WO2023013028A1 - Terminal and wireless communication method - Google Patents

Terminal and wireless communication method Download PDF

Info

Publication number
WO2023013028A1
WO2023013028A1 PCT/JP2021/029296 JP2021029296W WO2023013028A1 WO 2023013028 A1 WO2023013028 A1 WO 2023013028A1 JP 2021029296 W JP2021029296 W JP 2021029296W WO 2023013028 A1 WO2023013028 A1 WO 2023013028A1
Authority
WO
WIPO (PCT)
Prior art keywords
access procedure
initial access
secondary cell
scg
cell group
Prior art date
Application number
PCT/JP2021/029296
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
明人 花木
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2021/029296 priority Critical patent/WO2023013028A1/en
Publication of WO2023013028A1 publication Critical patent/WO2023013028A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states

Definitions

  • the present disclosure relates to a terminal and wireless communication method compatible with dual connectivity.
  • the 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G We are also proceeding with 5G, 5G Evolution or 6G
  • Non-Patent Document 1 In Release-17 of 3GPP, expansion of Multi-RAT Dual Connectivity (MR-DC) is being considered. activation/deactivation mechanism (which may be referred to as SCG activation/deactivation) has been studied (Non-Patent Document 1).
  • the UE when activating (which may be referred to as reactivating) a deactivated SCG, the UE does not perform the initial access procedure (random access channel (RACH)), and the primary It is proposed to monitor the downlink control channel (PDCCH: Physical Downlink Control Channel) in the secondary cell (PSCell), and that the UE supports constant beam monitoring for deactivated SCG (Non-Patent Document 2).
  • RACH random access channel
  • PDCCH Physical Downlink Control Channel
  • RACH-less SCG activation is not necessarily appropriate in cases such as beam failure detection.
  • the following disclosure is made in view of this situation, and aims to provide a terminal and a wireless communication method that can realize more appropriate deactivated SCG activation.
  • One aspect of the present disclosure is a receiving unit (radio communication unit 210) that receives a beam from a transmission/reception point, and an inactive secondary cell group in response to the generation of uplink data or an instruction from the network for initial access.
  • a control unit (control unit 240) that activates without executing a procedure, the control unit detects failure of the beam before the transmission timing adjustment timer expires, and the number of failures reaches a specified number of times.
  • the terminal (UE 200) executes the initial access procedure.
  • One aspect of the present disclosure is a receiving unit (radio communication unit 210) that receives a message instructing deactivation of a secondary cell group, and a secondary cell in an inactive state in response to generation of uplink data or an instruction from the network a control unit (control unit 240) for activating the group without performing an initial access procedure, wherein the receiving unit receives a transmission timing adjustment command transmitted together with the message;
  • a terminal UE 200 that starts a transmission timing adjustment timer based on a transmission timing adjustment command, executes the initial access procedure, and activates the inactive secondary cell group when a specific condition is satisfied.
  • One aspect of the present disclosure is a transmission unit (RRC processing unit 220) that transmits a message requesting activation of an inactive secondary cell group, and an inactive state in response to the generation of uplink data or an instruction from the network a control unit (control unit 240) that performs an initial access procedure or activates the secondary cell group without performing the initial access procedure, and the transmission unit performs the initial access procedure or It is a terminal (UE 200) that transmits the message including information indicating whether or not.
  • RRC processing unit 220 that transmits a message requesting activation of an inactive secondary cell group, and an inactive state in response to the generation of uplink data or an instruction from the network
  • control unit 240 that performs an initial access procedure or activates the secondary cell group without performing the initial access procedure, and the transmission unit performs the initial access procedure or
  • It is a terminal (UE 200) that transmits the message including information indicating whether or not.
  • One aspect of the present disclosure is the step of receiving beams from a transmit/receive point and activating an inactive secondary cell group without performing an initial access procedure in response to generation of uplink data or an indication from the network. and detecting failures in the beam before a transmission timing adjustment timer expires, and executing the initial access procedure when the number of failures reaches a specified number of times. be.
  • One aspect of the present disclosure includes the step of receiving a message instructing deactivation of a secondary cell group, and, in response to generation of uplink data or an indication from the network, deactivating the inactive secondary cell group in an initial access procedure.
  • receiving a send timing adjustment command sent with said message ; starting a send timing adjustment timer based on said send timing adjustment command; performing the initial access procedure and activating the inactive secondary cell group if so.
  • One aspect of the present disclosure is a step of transmitting a message requesting activation of an inactive secondary cell group, and initializing the inactive secondary cell group in response to generation of uplink data or an instruction from the network.
  • a wireless communication method comprising: performing an access procedure or activating without performing said initial access procedure; and transmitting said message containing information indicating whether to perform said initial access procedure. be.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10.
  • FIG. 2 is a functional block configuration diagram of the eNB100A.
  • FIG. 3 is a functional block configuration diagram of UE200.
  • FIG. 4 is a diagram illustrating a timing example (Case 1) of various events related to RACH-less SCG activation according to Operation Example 1.
  • FIG. 5 is a diagram showing a timing example (Case 2) of various events related to RACH-less SCG activation according to Operation Example 1.
  • FIG. 6 is a diagram showing a timing example (Case 3) of various events related to RACH-less SCG activation according to Operation Example 1.
  • FIG. 7 is a diagram illustrating a timing example (Case 4) of various events related to RACH-less SCG activation according to Operation Example 1.
  • FIG. 8 is a diagram illustrating a sequence example of SCGdeactivation and SCGactivation according to Operation Example 2.
  • FIG. 9 is a diagram showing an example of the hardware configuration of eNB100A, gNB100B and UE200.
  • FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment.
  • the radio communication system 10 is a radio communication system according to Long Term Evolution (LTE) and 5G New Radio (NR). Note that LTE may be called 4G, and NR may be called 5G. Also, the radio communication system 10 may be a radio communication system conforming to a scheme called Beyond 5G, 5G Evolution, or 6G.
  • LTE Long Term Evolution
  • NR 5G New Radio
  • 6G 6G
  • LTE and NR may be interpreted as radio access technology (RAT), and in this embodiment, LTE may be referred to as the first radio access technology and NR may be referred to as the second radio access technology.
  • RAT radio access technology
  • the wireless communication system 10 includes an Evolved Universal Terrestrial Radio Access Network 20 (hereinafter E-UTRAN 20) and a Next Generation-Radio Access Network 30 (hereinafter NG RAN 30).
  • E-UTRAN 20 Evolved Universal Terrestrial Radio Access Network 20
  • NG RAN 30 Next Generation-Radio Access Network 30
  • the wireless communication system 10 also includes a terminal 200 (hereafter UE 200, User Equipment).
  • E-UTRAN20 includes eNB100A, which is a radio base station conforming to LTE.
  • NG RAN30 includes gNB100B, a radio base station according to 5G (NR).
  • the NG RAN 30 may be connected to a User Plane Function (not shown) that is included in the 5G system architecture and provides user plane functions.
  • E-UTRAN 20 and NG RAN 30 (which may be eNB100A or gNB100B) may simply be referred to as networks.
  • the eNB100A, gNB100B, and UE200 can support carrier aggregation (CA) using multiple component carriers (CC), and dual connectivity that simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs. .
  • CA carrier aggregation
  • CC component carriers
  • dual connectivity that simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs.
  • the eNB100A and gNB100B may transmit and receive radio signals via one or more transmission and reception points (TRP: Transmission and Reception Points).
  • TRP Transmission and Reception Points
  • eNB100A and gNB100B can support single-user MIMO using one TRP, and coordinate two TRPs to support distributed MIMO transmission of a predetermined channel (eg, PDSCH: Physical Downlink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • TRP may be read interchangeably as cell, radio base station, Node B, antenna port, antenna port group, antenna panel, panel, antenna element, transmission/reception point, etc.
  • eNB100A, gNB100B and UE200 perform radio communication via radio bearers, specifically Signaling Radio Bearer (SRB) or DRB Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB DRB Data Radio Bearer
  • eNB100A configures the master node (MN) and gNB100B configures the secondary node (SN) Multi-Radio Dual Connectivity (MR-DC), specifically E-UTRA-NR Dual Connectivity ( EN-DC) or NR-E-UTRA Dual Connectivity (NE-DC) in which the gNB 100B configures the MN and the eNB 100A configures the SN.
  • MR-DC Multi-Radio Dual Connectivity
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E-UTRA Dual Connectivity
  • NR-DC may be implemented in which the gNB configures the MN and SN.
  • UE200 supports dual connectivity connecting to eNB100A and gNB100B.
  • eNB100A is included in the master cell group (MCG) and gNB100B is included in the secondary cell group (SCG).
  • MCG master cell group
  • SCG secondary cell group
  • gNB100B is an SN included in the SCG.
  • the eNB100A and gNB100B may be called radio base stations or network devices.
  • the wireless communication system 10 may support addition or change (PSCell addition/change) of Primary SCell (PSCell).
  • PSCell addition/change may include conditional PSCell addition/change.
  • a PSCell is a type of secondary cell.
  • PSCell means Primary SCell (secondary cell), and may be interpreted as corresponding to any SCell among a plurality of SCells.
  • a secondary cell may be read as a secondary node (SN) or a secondary cell group (SCG).
  • SN secondary node
  • SCG secondary cell group
  • FIG. 2 is a functional block configuration diagram of the eNB100A.
  • the eNB 100A includes a radio communication section 110, an RRC processing section 120, a DC processing section 130 and a control section 140.
  • the gNB100B may also have the same functions as the eNB100A, although the gNB100B is different in that it supports NR.
  • the radio communication unit 110 transmits downlink signals (DL signals) according to LTE.
  • Radio communication section 110 also receives an uplink signal (UL signal) according to LTE.
  • the radio communication unit 110 performs PDU/SDU assembly/ Perform disassembly, etc.
  • the RRC processing unit 120 executes various processes in the radio resource control layer (RRC). Specifically, RRC processing section 120 can transmit RRC Reconfiguration to UE 200 . Also, RRC processing section 120 can receive RRC Reconfiguration Complete, which is a response to RRC Reconfiguration, from UE 200 .
  • RRC radio resource control layer
  • the eNB 100A supports LTE, but in this case, the name of the RRC message may be RRC Connection Reconfiguration or RRC Connection Reconfiguration Complete.
  • RRC Reconfiguration (and RRC messages between MN and SN (inter-node RRC messages) may include reconfigurationWithSync regarding cell reconfiguration.
  • reconfigurationWithSync is described in 3GPP TS38.331 5.3.5.5.2, etc. stipulated.
  • ReconfigurationWithSync may be interpreted as a common mechanism for activating cells (NR cells) (that is, adding NR cells) in non-standalone (NSA) including other RATs (such as LTE).
  • UE200 can execute a random access procedure (RA procedure) and the like based on reconfigurationWithSync.
  • NR cells that is, adding NR cells
  • NSA non-standalone
  • RA procedure random access procedure
  • the DC processing unit 130 executes processing related to dual connectivity, specifically Multi-RAT Dual Connectivity (MR-DC).
  • MR-DC Multi-RAT Dual Connectivity
  • the eNB 100A supports LTE and the gNB 100B supports NR, so DC processing section 130 may perform processing related to E-UTRA-NR Dual Connectivity (EN-DC).
  • EN-DC E-UTRA-NR Dual Connectivity
  • type of DC is not limited as described above, and may correspond to, for example, NR-E-UTRA Dual Connectivity (NE-DC) or NR-NR Dual Connectivity (NR-DC).
  • the DC processing unit 130 can transmit and receive messages defined in 3GPP TS37.340, etc., and execute processing related to DC setup and release between the eNB100A, gNB100B, and UE200.
  • the control unit 140 controls each functional block that configures the eNB 100A.
  • the control unit 140 performs control regarding addition or change of secondary cells (or secondary nodes).
  • control unit 140 can perform control related to activation/de-activation of the secondary cell group (SCG). Specifically, the control unit 140 activates (may be called activation) or deactivates (may be called inactivation) the SCG based on an instruction from the UE 200. You can More specifically, the control unit 140 may activate or deactivate one or more SCells (which may include PSCells; hereinafter the same) included in the SCG.
  • SCells which may include PSCells; hereinafter the same
  • An active SCG may be interpreted as a state in which the UE 200 can immediately use the SCG (SCell).
  • An inactive SCG (SCell) may be interpreted as a state in which the UE 200 cannot immediately use the SCG (SCell), but configuration information is retained.
  • channels include control channels and data channels.
  • Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel).
  • data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • Reference signals include demodulation reference signal (DMRS), sounding reference signal (SRS), tracking reference signal (TRS), and channel state information-reference signal (CSI-RS). and a reference signal.
  • Data may also refer to data transmitted over a data channel.
  • FIG. 3 is a functional block configuration diagram of UE200. As shown in FIG. 3 , UE 200 includes radio communication section 210 , RRC processing section 220 , DC processing section 230 and control section 240 .
  • the radio communication unit 210 transmits an uplink signal (UL signal) according to LTE or NR. Also, radio communication section 210 receives a downlink signal (DL signal) according to LTE or NR.
  • UL and DL signals may consist of one or more beams.
  • the radio communication unit 210 can receive beams from one or more transmission/reception points (TRPs) and transmit beams toward radio base stations (TRPs).
  • TRPs transmission/reception points
  • the wireless communication unit 210 may constitute a receiving unit that receives beams from transmission/reception points.
  • UE200 can access eNB100A (E-UTRAN20) and gNB100B (NG RAN30), and can support dual connectivity (specifically, EN-DC). In this way, UE 200 can transmit and receive radio signals via MCG or SCG, specifically via cells included in MCG or cells included in SCG (SCell including PSCell).
  • the radio communication unit 210 performs assembly/disassembly of PDU/SDU in MAC, RLC, PDCP, etc., like the radio communication unit 110 of the eNB100A (gNB100B).
  • the RRC processing unit 220 executes various processes in the radio resource control layer (RRC). Specifically, the RRC processing unit 220 can transmit and receive radio resource control layer messages.
  • RRC radio resource control layer
  • the RRC processing unit 220 can receive RRC Reconfiguration from the network, specifically from the E-UTRAN 20 (or NG RAN 30). Also, the RRC processing unit 220 can transmit RRC Reconfiguration Complete, which is a response to RRC Reconfiguration, to the network.
  • the RRC processing unit 220 may transmit or receive other messages in the RRC layer.
  • the RRC processing unit 220 may receive a message instructing SCG deactivation (SCG deactivation) or a message for activation (SCG activation) from the network.
  • the RRC processing unit 220 may configure a receiving unit that receives a message instructing deactivation of SCG. Note that this message may be included in RRC Reconfiguration or the like.
  • the RRC processing unit 220 may transmit a message requesting activation of a deactivated SCG to the network.
  • the RRC processing unit 220 may configure a transmitting unit that transmits a message requesting activation of deactivated SCG.
  • the RRC processing unit 220 may transmit the message including information indicating whether to execute the initial access procedure.
  • An initial access procedure is a procedure that is performed for UE 200 to access (or connect to) a network (specifically, eNB 100A or gNB 100B).
  • the initial access procedure may be interpreted as a procedure performed for the idle state UE 200 to connect to a cell included in the SCG, and may be a random access (RA) procedure.
  • RA random access
  • RA procedures may include contention-free random access procedures (CFRA) and contention-based random access procedures (CBRA).
  • CFRA contention-free random access procedures
  • CBRA contention-based random access procedures
  • the RRC processing unit 220 may receive a transmission timing adjustment command (Timing Advance (TA) command) transmitted together with the message (SCGdeactivation).
  • TA command is a command used to adjust UL transmission timing, and may be indicated by an offset value from the reference timing.
  • the DC processing unit 230 executes processing related to dual connectivity, specifically MR-DC. As described above, in this embodiment, the DC processing unit 230 may perform processing related to EN-DC, but may also support NE-DC and/or NR-DC.
  • DC processing unit 230 accesses each of eNB100A and gNB100B, and multiple layers including RRC (medium access control layer (MAC), radio link control layer (RLC), and packet data convergence protocol layer (PDCP), etc.) can be performed.
  • RRC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • the DC processing unit 230 can send a report regarding SCG deactivation.
  • a report on deactivation may be interpreted in a broad sense, and may include settings related to SCG activation or deactivation, explicit or implicit display of active or de-active state, transition to that state, and the like. .
  • the DC processing unit 230 can also transmit SCG failure information to the network. Specifically, the DC processing unit 230 may transmit an SCGFailureInformation message (or a new RRC message) via the RRC processing unit 220. SCGFailureInformation is specified in 3GPP TS38.331.
  • the DC processing unit 230 may transmit failure information (SCGFailureInformation) including an information element indicating the cell state of the SCG.
  • SCGFailureInformation failure information
  • a deactivated SCG cell may be interpreted as a cell included in the deactivated SCG, and typically may be interpreted as an SCell including a PSCell.
  • An information element (IE) is an element that constitutes SCGFailureInformation, and may include letters, numbers, symbols, etc., and may be called fields.
  • the DC processing unit 230 may transmit SCGFailureInformation including reception quality in the serving cell and neighbor cells.
  • the reception quality may include RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) and SINR (Signal-to-Interference plus Noise power Ratio).
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • SINR Signal-to-Interference plus Noise power Ratio
  • the DC processing unit 230 can perform processing related to beam failure detection (BFD) and recovery (BFR) based on reception quality measurement results for beams transmitted from the network.
  • BFD beam failure detection
  • BFR recovery
  • the serving cell may simply be interpreted as the cell to which the UE 200 is connected, but more precisely, in the case of an RRC_CONNECTED UE in which carrier aggregation (CA) is not set, the number of serving cells that constitute the primary cell is 1. Only one.
  • the serving cell may be taken to refer to the set of one or more cells including the primary cell and all secondary cells.
  • deactivated SCG information element may be included in the SCGFailureInformation in part or in its entirety.
  • the control unit 240 controls each functional block that configures the UE200.
  • the control unit 240 can perform control regarding activation/de-activation of secondary cell groups (SCGs).
  • SCGs secondary cell groups
  • control unit 240 can activate (reactivate) an inactive SCG (deactivated SCG) without executing an initial access procedure (RA procedure).
  • RA procedure initial access procedure
  • Such procedures may be referred to as RACH-less SCG activation (or RACH-less SCG re-activation).
  • RACH-less SCG activation may be performed on the assumption that the synchronous state between UE 200 and SCG (SN) can be maintained.
  • the control unit 240 may execute RACH-less SCG activation when uplink (UL) data is generated inside the UE 200. Alternatively, the control unit 240 may perform RACH-less SCG activation in response to explicit or implicit instructions from the network. That is, the control unit 240 may activate the deactivated SCG without executing RACH in response to generation of UL data or an instruction from the network.
  • UL uplink
  • the control unit 240 may perform RACH-less SCG activation in response to explicit or implicit instructions from the network. That is, the control unit 240 may activate the deactivated SCG without executing RACH in response to generation of UL data or an instruction from the network.
  • control unit 240 detects a beam failure (BFD) before the transmission timing adjustment timer expires, and when the number of failures reaches a specified number of times, the initial access procedure (RA procedure) is executed. good.
  • BFD beam failure
  • RA procedure initial access procedure
  • the transmission timing adjustment timer is a timer used to adjust the UL transmission timing, and specifically, it may be interpreted as a Time Alignment timer (TA timer). Also, the transmission timing adjustment may be interpreted as delaying or advancing the transmission timing of the UL signal based on a predetermined reference timing, and the TA timer is the time during which the same transmission timing may be applied to the UL transmission. may be interpreted as a timer that measures Also, the TA timer is a timer for measuring the valid time of the TA value received by the TA command, and may start when the TA command is received.
  • TA timer Time Alignment timer
  • the control unit 240 starts the transmission timing adjustment timer based on the transmission timing adjustment command (TA command) received from the network, executes the initial access procedure (RA procedure) when a specific condition is satisfied, and activates the deactivated SCG. It may be activated (reactivated).
  • TA command transmission timing adjustment command
  • RA procedure initial access procedure
  • control unit 240 may transmit RACH and activate deactivated SCG.
  • the inactive state of the SCG may be at least one of the following states.
  • ⁇ PDCCH is not monitored in PSCell of deactivated SCG.
  • ⁇ UE200 maintains the DL synchronization state.
  • the UE 200 performs restricted RRM measurement.
  • the UE 200 performs limited radio link monitoring (RLM) and/or does not perform beam management (beam failure detection and restoration), SRS (Sounding Reference Signal) transmission, CSI reporting.
  • RLM radio link monitoring
  • SRS Sounding Reference Signal
  • the UE 200 may operate according to at least one of the following.
  • CandidateBeamRSList is set in advance by beamFailureRecoveryConfig from the network to UE 200, UE 200 counts BFD in PSCells in an inactive state, and BFR may be executed when the value of BFI_COUNTER ⁇ beamFailureInstanceMaxCount. That is, UE 200 may transmit RACH on PSCell using RACH resources specified by candidateBeamRSList (list of candidate beams).
  • the UE 200 transmits RACH on the PSCell and establishes UL/DL synchronization,
  • the state of deactivated SCG for example, PDCCH is not monitored
  • SCG activation may be performed.
  • UE 200 may transmit RACH on PSCell even though UL data arrival for SCG bearer has not occurred or there is no SCG activation instruction from the network.
  • UE 200 may deactivate SCG again if UL data arrival does not occur within a predetermined period of time (or while a predetermined timer is running) after activating SCG (for example, starting monitoring of PDCCH).
  • UE 200 does not transmit RACH on PSCell (or does not transmit RACH because there is no candidateBeamRSList or no good beam)
  • beam failure radio Link failure (RLF) information (eg, beam identity and quality) may be reported to the network.
  • the beam failure (RLF information) may be reported to the network by SCGFailureInformationmessage.
  • the UE 200 may request SCG activation (which may include a dedicated RACH resource) from the network when UL data arrival occurs. Alternatively, UE 200 may wait for an SCG activation indication from the network.
  • the SCG activation indication from the network may include candidateBeam information and dedicated RACH resource.
  • FIG. 4 (Case 1) shows an example in which RACH-less SCG activation is applied because the number of BFDs has reached the maximum value (3) in deactivated SCG, but RACH is transmitted to PSCell, but PDCCH is not monitored. .
  • Fig. 5 shows an example of transmitting RACH to PSCell and monitoring PDCCH, although RACH-less SCG activation is applied because the number of BFDs has reached the maximum value (3) in deactivated SCG. In this case, the SCG may be deactivated again if no UL data arrival occurs.
  • FIG. 6 (Case 3) shows an example where the value of BFI_COUNTER ⁇ beamFailureInstanceMaxCount, but the UE 200 does not execute BFR.
  • FIG. 7 shows an example in which the UE 200 does not have reception beam monitoring functions (RLM, BFD).
  • UE 200 may continue RLM after executing BFR. Specifically, RLM may be continued while TAT is in operation, RLM may be continued even if TAT has expired, or RLM may be stopped when TAT has expired. Alternatively, the UE 200 may continue RLM after executing BFR if Tracking Reference Signal (TRS) is set.
  • TRS Tracking Reference Signal
  • UE200 does not send RRC Reconfiguration from the network to UE200 during SCGdeactivation state when TCI (Transmission Configuration Indication) state and SRI (SRS resource indicator)/SRS resource config are set in advance.
  • TCI Transmission Configuration Indication
  • SRI SRS resource indicator
  • TCI state may mean that the setting is explicitly instructed by the control element (MAC CE) of the radio resource control layer (RRC) or medium access control layer (MAC).
  • QCL relationships may include both cases where the TCI state is explicitly set and cases where the TCI state is not set.
  • QCL/TCI state/beam may be read interchangeably.
  • the SRI/SRS resource config may be set by RRC Reconfiguration when the network instructs SCG activation.
  • the TA command may be transmitted from the network to the UE 200 in the deactivated SCG.
  • UE 200 when RACH-less SCG activation is set, UE 200 needs to perform RACH-based SCG activation after TAT expires. Alternatively, the UE 200 needs to perform RACH based SCG activation if the beam quality is bad even before the TAT expires.
  • FIG. 8 shows a sequence example of SCGdeactivation and SCGactivation according to Operation Example 2.
  • the network may include the TA command in the SCGdeactivation instruction and transmit it to the UE 200 .
  • the network may transmit the TA command in conjunction with the transmission timing of the SCG deactivation instruction to the UE 200.
  • the TA command may be sent at the same time as the SCG deactivation instruction, immediately before, or immediately after.
  • MN may request SN to send TA command, and SN may send TA command to UE200.
  • the SN may transmit the TA command on the SCG side to the MN, and the MN may transmit the TA command to the UE200.
  • TA command may be sent from SN to UE200 immediately before SCG deactivation.
  • the SN may send the TA command to the MN, and the MN may send the TA command to the UE200.
  • UE 200 (3.2.2) Trigger by UE 200 As shown in FIG. 8, UE 200 notifies preference of RACH-less SCG activation or RACH based SCG activation in accordance with transmission of SCG activation request to MN. good. The preference may be included in the SCG activation request.
  • the UE 200 has not expired the TAT but the beam quality is poor (beam quality information may be reported), so the reason for requesting RACH-based SCG activation (or RACH-based SCG activation for TAT expiration) It may be sent to the network.
  • the network When the network receives a preference for RACH-less SCG activation or RACH-based SCG activation, it may include RACH resource and candidate beam in the SCG activation indication (RRC Reconfiguration).
  • RRC Reconfiguration When the network receives a preference for RACH-less SCG activation or RACH-based SCG activation, it may include RACH resource and candidate beam in the SCG activation indication (RRC Reconfiguration).
  • UE 200 gives priority to RACH based activation. You may
  • UE 200 detects a beam failure (BFD) before TA timer expires, and if the number of failures reaches a specified number (beamFailureInstanceMaxCount), RA procedure (ie RACH based activation) may be performed.
  • BFD beam failure
  • BeamFailureInstanceMaxCount a specified number
  • the UE 200 may perform the RA procedure (that is, RACH based activation) and reactivate the deactivated SCG if certain conditions are met. Also, the UE 200 can transmit a message (SCG activation request) including information indicating whether to execute the RA procedure (that is, RACH based activation) to the network.
  • RA procedure that is, RACH based activation
  • SCG activation request information indicating whether to execute the RA procedure (that is, RACH based activation) to the network.
  • the network can more reliably provide the TA command to the UE200, and the UE200 and the network can reliably share whether the UE200 will perform RACH-less SCG activation or RACH-based SCG activation. That is, the UE 200 and the network can realize more appropriate deactivated SCG activation.
  • the initial access procedure is intended to be the RA procedure, but it is not limited to the RA procedure and can be interchanged with RACH transmission (or simply RACH) as described above. may be interpreted as a procedure performed for the UE 200 to access (attach or connect to) the network.
  • configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good.
  • link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
  • each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't
  • a functional block (component) that performs transmission is called a transmitting unit or transmitter.
  • the implementation method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the term "apparatus” can be read as a circuit, device, unit, or the like.
  • the hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
  • Each functional block of the device (see Fig. 2.3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
  • a processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially.
  • Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be
  • ROM Read Only Memory
  • EPROM Erasable Programmable ROM
  • EEPROM Electrically Erasable Programmable ROM
  • RAM Random Access Memory
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like.
  • Storage 1003 may also be referred to as an auxiliary storage device.
  • the recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD).
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods.
  • the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof
  • RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, R
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New Radio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • a specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to).
  • MME or S-GW network nodes
  • the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information, signals can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
  • Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
  • notification of predetermined information is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
  • wired technology coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • the channel and/or symbols may be signaling.
  • a signal may also be a message.
  • a component carrier may also be called a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information.
  • radio resources may be indexed.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)
  • Head: RRH can also provide communication services.
  • cell refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
  • MS Mobile Station
  • UE User Equipment
  • a mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same).
  • communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the mobile station may have the functions that the base station has.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • a radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • SCS subcarrier spacing
  • TTI transmission time interval
  • number of symbols per TTI radio frame structure
  • transmission and reception specific filtering operations performed by the receiver in the frequency domain specific windowing operations performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
  • one subframe may be called a transmission time interval (TTI)
  • TTI transmission time interval
  • multiple consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • the TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one slot or one minislot is called a TTI
  • one or more TTIs may be the minimum scheduling time unit.
  • the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
  • long TTI for example, normal TTI, subframe, etc.
  • short TTI for example, shortened TTI, etc.
  • a TTI having a TTI length greater than or equal to this value may be read as a replacement.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain.
  • the number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long.
  • One TTI, one subframe, etc. may each consist of one or more resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
  • PRB Physical resource blocks
  • SCG sub-carrier groups
  • REG resource element groups
  • PRB pairs RB pairs, etc.
  • a resource block may be composed of one or more resource elements (Resource Element: RE).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • One or more BWPs may be configured in one carrier for a UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots and symbols described above are only examples.
  • the number of subframes included in a radio frame the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc.
  • CP cyclic prefix
  • connection means any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being “connected” or “coupled.” Couplings or connections between elements may be physical, logical, or a combination thereof. For example, “connection” may be read as "access”.
  • two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
  • RS Reference Signal
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
  • determining and “determining” used in this disclosure may encompass a wide variety of actions.
  • “Judgement” and “determination” are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as “judged” or “determined”, and the like.
  • "judgment” and “determination” are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment” or “decision” has been made.
  • judgment and “decision” are considered to be “judgment” and “decision” by resolving, selecting, choosing, establishing, comparing, etc. can contain.
  • judgment and “decision” may include considering that some action is “judgment” and “decision”.
  • judgment (decision) may be read as “assuming”, “expecting”, “considering”, or the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”
  • Radio communication system 20 E-UTRAN 30NG RAN 100A eNB 100B gNB 110 Radio communication unit 120 RRC processing unit 130 DC processing unit 140 Control unit 200 UE 210 wireless communication unit 220 RRC processing unit 230 DC processing unit 240 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to the present invention receives a beam from a transmission/reception point and, without executing an initial access procedure, activates a secondary cell group in an inactive state according to generation of uplink data or an instruction from a network. The terminal detects a beam failure before expiration of a transmission timing adjustment timer, and when the number of times of the failures reaches a specified number of times, executes the initial access procedure.

Description

端末及び無線通信方法Terminal and wireless communication method
 本開示は、デュアルコネクティビティに対応した端末及び無線通信方法に関する。 The present disclosure relates to a terminal and wireless communication method compatible with dual connectivity.
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) has specified the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and the next generation specification called Beyond 5G, 5G Evolution or 6G We are also proceeding with
 3GPPのRelease-17では、Multi-RAT Dual Connectivity(MR-DC)の拡張が検討されており、例えば、端末(User Equipment, UE)の消費電力削減を主な目的として、セカンダリーセルグループ(SCG)のアクティブ化/非アクティブ化メカニズム(SCG activation/deactivationと呼ばれてもよい)が検討されている(非特許文献1)。 In Release-17 of 3GPP, expansion of Multi-RAT Dual Connectivity (MR-DC) is being considered. activation/deactivation mechanism (which may be referred to as SCG activation/deactivation) has been studied (Non-Patent Document 1).
 また、非アクティブ化されたSCG(deactivated SCG)をアクティブ化(再アクティブ化と呼ばれてもよい)する場合、UEは、初期アクセス手順(ランダムアクセスチャネル(RACH))を実行せず、プライマリー・セカンダリーセル(PSCell)における下り制御チャネル(PDCCH:Physical Downlink Control Channel)をモニタすること、及びUEは、deactivated SCGについても一定のビームのモニタをサポートすることが提案されている(非特許文献2)。 Also, when activating (which may be referred to as reactivating) a deactivated SCG, the UE does not perform the initial access procedure (random access channel (RACH)), and the primary It is proposed to monitor the downlink control channel (PDCCH: Physical Downlink Control Channel) in the secondary cell (PSCell), and that the UE supports constant beam monitoring for deactivated SCG (Non-Patent Document 2). .
 上述したRACHを伴わないdeactivated SCGのアクティブ化(RACH-less SCG activation)は、ビーム障害を検出した場合など、必ずしも適切でないケースが想定される。  The above deactivated SCG activation without RACH (RACH-less SCG activation) is not necessarily appropriate in cases such as beam failure detection.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、より適切なdeactivated SCGのアクティブ化を実現し得る端末及び無線通信方法の提供を目的とする。 Therefore, the following disclosure is made in view of this situation, and aims to provide a terminal and a wireless communication method that can realize more appropriate deactivated SCG activation.
 本開示の一態様は、送受信ポイントからのビームを受信する受信部(無線通信部210)と、上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化する制御部(制御部240)とを備え、前記制御部は、送信タイミング調整用タイマーが満了する前に前記ビームの障害を検出し、前記障害の回数が規定回数となった場合、前記初期アクセス手順を実行する端末(UE200)である。 One aspect of the present disclosure is a receiving unit (radio communication unit 210) that receives a beam from a transmission/reception point, and an inactive secondary cell group in response to the generation of uplink data or an instruction from the network for initial access. A control unit (control unit 240) that activates without executing a procedure, the control unit detects failure of the beam before the transmission timing adjustment timer expires, and the number of failures reaches a specified number of times. , the terminal (UE 200) executes the initial access procedure.
 本開示の一態様は、セカンダリーセルグループの非アクティブ化を指示するメッセージを受信する受信部(無線通信部210)と、上りリンクデータの発生またはネットワークから指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化する制御部(制御部240)とを備え、前記受信部は、前記メッセージとともに送信される送信タイミング調整コマンドを受信し、前記制御部は、前記送信タイミング調整コマンドに基づいて送信タイミング調整用タイマーを開始し、特定の条件を満たす場合、前記初期アクセス手順を実行し、非アクティブ状態の前記セカンダリーセルグループをアクティブ化する端末(UE200)である。 One aspect of the present disclosure is a receiving unit (radio communication unit 210) that receives a message instructing deactivation of a secondary cell group, and a secondary cell in an inactive state in response to generation of uplink data or an instruction from the network a control unit (control unit 240) for activating the group without performing an initial access procedure, wherein the receiving unit receives a transmission timing adjustment command transmitted together with the message; A terminal (UE 200) that starts a transmission timing adjustment timer based on a transmission timing adjustment command, executes the initial access procedure, and activates the inactive secondary cell group when a specific condition is satisfied.
 本開示の一態様は、非アクティブ状態のセカンダリーセルグループのアクティブ化を要求するメッセージを送信する送信部(RRC処理部220)と、上りリンクデータの発生またはネットワークから指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行し、または前記初期アクセス手順を実行することなくアクティブ化する制御部(制御部240)とを備え、前記送信部は、前記初期アクセス手順を実行するか否かを示す情報を含む前記メッセージを送信する端末(UE200)である。 One aspect of the present disclosure is a transmission unit (RRC processing unit 220) that transmits a message requesting activation of an inactive secondary cell group, and an inactive state in response to the generation of uplink data or an instruction from the network a control unit (control unit 240) that performs an initial access procedure or activates the secondary cell group without performing the initial access procedure, and the transmission unit performs the initial access procedure or It is a terminal (UE 200) that transmits the message including information indicating whether or not.
 本開示の一態様は、送受信ポイントからのビームを受信するステップと、上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化するステップと、送信タイミング調整用タイマーが満了する前に前記ビームの障害を検出し、前記障害の回数が規定回数となった場合、前記初期アクセス手順を実行するステップとを含む無線通信方法である。 One aspect of the present disclosure is the step of receiving beams from a transmit/receive point and activating an inactive secondary cell group without performing an initial access procedure in response to generation of uplink data or an indication from the network. and detecting failures in the beam before a transmission timing adjustment timer expires, and executing the initial access procedure when the number of failures reaches a specified number of times. be.
 本開示の一態様は、セカンダリーセルグループの非アクティブ化を指示するメッセージを受信するステップと、上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化するステップと、前記メッセージとともに送信される送信タイミング調整コマンドを受信するステップと、前記送信タイミング調整コマンドに基づいて送信タイミング調整用タイマーを開始するステップと、特定の条件を満たす場合、前記初期アクセス手順を実行し、非アクティブ状態の前記セカンダリーセルグループをアクティブ化するステップとを含む無線通信方法である。 One aspect of the present disclosure includes the step of receiving a message instructing deactivation of a secondary cell group, and, in response to generation of uplink data or an indication from the network, deactivating the inactive secondary cell group in an initial access procedure. receiving a send timing adjustment command sent with said message; starting a send timing adjustment timer based on said send timing adjustment command; performing the initial access procedure and activating the inactive secondary cell group if so.
 本開示の一態様は、非アクティブ状態のセカンダリーセルグループのアクティブ化を要求するメッセージを送信するステップと、上りリンクデータの発生またはネットワークから指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行し、または前記初期アクセス手順を実行することなくアクティブ化するステップと、前記初期アクセス手順を実行するか否かを示す情報を含む前記メッセージを送信するステップとを含む無線通信方法である。 One aspect of the present disclosure is a step of transmitting a message requesting activation of an inactive secondary cell group, and initializing the inactive secondary cell group in response to generation of uplink data or an instruction from the network. A wireless communication method comprising: performing an access procedure or activating without performing said initial access procedure; and transmitting said message containing information indicating whether to perform said initial access procedure. be.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of a radio communication system 10. As shown in FIG. 図2は、eNB100Aの機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the eNB100A. 図3は、UE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of UE200. 図4は、動作例1に係るRACH-less SCG activationに関する各種イベントのタイミング例(ケース1)を示す図である。FIG. 4 is a diagram illustrating a timing example (Case 1) of various events related to RACH-less SCG activation according to Operation Example 1. FIG. 図5は、動作例1に係るRACH-less SCG activationに関する各種イベントのタイミング例(ケース2)を示す図である。FIG. 5 is a diagram showing a timing example (Case 2) of various events related to RACH-less SCG activation according to Operation Example 1. As shown in FIG. 図6は、動作例1に係るRACH-less SCG activationに関する各種イベントのタイミング例(ケース3)を示す図である。FIG. 6 is a diagram showing a timing example (Case 3) of various events related to RACH-less SCG activation according to Operation Example 1. FIG. 図7は、動作例1に係るRACH-less SCG activationに関する各種イベントのタイミング例(ケース4)を示す図である。FIG. 7 is a diagram illustrating a timing example (Case 4) of various events related to RACH-less SCG activation according to Operation Example 1. FIG. 図8は、動作例2に係るSCGdeactivation及びSCGactivationのシーケンス例を示す図である。FIG. 8 is a diagram illustrating a sequence example of SCGdeactivation and SCGactivation according to Operation Example 2. FIG. 図9は、eNB100A, gNB100B及びUE200のハードウェア構成の一例を示す図である。FIG. 9 is a diagram showing an example of the hardware configuration of eNB100A, gNB100B and UE200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same or similar reference numerals are given to the same functions and configurations, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)及び5G New Radio(NR)に従った無線通信システムである。なお、LTEは4Gと呼ばれてもよいし、NRは、5Gと呼ばれてもよい。また、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
(1) Overall Schematic Configuration of Radio Communication System FIG. 1 is an overall schematic configuration diagram of a radio communication system 10 according to the present embodiment. The radio communication system 10 is a radio communication system according to Long Term Evolution (LTE) and 5G New Radio (NR). Note that LTE may be called 4G, and NR may be called 5G. Also, the radio communication system 10 may be a radio communication system conforming to a scheme called Beyond 5G, 5G Evolution, or 6G.
 LTE及びNRは、無線アクセス技術(RAT)と解釈されてもよく、本実施形態では、LTEは、第1無線アクセス技術と呼ばれ、NRは、第2無線アクセス技術と呼ばれてもよい。 LTE and NR may be interpreted as radio access technology (RAT), and in this embodiment, LTE may be referred to as the first radio access technology and NR may be referred to as the second radio access technology.
 無線通信システム10は、Evolved Universal Terrestrial Radio Access Network 20(以下、E-UTRAN20)、及びNext Generation-Radio Access Network 30(以下、NG RAN30)を含む。また、無線通信システム10は、端末200(以下、UE200, User Equipment)を含む。 The wireless communication system 10 includes an Evolved Universal Terrestrial Radio Access Network 20 (hereinafter E-UTRAN 20) and a Next Generation-Radio Access Network 30 (hereinafter NG RAN 30). The wireless communication system 10 also includes a terminal 200 (hereafter UE 200, User Equipment).
 E-UTRAN20は、LTEに従った無線基地局であるeNB100Aを含む。NG RAN30は、5G(NR)に従った無線基地局であるgNB100Bを含む。また、NG RAN30には、5Gのシステムアーキテクチャに含まれ、ユーザプレーンの機能を提供するUser Plane Function(不図示)が接続されてもよい。なお、E-UTRAN20及びNG RAN30(eNB100AまたはgNB100Bでもよい)は、単にネットワークと呼ばれてもよい。  E-UTRAN20 includes eNB100A, which is a radio base station conforming to LTE. NG RAN30 includes gNB100B, a radio base station according to 5G (NR). Also, the NG RAN 30 may be connected to a User Plane Function (not shown) that is included in the 5G system architecture and provides user plane functions. Note that E-UTRAN 20 and NG RAN 30 (which may be eNB100A or gNB100B) may simply be referred to as networks.
 eNB100A、gNB100B及びUE200は、複数のコンポーネントキャリア(CC)を用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN NodeとUEとの間においてコンポーネントキャリアを同時送信するデュアルコネクティビティなどに対応することができる。 The eNB100A, gNB100B, and UE200 can support carrier aggregation (CA) using multiple component carriers (CC), and dual connectivity that simultaneously transmits component carriers between multiple NG-RAN Nodes and UEs. .
 eNB100A、gNB100B(無線基地局)は、1つまたは複数の送受信ポイント(TRP:Transmission and Reception Point)を介して無線信号を送受信してよい。eNB100A、gNB100Bは、1つのTRPを用いてシングルユーザMIMOをサポートでき、2つのTRPを協調して所定のチャネル(例えば、PDSCH:Physical Downlink Shared Channel)の分散MIMO送信などをサポートしてもよい。 The eNB100A and gNB100B (radio base stations) may transmit and receive radio signals via one or more transmission and reception points (TRP: Transmission and Reception Points). eNB100A and gNB100B can support single-user MIMO using one TRP, and coordinate two TRPs to support distributed MIMO transmission of a predetermined channel (eg, PDSCH: Physical Downlink Shared Channel).
 TRPは、セル、無線基地局、Node B、アンテナポート、アンテナポートグループ、アンテナパネル、パネル、アンテナ素子、送受信点などと相互に読み替えられてもよい。  TRP may be read interchangeably as cell, radio base station, Node B, antenna port, antenna port group, antenna panel, panel, antenna element, transmission/reception point, etc.
 eNB100A、gNB100B及びUE200は、無線ベアラ、具体的には、Signalling Radio Bearer(SRB)またはDRB Data Radio Bearer(DRB)を介して無線通信を実行する。 eNB100A, gNB100B and UE200 perform radio communication via radio bearers, specifically Signaling Radio Bearer (SRB) or DRB Data Radio Bearer (DRB).
 本実施形態では、eNB100Aがマスターノード(MN)を構成し、gNB100Bがセカンダリーノード(SN)を構成するMulti-Radio Dual Connectivity(MR-DC)、具体的には、E-UTRA-NR Dual Connectivity(EN-DC)を実行してもよいし、gNB100BがMNを構成し、eNB100AがSNを構成するNR-E-UTRA Dual Connectivity(NE-DC)を実行してもよい。或いは、gNBがMN及びSNを構成する NR-NR Dual Connectivity(NR-DC)が実行されてもよい。 In this embodiment, eNB100A configures the master node (MN) and gNB100B configures the secondary node (SN) Multi-Radio Dual Connectivity (MR-DC), specifically E-UTRA-NR Dual Connectivity ( EN-DC) or NR-E-UTRA Dual Connectivity (NE-DC) in which the gNB 100B configures the MN and the eNB 100A configures the SN. Alternatively, NR-NR Dual Connectivity (NR-DC) may be implemented in which the gNB configures the MN and SN.
 このように、UE200は、eNB100AとgNB100Bとに接続するデュアルコネクティビティに対応している。 In this way, UE200 supports dual connectivity connecting to eNB100A and gNB100B.
 eNB100Aは、マスターセルグループ(MCG)に含まれ、gNB100Bは、セカンダリーセルグループ(SCG)に含まれる。つまり、gNB100Bは、SCGに含まれるSNである。 eNB100A is included in the master cell group (MCG) and gNB100B is included in the secondary cell group (SCG). In other words, gNB100B is an SN included in the SCG.
 eNB100A及びgNB100Bは、無線基地局或いはネットワーク装置と呼ばれてもよい。 The eNB100A and gNB100B may be called radio base stations or network devices.
 また、無線通信システム10では、Primary SCell(PSCell)の追加または変更(PSCell addition/change)がサポートされてよい。なお、PSCell addition/changeには、PSCellの条件付き追加または変更(conditional PSCell addition/change)が含まれてもよい。 In addition, the wireless communication system 10 may support addition or change (PSCell addition/change) of Primary SCell (PSCell). Note that the PSCell addition/change may include conditional PSCell addition/change.
 PSCellは、セカンダリーセルの一種である。PSCellは、Primary SCell(セカンダリーセル)の意味であり、複数のSCellの中の何れかのSCellが相当すると解釈されてよい。 A PSCell is a type of secondary cell. PSCell means Primary SCell (secondary cell), and may be interpreted as corresponding to any SCell among a plurality of SCells.
 なお、セカンダリーセルは、セカンダリーノード(SN)、セカンダリーセルグループ(SCG)と読み替えられてもよい。 A secondary cell may be read as a secondary node (SN) or a secondary cell group (SCG).
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A及びUE200の機能ブロック構成について説明する。
(2) Functional Block Configuration of Radio Communication System Next, the functional block configuration of the radio communication system 10 will be described. Specifically, functional block configurations of eNB 100A and UE 200 will be described.
 (2.1)eNB100A
 図2は、eNB100Aの機能ブロック構成図である。図2に示すように、eNB100Aは、無線通信部110、RRC処理部120、DC処理部130及び制御部140を備える。なお、gNB100Bも、NRをサポートする点が異なるが、eNB100Aと同様の機能を有してよい。
(2.1) eNB100A
FIG. 2 is a functional block configuration diagram of the eNB100A. As shown in FIG. 2, the eNB 100A includes a radio communication section 110, an RRC processing section 120, a DC processing section 130 and a control section 140. The gNB100B may also have the same functions as the eNB100A, although the gNB100B is different in that it supports NR.
 無線通信部110は、LTEに従った下りリンク信号(DL信号)を送信する。また、無線通信部110は、LTEに従った上りリンク信号(UL信号)を受信する。 The radio communication unit 110 transmits downlink signals (DL signals) according to LTE. Radio communication section 110 also receives an uplink signal (UL signal) according to LTE.
 また、無線通信部110は、複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)におけるPDU/SDUの組み立て/分解などを実行する。 In addition, the radio communication unit 110 performs PDU/SDU assembly/ Perform disassembly, etc.
 RRC処理部120は、無線リソース制御レイヤ(RRC)における各種処理を実行する。具体的には、RRC処理部120は、RRC ReconfigurationをUE200に送信できる。また、RRC処理部120は、RRC Reconfigurationに対する応答であるRRC Reconfiguration CompleteをUE200から受信できる。 The RRC processing unit 120 executes various processes in the radio resource control layer (RRC). Specifically, RRC processing section 120 can transmit RRC Reconfiguration to UE 200 . Also, RRC processing section 120 can receive RRC Reconfiguration Complete, which is a response to RRC Reconfiguration, from UE 200 .
 なお、本実施形態では、eNB100AがLTEをサポートするが、この場合、当該RRCメッセージの名称は、RRC Connection Reconfiguration、RRC Connection Reconfiguration Completeでもよい。 In addition, in this embodiment, the eNB 100A supports LTE, but in this case, the name of the RRC message may be RRC Connection Reconfiguration or RRC Connection Reconfiguration Complete.
 また、RRC Reconfiguration(及びMN~SN間のRRCメッセージ(inter-node RRC messages)には、セルの再設定に関するreconfigurationWithSyncが含まれてよい。reconfigurationWithSyncは、3GPP TS38.331 5.3.5.5.2章などにおいて規定されている。 In addition, RRC Reconfiguration (and RRC messages between MN and SN (inter-node RRC messages) may include reconfigurationWithSync regarding cell reconfiguration. reconfigurationWithSync is described in 3GPP TS38.331 5.3.5.5.2, etc. stipulated.
 reconfigurationWithSyncは、他のRAT(LTEなど)を含む非スタンドアロン(NSA)において、セル(NRセル)をアクティブ化する(つまり、NRセルを追加する)共通のメカニズムと解釈されてもよい。UE200は、reconfigurationWithSyncに基づいてランダムアクセス手順(RA手順)などを実行できる。 ReconfigurationWithSync may be interpreted as a common mechanism for activating cells (NR cells) (that is, adding NR cells) in non-standalone (NSA) including other RATs (such as LTE). UE200 can execute a random access procedure (RA procedure) and the like based on reconfigurationWithSync.
 DC処理部130は、デュアルコネクティビティ、具体的には、Multi-RAT Dual Connectivity(MR-DC)に関する処理を実行する。本実施形態では、eNB100AはLTEをサポートし、gNB100BはNRをサポートするため、DC処理部130は、E-UTRA-NR Dual Connectivity(EN-DC)に関する処理を実行してよい。なお、上述したようにDCの種類は限定されず、例えば、NR-E-UTRA Dual Connectivity(NE-DC)、或いはNR-NR Dual Connectivity(NR-DC)に対応してもよい。 The DC processing unit 130 executes processing related to dual connectivity, specifically Multi-RAT Dual Connectivity (MR-DC). In this embodiment, the eNB 100A supports LTE and the gNB 100B supports NR, so DC processing section 130 may perform processing related to E-UTRA-NR Dual Connectivity (EN-DC). Note that the type of DC is not limited as described above, and may correspond to, for example, NR-E-UTRA Dual Connectivity (NE-DC) or NR-NR Dual Connectivity (NR-DC).
 DC処理部130は、3GPP TS37.340などにおいて規定されるメッセージを送受信し、eNB100A、gNB100B及びUE200間におけるDCの設定及び解放に関する処理を実行できる。 The DC processing unit 130 can transmit and receive messages defined in 3GPP TS37.340, etc., and execute processing related to DC setup and release between the eNB100A, gNB100B, and UE200.
 制御部140は、eNB100Aを構成する各機能ブロックを制御する。特に、本実施形態では、制御部140は、セカンダリーセル(セカンダリーノードでもよい)の追加または変更に関する制御を実行する。 The control unit 140 controls each functional block that configures the eNB 100A. In particular, in this embodiment, the control unit 140 performs control regarding addition or change of secondary cells (or secondary nodes).
 具体的には、制御部140は、セカンダリーセルグループ(SCG)のアクティブ化/非アクティブ化(active/de-active)に関する制御を実行できる。具体的には、制御部140は、UE200からの指示に基づいて、SCGをアクティブ化(活性化と呼ばれてもよい)したり、非アクティブ化(不活性化と呼ばれてもよい)したりしてよい。より具体的には、制御部140は、SCGに含まれる1つまたは複数のSCell(PSCellを含んでもよい、以下同)をアクティブ化したり、非アクティブ化したりしてよい。 Specifically, the control unit 140 can perform control related to activation/de-activation of the secondary cell group (SCG). Specifically, the control unit 140 activates (may be called activation) or deactivates (may be called inactivation) the SCG based on an instruction from the UE 200. You can More specifically, the control unit 140 may activate or deactivate one or more SCells (which may include PSCells; hereinafter the same) included in the SCG.
 アクティブなSCG(SCell)とは、UE200が当該SCG(SCell)を即座に利用できる状態と解釈されてよい。非アクティブなSCG(SCell)とは、UE200が当該SCG(SCell)を即座に利用できないが、設定情報が保持されている状態と解釈されてもよい。 An active SCG (SCell) may be interpreted as a state in which the UE 200 can immediately use the SCG (SCell). An inactive SCG (SCell) may be interpreted as a state in which the UE 200 cannot immediately use the SCG (SCell), but configuration information is retained.
 なお、本実施形態では、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 Note that in the present embodiment, channels include control channels and data channels. Control channels include PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), and PBCH (Physical Broadcast Channel).
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。 In addition, data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
 なお、参照信号には、Demodulation reference signal(DMRS)、Sounding Reference Signal(SRS)、Tracking Reference Signal(TRS)、及びChannel State Information-Reference Signal(CSI-RS)などが含まれ、信号には、チャネル及び参照信号が含まれる。また、データとは、データチャネルを介して送信されるデータを意味してよい。 Reference signals include demodulation reference signal (DMRS), sounding reference signal (SRS), tracking reference signal (TRS), and channel state information-reference signal (CSI-RS). and a reference signal. Data may also refer to data transmitted over a data channel.
 (2.2)UE200
 図3は、UE200の機能ブロック構成図である。図3に示すように、UE200は、無線通信部210、RRC処理部220、DC処理部230及び制御部240を備える。
(2.2) UE200
FIG. 3 is a functional block configuration diagram of UE200. As shown in FIG. 3 , UE 200 includes radio communication section 210 , RRC processing section 220 , DC processing section 230 and control section 240 .
 無線通信部210は、LTEまたはNRに従った上りリンク信号(UL信号)を送信する。また、無線通信部210は、LTEまたはNRに従った下りリンク信号(DL信号)を受信する。UL信号及びDL信号は、1つまたは複数のビームによって構成されてもよい。 The radio communication unit 210 transmits an uplink signal (UL signal) according to LTE or NR. Also, radio communication section 210 receives a downlink signal (DL signal) according to LTE or NR. UL and DL signals may consist of one or more beams.
 具体的には、無線通信部210は、1つまたは複数の送受信ポイント(TRP)からのビームを受信し、また、無線基地局(TRP)に向けてビームを送信できる。本実施形態において、無線通信部210は、送受信ポイントからのビームを受信する受信部を構成してよい。 Specifically, the radio communication unit 210 can receive beams from one or more transmission/reception points (TRPs) and transmit beams toward radio base stations (TRPs). In this embodiment, the wireless communication unit 210 may constitute a receiving unit that receives beams from transmission/reception points.
 つまり、UE200は、eNB100A(E-UTRAN20)及びgNB100B(NG RAN30)にアクセスすることができ、デュアルコネクティビティ(具体的には、EN-DC)に対応できる。このように、UE200は、MCGまたはSCGを介して、具体的には、MCGに含まれるセルまたはSCGに含まれるセル(PSCellを含むSCell)を介して無線信号を送受信できる。 In other words, UE200 can access eNB100A (E-UTRAN20) and gNB100B (NG RAN30), and can support dual connectivity (specifically, EN-DC). In this way, UE 200 can transmit and receive radio signals via MCG or SCG, specifically via cells included in MCG or cells included in SCG (SCell including PSCell).
 また、無線通信部210は、eNB100A(gNB100B)の無線通信部110と同様に、MAC、RLC及びPDCPなどにおけるPDU/SDUの組み立て/分解などを実行する。 Also, the radio communication unit 210 performs assembly/disassembly of PDU/SDU in MAC, RLC, PDCP, etc., like the radio communication unit 110 of the eNB100A (gNB100B).
 RRC処理部220は、無線リソース制御レイヤ(RRC)における各種処理を実行する。具体的には、RRC処理部220は、無線リソース制御レイヤのメッセージを送受信できる。 The RRC processing unit 220 executes various processes in the radio resource control layer (RRC). Specifically, the RRC processing unit 220 can transmit and receive radio resource control layer messages.
 RRC処理部220は、RRC Reconfigurationをネットワーク、具体的には、E-UTRAN20(またはNG RAN30)から受信できる。また、RRC処理部220は、RRC Reconfigurationに対する応答であるRRC Reconfiguration Completeをネットワークに送信できる。 The RRC processing unit 220 can receive RRC Reconfiguration from the network, specifically from the E-UTRAN 20 (or NG RAN 30). Also, the RRC processing unit 220 can transmit RRC Reconfiguration Complete, which is a response to RRC Reconfiguration, to the network.
 RRC処理部220は、RRCレイヤにおける他のメッセージを送信または受信してもよい。特に、本実施形態では、RRC処理部220は、SCGの非アクティブ化(SCG deactivation)を指示するメッセージまたはアクティブ化(SCGactivation)するメッセージをネットワークから受信してよい。本実施形態において、RRC処理部220は、SCGの非アクティブ化を指示するメッセージを受信する受信部を構成してよい。なお、当該メッセージは、RRC Reconfigurationなどに含まれるようにしてもよい。 The RRC processing unit 220 may transmit or receive other messages in the RRC layer. In particular, in this embodiment, the RRC processing unit 220 may receive a message instructing SCG deactivation (SCG deactivation) or a message for activation (SCG activation) from the network. In this embodiment, the RRC processing unit 220 may configure a receiving unit that receives a message instructing deactivation of SCG. Note that this message may be included in RRC Reconfiguration or the like.
 さらに、RRC処理部220は、非アクティブ状態のSCG(deactivated SCG)のアクティブ化を要求するメッセージをネットワークに送信してもよい。本実施形態において、RRC処理部220は、deactivated SCGのアクティブ化を要求するメッセージを送信する送信部を構成してもよい。 Furthermore, the RRC processing unit 220 may transmit a message requesting activation of a deactivated SCG to the network. In this embodiment, the RRC processing unit 220 may configure a transmitting unit that transmits a message requesting activation of deactivated SCG.
 RRC処理部220は、初期アクセス手順を実行するか否かを示す情報を含む当該メッセージを送信してもよい。初期アクセス手順とは、UE200がネットワーク(具体的には、eNB100AまたはgNB100B)にアクセス(接続でもよい)するために実行される手順である。特に、本実施形態では、初期アクセス手順とは、アイドル状態のUE200がSCGに含まれるセルに接続するために実行される手順と解釈されてよく、ランダムアクセス(RA)手順であってもよい。 The RRC processing unit 220 may transmit the message including information indicating whether to execute the initial access procedure. An initial access procedure is a procedure that is performed for UE 200 to access (or connect to) a network (specifically, eNB 100A or gNB 100B). In particular, in the present embodiment, the initial access procedure may be interpreted as a procedure performed for the idle state UE 200 to connect to a cell included in the SCG, and may be a random access (RA) procedure.
 RA手順には、コンテンションフリー型のランダムアクセス手順(CFRA)、及びコンテンション型のランダムアクセス手順(CBRA)が含まれてもよい。 RA procedures may include contention-free random access procedures (CFRA) and contention-based random access procedures (CBRA).
 また、RRC処理部220は、当該メッセージ(SCGdeactivation)とともに送信される送信タイミング調整コマンド(Timing Advance (TA) command)を受信してもよい。TA commandは、UL送信タイミングを調整するために用いられるコマンドであり、基準タイミングからのオフセット値で示されてもよい。ネットワークは、TA commandを用いて複数のUE200のUL送信タイミングを調整することによって、UL信号の受信タイミングを所定のサイクリックプレフィックス(CP)内に収めることができる。 Also, the RRC processing unit 220 may receive a transmission timing adjustment command (Timing Advance (TA) command) transmitted together with the message (SCGdeactivation). TA command is a command used to adjust UL transmission timing, and may be indicated by an offset value from the reference timing. By adjusting the UL transmission timings of multiple UEs 200 using the TA command, the network can keep the UL signal reception timings within a predetermined cyclic prefix (CP).
 DC処理部230は、デュアルコネクティビティ、具体的には、MR-DCに関する処理を実行する。上述したように、本実施形態では、DC処理部230は、EN-DCに関する処理を実行してよいが、NE-DC及び/またはNR-DCに対応してもよい。 The DC processing unit 230 executes processing related to dual connectivity, specifically MR-DC. As described above, in this embodiment, the DC processing unit 230 may perform processing related to EN-DC, but may also support NE-DC and/or NR-DC.
 DC処理部230は、eNB100A及びgNB100Bとのそれぞれにアクセスし、RRCを含む複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)における設定を実行できる。 DC processing unit 230 accesses each of eNB100A and gNB100B, and multiple layers including RRC (medium access control layer (MAC), radio link control layer (RLC), and packet data convergence protocol layer ( PDCP), etc.) can be performed.
 DC処理部230は、SCGの非アクティブ化に関する報告を送信できる。非アクティブ化に関する報告とは、広義に解釈されてよく、SCGのactivationまたはdeactivationに関する設定、activeまたはde-active状態の明示的または暗黙的な表示、当該状態に遷移したことなどが含まれてよい。 The DC processing unit 230 can send a report regarding SCG deactivation. A report on deactivation may be interpreted in a broad sense, and may include settings related to SCG activation or deactivation, explicit or implicit display of active or de-active state, transition to that state, and the like. .
 また、DC処理部230は、SCGの障害情報をネットワークに送信することもできる。具体的には、DC処理部230は、RRC処理部220を介してSCGFailureInformation message(或いは新規のRRCメッセージ)を送信してよい。SCGFailureInformationは、3GPP TS38.331において規定されている。 The DC processing unit 230 can also transmit SCG failure information to the network. Specifically, the DC processing unit 230 may transmit an SCGFailureInformation message (or a new RRC message) via the RRC processing unit 220. SCGFailureInformation is specified in 3GPP TS38.331.
 具体的には、DC処理部230は、非アクティブ状態のSCG(deactivated SCG)の障害が発生した場合、当該SCGのセルの状態を示す情報要素を含む障害情報(SCGFailureInformation)を送信してよい。 Specifically, when a failure occurs in a deactivated SCG (deactivated SCG), the DC processing unit 230 may transmit failure information (SCGFailureInformation) including an information element indicating the cell state of the SCG.
 deactivated SCGのセルとは、非アクティブ化されたSCGに含まれるセルと解釈されてよく、典型的には、PSCellを含むSCellと解釈されてもよい。また、情報要素(IE)とは、SCGFailureInformationを構成する要素であって、文字、数字、記号などを含んでよく、フィールドなどと呼ばれてもよい。 A deactivated SCG cell may be interpreted as a cell included in the deactivated SCG, and typically may be interpreted as an SCell including a PSCell. An information element (IE) is an element that constitutes SCGFailureInformation, and may include letters, numbers, symbols, etc., and may be called fields.
 DC処理部230は、サービングセル及び近隣セル(Neighbor cell)における受信品質を含むSCGFailureInformationを送信してもよい。 The DC processing unit 230 may transmit SCGFailureInformation including reception quality in the serving cell and neighbor cells.
 受信品質には、RSRP(Reference Signal Received Power)、RSRQ(Reference Signal Received Quality)及びSINR(Signal-to-Interference plus Noise power Ratio)などが含まれてよい。RSRPは、UE200において測定される参照信号の受信レベルであり、RSRQは、UE200において測定される参照信号の受信品質(セル固有の参照信号の電力と、受信帯域幅内の総電力との比と解釈されてよい)である。 The reception quality may include RSRP (Reference Signal Received Power), RSRQ (Reference Signal Received Quality) and SINR (Signal-to-Interference plus Noise power Ratio). RSRP is the reception level of the reference signal measured by the UE 200, and RSRQ is the reception quality of the reference signal measured by the UE 200 (the ratio of the power of the cell-specific reference signal to the total power within the reception bandwidth). may be interpreted).
 また、DC処理部230は、ネットワークから送信されるビームについての受信品質の測定結果に基づくビーム障害の検出(BFD)及び復旧(BFR)に関する処理を実行できる。 In addition, the DC processing unit 230 can perform processing related to beam failure detection (BFD) and recovery (BFR) based on reception quality measurement results for beams transmitted from the network.
 なお、サービングセルとは、単にUE200が接続中のセルと解釈されてもよいが、もう少し厳密には、キャリアアグリゲーション(CA)が設定されていないRRC_CONNECTEDのUEの場合、プライマリーセルを構成するサービングセルは1つだけである。CAを用いて構成されたRRC_CONNECTEDのUEの場合、サービングセルは、プライマリーセルと全てのセカンダリーセルとを含む1つまたは複数のセルのセットを示すと解釈されてもよい。 Note that the serving cell may simply be interpreted as the cell to which the UE 200 is connected, but more precisely, in the case of an RRC_CONNECTED UE in which carrier aggregation (CA) is not set, the number of serving cells that constitute the primary cell is 1. Only one. For RRC_CONNECTED UEs configured with CA, the serving cell may be taken to refer to the set of one or more cells including the primary cell and all secondary cells.
 なお、上述したdeactivated SCGに関する情報要素は、その一部のみ、または全てがSCGFailureInformationに含められてよい。 It should be noted that the above-mentioned deactivated SCG information element may be included in the SCGFailureInformation in part or in its entirety.
 制御部240は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部240は、セカンダリーセルグループ(SCG)のアクティブ化/非アクティブ化(active/de-active)に関する制御を実行できる。 The control unit 240 controls each functional block that configures the UE200. In particular, in this embodiment, the control unit 240 can perform control regarding activation/de-activation of secondary cell groups (SCGs).
 具体的には、制御部240は、非アクティブ状態のSCG(deactivated SCG)を、初期アクセス手順(RA手順)を実行することなくアクティブ化(再アクティブ化)できる。このような手順は、RACH-less SCG activation(または、RACH-less SCG re-activation)と呼ばれてもよい。RACH-less SCG activationは、UE200とSCG(SN)との間の同期状態が維持できているとの前提に基づいて実行されてよい。 Specifically, the control unit 240 can activate (reactivate) an inactive SCG (deactivated SCG) without executing an initial access procedure (RA procedure). Such procedures may be referred to as RACH-less SCG activation (or RACH-less SCG re-activation). RACH-less SCG activation may be performed on the assumption that the synchronous state between UE 200 and SCG (SN) can be maintained.
 制御部240は、UE200内部において、上りリンク(UL)データが発生した場合、RACH-less SCG activationを実行してもよい。或いは、制御部240は、ネットワークからの明示的または暗黙的な指示に応じてRACH-less SCG activationを実行してもよい。つまり、制御部240は、ULデータの発生またはネットワークから指示に応じて、deactivated SCGを、RACHを実行することなくアクティブ化してよい。 The control unit 240 may execute RACH-less SCG activation when uplink (UL) data is generated inside the UE 200. Alternatively, the control unit 240 may perform RACH-less SCG activation in response to explicit or implicit instructions from the network. That is, the control unit 240 may activate the deactivated SCG without executing RACH in response to generation of UL data or an instruction from the network.
 また、制御部240は、送信タイミング調整用タイマーが満了する前にビームの障害を検出(BFD)し、当該障害の回数が規定回数となった場合、初期アクセス手順(RA手順)を実行してよい。 In addition, the control unit 240 detects a beam failure (BFD) before the transmission timing adjustment timer expires, and when the number of failures reaches a specified number of times, the initial access procedure (RA procedure) is executed. good.
 送信タイミング調整用タイマーとは、ULの送信タイミング調整に用いられるタイマーであり、具体的には、Time Alignment timer(TA timer)と解釈されてよい。また、送信タイミング調整とは、UL信号の送信タイミングを所定の基準タイミングに基づいて遅らせたり、進めたりすることと解釈されてよく、TA timerは、UL送信に同じ送信タイミングが適用されてよい時間を計測するタイマーと解釈されてよい。また、TA timerは、TA commandで受信したTA値の有効時間を計測するタイマーであり、TA commandを受信した時点で当該タイマーがスタートしてよい。 The transmission timing adjustment timer is a timer used to adjust the UL transmission timing, and specifically, it may be interpreted as a Time Alignment timer (TA timer). Also, the transmission timing adjustment may be interpreted as delaying or advancing the transmission timing of the UL signal based on a predetermined reference timing, and the TA timer is the time during which the same transmission timing may be applied to the UL transmission. may be interpreted as a timer that measures Also, the TA timer is a timer for measuring the valid time of the TA value received by the TA command, and may start when the TA command is received.
 制御部240は、ネットワークから受信した送信タイミング調整コマンド(TA command)に基づいて送信タイミング調整用タイマーを開始し、特定の条件を満たす場合、初期アクセス手順(RA手順)を実行し、deactivated SCGをアクティブ化(再アクティブ化)してもよい。 The control unit 240 starts the transmission timing adjustment timer based on the transmission timing adjustment command (TA command) received from the network, executes the initial access procedure (RA procedure) when a specific condition is satisfied, and activates the deactivated SCG. It may be activated (reactivated).
 例えば、制御部240は、TA timerが満了した場合、或いはBFDを検出した場合、RACHを送信し、deactivated SCGをアクティブ化してよい。 For example, when the TA timer expires or BFD is detected, the control unit 240 may transmit RACH and activate deactivated SCG.
 なお、SCGの非アクティブ状態とは、少なくとも次の何れかの状態であってもよい。 It should be noted that the inactive state of the SCG may be at least one of the following states.
  ・deactivated SCGにおいてPUSCHが送信されていない。   · PUSCH has not been sent in the deactivated SCG.
  ・deactivated SCGのPSCellにおいてPDCCHがモニタされていない。   ・PDCCH is not monitored in PSCell of deactivated SCG.
  ・deactivated SCG内のSCellについて、SCell dormancy(休眠状態)がサポートされていない。 · SCell dormancy (dormant state) is not supported for SCells in deactivated SCG.
  ・UE200が、DLの同期状態を維持している。 · UE200 maintains the DL synchronization state.
  ・UE200が、制限された無線リソース管理に関する測定(Restricted RRM measurement)を実行する。 · The UE 200 performs restricted RRM measurement.
  ・PSCellの移動性(mobility)がサポートされている。   ・PSCell mobility is supported.
  ・UE200が、制限された無線リンク監視(RLM)を実行する、及び/またはビーム管理(ビーム障害検出及び復旧)、SRS(Sounding Reference Signal)送信、CSI reportを行わない。 · The UE 200 performs limited radio link monitoring (RLM) and/or does not perform beam management (beam failure detection and restoration), SRS (Sounding Reference Signal) transmission, CSI reporting.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、セカンダリーセルグループ(SCG)のアクティブ化/非アクティブ化(active/de-active)に関する動作について説明する。より具体的には、非アクティブ状態のSCG(deactivated SCG)のアクティブ化(再アクティブ化)関する動作例について説明する。
(3) Operation of Radio Communication System Next, the operation of the radio communication system 10 will be described. Specifically, operations related to activation/de-activation of a secondary cell group (SCG) will be described. More specifically, an operation example regarding activation (reactivation) of a deactivated SCG (deactivated SCG) will be described.
 (3.1)動作例1
 deactivated SCGでは、UE200が、受信ビームのモニタリング機能(RLM, BFD)を有しており、Time Alignment timer(TA timer, TAT)の満了前にBFDがない(或いはBFD数が最大値(beamFailureInstanceMaxCount)に至っていない)場合、UE200内部において、ULデータの発生(UL data arrival)或いはネットワークからのSCGactivation指示があると、RACH-less SCG activationを実行してもよい。
(3.1) Operation example 1
In deactivated SCG, the UE 200 has a reception beam monitoring function (RLM, BFD), and there is no BFD before the Time Alignment timer (TA timer, TAT) expires (or the number of BFDs reaches the maximum value (beamFailureInstanceMaxCount). If not reached), the RACH-less SCG activation may be performed inside the UE 200 when there is UL data arrival or an SCG activation instruction from the network.
 本動作例では、さらに、UE200が、TA timerの満了前に、非アクティブ状態のPSCellにおいてBFDがあり、BFD数が最大数(beamFailureInstanceMaxCount)を超えた場合の動作について説明する。 In this operation example, furthermore, the operation when the UE 200 has BFD in an inactive PSCell before the TA timer expires and the number of BFDs exceeds the maximum number (beamFailureInstanceMaxCount) will be explained.
 具体的には、UE200は、少なくとも次の何れかに従って動作してよい。 Specifically, the UE 200 may operate according to at least one of the following.
  (i)ネットワークからUE200に予めbeamFailureRecoveryConfigによってcandidateBeamRSListが設定されており、UE200が非アクティブ状態のPSCellにおいてBFDをカウントし、BFI_COUNTERの値≧beamFailureInstanceMaxCountとなった場合、BFRを実行してもよい。
 つまり、UE200は、candidateBeamRSList(候補ビームのリスト)によって指定されるRACHリソースを用いてPSCell上においてRACHを送信してよい。
(i) CandidateBeamRSList is set in advance by beamFailureRecoveryConfig from the network to UE 200, UE 200 counts BFD in PSCells in an inactive state, and BFR may be executed when the value of BFI_COUNTER≧beamFailureInstanceMaxCount.
That is, UE 200 may transmit RACH on PSCell using RACH resources specified by candidateBeamRSList (list of candidate beams).
  (ii)このとき、SCGベアラ(無線ベアラ)を対象したUL data arrivalがない、或いはネットワークからのSCGactivation指示がない場合、UE200がPSCell上においてRACHを送信し、UL/DL同期を確立するが、deactivated SCGの状態(例えば、PDCCHをモニタしない)を保持してもよい。 (ii) At this time, if there is no UL data arrival for the SCG bearer (radio bearer) or there is no SCG activation instruction from the network, the UE 200 transmits RACH on the PSCell and establishes UL/DL synchronization, The state of deactivated SCG (for example, PDCCH is not monitored) may be retained.
 その後、SCGベアラを対象としたUL data arrivalが発生した場合、MCGスプリットベアラを対象としたULデータ量がULDataSplitThresholdを超え、SCGが必要となる場合、或いはネットワークから次のSCGactivation指示があった場合、SCGactivationを実行してもよい。 After that, if UL data arrival for SCG bearer occurs, if UL data amount for MCG split bearer exceeds ULDataSplitThreshold and SCG is required, or if there is the next SCG activation indication from the network, SCG activation may be performed.
  (iii)或いは、SCGベアラを対象としたUL data arrivalが発生していない、或いはネットワークからSCGactivation指示はないが、UE200は、PSCell上においてRACHを送信してもよい。UE200は、SCGをアクティブ化(例えば、PDCCHをモニタ開始する)してから所定期間中(または所定タイマー起動中)にUL data arrivalが発生しなければ、SCGを再び非アクティブ化してもよい。 (iii) Alternatively, UE 200 may transmit RACH on PSCell even though UL data arrival for SCG bearer has not occurred or there is no SCG activation instruction from the network. UE 200 may deactivate SCG again if UL data arrival does not occur within a predetermined period of time (or while a predetermined timer is running) after activating SCG (for example, starting monitoring of PDCCH).
  (iv)或いは、BFI_COUNTERの値≧beamFailureInstanceMaxCountの場合、UE200がPSCell上においてRACHを送信せずに(或いcandidateBeamRSListがない、または良好なビームがないためRACHを送信せずに)、ビーム障害(無線リンク障害(RLF)情報(例えば、ビームの識別情報及び品質))をネットワークに報告してもよい。当該ビーム障害(RLF情報)は、SCGFailureInformationmessageによってネットワークに報告されてもよい。 (iv) Alternatively, if the value of BFI_COUNTER≧beamFailureInstanceMaxCount, UE 200 does not transmit RACH on PSCell (or does not transmit RACH because there is no candidateBeamRSList or no good beam), beam failure (radio Link failure (RLF) information (eg, beam identity and quality) may be reported to the network. The beam failure (RLF information) may be reported to the network by SCGFailureInformationmessage.
 また、UE200は、UL data arrivalが発生したときに、ネットワークにSCGactivation(dedicated RACH resourceが含まれてもよい)を要求してもよい。或いは、UE200は、ネットワークからのSCGactivation指示を待ってもよい。ネットワークからのSCGactivation指示には、candidateBeam(候補ビーム)情報及びdedicated RACH resourceが含まれてよい。 Also, the UE 200 may request SCG activation (which may include a dedicated RACH resource) from the network when UL data arrival occurs. Alternatively, UE 200 may wait for an SCG activation indication from the network. The SCG activation indication from the network may include candidateBeam information and dedicated RACH resource.
 図4、図5、図6及び図7は、上述した動作例1に係るRACH-less SCG activationに関する各種イベントのタイミング例(ケース1~4)をそれぞれ示す。ここでは、RACH-less SCG activationの適用を前提とする。 4, 5, 6, and 7 respectively show timing examples (cases 1 to 4) of various events related to RACH-less SCG activation according to operation example 1 described above. Here, we assume the application of RACH-less SCG activation.
 図4(ケース1)は、deactivated SCGにおいてBFD数が最大値(3)に到達したため、RACH-less SCG activationが適用されているものの、PSCellにRACHを送信するが、PDCCHをモニタしない例を示す。 FIG. 4 (Case 1) shows an example in which RACH-less SCG activation is applied because the number of BFDs has reached the maximum value (3) in deactivated SCG, but RACH is transmitted to PSCell, but PDCCH is not monitored. .
 図5(ケース2)は、deactivated SCGにおいてBFD数が最大値(3)に到達したため、RACH-less SCG activationが適用されているものの、PSCellにRACHを送信し、PDCCHをモニタする例を示す。この場合、UL data arrivalが発生しなければ、SCGを再び非アクティブ化してもよい。 Fig. 5 (Case 2) shows an example of transmitting RACH to PSCell and monitoring PDCCH, although RACH-less SCG activation is applied because the number of BFDs has reached the maximum value (3) in deactivated SCG. In this case, the SCG may be deactivated again if no UL data arrival occurs.
 図6(ケース3)は、BFI_COUNTERの値≧beamFailureInstanceMaxCountとなるが、UE200がBFRを実行しない例を示す。 FIG. 6 (Case 3) shows an example where the value of BFI_COUNTER≧beamFailureInstanceMaxCount, but the UE 200 does not execute BFR.
 図7(ケース4)は、UE200が受信ビームのモニタリング機能(RLM, BFD)を有していない場合の例を示す。 FIG. 7 (Case 4) shows an example in which the UE 200 does not have reception beam monitoring functions (RLM, BFD).
  (v)UE200は、BFRを実行後、RLMを継続してもよい。具体的には、TATが動作中にRLMが継続されてもよいし、TATが満了していてもRLMが継続されてもよいし、TATが満了したらRLMを停止してもよい。或いは、UE200は、BFRを実行後、Tracking Reference Signal(TRS)が設定されている場合、RLMを継続してもよい。 (v) UE 200 may continue RLM after executing BFR. Specifically, RLM may be continued while TAT is in operation, RLM may be continued even if TAT has expired, or RLM may be stopped when TAT has expired. Alternatively, the UE 200 may continue RLM after executing BFR if Tracking Reference Signal (TRS) is set.
  (vi)UE200は、TAT満了前(或いはBFR後)に、BFD/RLFが検出されず、UL data arrivalが発生した場合、或いはネットワークからSCGactivation指示があった場合、RACHを送信せずにSCGactivationしてもよい。 (vi) Before the expiration of TAT (or after BFR), if BFD/RLF is not detected and UL data arrival occurs, or if there is an SCG activation instruction from the network, UE 200 performs SCG activation without sending RACH. may
 また、UE200は、TCI (Transmission Configuration Indication) stateと、SRI(SRS resource indicator)/SRS resource configとが事前に設定されている場合、SCGdeactivationの状態中に、ネットワークからUE200にRRC Reconfigurationを送信しなくてもよい。 Also, UE200 does not send RRC Reconfiguration from the network to UE200 during SCGdeactivation state when TCI (Transmission Configuration Indication) state and SRI (SRS resource indicator)/SRS resource config are set in advance. may
 なお、TCI stateとは、無線リソース制御レイヤ(RRC)または媒体アクセス制御レイヤ(MAC)の制御要素(MAC CE)によって明示的に設定指示すること意味してよい。QCL関係は、TCI stateによって明示的に設定される場合と、TCI stateが設定されない場合とを両方含んでよい。QCL/TCI state/ビームは、相互に読み替えられてもよい。 Note that the TCI state may mean that the setting is explicitly instructed by the control element (MAC CE) of the radio resource control layer (RRC) or medium access control layer (MAC). QCL relationships may include both cases where the TCI state is explicitly set and cases where the TCI state is not set. QCL/TCI state/beam may be read interchangeably.
 SRI/SRS resource configがSCGdeactivationの状態中に設定されていない場合、ネットワークからのSCGactivation指示時にRRC Reconfigurationによって、SRI/SRS resource configが設定されてよい。 If the SRI/SRS resource config is not set during the SCGdeactivation state, the SRI/SRS resource config may be set by RRC Reconfiguration when the network instructs SCG activation.
 (3.2)動作例2
 本動作例では、deactivated SCGにおいて、ネットワークからUE200にTA commandが送信されてよい。
(3.2) Operation example 2
In this operation example, the TA command may be transmitted from the network to the UE 200 in the deactivated SCG.
 また、上述したように、UE200は、RACH-less SCG activationが設定されている場合、TAT満了後については、RACH based SCG activationを実行する必要がある。或いは、UE200は、TAT満了前でもビーム品質が悪い場合、RACH based SCG activationを実行する必要がある。 Also, as described above, when RACH-less SCG activation is set, UE 200 needs to perform RACH-based SCG activation after TAT expires. Alternatively, the UE 200 needs to perform RACH based SCG activation if the beam quality is bad even before the TAT expires.
 本動作例では、UE200が、RACH-less SCG activationまたはRACH based SCG activationの何れを実行するかが、UE200とネットワークとにおいて確実に共有される。 In this operation example, whether the UE 200 executes RACH-less SCG activation or RACH-based SCG activation is surely shared between the UE 200 and the network.
 図8は、動作例2に係るSCGdeactivation及びSCGactivationのシーケンス例を示す。 FIG. 8 shows a sequence example of SCGdeactivation and SCGactivation according to Operation Example 2.
 (3.2.1)ネットワークによるトリガ
 図8に示すように、ネットワークは、SCGdeactivation指示にTA commandを含めてUE200に送信してもよい。
(3.2.1) Trigger by Network As shown in FIG. 8 , the network may include the TA command in the SCGdeactivation instruction and transmit it to the UE 200 .
 或いは、ネットワークは、SCG deactivation指示のUE200への送信タイミングと合わせてTA commandを送信してもよい。TA commandの送信タイミングは、SCG deactivation指示と同時でもよいし、直前或いは直後でもよい。 Alternatively, the network may transmit the TA command in conjunction with the transmission timing of the SCG deactivation instruction to the UE 200. The TA command may be sent at the same time as the SCG deactivation instruction, immediately before, or immediately after.
 MN主導によるMN initiated SCGdeactivationの場合、MNからSNにTA command送信を要求し、SNがUE200にTA commandを送信してもよい。或いはSNがSCG側のTA commandをMNに送信し、MNがUE200にTA commandを送信してもよい。 In the case of MN initiated SCGdeactivation initiated by MN, MN may request SN to send TA command, and SN may send TA command to UE200. Alternatively, the SN may transmit the TA command on the SCG side to the MN, and the MN may transmit the TA command to the UE200.
 SN主導によるSN initiated SCGdeactivationの場合、SCG deactivation直前にSNからUE200にTA commandを送信してもよい。或いは、SNがMNにTA commandを送信し、MNがUE200にTA commandを送信してもよい。 In the case of SN initiated SCGdeactivation by SN, TA command may be sent from SN to UE200 immediately before SCG deactivation. Alternatively, the SN may send the TA command to the MN, and the MN may send the TA command to the UE200.
 (3.2.2)UE200によるトリガ
 図8に示すように、UE200は、SCG activation requestのMNへの送信に合わせて、RACH-less SCG activationまたはRACH based SCG activationのプレファレンスを通知してもよい。当該プレファレンスは、SCG activation requestに含まれてもよい。
(3.2.2) Trigger by UE 200 As shown in FIG. 8, UE 200 notifies preference of RACH-less SCG activation or RACH based SCG activation in accordance with transmission of SCG activation request to MN. good. The preference may be included in the SCG activation request.
 また、UE200は、TATが満了していないがビーム品質が悪い(ビーム品質情報を報告してもよい)ため、RACH based SCG activationを要求する理由(或いはTAT満了のためにRACH-based SCG activationを実行する、TAT起動中のため、RACH-less SCG activationを実行するなどの理由)をネットワークに送信してもよい。 In addition, the UE 200 has not expired the TAT but the beam quality is poor (beam quality information may be reported), so the reason for requesting RACH-based SCG activation (or RACH-based SCG activation for TAT expiration) It may be sent to the network.
 ネットワークは、RACH-less SCG activationまたはRACH based SCG activationのプレファレンスを受信した場合、SCG activation指示(RRC Reconfiguration)にRACH resource及びcandidate beamを含めるようにしてもよい。 When the network receives a preference for RACH-less SCG activation or RACH-based SCG activation, it may include RACH resource and candidate beam in the SCG activation indication (RRC Reconfiguration).
 また、TATが満了しておらず、UE200がRACH-less SCG activationを実行できるが、ネットワークからのSCGactivation指示にdedicated RACH resource及びcandidate beam情報が含まれている場合、UE200は、RACH based activationを優先してもよい。 Also, if the TAT has not expired and UE 200 can perform RACH-less SCG activation, but the SCG activation indication from the network includes dedicated RACH resource and candidate beam information, UE 200 gives priority to RACH based activation. You may
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、deactivated SCGにおけるRACH-less SCG activationに関して、UE200は、TA timerが満了する前にビームの障害を検出(BFD)し、当該障害の回数が規定回数(beamFailureInstanceMaxCount)となった場合、RA手順(つまり、RACH based activation)を実行してよい。
(4) Functions and Effects According to the above-described embodiment, the following functions and effects are obtained. Specifically, for RACH-less SCG activation in deactivated SCG, UE 200 detects a beam failure (BFD) before TA timer expires, and if the number of failures reaches a specified number (beamFailureInstanceMaxCount), RA procedure (ie RACH based activation) may be performed.
 このため、deactivated SCGに対してRACH-less SCG activationが適用される場合でも、RACHが必要と想定される場合には、確実にRACHを伴ったdeactivated SCGの再アクティブ化を実現できる。すなわち、UE200によれば、より適切なdeactivated SCGのアクティブ化を実現し得る。 For this reason, even if RACH-less SCG activation is applied to deactivated SCGs, if RACH is assumed to be necessary, reactivation of deactivated SCGs accompanied by RACH can be reliably achieved. That is, the UE 200 can achieve more appropriate deactivated SCG activation.
 UE200は、特定の条件を満たす場合、RA手順(つまり、RACH based activation)を実行し、deactivated SCGを再アクティブ化してもよい。また、UE200は、RA手順(つまり、RACH based activation)を実行するか否かを示す情報を含むメッセージ(SCG activation request)をネットワークに送信できる。 The UE 200 may perform the RA procedure (that is, RACH based activation) and reactivate the deactivated SCG if certain conditions are met. Also, the UE 200 can transmit a message (SCG activation request) including information indicating whether to execute the RA procedure (that is, RACH based activation) to the network.
 このため、ネットワークは、UE200にTA commandをより確実に提供でき、また、UE200とネットワークとは、UE200が、RACH-less SCG activationまたはRACH based SCG activationの何れを実行するかを確実に共有できる。すなわち、UE200及びネットワークによれば、より適切なdeactivated SCGのアクティブ化を実現し得る。 Therefore, the network can more reliably provide the TA command to the UE200, and the UE200 and the network can reliably share whether the UE200 will perform RACH-less SCG activation or RACH-based SCG activation. That is, the UE 200 and the network can realize more appropriate deactivated SCG activation.
 (5)その他の実施形態
 以上、実施形態について説明したが、当該実施形態の記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the embodiments have been described above, it is obvious to those skilled in the art that the present invention is not limited to the description of the embodiments, and that various modifications and improvements are possible.
 例えば、上述した実施形態では、初期アクセス手順とは、RA手順であることを意図していたが、RA手順に限らず、上述したように、RACH送信(或いは単にRACH)などと相互に読み替えられてもよく、UE200がネットワークにアクセス(アタッチ、接続でもよい)するために実行される手順と解釈されてもよい。 For example, in the above-described embodiment, the initial access procedure is intended to be the RA procedure, but it is not limited to the RA procedure and can be interchanged with RACH transmission (or simply RACH) as described above. may be interpreted as a procedure performed for the UE 200 to access (attach or connect to) the network.
 また、上述した記載において、設定(configure)、アクティブ化(activate)、更新(update)、指示(indicate)、有効化(enable)、指定(specify)、選択(select)、は互いに読み替えられてもよい。同様に、リンクする(link)、関連付ける(associate)、対応する(correspond)、マップする(map)、は互いに読み替えられてもよく、配置する(allocate)、割り当てる(assign)、モニタする(monitor)、マップする(map)、も互いに読み替えられてもよい。 Also, in the above description, configure, activate, update, indicate, enable, specify, and select may be read interchangeably. good. Similarly, link, associate, correspond, and map may be read interchangeably to allocate, assign, monitor. , map, may also be read interchangeably.
 さらに、固有(specific)、個別(dedicated)、UE固有、UE個別、は互いに読み替えられてもよい。同様に、共通(common)、共有(shared)、グループ共通(group-common)、UE共通、UE共有、は互いに読み替えられてもよい。 Furthermore, specific, dedicated, UE-specific, and UE-specific may be read interchangeably. Similarly, common, shared, group-common, UE common, and UE shared may be read interchangeably.
 また、上述した実施形態の説明に用いたブロック構成図(図2,3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Also, the block configuration diagrams (FIGS. 2 and 3) used to describe the above-described embodiment show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device physically or logically coupled, or directly or indirectly using two or more physically or logically separate devices (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judging, determining, determining, calculating, calculating, processing, deriving, investigating, searching, checking, receiving, transmitting, outputting, accessing, resolving, selecting, choosing, establishing, comparing, assuming, expecting, assuming, Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. can't For example, a functional block (component) that performs transmission is called a transmitting unit or transmitter. In either case, as described above, the implementation method is not particularly limited.
 さらに、上述したeNB100A, gNB100B及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Furthermore, the above-described eNB100A, gNB100B and UE200 (applicable device) may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 9 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 9, the device may be configured as a computing device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the term "apparatus" can be read as a circuit, device, unit, or the like. The hardware configuration of the device may be configured to include one or more of each device shown in the figure, or may be configured without some of the devices.
 当該装置の各機能ブロック(図2.3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see Fig. 2.3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function of the device is implemented by causing the processor 1001 to perform calculations, controlling communication by the communication device 1004, and controlling the It is realized by controlling at least one of data reading and writing in 1002 and storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 A processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including interfaces with peripheral devices, a control unit, an arithmetic unit, registers, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. Further, the various processes described above may be executed by one processor 1001, or may be executed by two or more processors 1001 simultaneously or sequentially. Processor 1001 may be implemented by one or more chips. Note that the program may be transmitted from a network via an electric communication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one of Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically Erasable Programmable ROM (EEPROM), Random Access Memory (RAM), etc. may be The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store programs (program code), software modules, etc. capable of executing a method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disc such as a Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disc, a magneto-optical disc (for example, a compact disc, a digital versatile disc, a Blu-ray disk), smart card, flash memory (eg, card, stick, key drive), floppy disk, magnetic strip, and/or the like. Storage 1003 may also be referred to as an auxiliary storage device. The recording medium described above may be, for example, a database, server, or other suitable medium including at least one of memory 1002 and storage 1003 .
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc., for realizing at least one of frequency division duplex (FDD) and time division duplex (TDD). may consist of
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (eg, display, speaker, LED lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Also, each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the device includes hardware such as a microprocessor, digital signal processor (DSP), application specific integrated circuit (ASIC), programmable logic device (PLD), field programmable gate array (FPGA), etc. A part or all of each functional block may be implemented by the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 In addition, notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information may include physical layer signaling (e.g., Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (e.g., RRC signaling, Medium Access Control (MAC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), other signals, or combinations thereof, and RRC signaling may also be referred to as RRC messages, e.g., RRC Connection Setup ) message, RRC Connection Reconfiguration message, or the like.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), SUPER 3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), Future Radio Access (FRA), New Radio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)) , IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, other suitable systems, and/or next-generation systems enhanced therefrom. may be applied to Also, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 A specific operation that is performed by a base station in the present disclosure may be performed by its upper node in some cases. In a network consisting of one or more network nodes with a base station, various operations performed for communication with a terminal may be performed by the base station and other network nodes other than the base station (e.g. MME or S-GW, etc., but not limited to). Although the case where there is one network node other than the base station is exemplified above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information, signals (information, etc.) can be output from a higher layer (or a lower layer) to a lower layer (or a higher layer). It may be input and output via multiple network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 Input/output information may be stored in a specific location (for example, memory) or managed using a management table. Input and output information may be overwritten, updated, or appended. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by one bit (0 or 1), by a true/false value (Boolean: true or false), or by numerical comparison (for example, a predetermined value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. In addition, the notification of predetermined information (for example, notification of “being X”) is not limited to being performed explicitly, but may be performed implicitly (for example, not notifying the predetermined information). good too.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the Software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) to access websites, Wired and/or wireless technologies are included within the definition of transmission medium when sent from a server or other remote source.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms explained in this disclosure and terms necessary for understanding this disclosure may be replaced with terms having the same or similar meanings. For example, the channel and/or symbols may be signaling. A signal may also be a message. A component carrier (CC) may also be called a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indexed.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the parameters described above are not restrictive names in any respect. Further, the formulas, etc., using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (e.g., PUCCH, PDCCH, etc.) and information elements can be identified by any suitable designation, the various designations assigned to these various channels and information elements are in no way restrictive designations. isn't it.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "access point", "transmission point", "reception point", "transmission/reception point", "cell", "sector", "cell group", " Terms such as "carrier", "component carrier" may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, each smaller area corresponding to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head: RRH) can also provide communication services.
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to part or all of the coverage area of at least one of a base station and base station subsystem that provides communication services in this coverage.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", "terminal" may be used interchangeably. .
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 A mobile station is defined by those skilled in the art as a subscriber station, mobile unit, subscriber unit, wireless unit, remote unit, mobile device, wireless device, wireless communication device, remote device, mobile subscriber station, access terminal, mobile terminal, wireless It may also be called a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile body may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile body (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a mobile station (user terminal, hereinafter the same). For example, communication between a base station and a mobile station is replaced with communication between multiple mobile stations (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the mobile station may have the functions that the base station has. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, mobile stations in the present disclosure may be read as base stations. In this case, the base station may have the functions that the mobile station has.
A radio frame may consist of one or more frames in the time domain. Each frame or frames in the time domain may be referred to as a subframe. A subframe may also consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 A numerology may be a communication parameter that applies to the transmission and/or reception of a signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame structure, transmission and reception specific filtering operations performed by the receiver in the frequency domain, specific windowing operations performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbols, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbols, etc.) in the time domain. A slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) that is transmitted in time units larger than a minislot may be referred to as PDSCH (or PUSCH) mapping type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a transmission time interval (TTI), multiple consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, may be a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms may be Note that the unit representing the TTI may be called a slot, minislot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit for channel-encoded data packets (transport blocks), code blocks, codewords, etc., or may be a processing unit for scheduling, link adaptation, etc. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 If one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI with a time length of 1 ms may be called a normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI that is shorter than a regular TTI may also be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and so on.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 In addition, long TTI (for example, normal TTI, subframe, etc.) may be read as TTI having a time length exceeding 1 ms, and short TTI (for example, shortened TTI, etc.) is less than the TTI length of long TTI and 1 ms. A TTI having a TTI length greater than or equal to this value may be read as a replacement.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers in the frequency domain. The number of subcarriers included in an RB may be the same regardless of neurology, and may be 12, for example. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Also, the time domain of an RB may include one or more symbols and may be 1 slot, 1 minislot, 1 subframe, or 1 TTI long. One TTI, one subframe, etc. may each consist of one or more resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (SCG), resource element groups (REG), PRB pairs, RB pairs, etc. may be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 In addition, a resource block may be composed of one or more resource elements (Resource Element: RE). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a Bandwidth Part) represents a subset of contiguous common resource blocks (RBs) for a neumerology in a carrier. good. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be configured in one carrier for a UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The structures such as radio frames, subframes, slots, minislots and symbols described above are only examples. For example, the number of subframes included in a radio frame, the number of slots per subframe or radio frame, the number of minislots included in a slot, the number of symbols and RBs included in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected," "coupled," or any variation thereof mean any direct or indirect connection or coupling between two or more elements, It can include the presence of one or more intermediate elements between two elements being "connected" or "coupled." Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in this disclosure, two elements are defined using at least one of one or more wires, cables and printed electrical connections and, as some non-limiting and non-exhaustive examples, in the radio frequency domain. , electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions, and the like.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may also be called Pilot depending on the applicable standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 "Means" in the configuration of each device described above may be replaced with "unit", "circuit", "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed therein or that the first element must precede the second element in any way.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may encompass a wide variety of actions. "Judgement" and "determination" are, for example, judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiring (eg, lookup in a table, database, or other data structure), ascertaining as "judged" or "determined", and the like. Also, "judgment" and "determination" are used for receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access (accessing) (for example, accessing data in memory) may include deeming that a "judgment" or "decision" has been made. In addition, "judgment" and "decision" are considered to be "judgment" and "decision" by resolving, selecting, choosing, establishing, comparing, etc. can contain. In other words, "judgment" and "decision" may include considering that some action is "judgment" and "decision". Also, "judgment (decision)" may be read as "assuming", "expecting", "considering", or the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure can be practiced with modifications and variations without departing from the spirit and scope of the present disclosure as defined by the claims. Accordingly, the description of the present disclosure is for illustrative purposes and is not meant to be limiting in any way.
 10 無線通信システム
 20 E-UTRAN
 30 NG RAN
 100A eNB
 100B gNB
 110 無線通信部
 120 RRC処理部
 130 DC処理部
 140 制御部
 200 UE
 210 無線通信部
 220 RRC処理部
 230 DC処理部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
10 Radio communication system 20 E-UTRAN
30NG RAN
100A eNB
100B gNB
110 Radio communication unit 120 RRC processing unit 130 DC processing unit 140 Control unit 200 UE
210 wireless communication unit 220 RRC processing unit 230 DC processing unit 240 control unit 1001 processor 1002 memory 1003 storage 1004 communication device 1005 input device 1006 output device 1007 bus

Claims (6)

  1.  送受信ポイントからのビームを受信する受信部と、
     上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化する制御部と
    を備え、
     前記制御部は、送信タイミング調整用タイマーが満了する前に前記ビームの障害を検出し、前記障害の回数が規定回数となった場合、前記初期アクセス手順を実行する端末。
    a receiving unit for receiving a beam from a transmitting/receiving point;
    a control unit that activates the inactive secondary cell group without executing an initial access procedure in response to the generation of uplink data or an instruction from the network;
    The terminal, wherein the control unit detects a failure of the beam before a transmission timing adjustment timer expires, and executes the initial access procedure when the number of failures reaches a specified number.
  2.  セカンダリーセルグループの非アクティブ化を指示するメッセージを受信する受信部と、
     上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化する制御部と
    を備え、
     前記受信部は、前記メッセージとともに送信される送信タイミング調整コマンドを受信し、
     前記制御部は、
     前記送信タイミング調整コマンドに基づいて送信タイミング調整用タイマーを開始し、
     特定の条件を満たす場合、前記初期アクセス手順を実行し、非アクティブ状態の前記セカンダリーセルグループをアクティブ化する端末。
    a receiver for receiving a message indicating deactivation of a secondary cell group;
    a control unit that activates the inactive secondary cell group without executing an initial access procedure in response to the generation of uplink data or an instruction from the network;
    The receiving unit receives a transmission timing adjustment command transmitted together with the message,
    The control unit
    starting a transmission timing adjustment timer based on the transmission timing adjustment command;
    A terminal that performs the initial access procedure and activates the inactive secondary cell group if a specific condition is met.
  3.  非アクティブ状態のセカンダリーセルグループのアクティブ化を要求するメッセージを送信する送信部と、
     上りリンクデータの発生またはネットワークから指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行し、または前記初期アクセス手順を実行することなくアクティブ化する制御部と
    を備え、
     前記送信部は、前記初期アクセス手順を実行するか否かを示す情報を含む前記メッセージを送信する端末。
    a transmitter for transmitting a message requesting activation of an inactive secondary cell group;
    a control unit that executes an initial access procedure or activates an inactive secondary cell group in response to the generation of uplink data or an instruction from the network, or without executing the initial access procedure;
    The terminal, wherein the transmission unit transmits the message including information indicating whether to perform the initial access procedure.
  4.  送受信ポイントからのビームを受信するステップと、
     上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化するステップと、
     送信タイミング調整用タイマーが満了する前に前記ビームの障害を検出し、前記障害の回数が規定回数となった場合、前記初期アクセス手順を実行するステップと
    を含む無線通信方法。
    receiving a beam from a transmit/receive point;
    activating the inactive secondary cell group without performing an initial access procedure upon occurrence of uplink data or an indication from the network;
    and detecting a failure of the beam before a transmission timing adjustment timer expires, and executing the initial access procedure when the number of failures reaches a specified number.
  5.  セカンダリーセルグループの非アクティブ化を指示するメッセージを受信するステップと、
     上りリンクデータの発生またはネットワークからの指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行することなくアクティブ化するステップと、
     前記メッセージとともに送信される送信タイミング調整コマンドを受信するステップと、
     前記送信タイミング調整コマンドに基づいて送信タイミング調整用タイマーを開始するステップと、
     特定の条件を満たす場合、前記初期アクセス手順を実行し、非アクティブ状態の前記セカンダリーセルグループをアクティブ化するステップと
    を含む無線通信方法。
    receiving a message instructing deactivation of the secondary cell group;
    activating the inactive secondary cell group without performing an initial access procedure upon occurrence of uplink data or an indication from the network;
    receiving a transmit timing adjustment command transmitted with said message;
    starting a transmission timing adjustment timer based on the transmission timing adjustment command;
    performing the initial access procedure and activating the inactive secondary cell group if certain conditions are met.
  6.  非アクティブ状態のセカンダリーセルグループのアクティブ化を要求するメッセージを送信するステップと、
     上りリンクデータの発生またはネットワークから指示に応じて、非アクティブ状態のセカンダリーセルグループを、初期アクセス手順を実行し、または前記初期アクセス手順を実行することなくアクティブ化するステップと、
     前記初期アクセス手順を実行するか否かを示す情報を含む前記メッセージを送信するステップと
    を含む無線通信方法。
    sending a message requesting activation of the inactive secondary cell group;
    activating an inactive secondary cell group in response to generation of uplink data or an indication from the network, performing an initial access procedure or without performing said initial access procedure;
    and transmitting the message including information indicating whether to perform the initial access procedure.
PCT/JP2021/029296 2021-08-06 2021-08-06 Terminal and wireless communication method WO2023013028A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029296 WO2023013028A1 (en) 2021-08-06 2021-08-06 Terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029296 WO2023013028A1 (en) 2021-08-06 2021-08-06 Terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2023013028A1 true WO2023013028A1 (en) 2023-02-09

Family

ID=85155402

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029296 WO2023013028A1 (en) 2021-08-06 2021-08-06 Terminal and wireless communication method

Country Status (1)

Country Link
WO (1) WO2023013028A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518360A (en) * 2016-04-11 2019-06-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) System and method for controlling wireless device feedback on secondary cell activation and deactivation via unlicensed spectrum
WO2020066023A1 (en) * 2018-09-28 2020-04-02 株式会社Nttドコモ User terminal and wireless communications method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019518360A (en) * 2016-04-11 2019-06-27 テレフオンアクチーボラゲット エルエム エリクソン(パブル) System and method for controlling wireless device feedback on secondary cell activation and deactivation via unlicensed spectrum
WO2020066023A1 (en) * 2018-09-28 2020-04-02 株式会社Nttドコモ User terminal and wireless communications method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Efficient SCG (de)activation", 3GPP DRAFT; R2-2108388, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210809 - 20210827, 5 August 2021 (2021-08-05), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052032562 *
ZTE CORPORATION, SANECHIPS: "Discussion on UE behaviour when SCG is deactivated", 3GPP DRAFT; R2-2105158, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. e-meeting; 20210519 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006851 *

Similar Documents

Publication Publication Date Title
JP7279044B2 (en) Terminal, wireless communication method and system
JP7370868B2 (en) Terminals, wireless communication methods and systems
JP7163391B2 (en) Terminal, wireless communication method, base station and system
WO2020012618A1 (en) User equipment
WO2020012594A1 (en) User equipment
JP7248681B2 (en) Terminal, wireless communication method, base station and system
JP7201691B2 (en) Terminal, wireless communication method, base station and system
WO2019220649A1 (en) User terminal and wireless communication method
JPWO2019203187A1 (en) User terminal and wireless communication method
WO2020039823A1 (en) User terminal and wireless communication method
JP7358355B2 (en) Terminals, wireless communication methods and systems
WO2022044908A1 (en) Terminal and wireless communication system
WO2022168767A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2022085158A1 (en) Terminal and wireless base station
WO2023013028A1 (en) Terminal and wireless communication method
WO2022220071A1 (en) Terminal and wireless communication method
WO2020065797A1 (en) User terminal and wireless communication method
WO2022239244A1 (en) Wireless base station, terminal, and wireless communication method
WO2022190286A1 (en) Terminal and wireless communication method
WO2022180778A1 (en) Terminal and wireless communication method
WO2022269778A1 (en) Terminal and wireless communication method
JP7438232B2 (en) terminal
WO2023022150A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022234654A1 (en) Terminal and radio communication method
WO2022185502A1 (en) Terminal and communication method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952851

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE