WO2023013111A1 - Antenna module unit and communication device - Google Patents

Antenna module unit and communication device Download PDF

Info

Publication number
WO2023013111A1
WO2023013111A1 PCT/JP2022/006281 JP2022006281W WO2023013111A1 WO 2023013111 A1 WO2023013111 A1 WO 2023013111A1 JP 2022006281 W JP2022006281 W JP 2022006281W WO 2023013111 A1 WO2023013111 A1 WO 2023013111A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
antenna
sub
communication device
main module
Prior art date
Application number
PCT/JP2022/006281
Other languages
French (fr)
Japanese (ja)
Inventor
宏貴 柏木
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2023013111A1 publication Critical patent/WO2023013111A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/38Transceivers, i.e. devices in which transmitter and receiver form a structural unit and in which at least one part is used for functions of transmitting and receiving
    • H04B1/3827Portable transceivers

Definitions

  • the present invention relates to an antenna module unit and a communication device.
  • This application claims priority based on Japanese Patent Application No. 2021-128714 filed in Japan on August 5, 2021, the contents of which are incorporated herein.
  • Patent Document 1 by arranging an antenna module in a communication device so as to radiate radio waves in two directions, deterioration in antenna characteristics due to overlapping of the radiation direction of the antenna and the hand holding the communication device is reduced. An intended communication device is described.
  • a two-directional antenna can be used only with a configuration that can radiate radio waves in two directions. are close to each other, and there is a high possibility of being affected by hands in both directions, so it is necessary to arrange a plurality of antenna modules in the communication device.
  • a millimeter wave antenna it is necessary to form an array of antenna elements to obtain the required transmission/reception performance.
  • mounting a plurality of arrayed antenna modules on a communication device inevitably increases the size of the communication device and affects the size of the battery. In other words, it has been difficult to reduce the size of the communication device in order to suppress deterioration of the antenna characteristics.
  • An object of the present disclosure is to provide an antenna module unit and a communication device capable of suppressing deterioration of antenna characteristics and downsizing the communication device.
  • An antenna module unit includes a main module including a plurality of first antenna elements capable of transmitting and receiving radio waves, and at least one sub module capable of transmitting and receiving electrical signals to and from the main module via a cable. and a module, wherein the sub-module includes second antenna elements capable of transmitting and receiving radio waves, the number of which is smaller than the number of the first antenna elements, and an amplifier that amplifies the signal strength of the electrical signal.
  • a communication device includes the antenna module unit.
  • FIG. 1 is a perspective view showing a schematic configuration of an antenna module unit according to a first embodiment
  • FIG. 2 is a diagram showing an example of connection between a main module and a main circuit board in FIG. 1;
  • FIG. 2 is a diagram showing an example of an internal configuration of a main module of FIG. 1;
  • FIG. 2 is a diagram showing an example of a circuit configuration of a submodule in FIG. 1;
  • FIG. 3 is a diagram showing another example of the circuit configuration of the submodule of FIG. 1;
  • FIG. 3 is a diagram showing still another example of the circuit configuration of the submodule of FIG. 1;
  • FIG. 2 is a diagram showing an example of arrangement of the antenna module units of FIG. 1 in a communication device;
  • FIG. 1 is a perspective view showing a schematic configuration of an antenna module unit according to a first embodiment
  • FIG. 2 is a diagram showing an example of connection between a main module and a main circuit board in FIG. 1
  • FIG. 2 is a diagram
  • FIG. 2 is a diagram showing another example of arrangement of the antenna module units of FIG. 1 in a communication device
  • FIG. FIG. 5 is a schematic configuration diagram of an antenna module unit according to a second embodiment
  • FIG. 10 is a diagram showing an example of arrangement of the antenna module units of FIG. 9 in a communication device
  • FIG. 11 is a schematic configuration diagram of an antenna module unit according to a third embodiment
  • FIG. 12 is a diagram showing an example of a circuit configuration of a submodule of FIG. 11;
  • FIG. 1 is a perspective view showing a schematic configuration of an antenna module unit 1 according to the first embodiment.
  • the antenna module unit 1 according to the first embodiment includes a main module 10, submodules 20, and cables 30.
  • the antenna module unit 1 according to the first embodiment includes a main module 10, submodules 20, and cables 30.
  • the main module 10 includes an antenna substrate 11 and a plurality of first antenna elements 12 arranged in an array on the upper surface side of the antenna substrate 11 .
  • the first antenna element 12 transmits and receives radio waves.
  • the first antenna element 12 can transmit radio waves, for example, based on electrical signals.
  • the main module 10 includes four first antenna elements 12, as shown in FIG.
  • the four first antenna elements 12 are arranged in a row, that is, arranged in a one-dimensional array.
  • the main module 10 includes a plurality of first antenna elements 12, the directivity of each of the plurality of first antenna elements 12 is combined to improve the antenna gain in a specific direction, so-called beamforming. It can be carried out. This allows the main module 10 to achieve desired high antenna performance.
  • the number of first antenna elements 12 included in the main module 10 is not limited to four.
  • the main module 10 only needs to have the necessary number of first antenna elements 12 to have desired antenna characteristics.
  • the plurality of first antenna elements 12 may not necessarily be arranged in a one-dimensional array, and may be arranged in a two-dimensional array, for example.
  • the first antenna element 12 may be a patch antenna having a substantially square flat plate shape.
  • the first antenna element 12 may also be another antenna, for example a dipole antenna or a monopole antenna. Any combination of patch antennas, dipole antennas and monopole antennas may also be used.
  • the main module 10 further includes an RFIC (Radio Frequency Integrated Circuit) 13 and a power supply IC 14 on the lower surface side of the antenna substrate 11 .
  • RFIC 13 functions as a frequency converter in the present disclosure.
  • the RFIC 13 is an integrated circuit that performs processing of high frequency signals as electrical signals.
  • the RFIC 13 converts the frequency of electrical signals.
  • the RFIC 13 can transmit and receive radio waves from the first antenna element 12 using electrical signals for communicating with an external device.
  • the power supply IC 14 is a power supply circuit that supplies power to the RFIC 13 .
  • the power supply IC 14 also supplies power to the submodule 20 connected via the first connector 15 .
  • the main module 10 has a first connector 15 at one end of the antenna substrate 11 on the lower surface side, and a second connector 16 at the other end.
  • the first connector 15 is a connector for connecting with a third connector 31 provided at one end of the cable 30 .
  • the second connector 16 is a connector used for connection with the main circuit board 40 .
  • the main circuit board 40 has a modem circuit and exchanges signals with the main module 10 .
  • the main circuit board 40 also supplies power and control signals to the main module 10 .
  • the main module 10 is connected to the main circuit board 40 via a cable 50 such as a flexible cable.
  • a cable 50 such as a flexible cable.
  • the second connector 16 of the main module 10 and the fourth connector 51 provided on one end of the cable 50 are connected, and the fifth connector 52 provided on the other end of the cable 50 and the sixth connector provided on the main circuit board 40 are connected.
  • the main module 10 and the main circuit board 40 are connected.
  • Main circuit board 40 provides various signals and power to main module 10 via cable 50 .
  • the submodule 20 is provided on the other end side of the cable 30 opposite to the third connector 31 .
  • Submodule 20 receives electrical signals from main module 10 via cable 30 .
  • the submodule 20 includes an antenna substrate 21 and a second antenna element 22 arranged on the upper surface side of the antenna substrate 21 .
  • the second antenna element 22 transmits and receives radio waves.
  • the second antenna element 22 can transmit radio waves based on, for example, electrical signals (RF (Radio Frequency) signals, which will be described later).
  • the electrical signal can be exchanged between the submodule 20 and the main module 10 via the cable 30 .
  • the submodule 20 has one second antenna element 22 .
  • the second antenna element 22, like the first antenna element 12, may be a patch antenna, a dipole antenna, a monopole antenna, or the like.
  • the sub-module 20 has an amplifier 23 for amplifying signal strength on the lower surface side of the antenna substrate 21 .
  • the amplifier 23 amplifies the signal strength of the electric signal (high frequency signal) received from the main module 10 , for example, and supplies the amplified signal to the second antenna element 22 .
  • the amplifier 23, for example, is a high-frequency wave so that the strength of the radio wave transmitted and received from the second antenna element 22 is equal to or slightly higher than the strength of the radio wave transmitted and received from one of the first antenna elements 12 of the main module 10.
  • the amplifier 23 can make the radio wave transmission/reception performance of the sub-module 20 equivalent to that of the single first antenna element 12 of the main module 10 .
  • the cable 30 transmits signals and power between the main module 10 and the submodule 20 .
  • the cable 30 may be configured by a flexible cable, for example. It is assumed that the submodule 20 is directly mounted on the cable 30, but the connection method is not limited to this. Conversely, although the main module 10 side is shown as being connected by a connector, it may be directly mounted on the cable 30 .
  • FIG. 3 is a diagram showing an example of the internal configuration of the main module 10. As shown in FIG. Main module 10 receives various signals and power from main circuit board 40 connected via cable 50 .
  • the second connector 16 is configured to be able to transmit and receive control signals to and from the RFIC 13 and power supply IC 14 .
  • control signals are connected (supplied) from the main circuit board 40 to the RFIC 13 or the power supply IC 14 via the second connector 16 and the cable 50 .
  • the RFIC 13 and the power supply IC 14 perform processing according to the control signal.
  • the second connector 16 is configured to be capable of transmitting/receiving IF (Intermediate Frequency) signals to/from the RFIC 13 .
  • the RFIC 13 internally includes a mixer, a switch, an amplifier, and the like, and performs up-conversion or down-conversion on an input signal.
  • the RFIC 13 generates an RF signal by up-converting an input signal input from the main circuit board 40 to the main module 10 via the second connector 16 and the cable 50 .
  • the RF signal is an electrical signal supplied from main module 10 to submodule 20 via cable 30 .
  • the IF signal is connected (supplied) from the main circuit board 40 to the RFIC 13 via the second connector 16 and the cable 50 .
  • the RFIC 13 receives the local oscillation signal through the second connector 16 as well as the IF signal.
  • the local oscillation signal is an unmodulated signal for up-converting and down-converting the IF signal.
  • the RFIC 13 generates an RF signal (for example, a millimeter wave signal) by up-converting the IF signal received from the second connector 16 based on the control signal using the received local oscillation signal, and converts the generated RF signal to , the first antenna element 12 or the first connector 15 .
  • the RFIC 13 may comprise a phase shifter that provides phase control for beamforming, for example. Then, the RFIC 13 down-converts the high-frequency signal received from the first antenna element 12 or the first connector 15 to the IF frequency by the aforementioned local oscillation signal. This, like the up-conversion, is also controlled by the control signal.
  • the second connector 16 is configured to be able to supply power to the power supply IC 14 .
  • the second connector 16 supplies the power to the power supply IC 14 .
  • the power supply IC 14 supplies the power received from the second connector 16 to the RFIC 13 or the first connector 15 based on the control signal received from the second connector 16, for example.
  • the first connector 15 is configured to be able to transmit and receive control signals to and from the RFIC 13 and power supply IC 14 .
  • a control signal is connected (supplied) from the RFIC 13 or the power supply IC 14 to the submodule 20 via the first connector 15 and the cable 30 .
  • a high-frequency signal is connected (supplied) from the RFIC 13 to the sub-module 20 via the first connector 15 and the cable 30 .
  • the first connector 15 supplies the power to the submodule 20 via the cable 30 .
  • FIG. 4 is a diagram showing an example of the circuit configuration of the submodule 20.
  • the submodule 20 includes a second antenna element 22, a high power amplifier 23a, a low noise amplifier 23b, a first changeover switch 24a, and a second changeover switch 24b.
  • the high power amplifier 23a and the low noise amplifier 23b are examples of the amplifier 23 described above. That is, in this embodiment, the amplifier 23 includes a high-power amplifier 23a and a low-noise amplifier 23b.
  • the high power amplifier 23 a amplifies the high frequency signal supplied from the main module 10 and transmits it to the second antenna element 22 .
  • the low noise amplifier 23 b amplifies the signal received by the second antenna element 22 and transmits the amplified signal to the main module 10 .
  • the high power amplifier 23a and the low noise amplifier 23b are connected in parallel between the first changeover switch 24a and the second changeover switch 24b.
  • the first changeover switch 24a is connected to the terminal 20a connected to the cable 30.
  • the second changeover switch 24b is connected to the second antenna element 22.
  • a large power amplifier 23a and a low noise amplifier 23b are connected in parallel between the first changeover switch 24a and the second changeover switch 24b. The switch is switched according to the control. That is, when a signal is supplied to the second antenna element 22, the first changeover switch 24a and the second changeover switch 24b amplifies the high frequency signal supplied from the main module 10 by conducting the high power amplifier 23a.
  • the first changeover switch 24a and the second changeover switch 24b conduct the low noise amplifier 23b to amplify the signal from the second antenna element 22.
  • the first changeover switch 24a and the second changeover switch 24b switch the amplifier to be turned on between the high-power amplifier 23a and the low-noise amplifier 23b according to the timing of switching between transmission and reception according to the TDD (Time Division Duplex) system. You can switch between them. In this way, the sub-module 20 amplifies the signal for transmission and reception from the second antenna element 22 .
  • the submodule 20 is configured to be able to receive control signals and power from the main module 10 via the cable 30. That is, the submodule 20 performs control based on the control signal received from the main module 10 and transmits radio waves from the second antenna element 22 based on the high frequency signal received from the main module 10 .
  • Sub-module 20 does not have a separate phase shifter or up/down converter. Therefore, the radio waves transmitted from the second antenna element 22 of the submodule 20 can be controlled as one beam of the main module 10 .
  • FIG. 5 is a diagram showing another example of the circuit configuration of the submodule 20.
  • the submodule 20 includes two sets of circuit units composed of a high power amplifier 23a, a low noise amplifier 23b, a first changeover switch 24a and a second changeover switch 24b.
  • the functions and configurations of the high power amplifier 23a, the low noise amplifier 23b, the first changeover switch 24a and the second changeover switch 24b are the same as those described with reference to FIG.
  • the two sets of circuit units are connected in parallel between the second antenna element 22 and the cable 30. Of the two sets of circuit units, one set is connected to the terminal 20b connected to the cable 30, and the other set is connected to the terminal 20c connected to the cable 30.
  • FIG. 1 is connected to the terminal 20b connected to the cable 30, and the other set is connected to the terminal 20c connected to the cable 30.
  • the sub-module 20 when the sub-module 20 includes two sets of circuit units, the sub-module 20 can use the two sets of circuit units separately for transmitting and receiving different signals.
  • the submodule 20 can use one set of two sets of circuit units for vertical polarization communication and the other set for horizontal polarization communication.
  • FIG. 6 is a diagram showing still another example of the circuit configuration of the submodule 20.
  • the submodule 20 includes an amplifier 23 and a changeover switch 25.
  • the submodule 20 includes an amplifier 23 and a changeover switch 25.
  • the amplifier 23 amplifies the input signal strength.
  • the amplifier 23 shown in FIG. 6 has the functions of both the high power amplifier 23a and the low noise amplifier 23b shown in FIGS. That is, the amplifier 23 shown in FIG. 6 can amplify both the high frequency signal supplied from the main module 10 and the signal received by the second antenna element 22 .
  • the changeover switch 25 has four terminals.
  • the first terminal 25 a is connected to the second antenna element 22 .
  • the second terminal 25b is connected to the terminal 20d connected to the cable 30.
  • the third terminal 25 c is connected to the input side of the amplifier 23 .
  • the fourth terminal 25 d is connected to the output side of the amplifier 23 .
  • the switch 25 connects the second terminal 25b and the third terminal 25c. , connect the first terminal 25a and the fourth terminal 25d.
  • the high frequency signal supplied from the main module 10 is amplified by the amplifier 23 and supplied to the second antenna element 22 .
  • the changeover switch 25 connects the first terminal 25a and the third terminal 25c, The second terminal 25b and the fourth terminal 25d are connected.
  • the signal received by the second antenna element 22 is amplified by the amplifier 23 and transmitted to the main module 10 via the cable 30 from the terminal 20a.
  • the antenna module unit 1 of this embodiment includes a main module 10 having four first antenna elements 12 and a sub module capable of transmitting and receiving electrical signals between the main module 10 and the main module 10 via the cable 30.
  • the sub-module 20 comprises one second antenna element 22 and an amplifier 23 for amplifying the signal strength of the electrical signal.
  • the main module 10 has four first antenna elements 12, while the sub-module 20 has one second antenna element 22. Therefore, the sub-module 20 has a smaller number of parts than the main module 10. Less is.
  • the submodule 20 transmits radio waves from the second antenna element 22 based on the electrical signal (RF signal) received from the main module 10, the submodule 20 does not need to be provided with a separate phase shifter or up/down converter. do not have. Therefore, the submodule 20 can be made smaller than the main module 10 . Therefore, when the antenna module unit 1 is mounted on a communication device, the sub-module 20 can be arranged in a narrow space of the communication device, so that the communication device itself can be miniaturized.
  • the submodule 20 since the submodule 20 includes an amplifier 23 that amplifies electrical signals, it is possible to compensate for the loss that occurs in the cable 30. Therefore, the second antenna element 22 of the sub-module 20 can output radio waves with the same intensity as the single first antenna element 12 of the main module 10 . Therefore, as the antenna module unit 1, deterioration of the antenna characteristics can be suppressed. In this manner, the antenna module unit 1 can reduce the size of the communication device while suppressing deterioration of the antenna characteristics.
  • one amplifier 23 and one switch 25 can handle signal transmission and reception. Therefore, compared with the circuit configuration shown in FIG. 4, the submodule 20 can be further miniaturized.
  • the antenna module unit 1 may be mounted on a communication device.
  • the communication device may be any device that performs wireless communication, such as a smart phone or tablet.
  • FIG. 7 is a diagram showing an example of arrangement of the antenna module units 1 in FIG. 1 in the communication device 100.
  • a part of the communication device 100 is shown transparently so that the arrangement of the antenna module unit 1 can be easily understood.
  • the communication device 100 includes a housing that forms the outer shape of the communication device 100 .
  • the housing has a generally flat rectangular parallelepiped shape, as shown in FIG. 7, for example. That is, the communication device 100 has six sides.
  • the communication device 100 includes a display screen configured by, for example, a liquid crystal display, an organic EL panel (organic electro-luminescence panel), or an inorganic EL panel (inorganic electro-luminescence panel) on the front 101 side. .
  • the main module 10 and the sub-module 20 may be arranged on different surfaces in the housing forming the outer shape of the communication device 100 .
  • the main module 10 and the sub-module 20 are arranged on opposing surfaces.
  • the main module 10 is arranged on the first side 102 of the communication device 100 and the sub-module 20 is arranged on the second side 103 of the communication device 100 .
  • the sub-module 20 can easily detect radio waves from directions that are difficult for the main module 10 to receive. . Therefore, according to the arrangement shown in FIG. 7, it becomes easier to efficiently detect radio waves from multiple directions. That is, since the communication device 100 can receive radio waves by at least one of the main module 10 and the sub-module 20, it becomes easier to satisfy the standard of spherical coverage defined by specific specifications such as 3GPP.
  • the sub-module 20 is indicated by a solid line in FIG. 7, the sub-module 20 is not necessarily arranged outside (outside) the housing that forms the outline of the communication device 100. may be arranged inside (inside) a housing that forms the outer shape of the Also, the main module 10 and the sub-module 20 do not have to be arranged on surfaces facing each other.
  • the main module 10 and the submodules 20 may be arranged on different planes.
  • the main module 10 and the sub-module 20 may be arranged on orthogonal planes in the communication device 100 . Also in this case, since the main module 10 and the sub-module 20 are arranged to face in different directions, radio waves can be detected efficiently from multiple directions.
  • FIG. 8 is a diagram showing another example of arrangement of the antenna module units 1 in FIG. 8 as well, as in FIG. 7, a part of the communication device 100 is illustrated in a transparent state.
  • the main module 10 and the sub-module 20 may be arranged on the same plane in the housing that forms the outer shape of the communication device 100 .
  • the main module 10 and submodule 20 are arranged on the second side surface 103 of the communication device 100 .
  • the antenna module unit 1 can function as a sensor that detects the cause when the reception level of radio waves is lowered. For example, it is assumed that the reception level of radio waves by the first antenna element 12 of the main module 10 and the reception level of radio waves by the second antenna element 22 of the sub-module 20 of the antenna module unit 1 have similarly decreased.
  • the cause of the decrease in the reception level may be the equipment on the radio wave transmission side (for example, the base station) or the radio wave. It is presumed that it is due to being far away from the transmitting device or being out of line of sight.
  • the reception level of radio waves by the first antenna element 12 of the main module 10 and the reception level of radio waves by the second antenna element 22 of the sub-module 20 has decreased.
  • the cause of the decrease in the reception level is neither the device itself on the transmitting side nor the relationship with the device on the transmitting side. is estimated.
  • One of the main modules 10 and the sub-modules 20 whose reception level has decreased is assumed to be covered by an obstacle such as a hand. Therefore, according to the arrangement shown in FIG. 8, the cause of the change in the reception level can be estimated from the change in the reception level of the radio waves by the main module 10 and the sub-module 20 .
  • the communication device 100 when the communication device 100 including the antenna module unit 1 determines that an obstacle such as a hand is the cause of the decrease in the reception level, the communication device 100 detects the obstacle through display, sound, vibration, or the like. It may be notified that the reception level of radio waves is lowered due to an object. As a result, the user who has recognized the notification can recognize the cause of the decrease in the reception level of radio waves, and can take measures to improve the reception level of radio waves.
  • the main module 10 and the submodule 20 are arranged with a distance therebetween. Specifically, it is preferable that the main module 10 and the sub-module 20 are arranged in a position where it is impossible to cover both with one hand.
  • the main module 10 is arranged near the upper surface of the communication device 100 on the second side surface 103
  • the sub-module 20 is arranged near the lower surface of the communication device 100 on the second side surface 103. It is preferably placed in position. This reduces the possibility that the hand holding the communication device 100 covers the main module 10 and the sub-module 20 at the same time, making it easier to accurately estimate the cause of the change in the reception level described above.
  • the main module 10, the sub-module 20, and the cable 30 are indicated by solid lines, but the main module 10, the sub-module 20, and the cable 30 are not necessarily outside ( outside), but may be arranged inside (inside) the housing that forms the outer shape of the communication device 100 .
  • the submodule 20 includes one second antenna element 22 and does not include a phase shifter or an up/down converter, so it can be miniaturized. As a result, the size of the communication device 100 itself including the submodule 20 as shown in FIGS. 7 and 8 can also be reduced.
  • FIG. 9 is a schematic configuration diagram of the antenna module unit 2 according to the second embodiment.
  • the same reference numerals are given to the same or equivalent components as in the first embodiment, and the description of the same or equivalent contents as in the first embodiment will be omitted as appropriate. , different points will be mainly described.
  • the antenna module unit 2 includes a main module 10, a first submodule 121, a second submodule 122, a third submodule 123, and a first cable 131. , a second cable 132 and a third cable 133 .
  • the first submodule 121 is communicably connected to the main module 10 by a first cable 131 .
  • the second submodule 122 is communicably connected to the main module 10 by a second cable 132 .
  • the third submodule 123 is communicably connected to the main module 10 by a third cable 133 . That is, the antenna module unit 2 according to the second embodiment includes one main module 10 and three sub-modules each connected to the main module 10 via cables.
  • sub-module 120 when the first sub-module 121, the second sub-module 122, and the third sub-module 123 are not distinguished, they are collectively referred to simply as "sub-module 120".
  • the configuration of the main module 10 according to the second embodiment is the same as that of the main module 10 according to the first embodiment, so detailed description will be omitted here.
  • the configurations of the first sub-module 121, the second sub-module 122 and the third sub-module 123 in the second embodiment are the same as those of the sub-module 20 in the first embodiment. That is, each of the first sub-module 121, the second sub-module 122 and the third sub-module 123 includes one second antenna element and one amplifier.
  • the detailed configurations of the first sub-module 121, the second sub-module 122, and the third sub-module 123 are the same as those of the sub-module 20 in the first embodiment, so description thereof will be omitted.
  • the main module 10 according to the second embodiment is communicably connected to the main circuit board 40 via the cable 50, like the main module 10 according to the first embodiment.
  • the main module 10 can transmit signals and supply power to all or any of the three sub-modules 120 . Also, in the second embodiment, the three sub-modules 120 transmit signals to the main module 10 based on radio waves received by the second antenna element.
  • FIG. 10 is a diagram showing an example of arrangement of the antenna module units 2 of FIG. 9 in the communication device 200.
  • FIG. 10 a part of the communication device 200 is shown transparently so that the arrangement of the antenna module units 2 can be easily understood.
  • the communication device 200 has, for example, a substantially flat rectangular parallelepiped housing that constitutes the outer shape, similar to the communication device 100 shown in FIG. As shown in FIG. 10, the main module 10 and the three sub-modules 120 may be arranged on different surfaces in a housing that forms the outline of the communication device 100, respectively.
  • the main module 10 is arranged on the first side surface 202 of the communication device 200
  • the first sub-module 121 is arranged on the upper surface 204 of the communication device 200
  • the second sub-module 122 is arranged on the communication device 200.
  • 200 on the second side 203 and the third sub-module 123 on the front side 201 of the communication device 200 .
  • each module is arranged on more surfaces of the communication device 200 as shown in FIG. be able to. Therefore, the main module 10 and the three sub-modules 120 make it easier to efficiently detect radio waves from more directions.
  • the three sub-modules 120 are indicated by solid lines in FIG. 10, the three sub-modules 120 are not necessarily arranged outside (outside) the housing that forms the outer shape of the communication device 200. , may be arranged inside (inside) a housing forming the outer shape of the communication device 200 .
  • the antenna module unit 2 does not necessarily have to include three sub-modules 120 .
  • Antenna module unit 2 may comprise any number of sub-modules 120 . Accordingly, the antenna module unit 2 can comprise two or more sub-modules 120 .
  • FIG. 11 is a schematic configuration diagram of the antenna module unit 3 according to the third embodiment.
  • the same reference numerals are given to the same or equivalent components as in the first embodiment, and the description of the same or equivalent contents as in the first embodiment will be omitted as appropriate. , different points will be mainly described.
  • the antenna module unit 3 includes a main module 10, a submodule 140, and a cable 150.
  • the submodule 140 is communicably connected to the main module 10 by a cable 150 .
  • the configuration of the main module 10 according to the third embodiment is the same as that of the main module 10 according to the first embodiment, so detailed description is omitted here.
  • the main module 10 according to the third embodiment is communicably connected to the main circuit board 40 via a cable 150, like the main module 10 according to the first embodiment.
  • a sub-module 140 according to the third embodiment includes an antenna substrate 141 and two second antenna elements 142 arranged on the upper surface side of the antenna substrate 141 .
  • the second antenna element 142 may be a patch antenna, dipole antenna, monopole antenna, or the like.
  • the sub-module 140 includes an amplifier for amplifying the signal strength on the lower surface side of the antenna substrate 141 .
  • FIG. 12 is a diagram showing an example of the circuit configuration of the submodule 140.
  • the submodule 140 includes two second antenna elements 142, four high power amplifiers 143a, four low noise amplifiers 143b, a first changeover switch 144a, and a second changeover switch 144a.
  • a switch 144b, a third changeover switch 144c, a fourth changeover switch 144d, a fifth changeover switch 144e, and a sixth changeover switch 144f are provided.
  • the function of the second antenna element 142 is the same as that of the second antenna element 22 in the first embodiment.
  • the functions of the large power amplifier 143a and the low noise amplifier 143b are the same as those of the large power amplifier 23a and the low noise amplifier 23b in the first embodiment, respectively.
  • Four sets of large power amplifiers 143a and low noise amplifiers 143b are formed, with one large power amplifier 143a and one low noise amplifier 143b as one set. In each set, the high power amplifier 143a and the low noise amplifier 143b are connected in parallel.
  • the first changeover switch 144a is connected to a terminal 140a connected to the cable 150.
  • the second changeover switch 144b is connected to a terminal 140b connected to the cable 150.
  • the third changeover switch 144c, the fourth changeover switch 144d, the fifth changeover switch 144e, and the sixth changeover switch 144f are connected to the second antenna element 142, respectively.
  • a set of high power amplifier 143a and low noise amplifier 143b is connected in parallel between the first changeover switch 144a and the third changeover switch 144c, and between the first changeover switch 144a and the fourth changeover switch 144d , a pair of high power amplifier 143a and low noise amplifier 143b are connected in parallel.
  • a set of high-power amplifier 143a and low-noise amplifier 143b is connected in parallel between the second change-over switch 144b and the fifth change-over switch 144e. In between, a pair of high power amplifier 143a and low noise amplifier 143b are connected in parallel.
  • Six changeover switches (first changeover switch 144a, second changeover switch 144b, third changeover switch 144c, fourth changeover switch 144d, fifth changeover switch 144e, and sixth changeover switch 144f) operate according to signal transmission/reception control. switch. Specifically, when a signal is supplied to the second antenna element 142, the six changeover switches are switched so as to conduct the high power amplifier 23a. On the other hand, when supplying the signal received by the second antenna element 142, the six switches are switched to conduct the low noise amplifier 23b.
  • the submodule 140 includes two sets of circuit units, similar to the example shown in FIG. 5 of the first embodiment.
  • a set of circuit units includes a first change-over switch 144a, a third change-over switch 144c, a fourth change-over switch 144d, two large power amplifiers 143a arranged between these three switches, and two and a low noise amplifier 143b.
  • Another set of circuit units includes a second change-over switch 144b, a fifth change-over switch 144e, a sixth change-over switch 144f, two large power amplifiers 143a arranged between these three switches, and two low noise amplifier 143b. Therefore, in the example shown in FIG.
  • the submodule 140 can use two sets of circuit units for transmitting and receiving different signals, as in the example shown in FIG.
  • the sub-module 140 can use two sets of circuit units, one for vertical polarization communication and the other for horizontal polarization communication.
  • the main module 10 has four first antenna elements 12, whereas the sub-module 140 has two second antenna elements 142.
  • the submodule 20 has fewer parts than the main module. Also, for the same reason as described in the first embodiment, there is no need to provide a separate phase shifter or up/down converter in the submodule 140 . Therefore, the submodule 140 can be made smaller than the main module 10 . Therefore, it is possible to reduce the size of the antenna module unit 3 as a whole.
  • the number of second antenna elements 142 included in the submodule 140 does not necessarily have to be two.
  • the sub-module 140 may include one or more second antenna elements 142 that are smaller in number than the first antenna elements 12 included in the main module 10 .
  • the main module 10 includes four first antenna elements 12 as described herein, the sub-module 140 may include one to three second antenna elements 142 . As a result, the size of the submodule 140 can be reduced.
  • the number of first antenna elements 12 included in the main module 10 is not limited to four.
  • the main module 10 may have any number of first antenna elements 12, and the number of sub-modules 140 is one or more and less than the number of first antenna elements 12 provided in the main module 10.
  • a second antenna element 142 may be provided.

Abstract

Provided are an antenna module unit and a communication device that enable downsizing of the communication device while suppressing reduction in antenna characteristics. This antenna module unit comprises: a main module comprising a plurality of first antenna elements capable of transmitting and receiving electric waves; and at least one sub-module capable of transmitting and receiving electric signals between the sub-module and the main module through a cable. The sub-module comprises: a second antenna element the number of which is less than the number of the first antenna elements and which is capable of transmitting and receiving electric waves; and an amplifier for amplifying the intensity of the electric signals.

Description

アンテナモジュールユニット及び通信装置Antenna module unit and communication device
 本発明は、アンテナモジュールユニット及び通信装置に関する。本願は、2021年8月5日に日本で出願された特願2021-128714号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an antenna module unit and a communication device. This application claims priority based on Japanese Patent Application No. 2021-128714 filed in Japan on August 5, 2021, the contents of which are incorporated herein.
 従来、アンテナを備える通信装置において、ユーザが通信装置を手で保持した場合に、アンテナの放射方向と通信装置を保持する手が重なることにより、アンテナ特性が低下するという問題があった。この問題に対し、アンテナ特性の低下を抑制する技術が検討されてきた。例えば、特許文献1には、2方向に電波を放射できるように、通信装置にアンテナモジュールを配置することにより、アンテナの放射方向と通信装置を保持する手が重なることによるアンテナ特性の低下を軽減しようとする通信装置が記載されている。 Conventionally, in a communication device equipped with an antenna, when a user holds the communication device with his/her hand, the radiation direction of the antenna overlaps with the hand holding the communication device, causing the problem of degraded antenna characteristics. To address this problem, techniques for suppressing deterioration of antenna characteristics have been studied. For example, in Patent Document 1, by arranging an antenna module in a communication device so as to radiate radio waves in two directions, deterioration in antenna characteristics due to overlapping of the radiation direction of the antenna and the hand holding the communication device is reduced. An intended communication device is described.
国際公開第2020/138448号WO2020/138448
 特許文献1で検討されているように、アンテナの放射方向と通信装置を保持する手が重なることによるアンテナ特性の低下を補うためには、2方向に電波を放射出来る構成のみでは2方向のアンテナが近接しており2方向ともに手の影響を受けてしまう可能性が高くなるため、通信装置に複数のアンテナモジュールを配置する必要がある。ミリ波アンテナでは、アンテナ素子をアレイ化して、要求される送受信性能を得る必要がある。しかしながら、アレイ化したアンテナモジュールを通信装置に複数搭載すると、通信装置の大型化や電池サイズへの影響が避けられない。すなわち、アンテナ特性の低下を抑制しようとすると、通信装置の小型化が困難であった。 As discussed in Patent Document 1, in order to compensate for the deterioration of the antenna characteristics due to the overlap between the radiation direction of the antenna and the hand holding the communication device, a two-directional antenna can be used only with a configuration that can radiate radio waves in two directions. are close to each other, and there is a high possibility of being affected by hands in both directions, so it is necessary to arrange a plurality of antenna modules in the communication device. In a millimeter wave antenna, it is necessary to form an array of antenna elements to obtain the required transmission/reception performance. However, mounting a plurality of arrayed antenna modules on a communication device inevitably increases the size of the communication device and affects the size of the battery. In other words, it has been difficult to reduce the size of the communication device in order to suppress deterioration of the antenna characteristics.
 本開示は、上述の問題に鑑みてなされたものである。本開示の目的は、アンテナ特性の低下を抑制するとともに通信装置の小型化を実現可能な、アンテナモジュールユニット及び通信装置を提供することである。 The present disclosure has been made in view of the above problems. An object of the present disclosure is to provide an antenna module unit and a communication device capable of suppressing deterioration of antenna characteristics and downsizing the communication device.
 本開示の一形態のアンテナモジュールユニットは、電波を送受信可能な複数の第1アンテナエレメントを備えるメインモジュールと、ケーブルを介して前記メインモジュールとの間で電気信号を送受信可能な少なくとも1個のサブモジュールと、を備え、前記サブモジュールは、前記第1アンテナエレメントの個数よりも少ない個数の、電波を送受信可能な第2アンテナエレメントと、前記電気信号の信号強度を増幅する増幅器と、を備える。 An antenna module unit according to one aspect of the present disclosure includes a main module including a plurality of first antenna elements capable of transmitting and receiving radio waves, and at least one sub module capable of transmitting and receiving electrical signals to and from the main module via a cable. and a module, wherein the sub-module includes second antenna elements capable of transmitting and receiving radio waves, the number of which is smaller than the number of the first antenna elements, and an amplifier that amplifies the signal strength of the electrical signal.
 本開示の一形態の通信装置は、前記アンテナモジュールユニットを備える。 A communication device according to one aspect of the present disclosure includes the antenna module unit.
第1実施形態に係るアンテナモジュールユニットの概略構成を示す斜視図である。1 is a perspective view showing a schematic configuration of an antenna module unit according to a first embodiment; FIG. 図1のメインモジュールとメイン回路基板との接続の一例を示す図である。2 is a diagram showing an example of connection between a main module and a main circuit board in FIG. 1; FIG. 図1のメインモジュールの内部構成の一例を示す図である。2 is a diagram showing an example of an internal configuration of a main module of FIG. 1; FIG. 図1のサブモジュールの回路構成の一例を示す図である。2 is a diagram showing an example of a circuit configuration of a submodule in FIG. 1; FIG. 図1のサブモジュールの回路構成の他の一例を示す図である。3 is a diagram showing another example of the circuit configuration of the submodule of FIG. 1; FIG. 図1のサブモジュールの回路構成のさらなる他の一例を示す図である。3 is a diagram showing still another example of the circuit configuration of the submodule of FIG. 1; FIG. 通信装置における図1のアンテナモジュールユニットの配置の一例を示す図である。2 is a diagram showing an example of arrangement of the antenna module units of FIG. 1 in a communication device; FIG. 通信装置における図1のアンテナモジュールユニットの配置の他の一例を示す図である。2 is a diagram showing another example of arrangement of the antenna module units of FIG. 1 in a communication device; FIG. 第2実施形態に係るアンテナモジュールユニットの概略構成図である。FIG. 5 is a schematic configuration diagram of an antenna module unit according to a second embodiment; 通信装置における図9のアンテナモジュールユニットの配置の一例を示す図である。FIG. 10 is a diagram showing an example of arrangement of the antenna module units of FIG. 9 in a communication device; 第3実施形態に係るアンテナモジュールユニットの概略構成図である。FIG. 11 is a schematic configuration diagram of an antenna module unit according to a third embodiment; 図11のサブモジュールの回路構成の一例を示す図である。FIG. 12 is a diagram showing an example of a circuit configuration of a submodule of FIG. 11;
 以下、本開示の実施形態について、図面を参照しながら説明する。なお、図面において、同一又は同等の構成要素には同一の符号を付し、同一又は同等の構成要素に関する説明が重複する場合は適宜省略する。 Hereinafter, embodiments of the present disclosure will be described with reference to the drawings. In addition, in the drawings, the same or equivalent components are denoted by the same reference numerals, and redundant description of the same or equivalent components will be omitted as appropriate.
[第1実施形態]
 図1は、第1実施形態に係るアンテナモジュールユニット1の概略構成を示す斜視図である。図1に示すように、第1実施形態に係るアンテナモジュールユニット1は、メインモジュール10と、サブモジュール20と、ケーブル30と、を備える。
[First embodiment]
FIG. 1 is a perspective view showing a schematic configuration of an antenna module unit 1 according to the first embodiment. As shown in FIG. 1, the antenna module unit 1 according to the first embodiment includes a main module 10, submodules 20, and cables 30. As shown in FIG.
 メインモジュール10は、アンテナ基板11と、アンテナ基板11の上面側にアレイ状に配置された複数の第1アンテナエレメント12と、を備える。第1アンテナエレメント12は、電波を送受信する。第1アンテナエレメント12は、例えば電気信号に基づいて電波を送信できる。本実施形態では、図1に示すように、メインモジュール10は、4個の第1アンテナエレメント12を備える。4個の第1アンテナエレメント12は、一列に配置されており、すなわち一次元アレイ状に配置されている。このようにメインモジュール10は、複数の第1アンテナエレメント12を備えるため、複数の第1アンテナエレメント12のそれぞれが持つ指向性を合成し、特定の方向のアンテナ利得を向上させる、いわゆるビームフォーミングを行うことができる。これにより、メインモジュール10は、所望の高いアンテナ性能を実現することができる。 The main module 10 includes an antenna substrate 11 and a plurality of first antenna elements 12 arranged in an array on the upper surface side of the antenna substrate 11 . The first antenna element 12 transmits and receives radio waves. The first antenna element 12 can transmit radio waves, for example, based on electrical signals. In this embodiment, the main module 10 includes four first antenna elements 12, as shown in FIG. The four first antenna elements 12 are arranged in a row, that is, arranged in a one-dimensional array. Thus, since the main module 10 includes a plurality of first antenna elements 12, the directivity of each of the plurality of first antenna elements 12 is combined to improve the antenna gain in a specific direction, so-called beamforming. It can be carried out. This allows the main module 10 to achieve desired high antenna performance.
 ただし、メインモジュール10が備える第1アンテナエレメント12の個数は4個に限られない。メインモジュール10は、所望のアンテナ特性を有するために必要な個数の第1アンテナエレメント12を備えていればよい。複数の第1アンテナエレメント12は、必ずしも一次元アレイ状に配置されていなくてもよく、例えば二次元アレイ状に配置されていてもよい。 However, the number of first antenna elements 12 included in the main module 10 is not limited to four. The main module 10 only needs to have the necessary number of first antenna elements 12 to have desired antenna characteristics. The plurality of first antenna elements 12 may not necessarily be arranged in a one-dimensional array, and may be arranged in a two-dimensional array, for example.
 本実施形態においては、第1アンテナエレメント12は、略正方形の平板形状を有するパッチアンテナであってよい。ただし、第1アンテナエレメント12は、例えばダイポールアンテナ又はモノポールアンテナなどの、他のアンテナであってもよい。また、パッチアンテナ、ダイポールアンテナ及びモノポールアンテナのうち、任意の組合せが併用されてもよい。 In this embodiment, the first antenna element 12 may be a patch antenna having a substantially square flat plate shape. However, the first antenna element 12 may also be another antenna, for example a dipole antenna or a monopole antenna. Any combination of patch antennas, dipole antennas and monopole antennas may also be used.
 本実施形態において、メインモジュール10は、アンテナ基板11の下面側に、RFIC(Radio Frequency Integrated Circuit)13と、電源IC14と、をさらに備える。RFIC13は、本開示における周波数変換部として機能する。RFIC13は、電気信号としての高周波信号の処理を実行する集積回路である。本実施形態において、RFIC13は、電気信号の周波数を変換する。また、RFIC13は、外部の装置と通信を行う電気信号を用いて、第1アンテナエレメント12から電波を送受信することができる。電源IC14は、RFIC13に電力を供給する給電回路である。電源IC14は、さらに、第1コネクタ15を介して接続されるサブモジュール20に電力を供給する。 In this embodiment, the main module 10 further includes an RFIC (Radio Frequency Integrated Circuit) 13 and a power supply IC 14 on the lower surface side of the antenna substrate 11 . RFIC 13 functions as a frequency converter in the present disclosure. The RFIC 13 is an integrated circuit that performs processing of high frequency signals as electrical signals. In this embodiment, the RFIC 13 converts the frequency of electrical signals. Further, the RFIC 13 can transmit and receive radio waves from the first antenna element 12 using electrical signals for communicating with an external device. The power supply IC 14 is a power supply circuit that supplies power to the RFIC 13 . The power supply IC 14 also supplies power to the submodule 20 connected via the first connector 15 .
 本実施形態において、メインモジュール10は、アンテナ基板11の下面側の一端に、第1コネクタ15を備え、他端に第2コネクタ16を備える。第1コネクタ15は、ケーブル30が一端に備える第3コネクタ31と接続するためのコネクタである。第2コネクタ16は、メイン回路基板40との接続に用いられるコネクタである。メイン回路基板40は、モデム回路を有し、メインモジュール10と信号の授受を行う。また、メイン回路基板40は、電源や制御信号をメインモジュール10に供給する。 In this embodiment, the main module 10 has a first connector 15 at one end of the antenna substrate 11 on the lower surface side, and a second connector 16 at the other end. The first connector 15 is a connector for connecting with a third connector 31 provided at one end of the cable 30 . The second connector 16 is a connector used for connection with the main circuit board 40 . The main circuit board 40 has a modem circuit and exchanges signals with the main module 10 . The main circuit board 40 also supplies power and control signals to the main module 10 .
 例えば、図2に示すように、メインモジュール10は、フレキシブルケーブルなどのケーブル50を介して、メイン回路基板40に接続される。このとき、メインモジュール10の第2コネクタ16と、ケーブル50が一端に備える第4コネクタ51とが接続され、ケーブル50が他端に備える第5コネクタ52と、メイン回路基板40が備える第6コネクタ41とが接続されることにより、メインモジュール10とメイン回路基板40とが接続される。メイン回路基板40は、ケーブル50を介して、様々な信号及び電源をメインモジュール10に供給する。 For example, as shown in FIG. 2, the main module 10 is connected to the main circuit board 40 via a cable 50 such as a flexible cable. At this time, the second connector 16 of the main module 10 and the fourth connector 51 provided on one end of the cable 50 are connected, and the fifth connector 52 provided on the other end of the cable 50 and the sixth connector provided on the main circuit board 40 are connected. 41, the main module 10 and the main circuit board 40 are connected. Main circuit board 40 provides various signals and power to main module 10 via cable 50 .
 サブモジュール20は、ケーブル30において、第3コネクタ31とは反対の他端側に設けられている。サブモジュール20は、ケーブル30を介してメインモジュール10との間で電気信号を受信する。 The submodule 20 is provided on the other end side of the cable 30 opposite to the third connector 31 . Submodule 20 receives electrical signals from main module 10 via cable 30 .
 サブモジュール20は、アンテナ基板21と、アンテナ基板21の上面側に配置された第2アンテナエレメント22と、を備える。第2アンテナエレメント22は、電波を送受信する。第2アンテナエレメント22は、例えば電気信号(後述するRF(Radio Frequency)信号)に基づいて電波を送信できる。当該電気信号は、サブモジュール20が、ケーブル30を介してメインモジュール10と授受することが可能である。本実施形態では、サブモジュール20は、1個の第2アンテナエレメント22を備える。第2アンテナエレメント22は、第1アンテナエレメント12と同様に、パッチアンテナ、ダイポールアンテナ又はモノポールアンテナなどであってよい。 The submodule 20 includes an antenna substrate 21 and a second antenna element 22 arranged on the upper surface side of the antenna substrate 21 . The second antenna element 22 transmits and receives radio waves. The second antenna element 22 can transmit radio waves based on, for example, electrical signals (RF (Radio Frequency) signals, which will be described later). The electrical signal can be exchanged between the submodule 20 and the main module 10 via the cable 30 . In this embodiment, the submodule 20 has one second antenna element 22 . The second antenna element 22, like the first antenna element 12, may be a patch antenna, a dipole antenna, a monopole antenna, or the like.
 サブモジュール20は、アンテナ基板21の下面側に、信号強度を増幅させる増幅器23を備える。増幅器23は、例えばメインモジュール10から受信した電気信号(高周波信号)の信号強度を増幅して、第2アンテナエレメント22に供給する。増幅器23は、例えば、第2アンテナエレメント22から送受信される電波の強度が、メインモジュール10の1つの第1アンテナエレメント12から送受信される電波の強度と同等もしくは若干上回る強度となるように、高周波信号の強度を増幅させる。すなわち、増幅器23は、高周波信号がケーブル30を介してメインモジュール10からサブモジュール20まで伝送される間に発生する損失(ロス)を補正するように、信号を増幅させる。また、増幅器23は、第2アンテナエレメント22で受信した信号の強度を増幅する。増幅器23により、サブモジュール20における電波の送受信性能を、メインモジュール10の1つの第1アンテナエレメント12と同等にすることができる。 The sub-module 20 has an amplifier 23 for amplifying signal strength on the lower surface side of the antenna substrate 21 . The amplifier 23 amplifies the signal strength of the electric signal (high frequency signal) received from the main module 10 , for example, and supplies the amplified signal to the second antenna element 22 . The amplifier 23, for example, is a high-frequency wave so that the strength of the radio wave transmitted and received from the second antenna element 22 is equal to or slightly higher than the strength of the radio wave transmitted and received from one of the first antenna elements 12 of the main module 10. Amplifies signal strength. That is, the amplifier 23 amplifies the signal so as to compensate for the loss that occurs while the high-frequency signal is transmitted from the main module 10 to the sub-module 20 through the cable 30 . Also, the amplifier 23 amplifies the strength of the signal received by the second antenna element 22 . The amplifier 23 can make the radio wave transmission/reception performance of the sub-module 20 equivalent to that of the single first antenna element 12 of the main module 10 .
 ケーブル30は、メインモジュール10とサブモジュール20との間で信号及び電力の伝送を行う。ケーブル30は、例えばフレキシブルケーブルにより構成されていてよい。サブモジュール20は、ケーブル30に直接実装することを想定しているが、接続方法はこの限りではない。反対にメインモジュール10側はコネクタでの接続として示したが、ケーブル30に直接実装しても構わない。 The cable 30 transmits signals and power between the main module 10 and the submodule 20 . The cable 30 may be configured by a flexible cable, for example. It is assumed that the submodule 20 is directly mounted on the cable 30, but the connection method is not limited to this. Conversely, although the main module 10 side is shown as being connected by a connector, it may be directly mounted on the cable 30 .
 図3は、メインモジュール10の内部構成の一例を示す図である。メインモジュール10は、ケーブル50を介して接続されたメイン回路基板40から、様々な信号及び電源を受信する。 FIG. 3 is a diagram showing an example of the internal configuration of the main module 10. As shown in FIG. Main module 10 receives various signals and power from main circuit board 40 connected via cable 50 .
 図3に示すように、第2コネクタ16は、RFIC13及び電源IC14と、制御信号を送受信可能に構成されている。例えば、第2コネクタ16及びケーブル50を介して、制御信号は、メイン回路基板40からRFIC13又は電源IC14に接続(供給)される。RFIC13及び電源IC14は、制御信号を受信すると、制御信号に従って処理を実行する。 As shown in FIG. 3, the second connector 16 is configured to be able to transmit and receive control signals to and from the RFIC 13 and power supply IC 14 . For example, control signals are connected (supplied) from the main circuit board 40 to the RFIC 13 or the power supply IC 14 via the second connector 16 and the cable 50 . Upon receiving the control signal, the RFIC 13 and the power supply IC 14 perform processing according to the control signal.
 図3に示すように、第2コネクタ16は、RFIC13と、IF(Intermediate Frequency)信号を送受信可能に構成されている。RFIC13は、内部に、ミキサ、スイッチ及び増幅器などを備え、入力された信号に対して、アップコンバージョン又はダウンコンバージョンを行う。例えば、RFIC13は、第2コネクタ16及びケーブル50を介してメイン回路基板40からメインモジュール10に入力された入力信号に対して、アップコンバージョンを行うことによって、RF信号を生成する。RF信号は、メインモジュール10から、ケーブル30を介してサブモジュール20に供給される電気信号である。IF信号は、第2コネクタ16及びケーブル50を介してメイン回路基板40からRFIC13に接続(供給)される。RFIC13は、IF信号と同様に第2コネクタ16を介して局部発振信号を受信する。局部発振信号は、IF信号に対してアップコンバージョン及びダウンコンバージョンを行うための無変調信号である。RFIC13は、受信した局部発振信号により、制御信号に基づいて、第2コネクタ16から受信したIF信号に対してアップコンバージョンを行ってRF信号(例えばミリ波信号)を生成し、生成したRF信号を、第1アンテナエレメント12又は第1コネクタ15に供給する。RFIC13は、例えばビームフォーミングのための位相制御を行う位相器を備えていてもよい。そして、RFIC13は、第1アンテナエレメント12又は第1コネクタ15から受信した高周波信号を、前述の局部発振信号によってIF周波数へとダウンコンバージョンする。これもアップコンバージョンと同様に、前記制御信号により制御される。 As shown in FIG. 3, the second connector 16 is configured to be capable of transmitting/receiving IF (Intermediate Frequency) signals to/from the RFIC 13 . The RFIC 13 internally includes a mixer, a switch, an amplifier, and the like, and performs up-conversion or down-conversion on an input signal. For example, the RFIC 13 generates an RF signal by up-converting an input signal input from the main circuit board 40 to the main module 10 via the second connector 16 and the cable 50 . The RF signal is an electrical signal supplied from main module 10 to submodule 20 via cable 30 . The IF signal is connected (supplied) from the main circuit board 40 to the RFIC 13 via the second connector 16 and the cable 50 . The RFIC 13 receives the local oscillation signal through the second connector 16 as well as the IF signal. The local oscillation signal is an unmodulated signal for up-converting and down-converting the IF signal. The RFIC 13 generates an RF signal (for example, a millimeter wave signal) by up-converting the IF signal received from the second connector 16 based on the control signal using the received local oscillation signal, and converts the generated RF signal to , the first antenna element 12 or the first connector 15 . The RFIC 13 may comprise a phase shifter that provides phase control for beamforming, for example. Then, the RFIC 13 down-converts the high-frequency signal received from the first antenna element 12 or the first connector 15 to the IF frequency by the aforementioned local oscillation signal. This, like the up-conversion, is also controlled by the control signal.
 図3に示すように、第2コネクタ16は、電源IC14に対して、電力を供給可能に構成されている。第2コネクタ16は、ケーブル50を介してメイン回路基板40から電力を受信すると、当該電力を電源IC14に供給する。電源IC14は、例えば、第2コネクタ16から受信した制御信号に基づいて、第2コネクタ16から受信した電力をRFIC13又は第1コネクタ15に供給する。 As shown in FIG. 3, the second connector 16 is configured to be able to supply power to the power supply IC 14 . When receiving power from the main circuit board 40 via the cable 50 , the second connector 16 supplies the power to the power supply IC 14 . The power supply IC 14 supplies the power received from the second connector 16 to the RFIC 13 or the first connector 15 based on the control signal received from the second connector 16, for example.
 図3に示すように、第1コネクタ15は、RFIC13及び電源IC14と、制御信号を送受信可能に構成されている。制御信号は、第1コネクタ15及びケーブル30を介して、RFIC13又は電源IC14からサブモジュール20に接続(供給)される。また、高周波信号は、第1コネクタ15及びケーブル30を介して、RFIC13からサブモジュール20に接続(供給)される。また、第1コネクタ15は、電源IC14から電力を受信すると、当該電力を、ケーブル30を介してサブモジュール20に供給する。 As shown in FIG. 3, the first connector 15 is configured to be able to transmit and receive control signals to and from the RFIC 13 and power supply IC 14 . A control signal is connected (supplied) from the RFIC 13 or the power supply IC 14 to the submodule 20 via the first connector 15 and the cable 30 . Also, a high-frequency signal is connected (supplied) from the RFIC 13 to the sub-module 20 via the first connector 15 and the cable 30 . Also, when receiving power from the power supply IC 14 , the first connector 15 supplies the power to the submodule 20 via the cable 30 .
 図4は、サブモジュール20の回路構成の一例を示す図である。図4に示す例では、サブモジュール20は、第2アンテナエレメント22と、大電力増幅器23aと、低雑音増幅器23bと、第1切替えスイッチ24aと、第2切替えスイッチ24bと、を備える。 FIG. 4 is a diagram showing an example of the circuit configuration of the submodule 20. As shown in FIG. In the example shown in FIG. 4, the submodule 20 includes a second antenna element 22, a high power amplifier 23a, a low noise amplifier 23b, a first changeover switch 24a, and a second changeover switch 24b.
 大電力増幅器23a及び低雑音増幅器23bは、上述した増幅器23の一例である。すなわち、本実施形態では、増幅器23は、大電力増幅器23a及び低雑音増幅器23bを含んで構成されている。大電力増幅器23aは、メインモジュール10から供給された高周波信号を増幅して第2アンテナエレメント22に送信する。低雑音増幅器23bは、第2アンテナエレメント22が受信した信号を増幅してメインモジュール10に送信する。図4に示すように、大電力増幅器23aと低雑音増幅器23bとは、第1切替えスイッチ24aと第2切替えスイッチ24bとの間で並列に接続されている。 The high power amplifier 23a and the low noise amplifier 23b are examples of the amplifier 23 described above. That is, in this embodiment, the amplifier 23 includes a high-power amplifier 23a and a low-noise amplifier 23b. The high power amplifier 23 a amplifies the high frequency signal supplied from the main module 10 and transmits it to the second antenna element 22 . The low noise amplifier 23 b amplifies the signal received by the second antenna element 22 and transmits the amplified signal to the main module 10 . As shown in FIG. 4, the high power amplifier 23a and the low noise amplifier 23b are connected in parallel between the first changeover switch 24a and the second changeover switch 24b.
 図4に示すように、第1切替えスイッチ24aは、ケーブル30に接続される端子20aに接続されている。図4に示すように、第2切替えスイッチ24bは、第2アンテナエレメント22に接続されている。第1切替えスイッチ24aと第2切替えスイッチ24bとの間では、大電力増幅器23aと低雑音増幅器23bとが並列に接続されており、第1切替えスイッチ24a及び第2切替えスイッチ24bは、信号の送受信制御に応じて、スイッチの切替えを行う。つまり、第2アンテナエレメント22に信号を供給する場合、第1切替えスイッチ24a及び第2切替えスイッチ24bは、大電力増幅器23aを導通させることにより、メインモジュール10から供給された高周波信号を増幅させる。一方、第2アンテナエレメント22で受信した信号を供給する場合、第1切替えスイッチ24a及び第2切替えスイッチ24bは、低雑音増幅器23bを導通させることにより、第2アンテナエレメント22からの信号を増幅させる。例えば、第1切替えスイッチ24aと第2切替えスイッチ24bとは、TDD(時分割複信)方式による送受信の切替えのタイミングに応じて、導通させる増幅器を、大電力増幅器23aと低雑音増幅器23bとの間で切り替えることができる。このようにして、サブモジュール20は、信号を増幅して、第2アンテナエレメント22から送受信を行う。 As shown in FIG. 4, the first changeover switch 24a is connected to the terminal 20a connected to the cable 30. As shown in FIG. 4, the second changeover switch 24b is connected to the second antenna element 22. As shown in FIG. A large power amplifier 23a and a low noise amplifier 23b are connected in parallel between the first changeover switch 24a and the second changeover switch 24b. The switch is switched according to the control. That is, when a signal is supplied to the second antenna element 22, the first changeover switch 24a and the second changeover switch 24b amplifies the high frequency signal supplied from the main module 10 by conducting the high power amplifier 23a. On the other hand, when supplying the signal received by the second antenna element 22, the first changeover switch 24a and the second changeover switch 24b conduct the low noise amplifier 23b to amplify the signal from the second antenna element 22. . For example, the first changeover switch 24a and the second changeover switch 24b switch the amplifier to be turned on between the high-power amplifier 23a and the low-noise amplifier 23b according to the timing of switching between transmission and reception according to the TDD (Time Division Duplex) system. You can switch between them. In this way, the sub-module 20 amplifies the signal for transmission and reception from the second antenna element 22 .
 なお、図4では図示していないが、サブモジュール20は、ケーブル30を介してメインモジュール10から制御信号及び電力を受信可能に構成されている。すなわち、サブモジュール20は、メインモジュール10から受信した制御信号に基づく制御を行い、メインモジュール10から受信した高周波信号に基づいて第2アンテナエレメント22から電波を送信する。サブモジュール20は、別途の位相器やアップダウンコンバータを備えない。そのため、サブモジュール20の第2アンテナエレメント22から送信される電波は、メインモジュール10のビームの1つとして制御することが可能である。 Although not shown in FIG. 4, the submodule 20 is configured to be able to receive control signals and power from the main module 10 via the cable 30. That is, the submodule 20 performs control based on the control signal received from the main module 10 and transmits radio waves from the second antenna element 22 based on the high frequency signal received from the main module 10 . Sub-module 20 does not have a separate phase shifter or up/down converter. Therefore, the radio waves transmitted from the second antenna element 22 of the submodule 20 can be controlled as one beam of the main module 10 .
 図5は、サブモジュール20の回路構成の他の一例を示す図である。図5に示す例では、サブモジュール20は、大電力増幅器23a、低雑音増幅器23b、第1切替えスイッチ24a及び第2切替えスイッチ24bにより構成される回路ユニットを、2組備える。大電力増幅器23a、低雑音増幅器23b、第1切替えスイッチ24a及び第2切替えスイッチ24bの機能及び構成は、それぞれ図4を参照して説明したものと同様である。 FIG. 5 is a diagram showing another example of the circuit configuration of the submodule 20. FIG. In the example shown in FIG. 5, the submodule 20 includes two sets of circuit units composed of a high power amplifier 23a, a low noise amplifier 23b, a first changeover switch 24a and a second changeover switch 24b. The functions and configurations of the high power amplifier 23a, the low noise amplifier 23b, the first changeover switch 24a and the second changeover switch 24b are the same as those described with reference to FIG.
 2組の回路ユニットは、第2アンテナエレメント22と、ケーブル30との間で並列に接続されている。2組の回路ユニットのうち、1組は、ケーブル30に接続される端子20bに接続されており、もう1組は、ケーブル30に接続される端子20cに接続されている。 The two sets of circuit units are connected in parallel between the second antenna element 22 and the cable 30. Of the two sets of circuit units, one set is connected to the terminal 20b connected to the cable 30, and the other set is connected to the terminal 20c connected to the cable 30. FIG.
 図5に示すように、サブモジュール20が2組の回路ユニットを備える場合、サブモジュール20は、2組の回路ユニットを、それぞれ異なる信号の送受信のために、使い分けることができる。例えば、サブモジュール20は、2組の回路ユニットのうち、1組は垂直偏波の通信に用い、もう1組は水平偏波による通信に用いることができる。 As shown in FIG. 5, when the sub-module 20 includes two sets of circuit units, the sub-module 20 can use the two sets of circuit units separately for transmitting and receiving different signals. For example, the submodule 20 can use one set of two sets of circuit units for vertical polarization communication and the other set for horizontal polarization communication.
 図6は、サブモジュール20の回路構成のさらなる他の一例を示す図である。図6に示す例では、サブモジュール20は、増幅器23と、切替えスイッチ25と、を備える。 FIG. 6 is a diagram showing still another example of the circuit configuration of the submodule 20. FIG. In the example shown in FIG. 6, the submodule 20 includes an amplifier 23 and a changeover switch 25. In the example shown in FIG.
 増幅器23は、入力された信号強度を増幅させる。図6に示す増幅器23は、図4及び図5に示す大電力増幅器23a及び低雑音増幅器23bの双方の機能を有する。つまり、図6に示す増幅器23は、メインモジュール10から供給された高周波信号、及び、第2アンテナエレメント22で受信された信号の双方を増幅できる。 The amplifier 23 amplifies the input signal strength. The amplifier 23 shown in FIG. 6 has the functions of both the high power amplifier 23a and the low noise amplifier 23b shown in FIGS. That is, the amplifier 23 shown in FIG. 6 can amplify both the high frequency signal supplied from the main module 10 and the signal received by the second antenna element 22 .
 切替えスイッチ25は、4つの端子を備える。第1端子25aは、第2アンテナエレメント22に接続されている。第2端子25bは、ケーブル30に接続される端子20dに接続されている。第3端子25cは、増幅器23の入力側に接続されている。第4端子25dは、増幅器23の出力側に接続されている。 The changeover switch 25 has four terminals. The first terminal 25 a is connected to the second antenna element 22 . The second terminal 25b is connected to the terminal 20d connected to the cable 30. As shown in FIG. The third terminal 25 c is connected to the input side of the amplifier 23 . The fourth terminal 25 d is connected to the output side of the amplifier 23 .
 図6に示す例において、メインモジュール10から供給された高周波信号に基づいて、第2アンテナエレメント22が電波を送信する場合、切替えスイッチ25は、第2端子25bと第3端子25cとを接続し、第1端子25aと第4端子25dとを接続する。これにより、メインモジュール10から供給された高周波信号が増幅器23で増幅され、第2アンテナエレメント22に供給される。図6に示す例において、第2アンテナエレメント22が受信した信号を、サブモジュール20からメインモジュール10に送信する場合、切替えスイッチ25は、第1端子25aと第3端子25cとを接続し、第2端子25bと第4端子25dとを接続する。これにより、第2アンテナエレメント22で受信された信号が増幅器23で増幅され、端子20aからケーブル30を介してメインモジュール10に送信される。 In the example shown in FIG. 6, when the second antenna element 22 transmits radio waves based on the high-frequency signal supplied from the main module 10, the switch 25 connects the second terminal 25b and the third terminal 25c. , connect the first terminal 25a and the fourth terminal 25d. Thereby, the high frequency signal supplied from the main module 10 is amplified by the amplifier 23 and supplied to the second antenna element 22 . In the example shown in FIG. 6, when the signal received by the second antenna element 22 is transmitted from the submodule 20 to the main module 10, the changeover switch 25 connects the first terminal 25a and the third terminal 25c, The second terminal 25b and the fourth terminal 25d are connected. Thereby, the signal received by the second antenna element 22 is amplified by the amplifier 23 and transmitted to the main module 10 via the cable 30 from the terminal 20a.
 以上説明したように、本実施形態のアンテナモジュールユニット1は、4個の第1アンテナエレメント12を備えるメインモジュール10と、ケーブル30を介してメインモジュール10との間で電気信号を送受信可能なサブモジュール20と、を備える。サブモジュール20は、1個の第2アンテナエレメント22と、電気信号の信号強度を増幅する増幅器23とを備える。このように、メインモジュール10が4個の第1アンテナエレメント12を備えるのに対し、サブモジュール20は1個の第2アンテナエレメント22を備えるため、サブモジュール20は、メインモジュール10よりも部品点数が少ない。また、サブモジュール20は、メインモジュール10から受信した電気信号(RF信号)に基づいて第2アンテナエレメント22から電波を送信するため、サブモジュール20に別途の位相器やアップダウンコンバータを設ける必要がない。そのため、サブモジュール20は、メインモジュール10と比較して小型化が可能である。従って、アンテナモジュールユニット1を通信装置に搭載する場合、通信装置の狭いスペースにサブモジュール20を配置することができるため、通信装置自体も小型化することが可能である。 As described above, the antenna module unit 1 of this embodiment includes a main module 10 having four first antenna elements 12 and a sub module capable of transmitting and receiving electrical signals between the main module 10 and the main module 10 via the cable 30. a module 20; The sub-module 20 comprises one second antenna element 22 and an amplifier 23 for amplifying the signal strength of the electrical signal. Thus, the main module 10 has four first antenna elements 12, while the sub-module 20 has one second antenna element 22. Therefore, the sub-module 20 has a smaller number of parts than the main module 10. Less is. Further, since the submodule 20 transmits radio waves from the second antenna element 22 based on the electrical signal (RF signal) received from the main module 10, the submodule 20 does not need to be provided with a separate phase shifter or up/down converter. do not have. Therefore, the submodule 20 can be made smaller than the main module 10 . Therefore, when the antenna module unit 1 is mounted on a communication device, the sub-module 20 can be arranged in a narrow space of the communication device, so that the communication device itself can be miniaturized.
 さらに、サブモジュール20は、電気信号を増幅する増幅器23を備えるため、ケーブル30で発生する損失を補正することができる。そのため、サブモジュール20の第2アンテナエレメント22は、メインモジュール10の1つの第1アンテナエレメント12と同等の強度の電波を出力することが可能である。そのため、アンテナモジュールユニット1として、アンテナ特性が低下することを抑制できる。このようにして、アンテナモジュールユニット1は、アンテナ特性の低下を抑制しつつ、通信装置の小型化を実現することができる。 Furthermore, since the submodule 20 includes an amplifier 23 that amplifies electrical signals, it is possible to compensate for the loss that occurs in the cable 30. Therefore, the second antenna element 22 of the sub-module 20 can output radio waves with the same intensity as the single first antenna element 12 of the main module 10 . Therefore, as the antenna module unit 1, deterioration of the antenna characteristics can be suppressed. In this manner, the antenna module unit 1 can reduce the size of the communication device while suppressing deterioration of the antenna characteristics.
 図6に示す回路構成によれば、1つの増幅器23と1つの切替えスイッチ25により信号の送受信に対応できる。そのため、図4に示す回路構成と比較して、サブモジュール20をさらに小型化することができる。 According to the circuit configuration shown in FIG. 6, one amplifier 23 and one switch 25 can handle signal transmission and reception. Therefore, compared with the circuit configuration shown in FIG. 4, the submodule 20 can be further miniaturized.
 本実施形態に係るアンテナモジュールユニット1は、通信装置に搭載されてよい。通信装置は、無線通信を行う任意の装置であってよく、例えばスマートフォン又はタブレットなどであってよい。 The antenna module unit 1 according to this embodiment may be mounted on a communication device. The communication device may be any device that performs wireless communication, such as a smart phone or tablet.
 図7は、通信装置100における図1のアンテナモジュールユニット1の配置の一例を示す図である。ただし、図7では、アンテナモジュールユニット1の配置が理解しやすいように、通信装置100の一部を透過させた状態で図示している。 FIG. 7 is a diagram showing an example of arrangement of the antenna module units 1 in FIG. 1 in the communication device 100. In FIG. However, in FIG. 7, a part of the communication device 100 is shown transparently so that the arrangement of the antenna module unit 1 can be easily understood.
 通信装置100は、通信装置100の外形を構成する筐体を備える。当該筐体は、例えば図7に示すように、概略平板な直方体形状を有する。すなわち、通信装置100は、六面を備える。通信装置100は、正面101側に、例えば液晶ディスプレイ(Liquid Crystal Display)、有機ELパネル(Organic Electro-Luminescence Panel)、又は無機ELパネル(Inorganic Electro-Luminescence panel)などにより構成される表示画面を備える。 The communication device 100 includes a housing that forms the outer shape of the communication device 100 . The housing has a generally flat rectangular parallelepiped shape, as shown in FIG. 7, for example. That is, the communication device 100 has six sides. The communication device 100 includes a display screen configured by, for example, a liquid crystal display, an organic EL panel (organic electro-luminescence panel), or an inorganic EL panel (inorganic electro-luminescence panel) on the front 101 side. .
 図7に示すように、メインモジュール10とサブモジュール20とは、通信装置100の外形を構成する筐体において、異なる面に配置されてよい。図7に示す例では、メインモジュール10とサブモジュール20とが、対向する面に配置されている。具体的には、メインモジュール10が、通信装置100の第1側面102に配置され、サブモジュール20が、通信装置100の第2側面103に配置されている。この場合、メインモジュール10とサブモジュール20とは、通信装置100において、反対の方向を向くように配置されるため、サブモジュール20は、メインモジュール10が受信しにくい方向からの電波を検出しやすい。そのため、図7に示す配置によれば、多方向から電波を効率良く検出しやすくなる。すなわち、通信装置100は、メインモジュール10とサブモジュール20との少なくともいずれかにより電波を受信することができるため、例えば3GPPなどの特定の仕様で規定された球面カバレッジの規格を満たしやすくなる。 As shown in FIG. 7, the main module 10 and the sub-module 20 may be arranged on different surfaces in the housing forming the outer shape of the communication device 100 . In the example shown in FIG. 7, the main module 10 and the sub-module 20 are arranged on opposing surfaces. Specifically, the main module 10 is arranged on the first side 102 of the communication device 100 and the sub-module 20 is arranged on the second side 103 of the communication device 100 . In this case, since the main module 10 and the sub-module 20 are arranged to face opposite directions in the communication device 100, the sub-module 20 can easily detect radio waves from directions that are difficult for the main module 10 to receive. . Therefore, according to the arrangement shown in FIG. 7, it becomes easier to efficiently detect radio waves from multiple directions. That is, since the communication device 100 can receive radio waves by at least one of the main module 10 and the sub-module 20, it becomes easier to satisfy the standard of spherical coverage defined by specific specifications such as 3GPP.
 また、図7に示す例では、仮にメインモジュール10が手で覆われるなど、何らかの障害物によって受信する電波の強度が下がった場合であっても、サブモジュール20に対して電波の受信強度を低下させる障害物などの要因がない場合には、サブモジュール20により電波の送受信を継続できる可能性を有する。 In addition, in the example shown in FIG. 7, even if the strength of the received radio wave is reduced by some obstacle such as the main module 10 being covered with a hand, the received strength of the radio wave to the sub-module 20 is reduced. If there is no factor, such as an obstacle, that the sub-module 20 can continue to transmit and receive radio waves.
 なお、図7では、サブモジュール20を実線で示しているが、サブモジュール20は、必ずしも通信装置100の外形を構成する筐体の外部(外側)に配置されているわけではなく、通信装置100の外形を構成する筐体の内部(内側)に配置されていてもよい。また、メインモジュール10とサブモジュール20とは、それぞれ対向する面に配置されていなくてもよい。メインモジュール10とサブモジュール20とは、それぞれ異なる面に配置されていてよい。例えば、メインモジュール10とサブモジュール20とは、それぞれ通信装置100において直交する面に配置されていてもよい。この場合も、メインモジュール10とサブモジュール20とは異なる方向を向くように配置されているため、多方向から電波を効率良く検出しやすくなる。 Although the sub-module 20 is indicated by a solid line in FIG. 7, the sub-module 20 is not necessarily arranged outside (outside) the housing that forms the outline of the communication device 100. may be arranged inside (inside) a housing that forms the outer shape of the Also, the main module 10 and the sub-module 20 do not have to be arranged on surfaces facing each other. The main module 10 and the submodules 20 may be arranged on different planes. For example, the main module 10 and the sub-module 20 may be arranged on orthogonal planes in the communication device 100 . Also in this case, since the main module 10 and the sub-module 20 are arranged to face in different directions, radio waves can be detected efficiently from multiple directions.
 図8は、通信装置100における図1のアンテナモジュールユニット1の配置の他の一例を示す図である。図8でも、図7と同様に、通信装置100の一部を透過させた状態で図示している。 FIG. 8 is a diagram showing another example of arrangement of the antenna module units 1 in FIG. In FIG. 8 as well, as in FIG. 7, a part of the communication device 100 is illustrated in a transparent state.
 図8に示すように、メインモジュール10とサブモジュール20とは、通信装置100の外形を構成する筐体において、同一の面に配置されていてもよい。図8に示す例では、メインモジュール10とサブモジュール20とは、通信装置100の第2側面103に配置されている。このように、メインモジュール10とサブモジュール20とが同一の面に配置されている場合、アンテナモジュールユニット1は、電波の受信レベルが低下した場合の原因を検出するセンサとして機能することができる。例えば、アンテナモジュールユニット1のうち、メインモジュール10の第1アンテナエレメント12による電波の受信レベルと、サブモジュール20の第2アンテナエレメント22による電波の受信レベルとが、同じように低下したとする。この場合、メインモジュール10及びサブモジュール20の双方で受信レベルが同じように低下しているため、受信レベルが低下した原因が、電波の送信側の機器(例えば基地局)にあるか、電波の送信側の機器から遠ざかっていることや見通し外にいることなどにあることが推定される。一方、例えば、メインモジュール10の第1アンテナエレメント12による電波の受信レベルと、サブモジュール20の第2アンテナエレメント22による電波の受信レベルとのうち、いずれか一方の受信レベルのみが低下したとする。この場合、一方の受信レベルは低下しているものの、他方の受信レベルが低下していないため、受信レベルが低下した原因が、送信側の機器自体又は送信側の機器との関係にはないことが推定される。受信レベルが低下した原因は、メインモジュール10とサブモジュール20とのうち、受信レベルが低下したモジュールが手などの障害物で覆われたことなどが推定される。そのため、図8に示す配置によれば、メインモジュール10とサブモジュール20とによる電波の受信レベルの変化から、受信レベルが変化した原因を推定することができる。 As shown in FIG. 8, the main module 10 and the sub-module 20 may be arranged on the same plane in the housing that forms the outer shape of the communication device 100 . In the example shown in FIG. 8 , the main module 10 and submodule 20 are arranged on the second side surface 103 of the communication device 100 . In this way, when the main module 10 and the sub-module 20 are arranged on the same surface, the antenna module unit 1 can function as a sensor that detects the cause when the reception level of radio waves is lowered. For example, it is assumed that the reception level of radio waves by the first antenna element 12 of the main module 10 and the reception level of radio waves by the second antenna element 22 of the sub-module 20 of the antenna module unit 1 have similarly decreased. In this case, since the reception levels of both the main module 10 and the sub-module 20 are similarly decreased, the cause of the decrease in the reception level may be the equipment on the radio wave transmission side (for example, the base station) or the radio wave. It is presumed that it is due to being far away from the transmitting device or being out of line of sight. On the other hand, for example, suppose that only one of the reception level of radio waves by the first antenna element 12 of the main module 10 and the reception level of radio waves by the second antenna element 22 of the sub-module 20 has decreased. . In this case, although the reception level of one side has decreased, the reception level of the other side has not decreased, so the cause of the decrease in the reception level is neither the device itself on the transmitting side nor the relationship with the device on the transmitting side. is estimated. One of the main modules 10 and the sub-modules 20 whose reception level has decreased is assumed to be covered by an obstacle such as a hand. Therefore, according to the arrangement shown in FIG. 8, the cause of the change in the reception level can be estimated from the change in the reception level of the radio waves by the main module 10 and the sub-module 20 .
 図8に示す例において、アンテナモジュールユニット1を備える通信装置100は、受信レベルの低下の原因が、手などの障害物にあると判定した場合、ディスプレイへの表示、音や振動などで、障害物により電波の受信レベルが低下していることを通知してもよい。これにより、通知を認識したユーザは、電波の受信レベルが下がった原因を認識することができ、電波の受信レベルを向上させるように対処することが可能になる。 In the example shown in FIG. 8 , when the communication device 100 including the antenna module unit 1 determines that an obstacle such as a hand is the cause of the decrease in the reception level, the communication device 100 detects the obstacle through display, sound, vibration, or the like. It may be notified that the reception level of radio waves is lowered due to an object. As a result, the user who has recognized the notification can recognize the cause of the decrease in the reception level of radio waves, and can take measures to improve the reception level of radio waves.
 なお、図8に示す配置において、メインモジュール10とサブモジュール20とは、距離を離して配置されることが好ましい。具体的には、メインモジュール10とサブモジュール20とは、片手で両方を覆うことができない位置に配置されることが好ましい。例えば、図8に一例として示すように、メインモジュール10は、第2側面103における通信装置100の上面に近い位置に配置され、サブモジュール20は、第2側面103における通信装置100の下面に近い位置に配置されることが好ましい。これにより、通信装置100を保持する手が、メインモジュール10とサブモジュール20とを同時に手で覆う可能性が低くなるため、上述した受信レベルが変化した原因をより正確に推定しやすくなる。 In the arrangement shown in FIG. 8, it is preferable that the main module 10 and the submodule 20 are arranged with a distance therebetween. Specifically, it is preferable that the main module 10 and the sub-module 20 are arranged in a position where it is impossible to cover both with one hand. For example, as shown in FIG. 8 as an example, the main module 10 is arranged near the upper surface of the communication device 100 on the second side surface 103, and the sub-module 20 is arranged near the lower surface of the communication device 100 on the second side surface 103. It is preferably placed in position. This reduces the possibility that the hand holding the communication device 100 covers the main module 10 and the sub-module 20 at the same time, making it easier to accurately estimate the cause of the change in the reception level described above.
 また、図8では、メインモジュール10、サブモジュール20及びケーブル30を実線で示しているが、メインモジュール10、サブモジュール20及びケーブル30は、必ずしも通信装置100の外形を構成する筐体の外部(外側)に配置されているわけではなく、通信装置100の外形を構成する筐体の内部(内側)に配置されていてもよい。 8, the main module 10, the sub-module 20, and the cable 30 are indicated by solid lines, but the main module 10, the sub-module 20, and the cable 30 are not necessarily outside ( outside), but may be arranged inside (inside) the housing that forms the outer shape of the communication device 100 .
 上述したように、サブモジュール20は1個の第2アンテナエレメント22を備え、位相器やアップダウンコンバータを備えないため、小型化することができる。これにより、図7及び図8で示したような、サブモジュール20を備える通信装置100自体も小型化することができる。 As described above, the submodule 20 includes one second antenna element 22 and does not include a phase shifter or an up/down converter, so it can be miniaturized. As a result, the size of the communication device 100 itself including the submodule 20 as shown in FIGS. 7 and 8 can also be reduced.
[第2実施形態]
 図9は、第2実施形態に係るアンテナモジュールユニット2の概略構成図である。第2実施形態に係るアンテナモジュールユニット2について、第1実施形態と同一又は同等の構成要素には同一の符号を付し、第1実施形態と同一又は同等の内容については、適宜説明を省略し、異なる点を中心に説明する。
[Second embodiment]
FIG. 9 is a schematic configuration diagram of the antenna module unit 2 according to the second embodiment. Regarding the antenna module unit 2 according to the second embodiment, the same reference numerals are given to the same or equivalent components as in the first embodiment, and the description of the same or equivalent contents as in the first embodiment will be omitted as appropriate. , different points will be mainly described.
 図9に示すように、第2実施形態に係るアンテナモジュールユニット2は、メインモジュール10と、第1サブモジュール121と、第2サブモジュール122と、第3サブモジュール123と、第1ケーブル131と、第2ケーブル132と、第3ケーブル133と、を備える。第1サブモジュール121は、第1ケーブル131により、メインモジュール10と通信可能に接続されている。第2サブモジュール122は、第2ケーブル132により、メインモジュール10と通信可能に接続されている。第3サブモジュール123は、第3ケーブル133により、メインモジュール10と通信可能に接続されている。つまり、第2実施形態に係るアンテナモジュールユニット2は、1つのメインモジュール10と、それぞれケーブルを介してメインモジュール10に接続された3つのサブモジュールとを備える。以下、本明細書において、第1サブモジュール121と、第2サブモジュール122と、第3サブモジュール123と、を区別しない場合には、これらをまとめて、単に「サブモジュール120」ともいう。 As shown in FIG. 9, the antenna module unit 2 according to the second embodiment includes a main module 10, a first submodule 121, a second submodule 122, a third submodule 123, and a first cable 131. , a second cable 132 and a third cable 133 . The first submodule 121 is communicably connected to the main module 10 by a first cable 131 . The second submodule 122 is communicably connected to the main module 10 by a second cable 132 . The third submodule 123 is communicably connected to the main module 10 by a third cable 133 . That is, the antenna module unit 2 according to the second embodiment includes one main module 10 and three sub-modules each connected to the main module 10 via cables. Hereinafter, in this specification, when the first sub-module 121, the second sub-module 122, and the third sub-module 123 are not distinguished, they are collectively referred to simply as "sub-module 120".
 第2実施形態におけるメインモジュール10の構成は、第1実施形態におけるメインモジュール10と同様であるため、ここでは詳細な説明を省略する。また、第2実施形態における、第1サブモジュール121、第2サブモジュール122及び第3サブモジュール123の構成は、第1実施形態におけるサブモジュール20とそれぞれ同様である。すなわち、第1サブモジュール121、第2サブモジュール122及び第3サブモジュール123は、それぞれ1個の第2アンテナエレメントと、1個の増幅器とを備える。第1サブモジュール121、第2サブモジュール122及び第3サブモジュール123の詳細な構成については、第1実施形態におけるサブモジュール20とそれぞれ同様であるため、説明を省略する。第2実施形態に係るメインモジュール10は、第1実施形態に係るメインモジュール10と同様に、ケーブル50を介してメイン回路基板40と通信可能に接続される。 The configuration of the main module 10 according to the second embodiment is the same as that of the main module 10 according to the first embodiment, so detailed description will be omitted here. Also, the configurations of the first sub-module 121, the second sub-module 122 and the third sub-module 123 in the second embodiment are the same as those of the sub-module 20 in the first embodiment. That is, each of the first sub-module 121, the second sub-module 122 and the third sub-module 123 includes one second antenna element and one amplifier. The detailed configurations of the first sub-module 121, the second sub-module 122, and the third sub-module 123 are the same as those of the sub-module 20 in the first embodiment, so description thereof will be omitted. The main module 10 according to the second embodiment is communicably connected to the main circuit board 40 via the cable 50, like the main module 10 according to the first embodiment.
 第2実施形態では、メインモジュール10は、3つのサブモジュール120の全て又はいずれかに、信号を送信し、電源を供給することができる。また、第2実施形態では、3つのサブモジュール120は、第2アンテナエレメントにより受信した電波に基づいてメインモジュール10に信号を送信する。 In the second embodiment, the main module 10 can transmit signals and supply power to all or any of the three sub-modules 120 . Also, in the second embodiment, the three sub-modules 120 transmit signals to the main module 10 based on radio waves received by the second antenna element.
 図10は、通信装置200における図9のアンテナモジュールユニット2の配置の一例を示す図である。ただし、図10では、アンテナモジュールユニット2の配置が理解しやすいように、通信装置200の一部を透過させた状態で図示している。 10 is a diagram showing an example of arrangement of the antenna module units 2 of FIG. 9 in the communication device 200. FIG. However, in FIG. 10, a part of the communication device 200 is shown transparently so that the arrangement of the antenna module units 2 can be easily understood.
 通信装置200は、例えば図7で示した通信装置100と同様に、外形を構成する筐体が概略平板な直方体形状を有する。図10に示すように、メインモジュール10と3つのサブモジュール120とは、それぞれ通信装置100の外形を構成する筐体において、異なる面に配置されてよい。図10に示す例では、メインモジュール10が、通信装置200の第1側面202に配置され、第1サブモジュール121が、通信装置200の上面204に配置され、第2サブモジュール122が、通信装置200の第2側面203に配置され、第3サブモジュール123が、通信装置200の正面201に配置されている。 The communication device 200 has, for example, a substantially flat rectangular parallelepiped housing that constitutes the outer shape, similar to the communication device 100 shown in FIG. As shown in FIG. 10, the main module 10 and the three sub-modules 120 may be arranged on different surfaces in a housing that forms the outline of the communication device 100, respectively. In the example shown in FIG. 10, the main module 10 is arranged on the first side surface 202 of the communication device 200, the first sub-module 121 is arranged on the upper surface 204 of the communication device 200, and the second sub-module 122 is arranged on the communication device 200. 200 on the second side 203 and the third sub-module 123 on the front side 201 of the communication device 200 .
 第2実施形態に係るアンテナモジュールユニット2によれば、第1実施形態に係るアンテナモジュールユニット1と比較して、図10に示すように、各モジュールを通信装置200のさらに多くの面に配置することができる。そのため、メインモジュール10と3つのサブモジュール120とにより、より多くの方向からの電波を効率良く検出しやすくなる。 According to the antenna module unit 2 according to the second embodiment, as compared with the antenna module unit 1 according to the first embodiment, each module is arranged on more surfaces of the communication device 200 as shown in FIG. be able to. Therefore, the main module 10 and the three sub-modules 120 make it easier to efficiently detect radio waves from more directions.
 なお、図10では、3つのサブモジュール120を実線で示しているが、3つのサブモジュール120は、必ずしも通信装置200の外形を構成する筐体の外部(外側)に配置されているわけではなく、通信装置200の外形を構成する筐体の内部(内側)に配置されていてもよい。 Although the three sub-modules 120 are indicated by solid lines in FIG. 10, the three sub-modules 120 are not necessarily arranged outside (outside) the housing that forms the outer shape of the communication device 200. , may be arranged inside (inside) a housing forming the outer shape of the communication device 200 .
 また、アンテナモジュールユニット2は、必ずしも3つのサブモジュール120を備えていなくてもよい。アンテナモジュールユニット2は、任意の数のサブモジュール120を備えていてよい。従って、アンテナモジュールユニット2は、2個以上のサブモジュール120を備えることができる。 Also, the antenna module unit 2 does not necessarily have to include three sub-modules 120 . Antenna module unit 2 may comprise any number of sub-modules 120 . Accordingly, the antenna module unit 2 can comprise two or more sub-modules 120 .
[第3実施形態]
 図11は、第3実施形態に係るアンテナモジュールユニット3の概略構成図である。第3実施形態に係るアンテナモジュールユニット3について、第1実施形態と同一又は同等の構成要素には同一の符号を付し、第1実施形態と同一又は同等の内容については、適宜説明を省略し、異なる点を中心に説明する。
[Third Embodiment]
FIG. 11 is a schematic configuration diagram of the antenna module unit 3 according to the third embodiment. Regarding the antenna module unit 3 according to the third embodiment, the same reference numerals are given to the same or equivalent components as in the first embodiment, and the description of the same or equivalent contents as in the first embodiment will be omitted as appropriate. , different points will be mainly described.
 図11に示すように、第3実施形態に係るアンテナモジュールユニット3は、メインモジュール10と、サブモジュール140と、ケーブル150とを備える。サブモジュール140は、ケーブル150により、メインモジュール10と通信可能に接続されている。 As shown in FIG. 11, the antenna module unit 3 according to the third embodiment includes a main module 10, a submodule 140, and a cable 150. The submodule 140 is communicably connected to the main module 10 by a cable 150 .
 第3実施形態におけるメインモジュール10の構成は、第1実施形態におけるメインモジュール10と同様であるため、ここでは詳細な説明を省略する。第3実施形態に係るメインモジュール10は、第1実施形態に係るメインモジュール10と同様に、ケーブル150を介してメイン回路基板40と通信可能に接続される。 The configuration of the main module 10 according to the third embodiment is the same as that of the main module 10 according to the first embodiment, so detailed description is omitted here. The main module 10 according to the third embodiment is communicably connected to the main circuit board 40 via a cable 150, like the main module 10 according to the first embodiment.
 第3実施形態に係るサブモジュール140は、アンテナ基板141と、アンテナ基板141の上面側に配置された2個の第2アンテナエレメント142と、を備える。第2アンテナエレメント142は、パッチアンテナ、ダイポールアンテナ又はモノポールアンテナなどであってよい。また、サブモジュール140は、アンテナ基板141の下面側に、信号強度を増幅させる増幅器を備える。 A sub-module 140 according to the third embodiment includes an antenna substrate 141 and two second antenna elements 142 arranged on the upper surface side of the antenna substrate 141 . The second antenna element 142 may be a patch antenna, dipole antenna, monopole antenna, or the like. Also, the sub-module 140 includes an amplifier for amplifying the signal strength on the lower surface side of the antenna substrate 141 .
 図12は、サブモジュール140の回路構成の一例を示す図である。図12に示す例では、サブモジュール140は、2個の第2アンテナエレメント142と、4個の大電力増幅器143aと、4個の低雑音増幅器143bと、第1切替えスイッチ144aと、第2切替えスイッチ144bと、第3切替えスイッチ144cと、第4切替えスイッチ144dと、第5切替えスイッチ144eと、第6切替えスイッチ144fと、を備える。 FIG. 12 is a diagram showing an example of the circuit configuration of the submodule 140. FIG. In the example shown in FIG. 12, the submodule 140 includes two second antenna elements 142, four high power amplifiers 143a, four low noise amplifiers 143b, a first changeover switch 144a, and a second changeover switch 144a. A switch 144b, a third changeover switch 144c, a fourth changeover switch 144d, a fifth changeover switch 144e, and a sixth changeover switch 144f are provided.
 第2アンテナエレメント142の機能は、第1実施形態における第2アンテナエレメント22と同様である。大電力増幅器143a及び低雑音増幅器143bの機能は、第1実施形態における大電力増幅器23a及び低雑音増幅器23bと、それぞれ同様である。大電力増幅器143aと低雑音増幅器143bとは、1個の大電力増幅器143aと1個の低雑音増幅器143bとを1組として、4組形成される。各組において、大電力増幅器143aと低雑音増幅器143bとは、並列に接続されている。 The function of the second antenna element 142 is the same as that of the second antenna element 22 in the first embodiment. The functions of the large power amplifier 143a and the low noise amplifier 143b are the same as those of the large power amplifier 23a and the low noise amplifier 23b in the first embodiment, respectively. Four sets of large power amplifiers 143a and low noise amplifiers 143b are formed, with one large power amplifier 143a and one low noise amplifier 143b as one set. In each set, the high power amplifier 143a and the low noise amplifier 143b are connected in parallel.
 図12に示すように、第1切替えスイッチ144aは、ケーブル150に接続される端子140aに接続されている。図12に示すように、第2切替えスイッチ144bは、ケーブル150に接続される端子140bに接続されている。また、第3切替えスイッチ144c、第4切替えスイッチ144d、第5切替えスイッチ144e及び第6切替えスイッチ144fは、それぞれ第2アンテナエレメント142に接続されている。 As shown in FIG. 12, the first changeover switch 144a is connected to a terminal 140a connected to the cable 150. As shown in FIG. 12, the second changeover switch 144b is connected to a terminal 140b connected to the cable 150. As shown in FIG. Also, the third changeover switch 144c, the fourth changeover switch 144d, the fifth changeover switch 144e, and the sixth changeover switch 144f are connected to the second antenna element 142, respectively.
 第1切替えスイッチ144aと第3切替えスイッチ144cとの間で、1組の大電力増幅器143aと低雑音増幅器143bとが並列に接続され、第1切替えスイッチ144aと第4切替えスイッチ144dとの間で、1組の大電力増幅器143aと低雑音増幅器143bとが並列に接続されている。また、第2切替えスイッチ144bと第5切替えスイッチ144eとの間で、1組の大電力増幅器143aと低雑音増幅器143bとが並列に接続され、第2切替えスイッチ144bと第6切替えスイッチ144fとの間で、1組の大電力増幅器143aと低雑音増幅器143bとが並列に接続されている。 A set of high power amplifier 143a and low noise amplifier 143b is connected in parallel between the first changeover switch 144a and the third changeover switch 144c, and between the first changeover switch 144a and the fourth changeover switch 144d , a pair of high power amplifier 143a and low noise amplifier 143b are connected in parallel. A set of high-power amplifier 143a and low-noise amplifier 143b is connected in parallel between the second change-over switch 144b and the fifth change-over switch 144e. In between, a pair of high power amplifier 143a and low noise amplifier 143b are connected in parallel.
 6個の切替えスイッチ(第1切替えスイッチ144a、第2切替えスイッチ144b、第3切替えスイッチ144c、第4切替えスイッチ144d、第5切替えスイッチ144e及び第6切替えスイッチ144f)は、信号の送受信制御に応じて、スイッチの切替えを行う。具体的には、第2アンテナエレメント142に信号を供給する場合、6個の切替えスイッチは、大電力増幅器23aを導通させるように切り替える。一方、第2アンテナエレメント142で受信した信号を供給する場合、6個のスイッチは、低雑音増幅器23bを導通させるように切り替える。 Six changeover switches (first changeover switch 144a, second changeover switch 144b, third changeover switch 144c, fourth changeover switch 144d, fifth changeover switch 144e, and sixth changeover switch 144f) operate according to signal transmission/reception control. switch. Specifically, when a signal is supplied to the second antenna element 142, the six changeover switches are switched so as to conduct the high power amplifier 23a. On the other hand, when supplying the signal received by the second antenna element 142, the six switches are switched to conduct the low noise amplifier 23b.
 図12に示す例では、第1実施形態の図5で示した例と同様に、サブモジュール140は、2組の回路ユニットを備える。1組の回路ユニットは、第1切替えスイッチ144aと、第3切替えスイッチ144cと、第4切替えスイッチ144dと、これら3つのスイッチの間に配置された、2個の大電力増幅器143aと、2個の低雑音増幅器143bと、により構成される。もう1組の回路ユニットは、第2切替えスイッチ144bと、第5切替えスイッチ144eと、第6切替えスイッチ144fと、これら3つのスイッチの間に配置された、2個の大電力増幅器143aと、2個の低雑音増幅器143bと、により構成される。従って、図12に示す例でも、図5に示した例と同様に、サブモジュール140は、2組の回路ユニットを、それぞれ異なる信号の送受信のために、使い分けることができる。例えば、サブモジュール140は、2組の回路ユニットのうち、1組は垂直偏波の通信に用い、もう1組は水平偏波による通信に用いることができる。 In the example shown in FIG. 12, the submodule 140 includes two sets of circuit units, similar to the example shown in FIG. 5 of the first embodiment. A set of circuit units includes a first change-over switch 144a, a third change-over switch 144c, a fourth change-over switch 144d, two large power amplifiers 143a arranged between these three switches, and two and a low noise amplifier 143b. Another set of circuit units includes a second change-over switch 144b, a fifth change-over switch 144e, a sixth change-over switch 144f, two large power amplifiers 143a arranged between these three switches, and two low noise amplifier 143b. Therefore, in the example shown in FIG. 12 as well, the submodule 140 can use two sets of circuit units for transmitting and receiving different signals, as in the example shown in FIG. For example, the sub-module 140 can use two sets of circuit units, one for vertical polarization communication and the other for horizontal polarization communication.
 このように、第3実施形態に係るアンテナモジュールユニット3においても、メインモジュール10が4個の第1アンテナエレメント12を備えるのに対し、サブモジュール140は2個の第2アンテナエレメント142を備えるため、サブモジュール20は、メインモジュールよりも部品点数が少ない。また、第1実施形態で説明したのと同様の理由で、サブモジュール140に別途の位相器やアップダウンコンバータを設ける必要がない。そのため、サブモジュール140は、メインモジュール10と比較して小型化が可能である。よって、アンテナモジュールユニット3全体としての小型化が可能である。 Thus, in the antenna module unit 3 according to the third embodiment as well, the main module 10 has four first antenna elements 12, whereas the sub-module 140 has two second antenna elements 142. , the submodule 20 has fewer parts than the main module. Also, for the same reason as described in the first embodiment, there is no need to provide a separate phase shifter or up/down converter in the submodule 140 . Therefore, the submodule 140 can be made smaller than the main module 10 . Therefore, it is possible to reduce the size of the antenna module unit 3 as a whole.
 なお、サブモジュール140が備える第2アンテナエレメント142の個数は、必ずしも2個でなくてもよい。サブモジュール140は、1個以上であって、メインモジュール10が備える第1アンテナエレメント12の個数よりも少ない個数の、第2アンテナエレメント142を備えていればよい。例えば、本明細書で説明したように、メインモジュール10が4個の第1アンテナエレメント12を備える場合、サブモジュール140は、1個から3個の第2アンテナエレメント142を備えていてよい。これにより、サブモジュール140の小型化が可能である。 The number of second antenna elements 142 included in the submodule 140 does not necessarily have to be two. The sub-module 140 may include one or more second antenna elements 142 that are smaller in number than the first antenna elements 12 included in the main module 10 . For example, if the main module 10 includes four first antenna elements 12 as described herein, the sub-module 140 may include one to three second antenna elements 142 . As a result, the size of the submodule 140 can be reduced.
 メインモジュール10が備える第1アンテナエレメント12の個数は、4個に限られない。メインモジュール10は、任意の複数の第1アンテナエレメント12を備えていてよく、サブモジュール140は、1個以上であって、メインモジュール10が備える第1アンテナエレメント12の個数よりも少ない個数の、第2アンテナエレメント142を備えていてよい。 The number of first antenna elements 12 included in the main module 10 is not limited to four. The main module 10 may have any number of first antenna elements 12, and the number of sub-modules 140 is one or more and less than the number of first antenna elements 12 provided in the main module 10. A second antenna element 142 may be provided.
 本開示を諸図面及び実施形態に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。従って、これらの変形及び修正は本開示の範囲に含まれることに留意されたい。例えば、各機能部に含まれる機能などは論理的に矛盾しないように再配置可能であり、複数の機能部などを1つに組み合わせたり、或いは分割したりすることが可能である。

 
Although the present disclosure has been described with reference to drawings and embodiments, it should be noted that various variations and modifications can be easily made by those skilled in the art based on the present disclosure. Therefore, it should be noted that these variations and modifications are included within the scope of this disclosure. For example, functions included in each functional unit can be rearranged so as not to be logically inconsistent, and multiple functional units can be combined into one or divided.

Claims (6)

  1.  電波を送受信可能な複数の第1アンテナエレメントを備えるメインモジュールと、
     ケーブルを介して前記メインモジュールとの間で電気信号を送受信可能な少なくとも1個のサブモジュールと、
    を備え、
     前記サブモジュールは、
     前記第1アンテナエレメントの個数よりも少ない個数の、電波を送受信可能な第2アンテナエレメントと、
     前記電気信号の信号強度を増幅する増幅器と、
    を備える、アンテナモジュールユニット。
    a main module including a plurality of first antenna elements capable of transmitting and receiving radio waves;
    at least one sub-module capable of transmitting and receiving electrical signals to and from the main module via a cable;
    with
    The submodule is
    second antenna elements capable of transmitting and receiving radio waves, the number of which is smaller than the number of the first antenna elements;
    an amplifier that amplifies the signal strength of the electrical signal;
    Antenna module unit.
  2.  前記メインモジュールは、電気信号の周波数を変換する周波数変換部を含み、前記メインモジュールに入力された入力信号に対して前記周波数変換部でアップコンバージョンを行うことによって、前記メインモジュールから前記サブモジュールに供給される電気信号としてのRF(Radio Frequency)信号を生成し、前記ケーブルを介して、前記RF信号を前記サブモジュールに供給する、請求項1に記載のアンテナモジュールユニット。 The main module includes a frequency converter that converts the frequency of an electrical signal, and the frequency converter up-converts an input signal input to the main module, thereby converting the main module to the sub-module. 2. The antenna module unit according to claim 1, wherein an RF (Radio Frequency) signal is generated as an electric signal to be supplied, and the RF signal is supplied to the sub-module via the cable.
  3.  前記サブモジュールを複数備える、請求項1又は2に記載のアンテナモジュールユニット。 The antenna module unit according to claim 1 or 2, comprising a plurality of said sub-modules.
  4.  請求項1から3のいずれか一項に記載の前記アンテナモジュールユニットを備える、通信装置。 A communication device comprising the antenna module unit according to any one of claims 1 to 3.
  5.  前記メインモジュールと前記サブモジュールとは、前記通信装置の外形を構成する筐体において、それぞれ異なる面に配置されている、請求項4に記載の通信装置。 5. The communication device according to claim 4, wherein said main module and said sub-module are arranged on different surfaces in a housing forming the outer shape of said communication device.
  6.  前記メインモジュールと前記サブモジュールとは、前記通信装置の外形を構成する筐体において、同一の面に配置されている、請求項4に記載の通信装置。 5. The communication device according to claim 4, wherein said main module and said sub-module are arranged on the same plane in a housing that forms the outer shape of said communication device.
PCT/JP2022/006281 2021-08-05 2022-02-17 Antenna module unit and communication device WO2023013111A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021128714 2021-08-05
JP2021-128714 2021-08-05

Publications (1)

Publication Number Publication Date
WO2023013111A1 true WO2023013111A1 (en) 2023-02-09

Family

ID=85154134

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/006281 WO2023013111A1 (en) 2021-08-05 2022-02-17 Antenna module unit and communication device

Country Status (1)

Country Link
WO (1) WO2023013111A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207186A1 (en) * 2015-04-21 2016-10-27 Robert Bosch Gmbh Antenna device for implementing orthogonal antenna characteristics
US20200194893A1 (en) * 2018-12-14 2020-06-18 Samsung Electro-Mechanics Co., Ltd. Antenna module and electronic device including the same
US20210143530A1 (en) * 2019-08-05 2021-05-13 Samsung Electro-Mechanics Co., Ltd. Antenna module and electronic device including the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102015207186A1 (en) * 2015-04-21 2016-10-27 Robert Bosch Gmbh Antenna device for implementing orthogonal antenna characteristics
US20200194893A1 (en) * 2018-12-14 2020-06-18 Samsung Electro-Mechanics Co., Ltd. Antenna module and electronic device including the same
US20210143530A1 (en) * 2019-08-05 2021-05-13 Samsung Electro-Mechanics Co., Ltd. Antenna module and electronic device including the same

Similar Documents

Publication Publication Date Title
US10305172B2 (en) Electronic device with millimeter wave antennas on stacked printed circuits
US20220278702A1 (en) Electronic Device With Millimeter Wave Antennas
US8059040B2 (en) Wireless electronic devices with clutch barrel transceivers
CN110620603A (en) Electronic device including a plurality of switches selectively connecting an antenna having a plurality of feed terminals and a communication circuit, and driving method thereof
US11336030B2 (en) Antenna module and communication device equipped with same
US11581635B2 (en) Antenna module
US20070066243A1 (en) Rf circuit module
KR20210004754A (en) Antenna structure and electronic device including the same
EP3721503B1 (en) A communication device and a method in a communication device
EP2276114B1 (en) Planar reconfigurable antenna
CN215734330U (en) Communication device
US20160209513A1 (en) Electronic apparatus
US20210028539A1 (en) Enhanced Antenna Module with Flexible Portion
CN110933957B (en) Antenna device, antenna module, and circuit board used in the antenna module
US20220181794A1 (en) Antenna device, antenna module, and communication device
US11251526B2 (en) Antenna device, antenna module, and circuit board for use therein
WO2023013111A1 (en) Antenna module unit and communication device
KR20210083036A (en) Antenna moudule and electronic device using the same
WO2023013112A1 (en) Antenna module unit, and communication device
WO2016072159A1 (en) Active antenna system
US20240055774A1 (en) Antenna device
KR102234000B1 (en) Antenna module and electronic device using it
US20230139670A1 (en) Antenna module and communication device incorporating the same
US20240097340A1 (en) Electronic Devices with Wireless Board-to-Board Connectors
US20230083466A1 (en) Electronic Devices with Distributed Slot Antenna Structures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22852540

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE