防曇性低下することを防止できると予想される。
The film-increasing aid includes water-soluble organic solvents having a boiling point higher than that of water, such as butyl cellosolve (ethylene glycol-monobutyl ether), texanol (2,2,4-trimethylpentane-1,3-diol monoisobutyrate) and other organic solvents. Also, the antifreeze agent is typically ethylene glycol. A water-soluble organic solvent refers to an organic solvent that dissolves in water at room temperature (23° C.) at a concentration of at least 4.0% by mass. The film-increasing aid and the antifreezing agent are also organic solvents, and the content of the film-increasing aid in the antifogging layer is preferably 4.0% by mass or less, preferably 2% by mass or less, and 0 It is preferably 0.5% by mass or less, more preferably 0.1% by mass or less. In addition, by making it 4.0 mass % or less, it is possible to prevent the heat resistance of the anti-fogging layer from being impaired, in other words, the deterioration of the anti-fogging property due to exposure to heat. Further, by making the content 4.0% by mass or less, the organic fine particles (A) themselves can be prevented from being dissolved by the organic solvent, and the surface roughness Ra of the antifogging layer can be maintained. This is expected to prevent deterioration of antifogging properties caused by surface roughness.
防曇層は、その他の成分として、レベリング剤、消泡剤、分散剤、及び乳化剤等に例示される界面活性剤、並びに、粘度調整剤、酸化防止剤、紫外線吸収剤、可塑剤、防腐剤、防カビ剤及び耐水化剤等に例示される添加剤が含まれていてもよい。これら、界面活性剤、及び添加剤は、その一部が、防曇層を作製するための組成物に固形分として含まれ得る。防曇層は、本発明の効果を阻害しない範囲内において、基板に美観を付与するため、着色顔料、染料等の着色剤を含んでいてもよい。防曇層は、当該防曇層を作製するための組成物に由来して、例えば、pH調整剤、pH緩衝剤等が含まれていてもよい。
Other components of the antifogging layer include surfactants such as leveling agents, antifoaming agents, dispersants, and emulsifiers, viscosity modifiers, antioxidants, UV absorbers, plasticizers, and preservatives. , an antifungal agent, and a water-resistant agent. Some of these surfactants and additives may be included as solids in the composition for making the antifogging layer. The anti-fogging layer may contain coloring agents such as coloring pigments and dyes in order to impart a beautiful appearance to the substrate within a range that does not impair the effects of the present invention. The antifogging layer may contain, for example, a pH adjuster, a pH buffering agent, etc. derived from the composition for producing the antifogging layer.
〔基板〕
本発明の一態様に係る基板は、基板層(a)と、防曇層(b)とを備え、前記防曇層(b)は、前記基板層(a)上に配置される。防曇層(b)は前述の本発明の一態様に係る防曇層である。防曇層(b)の説明は本発明の一態様に係る防曇層の説明に準じ、同じ説明は繰り返さない。 〔substrate〕
A substrate according to one aspect of the present invention comprises a substrate layer (a) and an antifogging layer (b), wherein the antifogging layer (b) is disposed on the substrate layer (a). The antifogging layer (b) is the antifogging layer according to one aspect of the present invention described above. The description of the antifogging layer (b) conforms to the description of the antifogging layer according to one aspect of the present invention, and the same description will not be repeated.
本発明の一態様に係る基板は、基板層(a)と、防曇層(b)とを備え、前記防曇層(b)は、前記基板層(a)上に配置される。防曇層(b)は前述の本発明の一態様に係る防曇層である。防曇層(b)の説明は本発明の一態様に係る防曇層の説明に準じ、同じ説明は繰り返さない。 〔substrate〕
A substrate according to one aspect of the present invention comprises a substrate layer (a) and an antifogging layer (b), wherein the antifogging layer (b) is disposed on the substrate layer (a). The antifogging layer (b) is the antifogging layer according to one aspect of the present invention described above. The description of the antifogging layer (b) conforms to the description of the antifogging layer according to one aspect of the present invention, and the same description will not be repeated.
基板層(a)は、防曇層(b)をその上に配置するための層である。基板層(a)の材質は、基板の用途等に応じて適宜選択され得る。例えば、基板層(a)として、ガラス、樹脂材料、金属、セラミックス等が挙げられ、これらの複合材料であってもよい。中でも、光透過性を有するプラスチックであることがより好ましい。光透過性を有するプラスチックとしては、例えば、成形用のポリカーボネート樹脂、アクリル樹脂、ポリエステル樹脂、ポリスチレン樹脂、ABS樹脂、ポリ塩化ビニル樹脂、ポリアミド樹脂、ポリメチルメタクリレート(PMMA)、ポリエチレンテレフタレート(PET)、ポリシクロヘキシレンジメチレンテレフタレートコポリエステル樹脂(トライタン(登録商標):イーストマン ケミカル カンパニー社製)等が挙げられる。
The substrate layer (a) is a layer for placing the antifogging layer (b) thereon. The material of the substrate layer (a) can be appropriately selected according to the use of the substrate. Examples of the substrate layer (a) include glass, resin materials, metals, ceramics, and the like, and composite materials thereof may also be used. Among them, a plastic having optical transparency is more preferable. Examples of plastics having optical transparency include molding polycarbonate resins, acrylic resins, polyester resins, polystyrene resins, ABS resins, polyvinyl chloride resins, polyamide resins, polymethyl methacrylate (PMMA), polyethylene terephthalate (PET), Polycyclohexylene dimethylene terephthalate copolyester resin (Tritan (registered trademark): manufactured by Eastman Chemical Company) and the like.
本発明の一態様に係る基板は、防曇層(b)を備えていれば、基板層(a)の形状は限定されない。すなわち、本発明の一態様に係る基板は用途に応じて、所望の形状に成形されてなる基板であり得る。基板は、例えば、乗用車を始めとする車両、並びに船舶、及び航空機等におけるヘッドランプ、テールランプ等の照明装置、並びに眼鏡レンズ等の一部を構成する光透過性を有する基板であり得る。
The shape of the substrate layer (a) is not limited as long as the substrate according to one aspect of the present invention is provided with the antifogging layer (b). That is, the substrate according to one aspect of the present invention can be a substrate molded into a desired shape depending on the application. The substrate may be, for example, a light-transmitting substrate that constitutes a part of a vehicle such as a passenger car, a lighting device such as a headlamp or a tail lamp in a ship, an aircraft, or the like, or a spectacle lens.
基板層(a)上に防曇層(b)を配置する方法は、特に制限されない。例えば、防曇層(b)を作製するための組成物を基板層(a)上に塗布した後、当該組成物を硬化させればよい。当該組成物を硬化させる方法は、組成物の成分等に応じて適宜選択すればよく、例えば、加熱等を行なうことで乾燥させることによって、硬化させてもよい。
The method of arranging the antifogging layer (b) on the substrate layer (a) is not particularly limited. For example, after applying a composition for producing the antifogging layer (b) onto the substrate layer (a), the composition may be cured. The method for curing the composition may be appropriately selected according to the components of the composition, and for example, the composition may be cured by drying by heating.
例えば、基板層(a)は、防曇層(b)が作製される表面に、例えば、防曇層(b)の濡れ性、及び/又は密着性を高めるための表面処理が行われていてもよい。表面処理には、例えば、コロナ放電処理、化成処理、プラズマ処理、酸やアルカリ液処理等の表面処理が挙げられる。また、基板層(a)における防曇層(b)が作製される表面には、例えば、プライマー及びカップリング剤等の表面処理剤が塗布されていてもよい。
本発明の一態様に係る組成物の塗布方法には、公知の方法を採用することができ、例えば、塗布方法には、スプレーコート法、ディップコート法、ロールコート法、及びバーコーター法等が挙げられる。 For example, in the substrate layer (a), the surface on which the antifogging layer (b) is formed is subjected to a surface treatment to improve the wettability and/or adhesion of the antifogging layer (b). good too. Surface treatments include, for example, corona discharge treatment, chemical conversion treatment, plasma treatment, acid and alkaline solution treatment, and the like. Further, the surface of the substrate layer (a) on which the antifogging layer (b) is formed may be coated with a surface treatment agent such as a primer and a coupling agent.
A known method can be adopted as a method for applying the composition according to one aspect of the present invention. For example, the application method includes a spray coating method, a dip coating method, a roll coating method, a bar coater method, and the like. mentioned.
本発明の一態様に係る組成物の塗布方法には、公知の方法を採用することができ、例えば、塗布方法には、スプレーコート法、ディップコート法、ロールコート法、及びバーコーター法等が挙げられる。 For example, in the substrate layer (a), the surface on which the antifogging layer (b) is formed is subjected to a surface treatment to improve the wettability and/or adhesion of the antifogging layer (b). good too. Surface treatments include, for example, corona discharge treatment, chemical conversion treatment, plasma treatment, acid and alkaline solution treatment, and the like. Further, the surface of the substrate layer (a) on which the antifogging layer (b) is formed may be coated with a surface treatment agent such as a primer and a coupling agent.
A known method can be adopted as a method for applying the composition according to one aspect of the present invention. For example, the application method includes a spray coating method, a dip coating method, a roll coating method, a bar coater method, and the like. mentioned.
また、本発明の一態様に係る組成物を塗布した後における乾燥、硬化は、硬化剤(B)又は樹脂(C)の種類に応じて、適宜設計すればよく、限定されるものではないが、60℃以上であればよく、100℃以上であることが好ましい。本発明の一態様に係る組成物は、当該組成物に含まれる有機微粒子(A)のガラス転移温度が高いことにより、十分に水溶剤を乾燥させ、かつ十分に硬化剤(B)の架橋反応を促進させることができながら、防曇層を加熱することによる防曇性の低下を防止できることも利点の一つである。
In addition, drying and curing after applying the composition according to one aspect of the present invention may be appropriately designed according to the type of the curing agent (B) or the resin (C), and is not limited. , 60° C. or higher, preferably 100° C. or higher. In the composition according to one aspect of the present invention, the organic fine particles (A) contained in the composition have a high glass transition temperature, so that the aqueous solvent is sufficiently dried and the curing agent (B) is sufficiently cross-linked. One of the advantages is that it is possible to prevent deterioration of the antifogging property due to heating of the antifogging layer while promoting the antifogging property.
防曇層の作製において、本発明の一態様に係る組成物の塗布及び乾燥と、加熱とは、1度で行ってもよく、所望の膜厚になるように複数回繰り返してもよい。また、本発明の一態様に係る組成物の塗布及び乾燥までを複数回繰り返し、1度加熱することで防曇層を作製してもよい。
In the preparation of the antifogging layer, the application and drying of the composition according to one aspect of the present invention, and the heating may be performed once, or may be repeated multiple times so as to obtain the desired film thickness. Alternatively, the antifogging layer may be produced by repeating the application and drying of the composition according to one aspect of the present invention a plurality of times and heating once.
本発明の一態様に係る組成物における塗布乾燥後の膜厚、つまり防曇層の膜厚は基板の表面において、例えば、20nm~10000nmであることが好ましい。防曇層の膜厚は、20nm以上であることによって、防曇層によって被覆される基板に好適な防曇性を付与できる。また、防曇層の膜厚は、10000nm以下であることによって、防曇層に高い光透過性を付与できる。
The film thickness of the composition according to one aspect of the present invention after coating and drying, that is, the film thickness of the antifogging layer is preferably, for example, 20 nm to 10000 nm on the surface of the substrate. When the film thickness of the antifogging layer is 20 nm or more, suitable antifogging properties can be imparted to the substrate covered with the antifogging layer. Further, when the film thickness of the antifogging layer is 10000 nm or less, high light transmittance can be imparted to the antifogging layer.
〔組成物〕
本発明の一態様に係る防曇層を作製するための組成物(以下、単に「本発明の一態様に係る組成物」という。)は、有機微粒子(A)と、水と、を含み、前記有機微粒子(A)のガラス転移温度は60℃以上であることが好ましい。すなわち、組成物は、有機微粒子(A)は、水系組成物であり得る。本発明の一態様に係る組成物の構成に関する説明(後述する成分に関する説明を含む)は、本発明の一態様に係る防曇層に関する説明に準じ、同じ説明は繰り返さない。本発明の一態様に係る組成物を用いれば、本発明の一態様に係る防曇層を好適に作製することができる。 〔Composition〕
A composition for producing an antifogging layer according to one aspect of the present invention (hereinafter simply referred to as "the composition according to one aspect of the present invention") contains organic fine particles (A) and water, The glass transition temperature of the organic fine particles (A) is preferably 60° C. or higher. That is, the composition, the organic fine particles (A) may be a water-based composition. The description of the configuration of the composition according to one aspect of the present invention (including the description of the components described below) conforms to the description regarding the antifogging layer according to one aspect of the present invention, and the same description will not be repeated. By using the composition according to one aspect of the present invention, the antifogging layer according to one aspect of the present invention can be suitably produced.
本発明の一態様に係る防曇層を作製するための組成物(以下、単に「本発明の一態様に係る組成物」という。)は、有機微粒子(A)と、水と、を含み、前記有機微粒子(A)のガラス転移温度は60℃以上であることが好ましい。すなわち、組成物は、有機微粒子(A)は、水系組成物であり得る。本発明の一態様に係る組成物の構成に関する説明(後述する成分に関する説明を含む)は、本発明の一態様に係る防曇層に関する説明に準じ、同じ説明は繰り返さない。本発明の一態様に係る組成物を用いれば、本発明の一態様に係る防曇層を好適に作製することができる。 〔Composition〕
A composition for producing an antifogging layer according to one aspect of the present invention (hereinafter simply referred to as "the composition according to one aspect of the present invention") contains organic fine particles (A) and water, The glass transition temperature of the organic fine particles (A) is preferably 60° C. or higher. That is, the composition, the organic fine particles (A) may be a water-based composition. The description of the configuration of the composition according to one aspect of the present invention (including the description of the components described below) conforms to the description regarding the antifogging layer according to one aspect of the present invention, and the same description will not be repeated. By using the composition according to one aspect of the present invention, the antifogging layer according to one aspect of the present invention can be suitably produced.
本発明の一態様に係る組成物は、硬化剤(B)を含むことがより好ましい。また、硬化剤(B)の含有量は、固形分換算で、1質量%以上、30質量%以下であることがより好ましい。硬化剤(B)の含有量を1質量%以上とすることにより、耐熱性の良い防曇層が得られ、硬化剤(B)の含有量を30質量%以下とすることにより、十分な強度の防曇層を得ることができる。
The composition according to one aspect of the present invention more preferably contains a curing agent (B). Moreover, the content of the curing agent (B) is more preferably 1% by mass or more and 30% by mass or less in terms of solid content. By setting the content of the curing agent (B) to 1% by mass or more, an antifogging layer having good heat resistance can be obtained, and by setting the content of the curing agent (B) to 30% by mass or less, sufficient strength can be obtained. of antifogging layer can be obtained.
本発明の一態様に係る組成物は、硬化剤(B)、及び、樹脂(C)をさらに含むことが良い好ましい。また、硬化剤(B)及び樹脂(C)の総量が、固形分換算で、2質量%以上、43質量%以下であることがより好ましい。硬化剤(B)及び樹脂(C)の総量を2質量%以上とすることにより、基材に対する防曇層の密着性が得られ、硬化剤(B)及び樹脂(C)の総量を43質量%以下とすることにより、防曇層において防曇性を高めるための表面粗さが得られる。
The composition according to one aspect of the present invention preferably further contains a curing agent (B) and a resin (C). Further, it is more preferable that the total amount of the curing agent (B) and the resin (C) is 2% by mass or more and 43% by mass or less in terms of solid content. By setting the total amount of the curing agent (B) and the resin (C) to 2% by mass or more, the adhesion of the antifogging layer to the substrate is obtained, and the total amount of the curing agent (B) and the resin (C) is 43% by mass. % or less, a surface roughness for enhancing the antifogging property of the antifogging layer can be obtained.
また、本発明の一態様に係る組成物では、有機微粒子(A)の含有量が、固形分換算で、58質量%以上、99質量%以下であることがより好ましい。好適に本発明の一態様に係る防曇層を作製するためである。
Further, in the composition according to one aspect of the present invention, the content of the organic fine particles (A) is more preferably 58% by mass or more and 99% by mass or less in terms of solid content. This is for suitably producing the antifogging layer according to one aspect of the present invention.
また、本発明の一態様に係る組成物では、有機溶剤の含有量が、固形分に対して4.0質量%未満であることがより好ましい。本発明の一態様に係る組成物によれば、水を用いて、防曇性に優れる防曇層を作製することができるので、有機溶剤の使用量を減らすことができる。なお、有機溶剤は、上述の増膜助剤、又は凍結剤として用いられる、沸点が水よりも高い、水溶性の有機溶剤が挙げられる。
Further, in the composition according to one aspect of the present invention, it is more preferable that the content of the organic solvent is less than 4.0% by mass relative to the solid content. According to the composition according to one aspect of the present invention, an antifogging layer having excellent antifogging properties can be produced using water, so that the amount of organic solvent used can be reduced. Examples of the organic solvent include water-soluble organic solvents having a boiling point higher than that of water, which are used as film-increasing aids or freezing agents.
本発明の一態様に係る組成物は、防曇層を作製するための組成物として、固形分の総量を100質量部として、溶剤としての水を30~50000質量部含んでいるとよい。これにより、有機微粒子(A)による防曇性を好適に発現することができる、防曇層を作製するための組成物(コーティング剤)を得ることができる。溶剤としての水は、例えば、脱イオン水、蒸留水、水道水、及び工業用水等であり得る。なお、本明細書中、「固形分」とは、組成物から蒸発する水、揮発性溶剤と区別され、本発明の一態様に係る組成物を用いて作製した防曇層に組成として含まれる成分であれば、必ずしも「固体」でなくてもよい。
The composition according to one aspect of the present invention, as a composition for producing an antifogging layer, preferably contains 30 to 50000 parts by mass of water as a solvent with a total solid content of 100 parts by mass. This makes it possible to obtain a composition (coating agent) for producing an antifogging layer that can suitably exhibit antifogging properties of the organic fine particles (A). Water as a solvent can be, for example, deionized water, distilled water, tap water, industrial water, and the like. In this specification, the term “solid content” is distinguished from water that evaporates from the composition and volatile solvents, and is included as a composition in the antifogging layer produced using the composition according to one aspect of the present invention. A component need not necessarily be "solid".
また、本発明の一態様に係る組成物を、塗装し、硬化させることによって、有機微粒子(A)を含み、表面粗さRaが5nm以上、200nm以下を有する、防曇層を作製する、防曇層の製造方法も本発明の範疇である。このように、本発明の一態様に係る組成物を用いれば、本発明の一態様に係る防曇層を好適に作製することができる。なお、組成物を塗布する対象の基材は、防曇層の目的に応じて適宜選択すればよい。
Further, by coating and curing the composition according to one aspect of the present invention, an anti-fogging layer containing organic fine particles (A) and having a surface roughness Ra of 5 nm or more and 200 nm or less is produced. A method of manufacturing a cloudy layer is also within the scope of the present invention. Thus, by using the composition according to one aspect of the present invention, the antifogging layer according to one aspect of the present invention can be suitably produced. The substrate to which the composition is applied may be appropriately selected according to the purpose of the antifogging layer.
本発明は上述した実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能であり、実施形態にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施形態についても本発明の技術的範囲に含まれる。
The present invention is not limited to the above-described embodiments, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining the technical means disclosed in the embodiments It is included in the technical scope of the present invention.
〔まとめ〕
本発明の態様1に係る防曇層は、有機微粒子(A)を含み、ガラス転移温度(Tg)が60℃以上である。 〔summary〕
The antifogging layer according toaspect 1 of the present invention contains organic fine particles (A) and has a glass transition temperature (Tg) of 60° C. or higher.
本発明の態様1に係る防曇層は、有機微粒子(A)を含み、ガラス転移温度(Tg)が60℃以上である。 〔summary〕
The antifogging layer according to
本発明の態様2に係る防曇層は、態様1において、固形分換算で、前記有機微粒子(A)の含有量が、58質量%以上、99質量%以下であることが好ましい。
In the antifogging layer according to aspect 2 of the present invention, in aspect 1, it is preferable that the content of the organic fine particles (A) is 58% by mass or more and 99% by mass or less in terms of solid content.
本発明の態様3に係る防曇層は、態様1又は2において、対水接触角が10°未満であることが好ましい。
In the aspect 1 or 2, the anti-fogging layer according to aspect 3 of the present invention preferably has a water contact angle of less than 10°.
本発明の態様4に係る防曇層は、態様1~3のいずれか1つにおいて、前記有機微粒子(A)のガラス転移温度が、60℃以上であることが好ましい。
In the antifogging layer according to aspect 4 of the present invention, in any one of aspects 1 to 3, the glass transition temperature of the organic fine particles (A) is preferably 60°C or higher.
本発明の態様5に係る防曇層は、態様1~4のいずれか1つにおいて、表面粗さRaが、5nm以上、200nm以下であることが好ましい。
The antifogging layer according to aspect 5 of the present invention, in any one of aspects 1 to 4, preferably has a surface roughness Ra of 5 nm or more and 200 nm or less.
本発明の態様6に係る基板は、基板層(a)と、防曇層(b)とを備え、前記防曇層(b)は、態様1~5のいずれか1つに記載の防曇層であり、前記基板層(a)上に配置される。
A substrate according to aspect 6 of the present invention comprises a substrate layer (a) and an antifogging layer (b), wherein the antifogging layer (b) is the antifogging layer according to any one of aspects 1 to 5. layer and is disposed on said substrate layer (a).
本発明の態様7に係る基板は、態様6において、前記基板層(a)が、光透過性を有するプラスチックであることが好ましい。
In the substrate according to aspect 7 of the present invention, in aspect 6, it is preferable that the substrate layer (a) is a plastic having optical transparency.
本発明の態様8に係る組成物は、態様1~5のいずれか1つに記載の防曇層を作製するための組成物であって、有機微粒子(A)と、水と、を含む。
A composition according to aspect 8 of the present invention is a composition for producing an antifogging layer according to any one of aspects 1 to 5, comprising organic fine particles (A) and water.
本発明の態様9に係る組成物は、態様8において、有機溶剤の含有量が、前記防曇層の固形分に対して4.0質量%未満であることが好ましい。
The composition according to aspect 9 of the present invention, in aspect 8, preferably has an organic solvent content of less than 4.0% by mass relative to the solid content of the antifogging layer.
本発明の態様10に係る組成物は、態様8又は9において、前記有機微粒子(A)が、(メタ)アクリレート共重合体であり、前記(メタ)アクリレート共重合体が、単量体混合物を重合してなる共重合体であることが好ましい。
In the composition according to aspect 10 of the present invention, in aspect 8 or 9, the organic fine particles (A) are a (meth)acrylate copolymer, and the (meth)acrylate copolymer is a monomer mixture. It is preferably a copolymer obtained by polymerization.
本発明の態様11に係る組成物は、態様8~10のいずれか1つにおいて、樹脂(C)をさらに含み、前記樹脂(C)は、水溶性樹脂、水分散性樹脂、及び樹脂エマルションから選択されることが好ましい。
The composition according to aspect 11 of the present invention, in any one of aspects 8 to 10, further comprises a resin (C), and the resin (C) is a water-soluble resin, a water-dispersible resin, and a resin emulsion. is preferably selected.
本発明の一実施例について以下に説明する。
An embodiment of the present invention will be described below.
実施例1~37のコーティング剤、及び比較例1~4のコーティング剤を調製し、これらコーティング剤から作製された防曇層の評価を行なった。
The coating agents of Examples 1-37 and the coating agents of Comparative Examples 1-4 were prepared, and the anti-fogging layers produced from these coating agents were evaluated.
各コーティング剤を調製するために用いた材料は以下の通りである。
The materials used to prepare each coating agent are as follows.
〔材料〕
(有機微粒子)
20質量%の(メタ)アクリレート共重合体微粒子の水分散液(高松油脂株式会社製)として入手した。以下の表2及び表3に、実施例及び比較例に使用した(メタ)アクリレート共重合体を構成する各モノマーを示す。 〔material〕
(organic fine particles)
It was obtained as an aqueous dispersion of 20% by mass of (meth)acrylate copolymer fine particles (manufactured by Takamatsu Yushi Co., Ltd.). Tables 2 and 3 below show the monomers constituting the (meth)acrylate copolymers used in Examples and Comparative Examples.
(有機微粒子)
20質量%の(メタ)アクリレート共重合体微粒子の水分散液(高松油脂株式会社製)として入手した。以下の表2及び表3に、実施例及び比較例に使用した(メタ)アクリレート共重合体を構成する各モノマーを示す。 〔material〕
(organic fine particles)
It was obtained as an aqueous dispersion of 20% by mass of (meth)acrylate copolymer fine particles (manufactured by Takamatsu Yushi Co., Ltd.). Tables 2 and 3 below show the monomers constituting the (meth)acrylate copolymers used in Examples and Comparative Examples.
(無機粒子)
アルミナゾル:アルミナゾル10A(固形分10質量%、川研ファインケミカル株式会社製)
コロイダルシリカ:スノーテックス(登録商標)OXS(固形分10質量%、日産化学株式会社製)
(有機微粒子:樹脂(C))
ポリエステル樹脂:
ペスレジンA-640;高松油脂株式会社製,固形分25%品
ペスレジンA-645GH;高松油脂株式会社製,固形分30%品
ポリカーボネート系ウレタン樹脂:
ハイドラン(登録商標)WLS-210;DIC株式会社製,固形分35%品
エポキシエステル樹脂:
ウォーターゾール(登録商標)EFD-5560;DIC株式会社製,固形分40%品
アルキド樹脂:
ウォーターゾール(登録商標)BCD-3100;DIC株式会社製,固形分43%品
水溶性フェノール樹脂:
水溶性レゾールPE-602,DIC株式会社製,固形分42%品
(吸収剤)
合成スメクタイト:スメクトン(登録商標)SA(クニミネ工業株式会社)
(硬化剤)
カルボジイミド:カルボジライト(登録商標)E-02(日清紡ケミカル株式会社製)
アジリジン:ケミタイト(登録商標)DZ-22E(株式会社日本触媒)
アジピン酸ジヒドラジド(東京化成工業株式会社製)
エポキシ化合物:デナコール(登録商標)EX-810
(ナガセケムテックス株式会社製)
ブロックイソシアネート:デュラネート(登録商標)WM44-L70G
(旭化成株式会社製)
オキサゾリン化合物:エポクロス(登録商標)WS-700(株式会社日本触媒製)
(造膜助剤)
ブチルセロソルブ:(東京化成工業株式会社製) (Inorganic particles)
Alumina sol: Alumina sol 10A (solid content 10% by mass, manufactured by Kawaken Fine Chemicals Co., Ltd.)
Colloidal silica: Snowtex (registered trademark) OXS (solid content 10% by mass, manufactured by Nissan Chemical Co., Ltd.)
(Organic fine particles: resin (C))
Polyester resin:
Pesresin A-640; manufactured by Takamatsu Oil Co., Ltd., solid content 25% Pesresin A-645GH; manufactured by Takamatsu Oil Co., Ltd., solid content 30% Polycarbonate-based urethane resin:
Hydran (registered trademark) WLS-210; manufactured by DIC Corporation, epoxy ester resin with a solid content of 35%:
Watersol (registered trademark) EFD-5560; manufactured by DIC Corporation, alkyd resin with a solid content of 40%:
Water Sol (registered trademark) BCD-3100; manufactured by DIC Corporation, solid content 43% water-soluble phenolic resin:
Water-soluble resole PE-602, manufactured by DIC Corporation, solid content 42% product (absorbent)
Synthetic smectite: Sumecton (registered trademark) SA (Kunimine Industries Co., Ltd.)
(curing agent)
Carbodiimide: Carbodilite (registered trademark) E-02 (manufactured by Nisshinbo Chemical Inc.)
Aziridine: Chemitite (registered trademark) DZ-22E (Nippon Shokubai Co., Ltd.)
Adipic acid dihydrazide (manufactured by Tokyo Chemical Industry Co., Ltd.)
Epoxy compound: Denacol (registered trademark) EX-810
(manufactured by Nagase ChemteX Corporation)
Blocked isocyanate: Duranate (registered trademark) WM44-L70G
(manufactured by Asahi Kasei Corporation)
Oxazoline compound: Epocross (registered trademark) WS-700 (manufactured by Nippon Shokubai Co., Ltd.)
(Film-forming aid)
Butyl cellosolve: (manufactured by Tokyo Chemical Industry Co., Ltd.)
アルミナゾル:アルミナゾル10A(固形分10質量%、川研ファインケミカル株式会社製)
コロイダルシリカ:スノーテックス(登録商標)OXS(固形分10質量%、日産化学株式会社製)
(有機微粒子:樹脂(C))
ポリエステル樹脂:
ペスレジンA-640;高松油脂株式会社製,固形分25%品
ペスレジンA-645GH;高松油脂株式会社製,固形分30%品
ポリカーボネート系ウレタン樹脂:
ハイドラン(登録商標)WLS-210;DIC株式会社製,固形分35%品
エポキシエステル樹脂:
ウォーターゾール(登録商標)EFD-5560;DIC株式会社製,固形分40%品
アルキド樹脂:
ウォーターゾール(登録商標)BCD-3100;DIC株式会社製,固形分43%品
水溶性フェノール樹脂:
水溶性レゾールPE-602,DIC株式会社製,固形分42%品
(吸収剤)
合成スメクタイト:スメクトン(登録商標)SA(クニミネ工業株式会社)
(硬化剤)
カルボジイミド:カルボジライト(登録商標)E-02(日清紡ケミカル株式会社製)
アジリジン:ケミタイト(登録商標)DZ-22E(株式会社日本触媒)
アジピン酸ジヒドラジド(東京化成工業株式会社製)
エポキシ化合物:デナコール(登録商標)EX-810
(ナガセケムテックス株式会社製)
ブロックイソシアネート:デュラネート(登録商標)WM44-L70G
(旭化成株式会社製)
オキサゾリン化合物:エポクロス(登録商標)WS-700(株式会社日本触媒製)
(造膜助剤)
ブチルセロソルブ:(東京化成工業株式会社製) (Inorganic particles)
Alumina sol: Alumina sol 10A (solid content 10% by mass, manufactured by Kawaken Fine Chemicals Co., Ltd.)
Colloidal silica: Snowtex (registered trademark) OXS (solid content 10% by mass, manufactured by Nissan Chemical Co., Ltd.)
(Organic fine particles: resin (C))
Polyester resin:
Pesresin A-640; manufactured by Takamatsu Oil Co., Ltd., solid content 25% Pesresin A-645GH; manufactured by Takamatsu Oil Co., Ltd., solid content 30% Polycarbonate-based urethane resin:
Hydran (registered trademark) WLS-210; manufactured by DIC Corporation, epoxy ester resin with a solid content of 35%:
Watersol (registered trademark) EFD-5560; manufactured by DIC Corporation, alkyd resin with a solid content of 40%:
Water Sol (registered trademark) BCD-3100; manufactured by DIC Corporation, solid content 43% water-soluble phenolic resin:
Water-soluble resole PE-602, manufactured by DIC Corporation, solid content 42% product (absorbent)
Synthetic smectite: Sumecton (registered trademark) SA (Kunimine Industries Co., Ltd.)
(curing agent)
Carbodiimide: Carbodilite (registered trademark) E-02 (manufactured by Nisshinbo Chemical Inc.)
Aziridine: Chemitite (registered trademark) DZ-22E (Nippon Shokubai Co., Ltd.)
Adipic acid dihydrazide (manufactured by Tokyo Chemical Industry Co., Ltd.)
Epoxy compound: Denacol (registered trademark) EX-810
(manufactured by Nagase ChemteX Corporation)
Blocked isocyanate: Duranate (registered trademark) WM44-L70G
(manufactured by Asahi Kasei Corporation)
Oxazoline compound: Epocross (registered trademark) WS-700 (manufactured by Nippon Shokubai Co., Ltd.)
(Film-forming aid)
Butyl cellosolve: (manufactured by Tokyo Chemical Industry Co., Ltd.)
〔調製〕
実施例1のコーティング剤を次の手順で調製した。まず、(メタ)アクリレート共重合体微粒子の水分散液を500g準備し、当該水分散液に20gのポリエステル樹脂の水分散液を添加した。次いで、10gのアルミナゾルの水分散液と、硬化剤として固形分換算で10gのカルボジイミドとを、当該(メタ)アクリレート共重合体微粒子の水分散液に添加した。その後、当該水分散液を撹拌し、アンモニア水(1mol/L)を添加することでpH8.0に調整し、実施例1のコーティング剤を得た。以下の表2及び表3に示す組成に従い、実施例1のコーティング剤と同じ手順で、実施例2~37、及び比較例1~4のコーティング剤を調製した。 [Preparation]
The coating of Example 1 was prepared by the following procedure. First, 500 g of an aqueous dispersion of (meth)acrylate copolymer fine particles was prepared, and 20 g of an aqueous dispersion of a polyester resin was added to the aqueous dispersion. Next, 10 g of an aqueous dispersion of alumina sol and 10 g of carbodiimide in terms of solid content as a curing agent were added to the aqueous dispersion of the (meth)acrylate copolymer fine particles. Thereafter, the aqueous dispersion was stirred, and aqueous ammonia (1 mol/L) was added to adjust the pH to 8.0, thereby obtaining a coating agent of Example 1. Coating agents of Examples 2 to 37 and Comparative Examples 1 to 4 were prepared in the same manner as the coating agent of Example 1 according to the compositions shown in Tables 2 and 3 below.
実施例1のコーティング剤を次の手順で調製した。まず、(メタ)アクリレート共重合体微粒子の水分散液を500g準備し、当該水分散液に20gのポリエステル樹脂の水分散液を添加した。次いで、10gのアルミナゾルの水分散液と、硬化剤として固形分換算で10gのカルボジイミドとを、当該(メタ)アクリレート共重合体微粒子の水分散液に添加した。その後、当該水分散液を撹拌し、アンモニア水(1mol/L)を添加することでpH8.0に調整し、実施例1のコーティング剤を得た。以下の表2及び表3に示す組成に従い、実施例1のコーティング剤と同じ手順で、実施例2~37、及び比較例1~4のコーティング剤を調製した。 [Preparation]
The coating of Example 1 was prepared by the following procedure. First, 500 g of an aqueous dispersion of (meth)acrylate copolymer fine particles was prepared, and 20 g of an aqueous dispersion of a polyester resin was added to the aqueous dispersion. Next, 10 g of an aqueous dispersion of alumina sol and 10 g of carbodiimide in terms of solid content as a curing agent were added to the aqueous dispersion of the (meth)acrylate copolymer fine particles. Thereafter, the aqueous dispersion was stirred, and aqueous ammonia (1 mol/L) was added to adjust the pH to 8.0, thereby obtaining a coating agent of Example 1. Coating agents of Examples 2 to 37 and Comparative Examples 1 to 4 were prepared in the same manner as the coating agent of Example 1 according to the compositions shown in Tables 2 and 3 below.
〔防曇層の作製〕
バーコーター#2を用い、ポリカーボネート製テストピース(厚み2mm)に実施例1のコーティング剤を塗装した。ついで、温度90℃、20分間の条件にてコーティング剤を塗装したテストピースを加熱することで、コーティング剤の乾燥、及び硬化を行なった。これにより、1μm程度の膜厚を有する防曇層を備えたテストピースを作製した。実施例1のコーティング剤による防曇層の作製と同じ手順したがって、実施例2~37、及び比較例1~4の防曇層を備えたテストピースを作製した。 [Production of anti-fogging layer]
Usingbar coater # 2, the coating agent of Example 1 was applied to a polycarbonate test piece (thickness: 2 mm). Then, the coating agent was dried and cured by heating the test piece coated with the coating agent at a temperature of 90° C. for 20 minutes. As a result, a test piece having an antifogging layer with a thickness of about 1 μm was produced. Test pieces with antifogging layers of Examples 2 to 37 and Comparative Examples 1 to 4 were prepared according to the same procedure as the preparation of the antifogging layer from the coating agent of Example 1.
バーコーター#2を用い、ポリカーボネート製テストピース(厚み2mm)に実施例1のコーティング剤を塗装した。ついで、温度90℃、20分間の条件にてコーティング剤を塗装したテストピースを加熱することで、コーティング剤の乾燥、及び硬化を行なった。これにより、1μm程度の膜厚を有する防曇層を備えたテストピースを作製した。実施例1のコーティング剤による防曇層の作製と同じ手順したがって、実施例2~37、及び比較例1~4の防曇層を備えたテストピースを作製した。 [Production of anti-fogging layer]
Using
〔各評価〕
実施例1~37、比較例1~4の防曇層を備えたテストピースを用い、以下の評価を行なった。評価結果を表4及び表5に示す。 [Each evaluation]
Using the test pieces provided with the antifogging layers of Examples 1 to 37 and Comparative Examples 1 to 4, the following evaluations were performed. Evaluation results are shown in Tables 4 and 5.
実施例1~37、比較例1~4の防曇層を備えたテストピースを用い、以下の評価を行なった。評価結果を表4及び表5に示す。 [Each evaluation]
Using the test pieces provided with the antifogging layers of Examples 1 to 37 and Comparative Examples 1 to 4, the following evaluations were performed. Evaluation results are shown in Tables 4 and 5.
(粒子径)
有機微粒子の粒子径(単位:nm)を、体積基準における累積50%相当の粒子径として評価した。有機微粒子の粒子径は、動的光散乱式粒子径分布測定装置(装置名:Nanotrac Wave II UT151、マイクロトラック・ベル社製)にて測定した。Nanotracは同社の登録商標である。 (Particle size)
The particle diameter (unit: nm) of the organic fine particles was evaluated as the particle diameter corresponding to cumulative 50% on a volume basis. The particle size of the organic fine particles was measured with a dynamic light scattering particle size distribution analyzer (device name: Nanotrac Wave II UT151, manufactured by Microtrac Bell). Nanotrac is a registered trademark of the company.
有機微粒子の粒子径(単位:nm)を、体積基準における累積50%相当の粒子径として評価した。有機微粒子の粒子径は、動的光散乱式粒子径分布測定装置(装置名:Nanotrac Wave II UT151、マイクロトラック・ベル社製)にて測定した。Nanotracは同社の登録商標である。 (Particle size)
The particle diameter (unit: nm) of the organic fine particles was evaluated as the particle diameter corresponding to cumulative 50% on a volume basis. The particle size of the organic fine particles was measured with a dynamic light scattering particle size distribution analyzer (device name: Nanotrac Wave II UT151, manufactured by Microtrac Bell). Nanotrac is a registered trademark of the company.
(有機微粒子のガラス転移温度(Tg))
有機微粒子のガラス転移温度(Tg)を、DSC(示差走査熱量分析、装置名:EXSTAR DSC6200、セイコーインスツルメンツ社製)を用いて測定した。有機微粒子のガラス転移温度(Tg)は、JIS-K-7122:2012に従って、DSC曲線を測定し、当該DSC曲線から求めた。DSC測定に用いたサンプルの質量は5mgであった。1回目の走査で、-10℃から300℃までの温度範囲を20℃/分の速度で昇温し、次いで液体窒素を用いてサンプルを冷却した後、2回目の走査で、-10℃から300℃までの温度範囲を20℃/分の速度で昇温し、2回目の走査で得られたDSC曲線から、有機微粒子のガラス転移温度を導き出した。 (Glass transition temperature (Tg) of organic fine particles)
The glass transition temperature (Tg) of the organic fine particles was measured using DSC (differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.). The glass transition temperature (Tg) of the organic fine particles was obtained by measuring a DSC curve according to JIS-K-7122:2012 and obtaining the DSC curve. The mass of the sample used for DSC measurement was 5 mg. The first scan ramped the temperature range from −10° C. to 300° C. at a rate of 20° C./min, then cooled the sample using liquid nitrogen, followed by a second scan from −10° C. to The temperature range up to 300° C. was heated at a rate of 20° C./min, and the glass transition temperature of the organic fine particles was derived from the DSC curve obtained by the second scan.
有機微粒子のガラス転移温度(Tg)を、DSC(示差走査熱量分析、装置名:EXSTAR DSC6200、セイコーインスツルメンツ社製)を用いて測定した。有機微粒子のガラス転移温度(Tg)は、JIS-K-7122:2012に従って、DSC曲線を測定し、当該DSC曲線から求めた。DSC測定に用いたサンプルの質量は5mgであった。1回目の走査で、-10℃から300℃までの温度範囲を20℃/分の速度で昇温し、次いで液体窒素を用いてサンプルを冷却した後、2回目の走査で、-10℃から300℃までの温度範囲を20℃/分の速度で昇温し、2回目の走査で得られたDSC曲線から、有機微粒子のガラス転移温度を導き出した。 (Glass transition temperature (Tg) of organic fine particles)
The glass transition temperature (Tg) of the organic fine particles was measured using DSC (differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.). The glass transition temperature (Tg) of the organic fine particles was obtained by measuring a DSC curve according to JIS-K-7122:2012 and obtaining the DSC curve. The mass of the sample used for DSC measurement was 5 mg. The first scan ramped the temperature range from −10° C. to 300° C. at a rate of 20° C./min, then cooled the sample using liquid nitrogen, followed by a second scan from −10° C. to The temperature range up to 300° C. was heated at a rate of 20° C./min, and the glass transition temperature of the organic fine particles was derived from the DSC curve obtained by the second scan.
(表面粗さRa)
防曇層の表面粗さRaを、JIS-B-0601-2013に沿って、表面粗さ測定器[株式会社小坂研究所製、型名Surfcorer SE500]を使用し、走査範囲4mm、走査速度0.2mm/sの条件において求めた。 (Surface roughness Ra)
The surface roughness Ra of the anti-fogging layer was measured in accordance with JIS-B-0601-2013 using a surface roughness measuring instrument [manufactured by Kosaka Laboratory Ltd., model name Surfcorer SE500], scanning range 4 mm,scanning speed 0. It was obtained under the condition of .2 mm/s.
防曇層の表面粗さRaを、JIS-B-0601-2013に沿って、表面粗さ測定器[株式会社小坂研究所製、型名Surfcorer SE500]を使用し、走査範囲4mm、走査速度0.2mm/sの条件において求めた。 (Surface roughness Ra)
The surface roughness Ra of the anti-fogging layer was measured in accordance with JIS-B-0601-2013 using a surface roughness measuring instrument [manufactured by Kosaka Laboratory Ltd., model name Surfcorer SE500], scanning range 4 mm,
(原子間力顕微鏡観察)
AFM(原子間力顕微鏡、装置名:Dimension3100、Veeco社製)を用い、実施例32のコーティング剤から作製された防曇層を原子間力顕微鏡により観察した。結果を図1に示す。 (Atomic force microscope observation)
Using an AFM (atomic force microscope, device name: Dimension 3100, manufactured by Veeco), the antifogging layer produced from the coating agent of Example 32 was observed with an atomic force microscope. The results are shown in FIG.
AFM(原子間力顕微鏡、装置名:Dimension3100、Veeco社製)を用い、実施例32のコーティング剤から作製された防曇層を原子間力顕微鏡により観察した。結果を図1に示す。 (Atomic force microscope observation)
Using an AFM (atomic force microscope, device name: Dimension 3100, manufactured by Veeco), the antifogging layer produced from the coating agent of Example 32 was observed with an atomic force microscope. The results are shown in FIG.
(防曇層のガラス転移温度(Tg))
防曇層のガラス転移温度Tgを、DSC(示差走査熱量分析、装置名:EXSTAR DSC6200、セイコーインスツルメンツ社製)で測定した。防曇層のサンプル質量は5mgであり、DSC曲線を求めるための、温度範囲、昇温速度、走査回数は、有機微粒子のガラス転移温度(Tg)のDSC曲線を求めるための条件と同じであったため、説明を省略する。 (Glass transition temperature (Tg) of antifogging layer)
The glass transition temperature Tg of the antifogging layer was measured by DSC (differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.). The sample mass of the antifogging layer was 5 mg, and the temperature range, heating rate, and number of scans for obtaining the DSC curve were the same as the conditions for obtaining the DSC curve of the glass transition temperature (Tg) of the organic fine particles. Therefore, the description is omitted.
防曇層のガラス転移温度Tgを、DSC(示差走査熱量分析、装置名:EXSTAR DSC6200、セイコーインスツルメンツ社製)で測定した。防曇層のサンプル質量は5mgであり、DSC曲線を求めるための、温度範囲、昇温速度、走査回数は、有機微粒子のガラス転移温度(Tg)のDSC曲線を求めるための条件と同じであったため、説明を省略する。 (Glass transition temperature (Tg) of antifogging layer)
The glass transition temperature Tg of the antifogging layer was measured by DSC (differential scanning calorimetry, device name: EXSTAR DSC6200, manufactured by Seiko Instruments Inc.). The sample mass of the antifogging layer was 5 mg, and the temperature range, heating rate, and number of scans for obtaining the DSC curve were the same as the conditions for obtaining the DSC curve of the glass transition temperature (Tg) of the organic fine particles. Therefore, the description is omitted.
(対水接触角)
防曇層の対水接触角を、接触角計(装置名:CV-DT・A型、協和界面科学社製)を用いて測定した。 (water contact angle)
The contact angle of the antifogging layer to water was measured using a contact angle meter (device name: CV-DT A type, manufactured by Kyowa Interface Science Co., Ltd.).
防曇層の対水接触角を、接触角計(装置名:CV-DT・A型、協和界面科学社製)を用いて測定した。 (water contact angle)
The contact angle of the antifogging layer to water was measured using a contact angle meter (device name: CV-DT A type, manufactured by Kyowa Interface Science Co., Ltd.).
(塗膜透明性)
防曇層を備えたテストピースの塗膜透明性(光透過性)をヘイズメーター(「HAZE METER NDH5000」、日本電色工業社製)を用いて測定した。HAZE値は、JIS-K7361-1:1997に従って、光源が白色LED、光束が14mmの条件にて測定し、以下に示す基準において、△以上であれば問題なしであると評価し、〇であればより好ましいと評価した。なお、厚さ2mmのポリカーボネート製テストピース自身のHAZE値は0.30であった。
〇:HAZE値が0.30以上、0.40未満であった。
△:HAZE値が0.40以上、0.50未満であった。
×:HAZE値が0.50以上であった。 (Paint film transparency)
The coating film transparency (light transmittance) of the test piece provided with the antifogging layer was measured using a haze meter ("HAZE METER NDH5000", manufactured by Nippon Denshoku Industries Co., Ltd.). The HAZE value is measured according to JIS-K7361-1: 1997 under the conditions that the light source is a white LED and the luminous flux is 14 mm. It was evaluated as more preferable. The HAZE value of the 2 mm-thick polycarbonate test piece itself was 0.30.
○: HAZE value was 0.30 or more and less than 0.40.
Δ: The HAZE value was 0.40 or more and less than 0.50.
x: HAZE value was 0.50 or more.
防曇層を備えたテストピースの塗膜透明性(光透過性)をヘイズメーター(「HAZE METER NDH5000」、日本電色工業社製)を用いて測定した。HAZE値は、JIS-K7361-1:1997に従って、光源が白色LED、光束が14mmの条件にて測定し、以下に示す基準において、△以上であれば問題なしであると評価し、〇であればより好ましいと評価した。なお、厚さ2mmのポリカーボネート製テストピース自身のHAZE値は0.30であった。
〇:HAZE値が0.30以上、0.40未満であった。
△:HAZE値が0.40以上、0.50未満であった。
×:HAZE値が0.50以上であった。 (Paint film transparency)
The coating film transparency (light transmittance) of the test piece provided with the antifogging layer was measured using a haze meter ("HAZE METER NDH5000", manufactured by Nippon Denshoku Industries Co., Ltd.). The HAZE value is measured according to JIS-K7361-1: 1997 under the conditions that the light source is a white LED and the luminous flux is 14 mm. It was evaluated as more preferable. The HAZE value of the 2 mm-thick polycarbonate test piece itself was 0.30.
○: HAZE value was 0.30 or more and less than 0.40.
Δ: The HAZE value was 0.40 or more and less than 0.50.
x: HAZE value was 0.50 or more.
(防曇性)
温度23℃、湿度50%の条件に空調した室内において、テストピースに作製された防曇層に、5秒間呼気を吹き付け、以下に示す基準にて、防曇性の評価を行なった。
〇:全く曇らない。
△:僅かに曇るがすぐ元に戻る。
×:曇る。 (Anti-fogging property)
In an air-conditioned room at a temperature of 23° C. and a humidity of 50%, breath was blown to the antifogging layer formed on the test piece for 5 seconds, and the antifogging property was evaluated according to the following criteria.
O: Not cloudy at all.
Δ: Slightly cloudy, but quickly recovers.
x: Cloudy.
温度23℃、湿度50%の条件に空調した室内において、テストピースに作製された防曇層に、5秒間呼気を吹き付け、以下に示す基準にて、防曇性の評価を行なった。
〇:全く曇らない。
△:僅かに曇るがすぐ元に戻る。
×:曇る。 (Anti-fogging property)
In an air-conditioned room at a temperature of 23° C. and a humidity of 50%, breath was blown to the antifogging layer formed on the test piece for 5 seconds, and the antifogging property was evaluated according to the following criteria.
O: Not cloudy at all.
Δ: Slightly cloudy, but quickly recovers.
x: Cloudy.
(耐熱性)
各テストピースを、80℃、100℃、110℃のそれぞれの温度条件別に、240時間静置した後、温度23℃、湿度50%に空調された恒温庫内に1時間静置した。その後、防曇性及び光透過性を評価した。 (Heat-resistant)
Each test piece was allowed to stand for 240 hours under temperature conditions of 80° C., 100° C., and 110° C., and then allowed to stand for 1 hour in a constant temperature chamber air-conditioned at a temperature of 23° C. and a humidity of 50%. After that, antifogging properties and light transmission properties were evaluated.
各テストピースを、80℃、100℃、110℃のそれぞれの温度条件別に、240時間静置した後、温度23℃、湿度50%に空調された恒温庫内に1時間静置した。その後、防曇性及び光透過性を評価した。 (Heat-resistant)
Each test piece was allowed to stand for 240 hours under temperature conditions of 80° C., 100° C., and 110° C., and then allowed to stand for 1 hour in a constant temperature chamber air-conditioned at a temperature of 23° C. and a humidity of 50%. After that, antifogging properties and light transmission properties were evaluated.
(光沢値)
光沢値を、3角度表面光沢計(装置名:マイクロトリグロス、BYK社製)を用い、入射角60°の条件で光沢値を測定した。光沢値の測定は、A4コピー用紙(伊藤忠紙パルプ社製、白色度92%)を10枚重ねて置き、その上に各実施例及び比較例の防曇層を作製したテストピースをセットすることで測定した。
(gloss value)
The gloss value was measured using a 3-angle surface gloss meter (apparatus name: Micro Trigloss, manufactured by BYK) under the condition of an incident angle of 60°. The gloss value is measured by stacking 10 sheets of A4 copy paper (manufactured by Itochu Pulp & Paper Co., Ltd., whiteness 92%), and setting the test piece on which the antifogging layer of each example and comparative example is prepared. measured in
光沢値を、3角度表面光沢計(装置名:マイクロトリグロス、BYK社製)を用い、入射角60°の条件で光沢値を測定した。光沢値の測定は、A4コピー用紙(伊藤忠紙パルプ社製、白色度92%)を10枚重ねて置き、その上に各実施例及び比較例の防曇層を作製したテストピースをセットすることで測定した。
The gloss value was measured using a 3-angle surface gloss meter (apparatus name: Micro Trigloss, manufactured by BYK) under the condition of an incident angle of 60°. The gloss value is measured by stacking 10 sheets of A4 copy paper (manufactured by Itochu Pulp & Paper Co., Ltd., whiteness 92%), and setting the test piece on which the antifogging layer of each example and comparative example is prepared. measured in
表4及び表5に示すように、本発明の一態様に係る防曇層によれば、防曇層のTgが60℃以上、より好ましくは110℃以上であることによって、耐熱性試験後においても防曇性が優れることが示された。
As shown in Tables 4 and 5, according to the antifogging layer according to one aspect of the present invention, the Tg of the antifogging layer is 60°C or higher, more preferably 110°C or higher, so that after the heat resistance test, It was also shown that the anti-fogging property is excellent.
As shown in Tables 4 and 5, according to the antifogging layer according to one aspect of the present invention, the Tg of the antifogging layer is 60°C or higher, more preferably 110°C or higher, so that after the heat resistance test, It was also shown that the anti-fogging property is excellent.
Claims (11)
- 有機微粒子(A)を含み、ガラス転移温度(Tg)が60℃以上である、防曇層。 An antifogging layer containing organic fine particles (A) and having a glass transition temperature (Tg) of 60°C or higher.
- 固形分換算で、前記有機微粒子(A)の含有量が、58質量%以上、99質量%以下である、請求項1に記載の防曇層。 The antifogging layer according to claim 1, wherein the content of the organic fine particles (A) is 58% by mass or more and 99% by mass or less in terms of solid content.
- 対水接触角が10°未満である、請求項1又は2に記載の防曇層。 The antifogging layer according to claim 1 or 2, which has a water contact angle of less than 10°.
- 前記有機微粒子(A)のガラス転移温度が、60℃以上である、請求項1~3のいずれか1項に記載の防曇層。 The antifogging layer according to any one of claims 1 to 3, wherein the organic fine particles (A) have a glass transition temperature of 60°C or higher.
- 表面粗さRaが、5nm以上、200nm以下である、請求項1~4のいずれか1項に記載の防曇層。 The antifogging layer according to any one of claims 1 to 4, wherein the surface roughness Ra is 5 nm or more and 200 nm or less.
- 基板層(a)と、
防曇層(b)とを備え、
前記防曇層(b)は、請求項1~5のいずれか1項に記載の防曇層であり、前記基板層(a)上に配置される、
基板。 a substrate layer (a);
and an anti-fogging layer (b),
The antifogging layer (b) is the antifogging layer according to any one of claims 1 to 5, and is disposed on the substrate layer (a).
substrate. - 前記基板層(a)が、光透過性を有するプラスチックである、
請求項6に記載の基板。 The substrate layer (a) is a plastic having optical transparency,
A substrate according to claim 6 . - 請求項1~5のいずれか1項に記載の防曇層を作製するための組成物であって、
有機微粒子(A)と、
水と、を含む、
組成物。 A composition for making an antifogging layer according to any one of claims 1 to 5,
organic fine particles (A);
including water and
Composition. - 有機溶剤の含有量が、前記防曇層の固形分に対して4.0質量%未満である、
請求項8に記載の組成物。 The content of the organic solvent is less than 4.0% by mass with respect to the solid content of the antifogging layer.
A composition according to claim 8 . - 前記有機微粒子(A)が、(メタ)アクリレート共重合体であり、
前記(メタ)アクリレート共重合体が、単量体混合物を重合してなる共重合体である、
請求項8又は9に記載の組成物。 The organic fine particles (A) are a (meth)acrylate copolymer,
The (meth)acrylate copolymer is a copolymer obtained by polymerizing a monomer mixture,
A composition according to claim 8 or 9. - 樹脂(C)をさらに含み、
前記樹脂(C)は、水溶性樹脂、水分散性樹脂、及び樹脂エマルションから選択される、請求項8~10のいずれかに1項に記載の組成物。 further comprising a resin (C),
The composition according to any one of claims 8 to 10, wherein said resin (C) is selected from water-soluble resins, water-dispersible resins and resin emulsions.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-126605 | 2021-08-02 | ||
JP2021126605A JP7106732B1 (en) | 2021-08-02 | 2021-08-02 | Anti-fog layer and its use |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023013295A1 true WO2023013295A1 (en) | 2023-02-09 |
Family
ID=82593784
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/025488 WO2023013295A1 (en) | 2021-08-02 | 2022-06-27 | Anti-fog layer and use thereof |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP7106732B1 (en) |
TW (1) | TWI822201B (en) |
WO (1) | WO2023013295A1 (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262132A (en) * | 2000-03-22 | 2001-09-26 | Mitsubishi Chem Mkv Co | Agricultural polyolefin-based resin film |
JP2009148267A (en) * | 2008-12-25 | 2009-07-09 | Mitsubishi Plastics Inc | Agricultural multilayer film |
WO2016208735A1 (en) * | 2015-06-25 | 2016-12-29 | 旭化成株式会社 | Coating film |
WO2020031885A1 (en) * | 2018-08-10 | 2020-02-13 | トーヨーポリマー株式会社 | One-part water-based thermosetting antifogging coating composition and antifogging coating film |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3778619B2 (en) * | 1996-07-11 | 2006-05-24 | 三井化学株式会社 | Anti-fogging agent composition |
JP2003082272A (en) | 2001-09-13 | 2003-03-19 | Hitachi Chem Co Ltd | Antifogging coating, method of producing the same, method of forming antifogging coating film and formed product having antifogging coating film |
JP5834789B2 (en) * | 2011-11-08 | 2015-12-24 | コニカミノルタ株式会社 | Thin film anti-fogging film |
EP3132929B1 (en) * | 2014-04-01 | 2020-11-04 | AGC Inc. | Anti-fogging article and manufacturing method thereof |
JP6886585B2 (en) | 2017-06-29 | 2021-06-16 | Dic株式会社 | Aqueous resin compositions, coating agents and articles |
JP2019142196A (en) | 2018-02-23 | 2019-08-29 | 日油株式会社 | Antifogging antireflection film |
-
2021
- 2021-08-02 JP JP2021126605A patent/JP7106732B1/en active Active
-
2022
- 2022-06-27 WO PCT/JP2022/025488 patent/WO2023013295A1/en active Application Filing
- 2022-07-25 TW TW111127757A patent/TWI822201B/en active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2001262132A (en) * | 2000-03-22 | 2001-09-26 | Mitsubishi Chem Mkv Co | Agricultural polyolefin-based resin film |
JP2009148267A (en) * | 2008-12-25 | 2009-07-09 | Mitsubishi Plastics Inc | Agricultural multilayer film |
WO2016208735A1 (en) * | 2015-06-25 | 2016-12-29 | 旭化成株式会社 | Coating film |
WO2020031885A1 (en) * | 2018-08-10 | 2020-02-13 | トーヨーポリマー株式会社 | One-part water-based thermosetting antifogging coating composition and antifogging coating film |
Also Published As
Publication number | Publication date |
---|---|
JP2023021624A (en) | 2023-02-14 |
TWI822201B (en) | 2023-11-11 |
TW202313175A (en) | 2023-04-01 |
JP7106732B1 (en) | 2022-07-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101646815B1 (en) | Surface protection film | |
CN101037526A (en) | Antiblocking photocurable resin composition, antiblocking structure comprising substrate and antiblocking photocurable resin composition applied and cured thereon, and production method thereof | |
JP2007055217A (en) | Easy-to-adhere polyester film for optical use | |
JP2013010323A (en) | Hard coat film | |
WO2018038271A1 (en) | Antireflective laminate | |
JP2008036867A (en) | Polyester film for brightness improving sheet | |
TW201538597A (en) | Thermoplastic resin film, stretchable film, polarizer protective film and polarizing plate | |
JP2007216610A (en) | Antireflective film | |
JP2011011364A (en) | Polyester film for molding and hard coat film for molding | |
JP7106732B1 (en) | Anti-fog layer and its use | |
WO2023013229A1 (en) | Antifogging layer and use of same | |
WO2023013228A1 (en) | Antifogging layer and use thereof | |
JP6188118B2 (en) | Hard coat film | |
JP5304484B2 (en) | Polyester film for molding and hard coat film for molding | |
JP2021024179A (en) | Laminate | |
JP4446847B2 (en) | Ultraviolet shielding layer forming resin composition for optical surface molding and laminate thereof | |
JP7063667B2 (en) | Decorative sheet | |
JP2011126157A (en) | Hard coat film for molding | |
JP5173205B2 (en) | Polyester film for brightness enhancement sheet | |
JP2024032966A (en) | Copolymer, curable polymer composition, cured product, and laminate | |
JP5082194B2 (en) | Polyester film for molding | |
JP2007206316A (en) | Antireflection film | |
JP2023108835A (en) | Active energy ray-curable composition, and cured product thereof and laminate | |
JP2023108836A (en) | Cured film and laminate, and methods for producing these | |
JP2021024925A (en) | Curable polymer composition, cured product, and laminate |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22852721 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22852721 Country of ref document: EP Kind code of ref document: A1 |