WO2020213141A1 - User terminal and wireless communication method - Google Patents

User terminal and wireless communication method Download PDF

Info

Publication number
WO2020213141A1
WO2020213141A1 PCT/JP2019/016689 JP2019016689W WO2020213141A1 WO 2020213141 A1 WO2020213141 A1 WO 2020213141A1 JP 2019016689 W JP2019016689 W JP 2019016689W WO 2020213141 A1 WO2020213141 A1 WO 2020213141A1
Authority
WO
WIPO (PCT)
Prior art keywords
distance
information
base station
transmission
user terminal
Prior art date
Application number
PCT/JP2019/016689
Other languages
French (fr)
Japanese (ja)
Inventor
翔平 吉岡
祐輝 松村
大輔 村山
聡 永田
Original Assignee
株式会社Nttドコモ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Nttドコモ filed Critical 株式会社Nttドコモ
Priority to CN201980095552.6A priority Critical patent/CN113728559A/en
Priority to PCT/JP2019/016689 priority patent/WO2020213141A1/en
Publication of WO2020213141A1 publication Critical patent/WO2020213141A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • H04B7/0417Feedback systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
  • LTE Long Term Evolution
  • 3GPP Rel.10-14 LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
  • a successor system to LTE for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
  • 5G 5th generation mobile communication system
  • 5G + plus
  • NR New Radio
  • 3GPP Rel.15 or later, etc. is also being considered.
  • MIMO Multi Input Multi Output
  • one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method that can suitably use MIMO even when complete channel information cannot be obtained.
  • the user terminal is characterized by having a control unit for deriving a distance from a base station or another user terminal, and a transmission unit for transmitting information regarding the distance.
  • MIMO can be suitably used even when complete channel information cannot be obtained.
  • FIG. 1 is a diagram showing an example of a distance report according to the first embodiment.
  • FIG. 2A-2D is a diagram showing an example of the positional relationship of UEs.
  • 3A and 3B are diagrams showing an example of a CSI report or a distance report according to the second embodiment.
  • 4A and 4B are diagrams showing an example of beam correction of the UE according to the third embodiment.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • MIMO Multi Input Multi Output
  • MIMO is greatly affected by spatial correlation. For example, in Single User (SU) -MIMO, if the channel correlation between antennas in one UE is high, signal separation cannot be performed. Further, in Multi User (MU) -MIMO, if the channel correlation between a plurality of UEs is high, signal separation cannot be performed.
  • SU Single User
  • MU Multi User
  • the UE performs channel measurement, interference measurement, etc., and reports the result to the network as channel state information (CSI).
  • the CSI may include, for example, Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indicator (RI), and the like.
  • gNB-UE, UE-UE, etc. are related to channel correlation, and operations related to MIMO are performed based on distance information such as gNB-UE, UE-UE, etc. To control (apply / switch).
  • distance is “UE-base station distance” (for example, “own UE-base station distance”) and “UE-UE distance” (for example, “own UE-other UE distance”). It may be read as at least one of.
  • the UE determines the distance from at least one of the base station and the other UE based on a predetermined distance measurement signal transmitted from at least one of the base station and the other UE. It is assumed to be measured or estimated, but it is not limited to this.
  • the UE may acquire, derive, or the like the distance by any method.
  • the distance measurement signal of the present disclosure may be read as at least one of a measurement signal, a reference signal, a channel, a synchronization signal, and the like.
  • the first embodiment relates to distance reporting.
  • the UE may transmit information about the distance (which may be called a distance report) to the network (for example, a base station).
  • the report may be a periodic report (periodic report), a semi-persistent report (semi-persistent report), or an aperiodic report (aperiodic report). These reports may be referred to as periodic distance reports, semi-persistent distance reports and aperiodic distance reports, respectively.
  • the UE may receive the setting information for distance reporting by upper layer signaling.
  • the setting information includes the timing of distance reporting (for example, whether to use periodic reporting, semi-persistent reporting, or aperiodic reporting), resources for distance reporting (for example, time resources (period, etc.), etc.). It may include information such as frequency resources).
  • the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
  • RRC Radio Resource Control
  • MAC Medium Access Control
  • MAC CE MAC Control Element
  • PDU MAC Protocol Data Unit
  • the broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
  • MIB Master Information Block
  • SIB System Information Block
  • RMSI Minimum System Information
  • OSI Other System Information
  • the UE for which the periodic distance report is set may transmit the distance report in a predetermined cycle (for example, the cycle indicated by the upper layer parameter, the cycle defined by the specification).
  • the UE for which the aperiodic distance report is set may transmit the distance report triggered by the trigger signal (request signal) from the network.
  • the activation signal, the trigger signal, and the like may be MAC CE, downlink control information (DCI), or a combination thereof.
  • DCI downlink control information
  • the setting information for the distance report, the activation signal, the trigger signal, and the like may include information for designating the measurement target.
  • the UE may send a distance report containing the distance for the specified measurement target.
  • a specific base station, a specific UE, a base station that satisfies a specific condition among all base stations, a UE that satisfies a specific condition among all UEs, and the like may be specified.
  • the UE that satisfies a specific condition may be a UE that has transmitted a predetermined distance measurement signal.
  • the UE may transmit the distance report using the channel for distance reporting, an existing channel (for example, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)). )), Random access channel (Physical Random Access Channel (PRACH), etc.) may be used for transmission.
  • an existing channel for example, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)).
  • PUCCH Physical Uplink Control Channel
  • PRACH Physical Random Access Channel
  • the distance report may include information about the distance between the own UE and at least one of the base station (eg, gNB) and another UE.
  • the distance may be a measured distance or an index obtained based on the measured distance.
  • the index may be, for example, a parameter indicating whether or not at least one of the base station and another UE is present within a predetermined distance, and the level of the distance to the measurement target (for example, close, medium). It may be far away).
  • the correspondence between the level and the distance may be set in the UE by higher layer signaling or may be defined by the specifications.
  • the distance report may include information for identifying (identifying) the own UE (for example, a user identifier (UE Identifier (ID))).
  • the UE ID may be a predetermined wireless network temporary identifier (Radio Network Temporary Identifier (RNTI)), or may be, for example, a cell RNTI (Cell RNTI (C-RNTI)).
  • RNTI Radio Network Temporary Identifier
  • C-RNTI Cell RNTI
  • a distance report containing information on the distance to another UE may include information for identifying the other UE (eg, UE ID).
  • the UE may transmit the distance report at the same timing as the uplink control information (UCI), may report it as one of the UCIs (for example, CSI), or may have a timing different from that of the UCI. You may report (independently) at.
  • the UCI of the present disclosure is at least one of delivery confirmation information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)), scheduling request (Scheduling Request (SR)), and channel state information (Channel State Information (CSI)). It may mean one.
  • HARQ-ACK Hybrid Automatic Repeat reQuest ACKnowledgement
  • SR scheduling Request
  • CSI Channel State Information
  • FIG. 1 is a diagram showing an example of a distance report according to the first embodiment.
  • the UE measures the distance between its own UE and the other UE based on the distance measurement signal (resource) transmitted from another UE (UE with UE ID # A).
  • the UE transmits a distance report including information on the measured distance, the ID of the other UE (UE ID # A), and the like to the base station.
  • the base station may calculate the positional relationship of the UE based on the reported distance information. For example, the base station may calculate an angle with respect to a plurality of UEs as seen from its own station (an angle consisting of a line connecting the own station and the plurality of UEs).
  • the base station may determine or correct a MIMO precoder (eg, at least one of a digital beam and an analog beam) based on the calculated UE positional relationship, or apply UE scheduling (eg, MU-MIMO). User pairing and user selection to apply SU-MIMO) may be performed.
  • a MIMO precoder eg, at least one of a digital beam and an analog beam
  • apply UE scheduling eg, MU-MIMO.
  • User pairing and user selection to apply SU-MIMO may be performed.
  • FIG. 2A-2D is a diagram showing an example of the positional relationship of UEs.
  • the distance between the UE and the base station is short, and the distance between the UE and other UEs is also short.
  • SU-MIMO may be applied to the UE. This is because the distance between the UEs is short and signal separation between the UEs cannot be preferably performed.
  • the distance between the UE and the base station is long, and the distance between the UE and other UEs is short.
  • the base station grasps the positional relationship as shown in FIG. 2B based on the distance report from the UE, the base station may perform control that does not apply MU-MIMO to the UE and the other UE. This is because the distance between the UEs is short and signal separation between the UEs cannot be preferably performed.
  • the distance between the UE and the base station is short or medium, and the distance between the UE and other UEs is long.
  • the base station grasps the positional relationship as shown in FIG. 2C based on the distance report from the UE, the base station may apply MU-MIMO to the UE and other UEs. This is because the distance between the UEs is long and the signal separation between the UEs can be preferably performed.
  • the distance between the UE and the base station is long, and the distance between the UE and other UEs is also long.
  • the base station grasps the positional relationship as shown in FIG. 2D based on the distance report from the UE, the base station may apply MU-MIMO to the UE and other UEs. This is because the distance between the UEs is long and the signal separation between the UEs can be preferably performed.
  • the distance between UE and UE, the distance between UE and network, and the like can be preferably reported.
  • a second embodiment relates to distance-based CSI reporting.
  • the UE modifies (or controls or determines) the reported CSI based on information about the distance between its own UE and at least one of the base station (eg, gNB) and another UE described in the first embodiment. You may.
  • the base station eg, gNB
  • the UE may transmit a detailed CSI when a predetermined condition is satisfied with respect to the distance.
  • the detailed CSI may be a CSI for deriving, calculating, acquiring, or the like a channel state more detailed than a normal CSI (that is, CQI, PMI, RI, etc.).
  • the detailed CSI may include, for example, one or more (eg, all) of channel amplitude information, phase information and angle information.
  • the detailed CSI may be read as information for correction of digital or analog beams.
  • the angle information is the orientation of the UE (for example, the orientation of the display, the orientation of the antenna panel, etc.), the orientation of the base station or another UE as seen from the UE, and a predetermined point (for example, the North Pole) as seen from the UE. It may correspond to information about at least one such as orientation.
  • the UE may send a predetermined notification to the base station when transmitting the detailed CSI.
  • the given notification may include information indicating that MIMO spatial multiplexing is not recommended (or recommended).
  • the UE may send the predetermined notification to the base station instead of sending the detailed CSI.
  • the detailed CSI may include the given notice.
  • the prescribed conditions may correspond to any of the following or a combination thereof: -The distance between the UE and the base station is greater than (far) than the first threshold value. -The distance between one UE and another UE is smaller (closer) than the second threshold.
  • the first threshold value, the second threshold value, and the like may be given by the upper layer parameter (may be set by the upper layer signaling), or may be determined by the specification.
  • the UE may send a distance report as described in the first embodiment if the above predetermined conditions are not satisfied.
  • the trigger, timing, channel, etc. of the CSI report of the second embodiment may be controlled based on the content of the distance report of the first embodiment read in the CSI report, so that the back explanation is not repeated.
  • the CSI report may be triggered (collectively) at the same time as the distance report, or may be transmitted at the same timing.
  • FIG. 2A-2D will be described as an example.
  • the base station grasps the positional relationship as shown in FIG. 2B based on the distance report from the UE, the base station provides the UE with at least one of the setting information, the activation signal, and the trigger signal for requesting the detailed CSI report. You may send it to. This is because the distance between the UEs is short, and it is preferable that detailed channel information is available for signal separation between the UEs.
  • the base station grasps the positional relationship as shown in FIG. 2C or 2D based on the distance report from the UE, the base station provides the UE with setting information, an activation signal, a trigger signal, etc. for requesting a detailed CSI report. It is not necessary to send (that is, a normal CSI report may be set for the UE). This is because the distance between UEs is long and a simple CSI is sufficient.
  • 3A and 3B are diagrams showing an example of a CSI report or a distance report according to the second embodiment. Since these examples assume the same processing flow as in FIG. 1, the same description will not be repeated.
  • the UE recognized that the distance to the other UE was short (for example, smaller than the second threshold value).
  • the UE may report the detailed CSI to the base station.
  • the UE recognized that the distance from the other UE was long (for example, larger than the second threshold value).
  • the UE may send a distance report without reporting the detailed CSI to the base station.
  • CSI reporting, distance reporting, and the like can be suitably controlled according to the UE-UE distance and the UE-network distance.
  • a third embodiment relates to distance-based UE beam correction.
  • a UE performs transmit or receive processing (eg, at least one of a digital beam and an analog beam) with respect to MIMO based on information about the distance between its own UE and at least one of a base station (eg, gNB) and another UE. It may be determined or amended. The information regarding the distance may be the same as the information described in the first embodiment.
  • the UE By measuring the distance while changing the MIMO transmission process or MIMO reception process (for example, the direction of the analog beam), the UE has a positional relationship (for example, an angular relationship) with at least one of the base station and another UE. May be derived.
  • the UE may determine or correct the transmission or reception process for MIMO based on the positional relationship, instead of or in addition to the information about the distance.
  • the UE may transmit a predetermined notification indicating that the determination or correction has been made to the base station.
  • the UE may transmit information regarding the MIMO transmission processing or MIMO reception processing after the determination or correction to the base station.
  • 4A and 4B are diagrams showing an example of the beam correction of the UE according to the third embodiment.
  • the base station can communicate with the UE and other UEs using at least one of beams # 1- # 4.
  • the UE uses the transmission or reception beam directed to the base station beam # 2, and the other UEs use the transmission or reception beam directed to the base station beam # 3.
  • the UE measures at least one of the distance and the angle between the own UE and the other UE based on (the resource) of the distance measurement signal transmitted from the other UE.
  • the UE may control to change the beam (for example, an analog beam) so as to be directed to the beam # 1 of the base station as shown in FIG. 4B.
  • the quality of transmission / reception signals of each UE when a plurality of UEs exist can be improved.
  • the UE may determine or correct the transmission / reception processing related to MIMO described above by using a predetermined model.
  • the predetermined model may be a prediction model created by artificial intelligence (AI) or the like.
  • the AI may include at least one such as machine learning, deep learning and the like.
  • the input parameters of the given model may include at least one of the following: -Measurement result of distance measurement signal from at least one of the base station and other UE, -Measurement results (eg, reception intensity) using a transmit or receive beam (eg, analog beam), ⁇ Information about the distance between UEs, ⁇ Angle information of transmission or reception beam, ⁇ Particle size information of change of transmission or reception beam, -Information on how many times the beam was turned from a certain timing.
  • the particle size information may be information on the minimum angle between the beams that can be formed.
  • the measurement result of the distance measurement signal, the measurement result using the beam, and the like may include at least one of the following, or may be derived based on at least one of the following (for example, the measured value is predetermined). Whether or not it is above the threshold value of): -Signal amplitude-Signal phase-Received power (eg Reference Signal Received Power (RSRP)), -Reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR), Block Error Rate (BLER)), Bit Error Rate (Bit Error) Rate (BER)), Packet Error Rate (PER)), • Signal strength (eg, Received Signal Strength Indicator (RSSI)).
  • RSRP Reference Signal Received Power
  • -Reception quality for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR), Block
  • the number of beam sweeping Information on how many times the beam has been turned from a certain timing may be called the number of beam sweeping.
  • the above input parameters may be acquired, for example, by the UE receiving (measuring) a distance measurement signal while changing the analog beam.
  • the output parameters of the above-mentioned predetermined model may include, for example, parameters for transmission or reception processing related to MIMO (for example, at least one of a digital beam and an analog beam).
  • the parameter may be, for example, angle information of a digital beam or an analog beam (for example, angle offset, precoder, phase shift amount) and the like.
  • each of the above-mentioned input parameters has a statistically significant correlation with the above-mentioned output parameters. Therefore, for example, a trained model can be created by using a combination of the measured values of the above-mentioned input parameters and output parameters as teacher data.
  • the model may be created by the UE, a network (for example, a base station) or other device, or a model created by the other device may be stored in the UE.
  • the UE may perform quality evaluation based on the above input parameters and output the above output parameters when the quality satisfies a predetermined condition.
  • a predetermined condition for example, the complex number of the channel, amplitude, phase, received power (RSRP, etc.), reception quality (RSRQ, BLER, BER, PER, etc.), signal strength (RSSI, etc.), reception measurement result is equal to or higher than a predetermined threshold. It may be done based on whether or not.
  • a derivative for example, time derivative
  • the beam can be suitably controlled according to the distance between UE and UE and the distance between UE and network.
  • the "distance” in the present disclosure includes received power (for example, RSRP), reception quality (for example, RSRQ, RSSI, BLER, BER, PER), signal strength (for example, RSSI), number of trials, number of transmissions, and number of retransmissions. , Movement speed, etc. may be read as at least one.
  • received power for example, RSRP
  • reception quality for example, RSRQ, RSSI, BLER, BER, PER
  • signal strength for example, RSSI
  • number of trials for example, number of transmissions, and number of retransmissions.
  • Movement speed, etc. may be read as at least one.
  • the received power, reception quality, signal strength, number of trials, number of transmissions, number of retransmissions, etc. are written by omitting "a predetermined signal (for example, a distance measurement signal, a certain reference signal)".
  • a predetermined signal for example, a distance measurement signal, a certain reference signal
  • the moving speed may mean at least one moving speed of a UE, another UE and a base station, or may mean the relative speed of two of them.
  • At least one of “distance”, “distance report”, “information about distance”, and the like in the present disclosure is information that can be used to obtain the distance (for example, position information of a UE, a base station, or another UE (for example,). , Latitude / longitude), angle information).
  • At least one such as “UE”, “another UE”, and “another UE” in the present disclosure is, for example, a UE that controls communication between UEs (may be called a head UE). It may be read as.
  • wireless communication system Wireless communication system
  • communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
  • FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment.
  • the wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
  • the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)).
  • MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E).
  • -UTRA Dual Connectivity (NE-DC) may be included.
  • the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)).
  • the NR base station (gNB) is MN
  • the LTE (E-UTRA) base station (eNB) is SN.
  • the wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
  • a plurality of base stations in the same RAT for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )
  • NR-NR Dual Connectivity NR-DC
  • gNB NR base stations
  • the wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare.
  • the user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure.
  • the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
  • the user terminal 20 may be connected to at least one of the plurality of base stations 10.
  • the user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
  • CA Carrier Aggregation
  • DC dual connectivity
  • CC Component Carrier
  • Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)).
  • the macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2.
  • FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz).
  • the frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
  • the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
  • TDD Time Division Duplex
  • FDD Frequency Division Duplex
  • the plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication).
  • wire for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.
  • NR communication for example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
  • IAB Integrated Access Backhaul
  • relay station relay station
  • the base station 10 may be connected to the core network 30 via another base station 10 or directly.
  • the core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
  • EPC Evolved Packet Core
  • 5GCN 5G Core Network
  • NGC Next Generation Core
  • the user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
  • a wireless access method based on Orthogonal Frequency Division Multiplexing may be used.
  • OFDM Orthogonal Frequency Division Multiplexing
  • DL Downlink
  • UL Uplink
  • CP-OFDM Cyclic Prefix OFDM
  • DFT-s-OFDM Discrete Fourier Transform Spread OFDM
  • OFDMA Orthogonal Frequency Division Multiple. Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the wireless access method may be called a waveform.
  • another wireless access system for example, another single carrier transmission system, another multi-carrier transmission system
  • the UL and DL wireless access systems may be used as the UL and DL wireless access systems.
  • downlink shared channels Physical Downlink Shared Channel (PDSCH)
  • broadcast channels Physical Broadcast Channel (PBCH)
  • downlink control channels Physical Downlink Control
  • Channel PDCCH
  • the uplink shared channel Physical Uplink Shared Channel (PUSCH)
  • the uplink control channel Physical Uplink Control Channel (PUCCH)
  • the random access channel shared by each user terminal 20 are used.
  • Physical Random Access Channel (PRACH) Physical Random Access Channel or the like may be used.
  • PDSCH User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH.
  • User data, upper layer control information, and the like may be transmitted by the PUSCH.
  • MIB Master Information Block
  • PBCH Master Information Block
  • Lower layer control information may be transmitted by PDCCH.
  • the lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
  • DCI Downlink Control Information
  • the DCI that schedules PDSCH may be called DL assignment, DL DCI, etc.
  • the DCI that schedules PUSCH may be called UL grant, UL DCI, etc.
  • the PDSCH may be read as DL data
  • the PUSCH may be read as UL data.
  • a control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH.
  • CORESET corresponds to a resource that searches for DCI.
  • the search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates).
  • One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
  • One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels.
  • One or more search spaces may be referred to as a search space set.
  • the "search space”, “search space set”, “search space setting”, “search space set setting”, “CORESET”, “CORESET setting”, etc. of the present disclosure may be read as each other.
  • channel state information (Channel State Information (CSI)
  • delivery confirmation information for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.
  • scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR))
  • the PRACH may transmit a random access preamble for establishing a connection with the cell.
  • downlinks, uplinks, etc. may be expressed without “links”. Further, it may be expressed without adding "Physical" at the beginning of various channels.
  • a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted.
  • the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation).
  • CRS Cell-specific Reference Signal
  • CSI-RS Channel State Information Reference Signal
  • DeModulation Demodulation reference signal
  • Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
  • PRS Positioning Reference Signal
  • PTRS Phase Tracking Reference Signal
  • the synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like.
  • SS, SSB and the like may also be called a reference signal.
  • a measurement reference signal Sounding Reference Signal (SRS)
  • a demodulation reference signal DMRS
  • UL-RS Uplink Reference Signal
  • UE-specific Reference Signal UE-specific Reference Signal
  • FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment.
  • the base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140.
  • the control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
  • the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 110 controls the entire base station 10.
  • the control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like.
  • the control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120.
  • the control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
  • the transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123.
  • the baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212.
  • the transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
  • the transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122.
  • the receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
  • the transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 120 processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Medium Access Control
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 120 performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted.
  • the base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
  • IFFT inverse fast Fourier transform
  • the transmission / reception unit 120 may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
  • the transmission / reception unit 120 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
  • the transmission / reception unit 120 (reception processing unit 1212) performs analog-digital transformation, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
  • FFT fast Fourier transform
  • IDFT inverse discrete Fourier transform
  • the transmission / reception unit 120 may perform measurement on the received signal.
  • the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal.
  • the measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)).
  • RSRP Reference Signal Received Power
  • RSSQ Reference Signal Received Quality
  • SINR Signal to Noise Ratio
  • Signal strength for example, Received Signal Strength Indicator (RSSI)
  • propagation path information for example, CSI
  • the measurement result may be output to the control unit 110.
  • the transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
  • the transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
  • the transmission / reception unit 120 may receive information regarding the distance from the base station 10 or another user terminal 20 from the user terminal 20.
  • the transmission / reception unit 120 may receive information (for example, UE ID) for identifying the base station 10 or the other user terminal 20 corresponding to the information regarding the distance.
  • the spatial domain filter for transmission of the base station, the downlink spatial domain transmission filter (downlink spatial domain transmission filter), and the transmission beam of the base station may be read as each other.
  • the spatial domain filter for reception of the base station, the uplink spatial domain receive filter (uplink spatial domain receive filter), and the receive beam of the base station may be read as each other.
  • FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment.
  • the user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230.
  • the control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
  • this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
  • the control unit 210 controls the entire user terminal 20.
  • the control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
  • the control unit 210 may control signal generation, mapping, and the like.
  • the control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230.
  • the control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
  • the transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223.
  • the baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212.
  • the transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
  • the transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit.
  • the transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222.
  • the receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
  • the transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
  • the transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like.
  • the transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
  • the transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
  • digital beamforming for example, precoding
  • analog beamforming for example, phase rotation
  • the transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
  • RLC layer processing for example, RLC retransmission control
  • MAC layer processing for example, for data, control information, etc. acquired from the control unit 210.
  • HARQ retransmission control HARQ retransmission control
  • the transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
  • Whether or not to apply the DFT process may be based on the transform precoding setting.
  • the transmission / reception unit 220 transmission processing unit 2211 described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled.
  • the DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
  • the transmission / reception unit 220 may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
  • the transmission / reception unit 220 may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
  • the transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
  • the transmission / reception unit 220 may perform measurement on the received signal.
  • the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal.
  • the measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like.
  • the measurement result may be output to the control unit 210.
  • the transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
  • control unit 210 may acquire the distance from the base station 10 or another user terminal 20.
  • at least one of the control unit 210 and the transmission / reception unit 220 measures, derives, calculates, etc. the distance based on the distance measurement signal transmitted from at least one of the base station 10 and the other user terminal 20. May be good.
  • the transmission / reception unit 220 may transmit information regarding the distance.
  • the transmission / reception unit 220 may transmit information (for example, UE ID) for identifying the base station 10 or the other user terminal 20 corresponding to the information regarding the distance.
  • information for example, UE ID
  • the control unit 210 may determine whether or not to transmit predetermined channel state information (for example, detailed CSI) based on the distance.
  • predetermined channel state information for example, detailed CSI
  • the control unit 210 may correct the beam for transmission or reception based on the distance.
  • This beam correction may include, for example, precoder determination, beam angle correction, and the like.
  • the control unit 210 inputs the beam change particle size information of the user terminal into the estimation model generated based on the measured values of the beam change particle size information and the beam angle information, and outputs the beam angle information.
  • the beam may be corrected based on the above.
  • the spatial domain filter for transmitting the UE, the uplink spatial domain transmission filter (uplink spatial domain transmission filter), and the transmitting beam of the UE may be read as each other.
  • the spatial domain filter for receiving the UE, the downlink spatial domain receive filter (downlink spatial domain receive filter), and the received beam of the UE may be read as each other.
  • each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices.
  • the functional block may be realized by combining the software with the one device or the plurality of devices.
  • the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc.
  • a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like.
  • the method of realizing each of them is not particularly limited.
  • the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure.
  • FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
  • the base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
  • the hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
  • processor 1001 may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors.
  • the processor 1001 may be mounted by one or more chips.
  • the processor 1001 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
  • predetermined software program
  • the processor 1001 operates, for example, an operating system to control the entire computer.
  • the processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like.
  • CPU central processing unit
  • control unit 110 210
  • transmission / reception unit 120 220
  • the like may be realized by the processor 1001.
  • the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these.
  • a program program code
  • the control unit 110 may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
  • the memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one.
  • the memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like.
  • the memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
  • the storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of.
  • the storage 1003 may be referred to as an auxiliary storage device.
  • the communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like.
  • the communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include.
  • the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004.
  • the transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
  • the input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside.
  • the output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside.
  • the input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
  • each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information.
  • the bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
  • the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
  • DSP Digital Signal Processor
  • ASIC Application Specific Integrated Circuit
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • the terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings.
  • channels, symbols and signals may be read interchangeably.
  • the signal may be a message.
  • the reference signal may also be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard.
  • the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
  • the wireless frame may be composed of one or more periods (frames) in the time domain.
  • Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe.
  • the subframe may be composed of one or more slots in the time domain.
  • the subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
  • the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel.
  • Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration.
  • SCS subcarrier Spacing
  • TTI Transmission Time Interval
  • a specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
  • the slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain.
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier Frequency Division Multiple Access
  • the slot may be a time unit based on numerology.
  • the slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot.
  • a PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A.
  • the PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
  • the wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal.
  • the radio frame, subframe, slot, minislot and symbol may have different names corresponding to each.
  • the time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
  • one subframe may be called TTI
  • a plurality of consecutive subframes may be called TTI
  • one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be.
  • the unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
  • TTI refers to, for example, the minimum time unit of scheduling in wireless communication.
  • the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units.
  • the definition of TTI is not limited to this.
  • the TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation.
  • the time interval for example, the number of symbols
  • the transport block, code block, code word, etc. may be shorter than the TTI.
  • one or more TTIs may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
  • a TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like.
  • TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
  • the long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
  • a resource block is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain.
  • the number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12.
  • the number of subcarriers contained in the RB may be determined based on numerology.
  • the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI.
  • Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
  • one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
  • PRB Physical RB
  • SCG sub-carrier Group
  • REG resource element group
  • PRB pair an RB. It may be called a pair or the like.
  • the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)).
  • RE Resource Element
  • 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
  • Bandwidth Part (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good.
  • the common RB may be specified by the index of the RB with respect to the common reference point of the carrier.
  • PRBs may be defined in a BWP and numbered within that BWP.
  • the BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL).
  • BWP UL BWP
  • BWP for DL DL BWP
  • One or more BWPs may be set in one carrier for the UE.
  • At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP.
  • “cell”, “carrier” and the like in this disclosure may be read as “BWP”.
  • the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples.
  • the number of subframes contained in a wireless frame the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB.
  • the number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
  • the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
  • the information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques.
  • data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
  • information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers.
  • Information, signals, etc. may be input / output via a plurality of network nodes.
  • the input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
  • the notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method.
  • the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
  • DCI downlink control information
  • UCI Uplink Control Information
  • RRC Radio Resource Control
  • MIB master information block
  • SIB system information block
  • MAC medium access control
  • the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like.
  • the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like.
  • MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
  • CE MAC Control Element
  • the notification of predetermined information is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
  • the determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
  • Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name.
  • Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
  • software, instructions, information, etc. may be transmitted and received via a transmission medium.
  • a transmission medium For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.).
  • wired technology coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.
  • wireless technology infrared, microwave, etc.
  • Network may mean a device (eg, a base station) included in the network.
  • precoding "precoding weight”
  • QCL Quality of Co-Co-Location
  • TCI state Transmission Configuration Indication state
  • space "Spatial relation”, “spatial domain filter”, “transmission power”, “phase rotation”, "antenna port”, “antenna port group”, “layer”, “number of layers”
  • Terms such as “rank”, “resource”, “resource set”, “resource group”, “beam”, “beam width”, “beam angle”, "antenna”, “antenna element", “panel” are compatible.
  • Base station BS
  • radio base station fixed station
  • NodeB NodeB
  • eNB eNodeB
  • gNB gNodeB
  • Access point "Transmission point (Transmission Point (TP))
  • RP Reception point
  • TRP Transmission / Reception Point
  • Panel , "Cell”, “sector”, “cell group”, “carrier”, “component carrier” and the like
  • Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
  • the base station can accommodate one or more (for example, three) cells.
  • a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)).
  • Communication services can also be provided by Head (RRH))).
  • RRH Head
  • the term "cell” or “sector” refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
  • MS mobile station
  • UE user equipment
  • terminal terminal
  • Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
  • At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like.
  • At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like.
  • the moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be.
  • at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation.
  • at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
  • IoT Internet of Things
  • the base station in the present disclosure may be read by the user terminal.
  • communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.).
  • D2D Device-to-Device
  • V2X Vehicle-to-Everything
  • Each aspect / embodiment of the present disclosure may be applied to the configuration.
  • the user terminal 20 may have the function of the base station 10 described above.
  • words such as "up” and “down” may be read as words corresponding to inter-terminal communication (for example, "side").
  • the uplink, downlink, and the like may be read as side channels.
  • the user terminal in the present disclosure may be read as a base station.
  • the base station 10 may have the functions of the user terminal 20 described above.
  • the operation performed by the base station may be performed by its upper node (upper node) in some cases.
  • various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,).
  • Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
  • each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution.
  • the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction.
  • the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
  • LTE Long Term Evolution
  • LTE-A LTE-Advanced
  • SUPER 3G IMT-Advanced
  • 4G 4th generation mobile communication system
  • 5G 5th generation mobile communication system
  • Future Radio Access FAA
  • New-Radio Access Technology RAT
  • NR New Radio
  • NX New radio access
  • Future generation radio access FX
  • GSM Global System for Mobile communications
  • CDMA2000 Code Division Multiple Access
  • UMB Ultra Mobile Broadband
  • IEEE 802.11 Wi-Fi (registered trademark)
  • LTE 802.16 WiMAX (registered trademark)
  • a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
  • references to elements using designations such as “first”, “second”, etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
  • determining used in this disclosure may include a wide variety of actions.
  • judgment (decision) means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment”.
  • judgment (decision) means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as “judgment (decision)" of "accessing” (for example, accessing data in memory).
  • judgment (decision) is regarded as “judgment (decision)” of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, “judgment (decision)” may be regarded as “judgment (decision)” of some action.
  • connection are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are “connected” or “joined” to each other.
  • the connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection” may be read as "access”.
  • the radio frequency domain microwaves. It can be considered to be “connected” or “coupled” to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
  • the term "A and B are different” may mean “A and B are different from each other”.
  • the term may mean that "A and B are different from C”.
  • Terms such as “separate” and “combined” may be interpreted in the same way as “different”.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

A user terminal according to one embodiment of the present disclosure is characterized by having a control unit that derives the distance to a base station or another user terminal, and a transmission unit that transmits information relating to said distance. This embodiment of the present disclosure makes it possible to optimally utilize MIMO even in cases in which complete channel information cannot be obtained.

Description

ユーザ端末及び無線通信方法User terminal and wireless communication method
 本開示は、次世代移動通信システムにおけるユーザ端末及び無線通信方法に関する。 The present disclosure relates to a user terminal and a wireless communication method in a next-generation mobile communication system.
 Universal Mobile Telecommunications System(UMTS)ネットワークにおいて、更なる高速データレート、低遅延などを目的としてLong Term Evolution(LTE)が仕様化された(非特許文献1)。また、LTE(Third Generation Partnership Project(3GPP) Release(Rel.)8、9)の更なる大容量、高度化などを目的として、LTE-Advanced(3GPP Rel.10-14)が仕様化された。 In the Universal Mobile Telecommunications System (UMTS) network, Long Term Evolution (LTE) has been specified for the purpose of further high-speed data rate, low latency, etc. (Non-Patent Document 1). In addition, LTE-Advanced (3GPP Rel.10-14) has been specified for the purpose of further increasing the capacity and sophistication of LTE (Third Generation Partnership Project (3GPP) Release (Rel.) 8, 9).
 LTEの後継システム(例えば、5th generation mobile communication system(5G)、5G+(plus)、New Radio(NR)、3GPP Rel.15以降などともいう)も検討されている。 A successor system to LTE (for example, 5th generation mobile communication system (5G), 5G + (plus), New Radio (NR), 3GPP Rel.15 or later, etc.) is also being considered.
 NRでは、LTEで導入されたMulti Input Multi Output(MIMO)空間多重をさらに拡張したMIMOをサポートし、通信スループットの向上を実現することが検討されている。 In NR, it is being considered to support MIMO, which is a further extension of Multi Input Multi Output (MIMO) spatial multiplexing introduced in LTE, and to improve communication throughput.
 MIMOの空間分離のためには、完全なチャネルの情報(究極的には、全ての信号の振幅及び位相の情報)を得られることが好ましい。しかしながら、完全なチャネルの情報のフィードバックにはそれだけリソースを必要とするため、通信スループットが低減してしまう。 For the spatial separation of MIMO, it is preferable to obtain complete channel information (ultimately, information on the amplitude and phase of all signals). However, feedback of complete channel information requires more resources, which reduces communication throughput.
 したがって、必要なチャネル情報を十分に得られない場合であっても、空間領域(MIMO)を十分に活用できるようにする方法が求められている。しかしながら、そのような方法はまだ検討が進んでいない。 Therefore, there is a need for a method that enables full utilization of the spatial area (MIMO) even when the necessary channel information cannot be sufficiently obtained. However, such a method has not yet been studied.
 そこで、本開示は、完全なチャネル情報が得られない場合であっても、MIMOを好適に利用できるユーザ端末及び無線通信方法を提供することを目的の1つとする。 Therefore, one of the purposes of the present disclosure is to provide a user terminal and a wireless communication method that can suitably use MIMO even when complete channel information cannot be obtained.
 本開示の一態様に係るユーザ端末は、基地局又は他のユーザ端末との距離を導出する制御部と、前記距離に関する情報を送信する送信部と、を有することを特徴とする。 The user terminal according to one aspect of the present disclosure is characterized by having a control unit for deriving a distance from a base station or another user terminal, and a transmission unit for transmitting information regarding the distance.
 本開示の一態様によれば、完全なチャネル情報が得られない場合であっても、MIMOを好適に利用できる。 According to one aspect of the present disclosure, MIMO can be suitably used even when complete channel information cannot be obtained.
図1は、第1の実施形態に係る距離報告の一例を示す図である。FIG. 1 is a diagram showing an example of a distance report according to the first embodiment. 図2A-2Dは、UEの位置関係の一例を示す図である。FIG. 2A-2D is a diagram showing an example of the positional relationship of UEs. 図3A及び3Bは、第2の実施形態に係るCSI報告又は距離報告の一例を示す図である。3A and 3B are diagrams showing an example of a CSI report or a distance report according to the second embodiment. 図4A及び4Bは、第3の実施形態に係るUEのビーム補正の一例を示す図である。4A and 4B are diagrams showing an example of beam correction of the UE according to the third embodiment. 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. 図6は、一実施形態に係る基地局の構成の一例を示す図である。FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment. 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment. 図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment.
 NRでは、LTEで導入されたMulti Input Multi Output(MIMO)空間多重をさらに拡張したMIMOをサポートし、通信スループットの向上を実現することが検討されている。 In NR, it is being considered to support MIMO, which is a further extension of Multi Input Multi Output (MIMO) spatial multiplexing introduced in LTE, and to improve communication throughput.
 MIMOは空間相関による影響を大きく受ける。例えば、シングルユーザ(Single User(SU))-MIMOでは、1UEにおけるアンテナ間のチャネル相関が高いと、信号分離ができない。また、マルチユーザ(Multi User(MU))-MIMOでは、複数UE間のチャネル相関が高いと、信号分離ができない。 MIMO is greatly affected by spatial correlation. For example, in Single User (SU) -MIMO, if the channel correlation between antennas in one UE is high, signal separation cannot be performed. Further, in Multi User (MU) -MIMO, if the channel correlation between a plurality of UEs is high, signal separation cannot be performed.
 UEは、チャネル測定、干渉測定などを行って、その結果をチャネル状態情報(Channel State Information(CSI))としてネットワークに報告する。CSIは、例えば、Channel Quality Indicator(CQI)、Precoding Matrix Indicator(PMI)、Rank Indicator(RI)などを含んでもよい。 The UE performs channel measurement, interference measurement, etc., and reports the result to the network as channel state information (CSI). The CSI may include, for example, Channel Quality Indicator (CQI), Precoding Matrix Indicator (PMI), Rank Indicator (RI), and the like.
 MIMOの空間分離のためには、完全なチャネルの情報(究極的には、全ての信号の振幅及び位相の情報)を得られることが好ましい。しかしながら、詳細なチャネルの情報のフィードバックにはそれだけリソースを必要とするため、通信スループットが低減してしまう。 For the spatial separation of MIMO, it is preferable to obtain complete channel information (ultimately, information on the amplitude and phase of all signals). However, the feedback of detailed channel information requires that much resource, which reduces the communication throughput.
 したがって、必要なチャネル情報を十分に得られない場合であっても、空間領域(MIMO)を十分に活用できるようにする方法が求められている。しかしながら、そのような方法はまだ検討が進んでいない。 Therefore, there is a need for a method that enables full utilization of the spatial area (MIMO) even when the necessary channel information cannot be sufficiently obtained. However, such a method has not yet been studied.
 そこで、本発明者らは、限られたフィードバック情報しか得られない場合であっても、MIMO空間分離の性能向上を実現できる方法を着想した。本開示の一態様によれば、gNB-UE間、UE-UE間などがチャネル相関に関係すると想定し、gNB-UE間、UE-UE間などの距離情報に基づいて、MIMOに関連する動作を制御(適用/切り替え)する。 Therefore, the present inventors have conceived a method that can improve the performance of MIMO spatial separation even when only limited feedback information can be obtained. According to one aspect of the present disclosure, it is assumed that gNB-UE, UE-UE, etc. are related to channel correlation, and operations related to MIMO are performed based on distance information such as gNB-UE, UE-UE, etc. To control (apply / switch).
 以下、本開示に係る実施形態について、図面を参照して詳細に説明する。各実施形態に係る無線通信方法は、それぞれ単独で適用されてもよいし、組み合わせて適用されてもよい。 Hereinafter, embodiments according to the present disclosure will be described in detail with reference to the drawings. The wireless communication methods according to each embodiment may be applied individually or in combination.
 本開示において、「距離」は「UE-基地局間距離」(例えば、「自UE-基地局間距離」)及び「UE-UE間距離」(例えば、「自UE-他UE間距離」)の少なくとも1つで読み替えられてもよい。 In the present disclosure, "distance" is "UE-base station distance" (for example, "own UE-base station distance") and "UE-UE distance" (for example, "own UE-other UE distance"). It may be read as at least one of.
 なお、以下の実施形態においては、UEは、基地局及び他のUEの少なくとも1つから送信される所定の距離測定用信号に基づいて、当該基地局及び他のUEの少なくとも1つとの距離を測定又は推定すると想定するが、これに限られない。UEは、任意の方法によって、当該距離を取得、導出などしてもよい。なお、本開示の距離測定用信号は、測定用信号、参照信号、チャネル、同期信号などの少なくとも1つで読み替えられてもよい。 In the following embodiment, the UE determines the distance from at least one of the base station and the other UE based on a predetermined distance measurement signal transmitted from at least one of the base station and the other UE. It is assumed to be measured or estimated, but it is not limited to this. The UE may acquire, derive, or the like the distance by any method. The distance measurement signal of the present disclosure may be read as at least one of a measurement signal, a reference signal, a channel, a synchronization signal, and the like.
(無線通信方法)
<第1の実施形態>
 第1の実施形態は、距離の報告に関する。
(Wireless communication method)
<First Embodiment>
The first embodiment relates to distance reporting.
 UEは、距離に関する情報(距離報告と呼ばれてもよい)をネットワーク(例えば、基地局)に送信してもよい。当該報告は、周期的報告(periodic report)であってもよいし、セミパーシステント報告(semi-persistent report)であってもよいし、非周期的報告(aperiodic report)であってもよい。これらの報告はそれぞれ、周期的距離報告、セミパーシステント距離報告及び非周期的距離報告と呼ばれてもよい。 The UE may transmit information about the distance (which may be called a distance report) to the network (for example, a base station). The report may be a periodic report (periodic report), a semi-persistent report (semi-persistent report), or an aperiodic report (aperiodic report). These reports may be referred to as periodic distance reports, semi-persistent distance reports and aperiodic distance reports, respectively.
 UEは、距離報告のための設定情報を上位レイヤシグナリングによって受信してもよい。例えば、当該設定情報は、距離報告のタイミング(例えば、周期的報告、セミパーシステント報告、非周期的報告のいずれを用いるか)、距離報告のためのリソース(例えば、時間リソース(周期など)、周波数リソース)などの情報を含んでもよい。 The UE may receive the setting information for distance reporting by upper layer signaling. For example, the setting information includes the timing of distance reporting (for example, whether to use periodic reporting, semi-persistent reporting, or aperiodic reporting), resources for distance reporting (for example, time resources (period, etc.), etc.). It may include information such as frequency resources).
 なお、本開示において、上位レイヤシグナリングは、例えば、Radio Resource Control(RRC)シグナリング、Medium Access Control(MAC)シグナリング、ブロードキャスト情報などのいずれか、又はこれらの組み合わせであってもよい。 In the present disclosure, the upper layer signaling may be, for example, any one of Radio Resource Control (RRC) signaling, Medium Access Control (MAC) signaling, broadcast information, or a combination thereof.
 MACシグナリングは、例えば、MAC制御要素(MAC Control Element(MAC CE))、MAC Protocol Data Unit(PDU)などを用いてもよい。ブロードキャスト情報は、例えば、マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))、最低限のシステム情報(Remaining Minimum System Information(RMSI))、その他のシステム情報(Other System Information(OSI))などであってもよい。 For MAC signaling, for example, a MAC control element (MAC Control Element (MAC CE)), a MAC Protocol Data Unit (PDU), or the like may be used. The broadcast information includes, for example, a master information block (Master Information Block (MIB)), a system information block (System Information Block (SIB)), a minimum system information (Remaining Minimum System Information (RMSI)), and other system information ( Other System Information (OSI)) may be used.
 周期的距離報告が設定されたUEは、所定の周期(例えば、上位レイヤパラメータによって示される周期、仕様によって定められた周期)で距離報告を送信してもよい。 The UE for which the periodic distance report is set may transmit the distance report in a predetermined cycle (for example, the cycle indicated by the upper layer parameter, the cycle defined by the specification).
 セミパーシステント距離報告が設定されたUEは、ネットワークからのアクティベーション信号に基づいて、所定の周期(例えば、上位レイヤパラメータによって示される周期、仕様によって定められた周期)の距離報告を実行するか否かを制御してもよい。 Does the UE configured for semi-persistent distance reporting perform distance reporting for a predetermined period (eg, the period indicated by the upper layer parameters, the period specified by the specification) based on the activation signal from the network? You may control whether or not.
 非周期的距離報告が設定されたUEは、ネットワークからのトリガ信号(要求信号)を契機に、距離報告を送信してもよい。 The UE for which the aperiodic distance report is set may transmit the distance report triggered by the trigger signal (request signal) from the network.
 ここで、上記アクティベーション信号、上記トリガ信号などは、MAC CEであってもよいし、下り制御情報(Downlink Control Information(DCI))であってもよいし、これらの組み合わせであってもよい。 Here, the activation signal, the trigger signal, and the like may be MAC CE, downlink control information (DCI), or a combination thereof.
 上記距離報告のための設定情報、上記アクティベーション信号及び上記トリガ信号などは、測定対象を指定するための情報を含んでもよい。UEは、指定された測定対象に関する距離を含む距離報告を送信してもよい。例えば、測定対象としては、特定の基地局、特定のUE、全ての基地局のうち特定の条件を満たす基地局、全てのUEのうち特定の条件を満たすUEなどが指定されてもよい。 The setting information for the distance report, the activation signal, the trigger signal, and the like may include information for designating the measurement target. The UE may send a distance report containing the distance for the specified measurement target. For example, as a measurement target, a specific base station, a specific UE, a base station that satisfies a specific condition among all base stations, a UE that satisfies a specific condition among all UEs, and the like may be specified.
 特定の条件を満たすUEは、所定の距離測定用信号を送信したUEであってもよい。 The UE that satisfies a specific condition may be a UE that has transmitted a predetermined distance measurement signal.
 UEは、距離報告を、距離報告用のチャネルを用いて送信してもよいし、既存チャネル(例えば、上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))など)を用いて送信してもよい。 The UE may transmit the distance report using the channel for distance reporting, an existing channel (for example, an uplink shared channel (Physical Uplink Shared Channel (PUSCH)), an uplink control channel (Physical Uplink Control Channel (PUCCH)). )), Random access channel (Physical Random Access Channel (PRACH), etc.) may be used for transmission.
 距離報告は、自UEと、基地局(例えば、gNB)及び別のUEの少なくとも一方と、の距離に関する情報を含んでもよい。当該距離は、測定された距離でもよいし、測定された距離に基づいて求められる指標であってもよい。 The distance report may include information about the distance between the own UE and at least one of the base station (eg, gNB) and another UE. The distance may be a measured distance or an index obtained based on the measured distance.
 当該指標は、例えば、所定の距離内に基地局及び別のUEの少なくとも一方が存在するか否かを示すパラメータなどであってもよいし、測定対象との距離のレベル(例えば、近い、中くらい、遠い)であってもよい。レベルと距離との対応関係は、上位レイヤシグナリングによってUEに設定されてもよいし、仕様によって定められてもよい。 The index may be, for example, a parameter indicating whether or not at least one of the base station and another UE is present within a predetermined distance, and the level of the distance to the measurement target (for example, close, medium). It may be far away). The correspondence between the level and the distance may be set in the UE by higher layer signaling or may be defined by the specifications.
 なお、距離報告は、自UEを特定(識別)するための情報(例えば、ユーザ識別子(UE Identifier(ID)))を含んでもよい。UE IDは、所定の無線ネットワーク一時識別子(Radio Network Temporary Identifier(RNTI))であってもよく、例えばセルRNTI(Cell RNTI(C-RNTI))であってもよい。 Note that the distance report may include information for identifying (identifying) the own UE (for example, a user identifier (UE Identifier (ID))). The UE ID may be a predetermined wireless network temporary identifier (Radio Network Temporary Identifier (RNTI)), or may be, for example, a cell RNTI (Cell RNTI (C-RNTI)).
 別のUEとの距離に関する情報を含む距離報告は、当該別のUEを特定するための情報(例えば、UE ID)を含んでもよい。 A distance report containing information on the distance to another UE may include information for identifying the other UE (eg, UE ID).
 UEは、距離報告を上り制御情報(Uplink Control Information(UCI))と同じタイミングで送信してもよいし、UCIの1つ(例えば、CSI)として報告してもよいし、UCIとは異なるタイミングで(独立して)報告してもよい。なお、本開示のUCIは、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK))、スケジューリングリクエスト(Scheduling Request(SR))及びチャネル状態情報(Channel State Information(CSI))の少なくとも1つを意味してもよい。 The UE may transmit the distance report at the same timing as the uplink control information (UCI), may report it as one of the UCIs (for example, CSI), or may have a timing different from that of the UCI. You may report (independently) at. The UCI of the present disclosure is at least one of delivery confirmation information (for example, Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK)), scheduling request (Scheduling Request (SR)), and channel state information (Channel State Information (CSI)). It may mean one.
 図1は、第1の実施形態に係る距離報告の一例を示す図である。本例では、UEは、他のUE(UE ID#AのUE)から送信される距離測定用信号(のリソース)に基づいて、自UE及び当該他のUE間の距離を測定する。UEは、測定した距離に関する情報、当該他のUEのID(UE ID#A)などを含む距離報告を、基地局に送信する。 FIG. 1 is a diagram showing an example of a distance report according to the first embodiment. In this example, the UE measures the distance between its own UE and the other UE based on the distance measurement signal (resource) transmitted from another UE (UE with UE ID # A). The UE transmits a distance report including information on the measured distance, the ID of the other UE (UE ID # A), and the like to the base station.
 基地局は、報告された距離情報に基づいて、UEの位置関係を計算してもよい。基地局は、例えば、自局から見た複数のUEに対する角度(自局と複数のUEのそれぞれを結んだ線分からなる角度)を計算してもよい。 The base station may calculate the positional relationship of the UE based on the reported distance information. For example, the base station may calculate an angle with respect to a plurality of UEs as seen from its own station (an angle consisting of a line connecting the own station and the plurality of UEs).
 基地局は、計算したUEの位置関係に基づいて、MIMOプリコーダ(例えば、デジタルビーム及びアナログビームの少なくとも一方)を決定又は補正してもよいし、UEのスケジューリング(例えば、MU-MIMOを適用するユーザのペアリング、SU-MIMOを適用するユーザの選択)を行ってもよい。 The base station may determine or correct a MIMO precoder (eg, at least one of a digital beam and an analog beam) based on the calculated UE positional relationship, or apply UE scheduling (eg, MU-MIMO). User pairing and user selection to apply SU-MIMO) may be performed.
 図2A-2Dは、UEの位置関係の一例を示す図である。 FIG. 2A-2D is a diagram showing an example of the positional relationship of UEs.
 図2Aでは、UE及び基地局間の距離は近く、UE及び他のUE間の距離も近い。基地局は、UEからの距離報告に基づいて図2Aのような位置関係を把握すると、当該UEに対してSU-MIMOを適用してもよい。UE間の距離が近く、UE間の信号分離が好適にできないためである。 In FIG. 2A, the distance between the UE and the base station is short, and the distance between the UE and other UEs is also short. When the base station grasps the positional relationship as shown in FIG. 2A based on the distance report from the UE, SU-MIMO may be applied to the UE. This is because the distance between the UEs is short and signal separation between the UEs cannot be preferably performed.
 図2Bでは、UE及び基地局間の距離は遠く、UE及び他のUE間の距離は近い。基地局は、UEからの距離報告に基づいて図2Bのような位置関係を把握すると、当該UE及び当該他のUEに対してMU-MIMOを適用しない制御を行ってもよい。UE間の距離が近く、UE間の信号分離が好適にできないためである。 In FIG. 2B, the distance between the UE and the base station is long, and the distance between the UE and other UEs is short. When the base station grasps the positional relationship as shown in FIG. 2B based on the distance report from the UE, the base station may perform control that does not apply MU-MIMO to the UE and the other UE. This is because the distance between the UEs is short and signal separation between the UEs cannot be preferably performed.
 図2Cでは、UE及び基地局間の距離は近い又は中くらいであり、UE及び他のUE間の距離は遠い。基地局は、UEからの距離報告に基づいて図2Cのような位置関係を把握すると、当該UE及び当該他のUEに対してMU-MIMOを適用してもよい。UE間の距離が遠く、UE間の信号分離が好適にできるためである。 In FIG. 2C, the distance between the UE and the base station is short or medium, and the distance between the UE and other UEs is long. When the base station grasps the positional relationship as shown in FIG. 2C based on the distance report from the UE, the base station may apply MU-MIMO to the UE and other UEs. This is because the distance between the UEs is long and the signal separation between the UEs can be preferably performed.
 図2Dでは、UE及び基地局間の距離は遠く、UE及び他のUE間の距離も遠い。
基地局は、UEからの距離報告に基づいて図2Dのような位置関係を把握すると、当該UE及び当該他のUEに対してMU-MIMOを適用してもよい。UE間の距離が遠く、UE間の信号分離が好適にできるためである。
In FIG. 2D, the distance between the UE and the base station is long, and the distance between the UE and other UEs is also long.
When the base station grasps the positional relationship as shown in FIG. 2D based on the distance report from the UE, the base station may apply MU-MIMO to the UE and other UEs. This is because the distance between the UEs is long and the signal separation between the UEs can be preferably performed.
 以上説明した第1の実施形態によれば、UE-UE間距離、UE-ネットワーク間距離などを好適に報告できる。 According to the first embodiment described above, the distance between UE and UE, the distance between UE and network, and the like can be preferably reported.
<第2の実施形態>
 第2の実施形態は、距離に基づくCSI報告に関する。
<Second embodiment>
A second embodiment relates to distance-based CSI reporting.
 UEは、第1の実施形態で述べた自UEと、基地局(例えば、gNB)及び別のUEの少なくとも一方と、の距離に関する情報に基づいて、報告するCSIを変更(又は制御又は決定)してもよい。 The UE modifies (or controls or determines) the reported CSI based on information about the distance between its own UE and at least one of the base station (eg, gNB) and another UE described in the first embodiment. You may.
 例えば、UEは、距離に関して所定の条件を満たす場合に、詳細なCSIを送信してもよい。ここで、当該詳細なCSIは、通常のCSI(つまり、CQI、PMI、RIなど)より詳細なチャネル状態を導出、算出、取得等するためのCSIであってもよい。詳細なCSIは、例えば、チャネルの振幅情報、位相情報及び角度情報の1つ又は複数(例えば、全て)を含んでもよい。詳細なCSIは、デジタル又はアナログビームの補正のための情報で読み替えられてもよい。 For example, the UE may transmit a detailed CSI when a predetermined condition is satisfied with respect to the distance. Here, the detailed CSI may be a CSI for deriving, calculating, acquiring, or the like a channel state more detailed than a normal CSI (that is, CQI, PMI, RI, etc.). The detailed CSI may include, for example, one or more (eg, all) of channel amplitude information, phase information and angle information. The detailed CSI may be read as information for correction of digital or analog beams.
 なお、角度情報は、UEの向き(例えば、ディスプレイの向き、アンテナパネルの向きなど)、UEから見た基地局又は他のUEの向き、UEから見た所定の地点(例えば、北極点)の向きなどの少なくとも1つに関する情報に該当してもよい。 The angle information is the orientation of the UE (for example, the orientation of the display, the orientation of the antenna panel, etc.), the orientation of the base station or another UE as seen from the UE, and a predetermined point (for example, the North Pole) as seen from the UE. It may correspond to information about at least one such as orientation.
 なお、UEは、詳細なCSIを送信する場合、所定の通知を基地局に送信してもよい。例えば、当該所定の通知は、MIMO空間多重を推奨しない(又は推奨する)ことを示す情報を含んでもよい。UEは、詳細なCSIを送信する代わりに、当該所定の通知を基地局に送信してもよい。詳細なCSIは、当該所定の通知を含んでもよい。 Note that the UE may send a predetermined notification to the base station when transmitting the detailed CSI. For example, the given notification may include information indicating that MIMO spatial multiplexing is not recommended (or recommended). The UE may send the predetermined notification to the base station instead of sending the detailed CSI. The detailed CSI may include the given notice.
 当該所定の条件は、以下のいずれか又はこれらの組み合わせに該当してもよい:
 ・UEと基地局との距離が第1の閾値よりも大きい(遠い)、
 ・UEと別のUEとの距離が第2の閾値よりも小さい(近い)。
The prescribed conditions may correspond to any of the following or a combination thereof:
-The distance between the UE and the base station is greater than (far) than the first threshold value.
-The distance between one UE and another UE is smaller (closer) than the second threshold.
 なお、「大きい」は「小さい」で読み替えられてもよい。「小さい」は「大きい」で読み替えられてもよい。また、第1の閾値、第2の閾値などは、上位レイヤパラメータで与えられてもよい(上位レイヤシグナリングによって設定されてもよい)し、仕様によって定められてもよい。 Note that "large" may be read as "small". "Small" may be read as "large". Further, the first threshold value, the second threshold value, and the like may be given by the upper layer parameter (may be set by the upper layer signaling), or may be determined by the specification.
 UEは、上記所定の条件が満たされない場合、第1の実施形態で述べたような距離報告を送信してもよい。 The UE may send a distance report as described in the first embodiment if the above predetermined conditions are not satisfied.
 第2の実施形態のCSI報告のトリガ、タイミング、チャネルなどについては、第1の実施形態の距離報告をCSI報告で読み替えた内容に基づいて制御されてもよいため、背説明を繰り返さない。なお、CSI報告は、距離報告と同時に(まとめて)トリガされてもよいし、同じタイミングで送信されてもよい。 The trigger, timing, channel, etc. of the CSI report of the second embodiment may be controlled based on the content of the distance report of the first embodiment read in the CSI report, so that the back explanation is not repeated. The CSI report may be triggered (collectively) at the same time as the distance report, or may be transmitted at the same timing.
 上述した図2A-2Dを例に説明する。基地局は、UEからの距離報告に基づいて図2Bのような位置関係を把握すると、詳細なCSI報告を要求するための設定情報、アクティベーション信号及びトリガ信号の少なくとも1つを、当該UEに対して送信してもよい。UE間の距離が近く、UE間の信号分離を行うには詳細なチャネル情報があることが好ましいためである。 The above-mentioned FIG. 2A-2D will be described as an example. When the base station grasps the positional relationship as shown in FIG. 2B based on the distance report from the UE, the base station provides the UE with at least one of the setting information, the activation signal, and the trigger signal for requesting the detailed CSI report. You may send it to. This is because the distance between the UEs is short, and it is preferable that detailed channel information is available for signal separation between the UEs.
 基地局は、UEからの距離報告に基づいて図2C又は2Dのような位置関係を把握すると、詳細なCSI報告を要求するための設定情報、アクティベーション信号及びトリガ信号などを、当該UEに対して送信しなくてもよい(つまり、当該UEに対しては通常のCSI報告を設定してもよい)。UE間の距離が遠く、簡易なCSIで足りるためである。 When the base station grasps the positional relationship as shown in FIG. 2C or 2D based on the distance report from the UE, the base station provides the UE with setting information, an activation signal, a trigger signal, etc. for requesting a detailed CSI report. It is not necessary to send (that is, a normal CSI report may be set for the UE). This is because the distance between UEs is long and a simple CSI is sufficient.
 図3A及び3Bは、第2の実施形態に係るCSI報告又は距離報告の一例を示す図である。これらの例は、図1と同様の処理の流れを想定するため、同じ説明は繰り返さない。 3A and 3B are diagrams showing an example of a CSI report or a distance report according to the second embodiment. Since these examples assume the same processing flow as in FIG. 1, the same description will not be repeated.
 図3Aでは、UEは、距離測定の結果、他のUEとの距離が近い(例えば第2の閾値より小さい)ことを認識した。本例では、UEは、基地局に対して詳細なCSIを報告してもよい。 In FIG. 3A, as a result of the distance measurement, the UE recognized that the distance to the other UE was short (for example, smaller than the second threshold value). In this example, the UE may report the detailed CSI to the base station.
 図3Bでは、UEは、距離測定の結果、他のUEとの距離が遠い(例えば第2の閾値より大きい)ことを認識した。本例では、UEは、基地局に対して詳細なCSIを報告せず、距離報告を送信してもよい。 In FIG. 3B, as a result of the distance measurement, the UE recognized that the distance from the other UE was long (for example, larger than the second threshold value). In this example, the UE may send a distance report without reporting the detailed CSI to the base station.
 以上説明した第2の実施形態によれば、UE-UE間距離、UE-ネットワーク間距離に応じて、CSI報告、距離報告などを好適に制御できる。 According to the second embodiment described above, CSI reporting, distance reporting, and the like can be suitably controlled according to the UE-UE distance and the UE-network distance.
<第3の実施形態>
 第3の実施形態は、距離に基づくUEのビーム補正に関する。
<Third embodiment>
A third embodiment relates to distance-based UE beam correction.
 UEは、自UEと、基地局(例えば、gNB)及び別のUEの少なくとも一方と、の距離に関する情報に基づいて、MIMOに関する送信又は受信処理(例えば、デジタルビーム及びアナログビームの少なくとも一方)を決定又は補正してもよい。当該距離に関する情報は、第1の実施形態で説明した情報と同様であってもよい。 A UE performs transmit or receive processing (eg, at least one of a digital beam and an analog beam) with respect to MIMO based on information about the distance between its own UE and at least one of a base station (eg, gNB) and another UE. It may be determined or amended. The information regarding the distance may be the same as the information described in the first embodiment.
 UEは、MIMO送信処理又はMIMO受信処理(例えば、アナログビームの方向)を変更しながら上記距離の測定を行うことによって、基地局及び別のUEの少なくとも一方との位置関係(例えば、角度関係)を導出してもよい。 By measuring the distance while changing the MIMO transmission process or MIMO reception process (for example, the direction of the analog beam), the UE has a positional relationship (for example, an angular relationship) with at least one of the base station and another UE. May be derived.
 UEは、上記距離に関する情報の代わりに又は上記距離に関する情報に加えて、上記位置関係に基づいてMIMOに関する送信又は受信処理を決定又は補正してもよい。 The UE may determine or correct the transmission or reception process for MIMO based on the positional relationship, instead of or in addition to the information about the distance.
 なお、UEは、MIMOに関する送信又は受信処理を決定又は補正した場合、この決定又は補正を行ったことを示す所定の通知を基地局に送信してもよい。UEは、MIMOに関する送信又は受信処理を決定又は補正した場合、この決定又は補正を行った後のMIMO送信処理又はMIMO受信処理に関する情報を基地局に送信してもよい。 When the UE determines or corrects the transmission or reception processing related to MIMO, the UE may transmit a predetermined notification indicating that the determination or correction has been made to the base station. When the UE determines or corrects the transmission or reception processing relating to MIMO, the UE may transmit information regarding the MIMO transmission processing or MIMO reception processing after the determination or correction to the base station.
 図4A及び4Bは、第3の実施形態に係るUEのビーム補正の一例を示す図である。本例では、基地局はビーム#1-#4の少なくとも1つを用いてUE及び他のUEと通信可能と想定する。 4A and 4B are diagrams showing an example of the beam correction of the UE according to the third embodiment. In this example, it is assumed that the base station can communicate with the UE and other UEs using at least one of beams # 1- # 4.
 図4Aにおいては、UEは、基地局のビーム#2に向く送信又は受信ビームを利用し、他のUEは、基地局のビーム#3に向く送信又は受信ビームを利用している。ここで、UEは、他のUEから送信される距離測定用信号(のリソース)に基づいて、自UE及び当該他のUE間の、少なくとも距離及び角度のいずれか一方を測定する。この結果、UEは、図4Bのようにビーム(例えば、アナログビーム)を基地局のビーム#1に向くように変更する制御を行ってもよい。 In FIG. 4A, the UE uses the transmission or reception beam directed to the base station beam # 2, and the other UEs use the transmission or reception beam directed to the base station beam # 3. Here, the UE measures at least one of the distance and the angle between the own UE and the other UE based on (the resource) of the distance measurement signal transmitted from the other UE. As a result, the UE may control to change the beam (for example, an analog beam) so as to be directed to the beam # 1 of the base station as shown in FIG. 4B.
 このようなUEの自律的な制御によって、複数UEが存在する場合の各UEの送受信信号の品質を向上できる。 By such autonomous control of UEs, the quality of transmission / reception signals of each UE when a plurality of UEs exist can be improved.
 UEは、所定のモデルを利用して上述のMIMOに関する送受信処理の決定又は補正を行ってもよい。ここで、当該所定のモデルは、人工知能(Artificial Intelligence(AI))によって作成された予測モデルなどであってもよい。AIは、機械学習、ディープラーニングなどの少なくとも1つを含んでもよい。 The UE may determine or correct the transmission / reception processing related to MIMO described above by using a predetermined model. Here, the predetermined model may be a prediction model created by artificial intelligence (AI) or the like. The AI may include at least one such as machine learning, deep learning and the like.
 上記所定のモデルの入力パラメータは、以下の少なくとも1つを含んでもよい:
 ・基地局及び他のUEの少なくとも一方からの距離測定用信号の測定結果、
 ・送信又は受信ビーム(例えば、アナログビーム)を用いた測定結果(例えば、受信強度)、
 ・UE間の距離に関する情報、
 ・送信又は受信ビームの角度情報、
 ・送信又は受信ビームの変更の粒度情報、
 ・あるタイミングから何回ビームを回したかの情報。
The input parameters of the given model may include at least one of the following:
-Measurement result of distance measurement signal from at least one of the base station and other UE,
-Measurement results (eg, reception intensity) using a transmit or receive beam (eg, analog beam),
· Information about the distance between UEs,
・ Angle information of transmission or reception beam,
・ Particle size information of change of transmission or reception beam,
-Information on how many times the beam was turned from a certain timing.
 ここで、粒度情報は、形成可能なビーム間の最小角度の情報などであってもよい。 Here, the particle size information may be information on the minimum angle between the beams that can be formed.
 なお、距離測定用信号の測定結果、ビームを用いた測定結果などは、以下の少なくとも1つを含んでもよいし、以下の少なくとも1つに基づいて導出されてもよい(例えば、測定値が所定の閾値以上か否か、など):
 ・信号の振幅
 ・信号の位相
 ・受信電力(例えば、Reference Signal Received Power(RSRP))、
 ・受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR)、ブロック誤り率(Block Error Rate(BLER))、ビット誤り率(Bit Error Rate(BER))、パケット誤り率(Packet Error Rate(PER)))、
 ・信号強度(例えば、Received Signal Strength Indicator(RSSI))。
The measurement result of the distance measurement signal, the measurement result using the beam, and the like may include at least one of the following, or may be derived based on at least one of the following (for example, the measured value is predetermined). Whether or not it is above the threshold value of):
-Signal amplitude-Signal phase-Received power (eg Reference Signal Received Power (RSRP)),
-Reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR), Block Error Rate (BLER)), Bit Error Rate (Bit Error) Rate (BER)), Packet Error Rate (PER)),
• Signal strength (eg, Received Signal Strength Indicator (RSSI)).
 なお、あるタイミングから何回ビームを回したかの情報は、ビームスウィーピング回数などと呼ばれてもよい。 Information on how many times the beam has been turned from a certain timing may be called the number of beam sweeping.
 なお、上記入力パラメータは、例えば、UEがアナログビームを変更しながら距離測定用信号を受信(測定)することによって、取得されてもよい。 Note that the above input parameters may be acquired, for example, by the UE receiving (measuring) a distance measurement signal while changing the analog beam.
 上記所定のモデルの出力パラメータは、例えば、MIMOに関する送信又は受信処理(例えば、デジタルビーム及びアナログビームの少なくとも一方)のためのパラメータを含んでもよい。当該パラメータは、例えば、デジタルビーム又はアナログビームの角度情報(例えば、角度オフセット、プリコーダ、位相シフト量)などであってもよい。 The output parameters of the above-mentioned predetermined model may include, for example, parameters for transmission or reception processing related to MIMO (for example, at least one of a digital beam and an analog beam). The parameter may be, for example, angle information of a digital beam or an analog beam (for example, angle offset, precoder, phase shift amount) and the like.
 本発明者らの検討によれば、上述の入力パラメータのおのおのは、上述の出力パラメータとの間に、統計的に有意な相関関係がある。このため、例えば上述の入力パラメータ及び出力パラメータの実測値の組み合わせを教師データとして、学習済みモデルを作成できる。なお、モデルの作成は、UE、ネットワーク(例えば、基地局)その他の装置が行ってもよく、他の装置によって作成されたモデルがUEに記憶されてもよい。 According to the studies by the present inventors, each of the above-mentioned input parameters has a statistically significant correlation with the above-mentioned output parameters. Therefore, for example, a trained model can be created by using a combination of the measured values of the above-mentioned input parameters and output parameters as teacher data. The model may be created by the UE, a network (for example, a base station) or other device, or a model created by the other device may be stored in the UE.
 UEは、上記入力パラメータに基づいて品質評価を行い、所定の条件を満たす品質の場合の上記出力パラメータを出力してもよい。当該品質評価は、例えば、チャネルの複素数、振幅、位相、受信電力(RSRPなど)、受信品質(RSRQ、BLER、BER、PERなど)、信号強度(RSSIなど)、受信測定結果が所定の閾値以上か以下か、などに基づいて行われてもよい。 The UE may perform quality evaluation based on the above input parameters and output the above output parameters when the quality satisfies a predetermined condition. In the quality evaluation, for example, the complex number of the channel, amplitude, phase, received power (RSRP, etc.), reception quality (RSRQ, BLER, BER, PER, etc.), signal strength (RSSI, etc.), reception measurement result is equal to or higher than a predetermined threshold. It may be done based on whether or not.
 UEは、所定の順番の入力パラメータに基づいて品質評価を行ってもよい。例えば、UEは、i番目の入力に対する品質がi-j(例えば、j=1)番目の入力に対する品質よりも良い品質になった場合、i+k(例えば、k=1)番目の入力パラメータを用いて品質評価を行ってもよく、そうでない場合、i-j番目の入力に基づいてパラメータを出力してもよい。UEは、入力パラメータに対する品質評価量に微分(例えば、時間微分)を適用して求めた変化量に基づいて、次の入力パラメータで再評価するか否かを決定してもよい。 The UE may perform quality evaluation based on input parameters in a predetermined order. For example, the UE uses the i + k (eg, k = 1) th input parameter when the quality for the i-th input is better than the quality for the ij (eg, j = 1) th input. Quality evaluation may be performed, and if not, parameters may be output based on the ijth input. The UE may decide whether or not to re-evaluate with the next input parameter based on the amount of change obtained by applying a derivative (for example, time derivative) to the quality evaluation amount with respect to the input parameter.
 以上説明した第3の実施形態によれば、UE-UE間距離、UE-ネットワーク間距離に応じて、ビームを好適に制御できる。 According to the third embodiment described above, the beam can be suitably controlled according to the distance between UE and UE and the distance between UE and network.
<その他>
 なお、本開示における「距離」は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、RSSI、BLER、BER、PER)、信号強度(例えば、RSSI)、試行回数、送信回数、再送回数、移動速度などの少なくとも1つで読み替えられてもよい。
<Others>
The "distance" in the present disclosure includes received power (for example, RSRP), reception quality (for example, RSRQ, RSSI, BLER, BER, PER), signal strength (for example, RSSI), number of trials, number of transmissions, and number of retransmissions. , Movement speed, etc. may be read as at least one.
 ここで、受信電力、受信品質、信号強度、試行回数、送信回数、再送回数などは、「所定の信号(例えば、距離測定用信号、ある参照信号)の」が省略して書かれたものであってもよい。移動速度は、UE、他のUE及び基地局の少なくとも1つの移動速度を意味してもよいし、これらのうち2つの相対速度を意味してもよい。 Here, the received power, reception quality, signal strength, number of trials, number of transmissions, number of retransmissions, etc. are written by omitting "a predetermined signal (for example, a distance measurement signal, a certain reference signal)". There may be. The moving speed may mean at least one moving speed of a UE, another UE and a base station, or may mean the relative speed of two of them.
 また、本開示における「距離」、「距離報告」、「距離に関する情報」などの少なくとも1つは、距離を求めるために利用できる情報(例えば、UE、基地局又は他のUEの位置情報(例えば、緯度経度)、角度情報)で読み替えられてもよい。 In addition, at least one of "distance", "distance report", "information about distance", and the like in the present disclosure is information that can be used to obtain the distance (for example, position information of a UE, a base station, or another UE (for example,). , Latitude / longitude), angle information).
 また、本開示における「UE」、「他のUE」、「別のUE」などの少なくとも1つは、例えば、UE-UE間の通信を統括するUE(ヘッドUEと呼ばれてもよい)で読み替えられてもよい。 Further, at least one such as "UE", "another UE", and "another UE" in the present disclosure is, for example, a UE that controls communication between UEs (may be called a head UE). It may be read as.
(無線通信システム)
 以下、本開示の一実施形態に係る無線通信システムの構成について説明する。この無線通信システムでは、本開示の上記各実施形態に係る無線通信方法のいずれか又はこれらの組み合わせを用いて通信が行われる。
(Wireless communication system)
Hereinafter, the configuration of the wireless communication system according to the embodiment of the present disclosure will be described. In this wireless communication system, communication is performed using any one of the wireless communication methods according to each of the above-described embodiments of the present disclosure or a combination thereof.
 図5は、一実施形態に係る無線通信システムの概略構成の一例を示す図である。無線通信システム1は、Third Generation Partnership Project(3GPP)によって仕様化されるLong Term Evolution(LTE)、5th generation mobile communication system New Radio(5G NR)などを用いて通信を実現するシステムであってもよい。 FIG. 5 is a diagram showing an example of a schematic configuration of a wireless communication system according to an embodiment. The wireless communication system 1 may be a system that realizes communication using Long Term Evolution (LTE), 5th generation mobile communication system New Radio (5G NR), etc. specified by Third Generation Partnership Project (3GPP). ..
 また、無線通信システム1は、複数のRadio Access Technology(RAT)間のデュアルコネクティビティ(マルチRATデュアルコネクティビティ(Multi-RAT Dual Connectivity(MR-DC)))をサポートしてもよい。MR-DCは、LTE(Evolved Universal Terrestrial Radio Access(E-UTRA))とNRとのデュアルコネクティビティ(E-UTRA-NR Dual Connectivity(EN-DC))、NRとLTEとのデュアルコネクティビティ(NR-E-UTRA Dual Connectivity(NE-DC))などを含んでもよい。 Further, the wireless communication system 1 may support dual connectivity between a plurality of Radio Access Technology (RAT) (Multi-RAT Dual Connectivity (MR-DC)). MR-DC is a dual connectivity between LTE (Evolved Universal Terrestrial Radio Access (E-UTRA)) and NR (E-UTRA-NR Dual Connectivity (EN-DC)), and a dual connectivity between NR and LTE (NR-E). -UTRA Dual Connectivity (NE-DC)) may be included.
 EN-DCでは、LTE(E-UTRA)の基地局(eNB)がマスタノード(Master Node(MN))であり、NRの基地局(gNB)がセカンダリノード(Secondary Node(SN))である。NE-DCでは、NRの基地局(gNB)がMNであり、LTE(E-UTRA)の基地局(eNB)がSNである。 In EN-DC, the LTE (E-UTRA) base station (eNB) is the master node (Master Node (MN)), and the NR base station (gNB) is the secondary node (Secondary Node (SN)). In NE-DC, the NR base station (gNB) is MN, and the LTE (E-UTRA) base station (eNB) is SN.
 無線通信システム1は、同一のRAT内の複数の基地局間のデュアルコネクティビティ(例えば、MN及びSNの双方がNRの基地局(gNB)であるデュアルコネクティビティ(NR-NR Dual Connectivity(NN-DC)))をサポートしてもよい。 The wireless communication system 1 has dual connectivity between a plurality of base stations in the same RAT (for example, dual connectivity (NR-NR Dual Connectivity (NN-DC)) in which both MN and SN are NR base stations (gNB). )) May be supported.
 無線通信システム1は、比較的カバレッジの広いマクロセルC1を形成する基地局11と、マクロセルC1内に配置され、マクロセルC1よりも狭いスモールセルC2を形成する基地局12(12a-12c)と、を備えてもよい。ユーザ端末20は、少なくとも1つのセル内に位置してもよい。各セル及びユーザ端末20の配置、数などは、図に示す態様に限定されない。以下、基地局11及び12を区別しない場合は、基地局10と総称する。 The wireless communication system 1 includes a base station 11 that forms a macro cell C1 having a relatively wide coverage, and a base station 12 (12a-12c) that is arranged in the macro cell C1 and forms a small cell C2 that is narrower than the macro cell C1. You may prepare. The user terminal 20 may be located in at least one cell. The arrangement, number, and the like of each cell and the user terminal 20 are not limited to the mode shown in the figure. Hereinafter, when the base stations 11 and 12 are not distinguished, they are collectively referred to as the base station 10.
 ユーザ端末20は、複数の基地局10のうち、少なくとも1つに接続してもよい。ユーザ端末20は、複数のコンポーネントキャリア(Component Carrier(CC))を用いたキャリアアグリゲーション(Carrier Aggregation(CA))及びデュアルコネクティビティ(DC)の少なくとも一方を利用してもよい。 The user terminal 20 may be connected to at least one of the plurality of base stations 10. The user terminal 20 may use at least one of carrier aggregation (Carrier Aggregation (CA)) and dual connectivity (DC) using a plurality of component carriers (Component Carrier (CC)).
 各CCは、第1の周波数帯(Frequency Range 1(FR1))及び第2の周波数帯(Frequency Range 2(FR2))の少なくとも1つに含まれてもよい。マクロセルC1はFR1に含まれてもよいし、スモールセルC2はFR2に含まれてもよい。例えば、FR1は、6GHz以下の周波数帯(サブ6GHz(sub-6GHz))であってもよいし、FR2は、24GHzよりも高い周波数帯(above-24GHz)であってもよい。なお、FR1及びFR2の周波数帯、定義などはこれらに限られず、例えばFR1がFR2よりも高い周波数帯に該当してもよい。 Each CC may be included in at least one of a first frequency band (Frequency Range 1 (FR1)) and a second frequency band (Frequency Range 2 (FR2)). The macro cell C1 may be included in FR1 and the small cell C2 may be included in FR2. For example, FR1 may be in a frequency band of 6 GHz or less (sub 6 GHz (sub-6 GHz)), and FR2 may be in a frequency band higher than 24 GHz (above-24 GHz). The frequency bands and definitions of FR1 and FR2 are not limited to these, and for example, FR1 may correspond to a frequency band higher than FR2.
 また、ユーザ端末20は、各CCにおいて、時分割複信(Time Division Duplex(TDD))及び周波数分割複信(Frequency Division Duplex(FDD))の少なくとも1つを用いて通信を行ってもよい。 Further, the user terminal 20 may perform communication using at least one of Time Division Duplex (TDD) and Frequency Division Duplex (FDD) in each CC.
 複数の基地局10は、有線(例えば、Common Public Radio Interface(CPRI)に準拠した光ファイバ、X2インターフェースなど)又は無線(例えば、NR通信)によって接続されてもよい。例えば、基地局11及び12間においてNR通信がバックホールとして利用される場合、上位局に該当する基地局11はIntegrated Access Backhaul(IAB)ドナー、中継局(リレー)に該当する基地局12はIABノードと呼ばれてもよい。 The plurality of base stations 10 may be connected by wire (for example, optical fiber compliant with Common Public Radio Interface (CPRI), X2 interface, etc.) or wirelessly (for example, NR communication). For example, when NR communication is used as a backhaul between base stations 11 and 12, the base station 11 corresponding to the higher-level station is the Integrated Access Backhaul (IAB) donor, and the base station 12 corresponding to the relay station (relay) is the IAB. It may be called a node.
 基地局10は、他の基地局10を介して、又は直接コアネットワーク30に接続されてもよい。コアネットワーク30は、例えば、Evolved Packet Core(EPC)、5G Core Network(5GCN)、Next Generation Core(NGC)などの少なくとも1つを含んでもよい。 The base station 10 may be connected to the core network 30 via another base station 10 or directly. The core network 30 may include at least one such as Evolved Packet Core (EPC), 5G Core Network (5GCN), and Next Generation Core (NGC).
 ユーザ端末20は、LTE、LTE-A、5Gなどの通信方式の少なくとも1つに対応した端末であってもよい。 The user terminal 20 may be a terminal that supports at least one of communication methods such as LTE, LTE-A, and 5G.
 無線通信システム1においては、直交周波数分割多重(Orthogonal Frequency Division Multiplexing(OFDM))ベースの無線アクセス方式が利用されてもよい。例えば、下りリンク(Downlink(DL))及び上りリンク(Uplink(UL))の少なくとも一方において、Cyclic Prefix OFDM(CP-OFDM)、Discrete Fourier Transform Spread OFDM(DFT-s-OFDM)、Orthogonal Frequency Division Multiple Access(OFDMA)、Single Carrier Frequency Division Multiple Access(SC-FDMA)などが利用されてもよい。 In the wireless communication system 1, a wireless access method based on Orthogonal Frequency Division Multiplexing (OFDM) may be used. For example, at least one of the downlink (Downlink (DL)) and the uplink (Uplink (UL)), Cyclic Prefix OFDM (CP-OFDM), Discrete Fourier Transform Spread OFDM (DFT-s-OFDM), Orthogonal Frequency Division Multiple. Access (OFDMA), Single Carrier Frequency Division Multiple Access (SC-FDMA), etc. may be used.
 無線アクセス方式は、波形(waveform)と呼ばれてもよい。なお、無線通信システム1においては、UL及びDLの無線アクセス方式には、他の無線アクセス方式(例えば、他のシングルキャリア伝送方式、他のマルチキャリア伝送方式)が用いられてもよい。 The wireless access method may be called a waveform. In the wireless communication system 1, another wireless access system (for example, another single carrier transmission system, another multi-carrier transmission system) may be used as the UL and DL wireless access systems.
 無線通信システム1では、下りリンクチャネルとして、各ユーザ端末20で共有される下り共有チャネル(Physical Downlink Shared Channel(PDSCH))、ブロードキャストチャネル(Physical Broadcast Channel(PBCH))、下り制御チャネル(Physical Downlink Control Channel(PDCCH))などが用いられてもよい。 In the wireless communication system 1, as downlink channels, downlink shared channels (Physical Downlink Shared Channel (PDSCH)), broadcast channels (Physical Broadcast Channel (PBCH)), and downlink control channels (Physical Downlink Control) shared by each user terminal 20 are used. Channel (PDCCH)) and the like may be used.
 また、無線通信システム1では、上りリンクチャネルとして、各ユーザ端末20で共有される上り共有チャネル(Physical Uplink Shared Channel(PUSCH))、上り制御チャネル(Physical Uplink Control Channel(PUCCH))、ランダムアクセスチャネル(Physical Random Access Channel(PRACH))などが用いられてもよい。 Further, in the wireless communication system 1, as the uplink channel, the uplink shared channel (Physical Uplink Shared Channel (PUSCH)), the uplink control channel (Physical Uplink Control Channel (PUCCH)), and the random access channel shared by each user terminal 20 are used. (Physical Random Access Channel (PRACH)) or the like may be used.
 PDSCHによって、ユーザデータ、上位レイヤ制御情報、System Information Block(SIB)などが伝送される。PUSCHによって、ユーザデータ、上位レイヤ制御情報などが伝送されてもよい。また、PBCHによって、Master Information Block(MIB)が伝送されてもよい。 User data, upper layer control information, System Information Block (SIB), etc. are transmitted by PDSCH. User data, upper layer control information, and the like may be transmitted by the PUSCH. In addition, Master Information Block (MIB) may be transmitted by PBCH.
 PDCCHによって、下位レイヤ制御情報が伝送されてもよい。下位レイヤ制御情報は、例えば、PDSCH及びPUSCHの少なくとも一方のスケジューリング情報を含む下り制御情報(Downlink Control Information(DCI))を含んでもよい。 Lower layer control information may be transmitted by PDCCH. The lower layer control information may include, for example, downlink control information (Downlink Control Information (DCI)) including scheduling information of at least one of PDSCH and PUSCH.
 なお、PDSCHをスケジューリングするDCIは、DLアサインメント、DL DCIなどと呼ばれてもよいし、PUSCHをスケジューリングするDCIは、ULグラント、UL DCIなどと呼ばれてもよい。なお、PDSCHはDLデータで読み替えられてもよいし、PUSCHはULデータで読み替えられてもよい。 The DCI that schedules PDSCH may be called DL assignment, DL DCI, etc., and the DCI that schedules PUSCH may be called UL grant, UL DCI, etc. The PDSCH may be read as DL data, and the PUSCH may be read as UL data.
 PDCCHの検出には、制御リソースセット(COntrol REsource SET(CORESET))及びサーチスペース(search space)が利用されてもよい。CORESETは、DCIをサーチするリソースに対応する。サーチスペースは、PDCCH候補(PDCCH candidates)のサーチ領域及びサーチ方法に対応する。1つのCORESETは、1つ又は複数のサーチスペースに関連付けられてもよい。UEは、サーチスペース設定に基づいて、あるサーチスペースに関連するCORESETをモニタしてもよい。 A control resource set (COntrol REsource SET (CORESET)) and a search space (search space) may be used to detect the PDCCH. CORESET corresponds to a resource that searches for DCI. The search space corresponds to the search area and search method of PDCCH candidates (PDCCH candidates). One CORESET may be associated with one or more search spaces. The UE may monitor the CORESET associated with a search space based on the search space settings.
 1つのサーチスペースは、1つ又は複数のアグリゲーションレベル(aggregation Level)に該当するPDCCH候補に対応してもよい。1つ又は複数のサーチスペースは、サーチスペースセットと呼ばれてもよい。なお、本開示の「サーチスペース」、「サーチスペースセット」、「サーチスペース設定」、「サーチスペースセット設定」、「CORESET」、「CORESET設定」などは、互いに読み替えられてもよい。 One search space may correspond to PDCCH candidates corresponding to one or more aggregation levels. One or more search spaces may be referred to as a search space set. The "search space", "search space set", "search space setting", "search space set setting", "CORESET", "CORESET setting", etc. of the present disclosure may be read as each other.
 PUCCHによって、チャネル状態情報(Channel State Information(CSI))、送達確認情報(例えば、Hybrid Automatic Repeat reQuest ACKnowledgement(HARQ-ACK)、ACK/NACKなどと呼ばれてもよい)及びスケジューリングリクエスト(Scheduling Request(SR))の少なくとも1つを含む上り制御情報(Uplink Control Information(UCI))が伝送されてもよい。PRACHによって、セルとの接続確立のためのランダムアクセスプリアンブルが伝送されてもよい。 Depending on the PUCCH, channel state information (Channel State Information (CSI)), delivery confirmation information (for example, it may be called Hybrid Automatic Repeat reQuest ACKnowledgement (HARQ-ACK), ACK / NACK, etc.) and scheduling request (Scheduling Request ( Uplink Control Information (UCI) including at least one of SR)) may be transmitted. The PRACH may transmit a random access preamble for establishing a connection with the cell.
 なお、本開示において下りリンク、上りリンクなどは「リンク」を付けずに表現されてもよい。また、各種チャネルの先頭に「物理(Physical)」を付けずに表現されてもよい。 In this disclosure, downlinks, uplinks, etc. may be expressed without "links". Further, it may be expressed without adding "Physical" at the beginning of various channels.
 無線通信システム1では、同期信号(Synchronization Signal(SS))、下りリンク参照信号(Downlink Reference Signal(DL-RS))などが伝送されてもよい。無線通信システム1では、DL-RSとして、セル固有参照信号(Cell-specific Reference Signal(CRS))、チャネル状態情報参照信号(Channel State Information Reference Signal(CSI-RS))、復調用参照信号(DeModulation Reference Signal(DMRS))、位置決定参照信号(Positioning Reference Signal(PRS))、位相トラッキング参照信号(Phase Tracking Reference Signal(PTRS))などが伝送されてもよい。 In the wireless communication system 1, a synchronization signal (Synchronization Signal (SS)), a downlink reference signal (Downlink Reference Signal (DL-RS)), and the like may be transmitted. In the wireless communication system 1, the DL-RS includes a cell-specific reference signal (Cell-specific Reference Signal (CRS)), a channel state information reference signal (Channel State Information Reference Signal (CSI-RS)), and a demodulation reference signal (DeModulation). Reference Signal (DMRS)), positioning reference signal (Positioning Reference Signal (PRS)), phase tracking reference signal (Phase Tracking Reference Signal (PTRS)), and the like may be transmitted.
 同期信号は、例えば、プライマリ同期信号(Primary Synchronization Signal(PSS))及びセカンダリ同期信号(Secondary Synchronization Signal(SSS))の少なくとも1つであってもよい。SS(PSS、SSS)及びPBCH(及びPBCH用のDMRS)を含む信号ブロックは、SS/PBCHブロック、SS Block(SSB)などと呼ばれてもよい。なお、SS、SSBなども、参照信号と呼ばれてもよい。 The synchronization signal may be, for example, at least one of a primary synchronization signal (Primary Synchronization Signal (PSS)) and a secondary synchronization signal (Secondary Synchronization Signal (SSS)). The signal block including SS (PSS, SSS) and PBCH (and DMRS for PBCH) may be referred to as SS / PBCH block, SS Block (SSB) and the like. In addition, SS, SSB and the like may also be called a reference signal.
 また、無線通信システム1では、上りリンク参照信号(Uplink Reference Signal(UL-RS))として、測定用参照信号(Sounding Reference Signal(SRS))、復調用参照信号(DMRS)などが伝送されてもよい。なお、DMRSはユーザ端末固有参照信号(UE-specific Reference Signal)と呼ばれてもよい。 Further, in the wireless communication system 1, even if a measurement reference signal (Sounding Reference Signal (SRS)), a demodulation reference signal (DMRS), or the like is transmitted as an uplink reference signal (Uplink Reference Signal (UL-RS)). Good. The DMRS may be called a user terminal specific reference signal (UE-specific Reference Signal).
(基地局)
 図6は、一実施形態に係る基地局の構成の一例を示す図である。基地局10は、制御部110、送受信部120、送受信アンテナ130及び伝送路インターフェース(transmission line interface)140を備えている。なお、制御部110、送受信部120及び送受信アンテナ130及び伝送路インターフェース140は、それぞれ1つ以上が備えられてもよい。
(base station)
FIG. 6 is a diagram showing an example of the configuration of the base station according to the embodiment. The base station 10 includes a control unit 110, a transmission / reception unit 120, a transmission / reception antenna 130, and a transmission line interface 140. The control unit 110, the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、基地局10は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that, in this example, the functional blocks of the feature portion in the present embodiment are mainly shown, and it may be assumed that the base station 10 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部110は、基地局10全体の制御を実施する。制御部110は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 110 controls the entire base station 10. The control unit 110 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部110は、信号の生成、スケジューリング(例えば、リソース割り当て、マッピング)などを制御してもよい。制御部110は、送受信部120、送受信アンテナ130及び伝送路インターフェース140を用いた送受信、測定などを制御してもよい。制御部110は、信号として送信するデータ、制御情報、系列(sequence)などを生成し、送受信部120に転送してもよい。制御部110は、通信チャネルの呼処理(設定、解放など)、基地局10の状態管理、無線リソースの管理などを行ってもよい。 The control unit 110 may control signal generation, scheduling (for example, resource allocation, mapping) and the like. The control unit 110 may control transmission / reception, measurement, and the like using the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140. The control unit 110 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 120. The control unit 110 may perform call processing (setting, release, etc.) of the communication channel, state management of the base station 10, management of radio resources, and the like.
 送受信部120は、ベースバンド(baseband)部121、Radio Frequency(RF)部122、測定部123を含んでもよい。ベースバンド部121は、送信処理部1211及び受信処理部1212を含んでもよい。送受信部120は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ(phase shifter)、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 120 may include a baseband unit 121, a Radio Frequency (RF) unit 122, and a measurement unit 123. The baseband unit 121 may include a transmission processing unit 1211 and a reception processing unit 1212. The transmission / reception unit 120 includes a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure. be able to.
 送受信部120は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部1211、RF部122から構成されてもよい。当該受信部は、受信処理部1212、RF部122、測定部123から構成されてもよい。 The transmission / reception unit 120 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 1211 and an RF unit 122. The receiving unit may be composed of a receiving processing unit 1212, an RF unit 122, and a measuring unit 123.
 送受信アンテナ130は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 130 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部120は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを送信してもよい。送受信部120は、上述の上りリンクチャネル、上りリンク参照信号などを受信してもよい。 The transmission / reception unit 120 may transmit the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 120 may receive the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部120は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 120 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部120(送信処理部1211)は、例えば制御部110から取得したデータ、制御情報などに対して、Packet Data Convergence Protocol(PDCP)レイヤの処理、Radio Link Control(RLC)レイヤの処理(例えば、RLC再送制御)、Medium Access Control(MAC)レイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) processes, for example, Packet Data Convergence Protocol (PDCP) layer processing and Radio Link Control (RLC) layer processing (for example, RLC) for data, control information, etc. acquired from control unit 110. RLC retransmission control), Medium Access Control (MAC) layer processing (for example, HARQ retransmission control), etc. may be performed to generate a bit string to be transmitted.
 送受信部120(送信処理部1211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、離散フーリエ変換(Discrete Fourier Transform(DFT))処理(必要に応じて)、逆高速フーリエ変換(Inverse Fast Fourier Transform(IFFT))処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 120 (transmission processing unit 1211) performs channel coding (may include error correction coding), modulation, mapping, filtering, and discrete Fourier transform (Discrete Fourier Transform (DFT)) for the bit string to be transmitted. The base band signal may be output by performing processing (if necessary), inverse fast Fourier transform (IFFT) processing, precoding, digital-analog conversion, and other transmission processing.
 送受信部120(RF部122)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ130を介して送信してもよい。 The transmission / reception unit 120 (RF unit 122) may perform modulation, filtering, amplification, etc. on the baseband signal to the radio frequency band, and transmit the signal in the radio frequency band via the transmission / reception antenna 130. ..
 一方、送受信部120(RF部122)は、送受信アンテナ130によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 120 (RF unit 122) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 130.
 送受信部120(受信処理部1212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、高速フーリエ変換(Fast Fourier Transform(FFT))処理、逆離散フーリエ変換(Inverse Discrete Fourier Transform(IDFT))処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 120 (reception processing unit 1212) performs analog-digital transformation, fast Fourier transform (FFT) processing, and inverse discrete Fourier transform (IDFT) on the acquired baseband signal. )) Processing (if necessary), filtering, demapping, demodulating, decoding (may include error correction decoding), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing are applied. User data and the like may be acquired.
 送受信部120(測定部123)は、受信した信号に関する測定を実施してもよい。例えば、測定部123は、受信した信号に基づいて、Radio Resource Management(RRM)測定、Channel State Information(CSI)測定などを行ってもよい。測定部123は、受信電力(例えば、Reference Signal Received Power(RSRP))、受信品質(例えば、Reference Signal Received Quality(RSRQ)、Signal to Interference plus Noise Ratio(SINR)、Signal to Noise Ratio(SNR))、信号強度(例えば、Received Signal Strength Indicator(RSSI))、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部110に出力されてもよい。 The transmission / reception unit 120 (measurement unit 123) may perform measurement on the received signal. For example, the measuring unit 123 may perform Radio Resource Management (RRM) measurement, Channel State Information (CSI) measurement, or the like based on the received signal. The measuring unit 123 has received power (for example, Reference Signal Received Power (RSRP)) and reception quality (for example, Reference Signal Received Quality (RSRQ), Signal to Interference plus Noise Ratio (SINR), Signal to Noise Ratio (SNR)). , Signal strength (for example, Received Signal Strength Indicator (RSSI)), propagation path information (for example, CSI), and the like may be measured. The measurement result may be output to the control unit 110.
 伝送路インターフェース140は、コアネットワーク30に含まれる装置、他の基地局10などとの間で信号を送受信(バックホールシグナリング)し、ユーザ端末20のためのユーザデータ(ユーザプレーンデータ)、制御プレーンデータなどを取得、伝送などしてもよい。 The transmission line interface 140 transmits and receives signals (backhaul signaling) to and from devices included in the core network 30, other base stations 10, and the like, and provides user data (user plane data) and control plane for the user terminal 20. Data or the like may be acquired or transmitted.
 なお、本開示における基地局10の送信部及び受信部は、送受信部120、送受信アンテナ130及び伝送路インターフェース140の少なくとも1つによって構成されてもよい。 The transmitting unit and the receiving unit of the base station 10 in the present disclosure may be composed of at least one of the transmission / reception unit 120, the transmission / reception antenna 130, and the transmission line interface 140.
 なお、送受信部120は、ユーザ端末20から、基地局10又は他のユーザ端末20との距離に関する情報を受信してもよい。送受信部120は、前記距離に関する情報に対応する前記基地局10又は前記他のユーザ端末20を識別するための情報(例えば、UE ID)を受信してもよい。 Note that the transmission / reception unit 120 may receive information regarding the distance from the base station 10 or another user terminal 20 from the user terminal 20. The transmission / reception unit 120 may receive information (for example, UE ID) for identifying the base station 10 or the other user terminal 20 corresponding to the information regarding the distance.
 なお、本開示において、基地局の送信のための空間ドメインフィルタと、下りリンク空間ドメイン送信フィルタ(downlink spatial domain transmission filter)と、基地局の送信ビームと、は互いに読み替えられてもよい。基地局の受信のための空間ドメインフィルタと、上りリンク空間ドメイン受信フィルタ(uplink spatial domain receive filter)と、基地局の受信ビームと、は互いに読み替えられてもよい。 In the present disclosure, the spatial domain filter for transmission of the base station, the downlink spatial domain transmission filter (downlink spatial domain transmission filter), and the transmission beam of the base station may be read as each other. The spatial domain filter for reception of the base station, the uplink spatial domain receive filter (uplink spatial domain receive filter), and the receive beam of the base station may be read as each other.
(ユーザ端末)
 図7は、一実施形態に係るユーザ端末の構成の一例を示す図である。ユーザ端末20は、制御部210、送受信部220及び送受信アンテナ230を備えている。なお、制御部210、送受信部220及び送受信アンテナ230は、それぞれ1つ以上が備えられてもよい。
(User terminal)
FIG. 7 is a diagram showing an example of the configuration of the user terminal according to the embodiment. The user terminal 20 includes a control unit 210, a transmission / reception unit 220, and a transmission / reception antenna 230. The control unit 210, the transmission / reception unit 220, and the transmission / reception antenna 230 may each be provided with one or more.
 なお、本例では、本実施の形態における特徴部分の機能ブロックを主に示しており、ユーザ端末20は、無線通信に必要な他の機能ブロックも有すると想定されてもよい。以下で説明する各部の処理の一部は、省略されてもよい。 Note that this example mainly shows the functional blocks of the feature portion in the present embodiment, and it may be assumed that the user terminal 20 also has other functional blocks necessary for wireless communication. A part of the processing of each part described below may be omitted.
 制御部210は、ユーザ端末20全体の制御を実施する。制御部210は、本開示に係る技術分野での共通認識に基づいて説明されるコントローラ、制御回路などから構成することができる。 The control unit 210 controls the entire user terminal 20. The control unit 210 can be composed of a controller, a control circuit, and the like described based on the common recognition in the technical field according to the present disclosure.
 制御部210は、信号の生成、マッピングなどを制御してもよい。制御部210は、送受信部220及び送受信アンテナ230を用いた送受信、測定などを制御してもよい。制御部210は、信号として送信するデータ、制御情報、系列などを生成し、送受信部220に転送してもよい。 The control unit 210 may control signal generation, mapping, and the like. The control unit 210 may control transmission / reception, measurement, and the like using the transmission / reception unit 220 and the transmission / reception antenna 230. The control unit 210 may generate data to be transmitted as a signal, control information, a sequence, and the like, and transfer the data to the transmission / reception unit 220.
 送受信部220は、ベースバンド部221、RF部222、測定部223を含んでもよい。ベースバンド部221は、送信処理部2211、受信処理部2212を含んでもよい。送受信部220は、本開示に係る技術分野での共通認識に基づいて説明されるトランスミッター/レシーバー、RF回路、ベースバンド回路、フィルタ、位相シフタ、測定回路、送受信回路などから構成することができる。 The transmission / reception unit 220 may include a baseband unit 221 and an RF unit 222, and a measurement unit 223. The baseband unit 221 may include a transmission processing unit 2211 and a reception processing unit 2212. The transmission / reception unit 220 can be composed of a transmitter / receiver, an RF circuit, a baseband circuit, a filter, a phase shifter, a measurement circuit, a transmission / reception circuit, and the like, which are described based on common recognition in the technical fields according to the present disclosure.
 送受信部220は、一体の送受信部として構成されてもよいし、送信部及び受信部から構成されてもよい。当該送信部は、送信処理部2211、RF部222から構成されてもよい。当該受信部は、受信処理部2212、RF部222、測定部223から構成されてもよい。 The transmission / reception unit 220 may be configured as an integrated transmission / reception unit, or may be composed of a transmission unit and a reception unit. The transmission unit may be composed of a transmission processing unit 2211 and an RF unit 222. The receiving unit may be composed of a receiving processing unit 2212, an RF unit 222, and a measuring unit 223.
 送受信アンテナ230は、本開示に係る技術分野での共通認識に基づいて説明されるアンテナ、例えばアレイアンテナなどから構成することができる。 The transmitting / receiving antenna 230 can be composed of an antenna described based on common recognition in the technical field according to the present disclosure, for example, an array antenna.
 送受信部220は、上述の下りリンクチャネル、同期信号、下りリンク参照信号などを受信してもよい。送受信部220は、上述の上りリンクチャネル、上りリンク参照信号などを送信してもよい。 The transmission / reception unit 220 may receive the above-mentioned downlink channel, synchronization signal, downlink reference signal, and the like. The transmission / reception unit 220 may transmit the above-mentioned uplink channel, uplink reference signal, and the like.
 送受信部220は、デジタルビームフォーミング(例えば、プリコーディング)、アナログビームフォーミング(例えば、位相回転)などを用いて、送信ビーム及び受信ビームの少なくとも一方を形成してもよい。 The transmission / reception unit 220 may form at least one of a transmission beam and a reception beam by using digital beamforming (for example, precoding), analog beamforming (for example, phase rotation), and the like.
 送受信部220(送信処理部2211)は、例えば制御部210から取得したデータ、制御情報などに対して、PDCPレイヤの処理、RLCレイヤの処理(例えば、RLC再送制御)、MACレイヤの処理(例えば、HARQ再送制御)などを行い、送信するビット列を生成してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs PDCP layer processing, RLC layer processing (for example, RLC retransmission control), and MAC layer processing (for example, for data, control information, etc. acquired from the control unit 210). , HARQ retransmission control), etc., to generate a bit string to be transmitted.
 送受信部220(送信処理部2211)は、送信するビット列に対して、チャネル符号化(誤り訂正符号化を含んでもよい)、変調、マッピング、フィルタ処理、DFT処理(必要に応じて)、IFFT処理、プリコーディング、デジタル-アナログ変換などの送信処理を行い、ベースバンド信号を出力してもよい。 The transmission / reception unit 220 (transmission processing unit 2211) performs channel coding (may include error correction coding), modulation, mapping, filtering processing, DFT processing (if necessary), and IFFT processing for the bit string to be transmitted. , Precoding, digital-to-analog conversion, and other transmission processing may be performed to output the baseband signal.
 なお、DFT処理を適用するか否かは、トランスフォームプリコーディングの設定に基づいてもよい。送受信部220(送信処理部2211)は、あるチャネル(例えば、PUSCH)について、トランスフォームプリコーディングが有効(enabled)である場合、当該チャネルをDFT-s-OFDM波形を用いて送信するために上記送信処理としてDFT処理を行ってもよいし、そうでない場合、上記送信処理としてDFT処理を行わなくてもよい。 Whether or not to apply the DFT process may be based on the transform precoding setting. The transmission / reception unit 220 (transmission processing unit 2211) described above for transmitting a channel (for example, PUSCH) using the DFT-s-OFDM waveform when the transform precoding is enabled. The DFT process may be performed as the transmission process, and if not, the DFT process may not be performed as the transmission process.
 送受信部220(RF部222)は、ベースバンド信号に対して、無線周波数帯への変調、フィルタ処理、増幅などを行い、無線周波数帯の信号を、送受信アンテナ230を介して送信してもよい。 The transmission / reception unit 220 (RF unit 222) may perform modulation, filtering, amplification, etc. to the radio frequency band on the baseband signal, and transmit the signal in the radio frequency band via the transmission / reception antenna 230. ..
 一方、送受信部220(RF部222)は、送受信アンテナ230によって受信された無線周波数帯の信号に対して、増幅、フィルタ処理、ベースバンド信号への復調などを行ってもよい。 On the other hand, the transmission / reception unit 220 (RF unit 222) may perform amplification, filtering, demodulation to a baseband signal, or the like on the signal in the radio frequency band received by the transmission / reception antenna 230.
 送受信部220(受信処理部2212)は、取得されたベースバンド信号に対して、アナログ-デジタル変換、FFT処理、IDFT処理(必要に応じて)、フィルタ処理、デマッピング、復調、復号(誤り訂正復号を含んでもよい)、MACレイヤ処理、RLCレイヤの処理及びPDCPレイヤの処理などの受信処理を適用し、ユーザデータなどを取得してもよい。 The transmission / reception unit 220 (reception processing unit 2212) performs analog-to-digital conversion, FFT processing, IDFT processing (if necessary), filtering processing, demapping, demodulation, and decoding (error correction) for the acquired baseband signal. Decoding may be included), MAC layer processing, RLC layer processing, PDCP layer processing, and other reception processing may be applied to acquire user data and the like.
 送受信部220(測定部223)は、受信した信号に関する測定を実施してもよい。例えば、測定部223は、受信した信号に基づいて、RRM測定、CSI測定などを行ってもよい。測定部223は、受信電力(例えば、RSRP)、受信品質(例えば、RSRQ、SINR、SNR)、信号強度(例えば、RSSI)、伝搬路情報(例えば、CSI)などについて測定してもよい。測定結果は、制御部210に出力されてもよい。 The transmission / reception unit 220 (measurement unit 223) may perform measurement on the received signal. For example, the measuring unit 223 may perform RRM measurement, CSI measurement, or the like based on the received signal. The measuring unit 223 may measure received power (for example, RSRP), reception quality (for example, RSRQ, SINR, SNR), signal strength (for example, RSSI), propagation path information (for example, CSI), and the like. The measurement result may be output to the control unit 210.
 なお、本開示におけるユーザ端末20の送信部及び受信部は、送受信部220及び送受信アンテナ230の少なくとも1つによって構成されてもよい。 The transmitter and receiver of the user terminal 20 in the present disclosure may be composed of at least one of the transmitter / receiver 220 and the transmitter / receiver antenna 230.
 なお、制御部210は、基地局10又は他のユーザ端末20との距離を取得してもよい。例えば、制御部210及び送受信部220の少なくとも一方は、基地局10及び他のユーザ端末20の少なくとも1つから送信される距離測定用信号に基づいて、当該距離を測定、導出、算出等してもよい。送受信部220は、前記距離に関する情報を送信してもよい。 Note that the control unit 210 may acquire the distance from the base station 10 or another user terminal 20. For example, at least one of the control unit 210 and the transmission / reception unit 220 measures, derives, calculates, etc. the distance based on the distance measurement signal transmitted from at least one of the base station 10 and the other user terminal 20. May be good. The transmission / reception unit 220 may transmit information regarding the distance.
 送受信部220は、前記距離に関する情報に対応する前記基地局10又は前記他のユーザ端末20を識別するための情報(例えば、UE ID)を送信してもよい。 The transmission / reception unit 220 may transmit information (for example, UE ID) for identifying the base station 10 or the other user terminal 20 corresponding to the information regarding the distance.
 制御部210は、前記距離に基づいて、所定のチャネル状態情報(例えば、詳細なCSI)を送信するか否かを判断してもよい。 The control unit 210 may determine whether or not to transmit predetermined channel state information (for example, detailed CSI) based on the distance.
 制御部210は、前記距離に基づいて、送信又は受信のためのビームの補正を行ってもよい。このビームの補正は、例えば、プリコーダの決定、ビームの角度の修正などを含んでもよい。 The control unit 210 may correct the beam for transmission or reception based on the distance. This beam correction may include, for example, precoder determination, beam angle correction, and the like.
 制御部210は、ビームの変更の粒度情報及びビームの角度情報の実測値に基づいて生成された推定モデルに、当該ユーザ端末のビームの変更の粒度情報を入力して出力されたビームの角度情報に基づいて前記ビームの補正を行ってもよい。 The control unit 210 inputs the beam change particle size information of the user terminal into the estimation model generated based on the measured values of the beam change particle size information and the beam angle information, and outputs the beam angle information. The beam may be corrected based on the above.
 なお、本開示において、UEの送信のための空間ドメインフィルタと、上りリンク空間ドメイン送信フィルタ(uplink spatial domain transmission filter)と、UEの送信ビームと、は互いに読み替えられてもよい。UEの受信のための空間ドメインフィルタと、下りリンク空間ドメイン受信フィルタ(downlink spatial domain receive filter)と、UEの受信ビームと、は互いに読み替えられてもよい。 In the present disclosure, the spatial domain filter for transmitting the UE, the uplink spatial domain transmission filter (uplink spatial domain transmission filter), and the transmitting beam of the UE may be read as each other. The spatial domain filter for receiving the UE, the downlink spatial domain receive filter (downlink spatial domain receive filter), and the received beam of the UE may be read as each other.
(ハードウェア構成)
 なお、上記実施形態の説明に用いたブロック図は、機能単位のブロックを示している。これらの機能ブロック(構成部)は、ハードウェア及びソフトウェアの少なくとも一方の任意の組み合わせによって実現される。また、各機能ブロックの実現方法は特に限定されない。すなわち、各機能ブロックは、物理的又は論理的に結合した1つの装置を用いて実現されてもよいし、物理的又は論理的に分離した2つ以上の装置を直接的又は間接的に(例えば、有線、無線などを用いて)接続し、これら複数の装置を用いて実現されてもよい。機能ブロックは、上記1つの装置又は上記複数の装置にソフトウェアを組み合わせて実現されてもよい。
(Hardware configuration)
The block diagram used in the description of the above embodiment shows a block of functional units. These functional blocks (components) are realized by any combination of at least one of hardware and software. Further, the method of realizing each functional block is not particularly limited. That is, each functional block may be realized by using one device that is physically or logically connected, or directly or indirectly (for example, by two or more devices that are physically or logically separated). , Wired, wireless, etc.) and may be realized using these plurality of devices. The functional block may be realized by combining the software with the one device or the plurality of devices.
 ここで、機能には、判断、決定、判定、計算、算出、処理、導出、調査、探索、確認、受信、送信、出力、アクセス、解決、選択、選定、確立、比較、想定、期待、みなし、報知(broadcasting)、通知(notifying)、通信(communicating)、転送(forwarding)、構成(configuring)、再構成(reconfiguring)、割り当て(allocating、mapping)、割り振り(assigning)などがあるが、これらに限られない。例えば、送信を機能させる機能ブロック(構成部)は、送信部(transmitting unit)、送信機(transmitter)などと呼称されてもよい。いずれも、上述したとおり、実現方法は特に限定されない。 Here, the functions include judgment, decision, judgment, calculation, calculation, processing, derivation, investigation, search, confirmation, reception, transmission, output, access, solution, selection, selection, establishment, comparison, assumption, expectation, and deemed. , Broadcasting, notifying, communicating, forwarding, configuring, reconfiguring, allocating, mapping, assigning, etc. Not limited. For example, a functional block (constituent unit) for functioning transmission may be referred to as a transmitting unit (transmitting unit), a transmitter (transmitter), or the like. As described above, the method of realizing each of them is not particularly limited.
 例えば、本開示の一実施形態における基地局、ユーザ端末などは、本開示の無線通信方法の処理を行うコンピュータとして機能してもよい。図8は、一実施形態に係る基地局及びユーザ端末のハードウェア構成の一例を示す図である。上述の基地局10及びユーザ端末20は、物理的には、プロセッサ1001、メモリ1002、ストレージ1003、通信装置1004、入力装置1005、出力装置1006、バス1007などを含むコンピュータ装置として構成されてもよい。 For example, the base station, user terminal, and the like in one embodiment of the present disclosure may function as a computer that processes the wireless communication method of the present disclosure. FIG. 8 is a diagram showing an example of the hardware configuration of the base station and the user terminal according to the embodiment. The base station 10 and the user terminal 20 described above may be physically configured as a computer device including a processor 1001, a memory 1002, a storage 1003, a communication device 1004, an input device 1005, an output device 1006, a bus 1007, and the like. ..
 なお、本開示において、装置、回路、デバイス、部(section)、ユニットなどの文言は、互いに読み替えることができる。基地局10及びユーザ端末20のハードウェア構成は、図に示した各装置を1つ又は複数含むように構成されてもよいし、一部の装置を含まずに構成されてもよい。 In the present disclosure, the terms of devices, circuits, devices, sections, units, etc. can be read as each other. The hardware configuration of the base station 10 and the user terminal 20 may be configured to include one or more of the devices shown in the figure, or may be configured not to include some of the devices.
 例えば、プロセッサ1001は1つだけ図示されているが、複数のプロセッサがあってもよい。また、処理は、1のプロセッサによって実行されてもよいし、処理が同時に、逐次に、又はその他の手法を用いて、2以上のプロセッサによって実行されてもよい。なお、プロセッサ1001は、1以上のチップによって実装されてもよい。 For example, although only one processor 1001 is shown, there may be a plurality of processors. Further, the processing may be executed by one processor, or the processing may be executed simultaneously, sequentially, or by using other methods by two or more processors. The processor 1001 may be mounted by one or more chips.
 基地局10及びユーザ端末20における各機能は、例えば、プロセッサ1001、メモリ1002などのハードウェア上に所定のソフトウェア(プログラム)を読み込ませることによって、プロセッサ1001が演算を行い、通信装置1004を介する通信を制御したり、メモリ1002及びストレージ1003におけるデータの読み出し及び書き込みの少なくとも一方を制御したりすることによって実現される。 For each function of the base station 10 and the user terminal 20, for example, by loading predetermined software (program) on hardware such as the processor 1001 and the memory 1002, the processor 1001 performs an operation and communicates via the communication device 1004. It is realized by controlling at least one of reading and writing of data in the memory 1002 and the storage 1003.
 プロセッサ1001は、例えば、オペレーティングシステムを動作させてコンピュータ全体を制御する。プロセッサ1001は、周辺装置とのインターフェース、制御装置、演算装置、レジスタなどを含む中央処理装置(Central Processing Unit(CPU))によって構成されてもよい。例えば、上述の制御部110(210)、送受信部120(220)などの少なくとも一部は、プロセッサ1001によって実現されてもよい。 The processor 1001 operates, for example, an operating system to control the entire computer. The processor 1001 may be configured by a central processing unit (CPU) including an interface with peripheral devices, a control device, an arithmetic unit, registers, and the like. For example, at least a part of the above-mentioned control unit 110 (210), transmission / reception unit 120 (220), and the like may be realized by the processor 1001.
 また、プロセッサ1001は、プログラム(プログラムコード)、ソフトウェアモジュール、データなどを、ストレージ1003及び通信装置1004の少なくとも一方からメモリ1002に読み出し、これらに従って各種の処理を実行する。プログラムとしては、上述の実施形態において説明した動作の少なくとも一部をコンピュータに実行させるプログラムが用いられる。例えば、制御部110(210)は、メモリ1002に格納され、プロセッサ1001において動作する制御プログラムによって実現されてもよく、他の機能ブロックについても同様に実現されてもよい。 Further, the processor 1001 reads a program (program code), a software module, data, etc. from at least one of the storage 1003 and the communication device 1004 into the memory 1002, and executes various processes according to these. As the program, a program that causes a computer to execute at least a part of the operations described in the above-described embodiment is used. For example, the control unit 110 (210) may be realized by a control program stored in the memory 1002 and operating in the processor 1001, and may be realized in the same manner for other functional blocks.
 メモリ1002は、コンピュータ読み取り可能な記録媒体であり、例えば、Read Only Memory(ROM)、Erasable Programmable ROM(EPROM)、Electrically EPROM(EEPROM)、Random Access Memory(RAM)、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。メモリ1002は、レジスタ、キャッシュ、メインメモリ(主記憶装置)などと呼ばれてもよい。メモリ1002は、本開示の一実施形態に係る無線通信方法を実施するために実行可能なプログラム(プログラムコード)、ソフトウェアモジュールなどを保存することができる。 The memory 1002 is a computer-readable recording medium, for example, at least a Read Only Memory (ROM), an Erasable Programmable ROM (EPROM), an Electrically EPROM (EEPROM), a Random Access Memory (RAM), or any other suitable storage medium. It may be composed of one. The memory 1002 may be referred to as a register, a cache, a main memory (main storage device), or the like. The memory 1002 can store a program (program code), a software module, or the like that can be executed to implement the wireless communication method according to the embodiment of the present disclosure.
 ストレージ1003は、コンピュータ読み取り可能な記録媒体であり、例えば、フレキシブルディスク、フロッピー(登録商標)ディスク、光磁気ディスク(例えば、コンパクトディスク(Compact Disc ROM(CD-ROM)など)、デジタル多用途ディスク、Blu-ray(登録商標)ディスク)、リムーバブルディスク、ハードディスクドライブ、スマートカード、フラッシュメモリデバイス(例えば、カード、スティック、キードライブ)、磁気ストライプ、データベース、サーバ、その他の適切な記憶媒体の少なくとも1つによって構成されてもよい。ストレージ1003は、補助記憶装置と呼ばれてもよい。 The storage 1003 is a computer-readable recording medium, for example, a flexible disk, a floppy (registered trademark) disk, a magneto-optical disk (for example, a compact disc (Compact Disc ROM (CD-ROM)), a digital versatile disk, etc.). At least one of Blu-ray® disks, removable disks, hard disk drives, smart cards, flash memory devices (eg cards, sticks, key drives), magnetic stripes, databases, servers, and other suitable storage media. It may be composed of. The storage 1003 may be referred to as an auxiliary storage device.
 通信装置1004は、有線ネットワーク及び無線ネットワークの少なくとも一方を介してコンピュータ間の通信を行うためのハードウェア(送受信デバイス)であり、例えばネットワークデバイス、ネットワークコントローラ、ネットワークカード、通信モジュールなどともいう。通信装置1004は、例えば周波数分割複信(Frequency Division Duplex(FDD))及び時分割複信(Time Division Duplex(TDD))の少なくとも一方を実現するために、高周波スイッチ、デュプレクサ、フィルタ、周波数シンセサイザなどを含んで構成されてもよい。例えば、上述の送受信部120(220)、送受信アンテナ130(230)などは、通信装置1004によって実現されてもよい。送受信部120(220)は、送信部120a(220a)と受信部120b(220b)とで、物理的に又は論理的に分離された実装がなされてもよい。 The communication device 1004 is hardware (transmission / reception device) for communicating between computers via at least one of a wired network and a wireless network, and is also referred to as, for example, a network device, a network controller, a network card, a communication module, or the like. The communication device 1004 includes, for example, a high frequency switch, a duplexer, a filter, a frequency synthesizer, etc. in order to realize at least one of frequency division duplex (Frequency Division Duplex (FDD)) and time division duplex (Time Division Duplex (TDD)). It may be configured to include. For example, the transmission / reception unit 120 (220), the transmission / reception antenna 130 (230), and the like described above may be realized by the communication device 1004. The transmission / reception unit 120 (220) may be physically or logically separated from the transmission unit 120a (220a) and the reception unit 120b (220b).
 入力装置1005は、外部からの入力を受け付ける入力デバイス(例えば、キーボード、マウス、マイクロフォン、スイッチ、ボタン、センサなど)である。出力装置1006は、外部への出力を実施する出力デバイス(例えば、ディスプレイ、スピーカー、Light Emitting Diode(LED)ランプなど)である。なお、入力装置1005及び出力装置1006は、一体となった構成(例えば、タッチパネル)であってもよい。 The input device 1005 is an input device (for example, a keyboard, a mouse, a microphone, a switch, a button, a sensor, etc.) that receives an input from the outside. The output device 1006 is an output device (for example, a display, a speaker, a Light Emitting Diode (LED) lamp, etc.) that outputs to the outside. The input device 1005 and the output device 1006 may have an integrated configuration (for example, a touch panel).
 また、プロセッサ1001、メモリ1002などの各装置は、情報を通信するためのバス1007によって接続される。バス1007は、単一のバスを用いて構成されてもよいし、装置間ごとに異なるバスを用いて構成されてもよい。 Further, each device such as the processor 1001 and the memory 1002 is connected by the bus 1007 for communicating information. The bus 1007 may be configured by using a single bus, or may be configured by using a different bus for each device.
 また、基地局10及びユーザ端末20は、マイクロプロセッサ、デジタル信号プロセッサ(Digital Signal Processor(DSP))、Application Specific Integrated Circuit(ASIC)、Programmable Logic Device(PLD)、Field Programmable Gate Array(FPGA)などのハードウェアを含んで構成されてもよく、当該ハードウェアを用いて各機能ブロックの一部又は全てが実現されてもよい。例えば、プロセッサ1001は、これらのハードウェアの少なくとも1つを用いて実装されてもよい。 Further, the base station 10 and the user terminal 20 include a microprocessor, a digital signal processor (Digital Signal Processor (DSP)), an Application Specific Integrated Circuit (ASIC), a Programmable Logic Device (PLD), a Field Programmable Gate Array (FPGA), and the like. It may be configured to include hardware, and a part or all of each functional block may be realized by using the hardware. For example, processor 1001 may be implemented using at least one of these hardware.
(変形例)
 なお、本開示において説明した用語及び本開示の理解に必要な用語については、同一の又は類似する意味を有する用語と置き換えてもよい。例えば、チャネル、シンボル及び信号(シグナル又はシグナリング)は、互いに読み替えられてもよい。また、信号はメッセージであってもよい。参照信号(reference signal)は、RSと略称することもでき、適用される標準によってパイロット(Pilot)、パイロット信号などと呼ばれてもよい。また、コンポーネントキャリア(Component Carrier(CC))は、セル、周波数キャリア、キャリア周波数などと呼ばれてもよい。
(Modification example)
The terms described in the present disclosure and the terms necessary for understanding the present disclosure may be replaced with terms having the same or similar meanings. For example, channels, symbols and signals (signals or signaling) may be read interchangeably. Also, the signal may be a message. The reference signal may also be abbreviated as RS, and may be referred to as a pilot, a pilot signal, or the like depending on the applied standard. Further, the component carrier (Component Carrier (CC)) may be referred to as a cell, a frequency carrier, a carrier frequency, or the like.
 無線フレームは、時間領域において1つ又は複数の期間(フレーム)によって構成されてもよい。無線フレームを構成する当該1つ又は複数の各期間(フレーム)は、サブフレームと呼ばれてもよい。さらに、サブフレームは、時間領域において1つ又は複数のスロットによって構成されてもよい。サブフレームは、ニューメロロジー(numerology)に依存しない固定の時間長(例えば、1ms)であってもよい。 The wireless frame may be composed of one or more periods (frames) in the time domain. Each of the one or more periods (frames) constituting the wireless frame may be referred to as a subframe. Further, the subframe may be composed of one or more slots in the time domain. The subframe may have a fixed time length (eg, 1 ms) that is independent of numerology.
 ここで、ニューメロロジーは、ある信号又はチャネルの送信及び受信の少なくとも一方に適用される通信パラメータであってもよい。ニューメロロジーは、例えば、サブキャリア間隔(SubCarrier Spacing(SCS))、帯域幅、シンボル長、サイクリックプレフィックス長、送信時間間隔(Transmission Time Interval(TTI))、TTIあたりのシンボル数、無線フレーム構成、送受信機が周波数領域において行う特定のフィルタリング処理、送受信機が時間領域において行う特定のウィンドウイング処理などの少なくとも1つを示してもよい。 Here, the numerology may be a communication parameter applied to at least one of transmission and reception of a signal or channel. Numerology includes, for example, subcarrier spacing (SubCarrier Spacing (SCS)), bandwidth, symbol length, cyclic prefix length, transmission time interval (Transmission Time Interval (TTI)), number of symbols per TTI, and wireless frame configuration. , A specific filtering process performed by the transmitter / receiver in the frequency domain, a specific windowing process performed by the transmitter / receiver in the time domain, and the like may be indicated.
 スロットは、時間領域において1つ又は複数のシンボル(Orthogonal Frequency Division Multiplexing(OFDM)シンボル、Single Carrier Frequency Division Multiple Access(SC-FDMA)シンボルなど)によって構成されてもよい。また、スロットは、ニューメロロジーに基づく時間単位であってもよい。 The slot may be composed of one or more symbols (Orthogonal Frequency Division Multiple Access (OFDMA) symbol, Single Carrier Frequency Division Multiple Access (SC-FDMA) symbol, etc.) in the time domain. In addition, the slot may be a time unit based on numerology.
 スロットは、複数のミニスロットを含んでもよい。各ミニスロットは、時間領域において1つ又は複数のシンボルによって構成されてもよい。また、ミニスロットは、サブスロットと呼ばれてもよい。ミニスロットは、スロットよりも少ない数のシンボルによって構成されてもよい。ミニスロットより大きい時間単位で送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプAと呼ばれてもよい。ミニスロットを用いて送信されるPDSCH(又はPUSCH)は、PDSCH(PUSCH)マッピングタイプBと呼ばれてもよい。 The slot may include a plurality of mini slots. Each minislot may consist of one or more symbols in the time domain. Further, the mini slot may be called a sub slot. A minislot may consist of a smaller number of symbols than the slot. A PDSCH (or PUSCH) transmitted in time units larger than the minislot may be referred to as a PDSCH (PUSCH) mapping type A. The PDSCH (or PUSCH) transmitted using the minislot may be referred to as PDSCH (PUSCH) mapping type B.
 無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、いずれも信号を伝送する際の時間単位を表す。無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルは、それぞれに対応する別の呼称が用いられてもよい。なお、本開示におけるフレーム、サブフレーム、スロット、ミニスロット、シンボルなどの時間単位は、互いに読み替えられてもよい。 The wireless frame, subframe, slot, minislot and symbol all represent the time unit when transmitting a signal. The radio frame, subframe, slot, minislot and symbol may have different names corresponding to each. The time units such as frames, subframes, slots, mini slots, and symbols in the present disclosure may be read as each other.
 例えば、1サブフレームはTTIと呼ばれてもよいし、複数の連続したサブフレームがTTIと呼ばれてよいし、1スロット又は1ミニスロットがTTIと呼ばれてもよい。つまり、サブフレーム及びTTIの少なくとも一方は、既存のLTEにおけるサブフレーム(1ms)であってもよいし、1msより短い期間(例えば、1-13シンボル)であってもよいし、1msより長い期間であってもよい。なお、TTIを表す単位は、サブフレームではなくスロット、ミニスロットなどと呼ばれてもよい。 For example, one subframe may be called TTI, a plurality of consecutive subframes may be called TTI, and one slot or one minislot may be called TTI. That is, at least one of the subframe and TTI may be a subframe (1 ms) in existing LTE, a period shorter than 1 ms (eg, 1-13 symbols), or a period longer than 1 ms. It may be. The unit representing TTI may be called a slot, a mini slot, or the like instead of a subframe.
 ここで、TTIは、例えば、無線通信におけるスケジューリングの最小時間単位のことをいう。例えば、LTEシステムでは、基地局が各ユーザ端末に対して、無線リソース(各ユーザ端末において使用することが可能な周波数帯域幅、送信電力など)を、TTI単位で割り当てるスケジューリングを行う。なお、TTIの定義はこれに限られない。 Here, TTI refers to, for example, the minimum time unit of scheduling in wireless communication. For example, in the LTE system, the base station schedules each user terminal to allocate radio resources (frequency bandwidth that can be used in each user terminal, transmission power, etc.) in TTI units. The definition of TTI is not limited to this.
 TTIは、チャネル符号化されたデータパケット(トランスポートブロック)、コードブロック、コードワードなどの送信時間単位であってもよいし、スケジューリング、リンクアダプテーションなどの処理単位となってもよい。なお、TTIが与えられたとき、実際にトランスポートブロック、コードブロック、コードワードなどがマッピングされる時間区間(例えば、シンボル数)は、当該TTIよりも短くてもよい。 The TTI may be a transmission time unit such as a channel-encoded data packet (transport block), a code block, or a code word, or may be a processing unit such as scheduling or link adaptation. When a TTI is given, the time interval (for example, the number of symbols) to which the transport block, code block, code word, etc. are actually mapped may be shorter than the TTI.
 なお、1スロット又は1ミニスロットがTTIと呼ばれる場合、1以上のTTI(すなわち、1以上のスロット又は1以上のミニスロット)が、スケジューリングの最小時間単位となってもよい。また、当該スケジューリングの最小時間単位を構成するスロット数(ミニスロット数)は制御されてもよい。 When one slot or one mini slot is called TTI, one or more TTIs (that is, one or more slots or one or more mini slots) may be the minimum time unit for scheduling. Further, the number of slots (number of mini-slots) constituting the minimum time unit of the scheduling may be controlled.
 1msの時間長を有するTTIは、通常TTI(3GPP Rel.8-12におけるTTI)、ノーマルTTI、ロングTTI、通常サブフレーム、ノーマルサブフレーム、ロングサブフレーム、スロットなどと呼ばれてもよい。通常TTIより短いTTIは、短縮TTI、ショートTTI、部分TTI(partial又はfractional TTI)、短縮サブフレーム、ショートサブフレーム、ミニスロット、サブスロット、スロットなどと呼ばれてもよい。 A TTI having a time length of 1 ms may be referred to as a normal TTI (TTI in 3GPP Rel. 8-12), a normal TTI, a long TTI, a normal subframe, a normal subframe, a long subframe, a slot, or the like. TTIs shorter than normal TTIs may be referred to as shortened TTIs, short TTIs, partial TTIs (partial or fractional TTIs), shortened subframes, short subframes, minislots, subslots, slots, and the like.
 なお、ロングTTI(例えば、通常TTI、サブフレームなど)は、1msを超える時間長を有するTTIで読み替えてもよいし、ショートTTI(例えば、短縮TTIなど)は、ロングTTIのTTI長未満かつ1ms以上のTTI長を有するTTIで読み替えてもよい。 The long TTI (for example, normal TTI, subframe, etc.) may be read as a TTI having a time length of more than 1 ms, and the short TTI (for example, shortened TTI, etc.) is less than the TTI length of the long TTI and 1 ms. It may be read as a TTI having the above TTI length.
 リソースブロック(Resource Block(RB))は、時間領域及び周波数領域のリソース割当単位であり、周波数領域において、1つ又は複数個の連続した副搬送波(サブキャリア(subcarrier))を含んでもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに関わらず同じであってもよく、例えば12であってもよい。RBに含まれるサブキャリアの数は、ニューメロロジーに基づいて決定されてもよい。 A resource block (Resource Block (RB)) is a resource allocation unit in the time domain and the frequency domain, and may include one or a plurality of continuous subcarriers in the frequency domain. The number of subcarriers contained in the RB may be the same regardless of the numerology, and may be, for example, 12. The number of subcarriers contained in the RB may be determined based on numerology.
 また、RBは、時間領域において、1つ又は複数個のシンボルを含んでもよく、1スロット、1ミニスロット、1サブフレーム又は1TTIの長さであってもよい。1TTI、1サブフレームなどは、それぞれ1つ又は複数のリソースブロックによって構成されてもよい。 Further, the RB may include one or more symbols in the time domain, and may have a length of 1 slot, 1 mini slot, 1 subframe or 1 TTI. Each 1TTI, 1 subframe, etc. may be composed of one or a plurality of resource blocks.
 なお、1つ又は複数のRBは、物理リソースブロック(Physical RB(PRB))、サブキャリアグループ(Sub-Carrier Group(SCG))、リソースエレメントグループ(Resource Element Group(REG))、PRBペア、RBペアなどと呼ばれてもよい。 In addition, one or more RBs are a physical resource block (Physical RB (PRB)), a sub-carrier group (Sub-Carrier Group (SCG)), a resource element group (Resource Element Group (REG)), a PRB pair, and an RB. It may be called a pair or the like.
 また、リソースブロックは、1つ又は複数のリソースエレメント(Resource Element(RE))によって構成されてもよい。例えば、1REは、1サブキャリア及び1シンボルの無線リソース領域であってもよい。 Further, the resource block may be composed of one or a plurality of resource elements (Resource Element (RE)). For example, 1RE may be a radio resource area of 1 subcarrier and 1 symbol.
 帯域幅部分(Bandwidth Part(BWP))(部分帯域幅などと呼ばれてもよい)は、あるキャリアにおいて、あるニューメロロジー用の連続する共通RB(common resource blocks)のサブセットのことを表してもよい。ここで、共通RBは、当該キャリアの共通参照ポイントを基準としたRBのインデックスによって特定されてもよい。PRBは、あるBWPで定義され、当該BWP内で番号付けされてもよい。 Bandwidth Part (BWP) (which may also be called partial bandwidth) represents a subset of consecutive common resource blocks (RBs) for a neurology in a carrier. May be good. Here, the common RB may be specified by the index of the RB with respect to the common reference point of the carrier. PRBs may be defined in a BWP and numbered within that BWP.
 BWPには、UL BWP(UL用のBWP)と、DL BWP(DL用のBWP)とが含まれてもよい。UEに対して、1キャリア内に1つ又は複数のBWPが設定されてもよい。 The BWP may include UL BWP (BWP for UL) and DL BWP (BWP for DL). One or more BWPs may be set in one carrier for the UE.
 設定されたBWPの少なくとも1つがアクティブであってもよく、UEは、アクティブなBWPの外で所定の信号/チャネルを送受信することを想定しなくてもよい。なお、本開示における「セル」、「キャリア」などは、「BWP」で読み替えられてもよい。 At least one of the configured BWPs may be active, and the UE may not expect to send or receive a given signal / channel outside the active BWP. In addition, "cell", "carrier" and the like in this disclosure may be read as "BWP".
 なお、上述した無線フレーム、サブフレーム、スロット、ミニスロット及びシンボルなどの構造は例示に過ぎない。例えば、無線フレームに含まれるサブフレームの数、サブフレーム又は無線フレームあたりのスロットの数、スロット内に含まれるミニスロットの数、スロット又はミニスロットに含まれるシンボル及びRBの数、RBに含まれるサブキャリアの数、並びにTTI内のシンボル数、シンボル長、サイクリックプレフィックス(Cyclic Prefix(CP))長などの構成は、様々に変更することができる。 Note that the above-mentioned structures such as wireless frames, subframes, slots, mini slots, and symbols are merely examples. For example, the number of subframes contained in a wireless frame, the number of slots per subframe or wireless frame, the number of minislots contained within a slot, the number of symbols and RBs contained in a slot or minislot, included in the RB. The number of subcarriers, the number of symbols in the TTI, the symbol length, the cyclic prefix (CP) length, and other configurations can be changed in various ways.
 また、本開示において説明した情報、パラメータなどは、絶対値を用いて表されてもよいし、所定の値からの相対値を用いて表されてもよいし、対応する別の情報を用いて表されてもよい。例えば、無線リソースは、所定のインデックスによって指示されてもよい。 In addition, the information, parameters, etc. described in the present disclosure may be expressed using absolute values, relative values from predetermined values, or using other corresponding information. It may be represented. For example, radio resources may be indicated by a given index.
 本開示においてパラメータなどに使用する名称は、いかなる点においても限定的な名称ではない。さらに、これらのパラメータを使用する数式などは、本開示において明示的に開示したものと異なってもよい。様々なチャネル(PUCCH、PDCCHなど)及び情報要素は、あらゆる好適な名称によって識別できるので、これらの様々なチャネル及び情報要素に割り当てている様々な名称は、いかなる点においても限定的な名称ではない。 The names used for parameters, etc. in this disclosure are not limited in any respect. Further, mathematical formulas and the like using these parameters may differ from those explicitly disclosed in this disclosure. Since the various channels (PUCCH, PDCCH, etc.) and information elements can be identified by any suitable name, the various names assigned to these various channels and information elements are not limiting in any way. ..
 本開示において説明した情報、信号などは、様々な異なる技術のいずれかを使用して表されてもよい。例えば、上記の説明全体に渡って言及され得るデータ、命令、コマンド、情報、信号、ビット、シンボル、チップなどは、電圧、電流、電磁波、磁界若しくは磁性粒子、光場若しくは光子、又はこれらの任意の組み合わせによって表されてもよい。 The information, signals, etc. described in this disclosure may be represented using any of a variety of different techniques. For example, data, instructions, commands, information, signals, bits, symbols, chips, etc. that may be referred to throughout the above description are voltages, currents, electromagnetic waves, magnetic fields or magnetic particles, light fields or photons, or any of these. It may be represented by a combination of.
 また、情報、信号などは、上位レイヤから下位レイヤ及び下位レイヤから上位レイヤの少なくとも一方へ出力され得る。情報、信号などは、複数のネットワークノードを介して入出力されてもよい。 In addition, information, signals, etc. can be output from the upper layer to the lower layer and from the lower layer to at least one of the upper layers. Information, signals, etc. may be input / output via a plurality of network nodes.
 入出力された情報、信号などは、特定の場所(例えば、メモリ)に保存されてもよいし、管理テーブルを用いて管理してもよい。入出力される情報、信号などは、上書き、更新又は追記をされ得る。出力された情報、信号などは、削除されてもよい。入力された情報、信号などは、他の装置へ送信されてもよい。 The input / output information, signals, etc. may be stored in a specific location (for example, memory) or may be managed using a management table. Input / output information, signals, etc. can be overwritten, updated, or added. The output information, signals, etc. may be deleted. The input information, signals, etc. may be transmitted to other devices.
 情報の通知は、本開示において説明した態様/実施形態に限られず、他の方法を用いて行われてもよい。例えば、本開示における情報の通知は、物理レイヤシグナリング(例えば、下り制御情報(Downlink Control Information(DCI))、上り制御情報(Uplink Control Information(UCI)))、上位レイヤシグナリング(例えば、Radio Resource Control(RRC)シグナリング、ブロードキャスト情報(マスタ情報ブロック(Master Information Block(MIB))、システム情報ブロック(System Information Block(SIB))など)、Medium Access Control(MAC)シグナリング)、その他の信号又はこれらの組み合わせによって実施されてもよい。 The notification of information is not limited to the mode / embodiment described in the present disclosure, and may be performed by using another method. For example, the notification of information in the present disclosure includes physical layer signaling (for example, downlink control information (DCI)), uplink control information (Uplink Control Information (UCI))), and higher layer signaling (for example, Radio Resource Control). (RRC) signaling, broadcast information (master information block (MIB), system information block (SIB), etc.), medium access control (MAC) signaling), other signals or combinations thereof May be carried out by.
 なお、物理レイヤシグナリングは、Layer 1/Layer 2(L1/L2)制御情報(L1/L2制御信号)、L1制御情報(L1制御信号)などと呼ばれてもよい。また、RRCシグナリングは、RRCメッセージと呼ばれてもよく、例えば、RRC接続セットアップ(RRC Connection Setup)メッセージ、RRC接続再構成(RRC Connection Reconfiguration)メッセージなどであってもよい。また、MACシグナリングは、例えば、MAC制御要素(MAC Control Element(CE))を用いて通知されてもよい。 Note that the physical layer signaling may be referred to as Layer 1 / Layer 2 (L1 / L2) control information (L1 / L2 control signal), L1 control information (L1 control signal), and the like. Further, the RRC signaling may be called an RRC message, and may be, for example, an RRC connection setup (RRC Connection Setup) message, an RRC connection reconfiguration (RRC Connection Reconfiguration) message, or the like. Further, MAC signaling may be notified using, for example, a MAC control element (MAC Control Element (CE)).
 また、所定の情報の通知(例えば、「Xであること」の通知)は、明示的な通知に限られず、暗示的に(例えば、当該所定の情報の通知を行わないことによって又は別の情報の通知によって)行われてもよい。 In addition, the notification of predetermined information (for example, the notification of "being X") is not limited to the explicit notification, but implicitly (for example, by not notifying the predetermined information or another information). May be done (by notification of).
 判定は、1ビットで表される値(0か1か)によって行われてもよいし、真(true)又は偽(false)で表される真偽値(boolean)によって行われてもよいし、数値の比較(例えば、所定の値との比較)によって行われてもよい。 The determination may be made by a value represented by 1 bit (0 or 1), or by a boolean value represented by true or false. , May be done by numerical comparison (eg, comparison with a given value).
 ソフトウェアは、ソフトウェア、ファームウェア、ミドルウェア、マイクロコード、ハードウェア記述言語と呼ばれるか、他の名称で呼ばれるかを問わず、命令、命令セット、コード、コードセグメント、プログラムコード、プログラム、サブプログラム、ソフトウェアモジュール、アプリケーション、ソフトウェアアプリケーション、ソフトウェアパッケージ、ルーチン、サブルーチン、オブジェクト、実行可能ファイル、実行スレッド、手順、機能などを意味するよう広く解釈されるべきである。 Software is an instruction, instruction set, code, code segment, program code, program, subprogram, software module, whether called software, firmware, middleware, microcode, hardware description language, or another name. , Applications, software applications, software packages, routines, subroutines, objects, executable files, execution threads, procedures, functions, etc. should be broadly interpreted to mean.
 また、ソフトウェア、命令、情報などは、伝送媒体を介して送受信されてもよい。例えば、ソフトウェアが、有線技術(同軸ケーブル、光ファイバケーブル、ツイストペア、デジタル加入者回線(Digital Subscriber Line(DSL))など)及び無線技術(赤外線、マイクロ波など)の少なくとも一方を使用してウェブサイト、サーバ、又は他のリモートソースから送信される場合、これらの有線技術及び無線技術の少なくとも一方は、伝送媒体の定義内に含まれる。 In addition, software, instructions, information, etc. may be transmitted and received via a transmission medium. For example, a website where software uses at least one of wired technology (coaxial cable, fiber optic cable, twist pair, digital subscriber line (DSL), etc.) and wireless technology (infrared, microwave, etc.). When transmitted from a server, or other remote source, at least one of these wired and wireless technologies is included within the definition of transmission medium.
 本開示において使用する「システム」及び「ネットワーク」という用語は、互換的に使用され得る。「ネットワーク」は、ネットワークに含まれる装置(例えば、基地局)のことを意味してもよい。 The terms "system" and "network" used in this disclosure may be used interchangeably. "Network" may mean a device (eg, a base station) included in the network.
 本開示において、「プリコーディング」、「プリコーダ」、「ウェイト(プリコーディングウェイト)」、「擬似コロケーション(Quasi-Co-Location(QCL))」、「Transmission Configuration Indication state(TCI状態)」、「空間関係(spatial relation)」、「空間ドメインフィルタ(spatial domain filter)」、「送信電力」、「位相回転」、「アンテナポート」、「アンテナポートグル-プ」、「レイヤ」、「レイヤ数」、「ランク」、「リソース」、「リソースセット」、「リソースグループ」、「ビーム」、「ビーム幅」、「ビーム角度」、「アンテナ」、「アンテナ素子」、「パネル」などの用語は、互換的に使用され得る。 In the present disclosure, "precoding", "precoder", "weight (precoding weight)", "pseudo-colocation (Quasi-Co-Location (QCL))", "Transmission Configuration Indication state (TCI state)", "space". "Spatial relation", "spatial domain filter", "transmission power", "phase rotation", "antenna port", "antenna port group", "layer", "number of layers", Terms such as "rank", "resource", "resource set", "resource group", "beam", "beam width", "beam angle", "antenna", "antenna element", "panel" are compatible. Can be used for
 本開示においては、「基地局(Base Station(BS))」、「無線基地局」、「固定局(fixed station)」、「NodeB」、「eNB(eNodeB)」、「gNB(gNodeB)」、「アクセスポイント(access point)」、「送信ポイント(Transmission Point(TP))」、「受信ポイント(Reception Point(RP))」、「送受信ポイント(Transmission/Reception Point(TRP))」、「パネル」、「セル」、「セクタ」、「セルグループ」、「キャリア」、「コンポーネントキャリア」などの用語は、互換的に使用され得る。基地局は、マクロセル、スモールセル、フェムトセル、ピコセルなどの用語で呼ばれる場合もある。 In the present disclosure, "base station (BS)", "radio base station", "fixed station", "NodeB", "eNB (eNodeB)", "gNB (gNodeB)", "Access point", "Transmission point (Transmission Point (TP))", "Reception point (Reception Point (RP))", "Transmission / reception point (Transmission / Reception Point (TRP))", "Panel" , "Cell", "sector", "cell group", "carrier", "component carrier" and the like can be used interchangeably. Base stations are sometimes referred to by terms such as macrocells, small cells, femtocells, and picocells.
 基地局は、1つ又は複数(例えば、3つ)のセルを収容することができる。基地局が複数のセルを収容する場合、基地局のカバレッジエリア全体は複数のより小さいエリアに区分でき、各々のより小さいエリアは、基地局サブシステム(例えば、屋内用の小型基地局(Remote Radio Head(RRH)))によって通信サービスを提供することもできる。「セル」又は「セクタ」という用語は、このカバレッジにおいて通信サービスを行う基地局及び基地局サブシステムの少なくとも一方のカバレッジエリアの一部又は全体を指す。 The base station can accommodate one or more (for example, three) cells. When a base station accommodates multiple cells, the entire coverage area of the base station can be divided into multiple smaller areas, each smaller area being a base station subsystem (eg, a small indoor base station (Remote Radio)). Communication services can also be provided by Head (RRH))). The term "cell" or "sector" refers to part or all of the coverage area of at least one of the base stations and base station subsystems that provide communication services in this coverage.
 本開示においては、「移動局(Mobile Station(MS))」、「ユーザ端末(user terminal)」、「ユーザ装置(User Equipment(UE))」、「端末」などの用語は、互換的に使用され得る。 In this disclosure, terms such as "mobile station (MS)", "user terminal", "user equipment (UE)", and "terminal" are used interchangeably. Can be done.
 移動局は、加入者局、モバイルユニット、加入者ユニット、ワイヤレスユニット、リモートユニット、モバイルデバイス、ワイヤレスデバイス、ワイヤレス通信デバイス、リモートデバイス、モバイル加入者局、アクセス端末、モバイル端末、ワイヤレス端末、リモート端末、ハンドセット、ユーザエージェント、モバイルクライアント、クライアント又はいくつかの他の適切な用語で呼ばれる場合もある。 Mobile stations include subscriber stations, mobile units, subscriber units, wireless units, remote units, mobile devices, wireless devices, wireless communication devices, remote devices, mobile subscriber stations, access terminals, mobile terminals, wireless terminals, remote terminals. , Handset, user agent, mobile client, client or some other suitable term.
 基地局及び移動局の少なくとも一方は、送信装置、受信装置、無線通信装置などと呼ばれてもよい。なお、基地局及び移動局の少なくとも一方は、移動体に搭載されたデバイス、移動体自体などであってもよい。当該移動体は、乗り物(例えば、車、飛行機など)であってもよいし、無人で動く移動体(例えば、ドローン、自動運転車など)であってもよいし、ロボット(有人型又は無人型)であってもよい。なお、基地局及び移動局の少なくとも一方は、必ずしも通信動作時に移動しない装置も含む。例えば、基地局及び移動局の少なくとも一方は、センサなどのInternet of Things(IoT)機器であってもよい。 At least one of the base station and the mobile station may be called a transmitting device, a receiving device, a wireless communication device, or the like. At least one of the base station and the mobile station may be a device mounted on the mobile body, the mobile body itself, or the like. The moving body may be a vehicle (eg, car, airplane, etc.), an unmanned moving body (eg, drone, self-driving car, etc.), or a robot (manned or unmanned). ) May be. It should be noted that at least one of the base station and the mobile station includes a device that does not necessarily move during communication operation. For example, at least one of the base station and the mobile station may be an Internet of Things (IoT) device such as a sensor.
 また、本開示における基地局は、ユーザ端末で読み替えてもよい。例えば、基地局及びユーザ端末間の通信を、複数のユーザ端末間の通信(例えば、Device-to-Device(D2D)、Vehicle-to-Everything(V2X)などと呼ばれてもよい)に置き換えた構成について、本開示の各態様/実施形態を適用してもよい。この場合、上述の基地局10が有する機能をユーザ端末20が有する構成としてもよい。また、「上り」、「下り」などの文言は、端末間通信に対応する文言(例えば、「サイド(side)」)で読み替えられてもよい。例えば、上りチャネル、下りチャネルなどは、サイドチャネルで読み替えられてもよい。 Further, the base station in the present disclosure may be read by the user terminal. For example, communication between a base station and a user terminal has been replaced with communication between a plurality of user terminals (for example, it may be called Device-to-Device (D2D), Vehicle-to-Everything (V2X), etc.). Each aspect / embodiment of the present disclosure may be applied to the configuration. In this case, the user terminal 20 may have the function of the base station 10 described above. In addition, words such as "up" and "down" may be read as words corresponding to inter-terminal communication (for example, "side"). For example, the uplink, downlink, and the like may be read as side channels.
 同様に、本開示におけるユーザ端末は、基地局で読み替えてもよい。この場合、上述のユーザ端末20が有する機能を基地局10が有する構成としてもよい。 Similarly, the user terminal in the present disclosure may be read as a base station. In this case, the base station 10 may have the functions of the user terminal 20 described above.
 本開示において、基地局によって行われるとした動作は、場合によってはその上位ノード(upper node)によって行われることもある。基地局を有する1つ又は複数のネットワークノード(network nodes)を含むネットワークにおいて、端末との通信のために行われる様々な動作は、基地局、基地局以外の1つ以上のネットワークノード(例えば、Mobility Management Entity(MME)、Serving-Gateway(S-GW)などが考えられるが、これらに限られない)又はこれらの組み合わせによって行われ得ることは明らかである。 In the present disclosure, the operation performed by the base station may be performed by its upper node (upper node) in some cases. In a network including one or more network nodes having a base station, various operations performed for communication with a terminal are performed by the base station and one or more network nodes other than the base station (for example,). Mobility Management Entity (MME), Serving-Gateway (S-GW), etc. can be considered, but it is not limited to these), or it is clear that it can be performed by a combination thereof.
 本開示において説明した各態様/実施形態は単独で用いてもよいし、組み合わせて用いてもよいし、実行に伴って切り替えて用いてもよい。また、本開示において説明した各態様/実施形態の処理手順、シーケンス、フローチャートなどは、矛盾の無い限り、順序を入れ替えてもよい。例えば、本開示において説明した方法については、例示的な順序を用いて様々なステップの要素を提示しており、提示した特定の順序に限定されない。 Each aspect / embodiment described in the present disclosure may be used alone, in combination, or switched with execution. In addition, the order of the processing procedures, sequences, flowcharts, etc. of each aspect / embodiment described in the present disclosure may be changed as long as there is no contradiction. For example, the methods described in the present disclosure present elements of various steps using exemplary order, and are not limited to the particular order presented.
 本開示において説明した各態様/実施形態は、Long Term Evolution(LTE)、LTE-Advanced(LTE-A)、LTE-Beyond(LTE-B)、SUPER 3G、IMT-Advanced、4th generation mobile communication system(4G)、5th generation mobile communication system(5G)、Future Radio Access(FRA)、New-Radio Access Technology(RAT)、New Radio(NR)、New radio access(NX)、Future generation radio access(FX)、Global System for Mobile communications(GSM(登録商標))、CDMA2000、Ultra Mobile Broadband(UMB)、IEEE 802.11(Wi-Fi(登録商標))、IEEE 802.16(WiMAX(登録商標))、IEEE 802.20、Ultra-WideBand(UWB)、Bluetooth(登録商標)、その他の適切な無線通信方法を利用するシステム、これらに基づいて拡張された次世代システムなどに適用されてもよい。また、複数のシステムが組み合わされて(例えば、LTE又はLTE-Aと、5Gとの組み合わせなど)適用されてもよい。 Each aspect / embodiment described in the present disclosure includes Long Term Evolution (LTE), LTE-Advanced (LTE-A), LTE-Beyond (LTE-B), SUPER 3G, IMT-Advanced, 4th generation mobile communication system ( 4G), 5th generation mobile communication system (5G), Future Radio Access (FRA), New-Radio Access Technology (RAT), New Radio (NR), New radio access (NX), Future generation radio access (FX), Global System for Mobile communications (GSM (registered trademark)), CDMA2000, Ultra Mobile Broadband (UMB), IEEE 802.11 (Wi-Fi (registered trademark)), LTE 802.16 (WiMAX (registered trademark)), LTE 802. 20, Ultra-WideBand (UWB), Bluetooth®, other systems that utilize suitable wireless communication methods, next-generation systems extended based on these, and the like. In addition, a plurality of systems may be applied in combination (for example, a combination of LTE or LTE-A and 5G).
 本開示において使用する「に基づいて」という記載は、別段に明記されていない限り、「のみに基づいて」を意味しない。言い換えれば、「に基づいて」という記載は、「のみに基づいて」と「に少なくとも基づいて」の両方を意味する。 The phrase "based on" as used in this disclosure does not mean "based on" unless otherwise stated. In other words, the statement "based on" means both "based only" and "at least based on".
 本開示において使用する「第1の」、「第2の」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定しない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示において使用され得る。したがって、第1及び第2の要素の参照は、2つの要素のみが採用され得ること又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。 Any reference to elements using designations such as "first", "second", etc. as used in this disclosure does not generally limit the quantity or order of those elements. These designations can be used in the present disclosure as a convenient way to distinguish between two or more elements. Thus, references to the first and second elements do not mean that only two elements can be adopted or that the first element must somehow precede the second element.
 本開示において使用する「判断(決定)(determining)」という用語は、多種多様な動作を包含する場合がある。例えば、「判断(決定)」は、判定(judging)、計算(calculating)、算出(computing)、処理(processing)、導出(deriving)、調査(investigating)、探索(looking up、search、inquiry)(例えば、テーブル、データベース又は別のデータ構造での探索)、確認(ascertaining)などを「判断(決定)」することであるとみなされてもよい。 The term "determining" used in this disclosure may include a wide variety of actions. For example, "judgment (decision)" means judgment (judging), calculation (calculating), calculation (computing), processing (processing), derivation (deriving), investigation (investigating), search (looking up, search, inquiry) ( For example, searching in a table, database or another data structure), ascertaining, etc. may be considered to be "judgment".
 また、「判断(決定)」は、受信(receiving)(例えば、情報を受信すること)、送信(transmitting)(例えば、情報を送信すること)、入力(input)、出力(output)、アクセス(accessing)(例えば、メモリ中のデータにアクセスすること)などを「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" means receiving (for example, receiving information), transmitting (for example, transmitting information), input (input), output (output), access (for example). It may be regarded as "judgment (decision)" of "accessing" (for example, accessing data in memory).
 また、「判断(決定)」は、解決(resolving)、選択(selecting)、選定(choosing)、確立(establishing)、比較(comparing)などを「判断(決定)」することであるとみなされてもよい。つまり、「判断(決定)」は、何らかの動作を「判断(決定)」することであるとみなされてもよい。 In addition, "judgment (decision)" is regarded as "judgment (decision)" of solving, selecting, choosing, establishing, comparing, and the like. May be good. That is, "judgment (decision)" may be regarded as "judgment (decision)" of some action.
 また、「判断(決定)」は、「想定する(assuming)」、「期待する(expecting)」、「みなす(considering)」などで読み替えられてもよい。 In addition, "judgment (decision)" may be read as "assuming", "expecting", "considering", and the like.
 本開示において使用する「接続された(connected)」、「結合された(coupled)」という用語、又はこれらのあらゆる変形は、2又はそれ以上の要素間の直接的又は間接的なあらゆる接続又は結合を意味し、互いに「接続」又は「結合」された2つの要素間に1又はそれ以上の中間要素が存在することを含むことができる。要素間の結合又は接続は、物理的であっても、論理的であっても、あるいはこれらの組み合わせであってもよい。例えば、「接続」は「アクセス」で読み替えられてもよい。 The terms "connected", "coupled", or any variation thereof, as used in this disclosure, are any direct or indirect connections or connections between two or more elements. Means, and can include the presence of one or more intermediate elements between two elements that are "connected" or "joined" to each other. The connection or connection between the elements may be physical, logical, or a combination thereof. For example, "connection" may be read as "access".
 本開示において、2つの要素が接続される場合、1つ以上の電線、ケーブル、プリント電気接続などを用いて、並びにいくつかの非限定的かつ非包括的な例として、無線周波数領域、マイクロ波領域、光(可視及び不可視の両方)領域の波長を有する電磁エネルギーなどを用いて、互いに「接続」又は「結合」されると考えることができる。 In the present disclosure, when two elements are connected, using one or more wires, cables, printed electrical connections, etc., and as some non-limiting and non-comprehensive examples, the radio frequency domain, microwaves. It can be considered to be "connected" or "coupled" to each other using frequency, electromagnetic energy having wavelengths in the light (both visible and invisible) regions, and the like.
 本開示において、「AとBが異なる」という用語は、「AとBが互いに異なる」ことを意味してもよい。なお、当該用語は、「AとBがそれぞれCと異なる」ことを意味してもよい。「離れる」、「結合される」などの用語も、「異なる」と同様に解釈されてもよい。 In the present disclosure, the term "A and B are different" may mean "A and B are different from each other". The term may mean that "A and B are different from C". Terms such as "separate" and "combined" may be interpreted in the same way as "different".
 本開示において、「含む(include)」、「含んでいる(including)」及びこれらの変形が使用されている場合、これらの用語は、用語「備える(comprising)」と同様に、包括的であることが意図される。さらに、本開示において使用されている用語「又は(or)」は、排他的論理和ではないことが意図される。 When "include", "including" and variations thereof are used in the present disclosure, these terms are as comprehensive as the term "comprising". Is intended. Furthermore, the term "or" used in the present disclosure is intended not to be an exclusive OR.
 本開示において、例えば、英語でのa, an及びtheのように、翻訳によって冠詞が追加された場合、本開示は、これらの冠詞の後に続く名詞が複数形であることを含んでもよい。 In the present disclosure, if articles are added by translation, for example, a, an and the in English, the disclosure may include that the nouns following these articles are in the plural.
 以上、本開示に係る発明について詳細に説明したが、当業者にとっては、本開示に係る発明が本開示中に説明した実施形態に限定されないということは明らかである。本開示に係る発明は、請求の範囲の記載に基づいて定まる発明の趣旨及び範囲を逸脱することなく修正及び変更態様として実施することができる。したがって、本開示の記載は、例示説明を目的とし、本開示に係る発明に対して何ら制限的な意味をもたらさない。 Although the invention according to the present disclosure has been described in detail above, it is clear to those skilled in the art that the invention according to the present disclosure is not limited to the embodiments described in the present disclosure. The invention according to the present disclosure can be implemented as a modified or modified mode without departing from the spirit and scope of the invention determined based on the description of the claims. Therefore, the description of the present disclosure is for purposes of illustration and does not bring any limiting meaning to the invention according to the present disclosure.

Claims (6)

  1.  基地局又は他のユーザ端末との距離を導出する制御部と、
     前記距離に関する情報を送信する送信部と、を有することを特徴とするユーザ端末。
    A control unit that derives the distance from the base station or other user terminals,
    A user terminal comprising a transmission unit for transmitting information regarding the distance.
  2.  前記送信部は、前記距離に関する情報に対応する前記基地局又は前記他のユーザ端末を識別するための情報を送信することを特徴とする請求項1に記載のユーザ端末。 The user terminal according to claim 1, wherein the transmission unit transmits information for identifying the base station or the other user terminal corresponding to the information regarding the distance.
  3.  前記制御部は、前記距離に基づいて、所定のチャネル状態情報を送信するか否かを判断することを特徴とする請求項1又は請求項2に記載のユーザ端末。 The user terminal according to claim 1 or 2, wherein the control unit determines whether or not to transmit predetermined channel state information based on the distance.
  4.  前記制御部は、前記距離に基づいて、送信又は受信のためのビームの補正を行うことを特徴とする請求項1から請求項3のいずれかに記載のユーザ端末。 The user terminal according to any one of claims 1 to 3, wherein the control unit corrects a beam for transmission or reception based on the distance.
  5.  前記制御部は、ビームの変更の粒度情報及びビームの角度情報の実測値に基づいて生成された推定モデルに、当該ユーザ端末のビームの変更の粒度情報を入力して出力されたビームの角度情報に基づいて前記ビームの補正を行うことを特徴とする請求項4に記載のユーザ端末。 The control unit inputs the beam change particle size information of the user terminal into the estimation model generated based on the measured values of the beam change particle size information and the beam angle information, and outputs the beam angle information. The user terminal according to claim 4, wherein the beam is corrected based on the above.
  6.  基地局又は他のユーザ端末との距離を導出するステップと、
     前記距離に関する情報を送信するステップと、を有することを特徴とするユーザ端末の無線通信方法。
    Steps to derive the distance to the base station or other user terminals,
    A method of wireless communication of a user terminal, which comprises a step of transmitting information regarding the distance.
PCT/JP2019/016689 2019-04-18 2019-04-18 User terminal and wireless communication method WO2020213141A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980095552.6A CN113728559A (en) 2019-04-18 2019-04-18 User terminal and wireless communication method
PCT/JP2019/016689 WO2020213141A1 (en) 2019-04-18 2019-04-18 User terminal and wireless communication method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/016689 WO2020213141A1 (en) 2019-04-18 2019-04-18 User terminal and wireless communication method

Publications (1)

Publication Number Publication Date
WO2020213141A1 true WO2020213141A1 (en) 2020-10-22

Family

ID=72837125

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/016689 WO2020213141A1 (en) 2019-04-18 2019-04-18 User terminal and wireless communication method

Country Status (2)

Country Link
CN (1) CN113728559A (en)
WO (1) WO2020213141A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009797A1 (en) * 2022-07-08 2024-01-11 キヤノン株式会社 Communication device, control method, and program

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012507913A (en) * 2008-11-05 2012-03-29 アルカテル−ルーセント Location-based handover from macrocell to femtocell using periodic measurement reporting
US20130229931A1 (en) * 2012-03-02 2013-09-05 Electronics And Telecommunications Research Institute Methods of managing terminal performed in base station and terminal
JP2014064294A (en) * 2005-06-16 2014-04-10 Qualcomm Incorporated Adaptive sectorization for cellular system
WO2016166851A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Antenna apparatus
WO2017026009A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Transmitter apparatus, receiver apparatus, transmission method, and reception method
US20180233055A1 (en) * 2017-02-13 2018-08-16 Qualcomm Incorporated Drone user equipment indication
US20180337725A1 (en) * 2017-04-13 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for uplink coverage adaptation

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014064294A (en) * 2005-06-16 2014-04-10 Qualcomm Incorporated Adaptive sectorization for cellular system
JP2012507913A (en) * 2008-11-05 2012-03-29 アルカテル−ルーセント Location-based handover from macrocell to femtocell using periodic measurement reporting
US20130229931A1 (en) * 2012-03-02 2013-09-05 Electronics And Telecommunications Research Institute Methods of managing terminal performed in base station and terminal
WO2016166851A1 (en) * 2015-04-15 2016-10-20 三菱電機株式会社 Antenna apparatus
WO2017026009A1 (en) * 2015-08-07 2017-02-16 三菱電機株式会社 Transmitter apparatus, receiver apparatus, transmission method, and reception method
US20180233055A1 (en) * 2017-02-13 2018-08-16 Qualcomm Incorporated Drone user equipment indication
US20180337725A1 (en) * 2017-04-13 2018-11-22 Telefonaktiebolaget Lm Ericsson (Publ) Systems and methods for uplink coverage adaptation

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
HUAWEI ET AL.: "Beam measurement and reporting using L1-RSRQ and SINR", 3GPP TSG RAN WG1 MEETING #94 R1-1809123, 11 August 2018 (2018-08-11), XP051516492, Retrieved from the Internet <URL:http://www.3gpp.org/ftp/tsg_ran/WG1_RL1/TSGR1_94/Docs/R1-1809123.zip> [retrieved on 20190520] *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024009797A1 (en) * 2022-07-08 2024-01-11 キヤノン株式会社 Communication device, control method, and program

Also Published As

Publication number Publication date
CN113728559A (en) 2021-11-30

Similar Documents

Publication Publication Date Title
JP7238107B2 (en) Terminal, wireless communication method and system
JP7193549B2 (en) Terminal, wireless communication method and system
WO2020230217A1 (en) User terminal and wireless communication method
JP7237994B2 (en) Terminal, wireless communication method, base station and system
JP7315573B2 (en) Terminal, wireless communication method, base station and system
JP7293247B2 (en) Terminal, wireless communication method, base station and system
WO2021065015A1 (en) Terminal and wireless communication method
WO2020144774A1 (en) User terminal and wireless communication method
JPWO2020090060A1 (en) User terminal and wireless communication method
EP4120717A1 (en) Terminal, wireless communication method, and base station
WO2020209281A1 (en) User terminal and wireless communication method
WO2021161472A1 (en) Terminal, wireless communication method and base station
WO2021038682A1 (en) Terminal and wireless communication method
WO2020144773A1 (en) User terminal and wireless communication method
WO2020202517A1 (en) User terminal and wireless communication method
JP7230059B2 (en) Terminal, wireless communication method, base station and system
US20230276447A1 (en) Terminal, radio communication method, and base station
US20230188287A1 (en) Terminal, radio communication method, and base station
WO2021210109A1 (en) Terminal, wireless communication method, and base station
US20230033141A1 (en) Terminal, radio communication method, and base station
WO2021111532A1 (en) Terminal and wireless communication method
US20220239453A1 (en) Terminal and radio communication method
WO2020202394A1 (en) User terminal and wireless communication method
WO2020144775A1 (en) User terminal and wireless communication method
WO2022039154A1 (en) Terminal, wireless communication method, and base station

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19925100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19925100

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP