WO2022085158A1 - Terminal and wireless base station - Google Patents

Terminal and wireless base station Download PDF

Info

Publication number
WO2022085158A1
WO2022085158A1 PCT/JP2020/039747 JP2020039747W WO2022085158A1 WO 2022085158 A1 WO2022085158 A1 WO 2022085158A1 JP 2020039747 W JP2020039747 W JP 2020039747W WO 2022085158 A1 WO2022085158 A1 WO 2022085158A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary cell
addition
information
procedure
failure information
Prior art date
Application number
PCT/JP2020/039747
Other languages
French (fr)
Japanese (ja)
Inventor
天楊 閔
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to PCT/JP2020/039747 priority Critical patent/WO2022085158A1/en
Priority to JP2022556333A priority patent/JPWO2022085158A1/ja
Publication of WO2022085158A1 publication Critical patent/WO2022085158A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/32Hierarchical cell structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/18Management of setup rejection or failure

Definitions

  • This disclosure relates to terminals and radio base stations that support the procedure for adding / changing secondary cells (secondary nodes).
  • the 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
  • 5G New Radio
  • NG Next Generation
  • Non-Patent Document 1 For example, in 3GPP Release-17, expansion of Multi-RAT Dual Connectivity (MR-DC) is being considered (Non-Patent Document 1). Specifically, in order to realize more efficient addition or change of Primary SCell (PSCell), the procedure for adding / changing a conditional secondary cell (secondary node) (conditional PSCell addition / change) has been simplified. Support is being considered.
  • PSCell Primary SCell
  • Non-Patent Document 2 SN-Patent Document 2
  • the UE when the UE selects another candidate secondary cell, it cannot be linked with the master node (MN) or the like, and another candidate secondary cell cannot be efficiently selected.
  • MN master node
  • the following disclosure was made in view of such a situation, and provides terminals and radio base stations that can reduce secondary node change failures and realize more efficient conditional PSCell addition / change. The purpose.
  • One aspect of the present disclosure is to identify a control unit (control unit 240) that controls execution of a secondary cell addition / modification procedure, and a secondary cell in which the addition / modification procedure fails when the addition / modification procedure fails.
  • It is a terminal (UE200) including a transmission unit (RRC processing unit 220) for transmitting information and quality information between a serving cell and a neighboring cell.
  • RRC processing unit 220 for transmitting information and quality information between a serving cell and a neighboring cell.
  • RRC processing unit 120 that receives failure information of a secondary cell group related to a procedure for adding / changing a secondary cell by a terminal (UE200), and a secondary that fails when the failure information is received. It is a radio base station (for example, eNB100A) including a control unit (control unit 140) that starts data transfer related to the terminal to another candidate secondary cell other than the cell.
  • a radio base station for example, eNB100A
  • control unit 140 that starts data transfer related to the terminal to another candidate secondary cell other than the cell.
  • control unit 240 that controls execution of a secondary cell addition / modification procedure, a transmission unit that transmits failure information of the secondary cell group related to the addition / modification procedure, and a (RRC processing unit). 220), the control unit is a terminal (UE200) that executes a random access procedure for another selected secondary cell before transmitting the failure information when the addition / modification procedure fails.
  • UE200 terminal
  • RRC processing unit 120 receives failure information of a secondary cell group related to a procedure for adding / changing a secondary cell by a terminal (UE200), and a random operation by the terminal based on the failure information.
  • a radio base station eg, eNB100A
  • control unit 140 control unit 140
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
  • FIG. 2 is a functional block configuration diagram of the eNB 100A.
  • FIG. 3 is a functional block configuration diagram of the UE 200.
  • FIG. 4 is a diagram showing an example of a communication sequence according to a conventional conditional PSCell addition procedure (conditional PSCell addition).
  • FIG. 5 is a diagram showing an example of a communication sequence according to a conventional conditional PSCell change procedure (conditional PSCell change).
  • FIG. 6 is a diagram showing an example of a communication sequence according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 1.
  • FIG. 7 is a diagram showing a communication sequence example (No. 1) according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 2.
  • FIG. 8 is a diagram showing a communication sequence example (No. 2) according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 2.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the eNB 100A, gNB 100B, and UE 200.
  • FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment.
  • the wireless communication system 10 is a wireless communication system according to Long Term Evolution (LTE) and 5G New Radio (NR).
  • LTE Long Term Evolution
  • NR 5G New Radio
  • LTE Long Term Evolution
  • 4G Long Term Evolution
  • 5G New Radio
  • the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
  • LTE and NR may be interpreted as radio access technology (RAT), and in this embodiment, LTE may be referred to as a first radio access technology and NR may be referred to as a second radio access technology.
  • RAT radio access technology
  • the wireless communication system 10 includes Evolved Universal Terrestrial Radio Access Network 20 (hereinafter, E-UTRAN20) and Next Generation-Radio Access Network 30 (hereinafter, NG RAN30). Further, the wireless communication system 10 includes a terminal 200 (hereinafter, UE200, User Equipment).
  • E-UTRAN20 Evolved Universal Terrestrial Radio Access Network 20
  • NG RAN30 Next Generation-Radio Access Network 30
  • UE200 User Equipment
  • E-UTRAN20 includes eNB100A, which is a wireless base station that complies with LTE.
  • NG RAN30 includes gNB100B, which is a radio base station according to 5G (NR).
  • UPF40 UserPlaneFunction40
  • the E-UTRAN20 and NGRAN30 may be eNB100A or gNB100B) may be simply referred to as a network.
  • the eNB100A, gNB100B and UE200 can support carrier aggregation (CA) using multiple component carriers (CC), and dual connectivity in which component carriers are simultaneously transmitted between multiple NG-RAN Nodes and UEs. ..
  • CA carrier aggregation
  • CC component carriers
  • dual connectivity in which component carriers are simultaneously transmitted between multiple NG-RAN Nodes and UEs. ..
  • the eNB100A, gNB100B and UE200 execute wireless communication via a wireless bearer, specifically, a Signaling Radio Bearer (SRB) or a DRB Data Radio Bearer (DRB).
  • SRB Signaling Radio Bearer
  • DRB DRB Data Radio Bearer
  • the eNB 100A constitutes a master node (MN) and the gNB100B constitutes a secondary node (SN).
  • Multi-Radio Dual Connectivity MR-DC
  • E-UTRA-NR Dual Connectivity EN-DC
  • NE-DC NR-E-UTRA Dual Connectivity
  • gNB100B constitutes MN
  • eNB100A constitutes SN
  • NR-DC NR-NR Dual Connectivity
  • UE200 supports dual connectivity to connect to eNB100A and gNB100B.
  • ENB100A is included in the master cell group (MCG), and gNB100B is included in the secondary cell group (SCG). That is, gNB100B is an SN contained in SCG.
  • the eNB 100A and gNB 100B may be referred to as a radio base station or a network device.
  • conditional addition or change (conditional PSCell addition / change) of Primary SCell may be supported.
  • PSCell is a kind of secondary cell.
  • PSCell means Primary SCell, and may be interpreted as corresponding to any SCell among a plurality of SCells.
  • the secondary cell may be read as a secondary node (SN) or a secondary cell group (SCG).
  • SN secondary node
  • SCG secondary cell group
  • Conditional PSCell addition / change can enable efficient and rapid addition or modification of secondary cells.
  • Conditional PSCell addition / change may be interpreted as a procedure for adding / changing a conditional secondary cell with a simplified procedure. Further, conditionalPSCell addition / change may mean at least one of addition (addition) and change (change) of SCell.
  • the wireless communication system 10 may support the conditional PSCell change procedure between SNs. Specifically, MN-led conditional inter-SN PSCell change and / or SN-led SN-initiated conditional inter-SN PSCell change may be supported.
  • FIG. 2 is a functional block configuration diagram of the eNB 100A.
  • the eNB 100A includes a wireless communication unit 110, an RRC processing unit 120, a DC processing unit 130, and a control unit 140.
  • the gNB100B may also have the same function as the eNB100A, except that it supports NR.
  • the wireless communication unit 110 transmits a downlink signal (DL signal) according to LTE. Further, the wireless communication unit 110 receives the uplink signal (UL signal) according to LTE.
  • DL signal downlink signal
  • UL signal uplink signal
  • the RRC processing unit 120 executes various processes in the radio resource control layer (RRC). Specifically, the RRC processing unit 120 can transmit the RRC Reconfiguration to the UE 200. Further, the RRC processing unit 120 can receive the RRC Reconfiguration Complete, which is a response to the RRC Reconfiguration, from the UE 200.
  • RRC radio resource control layer
  • the eNB 100A supports LTE, but in this case, the name of the RRC message may be RRCConnectionReconfiguration or RRCConnectionReconfigurationComplete.
  • the RRC processing unit 120 can receive SCG failure information regarding conditional PSCell addition / change by UE200.
  • the RRC processing unit 120 constitutes a receiving unit that receives failure information of the secondary cell group regarding the procedure for adding / changing the secondary cell by the terminal.
  • the SCG failure information may include any of the following information.
  • the identification information of the target PSCell is not PCI / CGI, but information that can identify the PSCell (gNB ID). May be called) may be used. Further, two or more pieces of information on the identification information of the PSCell for which conditional PSCell addition / change has failed may be included.
  • PCI Physical Cell ID
  • CGI NR Cell Global Identifier
  • the quality information may be, for example, the quality (for example, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ)) included in the measurement report (Measurement Report) specified in 3GPP TS38.331.
  • RSRP Reference Signal Received Power
  • RSRQ Reference Signal Received Quality
  • the RACH information may be, for example, any of the following information specified in 3GPP TS38.331.
  • RA-InformationCommon-r16 -2-step RACH info (msgA-SubcarrierSpacing, msgA-RO-FrequencyStart, msgA-RO-FDM, ssb-Index, CSIRS-index, numberOfPreamblesSentOnSSB, numberOfPreamblesSentOnCSI-RS, contentionDetected or not, dlRSRPAboveThreshold
  • the DC processing unit 130 executes processing related to dual connectivity, specifically, Multi-RAT Dual Connectivity (MR-DC).
  • MR-DC Multi-RAT Dual Connectivity
  • the DC processing unit 130 may execute processing related to E-UTRA-NR Dual Connectivity (EN-DC).
  • EN-DC E-UTRA-NR Dual Connectivity
  • the type of DC is not limited, and for example, NR-E-UTRA Dual Connectivity (NE-DC) or NR-NR Dual Connectivity (NR-DC) may be supported.
  • the DC processing unit 130 can send and receive messages specified in 3GPP TS37.340 and execute processing related to DC setting and release between eNB100A, gNB100B and UE200.
  • the control unit 140 controls each functional block constituting the eNB 100A. In particular, in the present embodiment, control regarding the addition or modification of the secondary node is executed.
  • control unit 140 can determine whether or not to execute conditional PSCell addition / change (CPA / CPC) based on the measurement report (Measurement Report) from the UE 200.
  • control unit 140 may send an SN Addition Request to the target secondary node (T-SN). Further, the control unit 140 may receive the SN Addition Request Ack, which is a response to the SN Addition Request, from the T-SN.
  • T-SN target secondary node
  • control unit 140 receives not only the CPA / CPC but also the SN change required from the S-SN when the source / secondary node (S-SN) determines the SN-initiated conditional inter-SN PSCell change (CPC). You may. Further, the control unit 140 may send an SN Addition Request to the T-SN in response to the SN change required.
  • S-SN source / secondary node
  • CPC SN-initiated conditional inter-SN PSCell change
  • the channel includes a control channel and a data channel.
  • the control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
  • the data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
  • PDSCH Physical Downlink Shared Channel
  • PUSCH Physical Uplink Shared Channel
  • the reference signal includes Demodulation reference signal (DMRS), Sounding Reference Signal (SRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), and the like. Includes channels and reference signals. Further, the data may mean data transmitted via a data channel.
  • DMRS Demodulation reference signal
  • SRS Sounding Reference Signal
  • PTRS Phase Tracking Reference Signal
  • CSI-RS Channel State Information-Reference Signal
  • the control unit 140 transfers data related to the UE 200 to another candidate PSCell (candidate secondary cell) other than the failed PSCell (secondary cell). You may start.
  • control unit 140 may immediately start data forwarding regarding the UE 200 to the SN forming the candidate PS Cell as soon as the SCG failure information is received, or a predetermined time after receiving the SCG failure information.
  • the data transfer may be started within.
  • the data transfer relating to the UE 200 may be uplink (UL) data from the UE 200 or downlink (DL) data to the UE 200.
  • control unit 140 transfers data related to the UE 200 to another candidate PS Cell (candidate secondary cell) in which the random access procedure (RA procedure) by the UE 200 is successful, based on the received SCG failure information (failure information). You may start.
  • control unit 140 implied based on the identification information of the target PSCell that succeeded in the RA procedure (which may be interpreted as RACH transmission) accompanying the conditional PSCell addition / change included in the SCG failure information.
  • Data transfer related to the UE 200 may be started intentionally (or explicitly).
  • FIG. 3 is a functional block configuration diagram of the UE 200.
  • the UE 200 includes a wireless communication unit 210, an RRC processing unit 220, a DC processing unit 230, and a control unit 240.
  • the wireless communication unit 210 transmits an uplink signal (UL signal) according to LTE or NR. Further, the wireless communication unit 210 receives the downlink signal (DL signal) according to LTE. That is, the UE200 can access the eNB100A (E-UTRAN20) and gNB100B (NGRAN30), and can support dual connectivity (specifically, EN-DC).
  • UL signal uplink signal
  • NR NR
  • DL signal downlink signal
  • the UE200 can access the eNB100A (E-UTRAN20) and gNB100B (NGRAN30), and can support dual connectivity (specifically, EN-DC).
  • the RRC processing unit 220 executes various processes in the radio resource control layer (RRC). Specifically, the RRC processing unit 220 can send and receive messages of the radio resource control layer.
  • RRC radio resource control layer
  • the RRC processing unit 220 can receive the RRC Reconfiguration from the network, specifically, E-UTRAN20 (or NGRAN30). Further, the RRC processing unit 220 can transmit the RRC Reconfiguration Complete, which is a response to the RRC Reconfiguration, to the network.
  • the RRC processing unit 220 can transmit the identification information of the target PSCell (secondary cell) in which the conditional PSCell addition / change fails, and the quality information between the serving cell and the neighboring cell.
  • the RRC processing unit 220 constitutes a transmission unit that transmits identification information and quality information.
  • the identification information of the target PSCell may be PCI / CGI or the like, and the quality information between the serving cell and the neighboring cell may be the quality included in the Measurement Report.
  • the identification information and quality information may be included in SCG failure information, specifically, SCG failure information. Also, as mentioned above, the RACH information used may be included. That is, if the UE 200 executes the RA procedure for another selected target PSCell before the UE 200 transmits the SCG failure information, the RRC processing unit 220 may transmit the SCG failure information including the information about the RA procedure.
  • the identification information and quality information may be transmitted when the timer T304 for the secondary cell group (SCG) has expired.
  • Timer T304 is started when an RRC Reconfiguration message containing reconfigurationWithSync is received, or when a conditional reconfiguration (conditional PSCell addition / change) is executed, that is, when a stored RRC Reconfiguration message containing reconfigurationWithSync is applied. It may be stopped when random access is completed normally in the corresponding Special Cell (SpCell).
  • SpCell Special Cell
  • the RRC processing unit 220 sends SCG failure information regarding conditional PSCell addition / change.
  • the RRC processing unit 220 constitutes a transmission unit for transmitting failure information.
  • the RRC processing unit 220 sends SCG failure information to MN (for example, eNB100A).
  • MN for example, eNB100A
  • the RRC processing unit 220 may transmit SCG failure information to the SN.
  • the RRC processing unit 220 determines the identification information of the failed target PSCell and the quality information between the serving cell and the neighboring cell (further, use).
  • the SCG failure information including the RACH information may be included) may be sent.
  • the DC processing unit 230 executes processing related to dual connectivity, specifically, MR-DC. As described above, in the present embodiment, the DC processing unit 230 may execute the processing related to EN-DC, but may correspond to NE-DC and / or NR-DC.
  • the DC processing unit 230 accesses each of the eNB 100A and gNB 100B, and has a plurality of layers including RRC (medium access control layer (MAC), radio link control layer (RLC), and packet data convergence protocol layer (. PDCP) etc.) can be executed.
  • RRC medium access control layer
  • RLC radio link control layer
  • PDCP packet data convergence protocol layer
  • the control unit 240 controls each functional block constituting the UE 200.
  • the control unit 240 controls the execution of conditional PSCell addition / change.
  • control unit 240 can execute the RA procedure for another selected target PSCell (secondary cell) when the conditional PSCell addition / change fails. Further, when another selected target PSCell is included in the candidate PSCell, the control unit 240 may directly apply (apply) RRC Reconfiguration to the candidate PSCell and transmit RACH.
  • control unit 240 may execute the RA procedure for the selected target PSCell (secondary cell) before transmitting the SCG failure information.
  • the control unit 240 selects another targetPSCell first before sending the SCGfailure information, and if the selected targetPSCell is included in the candidatePSCell, the control unit 240 directly selects the candidatePSCell.
  • RRC Reconfiguration may be applied to PSCell and RACH may be transmitted.
  • FIG. 4 shows an example of a communication sequence according to a conventional conditional PSCell addition procedure.
  • the MN determines whether or not CPA is possible (necessity) based on the Measurement Report from UE200 (step 2).
  • UE200 monitors the execution condition, and if there is a targetPSCell that satisfies the execution condition, UE200 requests MN to reset the RRC of the targetPSCell ( RRC Reconfiguration Complete is returned to MN for (apply) (steps 7 and 8).
  • the setting between MN and T-SN1 is executed (steps 9 and 10), and the data transfer to T-SN1 (and UPF40) is started (step 11).
  • the UE200 then sends RACH to T-SN1 and executes the RA procedure with T-SN1 (step 12).
  • UE200 may send SCG failure information to MN.
  • the UE200 may select another targetPSCell (which may be interpreted as a targetPSCell) if the RACH with the targetPSCell fails.
  • the UE200 cannot cooperate with MN or the like when selecting another target PSCell, and cannot efficiently select another target PS Cell.
  • FIG. 5 shows an example of a communication sequence according to a conventional conditional PSCell change procedure (conditional PSCell change).
  • CPC conditional PSCell change
  • UE200 sends RACH to T-SN1 and executes the RA procedure with T-SN1 (step 14).
  • UE200 may select another targetPSCell (which may be interpreted as candidate PSCell) if RACH with targetPSCell fails.
  • the UE200 cannot cooperate with MN or the like when selecting another target PSCell, and cannot efficiently select another target PS Cell.
  • UE200 may select another candidate PSCell after RACH with T-SN1 fails, but the operation of UE200 and data transfer after that.
  • the timing of is not clear. An operation example that can solve such a problem will be described below.
  • FIG. 6 shows an example of a communication sequence according to the conditional PSCell addition procedure according to the operation example 1.
  • the timing of data transfer is improved as compared with the above-mentioned conventional example, and the content of SCG failure information is also added.
  • the UE200 when the timer T304 (T304 of SCG) for SCG has expired, the UE200 has the identification information (PCI / CGI) of the target PSCell for which the conditional PSCell addition has failed, the serving cell, and the corresponding cell. Quality information (eg, RSRP / RSRQ, etc.) of the serving cell with neighboring cells and information on the RACH used may be transmitted to the MN (step 13).
  • PCI / CGI identification information
  • Quality information eg, RSRP / RSRQ, etc.
  • the information may be transmitted to the MN in the form included in the SCG failure information. Also, as mentioned above, the RACH information used is not always essential.
  • the MN When the MN receives the SCG failure information (step 13), it sends an SN Status Transfer to the T-SN2 (step 14), and data is sent to the remaining candidate PSCell excluding the target PSCell for which the conditional PSCell addition failed.
  • the transfer may be started (step 15).
  • UE200 can select another targetPSCell, and if the selected targetPSCell is a candidatePSCell, directly request the candidatePSCell to reset the RRC and execute the RA procedure including sending RACH. Good (step 16).
  • the UE200 when the RACH transmission fails, the UE200 includes the ID of the failed targetPSCell, the quality information between the serving cell and the neighboring cell of the serving cell, and the RACH information used (optional) in the SCG failure information. It may be transmitted to MN (step 17).
  • the UE200 includes the ID of the successful targetPSCell, the quality information between the serving cell and the neighboring cell of the serving cell, and the RACH information used (optional) in the SCG failure information. May be sent to MN.
  • FIG. 7 shows a communication sequence example (No. 1) according to the conditional PSCell addition procedure according to the operation example 2.
  • FIG. 8 shows a communication sequence example (No. 2) according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 2.
  • FIG. 7 shows an operation example in which the first RACH associated with the conditional PSCell addition fails and the second RACH succeeds.
  • FIG. 8 shows an operation example in which both the first and second RACHs associated with the conditional PSCell addition fail.
  • the UE200 when the UE200 has expired the timer T304 (T304 of SCG) for SCG, the UE200 first selects another targetPSCell before transmitting the SCG failure information. If the selected target PSCell is a candidate PSCell, the RRC reset may be directly requested from the candidate PSCell and the RA procedure including the transmission of RACH may be executed (step 12).
  • the UE200 will send the failed targetPSCell ID, quality information between the serving cell and neighboring cells of the serving cell, and RACH information used (optional) to SCG failure information. It may be included and sent to MN.
  • the network stops accessing another targetPSCell (RACH) when the RACH to the targetPSCell (candidatePSCell) fails a predetermined number of times in a row.
  • RACH targetPSCell
  • SCG failure information may be sent to UE200 in advance. Further, instead of (or in combination with) a predetermined number of times, the access may be stopped when the timer expires.
  • the network may send an explicit instruction to the UE200 to stop access to another targetPSCell (candidatePSCell).
  • the UE200 may suspend access to another targetPSCell (candidatePSCell) and send SCG failure information to the MN in response to the instruction.
  • the target PS Cell in which the RACH transmission is successful and the ID of the first target PS Cell in which the RACH transmission is unsuccessful the serving cell at each time point and the vicinity of the serving cell.
  • Quality information with the cell and RACH information used may be included in the SCG failure information and sent to the MN.
  • the UE 200 may include an explicit instruction in the SCG failure information indicating that the data transfer is started for the target PS Cell for which the RACH transmission is successful.
  • the MN may start data transfer regarding the UE 200 when the SCG failure information is received.
  • the MN may implicitly start data transfer regarding the UE 200 to the target PS Cell that has succeeded in RACH transmission included in the SCG failure information, without such an explicit instruction.
  • the following action / effect can be obtained. Specifically, when the conditional PSCell addition / change fails, the UE 200 can transmit the identification information of the target PSCell (secondary cell) in which the conditional PSCell addition / change fails, and the quality information between the serving cell and the neighboring cell.
  • the UE200 can also execute the RA procedure for the selected target PSCell before sending the SCG failure information when the conditional PSCell addition / change fails.
  • the MN that is, the radio base station
  • the SCG failure information when the SCG failure information is received, starts data transfer regarding the UE200 to another candidate PSCell other than the failed target PSCell.
  • data transfer related to the UE 200 can be started to another candidate PS Cell in which the RA procedure (RACH transmission) by the UE 200 is successful.
  • the network including MN can optimize the SCG mobility parameter and / or RACH parameter based on the information reported from UE200 by SCG failure information. In addition, this can reduce the failure of conditional PSCell addition / change.
  • the UE 200 can execute the RA procedure for another selected target PSCell (secondary cell) when the conditional PSCell addition / change fails. Therefore, even if conditionalPSCell addition / change fails, it is possible to quickly realize a change to another targetPSCell.
  • the UE 200 when the UE 200 executes the RA procedure for another selected target PSCell before transmitting the SCG failure information, the UE 200 can transmit the SCG failure information including the information about the RA procedure. Therefore, the network may further optimize the SCG mobility parameter and / or the RACH parameter based on the information about the RA procedure reported by the UE 200 by the SCG failure information.
  • EN-DC in which MN is eNB and SN is gNB has been described as an example, but as described above, it may be another DC.
  • MN may be gNB and SN may be gNB, or MN may be gNB and SN may be NE-DC.
  • conditional PSCell addition / change has been mainly described as an example, but as described above, the conditional PSCell change procedure (MN-initiated conditional inter-SN PSCell change / SN-initiated conditional inter). -The same operation may be applied to SNPSCellchange).
  • each functional block is realized by any combination of at least one of hardware and software.
  • the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't.
  • a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter).
  • the realization method is not particularly limited.
  • FIG. 9 is a diagram showing an example of the hardware configuration of the device.
  • the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
  • the word “device” can be read as a circuit, device, unit, etc.
  • the hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
  • Each functional block of the device (see FIG. 2.3) is realized by any hardware element of the computer device or a combination of the hardware elements.
  • each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
  • predetermined software program
  • Processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
  • CPU central processing unit
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used.
  • the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001.
  • Processor 1001 may be implemented by one or more chips.
  • the program may be transmitted from the network via a telecommunication line.
  • the memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like.
  • Storage 1003 may be referred to as auxiliary storage.
  • the recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
  • FDD frequency division duplex
  • TDD time division duplex
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
  • the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an ApplicationSpecific Integrated Circuit (ASIC), a ProgrammableLogicDevice (PLD), and a FieldProgrammableGateArray (FPGA).
  • the hardware may implement some or all of each functional block.
  • processor 1001 may be implemented using at least one of these hardware.
  • information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof.
  • DCI Downlink Control Information
  • UCI Uplink Control Information
  • RRC signaling eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)
  • RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
  • LTE LongTermEvolution
  • LTE-A LTE-Advanced
  • SUPER3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • FutureRadioAccess FAA
  • NewRadio NR
  • W-CDMA registered trademark
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access 2000
  • UMB UltraMobileBroadband
  • IEEE802.11 Wi-Fi (registered trademark)
  • IEEE802.16 WiMAX®
  • IEEE802.20 Ultra-WideBand
  • Bluetooth® Ultra-WideBand
  • other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one.
  • a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
  • the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node).
  • various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.).
  • S-GW network node
  • the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
  • Information and signals can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
  • the input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
  • the determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
  • the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • a channel and a symbol may be a signal (signaling).
  • the signal may be a message.
  • the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
  • system and “network” used in this disclosure are used interchangeably.
  • the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented.
  • the radio resource may be one indicated by an index.
  • Base Station BS
  • Wireless Base Station Wireless Base Station
  • NodeB NodeB
  • eNodeB eNodeB
  • gNodeB gNodeB
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • a base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
  • RRH Remote Radio Head
  • cell refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
  • MS Mobile Station
  • UE user equipment
  • terminal terminal
  • Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter).
  • communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the mobile station may have the functions of the base station.
  • words such as "up” and “down” may be read as words corresponding to communication between terminals (for example, "side”).
  • the upstream channel, the downstream channel, and the like may be read as a side channel.
  • the mobile station in the present disclosure may be read as a base station.
  • the base station may have the functions of the mobile station.
  • the radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
  • the numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel.
  • Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area.
  • the slot may be a unit of time based on numerology.
  • the slot may include a plurality of mini slots.
  • Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot.
  • a minislot may consist of a smaller number of symbols than the slot.
  • PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
  • Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals.
  • the radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
  • one subframe may be referred to as a transmission time interval (TTI)
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI transmission time interval
  • TTI slot or one minislot
  • at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc.
  • a TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms
  • the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • the resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
  • Physical RB Physical RB: PRB
  • sub-carrier groups Sub-Carrier Group: SCG
  • resource element groups Resource Element Group: REG
  • PRB pairs RB pairs, etc. May be called.
  • the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE).
  • RE resource elements
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP).
  • BWP for UL
  • DL BWP BWP for DL
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples.
  • the number of subframes contained in a radio frame the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB.
  • the number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • connection means any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two “connected” or “joined” elements.
  • the connection or connection between the elements may be physical, logical, or a combination thereof.
  • connection may be read as "access”.
  • the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be “connected” or “coupled” to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
  • the reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
  • RS Reference Signal
  • Pilot pilot
  • each of the above devices may be replaced with a "part”, a “circuit”, a “device”, or the like.
  • references to elements using designations such as “first” and “second” as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
  • determining and “determining” used in this disclosure may include a wide variety of actions.
  • “Judgment” and “decision” are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as “judgment” or “decision”.
  • judgment and “decision” are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as “judgment” or “decision”.
  • judgment and “decision” are considered to be “judgment” and “decision” when the things such as solving, selecting, choosing, establishing, and comparing are regarded as “judgment” and “decision”. Can include. That is, “judgment” and “decision” may include considering some action as “judgment” and “decision”. Further, “judgment (decision)” may be read as “assuming", “expecting”, “considering” and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.
  • Wireless communication system 20 E-UTRAN 30 NG RAN 40 UPF 100A eNB 100B gNB 110 Wireless communication unit 120 RRC processing unit 130 DC processing unit 140 Control unit 200 UE 210 Wireless communication unit 220 RRC processing unit 230 DC processing unit 240 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Abstract

In the present invention, UE controls the execution of an addition/change procedure for a secondary cell. If the addition/change procedure for the secondary cell fails, the UE transmits: identification information of the secondary cell for which the addition/change procedure failed; and the quality information of a serving cell and an adjacent cell.

Description

端末及び無線基地局Terminals and wireless base stations
 本開示は、セカンダリーセル(セカンダリーノード)の追加・変更手順をサポートする端末及び無線基地局に関する。 This disclosure relates to terminals and radio base stations that support the procedure for adding / changing secondary cells (secondary nodes).
 3rd Generation Partnership Project(3GPP)は、5th generation mobile communication system(5G、New Radio(NR)またはNext Generation(NG)とも呼ばれる)を仕様化し、さらに、Beyond 5G、5G Evolution或いは6Gと呼ばれる次世代の仕様化も進めている。 The 3rd Generation Partnership Project (3GPP) specifies the 5th generation mobile communication system (also called 5G, New Radio (NR) or Next Generation (NG)), and next-generation specifications called Beyond 5G, 5G Evolution or 6G. We are also proceeding with the conversion.
 例えば、3GPPのRelease-17では、Multi-RAT Dual Connectivity(MR-DC)の拡張が検討されている(非特許文献1)。具体的には、より効率的なPrimary SCell(PSCell)の追加または変更を実現するため、手順が簡略化された条件付きセカンダリーセル(セカンダリーノード)の追加・変更手順(conditional PSCell addition/change)のサポートが検討されている。 For example, in 3GPP Release-17, expansion of Multi-RAT Dual Connectivity (MR-DC) is being considered (Non-Patent Document 1). Specifically, in order to realize more efficient addition or change of Primary SCell (PSCell), the procedure for adding / changing a conditional secondary cell (secondary node) (conditional PSCell addition / change) has been simplified. Support is being considered.
 また、SON(Self Organizing Network)のためのデータ収集のサポートの観点から、セカンダリーノード(SN)の変更失敗(change failure)を対象とすることが検討されている(非特許文献2)。 Also, from the viewpoint of supporting data collection for SON (Self Organizing Network), it is being considered to target the change failure of the secondary node (SN) (Non-Patent Document 2).
 上述したconditional PSCell addition/changeでは、端末(User Equipment, UE)は、ターゲット・セカンダリーノード(T-SN)とのランダムアクセス手順(RA手順)に失敗した場合、別の候補セカンダリーセル(具体的には、candidate PSCell)を選択する可能性がある。 In the conditional PSCell addition / change described above, if the terminal (User Equipment, UE) fails the random access procedure (RA procedure) with the target secondary node (T-SN), another candidate secondary cell (specifically). May select candidate PSCell).
 しかしながら、現状では、UEが別の候補セカンダリーセルを選択する場合におけるマスターノード(MN)などとの連携ができず、別の候補セカンダリーセルを効率的に選択することができない。 However, at present, when the UE selects another candidate secondary cell, it cannot be linked with the master node (MN) or the like, and another candidate secondary cell cannot be efficiently selected.
 そこで、以下の開示は、このような状況に鑑みてなされたものであり、セカンダリーノードの変更失敗を低減し、より効率的なconditional PSCell addition/changeを実現し得る端末及び無線基地局の提供を目的とする。 Therefore, the following disclosure was made in view of such a situation, and provides terminals and radio base stations that can reduce secondary node change failures and realize more efficient conditional PSCell addition / change. The purpose.
 本開示の一態様は、セカンダリーセルの追加・変更手順の実行を制御する制御部(制御部240)と、前記追加・変更手順が失敗した場合、前記追加・変更手順が失敗したセカンダリーセルの識別情報、及びサービングセルと近隣セルとの品質情報を送信する送信部(RRC処理部220)とを備える端末(UE200)である。 One aspect of the present disclosure is to identify a control unit (control unit 240) that controls execution of a secondary cell addition / modification procedure, and a secondary cell in which the addition / modification procedure fails when the addition / modification procedure fails. It is a terminal (UE200) including a transmission unit (RRC processing unit 220) for transmitting information and quality information between a serving cell and a neighboring cell.
 本開示の一態様は、端末(UE200)によるセカンダリーセルの追加・変更手順に関するセカンダリーセルグループの失敗情報を受信する受信部(RRC処理部120)と、前記失敗情報を受信した場合、失敗したセカンダリーセル以外の別の候補セカンダリーセルに対して、前記端末に関するデータ転送を開始する制御部(制御部140)とを備える無線基地局(例えば、eNB100A)である。 One aspect of the present disclosure is a receiving unit (RRC processing unit 120) that receives failure information of a secondary cell group related to a procedure for adding / changing a secondary cell by a terminal (UE200), and a secondary that fails when the failure information is received. It is a radio base station (for example, eNB100A) including a control unit (control unit 140) that starts data transfer related to the terminal to another candidate secondary cell other than the cell.
 本開示の一態様は、セカンダリーセルの追加・変更手順の実行を制御する制御部(制御部240)と、前記追加・変更手順に関するセカンダリーセルグループの失敗情報を送信する送信部と(RRC処理部220)を備え、前記制御部は、前記追加・変更手順が失敗した場合、前記失敗情報の送信前に、選択した別のセカンダリーセルに対してランダムアクセス手順を実行する端末(UE200)である。 One aspect of the present disclosure is a control unit (control unit 240) that controls execution of a secondary cell addition / modification procedure, a transmission unit that transmits failure information of the secondary cell group related to the addition / modification procedure, and a (RRC processing unit). 220), the control unit is a terminal (UE200) that executes a random access procedure for another selected secondary cell before transmitting the failure information when the addition / modification procedure fails.
 本開示の一態様は、端末(UE200)によるセカンダリーセルの追加・変更手順に関するセカンダリーセルグループの失敗情報を受信する受信部(RRC処理部120)と、前記失敗情報に基づいて、前記端末によるランダムアクセス手順が成功した別の候補セカンダリーセルに対して、前記端末に関するデータ転送を開始する制御部(制御部140)とを備える無線基地局(例えば、eNB100A)である。 One aspect of the present disclosure is a receiving unit (RRC processing unit 120) that receives failure information of a secondary cell group related to a procedure for adding / changing a secondary cell by a terminal (UE200), and a random operation by the terminal based on the failure information. A radio base station (eg, eNB100A) including a control unit (control unit 140) that initiates data transfer relating to the terminal to another candidate secondary cell for which the access procedure has been successful.
図1は、無線通信システム10の全体概略構成図である。FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10.
図2は、eNB100Aの機能ブロック構成図である。FIG. 2 is a functional block configuration diagram of the eNB 100A.
図3は、UE200の機能ブロック構成図である。FIG. 3 is a functional block configuration diagram of the UE 200.
図4は、従来の条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例を示す図である。FIG. 4 is a diagram showing an example of a communication sequence according to a conventional conditional PSCell addition procedure (conditional PSCell addition).
図5は、従来の条件付きPSCell変更手順(conditional PSCell change)に従った通信シーケンス例を示す図である。FIG. 5 is a diagram showing an example of a communication sequence according to a conventional conditional PSCell change procedure (conditional PSCell change).
図6は、動作例1に係る条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例を示す図である。FIG. 6 is a diagram showing an example of a communication sequence according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 1.
図7は、動作例2に係る条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例(その1)を示す図である。FIG. 7 is a diagram showing a communication sequence example (No. 1) according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 2.
図8は、動作例2に係る条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例(その2)を示す図である。FIG. 8 is a diagram showing a communication sequence example (No. 2) according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 2.
図9は、eNB100A, gNB100B及びUE200のハードウェア構成の一例を示す図である。FIG. 9 is a diagram showing an example of the hardware configuration of the eNB 100A, gNB 100B, and UE 200.
 以下、実施形態を図面に基づいて説明する。なお、同一の機能や構成には、同一または類似の符号を付して、その説明を適宜省略する。 Hereinafter, embodiments will be described based on the drawings. The same functions and configurations are designated by the same or similar reference numerals, and the description thereof will be omitted as appropriate.
 (1)無線通信システムの全体概略構成
 図1は、本実施形態に係る無線通信システム10の全体概略構成図である。無線通信システム10は、Long Term Evolution(LTE)及び5G New Radio(NR)に従った無線通信システムである。なお、LTEは4Gと呼ばれてもよいし、NRは、5Gと呼ばれてもよい。また、無線通信システム10は、Beyond 5G、5G Evolution或いは6Gと呼ばれる方式に従った無線通信システムでもよい。
(1) Overall Schematic Configuration of Wireless Communication System FIG. 1 is an overall schematic configuration diagram of the wireless communication system 10 according to the present embodiment. The wireless communication system 10 is a wireless communication system according to Long Term Evolution (LTE) and 5G New Radio (NR). In addition, LTE may be called 4G, and NR may be called 5G. Further, the wireless communication system 10 may be a wireless communication system according to a method called Beyond 5G, 5G Evolution or 6G.
 LTE及びNRは、無線アクセス技術(RAT)と解釈されてもよく、本実施形態では、LTEは、第1無線アクセス技術と呼ばれ、NRは、第2無線アクセス技術と呼ばれてもよい。 LTE and NR may be interpreted as radio access technology (RAT), and in this embodiment, LTE may be referred to as a first radio access technology and NR may be referred to as a second radio access technology.
 無線通信システム10は、Evolved Universal Terrestrial Radio Access Network 20(以下、E-UTRAN20)、及びNext Generation-Radio Access Network 30(以下、NG RAN30)を含む。また、無線通信システム10は、端末200(以下、UE200, User Equipment)を含む。 The wireless communication system 10 includes Evolved Universal Terrestrial Radio Access Network 20 (hereinafter, E-UTRAN20) and Next Generation-Radio Access Network 30 (hereinafter, NG RAN30). Further, the wireless communication system 10 includes a terminal 200 (hereinafter, UE200, User Equipment).
 E-UTRAN20は、LTEに従った無線基地局であるeNB100Aを含む。NG RAN30は、5G(NR)に従った無線基地局であるgNB100Bを含む。また、NG RAN30には、5Gのシステムアーキテクチャに含まれ、ユーザプレーンの機能を提供するUser Plane Function 40(以下、UPF40)が接続される。なお、E-UTRAN20及びNG RAN30(eNB100AまたはgNB100Bでもよい)は、単にネットワークと呼ばれてもよい。 E-UTRAN20 includes eNB100A, which is a wireless base station that complies with LTE. NG RAN30 includes gNB100B, which is a radio base station according to 5G (NR). In addition, UserPlaneFunction40 (hereinafter, UPF40), which is included in the 5G system architecture and provides user plane functions, is connected to NGRAN30. The E-UTRAN20 and NGRAN30 (may be eNB100A or gNB100B) may be simply referred to as a network.
 eNB100A、gNB100B及びUE200は、複数のコンポーネントキャリア(CC)を用いるキャリアアグリゲーション(CA)、及び複数のNG-RAN NodeとUEとの間においてコンポーネントキャリアを同時送信するデュアルコネクティビティなどに対応することができる。 The eNB100A, gNB100B and UE200 can support carrier aggregation (CA) using multiple component carriers (CC), and dual connectivity in which component carriers are simultaneously transmitted between multiple NG-RAN Nodes and UEs. ..
 eNB100A、gNB100B及びUE200は、無線ベアラ、具体的には、Signalling Radio Bearer(SRB)またはDRB Data Radio Bearer(DRB)を介して無線通信を実行する。 The eNB100A, gNB100B and UE200 execute wireless communication via a wireless bearer, specifically, a Signaling Radio Bearer (SRB) or a DRB Data Radio Bearer (DRB).
 本実施形態では、eNB100Aがマスターノード(MN)を構成し、gNB100Bがセカンダリーノード(SN)を構成するMulti-Radio Dual Connectivity(MR-DC)、具体的には、E-UTRA-NR Dual Connectivity(EN-DC)を実行してもよいし、gNB100BがMNを構成し、eNB100AがSNを構成するNR-E-UTRA Dual Connectivity(NE-DC)を実行してもよい。或いは、gNBがMN及びSNを構成する NR-NR Dual Connectivity(NR-DC)が実行されてもよい。 In this embodiment, the eNB 100A constitutes a master node (MN) and the gNB100B constitutes a secondary node (SN). Multi-Radio Dual Connectivity (MR-DC), specifically, E-UTRA-NR Dual Connectivity ( EN-DC) may be executed, or NR-E-UTRA Dual Connectivity (NE-DC) in which gNB100B constitutes MN and eNB100A constitutes SN may be executed. Alternatively, NR-NR Dual Connectivity (NR-DC) in which gNB constitutes MN and SN may be executed.
 このように、UE200は、eNB100AとgNB100Bとに接続するデュアルコネクティビティに対応している。 In this way, UE200 supports dual connectivity to connect to eNB100A and gNB100B.
 eNB100Aは、マスターセルグループ(MCG)に含まれ、gNB100Bは、セカンダリーセルグループ(SCG)に含まれる。つまり、gNB100Bは、SCGに含まれるSNである。 ENB100A is included in the master cell group (MCG), and gNB100B is included in the secondary cell group (SCG). That is, gNB100B is an SN contained in SCG.
 eNB100A及びgNB100Bは、無線基地局或いはネットワーク装置と呼ばれてもよい。 The eNB 100A and gNB 100B may be referred to as a radio base station or a network device.
 また、無線通信システム10では、Primary SCell(PSCell)の条件付き追加または変更(conditional PSCell addition/change)がサポートされてよい。PSCellは、セカンダリーセルの一種である。PSCellは、Primary SCell(セカンダリーセル)の意味であり、複数のSCellの中の何れかのSCellが相当すると解釈されてよい。 Further, in the wireless communication system 10, conditional addition or change (conditional PSCell addition / change) of Primary SCell (PSCell) may be supported. PSCell is a kind of secondary cell. PSCell means Primary SCell, and may be interpreted as corresponding to any SCell among a plurality of SCells.
 なお、セカンダリーセルは、セカンダリーノード(SN)、セカンダリーセルグループ(SCG)と読み替えられてもよい。conditional PSCell addition/changeにより、効率的かつ迅速なセカンダリーセルの追加または変更を実現し得る。 The secondary cell may be read as a secondary node (SN) or a secondary cell group (SCG). Conditional PSCell addition / change can enable efficient and rapid addition or modification of secondary cells.
 conditional PSCell addition/changeは、手順が簡略化された条件付きセカンダリーセルの追加・変更手順と解釈されてよい。また、conditional PSCell addition/changeは、SCellの追加(addition)または変更(change)の少なくも何れか一方を意味してもよい。 Conditional PSCell addition / change may be interpreted as a procedure for adding / changing a conditional secondary cell with a simplified procedure. Further, conditionalPSCell addition / change may mean at least one of addition (addition) and change (change) of SCell.
 また、無線通信システム10では、条件付きSN間PSCell変更手順がサポートされてよい。具体的には、MN主導のMN-initiated conditional inter-SN PSCell change及び/またはSN主導のSN-initiated conditional inter-SN PSCell changeがサポートされてよい。 In addition, the wireless communication system 10 may support the conditional PSCell change procedure between SNs. Specifically, MN-led conditional inter-SN PSCell change and / or SN-led SN-initiated conditional inter-SN PSCell change may be supported.
 (2)無線通信システムの機能ブロック構成
 次に、無線通信システム10の機能ブロック構成について説明する。具体的には、eNB100A及びUE200の機能ブロック構成について説明する。
(2) Functional block configuration of the wireless communication system Next, the functional block configuration of the wireless communication system 10 will be described. Specifically, the functional block configuration of the eNB 100A and UE 200 will be described.
 (2.1)eNB100A
 図2は、eNB100Aの機能ブロック構成図である。図2に示すように、eNB100Aは、無線通信部110、RRC処理部120、DC処理部130及び制御部140を備える。なお、gNB100Bも、NRをサポートする点が異なるが、eNB100Aと同様の機能を有してよい。
(2.1) eNB100A
FIG. 2 is a functional block configuration diagram of the eNB 100A. As shown in FIG. 2, the eNB 100A includes a wireless communication unit 110, an RRC processing unit 120, a DC processing unit 130, and a control unit 140. The gNB100B may also have the same function as the eNB100A, except that it supports NR.
 無線通信部110は、LTEに従った下りリンク信号(DL信号)を送信する。また、無線通信部110は、LTEに従った上りリンク信号(UL信号)を受信する。 The wireless communication unit 110 transmits a downlink signal (DL signal) according to LTE. Further, the wireless communication unit 110 receives the uplink signal (UL signal) according to LTE.
 RRC処理部120は、無線リソース制御レイヤ(RRC)における各種処理を実行する。具体的には、RRC処理部120は、RRC ReconfigurationをUE200に送信できる。また、RRC処理部120は、RRC Reconfigurationに対する応答であるRRC Reconfiguration CompleteをUE200から受信できる。 The RRC processing unit 120 executes various processes in the radio resource control layer (RRC). Specifically, the RRC processing unit 120 can transmit the RRC Reconfiguration to the UE 200. Further, the RRC processing unit 120 can receive the RRC Reconfiguration Complete, which is a response to the RRC Reconfiguration, from the UE 200.
 なお、本実施形態では、eNB100AがLTEをサポートするが、この場合、当該RRCメッセージの名称は、RRC Connection Reconfiguration、RRC Connection Reconfiguration Completeでもよい。 In this embodiment, the eNB 100A supports LTE, but in this case, the name of the RRC message may be RRCConnectionReconfiguration or RRCConnectionReconfigurationComplete.
 また、本実施形態では、RRC処理部120は、UE200によるconditional PSCell addition/changeに関するSCGfailure informationを受信できる。本実施形態において、RRC処理部120は、端末によるセカンダリーセルの追加・変更手順に関するセカンダリーセルグループの失敗情報を受信する受信部を構成する。 Further, in the present embodiment, the RRC processing unit 120 can receive SCG failure information regarding conditional PSCell addition / change by UE200. In the present embodiment, the RRC processing unit 120 constitutes a receiving unit that receives failure information of the secondary cell group regarding the procedure for adding / changing the secondary cell by the terminal.
 具体的には、SCGfailure informationには、次の何れかの情報が含まれてよい。 Specifically, the SCG failure information may include any of the following information.
  ・conditional PSCell addition/changeが失敗したターゲット・セカンダリーノード(T-SN)によって形成されるtarget PSCellの識別情報(例えば、NR Physical Cell ID (PCI), NR Cell Global Identifier (CGI))
  ・UE200のサービングセルと当該サービングセルの近隣セルとの品質情報
  ・使用したRACH(Random Access Channel)の情報
 なお、ターゲットPSCellの識別情報は、PCI/CGIではなく、当該PSCellを識別可能な情報(gNB IDと呼ばれてよい)が用いられてもよい。また、conditional PSCell addition/changeが失敗したPSCellの識別情報の情報は、2つ以上含まれてもよい。
-Identification information of the target PSCell formed by the target secondary node (T-SN) where conditional PSCell addition / change failed (for example, NR Physical Cell ID (PCI), NR Cell Global Identifier (CGI))
-Quality information between the serving cell of UE200 and neighboring cells of the serving cell-RACH (Random Access Channel) information used Note that the identification information of the target PSCell is not PCI / CGI, but information that can identify the PSCell (gNB ID). May be called) may be used. Further, two or more pieces of information on the identification information of the PSCell for which conditional PSCell addition / change has failed may be included.
 品質情報とは、例えば、3GPP TS38.331において規定されている測定報告(Measurement Report)に含まれる品質(例えば、Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ))でよい。 The quality information may be, for example, the quality (for example, Reference Signal Received Power (RSRP), Reference Signal Received Quality (RSRQ)) included in the measurement report (Measurement Report) specified in 3GPP TS38.331.
 RACHの情報とは、例えば、3GPP TS38.331において規定されている以下の何れかの情報であってもよい。 The RACH information may be, for example, any of the following information specified in 3GPP TS38.331.
  ・RA-InformationCommon-r16
  ・2-step RACH info (msgA-SubcarrierSpacing, msgA-RO-FrequencyStart, msgA-RO-FDM, ssb-Index, CSIRS-index, numberOfPreamblesSentOnSSB, numberOfPreamblesSentOnCSI-RS, contentionDetected or not, dlRSRPAboveThreshold
 DC処理部130は、デュアルコネクティビティ、具体的には、Multi-RAT Dual Connectivity(MR-DC)に関する処理を実行する。本実施形態では、eNB100AはLTEをサポートし、gNB100BはNRをサポートするため、DC処理部130は、E-UTRA-NR Dual Connectivity(EN-DC)に関する処理を実行してよい。なお、上述したようにDCの種類は限定されず、例えば、NR-E-UTRA Dual Connectivity(NE-DC)、或いはNR-NR Dual Connectivity(NR-DC)に対応してもよい。
・ RA-InformationCommon-r16
-2-step RACH info (msgA-SubcarrierSpacing, msgA-RO-FrequencyStart, msgA-RO-FDM, ssb-Index, CSIRS-index, numberOfPreamblesSentOnSSB, numberOfPreamblesSentOnCSI-RS, contentionDetected or not, dlRSRPAboveThreshold
The DC processing unit 130 executes processing related to dual connectivity, specifically, Multi-RAT Dual Connectivity (MR-DC). In this embodiment, since the eNB 100A supports LTE and the gNB 100B supports NR, the DC processing unit 130 may execute processing related to E-UTRA-NR Dual Connectivity (EN-DC). As described above, the type of DC is not limited, and for example, NR-E-UTRA Dual Connectivity (NE-DC) or NR-NR Dual Connectivity (NR-DC) may be supported.
 DC処理部130は、3GPP TS37.340などにおいて規定されるメッセージを送受信し、eNB100A、gNB100B及びUE200間におけるDCの設定及び解放に関する処理を実行できる。 The DC processing unit 130 can send and receive messages specified in 3GPP TS37.340 and execute processing related to DC setting and release between eNB100A, gNB100B and UE200.
 制御部140は、eNB100Aを構成する各機能ブロックを制御する。特に、本実施形態では、セカンダリーノードの追加または変更に関する制御を実行する。 The control unit 140 controls each functional block constituting the eNB 100A. In particular, in the present embodiment, control regarding the addition or modification of the secondary node is executed.
 具体的には、制御部140は、UE200からの測定報告(Measurement Report)に基づいて、conditional PSCell addition/change(CPA/CPC)を実行するか否かを決定できる。 Specifically, the control unit 140 can determine whether or not to execute conditional PSCell addition / change (CPA / CPC) based on the measurement report (Measurement Report) from the UE 200.
 制御部140は、CPA/CPCを決定した場合、SN Addition Requestをターゲット・セカンダリーノード(T-SN)に送信してよい。また、制御部140は、SN Addition Requestに対する応答であるSN Addition Request AckをT-SNから受信してもよい。 When the control unit 140 determines the CPA / CPC, the control unit 140 may send an SN Addition Request to the target secondary node (T-SN). Further, the control unit 140 may receive the SN Addition Request Ack, which is a response to the SN Addition Request, from the T-SN.
 また、制御部140は、CPA/CPCだけでなく、ソース・セカンダリーノード(S-SN)がSN-initiated conditional inter-SN PSCell change(CPC)を決定した場合、S-SNからSN change requiredを受信してもよい。また、制御部140は、SN change requiredに応じて、SN Addition RequestをT-SNに送信してよい。 Further, the control unit 140 receives not only the CPA / CPC but also the SN change required from the S-SN when the source / secondary node (S-SN) determines the SN-initiated conditional inter-SN PSCell change (CPC). You may. Further, the control unit 140 may send an SN Addition Request to the T-SN in response to the SN change required.
 なお、本実施形態では、チャネルには、制御チャネルとデータチャネルとが含まれる。制御チャネルには、PDCCH(Physical Downlink Control Channel)、PUCCH(Physical Uplink Control Channel)、PRACH(Physical Random Access Channel)、及びPBCH(Physical Broadcast Channel)などが含まれる。 In the present embodiment, the channel includes a control channel and a data channel. The control channel includes PDCCH (Physical Downlink Control Channel), PUCCH (Physical Uplink Control Channel), PRACH (Physical Random Access Channel), PBCH (Physical Broadcast Channel) and the like.
 また、データチャネルには、PDSCH(Physical Downlink Shared Channel)、及びPUSCH(Physical Uplink Shared Channel)などが含まれる。 The data channels include PDSCH (Physical Downlink Shared Channel) and PUSCH (Physical Uplink Shared Channel).
 なお、参照信号には、Demodulation reference signal(DMRS)、Sounding Reference Signal(SRS)、Phase Tracking Reference Signal (PTRS)、及びChannel State Information-Reference Signal(CSI-RS)などが含まれ、信号には、チャネル及び参照信号が含まれる。また、データとは、データチャネルを介して送信されるデータを意味してよい。 The reference signal includes Demodulation reference signal (DMRS), Sounding Reference Signal (SRS), Phase Tracking Reference Signal (PTRS), Channel State Information-Reference Signal (CSI-RS), and the like. Includes channels and reference signals. Further, the data may mean data transmitted via a data channel.
 また、制御部140は、RRC処理部120がSCGfailure information(失敗情報)を受信した場合、失敗したPSCell(セカンダリーセル)以外の別のcandidate PSCell(候補セカンダリーセル)に対して、UE200に関するデータ転送を開始してもよい。 Further, when the RRC processing unit 120 receives the SCG failure information (failure information), the control unit 140 transfers data related to the UE 200 to another candidate PSCell (candidate secondary cell) other than the failed PSCell (secondary cell). You may start.
 具体的には、制御部140は、SCGfailure information受信次第、candidate PSCellを形成するSNに対して、即座にUE200に関するデータ転送(data forwarding)を開始してもよいし、SCGfailure information受信後、所定時間内に当該データ転送を開始してもよい。UE200に関するデータ転送とは、UE200からの上りリンク(UL)データであってもよいし、UE200への下りリンク(DL)データであってもよい。 Specifically, the control unit 140 may immediately start data forwarding regarding the UE 200 to the SN forming the candidate PS Cell as soon as the SCG failure information is received, or a predetermined time after receiving the SCG failure information. The data transfer may be started within. The data transfer relating to the UE 200 may be uplink (UL) data from the UE 200 or downlink (DL) data to the UE 200.
 また、制御部140は、受信したSCGfailure information(失敗情報)に基づいて、UE200によるランダムアクセス手順(RA手順)が成功した別のcandidate PSCell(候補セカンダリーセル)に対して、当該UE200に関するデータ転送を開始してもよい。 Further, the control unit 140 transfers data related to the UE 200 to another candidate PS Cell (candidate secondary cell) in which the random access procedure (RA procedure) by the UE 200 is successful, based on the received SCG failure information (failure information). You may start.
 具体的には、制御部140は、SCG failure informationに含まれているconditional PSCell addition/changeに伴うRA手順(RACH送信と解釈されてもよい)に成功したtarget PSCellの識別情報に基づいて、黙示的(或いは明示的でもよい)に当該UE200に関するデータ転送を開始してもよい。 Specifically, the control unit 140 implied based on the identification information of the target PSCell that succeeded in the RA procedure (which may be interpreted as RACH transmission) accompanying the conditional PSCell addition / change included in the SCG failure information. Data transfer related to the UE 200 may be started intentionally (or explicitly).
 (2.2)UE200
 図3は、UE200の機能ブロック構成図である。図3に示すように、UE200は、無線通信部210、RRC処理部220、DC処理部230及び制御部240を備える。
(2.2) UE200
FIG. 3 is a functional block configuration diagram of the UE 200. As shown in FIG. 3, the UE 200 includes a wireless communication unit 210, an RRC processing unit 220, a DC processing unit 230, and a control unit 240.
 無線通信部210は、LTEまたはNRに従った上りリンク信号(UL信号)を送信する。また、無線通信部210は、LTEに従った下りリンク信号(DL信号)を受信する。つまり、UE200は、eNB100A(E-UTRAN20)及びgNB100B(NG RAN30)にアクセスすることができ、デュアルコネクティビティ(具体的には、EN-DC)に対応できる。 The wireless communication unit 210 transmits an uplink signal (UL signal) according to LTE or NR. Further, the wireless communication unit 210 receives the downlink signal (DL signal) according to LTE. That is, the UE200 can access the eNB100A (E-UTRAN20) and gNB100B (NGRAN30), and can support dual connectivity (specifically, EN-DC).
 RRC処理部220は、無線リソース制御レイヤ(RRC)における各種処理を実行する。具体的には、RRC処理部220は、無線リソース制御レイヤのメッセージを送受信できる。 The RRC processing unit 220 executes various processes in the radio resource control layer (RRC). Specifically, the RRC processing unit 220 can send and receive messages of the radio resource control layer.
 RRC処理部220は、RRC Reconfigurationをネットワーク、具体的には、E-UTRAN20(またはNG RAN30)から受信できる。また、RRC処理部220は、RRC Reconfigurationに対する応答であるRRC Reconfiguration Completeをネットワークに送信できる。 The RRC processing unit 220 can receive the RRC Reconfiguration from the network, specifically, E-UTRAN20 (or NGRAN30). Further, the RRC processing unit 220 can transmit the RRC Reconfiguration Complete, which is a response to the RRC Reconfiguration, to the network.
 RRC処理部220は、conditional PSCell addition/changeが失敗した場合、当該conditional PSCell addition/changeが失敗したtarget PSCell(セカンダリーセル)の識別情報、及びサービングセルと近隣セルとの品質情報を送信できる。本実施形態において、RRC処理部220は、識別情報及び品質情報を送信する送信部を構成する。 When the conditional PSCell addition / change fails, the RRC processing unit 220 can transmit the identification information of the target PSCell (secondary cell) in which the conditional PSCell addition / change fails, and the quality information between the serving cell and the neighboring cell. In the present embodiment, the RRC processing unit 220 constitutes a transmission unit that transmits identification information and quality information.
 なお、target PSCellの識別情報とは、上述したように、PCI/CGIなどでよく、サービングセルと近隣セルとの品質情報とは、Measurement Reportに含まれる品質でよい。 As described above, the identification information of the target PSCell may be PCI / CGI or the like, and the quality information between the serving cell and the neighboring cell may be the quality included in the Measurement Report.
 当該識別情報及び品質情報は、SCGの失敗情報、具体的には、SCGfailure informationに含まれてよい。また、上述したように、使用したRACHの情報が含まれてもよい。つまり、RRC処理部220は、UE200がSCG failure informationの送信前に、選択した別のtarget PSCellに対してRA手順を実行した場合、RA手順に関する情報を含むSCG failure informationを送信してもよい。 The identification information and quality information may be included in SCG failure information, specifically, SCG failure information. Also, as mentioned above, the RACH information used may be included. That is, if the UE 200 executes the RA procedure for another selected target PSCell before the UE 200 transmits the SCG failure information, the RRC processing unit 220 may transmit the SCG failure information including the information about the RA procedure.
 当該識別情報及び品質情報は、セカンダリーセルグループ(SCG)用のタイマーT304が満了した場合に送信されてもよい。 The identification information and quality information may be transmitted when the timer T304 for the secondary cell group (SCG) has expired.
 タイマーT304は、reconfigurationWithSyncを含むRRC Reconfigurationメッセージを受信したとき、または条件付き再設定(conditional PSCell addition/change)の実行時、つまり、reconfigurationWithSyncを含む格納されたRRC Reconfigurationメッセージを適用したときに開始され、対応するSpecial Cell(SpCell)でランダムアクセスが正常に完了した時に停止されてよい。 Timer T304 is started when an RRC Reconfiguration message containing reconfigurationWithSync is received, or when a conditional reconfiguration (conditional PSCell addition / change) is executed, that is, when a stored RRC Reconfiguration message containing reconfigurationWithSync is applied. It may be stopped when random access is completed normally in the corresponding Special Cell (SpCell).
 また、RRC処理部220は、conditional PSCell addition/changeに関するSCG failure informationを送信する。本実施形態において、RRC処理部220は、失敗情報を送信する送信部を構成する。 In addition, the RRC processing unit 220 sends SCG failure information regarding conditional PSCell addition / change. In the present embodiment, the RRC processing unit 220 constitutes a transmission unit for transmitting failure information.
 具体的には、RRC処理部220は、SCGfailure informationをMN(例えば、eNB100A)に送信する。なお、RRC処理部220は、SCGfailure informationをSNに送信してもよい。 Specifically, the RRC processing unit 220 sends SCG failure information to MN (for example, eNB100A). The RRC processing unit 220 may transmit SCG failure information to the SN.
 また、RRC処理部220は、RA手順(RACH送信)が2回(またはそれ以上でもよい)失敗した場合、当該失敗したtarget PSCellの識別情報、及びサービングセルと近隣セルとの品質情報(さらに、使用したRACHの情報が含まれてもよい)を含むSCG failure informationを送信してもよい。 Further, when the RA procedure (RACH transmission) fails twice (or more), the RRC processing unit 220 determines the identification information of the failed target PSCell and the quality information between the serving cell and the neighboring cell (further, use). The SCG failure information including the RACH information may be included) may be sent.
 DC処理部230は、デュアルコネクティビティ、具体的には、MR-DCに関する処理を実行する。上述したように、本実施形態では、DC処理部230は、EN-DCに関する処理を実行してよいが、NE-DC及び/またはNR-DCに対応してもよい。 The DC processing unit 230 executes processing related to dual connectivity, specifically, MR-DC. As described above, in the present embodiment, the DC processing unit 230 may execute the processing related to EN-DC, but may correspond to NE-DC and / or NR-DC.
 DC処理部230は、eNB100A及びgNB100Bとのそれぞれにアクセスし、RRCを含む複数のレイヤ(媒体アクセス制御レイヤ(MAC)、無線リンク制御レイヤ(RLC)、及びパケット・データ・コンバージェンス・プロトコル・レイヤ(PDCP)など)における設定を実行できる。 The DC processing unit 230 accesses each of the eNB 100A and gNB 100B, and has a plurality of layers including RRC (medium access control layer (MAC), radio link control layer (RLC), and packet data convergence protocol layer (. PDCP) etc.) can be executed.
 制御部240は、UE200を構成する各機能ブロックを制御する。特に、本実施形態では、制御部240は、conditional PSCell addition/changeの実行を制御する。 The control unit 240 controls each functional block constituting the UE 200. In particular, in the present embodiment, the control unit 240 controls the execution of conditional PSCell addition / change.
 具体的には、制御部240は、conditional PSCell addition/changeが失敗した場合、選択した別のtarget PSCell(セカンダリーセル)に対してRA手順を実行できる。また、制御部240は、選択した別のtarget PSCellがcandidate PSCellに含まれる場合、直接当該candidate PSCellに対してRRC Reconfigurationを適用(apply)し、RACHを送信してもよい。 Specifically, the control unit 240 can execute the RA procedure for another selected target PSCell (secondary cell) when the conditional PSCell addition / change fails. Further, when another selected target PSCell is included in the candidate PSCell, the control unit 240 may directly apply (apply) RRC Reconfiguration to the candidate PSCell and transmit RACH.
 また、制御部240は、conditional PSCell addition/changeが失敗した場合、SCG failure informationの送信前に、選択したtarget PSCell(セカンダリーセル)に対してRA手順を実行してもよい。 Further, when the conditional PSCell addition / change fails, the control unit 240 may execute the RA procedure for the selected target PSCell (secondary cell) before transmitting the SCG failure information.
 具体的には、制御部240は、T304 of SCGが満了した場合、SCGfailure informationの送信前に、先に別のtarget PSCellを選択し、選択したtarget PSCellがcandidate PSCellに含まれる場合、直接当該candidate PSCellに対してRRC Reconfigurationを適用(apply)し、RACHを送信してもよい。 Specifically, when the T304 of SCG has expired, the control unit 240 selects another targetPSCell first before sending the SCGfailure information, and if the selected targetPSCell is included in the candidatePSCell, the control unit 240 directly selects the candidatePSCell. RRC Reconfiguration may be applied to PSCell and RACH may be transmitted.
 (3)無線通信システムの動作
 次に、無線通信システム10の動作について説明する。具体的には、条件付きセカンダリーセル(セカンダリーノード)の追加・変更手順(conditional PSCell addition/change)に関する無線通信システム10の動作について説明する。
(3) Operation of wireless communication system Next, the operation of the wireless communication system 10 will be described. Specifically, the operation of the wireless communication system 10 regarding the procedure for adding / changing a conditional secondary cell (secondary node) (conditional PSCell addition / change) will be described.
 (3.1)従来動作例及び課題
 図4は、従来の条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例を示す。
(3.1) Conventional operation example and problem FIG. 4 shows an example of a communication sequence according to a conventional conditional PSCell addition procedure.
 図4に示すように、conditional PSCell addition(CPA)では、MN(eNB100A)は、UE200からのMeasurement Reportに基づいて、CPAの可否(要否)を決定する(ステップ2)。 As shown in FIG. 4, in the conditional PSCell addition (CPA), the MN (eNB100A) determines whether or not CPA is possible (necessity) based on the Measurement Report from UE200 (step 2).
 ここで、MNがeNBであり、SNがgNBの場合、UE200がexecution conditionをモニタし、当該execution conditionを満足するtarget PSCellが存在すると、UE200は、当該target PSCellのRRC再設定をMNに依頼(apply)するため、RRC Reconfiguration CompleteをMNに返送する(ステップ7,8)。 Here, when MN is eNB and SN is gNB, UE200 monitors the execution condition, and if there is a targetPSCell that satisfies the execution condition, UE200 requests MN to reset the RRC of the targetPSCell ( RRC Reconfiguration Complete is returned to MN for (apply) (steps 7 and 8).
 その後、MNとT-SN1との間における設定が実行(ステップ9,10)され、T-SN1(及びUPF40)へのデータ転送が開始される(ステップ11)。その後、UE200は、T-SN1にRACHを送信し、RA手順をT-SN1と実行する(ステップ12)。UE200は、MNに対してSCG failure informationを送信してもよい。 After that, the setting between MN and T-SN1 is executed (steps 9 and 10), and the data transfer to T-SN1 (and UPF40) is started (step 11). The UE200 then sends RACH to T-SN1 and executes the RA procedure with T-SN1 (step 12). UE200 may send SCG failure information to MN.
 ここで、UE200は、target PSCellとのRACHが失敗すると、別のtarget PSCell(target PSCellと解釈されてもよい)を選択する場合がある。しかしながら、UE200は、別のtarget PSCellを選択する場合におけるMNなどとの連携ができず、別のtarget PSCellを効率的に選択することができない。 Here, the UE200 may select another targetPSCell (which may be interpreted as a targetPSCell) if the RACH with the targetPSCell fails. However, the UE200 cannot cooperate with MN or the like when selecting another target PSCell, and cannot efficiently select another target PS Cell.
 このような問題は、conditional PSCell change(CPC)でも同様である。図5は、従来の条件付きPSCell変更手順(conditional PSCell change)に従った通信シーケンス例を示す。 Such a problem is the same for conditional PSCell change (CPC). FIG. 5 shows an example of a communication sequence according to a conventional conditional PSCell change procedure (conditional PSCell change).
 図5に示すように、conditional PSCell change(CPC)では、S-SNがUE200からのMeasurement Reportに基づいて、CPCの可否(要否)を決定する(ステップ2)。 As shown in FIG. 5, in conditional PSCell change (CPC), S-SN determines whether or not CPC is possible (necessity) based on the Measurement Report from UE200 (step 2).
 CPCでも、UE200は、T-SN1にRACHを送信し、RA手順をT-SN1と実行する(ステップ14)。 Even in CPC, UE200 sends RACH to T-SN1 and executes the RA procedure with T-SN1 (step 14).
 CPAと同様に、UE200は、target PSCellとのRACHが失敗すると、別のtarget PSCell(candidate PSCellと解釈されてもよい)を選択する場合がある。しかしながら、UE200は、別のtarget PSCellを選択する場合におけるMNなどとの連携ができず、別のtarget PSCellを効率的に選択することができない。 Similar to CPA, UE200 may select another targetPSCell (which may be interpreted as candidate PSCell) if RACH with targetPSCell fails. However, the UE200 cannot cooperate with MN or the like when selecting another target PSCell, and cannot efficiently select another target PS Cell.
 このように、現状では、conditional PSCell addition/changeの際、UE200は、T-SN1とのRACHが失敗した後、別のcandidate PSCellを選択することがあるが、その後のUE200の動作、及びデータ転送のタイミングなどは明確でない。以下では、このような問題を解消し得る動作例について説明する。 In this way, at present, at the time of conditional PSCell addition / change, UE200 may select another candidate PSCell after RACH with T-SN1 fails, but the operation of UE200 and data transfer after that. The timing of is not clear. An operation example that can solve such a problem will be described below.
 (3.2)動作例1
 図6は、動作例1に係る条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例を示す。本動作例では、上述した従来例と比較して、データ転送のタイミングが改善されるとともに、SCGfailure informationの内容も追加される。
(3.2) Operation example 1
FIG. 6 shows an example of a communication sequence according to the conditional PSCell addition procedure according to the operation example 1. In this operation example, the timing of data transfer is improved as compared with the above-mentioned conventional example, and the content of SCG failure information is also added.
 具体的には、図6に示すように、UE200は、SCG用のタイマーT304(T304 of SCG)が満了した場合、conditional PSCell additionが失敗したtarget PSCellの識別情報(PCI/CGI)、サービングセルと当該サービングセルの近隣セルとの品質情報(例えば、RSRP/RSRQなど)、及び使用したRACHの情報をMNに送信してよい(ステップ13)。 Specifically, as shown in FIG. 6, when the timer T304 (T304 of SCG) for SCG has expired, the UE200 has the identification information (PCI / CGI) of the target PSCell for which the conditional PSCell addition has failed, the serving cell, and the corresponding cell. Quality information (eg, RSRP / RSRQ, etc.) of the serving cell with neighboring cells and information on the RACH used may be transmitted to the MN (step 13).
 なお、当該情報は、SCGfailure informationに含まれる形態でMNに送信されてもよい。また、上述したように、使用したRACHの情報は、必ずしも必須ではない。 The information may be transmitted to the MN in the form included in the SCG failure information. Also, as mentioned above, the RACH information used is not always essential.
 また、MNは、SCGfailure information(ステップ13)を受信した場合、T-SN2にSN Status Transferを送信(ステップ14)し、conditional PSCell additionが失敗したtarget PSCellを除く残りのcandidate PSCellに対して、データ転送を開始してもよい(ステップ15)。 When the MN receives the SCG failure information (step 13), it sends an SN Status Transfer to the T-SN2 (step 14), and data is sent to the remaining candidate PSCell excluding the target PSCell for which the conditional PSCell addition failed. The transfer may be started (step 15).
 UE200は、別のtarget PSCellを選択し、選択した当該target PSCellがcandidate PSCellである場合、直接、当該candidate PSCellに対してRRC再設定を依頼し、RACHの送信を含むRA手順を実行してもよい(ステップ16)。 UE200 can select another targetPSCell, and if the selected targetPSCell is a candidatePSCell, directly request the candidatePSCell to reset the RRC and execute the RA procedure including sending RACH. Good (step 16).
 また、UE200は、当該RACH送信が失敗した場合、失敗したtarget PSCellのID、サービングセルと当該サービングセルの近隣セルとの品質情報、及び使用したRACHの情報(オプションでよい)をSCG failure informationに含めてMNに送信してもよい(ステップ17)。 In addition, when the RACH transmission fails, the UE200 includes the ID of the failed targetPSCell, the quality information between the serving cell and the neighboring cell of the serving cell, and the RACH information used (optional) in the SCG failure information. It may be transmitted to MN (step 17).
 同様に、UE200は、当該RACH送信が成功した場合、成功したtarget PSCellのID、サービングセルと当該サービングセルの近隣セルとの品質情報、及び使用したRACHの情報(オプションでよい)をSCG failure informationに含めてMNに送信してもよい。 Similarly, if the RACH transmission is successful, the UE200 includes the ID of the successful targetPSCell, the quality information between the serving cell and the neighboring cell of the serving cell, and the RACH information used (optional) in the SCG failure information. May be sent to MN.
 (3.3)動作例2
 図7は、動作例2に係る条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例(その1)を示す。
(3.3) Operation example 2
FIG. 7 shows a communication sequence example (No. 1) according to the conditional PSCell addition procedure according to the operation example 2.
 図8は、動作例2に係る条件付きPSCell追加手順(conditional PSCell addition)に従った通信シーケンス例(その2)を示す。 FIG. 8 shows a communication sequence example (No. 2) according to the conditional PSCell addition procedure (conditional PSCell addition) according to the operation example 2.
 本動作例でも、上述した従来例と比較して、データ転送のタイミングが改善されるとともに、SCGfailure informationの内容も追加される。図7では、conditional PSCell additionに伴う1回目のRACHが失敗し、2回目のRACHが成功する動作例が示されている。一方、図8では、conditional PSCell additionに伴う1回目及び2回目のRACHの両方が失敗する動作例が示されている。 In this operation example as well, the timing of data transfer is improved and the contents of SCG failure information are added as compared with the above-mentioned conventional example. FIG. 7 shows an operation example in which the first RACH associated with the conditional PSCell addition fails and the second RACH succeeds. On the other hand, FIG. 8 shows an operation example in which both the first and second RACHs associated with the conditional PSCell addition fail.
 図7または図8に示すように、UE200は、SCG用のタイマーT304(T304 of SCG)が満了した場合、UE200は、SCG failure informationを送信する前に、先に別のtarget PSCellを選択し、選択した当該target PSCellがcandidate PSCellである場合、直接、当該candidate PSCellに対してRRC再設定を依頼し、RACHの送信を含むRA手順を実行してもよい(ステップ12)。 As shown in FIG. 7 or 8, when the UE200 has expired the timer T304 (T304 of SCG) for SCG, the UE200 first selects another targetPSCell before transmitting the SCG failure information. If the selected target PSCell is a candidate PSCell, the RRC reset may be directly requested from the candidate PSCell and the RA procedure including the transmission of RACH may be executed (step 12).
 また、UE200は、RACHが複数回、失敗した場合、当該失敗したtarget PSCellのID、サービングセルと当該サービングセルの近隣セルとの品質情報、及び使用したRACHの情報(オプションでよい)をSCG failure informationに含めてMNに送信してもよい。 If the RACH fails multiple times, the UE200 will send the failed targetPSCell ID, quality information between the serving cell and neighboring cells of the serving cell, and RACH information used (optional) to SCG failure information. It may be included and sent to MN.
 このようなUE200の動作に関連して、ネットワーク(例えば、MN)は、target PSCell(candidate PSCell)へのRACHが所定回数続けて失敗した場合、別のtarget PSCellへのアクセス(RACH)を中止し、SCGfailure informationの送信するように、予めUE200に対して設定してもよい。また、所定回数に代えて(または併用して)、タイマー満了時に当該アクセスを中止するようにしてもよい。 In connection with the operation of the UE200, the network (for example, MN) stops accessing another targetPSCell (RACH) when the RACH to the targetPSCell (candidatePSCell) fails a predetermined number of times in a row. , SCG failure information may be sent to UE200 in advance. Further, instead of (or in combination with) a predetermined number of times, the access may be stopped when the timer expires.
 或いは、ネットワークは、他のtarget PSCell(candidate PSCell)へのアクセスを中止する明示的な指示をUE200に送信してもよい。UE200は、当該指示に応じて、他のtarget PSCell(candidate PSCell)へのアクセスを中止し、SCGfailure informationをMNに送信してもよい。 Alternatively, the network may send an explicit instruction to the UE200 to stop access to another targetPSCell (candidatePSCell). The UE200 may suspend access to another targetPSCell (candidatePSCell) and send SCG failure information to the MN in response to the instruction.
 なお、上述した設定及び指示は、RRCのシグナリング、或いは下位レイヤのシグナリングによって実行されてもよい。 Note that the above-mentioned settings and instructions may be executed by RRC signaling or lower layer signaling.
 UE200は、例えば、2回目のtarget PSCellに対するRACH送信が成功した場合、RACH送信が成功したtarget PSCell、及びRACH送信が失敗した1回目のtarget PSCellのID、それぞれの時点におけるサービングセルと当該サービングセルの近隣セルとの品質情報、及び使用したRACHの情報(オプションでよい)をSCG failure informationに含めてMNに送信してもよい。 In the UE200, for example, when the RACH transmission to the second target PSCell is successful, the target PS Cell in which the RACH transmission is successful and the ID of the first target PS Cell in which the RACH transmission is unsuccessful, the serving cell at each time point and the vicinity of the serving cell. Quality information with the cell and RACH information used (optional) may be included in the SCG failure information and sent to the MN.
 また、UE200は、RACH送信が成功したtarget PSCellに対してデータ転送を開始することを示す明示的な指示をSCGfailure informationに含めてもよい。この場合、MNは、当該SCGfailure informationを受信した場合、UE200に関するデータ転送を開始してもよい。 In addition, the UE 200 may include an explicit instruction in the SCG failure information indicating that the data transfer is started for the target PS Cell for which the RACH transmission is successful. In this case, the MN may start data transfer regarding the UE 200 when the SCG failure information is received.
 或いは、MNは、このような明示的な指示によらず、SCGfailure informationに含まれるRACH送信に成功したtarget PSCellに対して、暗黙的にUE200に関するデータ転送を開始してもよい。 Alternatively, the MN may implicitly start data transfer regarding the UE 200 to the target PS Cell that has succeeded in RACH transmission included in the SCG failure information, without such an explicit instruction.
 (4)作用・効果
 上述した実施形態によれば、以下の作用効果が得られる。具体的には、UE200は、conditional PSCell addition/changeが失敗した場合、当該conditional PSCell addition/changeが失敗したtarget PSCell(セカンダリーセル)の識別情報、及びサービングセルと近隣セルとの品質情報を送信できる。
(4) Action / Effect According to the above-described embodiment, the following action / effect can be obtained. Specifically, when the conditional PSCell addition / change fails, the UE 200 can transmit the identification information of the target PSCell (secondary cell) in which the conditional PSCell addition / change fails, and the quality information between the serving cell and the neighboring cell.
 また、UE200は、conditional PSCell addition/changeが失敗した場合、SCG failure informationの送信前に、選択したtarget PSCellに対してRA手順を実行することもできる。 The UE200 can also execute the RA procedure for the selected target PSCell before sending the SCG failure information when the conditional PSCell addition / change fails.
 さらに、このようなUE200の動作に対応して、MN、つまり、無線基地局は、SCGfailure informationを受信した場合、失敗したtarget PSCell以外の別のcandidate PSCellに対して、UE200に関するデータ転送を開始する、或いは、SCG failure informationに基づいて、UE200によるRA手順(RACH送信)が成功した別のcandidate PSCellに対して、UE200に関するデータ転送を開始することができる。 Furthermore, in response to such an operation of the UE200, the MN, that is, the radio base station, when the SCG failure information is received, starts data transfer regarding the UE200 to another candidate PSCell other than the failed target PSCell. Alternatively, based on the SCG failure information, data transfer related to the UE 200 can be started to another candidate PS Cell in which the RA procedure (RACH transmission) by the UE 200 is successful.
 このため、MNを含むネットワークは、SCGfailure informationによってUE200から報告された情報に基づいて、SCG mobility parameter及び/またはRACH parameterを最適化できる。また、これにより、conditional PSCell addition/changeの失敗の低減を図り得る。 Therefore, the network including MN can optimize the SCG mobility parameter and / or RACH parameter based on the information reported from UE200 by SCG failure information. In addition, this can reduce the failure of conditional PSCell addition / change.
 本実施形態では、UE200は、conditional PSCell addition/changeが失敗した場合、選択した別のtarget PSCell(セカンダリーセル)に対してRA手順を実行できる。このため、conditional PSCell addition/changeが失敗した場合でも、速やかに別のtarget PSCellへの変更を実現し得る。 In this embodiment, the UE 200 can execute the RA procedure for another selected target PSCell (secondary cell) when the conditional PSCell addition / change fails. Therefore, even if conditionalPSCell addition / change fails, it is possible to quickly realize a change to another targetPSCell.
 本実施形態では、UE200は、SCGfailure informationの送信前に、選択した別のtarget PSCellに対してRA手順を実行した場合、当該RA手順に関する情報を含むSCG failure informationを送信できる。このため、ネットワークは、当該SCGfailure informationによってUE200から報告されたRA手順に関する情報に基づいて、SCG mobility parameter及び/またはRACH parameterをさらに最適化し得る。 In the present embodiment, when the UE 200 executes the RA procedure for another selected target PSCell before transmitting the SCG failure information, the UE 200 can transmit the SCG failure information including the information about the RA procedure. Therefore, the network may further optimize the SCG mobility parameter and / or the RACH parameter based on the information about the RA procedure reported by the UE 200 by the SCG failure information.
 (5)その他の実施形態
 以上、実施例に沿って本発明の内容を説明したが、本発明はこれらの記載に限定されるものではなく、種々の変形及び改良が可能であることは、当業者には自明である。
(5) Other Embodiments Although the contents of the present invention have been described above with reference to the examples, the present invention is not limited to these descriptions, and various modifications and improvements are possible. It is obvious to the trader.
 例えば、上述した実施形態では、MNがeNBであり、SNがgNBであるEN-DCを例として説明したが、上述したように、他のDCであってもよい。具体的には、MNがgNBであり、SNがgNBであるNR-DC、或いはMNがgNBであり、SNがeNBであるNE-DCであってもよい。 For example, in the above-described embodiment, EN-DC in which MN is eNB and SN is gNB has been described as an example, but as described above, it may be another DC. Specifically, MN may be gNB and SN may be gNB, or MN may be gNB and SN may be NE-DC.
 また、上述した実施形態では、主にconditional PSCell addition/changeを例に説明したが、上述したように、条件付きSN間PSCell変更手順(MN-initiated conditional inter-SN PSCell change/SN-initiated conditional inter-SN PSCell change)においても、同様の動作が適用されてもよい。 Further, in the above-described embodiment, the conditional PSCell addition / change has been mainly described as an example, but as described above, the conditional PSCell change procedure (MN-initiated conditional inter-SN PSCell change / SN-initiated conditional inter). -The same operation may be applied to SNPSCellchange).
 また、上述した実施形態の説明に用いたブロック構成図(図2,3)は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的または論理的に結合した1つの装置を用いて実現されてもよいし、物理的または論理的に分離した2つ以上の装置を直接的または間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置または上記複数の装置にソフトウェアを組み合わせて実現されてもよい。 Further, the block configuration diagram (FIGS. 2 and 3) used in the explanation of the above-described embodiment shows the block of the functional unit. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized using one physically or logically coupled device, or two or more physically or logically separated devices can be directly or indirectly (eg, for example). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、見做し、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)や送信機(transmitter)と呼称される。何れも、上述したとおり、実現方法は特に限定されない。 Functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and assumption. Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc., but limited to these I can't. For example, a functional block (configuration unit) that makes transmission function is called a transmitting unit (transmitting unit) or a transmitter (transmitter). In each case, as described above, the realization method is not particularly limited.
 さらに、上述したeNB100A, gNB100B及びUE200(当該装置)は、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図9は、当該装置のハードウェア構成の一例を示す図である。図9に示すように、当該装置は、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006及びバス1007などを含むコンピュータ装置として構成されてもよい。 Further, the above-mentioned eNB100A, gNB100B and UE200 (the device) may function as a computer for processing the wireless communication method of the present disclosure. FIG. 9 is a diagram showing an example of the hardware configuration of the device. As shown in FIG. 9, the device may be configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like.
 なお、以下の説明では、「装置」という文言は、回路、デバイス、ユニットなどに読み替えることができる。当該装置のハードウェア構成は、図に示した各装置を1つまたは複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the following explanation, the word "device" can be read as a circuit, device, unit, etc. The hardware configuration of the device may be configured to include one or more of each of the devices shown in the figure, or may be configured not to include some of the devices.
 当該装置の各機能ブロック(図2.3参照)は、当該コンピュータ装置の何れかのハードウェア要素、または当該ハードウェア要素の組み合わせによって実現される。 Each functional block of the device (see FIG. 2.3) is realized by any hardware element of the computer device or a combination of the hardware elements.
 また、当該装置における各機能は、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004による通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 In addition, each function in the device is such that the processor 1001 performs an operation by loading predetermined software (program) on the hardware such as the processor 1001 and the memory 1002, and controls the communication by the communication device 1004, or the memory. It is realized by controlling at least one of reading and writing of data in 1002 and storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインタフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(CPU)によって構成されてもよい。 Processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, a register, and the like.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施の形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。さらに、上述の各種処理は、1つのプロセッサ1001によって実行されてもよいし、2つ以上のプロセッサ1001により同時または逐次に実行されてもよい。プロセッサ1001は、1以上のチップによって実装されてもよい。なお、プログラムは、電気通信回線を介してネットワークから送信されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. Further, the various processes described above may be executed by one processor 1001 or may be executed simultaneously or sequentially by two or more processors 1001. Processor 1001 may be implemented by one or more chips. The program may be transmitted from the network via a telecommunication line.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically Erasable Programmable ROM(EEPROM)、Random Access Memory(RAM)などの少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る方法を実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, and is composed of at least one such as ReadOnlyMemory (ROM), ErasableProgrammableROM (EPROM), Electrically ErasableProgrammableROM (EEPROM), and RandomAccessMemory (RAM). May be done. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can execute the method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、Compact Disc ROM(CD-ROM)などの光ディスク、ハードディスクドライブ、フレキシブルディスク、光磁気ディスク(例えば、コンパクトディスク、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、スマートカード、フラッシュメモリ(例えば、カード、スティック、キードライブ)、フロッピー(登録商標)ディスク、磁気ストリップなどの少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。上述の記録媒体は、例えば、メモリ1002及びストレージ1003の少なくとも一方を含むデータベース、サーバその他の適切な媒体であってもよい。 The storage 1003 is a computer-readable recording medium, for example, an optical disk such as Compact Disc ROM (CD-ROM), a hard disk drive, a flexible disk, an optical magnetic disk (for example, a compact disk, a digital versatile disk, or a Blu-ray). It may consist of at least one (registered trademark) disk), smart card, flash memory (eg, card, stick, key drive), floppy (registered trademark) disk, magnetic strip, and the like. Storage 1003 may be referred to as auxiliary storage. The recording medium described above may be, for example, a database, server or other suitable medium containing at least one of the memory 1002 and the storage 1003.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
 通信装置1004は、例えば周波数分割複信(Frequency Division Duplex:FDD)及び時分割複信(Time Division Duplex:TDD)の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。 The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD). It may be composed of.
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、LEDランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that accepts an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, an LED lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001及びメモリ1002などの各装置は、情報を通信するためのバス1007で接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 In addition, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. Bus 1007 may be configured using a single bus or may be configured using different buses for each device.
 さらに、当該装置は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor:DSP)、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアにより、各機能ブロックの一部または全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Furthermore, the device includes hardware such as a microprocessor, a digital signal processor (Digital Signal Processor: DSP), an ApplicationSpecific Integrated Circuit (ASIC), a ProgrammableLogicDevice (PLD), and a FieldProgrammableGateArray (FPGA). The hardware may implement some or all of each functional block. For example, processor 1001 may be implemented using at least one of these hardware.
 また、情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、情報の通知は、物理レイヤシグナリング(例えば、Downlink Control Information(DCI)、Uplink Control Information(UCI)、上位レイヤシグナリング(例えば、RRCシグナリング、Medium Access Control(MAC)シグナリング、報知情報(Master Information Block(MIB)、System Information Block(SIB))、その他の信号またはこれらの組み合わせによって実施されてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。 Further, the notification of information is not limited to the embodiment / embodiment described in the present disclosure, and may be performed by using another method. For example, information notification includes physical layer signaling (eg Downlink Control Information (DCI), Uplink Control Information (UCI), higher layer signaling (eg RRC signaling, Medium Access Control (MAC) signaling, Master Information Block). (MIB), System Information Block (SIB)), other signals or combinations thereof. RRC signaling may also be referred to as an RRC message, eg, RRC Connection Setup. ) Message, RRC Connection Reconfiguration message, etc. may be used.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New Radio(NR)、W-CDMA(登録商標)、GSM(登録商標)、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切なシステムを利用するシステム及びこれらに基づいて拡張された次世代システムの少なくとも一つに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE及びLTE-Aの少なくとも一方と5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes LongTermEvolution (LTE), LTE-Advanced (LTE-A), SUPER3G, IMT-Advanced, 4th generation mobile communication system (4G), 5th generation mobile communication system ( 5G), FutureRadioAccess (FRA), NewRadio (NR), W-CDMA (registered trademark), GSM (registered trademark), CDMA2000, UltraMobileBroadband (UMB), IEEE802.11 (Wi-Fi (registered trademark)) , IEEE802.16 (WiMAX®), IEEE802.20, Ultra-WideBand (UWB), Bluetooth®, and other systems that utilize appropriate systems and at least one of the next-generation systems extended based on them. It may be applied to one. In addition, a plurality of systems may be applied in combination (for example, a combination of at least one of LTE and LTE-A and 5G).
 本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 The order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において基地局によって行われるとした特定動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つまたは複数のネットワークノード(network nodes)からなるネットワークにおいて、端末との通信のために行われる様々な動作は、基地局及び基地局以外の他のネットワークノード(例えば、MMEまたはS-GWなどが考えられるが、これらに限られない)の少なくとも1つによって行われ得ることは明らかである。上記において基地局以外の他のネットワークノードが1つである場合を例示したが、複数の他のネットワークノードの組み合わせ(例えば、MME及びS-GW)であってもよい。 In some cases, the specific operation performed by the base station in this disclosure may be performed by its upper node (upper node). In a network consisting of one or more network nodes having a base station, various operations performed for communication with the terminal are the base station and other network nodes other than the base station (eg, MME or). It is clear that it can be done by at least one of (but not limited to, S-GW, etc.). Although the case where there is one network node other than the base station is illustrated above, it may be a combination of a plurality of other network nodes (for example, MME and S-GW).
 情報、信号(情報等)は、上位レイヤ(または下位レイヤ)から下位レイヤ(または上位レイヤ)へ出力され得る。複数のネットワークノードを介して入出力されてもよい。 Information and signals (information, etc.) can be output from the upper layer (or lower layer) to the lower layer (or upper layer). Input / output may be performed via a plurality of network nodes.
 入出力された情報は、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報は、上書き、更新、または追記され得る。出力された情報は削除されてもよい。入力された情報は他の装置へ送信されてもよい。 The input / output information may be stored in a specific location (for example, memory) or may be managed using a management table. I / O information can be overwritten, updated, or added. The output information may be deleted. The entered information may be transmitted to other devices.
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真偽値(Boolean:trueまたはfalse)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), by a boolean value (Boolean: true or false), or by comparing numerical values (for example, a predetermined value). It may be done by comparison with the value).
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的に行うものに限られず、暗黙的(例えば、当該所定の情報の通知を行わない)ことによって行われてもよい。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or may be switched and used according to the execution. Further, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit one, but is performed implicitly (for example, the notification of the predetermined information is not performed). May be good.
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether called software, firmware, middleware, microcode, hardware description language, or other names, instructions, instruction sets, codes, code segments, program codes, programs, subprograms, software modules. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, features, etc. should be broadly interpreted.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line:DSL)など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、または他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 Further, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website, where the software uses at least one of wired technology (coaxial cable, fiber optic cable, twisted pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において説明した情報、信号などは、様々な異なる技術の何れかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、またはこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一のまたは類似する意味を有する用語と置き換えてもよい。例えば、チャネル及びシンボルの少なくとも一方は信号(シグナリング)であってもよい。また、信号はメッセージであってもよい。また、コンポーネントキャリア(Component Carrier:CC)は、キャリア周波数、セル、周波数キャリアなどと呼ばれてもよい。 The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, at least one of a channel and a symbol may be a signal (signaling). Also, the signal may be a message. Further, the component carrier (CC) may be referred to as a carrier frequency, a cell, a frequency carrier, or the like.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用される。 The terms "system" and "network" used in this disclosure are used interchangeably.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースはインデックスによって指示されるものであってもよい。 Further, the information, parameters, etc. described in the present disclosure may be expressed using an absolute value, a relative value from a predetermined value, or another corresponding information. It may be represented. For example, the radio resource may be one indicated by an index.
 上述したパラメータに使用する名称はいかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式等は、本開示で明示的に開示したものと異なる場合もある。様々なチャネル(例えば、PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるため、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for the above parameters are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since various channels (eg, PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are in any respect limited names. is not.
 本開示においては、「基地局(Base Station:BS)」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNodeB(eNB)」、「gNodeB(gNB)」、「アクセスポイント(access point)」、「送信ポイント(transmission point)」、「受信ポイント(reception point)、「送受信ポイント(transmission/reception point)」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In this disclosure, "Base Station (BS)", "Wireless Base Station", "Fixed Station", "NodeB", "eNodeB (eNB)", "gNodeB (gNB)", " "Access point", "transmission point", "reception point", "transmission / reception point", "cell", "sector", "cell group", "cell group", " Terms such as "carrier" and "component carrier" may be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つまたは複数(例えば、3つ)のセル(セクタとも呼ばれる)を収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head:RRH)によって通信サービスを提供することもできる。 A base station can accommodate one or more (eg, three) cells (also called sectors). When a base station accommodates multiple cells, the entire base station coverage area can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a remote radio for indoor use). Communication services can also be provided by Head: RRH).
 「セル」または「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局、及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部または全体を指す。 The term "cell" or "sector" refers to a base station that provides communication services in this coverage, and part or all of the coverage area of at least one of the base station subsystems.
 本開示においては、「移動局(Mobile Station:MS)」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment:UE)」、「端末」などの用語は、互換的に使用され得る。 In the present disclosure, terms such as "Mobile Station (MS)", "user terminal", "user equipment (UE)", and "terminal" may be used interchangeably. ..
 移動局は、当業者によって、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント、またはいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations can be used by those skilled in the art as subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless. It may also be referred to as a terminal, remote terminal, handset, user agent, mobile client, client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型または無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, a mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of a base station and a mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、移動局(ユーザ端末、以下同)として読み替えてもよい。例えば、基地局及び移動局間の通信を、複数の移動局間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、基地局が有する機能を移動局が有する構成としてもよい。また、「上り」及び「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read as a mobile station (user terminal, the same shall apply hereinafter). For example, communication between a base station and a mobile station has been replaced with communication between a plurality of mobile stations (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the mobile station may have the functions of the base station. Further, words such as "up" and "down" may be read as words corresponding to communication between terminals (for example, "side"). For example, the upstream channel, the downstream channel, and the like may be read as a side channel.
 同様に、本開示における移動局は、基地局として読み替えてもよい。この場合、移動局が有する機能を基地局が有する構成としてもよい。
無線フレームは時間領域において1つまたは複数のフレームによって構成されてもよい。時間領域において1つまたは複数の各フレームはサブフレームと呼ばれてもよい。サブフレームはさらに時間領域において1つまたは複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。
Similarly, the mobile station in the present disclosure may be read as a base station. In this case, the base station may have the functions of the mobile station.
The radio frame may be composed of one or more frames in the time domain. Each one or more frames in the time domain may be referred to as a subframe. Subframes may further be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that does not depend on numerology.
 ニューメロロジーは、ある信号またはチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing:SCS)、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval:TTI)、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 The numerology may be a communication parameter that applies to at least one of the transmission and reception of a signal or channel. Numerology includes, for example, SubCarrier Spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval: TTI), number of symbols per TTI, wireless frame configuration, transmission / reception. It may indicate at least one of a specific filtering process performed by the machine in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like.
 スロットは、時間領域において1つまたは複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM))シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)で構成されてもよい。スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time area. The slot may be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つまたは複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(またはPUSCH)は、PDSCH(またはPUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may be composed of one or more symbols in the time domain. Further, the mini-slot may be referred to as a sub-slot. A minislot may consist of a smaller number of symbols than the slot. PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as PDSCH (or PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (or PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、何れも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。 Wireless frames, subframes, slots, mini slots and symbols all represent time units when transmitting signals. The radio frame, subframe, slot, minislot and symbol may use different names corresponding to each.
 例えば、1サブフレームは送信時間間隔(TTI)と呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロットまたは1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be referred to as a transmission time interval (TTI), a plurality of consecutive subframes may be referred to as TTI, and one slot or one minislot may be referred to as TTI. That is, at least one of the subframe and TTI may be a subframe (1ms) in existing LTE, a period shorter than 1ms (eg, 1-13 symbols), or a period longer than 1ms. May be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in an LTE system, a base station schedules each user terminal to allocate wireless resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロットまたは1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロットまたは1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(LTE Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partialまたはfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 TTI with a time length of 1 ms may be called normal TTI (TTI in LTE Rel.8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, etc. A TTI shorter than a normal TTI may be referred to as a shortened TTI, a short TTI, a partial TTI (partial or fractional TTI), a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) may be read as a TTI less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(RB)は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つまたは複数個の連続した副搬送波(subcarrier)を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 The resource block (RB) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in RB may be the same regardless of numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBの時間領域は、1つまたは複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム、または1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つまたは複数のリソースブロックで構成されてもよい。 Further, the time domain of RB may include one or more symbols, and may have a length of 1 slot, 1 mini slot, 1 subframe, or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つまたは複数のRBは、物理リソースブロック(Physical RB:PRB)、サブキャリアグループ(Sub-Carrier Group:SCG)、リソースエレメントグループ(Resource Element Group:REG)、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are physical resource blocks (Physical RB: PRB), sub-carrier groups (Sub-Carrier Group: SCG), resource element groups (Resource Element Group: REG), PRB pairs, RB pairs, etc. May be called.
 また、リソースブロックは、1つまたは複数のリソースエレメント(Resource Element:RE)によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (ResourceElement: RE). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part:BWP)(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) may represent a subset of consecutive common resource blocks for a neurology in a carrier. good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL用のBWP(UL BWP)と、DL用のBWP(DL BWP)とが含まれてもよい。UEに対して、1キャリア内に1つまたは複数のBWPが設定されてもよい。 BWP may include BWP for UL (UL BWP) and BWP for DL (DL BWP). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレームまたは無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロットまたはミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix:CP)長などの構成は、様々に変更することができる。 The above-mentioned structures such as wireless frames, subframes, slots, mini slots and symbols are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radioframe, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in RB. The number of subcarriers, as well as the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 「接続された(connected)」、「結合された(coupled)」という用語、またはこれらのあらゆる変形は、2またはそれ以上の要素間の直接的または間接的なあらゆる接続または結合を意味し、互いに「接続」または「結合」された2つの要素間に1またはそれ以上の中間要素が存在することを含むことができる。要素間の結合または接続は、物理的なものであっても、論理的なものであっても、或いはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。本開示で使用する場合、2つの要素は、1またはそれ以上の電線、ケーブル及びプリント電気接続の少なくとも一つを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域及び光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」または「結合」されると考えることができる。 The terms "connected", "coupled", or any variation thereof, mean any direct or indirect connection or connection between two or more elements and each other. It can include the presence of one or more intermediate elements between two "connected" or "joined" elements. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access". As used in the present disclosure, the two elements use at least one of one or more wires, cables and printed electrical connections, and, as some non-limiting and non-comprehensive examples, the radio frequency domain. Can be considered to be "connected" or "coupled" to each other using electromagnetic energy having wavelengths in the microwave and light (both visible and invisible) regions.
 参照信号は、Reference Signal(RS)と略称することもでき、適用される標準によってパイロット(Pilot)と呼ばれてもよい。 The reference signal can also be abbreviated as Reference Signal (RS), and may be called a pilot (Pilot) depending on the applied standard.
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The statement "based on" used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 上記の各装置の構成における「手段」を、「部」、「回路」、「デバイス」等に置き換えてもよい。 The "means" in the configuration of each of the above devices may be replaced with a "part", a "circuit", a "device", or the like.
 本開示において使用する「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量または順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、または何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first" and "second" as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Therefore, references to the first and second elements do not mean that only two elements can be adopted there, or that the first element must somehow precede the second element.
 本開示において、「含む(include)」、「含んでいる(including)」及びそれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「または(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as inclusive as the term "comprising". Is intended. Moreover, the term "or" used in the present disclosure is intended to be non-exclusive.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳により冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include the plural nouns following these articles.
 本開示で使用する「判断(determining)」、「決定(determining)」という用語は、多種多様な動作を包含する場合がある。「判断」、「決定」は、例えば、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)した事を「判断」「決定」したとみなす事などを含み得る。また、「判断」、「決定」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などした事を「判断」「決定」したとみなす事を含み得る。つまり、「判断」「決定」は、何らかの動作を「判断」「決定」したとみなす事を含み得る。また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 The terms "determining" and "determining" used in this disclosure may include a wide variety of actions. "Judgment" and "decision" are, for example, judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry). It may include (eg, searching in a table, database or another data structure), ascertaining as "judgment" or "decision". Also, "judgment" and "decision" are receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), and access. It may include (for example, accessing data in memory) to be regarded as "judgment" or "decision". In addition, "judgment" and "decision" are considered to be "judgment" and "decision" when the things such as solving, selecting, choosing, establishing, and comparing are regarded as "judgment" and "decision". Can include. That is, "judgment" and "decision" may include considering some action as "judgment" and "decision". Further, "judgment (decision)" may be read as "assuming", "expecting", "considering" and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 以上、本開示について詳細に説明したが、当業者にとっては、本開示が本開示中に説明した実施形態に限定されるものではないということは明らかである。本開示は、請求の範囲の記載により定まる本開示の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とするものであり、本開示に対して何ら制限的な意味を有するものではない。 Although the present disclosure has been described in detail above, it is clear to those skilled in the art that the present disclosure is not limited to the embodiments described in the present disclosure. The present disclosure may be implemented as amendments and modifications without departing from the spirit and scope of the present disclosure as determined by the description of the scope of claims. Therefore, the description of this disclosure is for purposes of illustration and does not have any limiting meaning to this disclosure.
 10 無線通信システム
 20 E-UTRAN
 30 NG RAN
 40 UPF
 100A eNB
 100B gNB
 110 無線通信部
 120 RRC処理部
 130 DC処理部
 140 制御部
 200 UE
 210 無線通信部
 220 RRC処理部
 230 DC処理部
 240 制御部
 1001 プロセッサ
 1002 メモリ
 1003 ストレージ
 1004 通信装置
 1005 入力装置
 1006 出力装置
 1007 バス
 
10 Wireless communication system 20 E-UTRAN
30 NG RAN
40 UPF
100A eNB
100B gNB
110 Wireless communication unit 120 RRC processing unit 130 DC processing unit 140 Control unit 200 UE
210 Wireless communication unit 220 RRC processing unit 230 DC processing unit 240 Control unit 1001 Processor 1002 Memory 1003 Storage 1004 Communication device 1005 Input device 1006 Output device 1007 Bus

Claims (6)

  1.  セカンダリーセルの追加・変更手順の実行を制御する制御部と、
     前記追加・変更手順が失敗した場合、前記追加・変更手順が失敗したセカンダリーセルの識別情報、及びサービングセルと近隣セルとの品質情報を送信する送信部と
    を備える端末。
    A control unit that controls the execution of secondary cell addition / modification procedures,
    A terminal including a transmission unit that transmits identification information of a secondary cell in which the addition / modification procedure has failed and quality information between a serving cell and a neighboring cell when the addition / modification procedure fails.
  2.  前記制御部は、選択した別のセカンダリーセルに対してランダムアクセス手順を実行する請求項1に記載の端末。 The terminal according to claim 1, wherein the control unit executes a random access procedure for another selected secondary cell.
  3.  端末によるセカンダリーセルの追加・変更手順に関するセカンダリーセルグループの失敗情報を受信する受信部と、
     前記失敗情報を受信した場合、失敗したセカンダリーセル以外の別の候補セカンダリーセルに対して、前記端末に関するデータ転送を開始する制御部と
    を備える無線基地局。
    A receiver that receives failure information of the secondary cell group related to the procedure for adding / changing secondary cells by the terminal, and
    A radio base station including a control unit that starts data transfer regarding the terminal to another candidate secondary cell other than the failed secondary cell when the failure information is received.
  4.  セカンダリーセルの追加・変更手順の実行を制御する制御部と、
     前記追加・変更手順に関するセカンダリーセルグループの失敗情報を送信する送信部と
    を備え、
     前記制御部は、前記追加・変更手順が失敗した場合、前記失敗情報の送信前に、選択した別のセカンダリーセルに対してランダムアクセス手順を実行する端末。
    A control unit that controls the execution of secondary cell addition / modification procedures,
    It is equipped with a transmitter that transmits failure information of the secondary cell group related to the addition / modification procedure.
    The control unit is a terminal that, when the addition / modification procedure fails, executes a random access procedure for another selected secondary cell before transmitting the failure information.
  5.  前記送信部は、前記ランダムアクセス手順に関する情報を含む前記失敗情報を送信する請求項4に記載の端末。 The terminal according to claim 4, wherein the transmission unit transmits the failure information including information on the random access procedure.
  6.  端末によるセカンダリーセルの追加・変更手順に関するセカンダリーセルグループの失敗情報を受信する受信部と、
     前記失敗情報に基づいて、前記端末によるランダムアクセス手順が成功した別の候補セカンダリーセルに対して、前記端末に関するデータ転送を開始する制御部と
    を備える無線基地局。
     
    A receiver that receives failure information of the secondary cell group related to the procedure for adding / changing secondary cells by the terminal, and
    A radio base station including a control unit that initiates data transfer relating to the terminal to another candidate secondary cell in which the random access procedure by the terminal has succeeded based on the failure information.
PCT/JP2020/039747 2020-10-22 2020-10-22 Terminal and wireless base station WO2022085158A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2020/039747 WO2022085158A1 (en) 2020-10-22 2020-10-22 Terminal and wireless base station
JP2022556333A JPWO2022085158A1 (en) 2020-10-22 2020-10-22

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/039747 WO2022085158A1 (en) 2020-10-22 2020-10-22 Terminal and wireless base station

Publications (1)

Publication Number Publication Date
WO2022085158A1 true WO2022085158A1 (en) 2022-04-28

Family

ID=81289773

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/039747 WO2022085158A1 (en) 2020-10-22 2020-10-22 Terminal and wireless base station

Country Status (2)

Country Link
JP (1) JPWO2022085158A1 (en)
WO (1) WO2022085158A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023220941A1 (en) * 2022-05-17 2023-11-23 北京小米移动软件有限公司 Data forwarding information transmission method and apparatus

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511846A (en) * 2017-03-23 2020-04-16 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Setting method and device, and system

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020511846A (en) * 2017-03-23 2020-04-16 ホアウェイ・テクノロジーズ・カンパニー・リミテッド Setting method and device, and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CATT: "Report of [post109e@13][NR MOB] Resolving open issues for CPC", 3GPP DRAFT; R2-2003440, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Online Meeting ;20200420 - 20200430, 10 April 2020 (2020-04-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051874938 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023220941A1 (en) * 2022-05-17 2023-11-23 北京小米移动软件有限公司 Data forwarding information transmission method and apparatus

Also Published As

Publication number Publication date
JPWO2022085158A1 (en) 2022-04-28

Similar Documents

Publication Publication Date Title
JP7241172B2 (en) User equipment and base station equipment
WO2022044908A1 (en) Terminal and wireless communication system
WO2022064716A1 (en) Terminal
JP7096915B2 (en) User equipment and base station equipment
WO2022085158A1 (en) Terminal and wireless base station
US20220124592A1 (en) User equipment and base station device
US20220124814A1 (en) User equipment and base station apparatus
WO2022097686A1 (en) Wireless base station, wireless communication system, and wireless communication method
WO2022097755A1 (en) Terminal and wireless base station
US20220394528A1 (en) Radio base station and terminal
WO2022039189A1 (en) Terminal and wireless communication system
WO2022239244A1 (en) Wireless base station, terminal, and wireless communication method
WO2023022150A1 (en) Terminal, wireless communication system, and wireless communication method
WO2022153462A1 (en) Terminal and wireless communication method
WO2022070364A1 (en) Terminal, and radio communication method
JP7438232B2 (en) terminal
WO2022220071A1 (en) Terminal and wireless communication method
WO2023013028A1 (en) Terminal and wireless communication method
JP7312837B2 (en) terminal
US20240147330A1 (en) Terminal
WO2022208817A1 (en) Wireless base station and user equipment
WO2023276011A1 (en) Terminal and communication method
WO2022190335A1 (en) Terminal and communication method
WO2023007636A1 (en) Radio base station and radio communication method
WO2022137554A1 (en) Wireless base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20958710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022556333

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20958710

Country of ref document: EP

Kind code of ref document: A1