WO2023013003A1 - Terminal, wireless communication method, and base station - Google Patents

Terminal, wireless communication method, and base station Download PDF

Info

Publication number
WO2023013003A1
WO2023013003A1 PCT/JP2021/029223 JP2021029223W WO2023013003A1 WO 2023013003 A1 WO2023013003 A1 WO 2023013003A1 JP 2021029223 W JP2021029223 W JP 2021029223W WO 2023013003 A1 WO2023013003 A1 WO 2023013003A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
mac
spatial relationship
present disclosure
timing
Prior art date
Application number
PCT/JP2021/029223
Other languages
French (fr)
Japanese (ja)
Inventor
春陽 越後
浩樹 原田
祐輝 松村
尚哉 芝池
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to JP2023539516A priority Critical patent/JPWO2023013003A1/ja
Priority to PCT/JP2021/029223 priority patent/WO2023013003A1/en
Publication of WO2023013003A1 publication Critical patent/WO2023013003A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/02Traffic management, e.g. flow control or congestion control
    • H04W28/04Error control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation

Definitions

  • the present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
  • LTE Long Term Evolution
  • 3GPP Rel. 10-14 LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • LTE successor systems for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later
  • 5G 5th generation mobile communication system
  • 5G+ 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • NR New Radio
  • AI artificial intelligence
  • ML machine learning
  • one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve preferable maintenance of communication quality.
  • a terminal includes a receiving unit that receives a Medium Access Control control element (MAC Control Element (CE)) including a field indicating a time until activation of a spatial relationship based on a certain timing; and a control unit that controls the activation of the spatial relationship based on the MAC CE.
  • MAC Control Element CE
  • preferable maintenance of communication quality can be achieved.
  • FIG. 1 is a diagram showing an example of beam pattern indication.
  • FIG. 2 is a diagram showing an example of control based on beam pattern instructions.
  • FIG. 3 is a diagram illustrating an example of application timing of a predicted PUCCH spatial relationship indication with one time offset.
  • FIG. 4 is a diagram illustrating an example of application timing of a predicted PUCCH spatial relationship indication including multiple time offsets.
  • 5A and 5B are diagrams showing an example of a predicted PUCCH spatial relationship indication MAC CE.
  • FIG. 6 is a diagram showing an example of the predicted SRS spatial relationship indication MAC CE.
  • FIG. 7 is a diagram showing an example of TCI state indication MAC CE for predicted PDCCH.
  • 8A and 8B are diagrams showing an example of a TCI state indication MAC CE for predicted PDSCH.
  • FIGS. 9A and 9B are diagrams illustrating an example of quantized spatial relationship/time to activate TCI state information. 10A and 10B are diagrams showing an example of the length of time available.
  • FIG. 11 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment.
  • FIG. 12 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment;
  • FIG. 14 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
  • AI artificial intelligence
  • channel estimation also referred to as channel measurement
  • decoding of received signals and the like.
  • Channel estimation for example, Channel State Information Reference Signal (CSI-RS), Synchronization Signal (SS), Synchronization Signal/Physical Broadcast Channel (SS/PBCH )) block, demodulation reference signal (DMRS), measurement reference signal (SRS), or the like.
  • CSI-RS Channel State Information Reference Signal
  • SS Synchronization Signal
  • SS/PBCH Synchronization Signal/Physical Broadcast Channel
  • DMRS demodulation reference signal
  • SRS measurement reference signal
  • AI technology such as machine learning (ML) to achieve high-precision channel estimation with fewer resources and measurements that predict the future.
  • ML machine learning
  • Such channel estimation may be called AI-aided estimation.
  • Beam management that utilizes AI-assisted estimation may be referred to as AI-assisted beam management.
  • AI-assisted beam management when AI is used in terminals (also called user terminals, User Equipment (UE), etc.), AI may predict future beam measurements.
  • the UE may also trigger enhanced beam failure recovery (enhanced BFR) with prediction.
  • enhanced BFR enhanced beam failure recovery
  • the AI may predict future beam measurements (e.g. narrow beam measurements) However, narrow beam measurements may be estimated (derived) based on a small number of beam management.
  • the UE may also receive beam indications with time offsets.
  • the inventors came up with a control method suitable for beam indication with a time offset. According to this, since the UE can suitably follow the beam, it is possible to suitably maintain the communication quality. Note that each embodiment of the present disclosure may be applied when AI/prediction is not utilized.
  • the UE/BS trains the ML model in training mode and implements the ML model in test mode (also called test mode, testing mode, etc.).
  • test mode also called test mode, testing mode, etc.
  • validation of the accuracy of the trained ML model in the training mode may be performed.
  • the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information / Radio link quality etc. may be output.
  • AI may be read as an object (also called object, object, data, function, program, etc.) having (implementing) at least one of the following characteristics: Estimates based on observed or collected information; - Choices based on information observed or collected; • Predictions based on observed or collected information.
  • the object may be, for example, a terminal, a device such as a base station, or a device. Also, the object may correspond to a program included in the device.
  • an ML model may be read as an object that has (enforces) at least one of the following characteristics: Generating an estimate by feeding, Informed to predict estimates; ⁇ Discover characteristics by giving information, • Selecting actions by giving information.
  • the ML model may be read as at least one of AI model, predictive analytics, predictive analysis model, and the like. Also, the ML model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machines, random forests, neural networks, deep learning, and the like. In this disclosure, model may be translated as at least one of encoder, decoder, tool, and the like.
  • regression analysis e.g., linear regression analysis, multiple regression analysis, logistic regression analysis
  • model may be translated as at least one of encoder, decoder, tool, and the like.
  • the ML model outputs at least one information such as estimated value, predicted value, selected action, classification, etc., based on the input information.
  • the ML model may include supervised learning, unsupervised learning, reinforcement learning, etc.
  • Supervised learning may be used to learn general rules that map inputs to outputs.
  • Unsupervised learning may be used to learn features of data.
  • Reinforcement learning may be used to learn actions to maximize a goal.
  • implementation, operation, operation, execution, etc. may be read interchangeably.
  • testing, after-training, production use, actual use, etc. may be read interchangeably.
  • a signal may be interchanged with signal/channel.
  • the training mode may correspond to the mode in which the UE/BS transmits/receives signals for the ML model (in other words, the mode of operation during training).
  • the test mode corresponds to the mode in which the UE/BS implements the ML model (e.g., implements the trained ML model to predict the output) (in other words, the operating mode during the test). good.
  • training mode may refer to a mode in which a specific signal transmitted in test mode has a large overhead (eg, a large amount of resources) is transmitted.
  • training mode may refer to a mode that refers to a first configuration (eg, first DMRS configuration, first CSI-RS configuration).
  • test mode may refer to a mode that refers to a second configuration (eg, second DMRS configuration, second CSI-RS configuration) different from the first configuration.
  • At least one of time resources, frequency resources, code resources, and ports (antenna ports) related to measurement may be set more in the first setting than in the second setting.
  • the UE and the BS are the relevant subjects in order to explain the ML model for communication between the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this.
  • UE and BS in the following embodiments may be read as first UE and second UE.
  • any UE, BS, etc. in this disclosure may be read as any UE/BS.
  • A/B and “at least one of A and B” may be read interchangeably.
  • activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably.
  • supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
  • Radio Resource Control RRC
  • RRC parameters RRC parameters
  • RRC messages higher layer parameters
  • information elements IEs
  • settings may be read interchangeably.
  • MAC Control Element (CE) Medium Access Control Control Element
  • update command update command
  • activation/deactivation command may be read interchangeably.
  • panel UE panel, panel group, beam, beam group, precoder, Uplink (UL) transmitting entity, Transmission/Reception Point (TRP), Spatial Relation Information (SRI)), Spatial relationship, SRS resource indicator (SRI), SRS resource, control resource set (COntrol resource SET (CORESET)), physical downlink shared channel (PDSCH), codeword, base station, given antenna port (for example , demodulation reference signal (DeModulation Reference Signal (DMRS) port), predetermined antenna port group (for example, DMRS port group), predetermined group (for example, code division multiplexing (CDM)) group, predetermined reference signal group, CORESET group), predetermined resource (e.g., predetermined reference signal resource), predetermined resource set (e.g., predetermined reference signal resource set), CORESET pool, physical uplink control channel (PUCCH )) group (PUCCH resource group), spatial relationship group, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL), uplink TCI
  • indexes, IDs, indicators, and resource IDs may be read interchangeably.
  • sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
  • CSI-RS refers to Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS and CSI Interference Measurement (CSI-IM)). At least one may be read interchangeably.
  • NZP Non Zero Power
  • ZP Zero Power
  • CSI-IM CSI Interference Measurement
  • measured/reported RS may mean RS measured/reported for predicted BFR.
  • the UE may be informed of beam pointing with time offset.
  • a beam instruction with a time offset may correspond to a beam instruction corresponding to each of a plurality of times.
  • a time offset may mean the time to activation of a spatial relationship/TCI state (to apply the activation) relative to some timing.
  • FIG. 1 is a diagram showing an example of beam pattern instructions.
  • the BS with AI is transmitting three CSI-RS (CSI-RS 1, 2, 3), the signal from the UE (eg SRS)/beam measurement result (eg CSI beam report) , predict future beam quality (eg, reception quality at the UE for each CSI-RS).
  • CSI-RS 1, 2, 3 the signal from the UE
  • beam measurement result eg CSI beam report
  • future beam quality eg, reception quality at the UE for each CSI-RS.
  • a base station may send a one-shot beam pattern indication containing information for one or more beams over one or more time periods based on future beam quality.
  • the beam pattern instructions in FIG. CSI-RS3 is shown for time offset #3). This may correspond to the beam that is expected to have the highest reception quality at the UE at each time.
  • the UE shown is moving in the direction of the dashed line, and the base station took this into account when generating the beam pattern indication.
  • FIG. 2 is a diagram showing an example of control based on beam pattern instructions.
  • the UE may apply (use, assume) a beam for each time instant (time corresponding to each time offset) according to the received beam pattern indication.
  • the UE receives the MAC CE indicating the beam pattern indication on the PDSCH and transmits an ACK (eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)) for this reception.
  • an ACK eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • the UE sends the CSI-RS1 Apply the TCI state/spatial relationship #0 corresponding to .
  • the UE applies the TCI state/spatial relationship #1 corresponding to CSI-RS2 after the time offset #1 has elapsed from the above timing, and the TCI state corresponding to CSI-RS3 after the time offset #2 has elapsed from the above timing.
  • / spatial relationship #2 may be applied.
  • timing, time, time, slot, subslot, symbol, subframe, etc. may be read interchangeably.
  • the following embodiments relate to the content, processing, application timing, etc. of beam pattern instructions.
  • the first embodiment relates to beam pattern indication for PUCCH.
  • the indication is Predicted PUCCH spatial relation Activation/Deactivation MAC CE (Predicted PUCCH spatial relation Activation/Deactivation MAC CE), PUCCH spatial relation activation/deactivation MAC CE with time offset, Predicted PUCCH spatial relation It may also be called an indication MAC CE, a predicted PUCCH spatial relationship indication, and so on.
  • the predicted PUCCH spatial relationship indication may contain only one time offset.
  • the UE may apply the predicted PUCCH spatial relationship indication (activation command) after any of the following times relative to the reference timing: ⁇ time offset, • Time offset + X* (number of slots per subframe for the corresponding SCS setting).
  • the reference timing may be the timing (end) at which the UE transmits PUCCH with HARQ-ACK corresponding to the PDSCH that transmits the activation command, or the UE transmits the PDSCH that transmits the activation command. It may be the timing (end) of receiving, or the timing obtained by adding X* (the number of slots per subframe for setting the corresponding SCS) to any of these timings.
  • the UE uses the reference timing as a reference time offset (or time offset + X * (for the corresponding SCS setting A first timing when the number of slots per subframe)) has passed, and a second timing when a certain period has passed based on the timing of transmitting PUCCH having HARQ-ACK corresponding to the PDSCH that transmits the activation command.
  • the first timing is earlier than the second timing, the activation command may be applied at the second timing.
  • this fixed period may be X* (the number of slots per subframe for setting the corresponding SCS), may be a time offset, or may be a time offset + X* (for setting the corresponding SCS). number of slots per subframe).
  • the UE may determine the value of X based on a specific rule, physical layer signaling (eg, DCI), higher layer signaling (eg, RRC signaling, MAC CE), a specific signal/ It may be determined based on the channel, or a combination thereof, or may be determined based on the UE capabilities.
  • X may be 3, for example.
  • the UE may apply the activation command in a specific slot (eg, the first slot, the first UL slot) after any of the above times has passed based on the reference timing.
  • a specific slot eg, the first slot, the first UL slot
  • FIG. 3 is a diagram showing an example of application timing of a predicted PUCCH spatial relationship indication including one time offset.
  • the reference timing is the timing at which the UE sends HARQ-ACK corresponding to the activation command.
  • the illustrated time A is the time of application of the activation command when it is applied after the time offset has passed with reference to the reference timing.
  • the time B shown is the application of the activation command after the time offset + 3* (the number of slots per subframe for setting the corresponding SCS) has elapsed with reference to the reference timing. It's time for
  • the predicted PUCCH spatial relationship indication may include multiple time offsets.
  • the predicted PUCCH spatial relationship indication may include spatial settings (spatial relationship information) corresponding to each time offset.
  • time offset may be an absolute time offset.
  • the spatial relationship information corresponding to a certain time offset may be applied after the time offset has passed with reference to the reference timing.
  • the time offset may be a relative (differential) time offset.
  • the spatial relationship information corresponding to a certain time offset is one of the reference timing and the timing at which the spatial relationship information corresponding to another time offset is applied (the last application of the activation command). It may be applied after the time offset has passed with reference to the closer one (the one with the latest time). In other words, the spatial relationship information corresponding to a certain time offset may be applied after the sum of the time offset and another time offset has elapsed relative to the reference timing.
  • FIG. 4 is a diagram showing an example of application timing of a predicted PUCCH spatial relationship indication including multiple time offsets.
  • the example is similar to FIG. 2, but where the time offset is an absolute time offset, time offset #2 is the length of period A shown, and time offset is a relative time offset. In some cases, time offset #2 is the length of period B shown.
  • the UE may determine the time offset based on specific rules, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels, or may be determined based on the combination of , or may be determined based on the UE capability.
  • physical layer signaling e.g. DCI
  • higher layer signaling e.g. RRC signaling, MAC CE
  • specific signals/channels e.g. RRC signaling, MAC CE
  • the UE may be configured with a time offset per spatial relationship information/per PUCCH resource according to the RRC parameters.
  • the default time offset may be determined based on a specific rule, may correspond to a specific time offset among the set time offsets, or may be determined based on the UE capabilities.
  • Embodiment 1.3 in which the time offset is set for each spatial relationship information/PUCCH resource, is suitable when the UE moves along a fixed route (for example, when riding a train).
  • 5A and 5B are diagrams illustrating an example of a predicted PUCCH spatial relationship indication MAC CE.
  • the MAC CE may include a Serving Cell ID field, a BWP ID field, a PUCCH resource ID field, a spatial relationship ID (or S i ) field, a C field, a slot offset field, and so on.
  • the serving cell ID field may be a field for indicating the serving cell to which the MAC CE is applied.
  • the BWP ID field may be a field for indicating the UL BWP to which the MAC CE is applied.
  • the PUCCH resource ID field may indicate the ID (Identifier) of the PUCCH resource whose spatial relationship is activated by the spatial relationship information.
  • the Spatial Relation ID field indicates the Spatial Relation ID (eg, PUCCH-SpatialRelationInfoId) of the spatial relation to be activated.
  • the S i field indicates the spatial relation to be activated/deactivated and corresponds to the spatial relation of Spatial Relation ID (PUCCH-SpatialRelationInfoId) i (or i+1). For example, an S i field of '1' may indicate activation.
  • the slot offset field may indicate the time offset that activates the spatial relationship.
  • the C field may indicate whether there is a spatial relationship ID (or S i ) field (or another spatial setting) after this C field. For example, if the C field value is '1', it indicates that there is an octet including the spatial relationship ID (or S i ) field after this C field, and if the C field value is '0' , it may mean that there are no octets containing the Spatial Relationship ID (or S i ) field after this C field.
  • FIG. 5A shows an example in which one or more pairs of slot offset fields and corresponding Si fields are included for a PUCCH resource indicated by a PUCCH resource ID field.
  • FIG. 5B shows an example in which one or more sets of PUCCH resource ID fields and corresponding spatial relationship ID fields are included per slot offset field.
  • different spatial relationships can be activated for multiple PUCCH resources at the timing of the time offset indicated by the slot offset field.
  • the illustrated spatial configuration #0 and spatial configuration #1 may correspond to different time offsets (spatial configuration #0 corresponds to slot offset #0 indicated by the first slot offset field, spatial configuration #1 may correspond to slot offset #1 indicated by the second slot offset field).
  • Spatial configuration may correspond to the configuration of PUCCH resource corresponding to one slot offset and the corresponding relationship of spatial relationship.
  • the predicted PUCCH spatial relationship indication MAC CE may include a field indicating the cell to which the spatial relationship information belongs. For example, if spatial relationship information is set for each cell, the MAC CE may include a field for determining a cell ID such as a Physical Cell ID (PCI).
  • PCI Physical Cell ID
  • the PCI may be selected from PCI candidates configured by RRC.
  • a predicted PUCCH spatial relationship indication MAC CE may include a field indicating how many time instants (time offsets) exist in the MAC CE, a field indicating whether a specific octet exists, and the like.
  • the UE may determine that the size of the predicted PUCCH spatial relationship indication MAC CE is fixed (predetermined), may determine based on RRC parameters, or may determine based on MAC CE fields You can judge.
  • the RRC parameter may be at least one of the maximum number of spatial relationship information, the maximum number of PUCCH resources, the number of time instants in MAC CE, and the like.
  • the above MAC CE fields may correspond to at least one of the following: information indicating whether an octet is present in this MAC CE (e.g. the C field mentioned above); - A number indicated by a field (eg, a field indicating the number of spatial configurations contained in the MAC CE).
  • beam pattern indication using predicted PUCCH spatial relationship indication can be appropriately implemented.
  • a second embodiment relates to beam pattern indication for SRS.
  • the indications are: Predicted Enhanced SP/AP SRS Spatial Relation Indication MAC CE (Predicted Enhanced SP/AP SRS Spatial Relation Indication MAC CE), SP/AP SRS Spatial Relation Indication MAC CE with time offset, Predicted SRS Spatial Relation Indication It may also be called MAC CE, predictive SRS spatial relationship indication, and the like.
  • SP/AP means semipersistent/aperiodic.
  • the Resource ID i field corresponds to the field that specifies the spatial relationship.
  • the Resource ID i field is the resource ID (eg, SSB index, SRS resource ID).
  • FIG. 6 is a diagram showing an example of the predicted SRS spatial relationship indication MAC CE. Except for C field and slot offset field, Rel. 16 extended SP/AP SRS spatial relationship indication MAC CE, so description of each field is omitted. Spatial relationships corresponding to SRS resources for each slot offset can be specified, similar to that shown in FIGS. 5A and 5B.
  • a third embodiment relates to beam pattern indication for a physical downlink control channel (PDCCH).
  • the indications are Predicted TCI State Indication for UE-specific PDCCH MAC CE, TCI State Indication MAC CE for PDCCH with time offset, TCI State Indication MAC CE for predicted PDCCH. , TCI status indication for predicted PDCCH, etc.
  • Embodiments 1.1-1.4 there is an embodiment in which PUCCH in Embodiments 1.1-1.4 is replaced with PDCCH, PUCCH resource with CORESET (or CORESET ID), spatial relationship with TCI state applicable to CORESET, etc. available, so redundant descriptions are not repeated.
  • FIG. 7 is a diagram showing an example of TCI state indication MAC CE for predicted PDCCH. Except for C field and slot offset field, Rel. Since it is the same as the UE-specific PDCCH TCI status indication MAC CE of 2015/16, the description of each field is omitted. Similar to that shown in FIGS. 5A and 5B, the TCI state corresponding to the CORESET (CORESET ID) for each slot offset can be specified.
  • CORESET ID CORESET ID
  • the beam pattern indication using the predicted PDCCH TCI state indication can be appropriately performed.
  • the fourth embodiment relates to beam pattern indication for PDSCH.
  • the indication is Predicted (Enhanced) TCI States Activation/Deactivation for UE-specific PDSCH MAC CE, TCI for PDSCH with time offset It may also be called a state indication MAC CE, a TCI state indication MAC CE for predicted PDSCH, a TCI state indication for predicted PDSCH, and the like.
  • Figures 8A and 8B are diagrams showing an example of a predicted PDSCH TCI state indication MAC CE. Except for C field and slot offset field, Rel. 15/16 UE-specific PDSCH TCI state activation/deactivation MAC CE and extended UE-specific PDSCH TCI state activation/deactivation MAC CE are the same, so the description of each field is omitted. Similar to that shown in Figures 5A and 5B, the TCI state for the PDSCH per slot offset can be specified.
  • the beam pattern indication using the predicted PDSCH TCI state indication can be appropriately performed.
  • a fifth embodiment relates to the time offset specified by the MAC CE of the first to fourth embodiments.
  • Figures 9A and 9B are diagrams showing an example of information on the time to activate the quantized spatial relationship/TCI state.
  • the UE may be notified by MAC CE of a bit field (time offset field) indicating one time offset selected from the set time offsets.
  • a bit field time offset field
  • FIG. 9A it is assumed that the UE is configured with four time offsets (12, 14, 16 and 18 slots) corresponding to each bitfield using RRC parameters.
  • the UE may not receive information about the time to activate the spatial relationship/TCI state if only one time offset is configured (the base station knows the time offset the UE expects). For).
  • the UE may receive a bit field indicating one time offset selected from the predefined time offsets as information of the time to activate the spatial relationship/TCI state.
  • the four time offsets (2, 4, 6 and 8 slots) corresponding to each bit field may be predefined by the specification, for example.
  • the UE may determine the time duration available for prediction based on the time offsets. There may be one or more times during that length of time to activate the spatial relationship/TCI state.
  • the UE may report/receive/determine/configure a time offset and a window size instead of a time offset to determine the length of time.
  • the UE may activate the spatial relationship/TCI state at specific time instants (eg, specific slots) during the length of time specified by the time offset and window size.
  • the UE may report/receive/determine/configure two time offsets instead of one time offset to determine the length of time.
  • the UE may activate the spatial relationship/TCI state at specific time instants (eg, specific slots) between the length of time specified by the two time offsets.
  • FIGS. 10A and 10B are diagrams showing examples of available time lengths.
  • FIG. 10A shows an example in which the time length is specified by the time offset and window size.
  • the length of time may be at least one of the periods AC shown.
  • a period A is a window size period (a period after the point) starting from a point (time T) specified by a time offset with respect to the reference time.
  • a period B is a period of a window size width (a period before the point) ending at a point (time T) specified by a time offset with respect to the reference time.
  • a period C is a period of the window size width centered on the point (time T) specified by the time offset with respect to the reference time (including the period before and after the point).
  • FIG. 10B shows an example in which the time length is specified by two time offsets (first time offset, second time offset).
  • the length of time may be the period shown. This period starts at one of a point specified by a first time offset relative to the reference time and a point specified by a second time offset relative to the reference time, and ends at the other. It is a period of time.
  • the length of this period may be expressed as ZX, for example, where the second time offset (eg, Z slots) > the first time offset (eg, X slots).
  • the time offset can be specified appropriately.
  • At least one of the embodiments described above may only be applied to UEs that have reported or support a particular UE capability.
  • the specific UE capabilities may indicate at least one of the following: - Whether or not to support specific operations/information for each embodiment; the maximum number of time instants that can be included in one MAC CE (per MAC CE type); - the maximum time offset for the spatial relationship, - maximum time offset for TCI state for PDSCH, • Maximum time offset for TCI state (per CORESET/per CORESET pool/per all CORESET (pool)) for PDCCH.
  • the UE capabilities may be reported per frequency, or may be reported per frequency range (eg, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2-2) , may be reported for each cell, may be reported for each UE, or may be reported for each subcarrier spacing (SCS).
  • FR1 Frequency Range 1
  • FR2 Frequency Range 2
  • SCS subcarrier spacing
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling.
  • the specific information may be information indicating to enable beam pattern indication, any RRC parameters for a specific release (eg, Rel. 18), or the like.
  • wireless communication system A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below.
  • communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
  • FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
  • LTE Long Term Evolution
  • 5G NR 5th generation mobile communication system New Radio
  • 3GPP Third Generation Partnership Project
  • the wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)).
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • RATs Radio Access Technologies
  • MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc.
  • LTE Evolved Universal Terrestrial Radio Access
  • EN-DC E-UTRA-NR Dual Connectivity
  • NE-DC NR-E -UTRA Dual Connectivity
  • the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN).
  • the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
  • the wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
  • dual connectivity NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB)
  • gNB NR base stations
  • a wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare.
  • a user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure.
  • the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
  • the user terminal 20 may connect to at least one of the multiple base stations 10 .
  • the user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
  • CA carrier aggregation
  • CC component carriers
  • DC dual connectivity
  • Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)).
  • Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2.
  • FR1 may be a frequency band below 6 GHz (sub-6 GHz)
  • FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
  • the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • a plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 directly or via another base station 10 .
  • the core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
  • a radio access scheme based on orthogonal frequency division multiplexing may be used.
  • OFDM orthogonal frequency division multiplexing
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a radio access method may be called a waveform.
  • other radio access schemes for example, other single-carrier transmission schemes and other multi-carrier transmission schemes
  • the UL and DL radio access schemes may be used as the UL and DL radio access schemes.
  • a downlink shared channel Physical Downlink Shared Channel (PDSCH)
  • PDSCH Physical Downlink Shared Channel
  • PBCH Physical Broadcast Channel
  • PDCCH Physical Downlink Control Channel
  • an uplink shared channel (PUSCH) shared by each user terminal 20 an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
  • PUSCH uplink shared channel
  • PUCCH uplink control channel
  • PRACH Physical Random Access Channel
  • User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH.
  • User data, higher layer control information, and the like may be transmitted by PUSCH.
  • a Master Information Block (MIB) may be transmitted by the PBCH.
  • Lower layer control information may be transmitted by the PDCCH.
  • the lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
  • DCI downlink control information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • PDSCH may be replaced with DL data
  • PUSCH may be replaced with UL data.
  • a control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection.
  • CORESET corresponds to a resource searching for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates.
  • a CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set. Note that “search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. in the present disclosure may be read interchangeably.
  • PUCCH channel state information
  • acknowledgment information for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.
  • SR scheduling request
  • a random access preamble for connection establishment with a cell may be transmitted by the PRACH.
  • downlink, uplink, etc. may be expressed without adding "link”.
  • various channels may be expressed without adding "Physical" to the head.
  • synchronization signals SS
  • downlink reference signals DL-RS
  • the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc.
  • CRS cell-specific reference signal
  • CSI-RS channel state information reference signal
  • DMRS Demodulation reference signal
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • a signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on.
  • SS, SSB, etc. may also be referred to as reference signals.
  • DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
  • FIG. 12 is a diagram illustrating an example of the configuration of a base station according to one embodiment.
  • the base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 .
  • One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
  • this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 110 controls the base station 10 as a whole.
  • the control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like.
  • the control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 .
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 .
  • the control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
  • the transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 .
  • the baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 .
  • the transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
  • the transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of the transmission processing section 1211 and the RF section 122 .
  • the receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
  • the transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
  • the transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control for example, HARQ retransmission control
  • the transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
  • channel coding which may include error correction coding
  • modulation modulation
  • mapping mapping
  • filtering filtering
  • DFT discrete Fourier transform
  • DFT discrete Fourier transform
  • the transmitting/receiving unit 120 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
  • the transmitting/receiving unit 120 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
  • the transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
  • FFT Fast Fourier transform
  • IDFT Inverse Discrete Fourier transform
  • the transmitting/receiving unit 120 may measure the received signal.
  • the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal.
  • the measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured.
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • RSSI Received Signal Strength Indicator
  • channel information for example, CSI
  • the transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
  • the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
  • the transmitting/receiving unit 120 transmits to the user terminal 20 a Medium Access Control control element (MAC Control Element (CE)) including a field indicating the time until activation of the spatial relationship based on a certain timing (reference timing).
  • CE Medium Access Control control element
  • the control unit 110 may assume that the user terminal 20 controls the activation of the spatial relationship based on the MAC CE, and may perform scheduling/beam control based on this assumption.
  • the transmission/reception unit 120 uses a medium access control control element (MAC control element) including a field indicating the time until activation of the transmission configuration indication state (TCI state) based on a certain timing (reference timing).
  • MAC control element medium access control control element
  • CE reference timing
  • the control unit 110 may assume that the user terminal 20 controls activation of the TCI state based on the MAC CE, and may perform scheduling/beam control based on this assumption.
  • FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment.
  • the user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 .
  • One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
  • this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
  • the control unit 210 controls the user terminal 20 as a whole.
  • the control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 .
  • the control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
  • the transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 .
  • the baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 .
  • the transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
  • the transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit.
  • the transmission section may be composed of a transmission processing section 2211 and an RF section 222 .
  • the receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
  • the transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
  • the transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
  • the transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
  • digital beamforming eg, precoding
  • analog beamforming eg, phase rotation
  • the transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control
  • the transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
  • Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform
  • the DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
  • the transmitting/receiving unit 220 may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
  • the transmitting/receiving section 220 may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
  • the transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmitting/receiving section 220 may measure the received signal.
  • the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal.
  • the measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like.
  • the measurement result may be output to control section 210 .
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220, the transmitter/receiver antenna 230, and the transmission line interface 240.
  • the transmitting/receiving unit 220 may receive a Medium Access Control control element (MAC Control Element (CE)) containing a field indicating the time until activation of a spatial relationship based on a certain timing (reference timing).
  • CE Medium Access Control control element
  • the control unit 210 may control activation of the spatial relationship based on the MAC CE.
  • the certain timing may be the timing of transmitting an uplink control channel having a Hybrid Automatic Repeat ReQuest ACKnowledgement (HARQ-ACK) corresponding to the downlink shared channel that transmits the MAC CE.
  • HARQ-ACK Hybrid Automatic Repeat ReQuest ACKnowledgement
  • the transmitting/receiving unit 220 uses a medium access control control element (MAC control element) including a field indicating the time until activation of the transmission configuration indication state (TCI state) based on a certain timing (reference timing). Element (CE)) may be received.
  • MAC control element medium access control control element
  • TCI state transmission configuration indication state
  • CE reference timing
  • the control unit 210 may control activation of the TCI state based on the MAC CE.
  • the control unit 210 establishes the first spatial relationship after the first time based on the certain timing.
  • a /TCI state may be activated, and a second spatial relationship /TCI state may be activated after the second time has elapsed based on the certain timing. This may correspond to the case where said field represents an absolute time.
  • the control unit 210 establishes the first spatial relationship after the first time based on the certain timing.
  • a /TCI state may be activated, and a second spatial relationship /TCI state may be activated after a sum of the first time and the second time relative to the certain timing. This may correspond to the case where said field represents an absolute time.
  • each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices.
  • a functional block may be implemented by combining software in the one device or the plurality of devices.
  • function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
  • a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure.
  • FIG. 14 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
  • the base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
  • processor 1001 may be implemented by one or more chips.
  • predetermined software program
  • the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
  • the processor 1001 operates an operating system and controls the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission/reception unit 120 220
  • FIG. 10 FIG. 10
  • the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them.
  • programs program codes
  • software modules software modules
  • data etc.
  • the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
  • the memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one.
  • the memory 1002 may also be called a register, cache, main memory (main storage device), or the like.
  • the memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
  • a computer-readable recording medium for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also
  • the communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include
  • the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
  • the input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
  • Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information.
  • the bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • PLD programmable logic device
  • FPGA field programmable gate array
  • a signal may also be a message.
  • a reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard.
  • a component carrier may also be called a cell, a frequency carrier, a carrier frequency, or the like.
  • a radio frame may consist of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) that make up a radio frame may be called a subframe.
  • a subframe may consist of one or more slots in the time domain.
  • a subframe may be a fixed time length (eg, 1 ms) independent of numerology.
  • a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel.
  • Numerology for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
  • a slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • a slot may also be a unit of time based on numerology.
  • a slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A.
  • PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
  • Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
  • one subframe may be called a TTI
  • a plurality of consecutive subframes may be called a TTI
  • one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum scheduling time unit in wireless communication.
  • a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis.
  • radio resources frequency bandwidth, transmission power, etc. that can be used by each user terminal
  • a TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
  • one or more TTIs may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like.
  • a TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
  • the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms
  • the short TTI e.g., shortened TTI, etc.
  • a TTI having the above TTI length may be read instead.
  • a resource block is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain.
  • the number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve.
  • the number of subcarriers included in an RB may be determined based on neumerology.
  • an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long.
  • One TTI, one subframe, etc. may each be configured with one or more resource blocks.
  • One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
  • PRB Physical Resource Block
  • SCG Sub-Carrier Group
  • REG Resource Element Group
  • PRB pair RB Also called a pair.
  • a resource block may be composed of one or more resource elements (Resource Element (RE)).
  • RE resource elements
  • 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
  • a Bandwidth Part (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier.
  • the common RB may be identified by an RB index based on the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP for UL
  • BWP for DL DL BWP
  • One or multiple BWPs may be configured for a UE within one carrier.
  • At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP.
  • BWP bitmap
  • radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples.
  • the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
  • information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer.
  • Information, signals, etc. may be input and output through multiple network nodes.
  • Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
  • Uplink Control Information (UCI) Uplink Control Information
  • RRC Radio Resource Control
  • MIB Master Information Block
  • SIB System Information Block
  • SIB System Information Block
  • MAC Medium Access Control
  • the physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like.
  • RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like.
  • MAC signaling may be notified using, for example, a MAC Control Element (CE).
  • CE MAC Control Element
  • notification of predetermined information is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
  • the determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
  • Software whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
  • a “network” may refer to devices (eg, base stations) included in a network.
  • precoding "precoding weight”
  • QCL Quality of Co-Location
  • TCI state Transmission Configuration Indication state
  • spatialal patial relation
  • spatialal domain filter "transmission power”
  • phase rotation "antenna port
  • antenna port group "layer”
  • number of layers Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, “antenna”, “antenna element”, “panel” are interchangeable. can be used as intended.
  • base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission Point (TP)”, “Reception Point (RP)”, “Transmission/Reception Point (TRP)”, “Panel”
  • a base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
  • a base station can accommodate one or more (eg, three) cells.
  • the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services.
  • a base station subsystem e.g., a small indoor base station (Remote Radio)). Head (RRH)
  • RRH Head
  • the terms "cell” or “sector” refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
  • MS Mobile Station
  • UE User Equipment
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like.
  • the mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ).
  • at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations.
  • at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read as a user terminal.
  • communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.)
  • the user terminal 20 may have the functions of the base station 10 described above.
  • words such as "up” and “down” may be replaced with words corresponding to inter-terminal communication (for example, "side”).
  • uplink channels, downlink channels, etc. may be read as side channels.
  • user terminals in the present disclosure may be read as base stations.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • operations that are assumed to be performed by the base station may be performed by its upper node in some cases.
  • various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
  • MME Mobility Management Entity
  • S-GW Serving-Gateway
  • each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • LTE-B LTE-Beyond
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • 6G 6th generation mobile communication system
  • xG xG (xG (x is, for example, an integer or a decimal number)
  • Future Radio Access FAA
  • RAT New - Radio Access Technology
  • NR New Radio
  • NX New radio access
  • FX Future generation radio access
  • GSM registered trademark
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi®
  • IEEE 802.16 WiMAX®
  • IEEE 802.20 Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied to systems using communication methods, next-generation systems extended based on these, and the like
  • any reference to elements using the "first,” “second,” etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
  • determining includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be “determining.”
  • determining (deciding) includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
  • determining is considered to be “determining” resolving, selecting, choosing, establishing, comparing, etc. good too. That is, “determining (determining)” may be regarded as “determining (determining)” some action.
  • Maximum transmit power described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
  • connection refers to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are “connected” or “coupled” to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • radio frequency domain when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
  • a and B are different may mean “A and B are different from each other.”
  • the term may also mean that "A and B are different from C”.
  • Terms such as “separate,” “coupled,” etc. may also be interpreted in the same manner as “different.”

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A terminal according to one aspect of the present disclosure includes a reception unit for receiving a MAC CE (Medium Access Control control element) including a field indicating a period of time before activation of a spatial relation with reference to certain timing, and a control unit for controlling activation of the spatial relation on the basis of the MAC CE. According to one aspect of the present disclosure, favorable maintenance of communication quality can be attained.

Description

端末、無線通信方法及び基地局Terminal, wireless communication method and base station
 本開示は、次世代移動通信システムにおける端末、無線通信方法及び基地局に関する。 The present disclosure relates to terminals, wireless communication methods, and base stations in next-generation mobile communication systems.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high data rate, low delay, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel. 10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、6th generation mobile communication system(6G)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 LTE successor systems (for example, 5th generation mobile communication system (5G), 5G+ (plus), 6th generation mobile communication system (6G), New Radio (NR), 3GPP Rel. 15 and later) are also being considered. .
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、機械学習(Machine Learning(ML))のような人工知能(Artificial Intelligence(AI))技術を活用することが検討されている。例えば、AI支援推定(AI-aided estiamtion)を利用するAI支援ビーム管理が検討されている。 Regarding future wireless communication technology, the use of artificial intelligence (AI) technology such as machine learning (ML) is being considered for network/device control and management. For example, AI-assisted beam management using AI-aided estimation is being considered.
 しかしながら、AI支援ビーム管理の具体的な内容については、まだ検討が進んでいない。これらを適切に規定しなければ、通信スループット又は通信品質の向上が抑制されるおそれがある。 However, the specific details of AI-assisted beam management have not yet progressed. If these are not defined appropriately, there is a risk that improvements in communication throughput or communication quality will be suppressed.
 そこで、本開示は、通信品質の好適な維持を実現できる端末、無線通信方法及び基地局を提供することを目的の1つとする。 Therefore, one of the objects of the present disclosure is to provide a terminal, a wireless communication method, and a base station that can achieve preferable maintenance of communication quality.
 本開示の一態様に係る端末は、あるタイミングを基準とする空間関係のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を受信する受信部と、前記MAC CEに基づいて前記空間関係のアクティベーションを制御する制御部と、を有する。 A terminal according to an aspect of the present disclosure includes a receiving unit that receives a Medium Access Control control element (MAC Control Element (CE)) including a field indicating a time until activation of a spatial relationship based on a certain timing; and a control unit that controls the activation of the spatial relationship based on the MAC CE.
 本開示の一態様によれば、通信品質の好適な維持を実現できる。 According to one aspect of the present disclosure, preferable maintenance of communication quality can be achieved.
図1は、ビームパターン指示の一例を示す図である。FIG. 1 is a diagram showing an example of beam pattern indication. 図2は、ビームパターン指示に基づく制御の一例を示す図である。FIG. 2 is a diagram showing an example of control based on beam pattern instructions. 図3は、1つの時間オフセットを含む予測PUCCH空間関係指示の適用タイミングの一例を示す図である。FIG. 3 is a diagram illustrating an example of application timing of a predicted PUCCH spatial relationship indication with one time offset. 図4は、複数の時間オフセットを含む予測PUCCH空間関係指示の適用タイミングの一例を示す図である。FIG. 4 is a diagram illustrating an example of application timing of a predicted PUCCH spatial relationship indication including multiple time offsets. 図5A及び5Bは、予測PUCCH空間関係指示MAC CEの一例を示す図である。5A and 5B are diagrams showing an example of a predicted PUCCH spatial relationship indication MAC CE. 図6は、予測SRS空間関係指示MAC CEの一例を示す図である。FIG. 6 is a diagram showing an example of the predicted SRS spatial relationship indication MAC CE. 図7は、予測PDCCH用TCI状態指示MAC CEの一例を示す図である。FIG. 7 is a diagram showing an example of TCI state indication MAC CE for predicted PDCCH. 図8A及び8Bは、予測PDSCH用TCI状態指示MAC CEの一例を示す図である。8A and 8B are diagrams showing an example of a TCI state indication MAC CE for predicted PDSCH. 図9A及び9Bは、量子化した空間関係/TCI状態をアクティベートする時間の情報の一例を示す図である。9A and 9B are diagrams illustrating an example of quantized spatial relationship/time to activate TCI state information. 図10A及び10Bは、利用可能な時間長の一例を示す図である。10A and 10B are diagrams showing an example of the length of time available. 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 11 is a diagram illustrating an example of a schematic configuration of a radio communication system according to an embodiment. 図12は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of the configuration of a base station according to one embodiment. 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment; 図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 14 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment.
(無線通信への人工知能(Artificial Intelligence(AI))技術の適用)
 将来の無線通信技術について、ネットワーク/デバイスの制御、管理などに、AI技術を活用することが検討されている。
(Application of artificial intelligence (AI) technology to wireless communication)
As for future wireless communication technology, utilization of AI technology for control and management of networks/devices is under consideration.
 例えば、将来の無線通信技術について、特に、ビームを用いる通信において、ビーム管理、受信信号の復号などのために、チャネル推定(チャネル測定と呼ばれてもよい)の高精度化が望まれている。 For example, for future wireless communication technologies, especially in communications using beams, it is desired to improve the accuracy of channel estimation (also referred to as channel measurement) for beam management, decoding of received signals, and the like. .
 チャネル推定は、例えば、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、同期信号(Synchronization Signal(SS))、同期信号/ブロードキャストチャネル(Synchronization Signal/Physical Broadcast Channel(SS/PBCH))ブロック、復調用参照信号(DeModulation Reference Signal(DMRS))、測定用参照信号(Sounding Reference Signal(SRS))などの少なくとも1つを用いて行われてもよい。 Channel estimation, for example, Channel State Information Reference Signal (CSI-RS), Synchronization Signal (SS), Synchronization Signal/Physical Broadcast Channel (SS/PBCH )) block, demodulation reference signal (DMRS), measurement reference signal (SRS), or the like.
 これまでの無線通信技術では、高精度なチャネル推定を行うためには、大量の推定用リソース(例えば、参照信号を送信するためのリソース)が必要であり、用いられる全アンテナポートについてのチャネル推定が必要であった。高精度なチャネル推定の実現のためにDMRS、CSI-RSなどのリソースを増大させると、データ送受信のためのリソース(例えば、下りリンク共有チャネル(Physical Downlink Shared Channel(PDSCH))リソース、上りリンク共有チャネル(Physical Uplink Shared Channel(PUSCH))リソース)が減少してしまう。 Conventional wireless communication technology requires a large amount of estimation resources (for example, resources for transmitting reference signals) in order to perform highly accurate channel estimation. was necessary. If resources such as DMRS and CSI-RS are increased to achieve highly accurate channel estimation, resources for data transmission and reception (for example, physical downlink shared channel (PDSCH)) resources, uplink shared The channel (Physical Uplink Shared Channel (PUSCH) resource) will decrease.
 また、これまでの無線通信技術では、現在又は過去の測定結果に基づく制御はできたが、無線品質が劣化してリンクが切断する場合などには対応が遅れてしまう。 Also, with conventional wireless communication technology, it was possible to control based on current or past measurement results, but when the wireless quality deteriorated and the link was disconnected, the response would be delayed.
 将来的に、より少ないリソースでの高精度なチャネル推定、将来を予測する測定などについて、機械学習(Machine Learning(ML))のようなAI技術を利用して実現することが検討される。このようなチャネル推定は、AI支援推定(AI-aided estiamtion)と呼ばれてもよい。AI支援推定を利用するビーム管理は、AI支援ビーム管理と呼ばれてもよい。 In the future, it will be considered to use AI technology such as machine learning (ML) to achieve high-precision channel estimation with fewer resources and measurements that predict the future. Such channel estimation may be called AI-aided estimation. Beam management that utilizes AI-assisted estimation may be referred to as AI-assisted beam management.
 AI支援ビーム管理の一例としては、端末(ユーザ端末、User Equipment(UE)などともいう)においてAIが利用される場合には、AIは将来のビーム測定値を予測してもよい。また、UEは予測ありの拡張ビーム障害回復(enhanced beam failure recovery(enhanced BFR))をトリガしてもよい。 As an example of AI-assisted beam management, when AI is used in terminals (also called user terminals, User Equipment (UE), etc.), AI may predict future beam measurements. The UE may also trigger enhanced beam failure recovery (enhanced BFR) with prediction.
 AI支援ビーム管理の一例としては、基地局(Base Station(BS))においてAIが利用される場合には、AIは将来のビーム測定値(例えば、細いビームの測定値)を予測してもよいし、少ない数のビーム管理に基づいて細いビームの測定値を推定(導出)してもよい。また、UEは、時間オフセットありのビーム指示を受信してもよい。 As an example of AI-assisted beam management, if AI is utilized at the Base Station (BS), the AI may predict future beam measurements (e.g. narrow beam measurements) However, narrow beam measurements may be estimated (derived) based on a small number of beam management. The UE may also receive beam indications with time offsets.
 しかしながら、AI支援ビーム管理の具体的な内容については、まだ検討が進んでいない。これらを適切に規定しなければ、通信スループット又は通信品質の向上が抑制されるおそれがある。 However, the specific details of AI-assisted beam management have not yet progressed. If these are not defined appropriately, there is a risk that improvements in communication throughput or communication quality will be suppressed.
 そこで、本発明者らは、時間オフセットありのビーム指示に好適な制御方法などを着想した。これによれば、UEがビームに好適に追従できるため、通信品質の好適な維持を実現できる。なお、本開示の各実施形態は、AI/予測が利用されない場合に適用されてもよい。 Therefore, the inventors came up with a control method suitable for beam indication with a time offset. According to this, since the UE can suitably follow the beam, it is possible to suitably maintain the communication quality. Note that each embodiment of the present disclosure may be applied when AI/prediction is not utilized.
 本開示の一実施形態では、UE/BSは、訓練モード(training mode)においてMLモデルの訓練を行い、テストモード(test mode、testing modeなどとも呼ばれる)においてMLモデルを実施する。テストモードでは、訓練モードにおいて訓練されたMLモデル(trained ML model)の精度の検証(バリデーション)が行われてもよい。 In one embodiment of the present disclosure, the UE/BS trains the ML model in training mode and implements the ML model in test mode (also called test mode, testing mode, etc.). In the test mode, validation of the accuracy of the trained ML model in the training mode may be performed.
 本開示においては、UE/BSは、MLモデルに対して、チャネル状態情報、参照信号測定値などを入力して、高精度なチャネル状態情報/測定値/ビーム選択/位置、将来のチャネル状態情報/無線リンク品質などを出力してもよい。 In the present disclosure, the UE/BS inputs channel state information, reference signal measurements, etc. to the ML model to obtain highly accurate channel state information/measurements/beam selection/position, future channel state information / Radio link quality etc. may be output.
 なお、本開示において、AIは、以下の少なくとも1つの特徴を有する(実施する)オブジェクト(対象、客体、データ、関数、プログラムなどとも呼ばれる)で読み替えられてもよい:
・観測又は収集される情報に基づく推定、
・観測又は収集される情報に基づく選択、
・観測又は収集される情報に基づく予測。
It should be noted that in the present disclosure, AI may be read as an object (also called object, object, data, function, program, etc.) having (implementing) at least one of the following characteristics:
Estimates based on observed or collected information;
- Choices based on information observed or collected;
• Predictions based on observed or collected information.
 本開示において、当該物体は、例えば、端末、基地局などの装置、デバイスなどであってもよい。また、当該物体は、当該装置に含まれるプログラムに該当してもよい。 In the present disclosure, the object may be, for example, a terminal, a device such as a base station, or a device. Also, the object may correspond to a program included in the device.
 また、本開示において、MLモデルは、以下の少なくとも1つの特徴を有する(実施する)オブジェクトで読み替えられてもよい:
・情報を与えること(feeding)によって、推定値を生み出す、
・情報を与えることによって、推定値を予測する、
・情報を与えることによって、特徴を発見する、
・情報を与えることによって、動作を選択する。
Also, in this disclosure, an ML model may be read as an object that has (enforces) at least one of the following characteristics:
Generating an estimate by feeding,
Informed to predict estimates;
・Discover characteristics by giving information,
• Selecting actions by giving information.
 また、本開示において、MLモデルは、AIモデル、予測分析(predictive analytics)、予測分析モデルなどの少なくとも1つで読み替えられてもよい。また、MLモデルは、回帰分析(例えば、線形回帰分析、重回帰分析、ロジスティック回帰分析)、サポートベクターマシン、ランダムフォレスト、ニューラルネットワーク、ディープラーニングなどの少なくとも1つを用いて導出されてもよい。本開示において、モデルは、エンコーダー、デコーダー、ツールなどの少なくとも1つで読み替えられてもよい。 Also, in the present disclosure, the ML model may be read as at least one of AI model, predictive analytics, predictive analysis model, and the like. Also, the ML model may be derived using at least one of regression analysis (e.g., linear regression analysis, multiple regression analysis, logistic regression analysis), support vector machines, random forests, neural networks, deep learning, and the like. In this disclosure, model may be translated as at least one of encoder, decoder, tool, and the like.
 MLモデルは、入力される情報に基づいて、推定値、予測値、選択される動作、分類、などの少なくとも1つの情報を出力する。  The ML model outputs at least one information such as estimated value, predicted value, selected action, classification, etc., based on the input information.
 MLモデルには、教師あり学習(supervised learning)、教師なし学習(unsupervised learning)、強化学習(Reinforcement learning)などが含まれてもよい。教師あり学習は、入力を出力にマップする一般的なルールを学習するために用いられてもよい。教師なし学習は、データの特徴を学習するために用いられてもよい。強化学習は、目的(ゴール)を最大化するための動作を学習するために用いられてもよい。 The ML model may include supervised learning, unsupervised learning, reinforcement learning, etc. Supervised learning may be used to learn general rules that map inputs to outputs. Unsupervised learning may be used to learn features of data. Reinforcement learning may be used to learn actions to maximize a goal.
 後述の各実施形態は、MLモデルに教師あり学習を利用する場合を想定して主に説明するが、これに限られない。 Each embodiment described later will be mainly described assuming that supervised learning is used in the ML model, but it is not limited to this.
 本開示において、実施、運用、動作、実行などは、互いに読み替えられてもよい。また、本開示において、テスト、訓練後(after-training)、本番の利用、実際の利用、などは互いに読み替えられてもよい。信号は、信号/チャネルと互いに読み替えられてもよい。 In the present disclosure, implementation, operation, operation, execution, etc. may be read interchangeably. Also, in the present disclosure, testing, after-training, production use, actual use, etc. may be read interchangeably. A signal may be interchanged with signal/channel.
 本開示において、訓練モードは、UE/BSがMLモデルのために信号を送信/受信するモード(言い換えると、訓練期間における動作モード)に該当してもよい。本開示において、テストモードは、UE/BSがMLモデルを実施する(例えば、訓練されたMLモデルを実施して出力を予測する)モード(言い換えると、テスト期間における動作モード)に該当してもよい。 In the present disclosure, the training mode may correspond to the mode in which the UE/BS transmits/receives signals for the ML model (in other words, the mode of operation during training). In the present disclosure, the test mode corresponds to the mode in which the UE/BS implements the ML model (e.g., implements the trained ML model to predict the output) (in other words, the operating mode during the test). good.
 本開示において、訓練モードは、テストモードで送信される特定の信号について、オーバーヘッドが大きい(例えば、リソース量が多い)当該特定の信号が送信されるモードを意味してもよい。 In the present disclosure, training mode may refer to a mode in which a specific signal transmitted in test mode has a large overhead (eg, a large amount of resources) is transmitted.
 本開示において、訓練モードは、第1の設定(例えば、第1のDMRS設定、第1のCSI-RS設定)を参照するモードを意味してもよい。本開示において、テストモードは、第1の設定とは別の第2の設定(例えば、第2のDMRS設定、第2のCSI-RS設定)を参照するモードを意味してもよい。第1の設定は、第2の設定よりも、測定に関する時間リソース、周波数リソース、符号リソース、ポート(アンテナポート)の少なくとも1つが多く設定されてもよい。 In the present disclosure, training mode may refer to a mode that refers to a first configuration (eg, first DMRS configuration, first CSI-RS configuration). In the present disclosure, test mode may refer to a mode that refers to a second configuration (eg, second DMRS configuration, second CSI-RS configuration) different from the first configuration. At least one of time resources, frequency resources, code resources, and ports (antenna ports) related to measurement may be set more in the first setting than in the second setting.
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication method according to each embodiment may be applied independently, or may be applied in combination.
 以下の実施形態では、UE-BS間の通信に関するMLモデルを説明するため、関連する主体はUE及びBSであるが、本開示の各実施形態の適用は、これに限られない。例えば、別の主体間の通信(例えば、UE-UE間の通信)については、下記実施形態のUE及びBSを、第1のUE及び第2のUEで読み替えてもよい。言い換えると、本開示のUE、BSなどは、いずれも任意のUE/BSで読み替えられてもよい。 In the following embodiments, the UE and the BS are the relevant subjects in order to explain the ML model for communication between the UE and the BS, but the application of each embodiment of the present disclosure is not limited to this. For example, for communication between different entities (eg, UE-UE communication), UE and BS in the following embodiments may be read as first UE and second UE. In other words, any UE, BS, etc. in this disclosure may be read as any UE/BS.
 本開示において、「A/B」、「A及びBの少なくとも一方」、は互いに読み替えられてもよい。 In the present disclosure, "A/B" and "at least one of A and B" may be read interchangeably.
 本開示において、アクティベート、ディアクティベート、指示(又は指定(indicate))、選択、設定(configure)、更新(update)、決定(determine)などは、互いに読み替えられてもよい。本開示において、サポートする、制御する、制御できる、動作する、動作できる、は互いに読み替えられてもよい。 In the present disclosure, activate, deactivate, indicate (or indicate), select, configure, update, determine, etc. may be read interchangeably. In the present disclosure, supporting, controlling, controllable, operating, and capable of operating may be read interchangeably.
 本開示において、無線リソース制御(Radio Resource Control(RRC))、RRCパラメータ、RRCメッセージ、上位レイヤパラメータ、情報要素(IE)、設定、は互いに読み替えられてもよい。本開示において、Medium Access Control制御要素(MAC Control Element(CE))、更新コマンド、アクティベーション/ディアクティベーションコマンド、は互いに読み替えられてもよい。 In the present disclosure, Radio Resource Control (RRC), RRC parameters, RRC messages, higher layer parameters, information elements (IEs), and settings may be read interchangeably. In the present disclosure, Medium Access Control Control Element (MAC Control Element (CE)), update command, and activation/deactivation command may be read interchangeably.
 本開示において、パネル、UEパネル、パネルグループ、ビーム、ビームグループ、プリコーダ、Uplink(UL)送信エンティティ、送受信ポイント(Transmission/Reception Point(TRP))、空間関係情報(Spatial Relation Information(SRI))、空間関係、SRSリソース識別子(SRS Resource Indicator(SRI))、SRSリソース、制御リソースセット(COntrol REsource SET(CORESET))、Physical Downlink Shared Channel(PDSCH)、コードワード、基地局、所定のアンテナポート(例えば、復調用参照信号(DeModulation Reference Signal(DMRS))ポート)、所定のアンテナポートグループ(例えば、DMRSポートグループ)、所定のグループ(例えば、符号分割多重(Code Division Multiplexing(CDM))グループ、所定の参照信号グループ、CORESETグループ)、所定のリソース(例えば、所定の参照信号リソース)、所定のリソースセット(例えば、所定の参照信号リソースセット)、CORESETプール、上りリンク制御チャネル(Physical Uplink Control Channel(PUCCH))グループ(PUCCHリソースグループ)、空間関係グループ、下りリンクの送信設定指示状態(Transmission Configuration Indication state(TCI状態))(DL TCI状態)、上りリンクのTCI状態(UL TCI状態)、統一されたTCI状態(unified TCI state)、共通TCI状態(common TCI state)、擬似コロケーション(Quasi-Co-Location(QCL))、QCL想定などは、互いに読み替えられてもよい。 In the present disclosure, panel, UE panel, panel group, beam, beam group, precoder, Uplink (UL) transmitting entity, Transmission/Reception Point (TRP), Spatial Relation Information (SRI)), Spatial relationship, SRS resource indicator (SRI), SRS resource, control resource set (COntrol resource SET (CORESET)), physical downlink shared channel (PDSCH), codeword, base station, given antenna port (for example , demodulation reference signal (DeModulation Reference Signal (DMRS) port), predetermined antenna port group (for example, DMRS port group), predetermined group (for example, code division multiplexing (CDM)) group, predetermined reference signal group, CORESET group), predetermined resource (e.g., predetermined reference signal resource), predetermined resource set (e.g., predetermined reference signal resource set), CORESET pool, physical uplink control channel (PUCCH )) group (PUCCH resource group), spatial relationship group, downlink Transmission Configuration Indication state (TCI state) (DL TCI state), uplink TCI state (UL TCI state), unified TCI state (unified TCI state), common TCI state (common TCI state), Quasi-Co-Location (QCL), QCL assumption, etc. may be read interchangeably.
 本開示において、インデックス、ID、インディケーター、リソースID、は互いに読み替えられてもよい。本開示において、シーケンス、リスト、セット、グループ、群、クラスター、サブセットなどは、互いに読み替えられてもよい。 In the present disclosure, indexes, IDs, indicators, and resource IDs may be read interchangeably. In the present disclosure, sequences, lists, sets, groups, groups, clusters, subsets, etc. may be read interchangeably.
 本開示において、CSI-RSは、ノンゼロパワー(Non Zero Power(NZP))CSI-RS、ゼロパワー(Zero Power(ZP))CSI-RS及びCSI干渉測定(CSI Interference Measurement(CSI-IM))の少なくとも1つと互いに読み替えられてもよい。 In the present disclosure, CSI-RS refers to Non Zero Power (NZP) CSI-RS, Zero Power (ZP) CSI-RS and CSI Interference Measurement (CSI-IM)). At least one may be read interchangeably.
 本開示において、測定/報告されるRSは、予測BFRのために測定/報告されるRSを意味してもよい。 In the present disclosure, measured/reported RS may mean RS measured/reported for predicted BFR.
(無線通信方法)
 以下の実施形態において、UEは、時間オフセットありのビーム指示を通知されてもよい。時間オフセットありのビーム指示は、複数の時刻のそれぞれに対応するビーム指示に該当してもよい。以下、時間オフセットありのビーム指示、複数ビーム指示、ビームパターン指示、予測(predicted)ビーム指示、一連(sequential)ビーム指示、拡張ビーム指示などは、互いに読み替えられてもよい。
(Wireless communication method)
In the following embodiments, the UE may be informed of beam pointing with time offset. A beam instruction with a time offset may correspond to a beam instruction corresponding to each of a plurality of times. Hereinafter, the terms "beam indication with time offset", "multiple beam indication", "beam pattern indication", "predicted beam indication", "sequential beam indication", "extended beam indication", etc. may be interchanged with each other.
 時間オフセットは、あるタイミングを基準とする、空間関係/TCI状態のアクティベートまでの(アクティベーションを適用するまでの)時間を意味してもよい。 A time offset may mean the time to activation of a spatial relationship/TCI state (to apply the activation) relative to some timing.
 図1は、ビームパターン指示の一例を示す図である。本例では、AIを有するBSは、3つのCSI-RS(CSI-RS1、2、3)を送信しており、UEからの信号(例えば、SRS)/ビーム測定結果(例えば、CSIビームレポート)に基づいて、将来のビーム品質(例えば、各CSI-RSのUEにおける受信品質)を予測する。 FIG. 1 is a diagram showing an example of beam pattern instructions. In this example, the BS with AI is transmitting three CSI-RS (CSI- RS 1, 2, 3), the signal from the UE (eg SRS)/beam measurement result (eg CSI beam report) , predict future beam quality (eg, reception quality at the UE for each CSI-RS).
 基地局は将来のビーム品質に基づいて、1つ又は複数の時間にわたる1つ以上のビームの情報を含むビームパターン指示をワンショットで送信してもよい。 A base station may send a one-shot beam pattern indication containing information for one or more beams over one or more time periods based on future beam quality.
 図1のビームパターン指示は、時刻t=0(時間オフセット#0=0(時間オフセットなし))についてCSI-RS1、時刻t=1(時間オフセット#1)についてCSI-RS2及び時刻t=2(時間オフセット#3)についてCSI-RS3を示す。これは、各時刻において最もUEにおける受信品質が高いと予測されるビームに対応してもよい。図示されるUEは、破線方向に移動をしており、基地局はこれを考慮して上記ビームパターン指示を生成した。 The beam pattern instructions in FIG. CSI-RS3 is shown for time offset #3). This may correspond to the beam that is expected to have the highest reception quality at the UE at each time. The UE shown is moving in the direction of the dashed line, and the base station took this into account when generating the beam pattern indication.
 図2は、ビームパターン指示に基づく制御の一例を示す図である。UEは、受信したビームパターン指示に従って、各時間インスタント(各時間オフセットに対応する時刻)についてのビームを適用(利用、想定)してもよい。 FIG. 2 is a diagram showing an example of control based on beam pattern instructions. The UE may apply (use, assume) a beam for each time instant (time corresponding to each time offset) according to the received beam pattern indication.
 本例では、UEは、ビームパターン指示を示すMAC CEを、PDSCHにおいて受信し、この受信についてのACK(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK))を送信する。UEは、このACK送信から一定期間(図では、3*対応するサブキャリア間隔(SubCarrier Spacing(SCS))設定のためのサブフレームあたりスロット数、言い換えると3ms)が経過したタイミングにおいて、CSI-RS1に対応するTCI状態/空間関係#0を適用する。また、UEは、上記タイミングから時間オフセット#1経過後にはCSI-RS2に対応するTCI状態/空間関係#1を適用し、上記タイミングから時間オフセット#2経過後にはCSI-RS3に対応するTCI状態/空間関係#2を適用してもよい。 In this example, the UE receives the MAC CE indicating the beam pattern indication on the PDSCH and transmits an ACK (eg, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)) for this reception. At the timing when a certain period of time (in the figure, 3*the number of slots per subframe for setting the corresponding SubCarrier Spacing (SCS), in other words 3 ms) has passed since this ACK transmission, the UE sends the CSI-RS1 Apply the TCI state/spatial relationship #0 corresponding to . Also, the UE applies the TCI state/spatial relationship #1 corresponding to CSI-RS2 after the time offset #1 has elapsed from the above timing, and the TCI state corresponding to CSI-RS3 after the time offset #2 has elapsed from the above timing. / spatial relationship #2 may be applied.
 なお、本開示において、タイミング、時刻、時間、スロット、サブスロット、シンボル、サブフレームなどは、互いに読み替えられてもよい。 In addition, in the present disclosure, timing, time, time, slot, subslot, symbol, subframe, etc. may be read interchangeably.
 以下の実施形態は、ビームパターン指示の内容、処理、適用タイミングなどに関する。 The following embodiments relate to the content, processing, application timing, etc. of beam pattern instructions.
<第1の実施形態>
 第1の実施形態は、PUCCHについてのビームパターン指示に関する。当該指示は、予測されるPUCCH空間関係アクティベーション/ディアクティベーションMAC CE(Predicted PUCCH spatial relation Activation/Deactivation MAC CE)、時間オフセットありのPUCCH空間関係アクティベーション/ディアクティベーションMAC CE、予測PUCCH空間関係指示MAC CE、予測PUCCH空間関係指示などと呼ばれてもよい。
<First Embodiment>
The first embodiment relates to beam pattern indication for PUCCH. The indication is Predicted PUCCH spatial relation Activation/Deactivation MAC CE (Predicted PUCCH spatial relation Activation/Deactivation MAC CE), PUCCH spatial relation activation/deactivation MAC CE with time offset, Predicted PUCCH spatial relation It may also be called an indication MAC CE, a predicted PUCCH spatial relationship indication, and so on.
[実施形態1.1]
 予測PUCCH空間関係指示は、1つの時間オフセットだけを含んでもよい。この場合、UEは、参照タイミングを基準として以下のいずれかの時間が経過した後において予測PUCCH空間関係指示(アクティベーションコマンド)を適用してもよい:
 ・時間オフセット、
 ・時間オフセット+X*(対応するSCS設定のためのサブフレームあたりスロット数)。
[Embodiment 1.1]
The predicted PUCCH spatial relationship indication may contain only one time offset. In this case, the UE may apply the predicted PUCCH spatial relationship indication (activation command) after any of the following times relative to the reference timing:
・time offset,
• Time offset + X* (number of slots per subframe for the corresponding SCS setting).
 ここで、参照タイミングは、UEがアクティベーションコマンドを伝送するPDSCHに対応するHARQ-ACKを有するPUCCHを送信するタイミング(の終わり)であってもよいし、UEがアクティベーションコマンドを伝送するPDSCHを受信するタイミング(の終わり)であってもよいし、これらのタイミングのいずれかにX*(対応するSCS設定のためのサブフレームあたりスロット数)を加えたタイミングであってもよい。 Here, the reference timing may be the timing (end) at which the UE transmits PUCCH with HARQ-ACK corresponding to the PDSCH that transmits the activation command, or the UE transmits the PDSCH that transmits the activation command. It may be the timing (end) of receiving, or the timing obtained by adding X* (the number of slots per subframe for setting the corresponding SCS) to any of these timings.
 なお、UEは、参照タイミングとして、アクティベーションコマンドを伝送するPDSCHを受信するタイミングを用いる場合であっても、参照タイミングを基準として時間オフセット(又は、時間オフセット+X*(対応するSCS設定のためのサブフレームあたりスロット数))が経過した第1のタイミングと、上記アクティベーションコマンドを伝送するPDSCHに対応するHARQ-ACKを有するPUCCHを送信するタイミングを基準として一定期間が経過した第2のタイミングと、を比較して、上記第1のタイミングが上記第2のタイミングより早い場合には、上記第2のタイミングにおいて上記アクティベーションコマンドを適用してもよい。この場合、上記PUCCHの送信前にPUCCHの空間関係が変わることを抑制できる。なお、この一定期間は、X*(対応するSCS設定のためのサブフレームあたりスロット数)であってもよいし、時間オフセットであってもよいし、時間オフセット+X*(対応するSCS設定のためのサブフレームあたりスロット数)であってもよい。 In addition, even when the timing of receiving the PDSCH that transmits the activation command is used as the reference timing, the UE uses the reference timing as a reference time offset (or time offset + X * (for the corresponding SCS setting A first timing when the number of slots per subframe)) has passed, and a second timing when a certain period has passed based on the timing of transmitting PUCCH having HARQ-ACK corresponding to the PDSCH that transmits the activation command. , and if the first timing is earlier than the second timing, the activation command may be applied at the second timing. In this case, it is possible to prevent the spatial relationship of the PUCCH from changing before the transmission of the PUCCH. Note that this fixed period may be X* (the number of slots per subframe for setting the corresponding SCS), may be a time offset, or may be a time offset + X* (for setting the corresponding SCS). number of slots per subframe).
 なお、UEは、上記Xの値を、特定のルールに基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせに基づいて決定してもよいし、UE能力に基づいて決定してもよい。Xは例えば3であってもよい。 Note that the UE may determine the value of X based on a specific rule, physical layer signaling (eg, DCI), higher layer signaling (eg, RRC signaling, MAC CE), a specific signal/ It may be determined based on the channel, or a combination thereof, or may be determined based on the UE capabilities. X may be 3, for example.
 なお、UEは、参照タイミングを基準として上記のいずれかの時間が経過した後の特定のスロット(例えば、最初のスロット、最初のULスロット)においてアクティベーションコマンドを適用してもよい。 It should be noted that the UE may apply the activation command in a specific slot (eg, the first slot, the first UL slot) after any of the above times has passed based on the reference timing.
 図3は、1つの時間オフセットを含む予測PUCCH空間関係指示の適用タイミングの一例を示す図である。本例では、上記参照タイミングは、UEがアクティベーションコマンドに対応するHARQ-ACKを送信するタイミングである。 FIG. 3 is a diagram showing an example of application timing of a predicted PUCCH spatial relationship indication including one time offset. In this example, the reference timing is the timing at which the UE sends HARQ-ACK corresponding to the activation command.
 図示される時間Aは、アクティベーションコマンドの適用が、参照タイミングを基準として時間オフセットが経過した後において行われる場合の当該適用の時間である。また、図示される時間Bは、アクティベーションコマンドの適用が、参照タイミングを基準として時間オフセット+3*(対応するSCS設定のためのサブフレームあたりスロット数)が経過した後において行われる場合の当該適用の時間である。 The illustrated time A is the time of application of the activation command when it is applied after the time offset has passed with reference to the reference timing. In addition, the time B shown is the application of the activation command after the time offset + 3* (the number of slots per subframe for setting the corresponding SCS) has elapsed with reference to the reference timing. It's time for
[実施形態1.2]
 予測PUCCH空間関係指示は、複数の時間オフセットを含んでもよい。予測PUCCH空間関係指示は、各時間オフセットに対応する空間設定(空間関係情報)を含んでもよい。
[Embodiment 1.2]
The predicted PUCCH spatial relationship indication may include multiple time offsets. The predicted PUCCH spatial relationship indication may include spatial settings (spatial relationship information) corresponding to each time offset.
 なお、時間オフセットは絶対的な時間オフセットであってもよい。この場合、ある時間オフセットに対応する空間関係情報は、上記参照タイミングを基準として当該時間オフセットが経過した後において適用されてもよい。参照タイミングは時間オフセット=0に該当する。 Note that the time offset may be an absolute time offset. In this case, the spatial relationship information corresponding to a certain time offset may be applied after the time offset has passed with reference to the reference timing. The reference timing corresponds to time offset=0.
 また、時間オフセットは相対的な(差分的な)時間オフセットであってもよい。この場合、ある時間オフセットに対応する空間関係情報は、上記参照タイミングと、別の時間オフセットに対応する空間関係情報が適用された(アクティベーションコマンドが最後に適用された)タイミングと、のうちの近い方(時間が最近のほう)を基準として、当該時間オフセットが経過した後において適用されてもよい。言い換えると、ある時間オフセットに対応する空間関係情報は、上記参照タイミングを基準として当該時間オフセット及び別の時間オフセットの和が経過した後において適用されてもよい。 Also, the time offset may be a relative (differential) time offset. In this case, the spatial relationship information corresponding to a certain time offset is one of the reference timing and the timing at which the spatial relationship information corresponding to another time offset is applied (the last application of the activation command). It may be applied after the time offset has passed with reference to the closer one (the one with the latest time). In other words, the spatial relationship information corresponding to a certain time offset may be applied after the sum of the time offset and another time offset has elapsed relative to the reference timing.
 図4は、複数の時間オフセットを含む予測PUCCH空間関係指示の適用タイミングの一例を示す図である。本例は、図2と類似するが、時間オフセットが絶対的な時間オフセットである場合には、時間オフセット#2は図示される期間Aの長さであり、時間オフセットが相対的な時間オフセットである場合には、時間オフセット#2は図示される期間Bの長さである。 FIG. 4 is a diagram showing an example of application timing of a predicted PUCCH spatial relationship indication including multiple time offsets. The example is similar to FIG. 2, but where the time offset is an absolute time offset, time offset #2 is the length of period A shown, and time offset is a relative time offset. In some cases, time offset #2 is the length of period B shown.
[実施形態1.3]
 UEは、時間オフセットを、特定のルールに基づいて決定してもよいし、物理レイヤシグナリング(例えば、DCI)、上位レイヤシグナリング(例えば、RRCシグナリング、MAC CE)、特定の信号/チャネル、又はこれらの組み合わせに基づいて決定してもよいし、UE能力に基づいて決定してもよい。
[Embodiment 1.3]
The UE may determine the time offset based on specific rules, physical layer signaling (e.g. DCI), higher layer signaling (e.g. RRC signaling, MAC CE), specific signals/channels, or may be determined based on the combination of , or may be determined based on the UE capability.
 例えば、UEは、RRCパラメータによって、空間関係情報ごと/PUCCHリソースごとに時間オフセットを設定されてもよい。UEは、時間オフセットを設定されない空間関係情報/PUCCHリソースには、時間オフセットを適用しない(又は時間オフセット=0を適用する)と想定してもよいし、デフォルトの時間オフセットを適用してもよい。 For example, the UE may be configured with a time offset per spatial relationship information/per PUCCH resource according to the RRC parameters. The UE may assume that no time offset is applied (or apply time offset = 0) to spatial related information/PUCCH resources for which no time offset is configured, or a default time offset may be applied. .
 デフォルトの時間オフセットは、特定のルールに基づいて決定されてもよいし、設定される時間オフセットのうちの特定の時間オフセットに該当してもよいし、UE能力に基づいて決定されてもよい。 The default time offset may be determined based on a specific rule, may correspond to a specific time offset among the set time offsets, or may be determined based on the UE capabilities.
 時間オフセットが空間関係情報/PUCCHリソースごとに設定される実施形態1.3は、決まったルートをUEが移動する際(例えば、電車に乗っているとき)に好適である。 Embodiment 1.3, in which the time offset is set for each spatial relationship information/PUCCH resource, is suitable when the UE moves along a fixed route (for example, when riding a train).
[実施形態1.4]
 図5A及び5Bは、予測PUCCH空間関係指示MAC CEの一例を示す図である。当該MAC CEには、サービングセルID(Serving Cell ID)フィールド、BWP IDフィールド、PUCCHリソースIDフィールド、空間関係ID(又はS)フィールド、Cフィールド、スロットオフセットフィールドなどが含まれてもよい。
[Embodiment 1.4]
5A and 5B are diagrams illustrating an example of a predicted PUCCH spatial relationship indication MAC CE. The MAC CE may include a Serving Cell ID field, a BWP ID field, a PUCCH resource ID field, a spatial relationship ID (or S i ) field, a C field, a slot offset field, and so on.
 サービングセルIDフィールドは、当該MAC CEが適用されるサービングセルを示すためのフィールドであってもよい。BWP IDフィールドは、当該MAC CEが適用されるUL BWPを示すためのフィールドであってもよい。 The serving cell ID field may be a field for indicating the serving cell to which the MAC CE is applied. The BWP ID field may be a field for indicating the UL BWP to which the MAC CE is applied.
 PUCCHリソースIDフィールドは、空間関係情報によって空間関係がアクティベートされるPUCCHリソースのID(Identifier)を示してもよい。 The PUCCH resource ID field may indicate the ID (Identifier) of the PUCCH resource whose spatial relationship is activated by the spatial relationship information.
 空間関係IDフィールドは、アクティベートされる空間関係の空間関係ID(例えば、PUCCH-SpatialRelationInfoId)を示す。Sフィールドは、アクティベート/ディアクティベートされる空間関係を示し、空間関係ID(PUCCH-SpatialRelationInfoId)i(又はi+1)の空間関係に対応する。例えば、Sフィールドが‘1’であればアクティベートを示してもよい。 The Spatial Relation ID field indicates the Spatial Relation ID (eg, PUCCH-SpatialRelationInfoId) of the spatial relation to be activated. The S i field indicates the spatial relation to be activated/deactivated and corresponds to the spatial relation of Spatial Relation ID (PUCCH-SpatialRelationInfoId) i (or i+1). For example, an S i field of '1' may indicate activation.
 スロットオフセットフィールドは、空間関係をアクティベートする時間オフセットを示してもよい。 The slot offset field may indicate the time offset that activates the spatial relationship.
 Cフィールドは、このCフィールド以降に空間関係ID(又はS)フィールド(又は別の空間設定)が存在するか否かを示してもよい。例えば、Cフィールドの値が‘1’であれば、このCフィールド以降の、空間関係ID(又はS)フィールドを含むオクテットが存在することを示し、Cフィールドの値が‘0’であれば、このCフィールド以降の、空間関係ID(又はS)フィールドを含むオクテットが存在しないことを意味してもよい。 The C field may indicate whether there is a spatial relationship ID (or S i ) field (or another spatial setting) after this C field. For example, if the C field value is '1', it indicates that there is an octet including the spatial relationship ID (or S i ) field after this C field, and if the C field value is '0' , it may mean that there are no octets containing the Spatial Relationship ID (or S i ) field after this C field.
 図5Aは、PUCCHリソースIDフィールドが示すPUCCHリソースについて、スロットオフセットフィールド及び対応するSフィールドの組が1つ以上含まれる例を示す。 FIG. 5A shows an example in which one or more pairs of slot offset fields and corresponding Si fields are included for a PUCCH resource indicated by a PUCCH resource ID field.
 図5Bは、1つのスロットオフセットフィールドにつき、PUCCHリソースIDフィールド及び対応する空間関係IDフィールドの組が1つ以上含まれる例を示す。この場合、スロットオフセットフィールドが示す時間オフセットのタイミングにおいて、複数のPUCCHリソースについて異なる空間関係をアクティベートできる。また、図示される空間設定#0と空間設定#1とは異なる時間オフセットに対応してもよい(空間設定#0は、1番目のスロットオフセットフィールドが示すスロットオフセット#0に、空間設定#1は、2番目のスロットオフセットフィールドが示すスロットオフセット#1に、それぞれ対応しててもよい)。空間設定は、1つのスロットオフセットに対応するPUCCHリソース及び空間関係の対応関係についての設定に該当してもよい。 FIG. 5B shows an example in which one or more sets of PUCCH resource ID fields and corresponding spatial relationship ID fields are included per slot offset field. In this case, different spatial relationships can be activated for multiple PUCCH resources at the timing of the time offset indicated by the slot offset field. Also, the illustrated spatial configuration #0 and spatial configuration #1 may correspond to different time offsets (spatial configuration #0 corresponds to slot offset #0 indicated by the first slot offset field, spatial configuration #1 may correspond to slot offset #1 indicated by the second slot offset field). Spatial configuration may correspond to the configuration of PUCCH resource corresponding to one slot offset and the corresponding relationship of spatial relationship.
 予測PUCCH空間関係指示MAC CEは、空間関係情報が属するセルを示すフィールドを含んでもよい。例えば、空間関係情報がセルごとに設定される場合、物理セルID(Physical Cell ID(PCI))のようなセルIDを決定するためのフィールドが上記MAC CEに含まれてもよい。PCIは、RRCによって設定されるPCI候補から選択されてもよい。 The predicted PUCCH spatial relationship indication MAC CE may include a field indicating the cell to which the spatial relationship information belongs. For example, if spatial relationship information is set for each cell, the MAC CE may include a field for determining a cell ID such as a Physical Cell ID (PCI). The PCI may be selected from PCI candidates configured by RRC.
 予測PUCCH空間関係指示MAC CEは、いくつの時間インスタント(時間オフセット)が当該MAC CEに存在するかを示すフィールド、特定のオクテットが存在するかを示すフィールドなどを含んでもよい。 A predicted PUCCH spatial relationship indication MAC CE may include a field indicating how many time instants (time offsets) exist in the MAC CE, a field indicating whether a specific octet exists, and the like.
 UEは、予測PUCCH空間関係指示MAC CEのサイズは固定である(予め定められている)と判断してもよいし、RRCパラメータに基づいて判断してもよいし、MAC CEのフィールドに基づいて判断してもよい。 The UE may determine that the size of the predicted PUCCH spatial relationship indication MAC CE is fixed (predetermined), may determine based on RRC parameters, or may determine based on MAC CE fields You can judge.
 上記RRCパラメータは、空間関係情報の最大数、PUCCHリソースの最大数、MAC CE内の時間インスタント数などの少なくとも1つであってもよい。 The RRC parameter may be at least one of the maximum number of spatial relationship information, the maximum number of PUCCH resources, the number of time instants in MAC CE, and the like.
 上記MAC CEのフィールドは、以下の少なくとも1つに該当してもよい:
 ・あるオクテットがこのMAC CEに存在するかを示す情報(例えば、上述したCフィールド)、
 ・あるフィールド(例えば、MAC CEに含まれる空間設定の数を示すフィールド)が示す数。
The above MAC CE fields may correspond to at least one of the following:
information indicating whether an octet is present in this MAC CE (e.g. the C field mentioned above);
- A number indicated by a field (eg, a field indicating the number of spatial configurations contained in the MAC CE).
 以上説明した第1の実施形態によれば、予測PUCCH空間関係指示を用いるビームパターン指示を適切に実施できる。 According to the first embodiment described above, beam pattern indication using predicted PUCCH spatial relationship indication can be appropriately implemented.
<第2の実施形態>
 第2の実施形態は、SRSについてのビームパターン指示に関する。当該指示は、予測される拡張SP/AP SRS空間関係指示MAC CE(Predicted Enhanced SP/AP SRS Spatial Relation Indication MAC CE)、時間オフセットありのSP/AP SRS空間関係指示MAC CE、予測SRS空間関係指示MAC CE、予測SRS空間関係指示などと呼ばれてもよい。なお、SP/APは、セミパーシステント(semipersistent)/非周期的(aperiodic)の意味である。
<Second embodiment>
A second embodiment relates to beam pattern indication for SRS. The indications are: Predicted Enhanced SP/AP SRS Spatial Relation Indication MAC CE (Predicted Enhanced SP/AP SRS Spatial Relation Indication MAC CE), SP/AP SRS Spatial Relation Indication MAC CE with time offset, Predicted SRS Spatial Relation Indication It may also be called MAC CE, predictive SRS spatial relationship indication, and the like. Note that SP/AP means semipersistent/aperiodic.
 第2の実施形態としては、実施形態1.1-1.4についてPUCCHをSRSに読み替えた実施形態が利用できるため、重複する説明は繰り返さない。 As the second embodiment, an embodiment in which PUCCH is read as SRS in Embodiments 1.1-1.4 can be used, so redundant description will not be repeated.
 なお、Resource IDフィールドが、空間関係を指定するフィールドに該当する。Resource IDフィールドは、SRSリソースセットIDフィールドによって示されるSRSリソースセット内のi-1(又はi)番目のSRSリソースについての空間関係導出のために用いられるリソースのID(例えば、SSBインデックス、SRSリソースID)を示してもよい。 Note that the Resource ID i field corresponds to the field that specifies the spatial relationship. The Resource ID i field is the resource ID (eg, SSB index, SRS resource ID).
 図6は、予測SRS空間関係指示MAC CEの一例を示す図である。Cフィールド、スロットオフセットフィールド以外はRel.16の拡張SP/AP SRS空間関係指示MAC CEと同様であるため、各フィールドの説明は省略する。図5A及び5Bで示したのと同様に、スロットオフセットごとのSRSリソースに対応する空間関係が指定可能である。 FIG. 6 is a diagram showing an example of the predicted SRS spatial relationship indication MAC CE. Except for C field and slot offset field, Rel. 16 extended SP/AP SRS spatial relationship indication MAC CE, so description of each field is omitted. Spatial relationships corresponding to SRS resources for each slot offset can be specified, similar to that shown in FIGS. 5A and 5B.
 以上説明した第2の実施形態によれば、予測SRS空間関係指示を用いるビームパターン指示を適切に実施できる。 According to the second embodiment described above, it is possible to appropriately perform beam pattern indication using predicted SRS spatial relationship indication.
<第3の実施形態>
 第3の実施形態は、下りリンク制御チャネル(Physical Downlink Control Channel(PDCCH))についてのビームパターン指示に関する。当該指示は、予測されるUE固有PDCCH用TCI状態指示MAC CE(Predicted TCI State Indication for UE-specific PDCCH MAC CE)、時間オフセットありのPDCCH用TCI状態指示MAC CE、予測PDCCH用TCI状態指示MAC CE、予測PDCCH用TCI状態指示などと呼ばれてもよい。
<Third Embodiment>
A third embodiment relates to beam pattern indication for a physical downlink control channel (PDCCH). The indications are Predicted TCI State Indication for UE-specific PDCCH MAC CE, TCI State Indication MAC CE for PDCCH with time offset, TCI State Indication MAC CE for predicted PDCCH. , TCI status indication for predicted PDCCH, etc.
 第3の実施形態としては、実施形態1.1-1.4についてPUCCHをPDCCH、PUCCHリソースをCORESET(又はCORESET ID)、空間関係をCORESETに適用可能なTCI状態、などに読み替えた実施形態が利用できるため、重複する説明は繰り返さない。 As a third embodiment, there is an embodiment in which PUCCH in Embodiments 1.1-1.4 is replaced with PDCCH, PUCCH resource with CORESET (or CORESET ID), spatial relationship with TCI state applicable to CORESET, etc. available, so redundant descriptions are not repeated.
 図7は、予測PDCCH用TCI状態指示MAC CEの一例を示す図である。Cフィールド、スロットオフセットフィールド以外はRel.15/16のUE固有PDCCH用TCI状態指示MAC CEと同様であるため、各フィールドの説明は省略する。図5A及び5Bで示したのと同様に、スロットオフセットごとのCORESET(CORESET ID)に対応するTCI状態が指定可能である。 FIG. 7 is a diagram showing an example of TCI state indication MAC CE for predicted PDCCH. Except for C field and slot offset field, Rel. Since it is the same as the UE-specific PDCCH TCI status indication MAC CE of 2015/16, the description of each field is omitted. Similar to that shown in FIGS. 5A and 5B, the TCI state corresponding to the CORESET (CORESET ID) for each slot offset can be specified.
 以上説明した第3の実施形態によれば、予測PDCCH用TCI状態指示を用いるビームパターン指示を適切に実施できる。 According to the third embodiment described above, the beam pattern indication using the predicted PDCCH TCI state indication can be appropriately performed.
<第4の実施形態>
 第4の実施形態は、PDSCHについてのビームパターン指示に関する。当該指示は、予測される(拡張)UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE(Predicted (Enhanced) TCI States Activation/Deactivation for UE-specific PDSCH MAC CE)、時間オフセットありのPDSCH用TCI状態指示MAC CE、予測PDSCH用TCI状態指示MAC CE、予測PDSCH用TCI状態指示などと呼ばれてもよい。
<Fourth Embodiment>
The fourth embodiment relates to beam pattern indication for PDSCH. The indication is Predicted (Enhanced) TCI States Activation/Deactivation for UE-specific PDSCH MAC CE, TCI for PDSCH with time offset It may also be called a state indication MAC CE, a TCI state indication MAC CE for predicted PDSCH, a TCI state indication for predicted PDSCH, and the like.
 第4の実施形態としては、実施形態1.1-1.4についてPUCCHをPDSCH、空間関係をTCI状態などに読み替えた実施形態が利用できるため、重複する説明は繰り返さない。 As the fourth embodiment, it is possible to use embodiments 1.1 to 1.4 in which PUCCH is replaced with PDSCH and the spatial relationship is replaced with the TCI state, etc., so redundant description will not be repeated.
 図8A及び8Bは、予測PDSCH用TCI状態指示MAC CEの一例を示す図である。Cフィールド、スロットオフセットフィールド以外はRel.15/16のUE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CE及び拡張UE固有PDSCH用TCI状態アクティベーション/ディアクティベーションMAC CEと同様であるため、各フィールドの説明は省略する。図5A及び5Bで示したのと同様に、スロットオフセットごとのPDSCHのためのTCI状態が指定可能である。  Figures 8A and 8B are diagrams showing an example of a predicted PDSCH TCI state indication MAC CE. Except for C field and slot offset field, Rel. 15/16 UE-specific PDSCH TCI state activation/deactivation MAC CE and extended UE-specific PDSCH TCI state activation/deactivation MAC CE are the same, so the description of each field is omitted. Similar to that shown in Figures 5A and 5B, the TCI state for the PDSCH per slot offset can be specified.
 以上説明した第4の実施形態によれば、予測PDSCH用TCI状態指示を用いるビームパターン指示を適切に実施できる。 According to the fourth embodiment described above, the beam pattern indication using the predicted PDSCH TCI state indication can be appropriately performed.
<第5の実施形態>
 第5の実施形態は、第1-第4の実施形態のMAC CEによって指定される時間オフセットに関する。
<Fifth Embodiment>
A fifth embodiment relates to the time offset specified by the MAC CE of the first to fourth embodiments.
 図9A及び9Bは、量子化した空間関係/TCI状態をアクティベートする時間の情報の一例を示す図である。  Figures 9A and 9B are diagrams showing an example of information on the time to activate the quantized spatial relationship/TCI state.
 UEは、設定される時間オフセットから選択される1つの時間オフセットを示すビットフィールド(時間オフセットフィールド)を、MAC CEによって通知されてもよい。図9Aにおいて、UEは、RRCパラメータを用いて各ビットフィールドに対応する4つの時間オフセット(12、14、16及び18スロット)を設定されたと想定する。 The UE may be notified by MAC CE of a bit field (time offset field) indicating one time offset selected from the set time offsets. In FIG. 9A, it is assumed that the UE is configured with four time offsets (12, 14, 16 and 18 slots) corresponding to each bitfield using RRC parameters.
 なお、UEは時間オフセットを1つだけ設定される場合には、空間関係/TCI状態をアクティベートする時間の情報を受信しなくてもよい(基地局はUEが想定する時間オフセットを把握しているため)。 Note that the UE may not receive information about the time to activate the spatial relationship/TCI state if only one time offset is configured (the base station knows the time offset the UE expects). For).
 UEは、予め規定される時間オフセットから選択される1つの時間オフセットを示すビットフィールドを、空間関係/TCI状態をアクティベートする時間の情報として受信してもよい。図9Bにおいて、各ビットフィールドに対応する4つの時間オフセット(2、4、6及び8スロット)は、例えば仕様によって予め規定されてもよい。 The UE may receive a bit field indicating one time offset selected from the predefined time offsets as information of the time to activate the spatial relationship/TCI state. In FIG. 9B, the four time offsets (2, 4, 6 and 8 slots) corresponding to each bit field may be predefined by the specification, for example.
 なお、UEが時間オフセットを扱う場合には、UEは時間オフセットに基づいて、予測のために利用可能な時間長(time duration)を決定してもよい。空間関係/TCI状態をアクティベートする時間は当該時間長の間に1つ以上存在してもよい。 Note that when the UE handles time offsets, the UE may determine the time duration available for prediction based on the time offsets. There may be one or more times during that length of time to activate the spatial relationship/TCI state.
 本開示において、当該時間長を決定するために、UEは、時間オフセットの代わりに、時間オフセット及びウィンドウサイズを報告し/受信し/決定し/設定されてもよい。 In the present disclosure, the UE may report/receive/determine/configure a time offset and a window size instead of a time offset to determine the length of time.
 UEは、時間オフセット及びウィンドウサイズによって指定される時間長の間における特定の時間インスタント(例えば、特定のスロット)において、空間関係/TCI状態をアクティベートしてもよい。 The UE may activate the spatial relationship/TCI state at specific time instants (eg, specific slots) during the length of time specified by the time offset and window size.
 また、本開示において、上記時間長を決定するために、UEは、1つの時間オフセットの代わりに、2つの時間オフセットを報告し/受信し/決定し/設定されてもよい。 Also, in the present disclosure, the UE may report/receive/determine/configure two time offsets instead of one time offset to determine the length of time.
 UEは、2つの時間オフセットによって指定される時間長の間における特定の時間インスタント(例えば、特定のスロット)において、空間関係/TCI状態をアクティベートしてもよい。 The UE may activate the spatial relationship/TCI state at specific time instants (eg, specific slots) between the length of time specified by the two time offsets.
 図10A及び10Bは、利用可能な時間長の一例を示す図である。 FIGS. 10A and 10B are diagrams showing examples of available time lengths.
 図10Aは、時間オフセット及びウィンドウサイズによって時間長が指定される例を示す。時間長は図示される期間A-Cの少なくとも1つであってもよい。期間Aは、参照時間を基準にして時間オフセットによって特定される点(時刻T)を開始時間とする、ウィンドウサイズ幅の期間(当該点以降の期間)である。期間Bは、参照時間を基準にして時間オフセットによって特定される点(時刻T)を終了時間とする、ウィンドウサイズ幅の期間(当該点以前の期間)である。期間Cは、参照時間を基準にして時間オフセットによって特定される点(時刻T)をウィンドウサイズ幅の中心とした当該ウィンドウサイズ幅の期間(当該点以前及び以降の期間を含む)である。 FIG. 10A shows an example in which the time length is specified by the time offset and window size. The length of time may be at least one of the periods AC shown. A period A is a window size period (a period after the point) starting from a point (time T) specified by a time offset with respect to the reference time. A period B is a period of a window size width (a period before the point) ending at a point (time T) specified by a time offset with respect to the reference time. A period C is a period of the window size width centered on the point (time T) specified by the time offset with respect to the reference time (including the period before and after the point).
 図10Bは、2つの時間オフセット(第1の時間オフセット、第2の時間オフセット)によって時間長が指定される例を示す。時間長は図示される期間であってもよい。この期間は、参照時間を基準にして第1の時間オフセットによって特定される点と、参照時間を基準にして第2の時間オフセットによって特定される点と、の一方を開始時間とし、他方を終了時間とする期間である。この期間の長さは、例えば第2の時間オフセット(例えば、Zスロット)>第1の時間オフセット(例えば、Xスロット)とすると、Z-Xで表現されてもよい。 FIG. 10B shows an example in which the time length is specified by two time offsets (first time offset, second time offset). The length of time may be the period shown. This period starts at one of a point specified by a first time offset relative to the reference time and a point specified by a second time offset relative to the reference time, and ends at the other. It is a period of time. The length of this period may be expressed as ZX, for example, where the second time offset (eg, Z slots) > the first time offset (eg, X slots).
 以上説明した第5の実施形態によれば、時間オフセットを適切に指定できる。 According to the fifth embodiment described above, the time offset can be specified appropriately.
<その他>
 上述の実施形態の少なくとも1つは、特定のUE能力(UE capability)を報告した又は当該特定のUE能力をサポートするUEに対してのみ適用されてもよい。
<Others>
At least one of the embodiments described above may only be applied to UEs that have reported or support a particular UE capability.
 当該特定のUE能力は、以下の少なくとも1つを示してもよい:
 ・各実施形態の特定の動作/情報をサポートするか否か、
 ・(MAC CEタイプごとの)1つのMAC CEに含められる時間インスタントの最大数、
 ・空間関係のための最大の時間オフセット、
 ・PDSCHのためのTCI状態のための最大の時間オフセット、
 ・PDCCHのための(CORESETごと/CORESETプールごと/全CORESET(プール)ごとの)TCI状態のための最大の時間オフセット。
The specific UE capabilities may indicate at least one of the following:
- Whether or not to support specific operations/information for each embodiment;
the maximum number of time instants that can be included in one MAC CE (per MAC CE type);
- the maximum time offset for the spatial relationship,
- maximum time offset for TCI state for PDSCH,
• Maximum time offset for TCI state (per CORESET/per CORESET pool/per all CORESET (pool)) for PDCCH.
 上記UE能力は、周波数ごとに報告されてもよいし、周波数レンジ(例えば、Frequency Range 1(FR1)、Frequency Range 2(FR2)、FR2-1、FR2-2)ごとに報告されてもよいし、セルごとに報告されてもよいし、UEごとに報告されてもよいし、サブキャリア間隔(SubCarrier Spacing(SCS))ごとに報告されてもよい。 The UE capabilities may be reported per frequency, or may be reported per frequency range (eg, Frequency Range 1 (FR1), Frequency Range 2 (FR2), FR2-1, FR2-2) , may be reported for each cell, may be reported for each UE, or may be reported for each subcarrier spacing (SCS).
 上記UE能力は、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))に共通に報告されてもよいし、独立に報告されてもよい。 The above UE capabilities may be reported commonly for Time Division Duplex (TDD) and Frequency Division Duplex (FDD), or may be reported independently.
 また、上述の実施形態の少なくとも1つは、UEが上位レイヤシグナリングによって上述の実施形態に関連する特定の情報を設定された場合に適用されてもよい。例えば、当該特定の情報は、ビームパターン指示を有効化することを示す情報、特定のリリース(例えば、Rel.18)向けの任意のRRCパラメータなどであってもよい。 Also, at least one of the above embodiments may be applied if the UE is configured with specific information related to the above embodiments by higher layer signaling. For example, the specific information may be information indicating to enable beam pattern indication, any RRC parameters for a specific release (eg, Rel. 18), or the like.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(wireless communication system)
A configuration of a wireless communication system according to an embodiment of the present disclosure will be described below. In this radio communication system, communication is performed using any one of the radio communication methods according to the above embodiments of the present disclosure or a combination thereof.
 図11は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 11 is a diagram showing an example of a schematic configuration of a wireless communication system according to one embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by the Third Generation Partnership Project (3GPP). .
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 The wireless communication system 1 may also support dual connectivity between multiple Radio Access Technologies (RATs) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), dual connectivity between NR and LTE (NR-E -UTRA Dual Connectivity (NE-DC)), etc. may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (MN), and the NR base station (gNB) is the secondary node (SN). In NE-DC, the NR base station (gNB) is the MN, and the LTE (E-UTRA) base station (eNB) is the SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between multiple base stations within the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC) in which both MN and SN are NR base stations (gNB) )) may be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 A wireless communication system 1 includes a base station 11 forming a macrocell C1 with a relatively wide coverage, and base stations 12 (12a-12c) arranged in the macrocell C1 and forming a small cell C2 narrower than the macrocell C1. You may prepare. A user terminal 20 may be located within at least one cell. The arrangement, number, etc. of each cell and user terminals 20 are not limited to the embodiment shown in the figure. Hereinafter, the base stations 11 and 12 are collectively referred to as the base station 10 when not distinguished.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may connect to at least one of the multiple base stations 10 . The user terminal 20 may utilize at least one of carrier aggregation (CA) using a plurality of component carriers (CC) and dual connectivity (DC).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of the first frequency band (Frequency Range 1 (FR1)) and the second frequency band (Frequency Range 2 (FR2)). Macrocell C1 may be included in FR1, and small cell C2 may be included in FR2. For example, FR1 may be a frequency band below 6 GHz (sub-6 GHz), and FR2 may be a frequency band above 24 GHz (above-24 GHz). Note that the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a higher frequency band than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Also, the user terminal 20 may communicate using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 A plurality of base stations 10 may be connected by wire (for example, an optical fiber conforming to Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between the base stations 11 and 12, the base station 11 corresponding to the upper station is an Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is an IAB Also called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 directly or via another base station 10 . The core network 30 may include, for example, at least one of Evolved Packet Core (EPC), 5G Core Network (5GCN), Next Generation Core (NGC), and the like.
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal compatible with at least one of communication schemes such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the radio communication system 1, a radio access scheme based on orthogonal frequency division multiplexing (OFDM) may be used. For example, in at least one of Downlink (DL) and Uplink (UL), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 A radio access method may be called a waveform. Note that in the radio communication system 1, other radio access schemes (for example, other single-carrier transmission schemes and other multi-carrier transmission schemes) may be used as the UL and DL radio access schemes.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the radio communication system 1, as downlink channels, a downlink shared channel (Physical Downlink Shared Channel (PDSCH)) shared by each user terminal 20, a broadcast channel (Physical Broadcast Channel (PBCH)), a downlink control channel (Physical Downlink Control Channel (PDCCH)) or the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 In the radio communication system 1, as uplink channels, an uplink shared channel (PUSCH) shared by each user terminal 20, an uplink control channel (PUCCH), a random access channel (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by the PDSCH. User data, higher layer control information, and the like may be transmitted by PUSCH. Also, a Master Information Block (MIB) may be transmitted by the PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by the PDCCH. The lower layer control information may include, for example, downlink control information (DCI) including scheduling information for at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. PDSCH may be replaced with DL data, and PUSCH may be replaced with UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (CControl Resource SET (CORESET)) and a search space (search space) may be used for PDCCH detection. CORESET corresponds to a resource searching for DCI. The search space corresponds to the search area and search method of PDCCH candidates. A CORESET may be associated with one or more search spaces. The UE may monitor CORESETs associated with certain search spaces based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. Note that "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. in the present disclosure may be read interchangeably.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 By PUCCH, channel state information (CSI), acknowledgment information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK/NACK, etc.) and scheduling request (Scheduling Request ( SR)) may be transmitted. A random access preamble for connection establishment with a cell may be transmitted by the PRACH.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In addition, in the present disclosure, downlink, uplink, etc. may be expressed without adding "link". Also, various channels may be expressed without adding "Physical" to the head.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, synchronization signals (SS), downlink reference signals (DL-RS), etc. may be transmitted. In the radio communication system 1, the DL-RS includes a cell-specific reference signal (CRS), a channel state information reference signal (CSI-RS), a demodulation reference signal (DeModulation Reference Signal (DMRS)), Positioning Reference Signal (PRS)), Phase Tracking Reference Signal (PTRS)), etc. may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a Primary Synchronization Signal (PSS) and a Secondary Synchronization Signal (SSS). A signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be called SS/PBCH block, SS Block (SSB), and so on. Note that SS, SSB, etc. may also be referred to as reference signals.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Also, in the radio communication system 1, even if measurement reference signals (SRS), demodulation reference signals (DMRS), etc. are transmitted as uplink reference signals (UL-RS), good. Note that DMRS may also be called a user terminal-specific reference signal (UE-specific reference signal).
(基地局)
 図12は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 12 is a diagram illustrating an example of the configuration of a base station according to one embodiment. The base station 10 comprises a control section 110 , a transmission/reception section 120 , a transmission/reception antenna 130 and a transmission line interface 140 . One or more of each of the control unit 110, the transmitting/receiving unit 120, the transmitting/receiving antenna 130, and the transmission line interface 140 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks that characterize the present embodiment, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the base station 10 as a whole. The control unit 110 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (eg, resource allocation, mapping), and the like. The control unit 110 may control transmission/reception, measurement, etc. using the transmission/reception unit 120 , the transmission/reception antenna 130 and the transmission line interface 140 . The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, etc., and transfer them to the transmission/reception unit 120 . The control unit 110 may perform call processing (setup, release, etc.) of communication channels, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 120 may include a baseband section 121 , a radio frequency (RF) section 122 and a measuring section 123 . The baseband section 121 may include a transmission processing section 1211 and a reception processing section 1212 . The transmitting/receiving unit 120 is configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission/reception unit 120 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of the transmission processing section 1211 and the RF section 122 . The receiving section may be composed of a reception processing section 1212 , an RF section 122 and a measurement section 123 .
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 130 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmitting/receiving unit 120 may transmit the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 120 may receive the above-described uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitting/receiving unit 120 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs Packet Data Convergence Protocol (PDCP) layer processing, Radio Link Control (RLC) layer processing (for example, RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission/reception unit 120 (transmission processing unit 1211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (DFT) on the bit string to be transmitted. Processing (if necessary), Inverse Fast Fourier Transform (IFFT) processing, precoding, transmission processing such as digital-to-analog conversion may be performed, and the baseband signal may be output.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmitting/receiving unit 120 (RF unit 122) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 130. .
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 120 (reception processing unit 1212) performs analog-to-digital conversion, Fast Fourier transform (FFT) processing, and Inverse Discrete Fourier transform (IDFT) processing on the acquired baseband signal. )) processing (if necessary), filtering, demapping, demodulation, decoding (which may include error correction decoding), MAC layer processing, RLC layer processing and PDCP layer processing. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmitting/receiving unit 120 (measuring unit 123) may measure the received signal. For example, the measurement unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, etc. based on the received signal. The measurement unit 123 measures received power (for example, Reference Signal Received Power (RSRP)), reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)) , signal strength (for example, Received Signal Strength Indicator (RSSI)), channel information (for example, CSI), and the like may be measured. The measurement result may be output to control section 110 .
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission path interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, etc., and user data (user plane data) for the user terminal 20, control plane data, and the like. Data and the like may be obtained, transmitted, and the like.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 Note that the transmitter and receiver of the base station 10 in the present disclosure may be configured by at least one of the transmitter/receiver 120, the transmitter/receiver antenna 130, and the transmission line interface 140.
 なお、送受信部120は、あるタイミング(参照タイミング)を基準とする空間関係のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を、ユーザ端末20に送信してもよい。 In addition, the transmitting/receiving unit 120 transmits to the user terminal 20 a Medium Access Control control element (MAC Control Element (CE)) including a field indicating the time until activation of the spatial relationship based on a certain timing (reference timing). You may
 制御部110は、前記MAC CEに基づいて前記ユーザ端末20が前記空間関係のアクティベーションを制御すると想定してもよく、当該想定に基づいてスケジューリング/ビームの制御を行ってもよい。 The control unit 110 may assume that the user terminal 20 controls the activation of the spatial relationship based on the MAC CE, and may perform scheduling/beam control based on this assumption.
 また、送受信部120は、あるタイミング(参照タイミング)を基準とする送信設定指示状態(Transmission Configuration Indication state(TCI状態))のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を、ユーザ端末20に送信してもよい。 In addition, the transmission/reception unit 120 uses a medium access control control element (MAC control element) including a field indicating the time until activation of the transmission configuration indication state (TCI state) based on a certain timing (reference timing). Element (CE)) may be transmitted to the user terminal 20 .
 制御部110は、前記MAC CEに基づいて前記ユーザ端末20が前記TCI状態のアクティベーションを制御すると想定してもよく、当該想定に基づいてスケジューリング/ビームの制御を行ってもよい。 The control unit 110 may assume that the user terminal 20 controls activation of the TCI state based on the MAC CE, and may perform scheduling/beam control based on this assumption.
(ユーザ端末)
 図13は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(user terminal)
FIG. 13 is a diagram illustrating an example of the configuration of a user terminal according to an embodiment; The user terminal 20 includes a control section 210 , a transmission/reception section 220 and a transmission/reception antenna 230 . One or more of each of the control unit 210, the transmitting/receiving unit 220, and the transmitting/receiving antenna 230 may be provided.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 It should be noted that this example mainly shows the functional blocks of the features of the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each unit described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the user terminal 20 as a whole. The control unit 210 can be configured from a controller, a control circuit, and the like, which are explained based on common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission/reception, measurement, etc. using the transmission/reception unit 220 and the transmission/reception antenna 230 . The control unit 210 may generate data, control information, sequences, etc. to be transmitted as signals, and transfer them to the transmission/reception unit 220 .
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmitting/receiving section 220 may include a baseband section 221 , an RF section 222 and a measurement section 223 . The baseband section 221 may include a transmission processing section 2211 and a reception processing section 2212 . The transmitting/receiving unit 220 can be configured from a transmitter/receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmitting/receiving circuit, etc., which are explained based on common recognition in the technical field according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission/reception unit 220 may be configured as an integrated transmission/reception unit, or may be configured from a transmission unit and a reception unit. The transmission section may be composed of a transmission processing section 2211 and an RF section 222 . The receiving section may include a reception processing section 2212 , an RF section 222 and a measurement section 223 .
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting/receiving antenna 230 can be configured from an antenna described based on common recognition in the technical field related to the present disclosure, such as an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmitting/receiving unit 220 may receive the above-described downlink channel, synchronization signal, downlink reference signal, and the like. The transmitting/receiving unit 220 may transmit the above-described uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmitter/receiver 220 may form at least one of the transmission beam and the reception beam using digital beamforming (eg, precoding), analog beamforming (eg, phase rotation), or the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission/reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), MAC layer processing (for example, for data and control information acquired from the control unit 210, for example , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmitting/receiving unit 220 (transmission processing unit 2211) performs channel coding (which may include error correction coding), modulation, mapping, filtering, DFT processing (if necessary), and IFFT processing on a bit string to be transmitted. , precoding, digital-analog conversion, and other transmission processing may be performed, and the baseband signal may be output.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply DFT processing may be based on transform precoding settings. Transmitting/receiving unit 220 (transmission processing unit 2211), for a certain channel (for example, PUSCH), if transform precoding is enabled, the above to transmit the channel using the DFT-s-OFDM waveform The DFT process may be performed as the transmission process, or otherwise the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmitting/receiving unit 220 (RF unit 222) may perform modulation to a radio frequency band, filter processing, amplification, and the like on the baseband signal, and may transmit the radio frequency band signal via the transmitting/receiving antenna 230. .
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmitting/receiving section 220 (RF section 222) may perform amplification, filtering, demodulation to a baseband signal, etc. on the radio frequency band signal received by the transmitting/receiving antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission/reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering, demapping, demodulation, decoding (error correction) on the acquired baseband signal. decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmitting/receiving section 220 (measuring section 223) may measure the received signal. For example, the measurement unit 223 may perform RRM measurement, CSI measurement, etc. based on the received signal. The measuring unit 223 may measure received power (eg, RSRP), received quality (eg, RSRQ, SINR, SNR), signal strength (eg, RSSI), channel information (eg, CSI), and the like. The measurement result may be output to control section 210 .
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220、送受信アンテナ230及び伝送路インターフェース240の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be configured by at least one of the transmitter/receiver 220, the transmitter/receiver antenna 230, and the transmission line interface 240.
 なお、送受信部220は、あるタイミング(参照タイミング)を基準とする空間関係のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を受信してもよい。 It should be noted that the transmitting/receiving unit 220 may receive a Medium Access Control control element (MAC Control Element (CE)) containing a field indicating the time until activation of a spatial relationship based on a certain timing (reference timing).
 制御部210は、前記MAC CEに基づいて前記空間関係のアクティベーションを制御してもよい。 The control unit 210 may control activation of the spatial relationship based on the MAC CE.
 前記あるタイミングは、前記MAC CEを伝送する下りリンク共有チャネルに対応するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)を有する上りリンク制御チャネルを送信するタイミングであってもよい。 The certain timing may be the timing of transmitting an uplink control channel having a Hybrid Automatic Repeat ReQuest ACKnowledgement (HARQ-ACK) corresponding to the downlink shared channel that transmits the MAC CE.
 また、送受信部220は、あるタイミング(参照タイミング)を基準とする送信設定指示状態(Transmission Configuration Indication state(TCI状態))のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を受信してもよい。 In addition, the transmitting/receiving unit 220 uses a medium access control control element (MAC control element) including a field indicating the time until activation of the transmission configuration indication state (TCI state) based on a certain timing (reference timing). Element (CE)) may be received.
 制御部210は、前記MAC CEに基づいて前記TCI状態のアクティベーションを制御してもよい。 The control unit 210 may control activation of the TCI state based on the MAC CE.
 制御部210は、上述のMAC CEに第1の時間を示す前記フィールドと第2の時間を示す前記フィールドが含まれる場合、前記あるタイミングを基準として前記第1の時間経過後に第1の空間関係/TCI状態をアクティベートし、前記あるタイミングを基準として前記第2の時間経過後に第2の空間関係/TCI状態をアクティベートしてもよい。これは、前記フィールドが絶対的な時間を表す場合に相当してもよい。 When the field indicating the first time and the field indicating the second time are included in the MAC CE described above, the control unit 210 establishes the first spatial relationship after the first time based on the certain timing. A /TCI state may be activated, and a second spatial relationship /TCI state may be activated after the second time has elapsed based on the certain timing. This may correspond to the case where said field represents an absolute time.
 制御部210は、上述のMAC CEに第1の時間を示す前記フィールドと第2の時間を示す前記フィールドが含まれる場合、前記あるタイミングを基準として前記第1の時間経過後に第1の空間関係/TCI状態をアクティベートし、前記あるタイミングを基準として前記第1の時間及び前記第2の時間の和の経過後に第2の空間関係/TCI状態をアクティベートしてもよい。これは、前記フィールドが絶対的な時間を表す場合に相当してもよい。 When the field indicating the first time and the field indicating the second time are included in the MAC CE described above, the control unit 210 establishes the first spatial relationship after the first time based on the certain timing. A /TCI state may be activated, and a second spatial relationship /TCI state may be activated after a sum of the first time and the second time relative to the certain timing. This may correspond to the case where said field represents an absolute time.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
It should be noted that the block diagrams used in the description of the above embodiments show blocks in units of functions. These functional blocks (components) are realized by any combination of at least one of hardware and software. Also, the method of implementing each functional block is not particularly limited. That is, each functional block may be implemented using one device that is physically or logically coupled, or directly or indirectly using two or more devices that are physically or logically separated (e.g. , wired, wireless, etc.) and may be implemented using these multiple devices. A functional block may be implemented by combining software in the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 where function includes judgment, decision, determination, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, resolution, selection, selection, establishment, comparison, assumption, expectation, deem , broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (component) that performs transmission may be called a transmitting unit, a transmitter, or the like. In either case, as described above, the implementation method is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図14は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, a base station, a user terminal, etc. in an embodiment of the present disclosure may function as a computer that performs processing of the wireless communication method of the present disclosure. FIG. 14 is a diagram illustrating an example of hardware configurations of a base station and a user terminal according to an embodiment. The base station 10 and user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. .
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, terms such as apparatus, circuit, device, section, and unit can be read interchangeably. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of each device shown in the figure, or may be configured without some devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is illustrated, there may be multiple processors. Also, processing may be performed by one processor, or processing may be performed by two or more processors concurrently, serially, or otherwise. Note that processor 1001 may be implemented by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 Each function in the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as a processor 1001 and a memory 1002, the processor 1001 performs calculations, communication via the communication device 1004 and at least one of reading and writing data in the memory 1002 and the storage 1003 .
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001, for example, operates an operating system and controls the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic device, registers, and the like. For example, at least part of the above-described control unit 110 (210), transmission/reception unit 120 (220), etc. may be realized by the processor 1001. FIG.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Also, the processor 1001 reads programs (program codes), software modules, data, etc. from at least one of the storage 1003 and the communication device 1004 to the memory 1002, and executes various processes according to them. As the program, a program that causes a computer to execute at least part of the operations described in the above embodiments is used. For example, the control unit 110 (210) may be implemented by a control program stored in the memory 1002 and running on the processor 1001, and other functional blocks may be similarly implemented.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, such as Read Only Memory (ROM), Erasable Programmable ROM (EPROM), Electrically EPROM (EEPROM), Random Access Memory (RAM), or at least any other suitable storage medium. may be configured by one. The memory 1002 may also be called a register, cache, main memory (main storage device), or the like. The memory 1002 can store executable programs (program code), software modules, etc. for implementing a wireless communication method according to an embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disk (Compact Disc ROM (CD-ROM), etc.), a digital versatile disk, Blu-ray disc), removable disc, hard disk drive, smart card, flash memory device (e.g., card, stick, key drive), magnetic stripe, database, server, or other suitable storage medium may be configured by Storage 1003 may also be called an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmitting/receiving device) for communicating between computers via at least one of a wired network and a wireless network, and is also called a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes a high-frequency switch, duplexer, filter, frequency synthesizer, etc. in order to realize at least one of frequency division duplex (FDD) and time division duplex (TDD), for example. may be configured to include For example, the transmitting/receiving unit 120 (220), the transmitting/receiving antenna 130 (230), and the like described above may be realized by the communication device 1004. FIG. The transmitter/receiver 120 (220) may be physically or logically separated into a transmitter 120a (220a) and a receiver 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, keyboard, mouse, microphone, switch, button, sensor, etc.) that receives input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. Note that the input device 1005 and the output device 1006 may be integrated (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Each device such as the processor 1001 and the memory 1002 is connected by a bus 1007 for communicating information. The bus 1007 may be configured using a single bus, or may be configured using different buses between devices.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 In addition, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a programmable logic device (PLD), a field programmable gate array (FPGA), etc. It may be configured including hardware, and a part or all of each functional block may be realized using the hardware. For example, processor 1001 may be implemented using at least one of these pieces of hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification)
The terms explained in this disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channel, symbol and signal (signal or signaling) may be interchanged. A signal may also be a message. A reference signal may be abbreviated as RS, and may also be called a pilot, a pilot signal, etc., depending on the applicable standard. A component carrier (CC) may also be called a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 A radio frame may consist of one or more periods (frames) in the time domain. Each of the one or more periods (frames) that make up a radio frame may be called a subframe. Furthermore, a subframe may consist of one or more slots in the time domain. A subframe may be a fixed time length (eg, 1 ms) independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, a numerology may be a communication parameter applied to at least one of transmission and reception of a certain signal or channel. Numerology, for example, subcarrier spacing (SCS), bandwidth, symbol length, cyclic prefix length, transmission time interval (TTI), number of symbols per TTI, radio frame configuration , a particular filtering process performed by the transceiver in the frequency domain, a particular windowing process performed by the transceiver in the time domain, and/or the like.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 A slot may consist of one or more symbols (Orthogonal Frequency Division Multiplexing (OFDM) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. A slot may also be a unit of time based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 A slot may contain multiple mini-slots. Each minislot may consist of one or more symbols in the time domain. A minislot may also be referred to as a subslot. A minislot may consist of fewer symbols than a slot. A PDSCH (or PUSCH) transmitted in time units larger than a minislot may be referred to as PDSCH (PUSCH) Mapping Type A. PDSCH (or PUSCH) transmitted using minislots may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 Radio frames, subframes, slots, minislots and symbols all represent time units when transmitting signals. Radio frames, subframes, slots, minislots and symbols may be referred to by other corresponding designations. Note that time units such as frames, subframes, slots, minislots, and symbols in the present disclosure may be read interchangeably.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called a TTI, a plurality of consecutive subframes may be called a TTI, and one slot or one minislot may be called a TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms may be Note that the unit representing the TTI may be called a slot, mini-slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum scheduling time unit in wireless communication. For example, in the LTE system, a base station performs scheduling to allocate radio resources (frequency bandwidth, transmission power, etc. that can be used by each user terminal) to each user terminal on a TTI basis. Note that the definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 A TTI may be a transmission time unit such as a channel-encoded data packet (transport block), code block, or codeword, or may be a processing unit such as scheduling and link adaptation. Note that when a TTI is given, the time interval (for example, the number of symbols) in which transport blocks, code blocks, codewords, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one minislot is called a TTI, one or more TTIs (that is, one or more slots or one or more minislots) may be the minimum scheduling time unit. Also, the number of slots (the number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be called a normal TTI (TTI in 3GPP Rel. 8-12), normal TTI, long TTI, normal subframe, normal subframe, long subframe, slot, or the like. A TTI that is shorter than a normal TTI may be called a shortened TTI, a short TTI, a partial or fractional TTI, a shortened subframe, a short subframe, a minislot, a subslot, a slot, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 Note that the long TTI (e.g., normal TTI, subframe, etc.) may be replaced with a TTI having a time length exceeding 1 ms, and the short TTI (e.g., shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms A TTI having the above TTI length may be read instead.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (RB) is a resource allocation unit in the time domain and frequency domain, and may include one or more consecutive subcarriers (subcarriers) in the frequency domain. The number of subcarriers included in the RB may be the same regardless of the neumerology, eg twelve. The number of subcarriers included in an RB may be determined based on neumerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Also, an RB may contain one or more symbols in the time domain and may be 1 slot, 1 minislot, 1 subframe or 1 TTI long. One TTI, one subframe, etc. may each be configured with one or more resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 One or more RBs are Physical Resource Block (PRB), Sub-Carrier Group (SCG), Resource Element Group (REG), PRB pair, RB Also called a pair.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Also, a resource block may be composed of one or more resource elements (Resource Element (RE)). For example, 1 RE may be a radio resource region of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 A Bandwidth Part (BWP) (which may also be called a bandwidth part) represents a subset of contiguous common resource blocks (RBs) for a numerology on a carrier. good too. Here, the common RB may be identified by an RB index based on the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or multiple BWPs may be configured for a UE within one carrier.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to transmit or receive a given signal/channel outside the active BWP. Note that "cell", "carrier", etc. in the present disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 It should be noted that the structures of radio frames, subframes, slots, minislots, symbols, etc. described above are merely examples. For example, the number of subframes contained in a radio frame, the number of slots per subframe or radio frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, the number of Configurations such as the number of subcarriers and the number of symbols in a TTI, symbol length, cyclic prefix (CP) length, etc. can be varied.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, may be expressed using relative values from a predetermined value, or may be expressed using other corresponding information. may be represented. For example, radio resources may be indicated by a predetermined index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters and the like in this disclosure are not restrictive names in any respect. Further, the formulas and the like using these parameters may differ from those expressly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable names, the various names assigned to these various channels and information elements are not limiting names in any way. .
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different technologies. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description may refer to voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. may be represented by a combination of
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 Also, information, signals, etc. can be output from a higher layer to a lower layer and/or from a lower layer to a higher layer. Information, signals, etc. may be input and output through multiple network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 Input/output information, signals, etc. may be stored in a specific location (for example, memory), or may be managed using a management table. Input and output information, signals, etc. may be overwritten, updated or appended. Output information, signals, etc. may be deleted. Input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 Notification of information is not limited to the aspects/embodiments described in the present disclosure, and may be performed using other methods. For example, the notification of information in the present disclosure includes physical layer signaling (e.g., Downlink Control Information (DCI)), Uplink Control Information (UCI)), higher layer signaling (e.g., Radio Resource Control (RRC) signaling, broadcast information (Master Information Block (MIB), System Information Block (SIB), etc.), Medium Access Control (MAC) signaling), other signals, or combinations thereof may be performed by
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 The physical layer signaling may also be called Layer 1/Layer 2 (L1/L2) control information (L1/L2 control signal), L1 control information (L1 control signal), and the like. RRC signaling may also be called an RRC message, and may be, for example, an RRC connection setup message, an RRC connection reconfiguration message, or the like. Also, MAC signaling may be notified using, for example, a MAC Control Element (CE).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, notification of predetermined information (for example, notification of “being X”) is not limited to explicit notification, but implicit notification (for example, by not notifying the predetermined information or by providing another information by notice of
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value (0 or 1) represented by 1 bit, or by a boolean value represented by true or false. , may be performed by numerical comparison (eg, comparison with a predetermined value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software, whether referred to as software, firmware, middleware, microcode, hardware description language or otherwise, includes instructions, instruction sets, code, code segments, program code, programs, subprograms, and software modules. , applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, functions, and the like.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, the software uses wired technology (coaxial cable, fiber optic cable, twisted pair, Digital Subscriber Line (DSL), etc.) and/or wireless technology (infrared, microwave, etc.) , a server, or other remote source, these wired and/or wireless technologies are included within the definition of transmission media.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. A “network” may refer to devices (eg, base stations) included in a network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "Quasi-Co-Location (QCL)", "Transmission Configuration Indication state (TCI state)", "spatial "spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are interchangeable. can be used as intended.
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission Point (TP)", "Reception Point (RP)", "Transmission/Reception Point (TRP)", "Panel" , “cell,” “sector,” “cell group,” “carrier,” “component carrier,” etc. may be used interchangeably. A base station may also be referred to by terms such as macrocell, small cell, femtocell, picocell, and the like.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 A base station can accommodate one or more (eg, three) cells. When a base station accommodates multiple cells, the overall coverage area of the base station can be partitioned into multiple smaller areas, and each smaller area is assigned to a base station subsystem (e.g., a small indoor base station (Remote Radio)). Head (RRH))) may also provide communication services. The terms "cell" or "sector" refer to part or all of the coverage area of at least one of the base stations and base station subsystems that serve communication within such coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "Mobile Station (MS)", "user terminal", "User Equipment (UE)", and "terminal" are used interchangeably. can be
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , a handset, a user agent, a mobile client, a client, or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on a mobile object, the mobile object itself, or the like. The mobile object may be a vehicle (e.g., car, airplane, etc.), an unmanned mobile object (e.g., drone, self-driving car, etc.), or a robot (manned or unmanned ). Note that at least one of the base station and the mobile station includes devices that do not necessarily move during communication operations. For example, at least one of the base station and mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Also, the base station in the present disclosure may be read as a user terminal. For example, communication between a base station and a user terminal is replaced with communication between multiple user terminals (for example, Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.) Regarding the configuration, each aspect/embodiment of the present disclosure may be applied. In this case, the user terminal 20 may have the functions of the base station 10 described above. Also, words such as "up" and "down" may be replaced with words corresponding to inter-terminal communication (for example, "side"). For example, uplink channels, downlink channels, etc. may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, user terminals in the present disclosure may be read as base stations. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, operations that are assumed to be performed by the base station may be performed by its upper node in some cases. In a network that includes one or more network nodes with a base station, various operations performed for communication with a terminal may involve the base station, one or more network nodes other than the base station (e.g., Clearly, this can be done by a Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. (but not limited to these) or a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect/embodiment described in the present disclosure may be used alone, may be used in combination, or may be used by switching along with execution. Also, the processing procedures, sequences, flowcharts, etc. of each aspect/embodiment described in the present disclosure may be rearranged as long as there is no contradiction. For example, the methods described in this disclosure present elements of the various steps using a sample order, and are not limited to the specific order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、6th generation mobile communication system(6G)、xth generation mobile communication system(xG)(xG(xは、例えば整数、小数))、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect/embodiment described in this disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), 6th generation mobile communication system (6G), xth generation mobile communication system (xG) (xG (x is, for example, an integer or a decimal number)), Future Radio Access (FRA), New - Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB) , IEEE 802.11 (Wi-Fi®), IEEE 802.16 (WiMAX®), IEEE 802.20, Ultra-WideBand (UWB), Bluetooth®, or other suitable wireless It may be applied to systems using communication methods, next-generation systems extended based on these, and the like. Also, multiple systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The term "based on" as used in this disclosure does not mean "based only on" unless otherwise specified. In other words, the phrase "based on" means both "based only on" and "based at least on."
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using the "first," "second," etc. designations used in this disclosure does not generally limit the quantity or order of those elements. These designations may be used in this disclosure as a convenient method of distinguishing between two or more elements. Thus, references to first and second elements do not imply that only two elements may be employed or that the first element must precede the second element in any way.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" as used in this disclosure may encompass a wide variety of actions. For example, "determination" includes judging, calculating, computing, processing, deriving, investigating, looking up, searching, inquiry ( For example, looking up in a table, database, or another data structure), ascertaining, etc. may be considered to be "determining."
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 Also, "determining (deciding)" includes receiving (e.g., receiving information), transmitting (e.g., transmitting information), input, output, access ( accessing (e.g., accessing data in memory), etc.
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 Also, "determining" is considered to be "determining" resolving, selecting, choosing, establishing, comparing, etc. good too. That is, "determining (determining)" may be regarded as "determining (determining)" some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 Also, "judgment (decision)" may be read as "assuming", "expecting", or "considering".
 本開示に記載の「最大送信電力」は送信電力の最大値を意味してもよいし、公称最大送信電力(the nominal UE maximum transmit power)を意味してもよいし、定格最大送信電力(the rated UE maximum transmit power)を意味してもよい。 "Maximum transmit power" described in this disclosure may mean the maximum value of transmit power, may mean the nominal maximum transmit power (the nominal UE maximum transmit power), or may mean the rated maximum transmit power (the rated UE maximum transmit power).
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms “connected”, “coupled”, or any variation thereof, as used in this disclosure, refer to any connection or coupling, direct or indirect, between two or more elements. and can include the presence of one or more intermediate elements between two elements that are "connected" or "coupled" to each other. Couplings or connections between elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In this disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-exhaustive examples, radio frequency domain, microwave They can be considered to be “connected” or “coupled” together using the domain, electromagnetic energy having wavelengths in the optical (both visible and invisible) domain, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other." The term may also mean that "A and B are different from C". Terms such as "separate," "coupled," etc. may also be interpreted in the same manner as "different."
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 Where "include," "including," and variations thereof are used in this disclosure, these terms are inclusive, as is the term "comprising." is intended. Furthermore, the term "or" as used in this disclosure is not intended to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In this disclosure, if articles are added by translation, such as a, an, and the in English, the disclosure may include that the nouns following these articles are plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is obvious to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as modifications and changes without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for illustrative purposes and does not impose any limitation on the invention according to the present disclosure.

Claims (6)

  1.  あるタイミングを基準とする空間関係のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を受信する受信部と、
     前記MAC CEに基づいて前記空間関係のアクティベーションを制御する制御部と、を有する端末。
    a receiving unit for receiving a Medium Access Control Control Element (MAC Control Element (CE)) containing a field indicating time to activation of a spatial relationship relative to a timing;
    a controller that controls the activation of the spatial relationship based on the MAC CE.
  2.  前記制御部は、前記MAC CEに第1の時間を示す前記フィールドと第2の時間を示す前記フィールドが含まれる場合、前記あるタイミングを基準として前記第1の時間経過後に第1の空間関係をアクティベートし、前記あるタイミングを基準として前記第2の時間経過後に第2の空間関係をアクティベートする請求項1に記載の端末。 When the MAC CE includes the field indicating the first time and the field indicating the second time, the control unit establishes the first spatial relationship after the first time based on the certain timing. 2. The terminal according to claim 1, which activates and activates a second spatial relationship after the second time elapses with respect to the certain timing.
  3.  前記制御部は、前記MAC CEに第1の時間を示す前記フィールドと第2の時間を示す前記フィールドが含まれる場合、前記あるタイミングを基準として前記第1の時間経過後に第1の空間関係をアクティベートし、前記あるタイミングを基準として前記第1の時間及び前記第2の時間の和の経過後に第2の空間関係をアクティベートする請求項1に記載の端末。 When the MAC CE includes the field indicating the first time and the field indicating the second time, the control unit establishes the first spatial relationship after the first time based on the certain timing. 2. The terminal according to claim 1, which activates and activates a second spatial relationship after the sum of said first time and said second time relative to said certain timing.
  4.  前記あるタイミングは、前記MAC CEを伝送する下りリンク共有チャネルに対応するHybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)を有する上りリンク制御チャネルを送信するタイミングである請求項1から請求項3のいずれかに記載の端末。 Any one of claims 1 to 3, wherein the certain timing is timing for transmitting an uplink control channel having a Hybrid Automatic Repeat ReQuest ACKnowledgement (HARQ-ACK) corresponding to the downlink shared channel that transmits the MAC CE. terminal described in .
  5.  あるタイミングを基準とする空間関係のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を受信するステップと、
     前記MAC CEに基づいて前記空間関係のアクティベーションを制御するステップと、を有する端末の無線通信方法。
    receiving a Medium Access Control Control Element (MAC Control Element (CE)) containing a field indicating the time to activation of the spatial relationship relative to some timing;
    and C. controlling activation of said spatial relationship based on said MAC CE.
  6.  あるタイミングを基準とする空間関係のアクティベーションまでの時間を示すフィールドを含むMedium Access Control制御要素(MAC Control Element(CE))を、端末に送信する送信部と、
     前記MAC CEに基づいて前記端末が前記空間関係のアクティベーションを制御すると想定する制御部と、を有する基地局。
    A transmitting unit that transmits to a terminal a Medium Access Control control element (MAC Control Element (CE)) that includes a field indicating the time to activation of a spatial relationship relative to a certain timing;
    a controller that assumes that the terminal controls the activation of the spatial relationship based on the MAC CE.
PCT/JP2021/029223 2021-08-05 2021-08-05 Terminal, wireless communication method, and base station WO2023013003A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023539516A JPWO2023013003A1 (en) 2021-08-05 2021-08-05
PCT/JP2021/029223 WO2023013003A1 (en) 2021-08-05 2021-08-05 Terminal, wireless communication method, and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/029223 WO2023013003A1 (en) 2021-08-05 2021-08-05 Terminal, wireless communication method, and base station

Publications (1)

Publication Number Publication Date
WO2023013003A1 true WO2023013003A1 (en) 2023-02-09

Family

ID=85155447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/029223 WO2023013003A1 (en) 2021-08-05 2021-08-05 Terminal, wireless communication method, and base station

Country Status (2)

Country Link
JP (1) JPWO2023013003A1 (en)
WO (1) WO2023013003A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509794A (en) * 2018-01-09 2021-04-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated Aperiodic tracking reference signal

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021509794A (en) * 2018-01-09 2021-04-01 クゥアルコム・インコーポレイテッドQualcomm Incorporated Aperiodic tracking reference signal

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2104585, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010879 *

Also Published As

Publication number Publication date
JPWO2023013003A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP7238107B2 (en) Terminal, wireless communication method and system
JP7193549B2 (en) Terminal, wireless communication method and system
JP7193550B2 (en) Terminal, wireless communication method and system
JP7252251B2 (en) Terminal, wireless communication method and system
JP7264915B2 (en) Terminal, wireless communication method, base station and system
EP3955674A1 (en) User terminal and wireless communication method
JP7299300B2 (en) Terminal, wireless communication method, base station and system
WO2023026413A1 (en) Terminal, wireless communication method, and base station
US20230049937A1 (en) Terminal, radio communication method, and base station
JP7181675B2 (en) Terminal, wireless communication method, base station and system
JP7321251B2 (en) Terminal, wireless communication method, base station and system
KR20220139867A (en) Terminal, wireless communication method and base station
KR20220111264A (en) Terminal and wireless communication method
WO2022220109A1 (en) Terminal, wireless communication method, and base station
WO2023026415A1 (en) Terminal, wireless communication method, and base station
WO2022208673A1 (en) Terminal, wireless communication method, and base station
EP4161154A1 (en) Terminal, radio communication method, and base station
US20230086798A1 (en) Terminal, radio communication method, and base station
WO2021033220A1 (en) Terminal and wireless communication method
WO2020213141A1 (en) User terminal and wireless communication method
WO2023013003A1 (en) Terminal, wireless communication method, and base station
WO2023012995A1 (en) Terminal, wireless communication method, and base station
WO2022208672A1 (en) Terminal, wireless communication method, and base station
WO2022208671A1 (en) Terminal, wireless communication method, and base station
WO2022208687A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952827

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539516

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE