WO2023012899A1 - Refrigeration cycle device - Google Patents

Refrigeration cycle device Download PDF

Info

Publication number
WO2023012899A1
WO2023012899A1 PCT/JP2021/028789 JP2021028789W WO2023012899A1 WO 2023012899 A1 WO2023012899 A1 WO 2023012899A1 JP 2021028789 W JP2021028789 W JP 2021028789W WO 2023012899 A1 WO2023012899 A1 WO 2023012899A1
Authority
WO
WIPO (PCT)
Prior art keywords
refrigerant
gas
header
liquid
heat transfer
Prior art date
Application number
PCT/JP2021/028789
Other languages
French (fr)
Japanese (ja)
Inventor
悟 梁池
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to PCT/JP2021/028789 priority Critical patent/WO2023012899A1/en
Priority to JP2023539421A priority patent/JPWO2023012899A1/ja
Priority to CN202180100905.4A priority patent/CN117693655A/en
Publication of WO2023012899A1 publication Critical patent/WO2023012899A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B39/00Evaporators; Condensers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B43/00Arrangements for separating or purifying gases or liquids; Arrangements for vaporising the residuum of liquid refrigerant, e.g. by heat

Definitions

  • the present disclosure relates to a refrigeration cycle device having a refrigerant circuit.
  • a heat exchanger As an example of a conventional heat exchanger, a heat exchanger has been proposed that has a gas-liquid separation mechanism that separates the refrigerant into a gas refrigerant and a liquid refrigerant before the refrigerant flows into the heat exchanger (see, for example, Patent Document 1).
  • the heat exchanger disclosed in Patent Document 1 has a plurality of heat transfer tubes, a first header, a second header, a gas-liquid separation mechanism, a first outlet pipe, and a second outlet pipe.
  • the first header and the second header have internal spaces extending in a specific horizontal direction.
  • the second header is arranged above the first header.
  • the gas-liquid separation mechanism is arranged above the second header.
  • a first inlet at one of the ends of the first header in a specific direction is connected to the gas-liquid separation mechanism via a first outlet pipe, and a second inlet at the other end is a second outlet pipe. It is connected to the gas-liquid separation mechanism via.
  • the gas refrigerant flows into the first header through the first outlet pipe from the gas-liquid separation mechanism, and the liquid refrigerant flows into the first header through the second outlet pipe. It is configured to flow in from the separation mechanism.
  • the flow rate of each of the gas refrigerant and the liquid refrigerant flowing into the first header depends on the state of separation of the gas-liquid two phases in the gas-liquid separation mechanism. Therefore, for example, if the liquid refrigerant flows unevenly in some of the plurality of heat transfer tubes, the refrigerant cannot be distributed appropriately to the plurality of heat transfer tubes. In this case, the heat exchange efficiency becomes low.
  • the present disclosure has been made to solve the above problems, and provides a refrigeration cycle device that improves heat exchange efficiency.
  • a refrigeration cycle device includes a first heat exchanger having a plurality of heat transfer tubes and a first header for distributing refrigerant flowing through the refrigerant piping to the plurality of heat transfer tubes;
  • a gas-liquid separator that separates the refrigerant flowing into the heat exchanger into a gas refrigerant and a liquid refrigerant, and the gas-liquid separator and the first header are connected to separate the gas refrigerant from the gas-liquid separator into the first header.
  • a gas bypass circuit that flows into one header; a liquid bypass circuit that connects the gas-liquid separator and the first header and causes the liquid refrigerant to flow from the gas-liquid separator into the first header; a bypass valve provided in at least one of the gas bypass circuit and the liquid bypass circuit; As such, the liquid bypass circuit is connected to the first header downstream in the flow direction from the position where the liquid bypass circuit is connected to the first header.
  • the first header that functions as a distributor of the first heat exchanger
  • gas refrigerant is blown up from the downstream side of the liquid refrigerant, and the flow rate of liquid refrigerant or gas refrigerant flowing into the first header is regulated by the bypass valve. Therefore, the liquid refrigerant flowing into the first header diffuses within the first header, and the gas-liquid two-phase refrigerant is evenly distributed to the plurality of heat transfer tubes. As a result, the heat exchange efficiency of the first heat exchanger is improved.
  • FIG. 1 is a refrigerant circuit diagram showing one configuration example of a refrigeration cycle apparatus according to Embodiment 1.
  • FIG. FIG. 2 is a schematic side view for explaining the configuration of the first heat exchanger shown in FIG. 1;
  • FIG. 2 is a schematic diagram showing one configuration example of the gas bypass valve shown in FIG. 1 ;
  • FIG. 2 is a state diagram of a refrigeration cycle by the refrigeration cycle device shown in FIG. 1;
  • 4 is a refrigerant circuit diagram showing another configuration example of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 3 is a schematic side view showing another installation example of the first heat exchanger shown in FIG. 2.
  • FIG. FIG. 7 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 2;
  • FIG. 8 is a state diagram of a refrigeration cycle by the refrigeration cycle device shown in FIG. 7;
  • FIG. 11 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3;
  • FIG. 10 is a state diagram of a refrigeration cycle by the refrigeration cycle device shown in FIG. 9;
  • FIG. 11 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4;
  • 12 is a functional block diagram showing a configuration example of a controller shown in FIG. 11;
  • FIG. FIG. 13 is a hardware configuration diagram showing a configuration example of a controller shown in FIG. 12;
  • 13 is a hardware configuration diagram showing another configuration example of the controller shown in FIG. 12;
  • FIG. 13 is a flow chart showing the procedure of a control method executed by the controller shown in FIG. 12;
  • FIG. 1 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 1.
  • the refrigeration cycle device 1 has a compressor 2 , a first heat exchanger 3 , a gas-liquid separator 4 , an expansion valve 5 and a second heat exchanger 6 .
  • the gas-liquid separator 4 is connected to the first heat exchanger 3 and the expansion valve 5.
  • Compressor 2 , first heat exchanger 3 , expansion valve 5 and second heat exchanger 6 constitute refrigerant circuit 10 in which refrigerant circulates.
  • the compressor 2 compresses and discharges the sucked refrigerant.
  • Compressor 2 is, for example, a reciprocating compressor and a rotary compressor.
  • the expansion valve 5 is an expansion device that decompresses and expands the refrigerant.
  • the expansion valve 5 is, for example, a thermal expansion valve.
  • Thermostatic expansion valves are of two types: external pressure equalizing expansion valves and internal pressure equalizing expansion valves.
  • a temperature sensing tube not shown
  • a pressure equalizing pipe (not shown) connected to the refrigerant pipe 16 on the compressor 2 side is connected to the expansion valve 5 .
  • the expansion valve 5 detects the pressure difference between the pressure of a substance (a substance with the same characteristics as the refrigerant) enclosed in a temperature sensing cylinder (not shown) and the pressure of the refrigerant input through a pressure equalizing pipe (not shown). Automatically adjusts the opening according to
  • FIG. 2 is a schematic side view for explaining the configuration of the first heat exchanger shown in FIG.
  • arrows of three axes (X-axis, Y-axis and Z-axis) defining directions are displayed for convenience of explanation. Let the direction opposite to the Z-axis arrow be the direction of gravity.
  • the first heat exchanger 3 has a plurality of heat transfer tubes 11, a first header 12 and a second header 13.
  • a plurality of heat transfer tubes 11 extend parallel to the Y-axis.
  • Each of the first header 12 and the second header 13 has a cylindrical or cuboid configuration extending parallel to the Z-axis.
  • the first heat exchanger 3 is provided with a plurality of radiation fins 17 between the first header 12 and the second header 13 .
  • Each radiation fin 17 is arranged at equal intervals in the direction parallel to the Y-axis with the adjacent radiation fins 17 .
  • Each radiation fin 17 has a plate-like configuration parallel to the XZ plane.
  • a plurality of heat transfer tubes 11 pass through a plurality of radiation fins 17 . In the first heat exchanger 3 shown in FIG. 1, the radiation fins 17 shown in FIG. 2 are omitted.
  • Embodiment 1 the configuration in which the first heat exchanger 3 has radiation fins 17 was described with reference to FIG. It may be a heat exchanger.
  • the first header 12 serves as a distributor that distributes the refrigerant flowing from the gas-liquid separator 4 through the refrigerant pipes 16 to the plurality of heat transfer tubes 11 .
  • the second header 13 serves as a combiner that joins the refrigerant flowing through the plurality of heat transfer tubes 11 and flows out to the refrigerant suction port of the compressor 2 .
  • Each of the first header 12 and the second header 13 has a hollow structure for accumulating the refrigerant branched to the plurality of heat transfer tubes 11 or the refrigerant flowing from the plurality of heat transfer tubes 11 .
  • the plurality of heat transfer tubes 11 are connected to the first header 12 at different heights with respect to the direction of gravity.
  • the second heat exchanger 6 has the same configuration as the first heat exchanger 3, and detailed description thereof will be omitted.
  • the gas-liquid separator 4 separates the refrigerant flowing into the first heat exchanger 3 from the expansion valve 5 into gas refrigerant and liquid refrigerant.
  • the gas-liquid separator 4 and the first header 12 are connected via a gas bypass circuit 7 that allows gas refrigerant to flow from the gas-liquid separator 4 into the first header 12 .
  • the gas-liquid separator 4 and the first header 12 are connected via a liquid bypass circuit 8 that allows the liquid refrigerant to flow from the gas-liquid separator 4 to the first header 12 .
  • the liquid bypass circuit 8 is connected to the top of the first header 12 .
  • a gas bypass circuit 7 is connected to the lower portion of the first header 12 .
  • the first header 12 has a structure in which gas refrigerant flows in from the lower portion of the first header 12 so as to blow up the liquid refrigerant flowing in from the upper portion of the first header 12 .
  • a gas bypass valve 14 is provided in the gas bypass circuit 7 .
  • the gas bypass valve 14 adjusts the degree of opening of the flow path resistance corresponding to the flow rate of the liquid refrigerant flowing into the first header 12 so that the flow rate of the gas refrigerant required for blowing up can be obtained.
  • the configuration of the gas bypass valve 14 will be specifically described below.
  • the liquid refrigerant flowing into the first header 12 When the flow rate of the liquid refrigerant flowing into the first header 12 is small, the liquid refrigerant flows through the first header 12 more than the upper side (Z-axis arrow direction in FIG. 2) of the first header 12 due to the effect of gravity. It tends to accumulate in the lower side (opposite direction of the Z-axis arrow in FIG. 2), and it becomes difficult to flow into the upper heat transfer tube 11 among the plurality of heat transfer tubes 11 . Therefore, among the plurality of heat transfer tubes 11, more liquid refrigerant flows in the heat transfer tubes 11 on the lower side, and the amount of liquid refrigerant flowing in the heat transfer tubes 11 on the upper side decreases.
  • the opening degree of the gas bypass valve 14 is increased so that the amount of gas refrigerant blowing up the liquid refrigerant increases. This makes it easier for the liquid refrigerant to flow through the heat transfer tubes 11 on the upper side among the plurality of heat transfer tubes 11 .
  • the flow rate of the liquid refrigerant flowing into the first header 12 is large, the flow rate of the liquid refrigerant is large even under the influence of gravity. It becomes easier to flow not only into the heat transfer tubes 11 on the opposite side of the arrow) but also into the heat transfer tubes 11 on the upper side (the direction of the Z-axis arrow in FIG. 2). Further, in the first embodiment, even if the flow rate of the liquid refrigerant flowing into the first header 12 from the upper side of the first header 12 is large, the liquid refrigerant flows from the lower side of the first header 12. It is blown up by the gas refrigerant and diffuses inside the first header 12 . Therefore, it becomes easier for the liquid refrigerant to flow evenly through the plurality of heat transfer tubes 11 .
  • the gas bypass valve 14 adjusts the flow ratio of the liquid refrigerant and gas refrigerant flowing into the first header 12 based on the flow rate of the liquid refrigerant flowing into the first header 12 .
  • the gas bypass valve 14 is, for example, a valve that keeps the refrigerant pressure difference between the refrigerant inlet and outlet constant. Considering that the flow rate ratio between the liquid refrigerant flowing out of the gas-liquid separator 4 and the gas refrigerant flowing out of the gas-liquid separator 4 is constant, when the flow rate of the liquid refrigerant flowing into the first header 12 is large, the first The flow rate of gas refrigerant flowing into the header 12 also increases.
  • gas bypass valve 14 is a valve that maintains a constant refrigerant pressure difference between the refrigerant inlet and the refrigerant outlet, the pressure difference between the refrigerant inlet and the refrigerant outlet decreases when the flow rate of the gas refrigerant is low.
  • the bypass valve 14 automatically increases the degree of opening in order to keep the pressure difference of the refrigerant constant.
  • a specific configuration example of the gas bypass valve 14 is a valve that operates on the same principle as a thermal expansion valve.
  • the gas bypass valve 14 has a regulating valve (not shown) such as a diaphragm that detects the refrigerant pressure difference between the refrigerant inlet and outlet, and adjusts the degree of opening according to the operation of the regulating valve.
  • a regulating valve such as a diaphragm that detects the refrigerant pressure difference between the refrigerant inlet and outlet, and adjusts the degree of opening according to the operation of the regulating valve.
  • a controller for controlling the degree of opening of the gas bypass valve 14 .
  • FIG. 3 is a schematic diagram showing one configuration example of the gas bypass valve shown in FIG.
  • the gas bypass valve 14 is connected to the gas-liquid separator 4 via the gas bypass circuit 7 on the refrigerant inlet 51 side, and is connected to the first header 12 via the gas bypass circuit 7 on the refrigerant outlet 52 side.
  • the gas bypass valve 14 includes a diaphragm chamber 53, a pressure chamber 55 provided with a spring 54, an orifice plate provided with an orifice 56 for circulating the refrigerant from the refrigerant inlet 51 to the refrigerant outlet 52, and an opening of the orifice 56. and a needle 57 for adjusting the power.
  • the diaphragm chamber 53 is connected via a first pressure equalizing pipe 61 to the gas bypass circuit 7 on the refrigerant inlet 51 side.
  • the pressure chamber 55 is connected to the gas bypass circuit 7 on the refrigerant outlet 52 side via a second pressure equalizing pipe 62 .
  • the diaphragm chamber 53 has a diaphragm 53a on the boundary surface with the pressure chamber 55, and a shaft 58 is attached to the diaphragm 53a.
  • a needle 57 is attached to the end of the shaft 58 opposite to the diaphragm 53a.
  • the diaphragm 53 a moves along the axial direction of the shaft 58 due to the refrigerant pressure difference ⁇ P between the refrigerant inlet 51 and the refrigerant outlet 52 and the elastic force of the spring 54 .
  • the opening of the orifice 56 is adjusted by moving the needle 57 as the diaphragm 53 a moves in the axial direction of the shaft 58 .
  • the flow rate of the refrigerant flowing through the orifice 56 is adjusted, and the refrigerant pressure difference ⁇ P is kept constant.
  • FIG. 4 is a state diagram of a refrigerating cycle by the refrigerating cycle apparatus shown in FIG.
  • the horizontal axis is the specific enthalpy h [kJ/kg] and the vertical axis is the pressure P [MPa].
  • P1 to P8 shown in FIG. 4 indicate states of the refrigerant at positions p1 to p8 in the refrigerant circuit 10 shown in FIG.
  • the compressor 2 sucks gas refrigerant, compresses the sucked gas refrigerant, and discharges it (see position p1 in FIG. 4).
  • the gas refrigerant discharged from the compressor 2 is condensed by exchanging heat with air in the second heat exchanger 6, becomes liquid refrigerant, and flows out of the second heat exchanger 6 (position p2 in FIG. 4). reference).
  • the liquid refrigerant that has flowed out of the second heat exchanger 6 is decompressed by the expansion valve 5 and becomes a gas-liquid two-phase refrigerant (see position p3 in FIG. 4).
  • the gas-liquid two-phase refrigerant flows into the gas-liquid separator 4, it is separated into a liquid refrigerant (see position p4 in FIG. 4) and a gas refrigerant (see position p5 in FIG. 4).
  • the liquid refrigerant reaches the first header 12 from the gas-liquid separator 4 via the liquid bypass circuit 8 .
  • the liquid refrigerant that has reached the first header 12 flows into the first header 12 from the top of the first header 12 .
  • the gas refrigerant separated by the gas-liquid separator 4 flows from the gas-liquid separator 4 through the gas bypass circuit 7 .
  • the gas refrigerant flowing through the gas bypass circuit 7 is depressurized by the gas bypass valve 14, and after the flow rate is adjusted, flows into the first header 12 from the lower part of the first header 12 (see position p6 in FIG. 4). .
  • the gas bypass valve 14 increases the degree of opening to increase the flow rate of the gas refrigerant.
  • the gas bypass valve 14 reduces the degree of opening to reduce the flow rate of the gas refrigerant.
  • the gas refrigerant flowing into the first header 12 from the bottom of the first header 12 is mixed with the liquid refrigerant while blowing up the liquid refrigerant flowing into the first header 12 from the top of the first header 12 (Fig. 4 position p7).
  • the mixed gas-liquid two-phase refrigerant is divided into a plurality of heat transfer tubes 11 .
  • the gas-liquid two-phase refrigerant flowing through each heat transfer tube 11 exchanges heat with the air, evaporates and gasifies, and then joins at the second header 13 .
  • the gas refrigerant that joins at the second header 13 flows into the compressor 2 from the refrigerant suction port of the compressor 2 (see position p8 in FIG. 4).
  • the gas bypass circuit 7 is provided with a bypass valve that maintains a constant flow rate ratio between the liquid refrigerant and the gas refrigerant flowing from the gas-liquid separator 4 into the first header 12.
  • a bypass valve may be provided on the liquid bypass circuit 8 side.
  • 5 is a refrigerant circuit diagram showing another configuration example of the refrigeration cycle apparatus according to Embodiment 1.
  • FIG. 5 when the liquid bypass circuit 8 is provided with the liquid bypass valve 15, the liquid bypass valve 15 reduces the degree of opening when the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is large. When the flow rate of the liquid refrigerant flowing into the circuit 8 is small, the opening is increased.
  • the connection positions are not limited to those shown in FIG.
  • the gas bypass circuit 7 is connected downstream of the position where the liquid bypass circuit 8 is connected to the first header 12 with respect to the direction of liquid refrigerant flow in the first header 12 . It is good if there is In this case as well, the liquid refrigerant flowing into the first header 12 is blown up by the gas refrigerant in the direction of the Z-axis arrow shown in FIG.
  • the first header 12 may be arranged so as to extend parallel to the Y-axis shown in FIG.
  • FIG. 6 is a schematic side view showing another installation example of the first heat exchanger shown in FIG. FIG. 6 shows a configuration in which the first heat exchanger 3 is installed such that the direction in which the first header 12 extends is parallel to the ground.
  • the heat transfer tube closest to the Y-axis arrow is called the first heat transfer tube 21
  • the heat transfer tube closest to the Y-axis arrow is called the second heat transfer tube.
  • These are called heat transfer tubes 22 .
  • the liquid refrigerant flows through the liquid bypass circuit 8 to the first header 12. Due to the inertial force when the liquid refrigerant flows down, the liquid refrigerant flows through the first header 12 as indicated by the dashed arrow.
  • the direction indicated makes it easier to flow. Therefore, when the amount of refrigerant flowing into the first header 12 is small, the refrigerant flows more easily toward the second heat transfer tube 22 than the first heat transfer tube 21, but the gas refrigerant flowing through the gas bypass valve 14 is blown up to the first heat transfer tube 21 side.
  • the direction in which the first header 12 extends may be parallel to the ground.
  • the first heat exchanger 3 may be inclined with respect to the ground.
  • the expansion valve 5 may be an electronic expansion valve
  • the compressor 2 may be an inverter compressor whose capacity can be changed.
  • the refrigeration cycle apparatus 1 is provided with a controller (not shown) for controlling the opening degree of the expansion valve 5 and the operating frequency of the compressor 2. may have been
  • the refrigeration cycle apparatus 1 of Embodiment 1 has a first heat exchanger 3, a gas-liquid separator 4, a gas bypass circuit 7, and a liquid bypass circuit 8.
  • the first heat exchanger 3 has a plurality of heat transfer tubes 11 and a first header 12 that distributes the refrigerant flowing through the refrigerant pipes 16 to the plurality of heat transfer tubes 11 .
  • the gas-liquid separator separates the refrigerant flowing into the first heat exchanger 3 into gas refrigerant and liquid refrigerant.
  • the gas bypass circuit 7 connects the gas-liquid separator 4 and the first header 12 and causes the gas refrigerant to flow from the gas-liquid separator 4 into the first header 12 .
  • the liquid bypass circuit 8 connects the gas-liquid separator 4 and the first header 12 and causes the liquid refrigerant to flow from the gas-liquid separator 4 to the first header 12 .
  • At least one of the gas bypass circuit 7 and the liquid bypass circuit 8 is provided with a bypass valve.
  • the bypass valve adjusts the degree of opening according to the flow rate of refrigerant flowing into one of the bypass circuits.
  • the bypass valve is either gas bypass valve 14 or liquid bypass valve 15 .
  • the gas bypass circuit 7 is located downstream of the position where the liquid bypass circuit 8 is connected to the first header 12 in the liquid refrigerant circulation direction, with the liquid refrigerant circulation direction in the first header 12 as a reference. is connected to the header 12 of the
  • the bypass valve when the bypass valve is the gas bypass valve 14 , when the flow rate of the gas refrigerant flowing into the gas bypass circuit 7 is small, the gas bypass valve 14 is closed in the first header 12 with liquid refrigerant.
  • the opening is adjusted so that the flow rate of the gas refrigerant blown out from the downstream side of is increased.
  • the opening degree of the gas bypass valve 14 increases, the liquid refrigerant is lifted upward of the first header 12 by the gas refrigerant blown up from the downstream side.
  • the liquid refrigerant flows more easily into the heat transfer tubes 11 on the upper side (in the direction of the Z-axis arrow in FIG. 2), and the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11. .
  • the liquid refrigerant flows not only in the heat transfer tubes 11 on the lower side (opposite direction of the Z-axis arrow in FIG. 2) among the plurality of heat transfer tubes 11, It also becomes easier to flow into the heat transfer tubes 11 on the upper side (in the direction of the Z-axis arrow in FIG. 2).
  • the liquid refrigerant is blown up from the downstream side by the gas refrigerant flowing through the gas bypass valve 14 and is easily diffused in the first header 12 .
  • the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
  • the liquid bypass valve 15 when the bypass valve is the liquid bypass valve 15, when the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is small, the liquid bypass valve 15 is configured to prevent the liquid flowing into the first header 12 from flowing into the first header 12. Adjust the opening so that the flow rate of the refrigerant increases. This makes it easier for the liquid refrigerant to accumulate in the lower side of the first header 12 (opposite direction of the Z-axis arrow in FIG. 2) than in the upper side of the first header 12 (in the direction of the Z-axis arrow in FIG. 2). can be suppressed.
  • the liquid refrigerant tends to accumulate in the lower side of the first header 12 , but is blown upward in the first header 12 by the gas refrigerant. Liquid refrigerant can easily flow into the heat transfer tubes 11 above the first header 12 . As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
  • the liquid bypass valve 15 is fully opened. Even if the flow rate of the liquid refrigerant flowing into the first header 12 from the upper side of the first header 12 is large, the liquid refrigerant is blown up by the gas refrigerant from the lower side of the first header 12, and the liquid refrigerant flows into the first header. is easily diffused within the header 12 of the As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
  • the liquid bypass valve 15 is configured to adjust the degree of opening so that the flow rate of the liquid refrigerant flowing into the first header 12 decreases. good too. If the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is too high, the momentum of the liquid refrigerant flowing into the first header 12 becomes too strong, and the liquid refrigerant tends to flow into some of the heat transfer tubes 11. is. In this case, by reducing the degree of opening of the liquid bypass valve 15 , the flow rate of the liquid refrigerant flowing into the first header 12 becomes appropriate, and the liquid refrigerant is easily divided into the plurality of heat transfer tubes 11 evenly. As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
  • the gas refrigerant is blown up from the downstream side of the liquid refrigerant. Then, the flow rate of liquid refrigerant or gas refrigerant flowing into the first header 12 is adjusted by the gas bypass valve 14 or the liquid bypass valve 15 . Therefore, the liquid refrigerant flowing into the first header 12 diffuses within the first header 12 , and the gas-liquid two-phase refrigerant is evenly distributed to the plurality of heat transfer tubes 11 . As a result, the heat exchange efficiency of the first heat exchanger 3 is improved.
  • Embodiment 2 The refrigeration cycle apparatus of Embodiment 2 has a configuration in which bypass valves are provided in both the gas bypass circuit and the liquid bypass circuit.
  • the same components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • FIG. 7 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 2.
  • FIG. 7 the refrigerating cycle apparatus 1a of Embodiment 2 is provided with a liquid bypass valve 15 in the liquid bypass circuit 8 in addition to the configuration shown in FIG.
  • the liquid bypass valve 15 is a valve that increases the pressure difference between the gas-liquid separator 4 and the first header 12 .
  • the liquid bypass valve 15 is, for example, a pressure regulating valve that makes the pressure difference between the gas-liquid separator 4 and the first header 12 greater than a predetermined pressure. By increasing the pressure difference between the gas-liquid separator 4 and the first header 12, the force of the gas refrigerant blown up into the first header 12 from the gas bypass circuit 7 can be increased.
  • FIG. 8 is a state diagram of the refrigeration cycle by the refrigeration cycle device shown in FIG. 8.
  • the horizontal axis is the specific enthalpy h [kJ/kg] and the vertical axis is the pressure P [MPa].
  • P1 to P9 shown in FIG. 8 indicate states of the refrigerant at positions p1 to p9 in the refrigerant circuit 10 shown in FIG.
  • the compressor 2 sucks gas refrigerant, compresses the sucked gas refrigerant, and discharges it (see position p1 in FIG. 8).
  • the gas refrigerant discharged from the compressor 2 is condensed by exchanging heat with air in the second heat exchanger 6, becomes liquid refrigerant, and flows out of the second heat exchanger 6 (position p2 in FIG. 8). reference).
  • the liquid refrigerant that has flowed out of the second heat exchanger 6 is decompressed by the expansion valve 5 and becomes a gas-liquid two-phase refrigerant (see position p3 in FIG. 8).
  • the gas-liquid two-phase refrigerant flows into the gas-liquid separator 4, it is separated into a liquid refrigerant (see position p4 in FIG. 8) and a gas refrigerant (see position p5 in FIG. 8).
  • the liquid refrigerant flows from the gas-liquid separator 4 through the liquid bypass circuit 8 .
  • the liquid refrigerant flowing through the liquid bypass circuit 8 is depressurized by the liquid bypass valve 15, and after the flow rate is adjusted, flows into the first header 12 from the upper portion of the first header 12 (see position p6 in FIG. 8).
  • the gas refrigerant separated by the gas-liquid separator 4 flows from the gas-liquid separator 4 through the gas bypass circuit 7 .
  • the gas refrigerant flowing through the gas bypass circuit 7 is decompressed by the gas bypass valve 14, and after the flow rate is adjusted, flows into the first header 12 from the lower part of the first header 12 (see position p7 in FIG. 8).
  • the gas refrigerant flowing into the first header 12 from the bottom of the first header 12 is mixed with the liquid refrigerant while blowing up the liquid refrigerant flowing into the first header 12 from the top of the first header 12 (Fig. 8 position p8).
  • the mixed gas-liquid two-phase refrigerant is divided into a plurality of heat transfer tubes 11 .
  • the gas-liquid two-phase refrigerant flowing through each heat transfer tube 11 exchanges heat with the air, evaporates and gasifies, and then joins at the second header 13 .
  • the gas refrigerant merged at the second header 13 flows into the compressor 2 from the refrigerant suction port of the compressor 2 (see position p9 in FIG. 8).
  • the liquid bypass valve 15 increases the pressure difference between the inside of the gas-liquid separator 4 and the inside of the first header 12 . Therefore, compared to the first embodiment, at the position p7 shown in FIG. 8, the momentum of the gas refrigerant blown out from the downstream side of the liquid refrigerant flowing into the first header 12 to the liquid refrigerant increases.
  • a liquid bypass valve 15 is provided in the liquid bypass circuit 8, and the liquid bypass valve 15 is a valve that increases the pressure difference between the gas-liquid separator 4 and the first header 12. be.
  • the liquid refrigerant can be blown up by the gas refrigerant, so when the flow rate of the refrigerant is small, the liquid refrigerant can reach more upward in the first header 12. .
  • the capacity coefficient (Cv value) required to circulate the same flow rate of refrigerant increases.
  • the liquid bypass valve 15 increases the pressure difference between the inside of the gas-liquid separator 4 and the inside of the first header 12 . Therefore, in the gas bypass circuit 7, the pressure difference before and after the gas bypass valve 14 increases, and the Cv value required for the gas bypass valve 14 can be lowered. As a result, the gas bypass valve 14 can be downsized.
  • Embodiment 3 The refrigeration cycle apparatus of Embodiment 3 has a configuration in which a four-way valve for switching the direction of flow of the refrigerant in the refrigerant circuit is provided in the refrigerant circuit.
  • a four-way valve for switching the direction of flow of the refrigerant in the refrigerant circuit is provided in the refrigerant circuit.
  • the same components as those described in Embodiments 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted.
  • a configuration in which a four-way valve is added to the refrigeration cycle device 1a of the second embodiment will be described. may
  • FIG. 9 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3. As shown in FIG. As shown in FIG. 9, the refrigeration cycle apparatus 1b of Embodiment 3 has a configuration in which a four-way valve 9 is added to the configuration shown in FIG.
  • the four-way valve 9 allows the refrigerant discharged from the compressor 2 to flow in the first flow direction from the compressor 2 to the first heat exchanger 3 or from the compressor 2 to the second heat exchange direction.
  • the second direction of flow which is the direction of flow to the vessel 6, is set.
  • the first heat exchanger 3 functions as a condenser and the second heat exchanger 6 functions as an evaporator.
  • the first heat exchanger 3 functions as an evaporator and the second heat exchanger 6 functions as a condenser.
  • the liquid bypass valve 15 is open when the first heat exchanger 3 functions as an evaporator, as in the second embodiment, but is closed when the first heat exchanger 3 functions as a condenser. It is a configuration that becomes a state.
  • the gas bypass valve 14 is opened to adjust the gas flow rate as in the first and second embodiments.
  • the gas bypass circuit 7 is connected to the first header 12 at a position lower than the liquid bypass circuit 8 with respect to the height relative to the direction of gravity.
  • Embodiment 3 describes a case where the first heat exchanger 3 functions as a condenser. Since the operation of the refrigeration cycle when the first heat exchanger 3 functions as an evaporator is the same as the operation described in Embodiment 2, detailed description thereof will be omitted.
  • FIG. 10 is a state diagram of the refrigeration cycle by the refrigeration cycle device shown in FIG.
  • the horizontal axis is the specific enthalpy h [kJ/kg] and the vertical axis is the pressure P [MPa].
  • Positions p1, p2, p5, and p8 to p10 shown in FIG. 10 indicate states of refrigerant at representative positions among positions p1 to p10 in the refrigerant circuit 10 shown in FIG.
  • the compressor 2 sucks gas refrigerant, compresses the sucked gas refrigerant, and discharges it (see position p1 in FIG. 10).
  • Gas refrigerant discharged from the compressor 2 flows through the four-way valve 9 toward the second header 13 (see position p9 in FIG. 10).
  • the gas refrigerant that has flowed into the second header 13 is divided into a plurality of heat transfer tubes 11 .
  • the gas refrigerant exchanges heat with the air and is liquefied.
  • the refrigerant liquefied in each heat transfer tube 11 of the plurality of heat transfer tubes 11 joins the first header 12 (see position p8 in FIG. 10).
  • the liquid refrigerant flowing through the lower heat transfer tubes 11 does not stay in the lower part of the first header 12, so the liquid refrigerant smoothly flows out of the heat transfer tubes 11 and bypasses the gas. It can flow into the gas-liquid separator 4 via the circuit 7 .
  • the liquid refrigerant flows from the gas-liquid separator 4 into the expansion valve 5, it is decompressed by the expansion valve 5 and becomes a gas-liquid two-phase refrigerant (see position p2 in FIG. 10).
  • the gas-liquid two-phase refrigerant flows into the second heat exchanger 6 .
  • the gas-liquid two-phase refrigerant exchanges heat with air to evaporate and gasify, and then flows out of the second heat exchanger 6 .
  • the gas refrigerant that has flowed out of the second heat exchanger 6 flows into the compressor 2 from the refrigerant suction port of the compressor 2 (see position p10 in FIG. 10).
  • the refrigeration cycle device 1b of Embodiment 3 has a four-way valve 9 that sets the flow direction of the refrigerant in the refrigerant circuit 10 to the first flow direction or the second flow direction.
  • the gas bypass valve 14 is configured to be fully opened when the flow direction of the refrigerant is set to the second flow direction by the four-way valve 9 .
  • the refrigerant circulation direction in the refrigerant circuit is the first circulation direction in which the first heat exchanger functions as a condenser
  • the condensed liquid refrigerant accumulates in the lower portion of the first header. If the liquid refrigerant accumulates in the lower portion of the first header, the refrigerant outlet of the heat transfer tube to the first header will be blocked by the liquid refrigerant. In this case, the flow of the refrigerant in the heat transfer tubes under the first header is deteriorated, and the heat exchange efficiency of the first heat exchanger is lowered.
  • the gas bypass circuit 7 provided in the gas bypass circuit 7 connected to the lower side of the first header 12 Bypass valve 14 is fully opened. Therefore, the liquid refrigerant can easily flow from the lower portion of the first header 12 to the gas-liquid separator 4 via the gas bypass circuit 7, and the accumulation of the liquid refrigerant in the lower portion of the first header 12 can be suppressed. As a result, the refrigerant can easily flow through the heat transfer tubes 11 on the lower side of the first heat exchanger 3, and the heat exchange efficiency of the first heat exchanger 3 is improved.
  • Embodiment 4 The refrigeration cycle apparatus of Embodiment 4 controls the degree of opening of the bypass valve according to the temperature of the refrigerant flowing through the heat transfer tubes.
  • the same reference numerals are assigned to the same configurations as those described in the first to third embodiments, and detailed description thereof will be omitted. Further, although the fourth embodiment will be described based on the refrigeration cycle apparatus of the third embodiment, the fourth embodiment may be applied to the refrigeration cycle apparatus of the first or second embodiment.
  • FIG. 11 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4.
  • FIG. A refrigeration cycle apparatus 1c shown in FIG. 11 has a configuration in which a first temperature sensor 31 and a second temperature sensor 32 for detecting the temperature of the refrigerant, and a controller 40 are added to the configuration shown in FIG.
  • the first temperature sensor 31 and the second temperature sensor 32 are, for example, thermistors.
  • Each of the first temperature sensor 31, the second temperature sensor 32, the gas bypass valve 14 and the liquid bypass valve 15 is connected to the controller 40 via a signal line (not shown).
  • the first temperature sensor 31 is the first heat transfer tube, which is the highest heat transfer tube among the plurality of heat transfer tubes 11 with respect to the height based on the direction of gravity (opposite to the Z-axis arrow) shown in FIG. It is provided on the heat tube 21 .
  • the second temperature sensor 32 is provided on the second heat transfer tube 22, which is the lowest heat transfer tube among the plurality of heat transfer tubes 11 with respect to the direction of gravity.
  • FIG. 12 is a functional block diagram showing one configuration example of the controller shown in FIG. Controller 40 is, for example, a microcomputer.
  • the controller 40 has determination means 42 and valve control means 43 .
  • the determination means 42 calculates the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 .
  • the determination means 42 determines whether or not the temperature difference Td is greater than a predetermined threshold value Tth, and transmits information on the determination result to the valve control means 43 .
  • the valve control means 43 adjusts the opening degree of at least one of the gas bypass valve 14 and the liquid bypass valve 15 so that the temperature difference Td becomes equal to or less than the threshold value Tth. do.
  • a specific example of a method for adjusting the degree of opening of the bypass valve by the valve control means 43 will be described below.
  • the temperature of the refrigerant increases when the flow rate of the refrigerant flowing through the heat transfer tubes is low.
  • the first heat exchanger 3 functions as an evaporator
  • the flow rate of the refrigerant flowing through the second heat transfer tubes 22 is less than the flow rate of the refrigerant flowing through the first heat transfer tubes 21
  • the detected value of the second temperature sensor 32 becomes larger than the detected value of the first temperature sensor 31 .
  • the valve control means 43 reduces the opening degree of the gas bypass valve 14 .
  • valve control means 43 may increase the opening degree of the liquid bypass valve 15 .
  • the valve control means 43 may reduce the opening degree of the gas bypass valve 14 and increase the opening degree of the liquid bypass valve 15 . In either case, the flow rate of the refrigerant flowing through the plurality of heat transfer tubes 11 becomes uniform.
  • the temperature of the refrigerant decreases when the flow rate of the refrigerant flowing through the heat transfer tubes is low.
  • the first heat exchanger 3 functions as a condenser
  • the flow rate of the refrigerant flowing through the first heat transfer tube 21 is less than the flow rate of the refrigerant flowing through the second heat transfer tube 22
  • the detected value of the first temperature sensor 31 becomes smaller than the detected value of the second temperature sensor 32 .
  • the valve control means 43 increases the opening degree of the gas bypass valve 14 .
  • the refrigerant flowing through the second heat transfer tube 22 side flows more smoothly, and the flow rate of the refrigerant on the second heat transfer tube 22 side can be increased. .
  • the flow rate of the refrigerant flowing through the plurality of heat transfer tubes 11 becomes uniform.
  • the first heat transfer tube 21 is provided with the first temperature sensor 31 and the second heat transfer tube 22 is provided with the second temperature sensor 32.
  • Any one of the heat transfer tubes may be provided with a temperature sensor.
  • a temperature sensor may be provided for the heat transfer tube having a low flow rate of refrigerant.
  • the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 so that the detection value of the temperature sensor falls within a predetermined range.
  • FIG. 12 is a hardware configuration diagram showing a configuration example of the controller shown in FIG. 12.
  • FIG. 12 When various functions of the controller 40 are executed by dedicated hardware, the controller 40 shown in FIG. 12 is configured with a processing circuit 80 as shown in FIG. Each function of the determination means 42 and the valve control means 43 shown in FIG. 12 is implemented by the processing circuit 80 .
  • the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate). Array), or a combination thereof.
  • Each of the functions of the determination means 42 and the valve control means 43 may be realized by the processing circuit 80 . Further, the function of each means of the determination means 42 and the valve control means 43 may be realized by one processing circuit 80 .
  • FIG. 14 is a hardware configuration diagram showing another configuration example of the controller shown in FIG. 12.
  • the controller 40 shown in FIG. 12 is composed of a processor 81 such as a CPU (Central Processing Unit) and a memory 82 as shown in FIG.
  • a processor 81 such as a CPU (Central Processing Unit)
  • a memory 82 as shown in FIG.
  • Each function of the determination means 42 and the valve control means 43 is implemented by the processor 81 and the memory 82 .
  • FIG. 14 shows that processor 81 and memory 82 are connected via bus 83 .
  • the memory 82 stores the threshold Tth.
  • the functions of the determination means 42 and the valve control means 43 are realized by software, firmware, or a combination of software and firmware.
  • Software and firmware are written as programs and stored in memory 82 .
  • the processor 81 implements the functions of each means by reading and executing the programs stored in the memory 82 .
  • non-volatile semiconductor memories such as ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM) and EEPROM (Electrically Erasable and Programmable ROM) are used.
  • ROM Read Only Memory
  • EPROM Erasable and Programmable ROM
  • EEPROM Electrical Erasable and Programmable ROM
  • a volatile semiconductor memory of RAM Random Access Memory
  • removable recording media such as magnetic disks, flexible disks, optical disks, CDs (Compact Discs), MDs (Mini Discs) and DVDs (Digital Versatile Discs) may be used.
  • FIG. 15 is a flow chart showing the procedure of a control method executed by the controller shown in FIG. 12.
  • FIG. Here, a case where the first heat exchanger 3 functions as an evaporator will be described.
  • the controller 40 operates according to the flow shown in FIG. 15 at regular intervals.
  • the determination means 42 acquires detection values from the first temperature sensor 31 and the second temperature sensor 32 (step S101).
  • the determination means 42 calculates the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 . Then, the determination means 42 determines whether or not the temperature difference Td is greater than the threshold value Tth (step S102). When the temperature difference Td is equal to or less than the threshold value Tth as a result of the determination in step S102, the controller 40 ends the process.
  • step S102 determines whether the result of determination in step S102 is that the temperature difference Td is greater than the threshold value Tth. If the result of determination in step S102 is that the temperature difference Td is greater than the threshold value Tth, the determination means 42 transmits information on the determination result to the valve control means 43.
  • the valve control means 43 receives information indicating that the temperature difference Td is greater than the threshold value Tth from the determination means 42, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 so that the temperature difference Td becomes equal to or less than the threshold value Tth. Adjust (step S103).
  • the determination means 42 acquires a detection value from the first temperature sensor 31 in step S101.
  • the determination means 42 determines whether the detected value of the first temperature sensor 31 is within a predetermined first temperature range. If the detected value of the first temperature sensor 31 is not within the first temperature range, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 in step S103.
  • the valve control means 43 increases the opening degree of the gas bypass valve 14 . Thereby, the flow rate of the refrigerant flowing through the first heat transfer tubes 21 can be increased.
  • the determination means 42 acquires a detection value from the second temperature sensor 32 in step S101.
  • the determination means 42 determines whether or not the detected value of the second temperature sensor 32 is within a predetermined second temperature range. If the detected value of the second temperature sensor 32 is not within the second temperature range, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 in step S103.
  • the valve control means 43 reduces the opening degree of the gas bypass valve 14 or increases the opening degree of the liquid bypass valve 15 . Thereby, the flow rate of the refrigerant flowing through the second heat transfer tubes 22 can be increased.
  • the controller 40 controls the opening degree of the expansion valve 5 and the compressor 2 may control the operating frequency of
  • the refrigeration cycle apparatus 1c of Embodiment 4 has a temperature sensor provided in at least one of the first heat transfer tube 21 and the second heat transfer tube 22, and a controller 40. Controller 40 adjusts the degree of opening of gas bypass valve 14 or liquid bypass valve 15 so that the detected value of the temperature sensor falls within a predetermined range.
  • gas bypass valve 14 or liquid bypass valve 15 is adjusted so that the detected value of the temperature sensor provided in first heat transfer tube 21 or second heat transfer tube 22 is within a predetermined range. is adjusted, the refrigerant flows evenly through the heat transfer tubes 11 . Therefore, the heat exchange efficiency of the first heat exchanger 3 is improved.
  • the first heat transfer tube 21 may be provided with the first temperature sensor 31 and the second heat transfer tube 22 may be provided with the second temperature sensor 32 .
  • the controller 40 operates the gas bypass valve 14 or the liquid bypass valve 15 so that the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 is equal to or less than the threshold value Tth. You can adjust the opening.
  • the flow rate of the refrigerant branched to the plurality of heat transfer tubes 11 of the first heat exchanger 3 can be accurately estimated, and the heat exchange efficiency of the first heat exchanger 3 is further improved.

Abstract

This refrigeration cycle device has: a first heat exchanger having a plurality of heat transfer pipes and a first header for distributing refrigerant to the plurality of heat transfer pipes; a gas-liquid separator for separating refrigerant flowing into the first heat exchanger into a gas refrigerant and a liquid refrigerant; a gas bypass circuit for allowing the gas refrigerant to flow into the first header from the gas-liquid separator; a liquid bypass circuit for allowing the liquid refrigerant to flow into the first header from the gas-liquid separator; and, a bypass valve provided to at least one of the gas bypass circuit and the liquid bypass circuit. With reference to the circulation direction of the liquid refrigerant in the first header, the gas bypass circuit is connected to the first header farther downstream in the circulation direction of the liquid refrigerant relative to the position at which the liquid bypass circuit is connected to the first header.

Description

冷凍サイクル装置refrigeration cycle equipment
 本開示は、冷媒回路を有する冷凍サイクル装置に関する。 The present disclosure relates to a refrigeration cycle device having a refrigerant circuit.
 従来の熱交換器の一例として、冷媒が熱交換器に流入する前に、冷媒をガス冷媒と液冷媒とに分離する気液分離機構を有する熱交換器が提案されている(例えば、特許文献1参照)。 As an example of a conventional heat exchanger, a heat exchanger has been proposed that has a gas-liquid separation mechanism that separates the refrigerant into a gas refrigerant and a liquid refrigerant before the refrigerant flows into the heat exchanger (see, for example, Patent Document 1).
 特許文献1に開示された熱交換器は、複数の伝熱管と、第1ヘッダと、第2ヘッダと、気液分離機構と、第1出口管と、第2出口管とを有する。第1ヘッダおよび第2ヘッダは水平な特定方向に延びる内部空間を有する。第2ヘッダは第1ヘッダよりも上方に配置されている。気液分離機構は第2ヘッダよりも上方に配置されている。第1ヘッダの特定方向の両端のうち、一方の端部にある第1入口が第1出口管を介して気液分離機構と接続され、他方の端部にある第2入口が第2出口配管を介して気液分離機構と接続されている。 The heat exchanger disclosed in Patent Document 1 has a plurality of heat transfer tubes, a first header, a second header, a gas-liquid separation mechanism, a first outlet pipe, and a second outlet pipe. The first header and the second header have internal spaces extending in a specific horizontal direction. The second header is arranged above the first header. The gas-liquid separation mechanism is arranged above the second header. A first inlet at one of the ends of the first header in a specific direction is connected to the gas-liquid separation mechanism via a first outlet pipe, and a second inlet at the other end is a second outlet pipe. It is connected to the gas-liquid separation mechanism via.
 特許文献1に開示された熱交換器は、ガス冷媒が第1ヘッダに第1出口管を介して気液分離機構から流入し、液冷媒が第1ヘッダに第2出口管を介して気液分離機構から流入する構成である。 In the heat exchanger disclosed in Patent Document 1, the gas refrigerant flows into the first header through the first outlet pipe from the gas-liquid separation mechanism, and the liquid refrigerant flows into the first header through the second outlet pipe. It is configured to flow in from the separation mechanism.
特開2017-223386号公報JP 2017-223386 A
 特許文献1に開示された熱交換器においては、第1ヘッダに流入するガス冷媒および液冷媒のそれぞれの流量は、気液分離機構における気液二相の分離状況に左右される。そのため、例えば、液冷媒が複数の伝熱管のうち、一部の伝熱管に偏って流れると、複数の伝熱管に冷媒を適切に分配することができなくなる。この場合、熱交換効率が低くなってしまう。 In the heat exchanger disclosed in Patent Document 1, the flow rate of each of the gas refrigerant and the liquid refrigerant flowing into the first header depends on the state of separation of the gas-liquid two phases in the gas-liquid separation mechanism. Therefore, for example, if the liquid refrigerant flows unevenly in some of the plurality of heat transfer tubes, the refrigerant cannot be distributed appropriately to the plurality of heat transfer tubes. In this case, the heat exchange efficiency becomes low.
 本開示は、上記のような課題を解決するためになされたもので、熱交換効率を向上させる冷凍サイクル装置を提供するものである。 The present disclosure has been made to solve the above problems, and provides a refrigeration cycle device that improves heat exchange efficiency.
 本開示に係る冷凍サイクル装置は、複数の伝熱管と冷媒配管を介して流入する冷媒を前記複数の伝熱管に分配する第1のヘッダとを有する第1の熱交換器と、前記第1の熱交換器に流入する冷媒をガス冷媒および液冷媒に分離する気液分離器と、前記気液分離器と前記第1のヘッダとを接続し、前記ガス冷媒を前記気液分離器から前記第1のヘッダに流入させるガスバイパス回路と、前記気液分離器と前記第1のヘッダとを接続し、前記液冷媒を前記気液分離器から前記第1のヘッダに流入させる液バイパス回路と、前記ガスバイパス回路および前記液バイパス回路のうち、少なくとも一方のバイパス回路に設けられたバイパス弁と、を有し、前記ガスバイパス回路は、前記第1のヘッダ内における前記液冷媒の流通方向を基準として、前記液バイパス回路が前記第1のヘッダに接続される位置よりも前記流通方向の下流側において前記第1のヘッダに接続されているものである。 A refrigeration cycle device according to the present disclosure includes a first heat exchanger having a plurality of heat transfer tubes and a first header for distributing refrigerant flowing through the refrigerant piping to the plurality of heat transfer tubes; A gas-liquid separator that separates the refrigerant flowing into the heat exchanger into a gas refrigerant and a liquid refrigerant, and the gas-liquid separator and the first header are connected to separate the gas refrigerant from the gas-liquid separator into the first header. a gas bypass circuit that flows into one header; a liquid bypass circuit that connects the gas-liquid separator and the first header and causes the liquid refrigerant to flow from the gas-liquid separator into the first header; a bypass valve provided in at least one of the gas bypass circuit and the liquid bypass circuit; As such, the liquid bypass circuit is connected to the first header downstream in the flow direction from the position where the liquid bypass circuit is connected to the first header.
 本開示によれば、第1の熱交換器の分配器として機能する第1のヘッダにおいて、液冷媒の下流側からガス冷媒が吹き上げられ、第1のヘッダに流入する液冷媒またはガス冷媒の流量がバイパス弁によって調整される。そのため、第1のヘッダに流入する液冷媒が第1のヘッダ内で拡散し、複数の伝熱管に気液二相冷媒が均等に分配される。その結果、第1の熱交換器の熱交換効率が向上する。 According to the present disclosure, in the first header that functions as a distributor of the first heat exchanger, gas refrigerant is blown up from the downstream side of the liquid refrigerant, and the flow rate of liquid refrigerant or gas refrigerant flowing into the first header is regulated by the bypass valve. Therefore, the liquid refrigerant flowing into the first header diffuses within the first header, and the gas-liquid two-phase refrigerant is evenly distributed to the plurality of heat transfer tubes. As a result, the heat exchange efficiency of the first heat exchanger is improved.
実施の形態1に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。1 is a refrigerant circuit diagram showing one configuration example of a refrigeration cycle apparatus according to Embodiment 1. FIG. 図1に示す第1の熱交換器の構成を説明するための側面模式図である。FIG. 2 is a schematic side view for explaining the configuration of the first heat exchanger shown in FIG. 1; 図1に示したガスバイパス弁の一構成例を示す模式図である。FIG. 2 is a schematic diagram showing one configuration example of the gas bypass valve shown in FIG. 1 ; 図1に示した冷凍サイクル装置による冷凍サイクルの状態線図である。FIG. 2 is a state diagram of a refrigeration cycle by the refrigeration cycle device shown in FIG. 1; 実施の形態1に係る冷凍サイクル装置の別の構成例を示す冷媒回路図である。4 is a refrigerant circuit diagram showing another configuration example of the refrigeration cycle apparatus according to Embodiment 1. FIG. 図2に示した第1の熱交換器の別の設置例を示す側面模式図である。3 is a schematic side view showing another installation example of the first heat exchanger shown in FIG. 2. FIG. 実施の形態2に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。FIG. 7 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 2; 図7に示した冷凍サイクル装置による冷凍サイクルの状態線図である。FIG. 8 is a state diagram of a refrigeration cycle by the refrigeration cycle device shown in FIG. 7; 実施の形態3に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。FIG. 11 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3; 図9に示した冷凍サイクル装置による冷凍サイクルの状態線図である。FIG. 10 is a state diagram of a refrigeration cycle by the refrigeration cycle device shown in FIG. 9; 実施の形態4に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。FIG. 11 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4; 図11に示したコントローラの一構成例を示す機能ブロック図である。12 is a functional block diagram showing a configuration example of a controller shown in FIG. 11; FIG. 図12に示したコントローラの一構成例を示すハードウェア構成図である。FIG. 13 is a hardware configuration diagram showing a configuration example of a controller shown in FIG. 12; 図12に示したコントローラの別の構成例を示すハードウェア構成図である。13 is a hardware configuration diagram showing another configuration example of the controller shown in FIG. 12; FIG. 図12に示したコントローラが実行する制御方法の手順を示すフローチャートである。13 is a flow chart showing the procedure of a control method executed by the controller shown in FIG. 12;
実施の形態1.
 本実施の形態1の冷凍サイクル装置の構成を説明する。図1は、実施の形態1に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。図1に示すように、冷凍サイクル装置1は、圧縮機2と、第1の熱交換器3と、気液分離器4と、膨張弁5と、第2の熱交換器6とを有する。圧縮機2、第1の熱交換器3、膨張弁5および第2の熱交換器6を接続する冷媒配管16において、気液分離器4は、第1の熱交換器3と膨張弁5との間に設けられている。圧縮機2、第1の熱交換器3、膨張弁5および第2の熱交換器6によって、冷媒が循環する冷媒回路10が構成される。
Embodiment 1.
The configuration of the refrigeration cycle apparatus of Embodiment 1 will be described. FIG. 1 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 1. FIG. As shown in FIG. 1 , the refrigeration cycle device 1 has a compressor 2 , a first heat exchanger 3 , a gas-liquid separator 4 , an expansion valve 5 and a second heat exchanger 6 . In the refrigerant pipe 16 connecting the compressor 2, the first heat exchanger 3, the expansion valve 5 and the second heat exchanger 6, the gas-liquid separator 4 is connected to the first heat exchanger 3 and the expansion valve 5. is set between Compressor 2 , first heat exchanger 3 , expansion valve 5 and second heat exchanger 6 constitute refrigerant circuit 10 in which refrigerant circulates.
 圧縮機2は、吸入する冷媒を圧縮して吐出する。圧縮機2は、例えば、往復式圧縮機および回転式圧縮機である。膨張弁5は、冷媒を減圧して膨張させる膨張装置である。膨張弁5は、例えば、温度式膨張弁である。温度式膨張弁は、外部均圧型膨張弁および内部均圧型膨張弁の2つのタイプがある。膨張弁5が外部禁圧型膨張弁である場合、第1の熱交換器3と圧縮機2との間の冷媒配管16に設けられた感温筒(図示せず)と、感温筒よりも圧縮機2側の冷媒配管16に接続された均圧管(図示せず)とが膨張弁5に接続される。膨張弁5は、感温筒(図示せず)に封入された物質(冷媒と同じ特性の物質)の圧力と、均圧管(図示せず)を介して入力される冷媒圧力との圧量差に応じて、開度を自動的に調節する。 The compressor 2 compresses and discharges the sucked refrigerant. Compressor 2 is, for example, a reciprocating compressor and a rotary compressor. The expansion valve 5 is an expansion device that decompresses and expands the refrigerant. The expansion valve 5 is, for example, a thermal expansion valve. Thermostatic expansion valves are of two types: external pressure equalizing expansion valves and internal pressure equalizing expansion valves. When the expansion valve 5 is an external pressure inhibiting type expansion valve, a temperature sensing tube (not shown) provided in the refrigerant pipe 16 between the first heat exchanger 3 and the compressor 2 and A pressure equalizing pipe (not shown) connected to the refrigerant pipe 16 on the compressor 2 side is connected to the expansion valve 5 . The expansion valve 5 detects the pressure difference between the pressure of a substance (a substance with the same characteristics as the refrigerant) enclosed in a temperature sensing cylinder (not shown) and the pressure of the refrigerant input through a pressure equalizing pipe (not shown). Automatically adjusts the opening according to
 図2は、図1に示す第1の熱交換器の構成を説明するための側面模式図である。図2において、説明の便宜上、方向を定義する3つの軸(X軸、Y軸およびZ軸)の矢印を表示している。Z軸矢印の反対方向を重力方向とする。 FIG. 2 is a schematic side view for explaining the configuration of the first heat exchanger shown in FIG. In FIG. 2, arrows of three axes (X-axis, Y-axis and Z-axis) defining directions are displayed for convenience of explanation. Let the direction opposite to the Z-axis arrow be the direction of gravity.
 第1の熱交換器3は、複数の伝熱管11と、第1のヘッダ12と、第2のヘッダ13とを有する。複数の伝熱管11はY軸に平行に延びている。第1のヘッダ12および第2のヘッダ13のそれぞれは、Z軸に平行に延びる円柱形状または直方体形状の構成である。図2に示すように、第1の熱交換器3には複数の放熱フィン17が第1のヘッダ12と第2のヘッダ13との間に設けられている。各放熱フィン17は、隣り合う放熱フィン17とY軸に平行な方向に等間隔に配置されている。各放熱フィン17は、XZ平面に平行な板状の構成である。複数の伝熱管11が複数の放熱フィン17を貫通している。図1に示す第1の熱交換器3においては、図2に示す放熱フィン17を省略している。 The first heat exchanger 3 has a plurality of heat transfer tubes 11, a first header 12 and a second header 13. A plurality of heat transfer tubes 11 extend parallel to the Y-axis. Each of the first header 12 and the second header 13 has a cylindrical or cuboid configuration extending parallel to the Z-axis. As shown in FIG. 2 , the first heat exchanger 3 is provided with a plurality of radiation fins 17 between the first header 12 and the second header 13 . Each radiation fin 17 is arranged at equal intervals in the direction parallel to the Y-axis with the adjacent radiation fins 17 . Each radiation fin 17 has a plate-like configuration parallel to the XZ plane. A plurality of heat transfer tubes 11 pass through a plurality of radiation fins 17 . In the first heat exchanger 3 shown in FIG. 1, the radiation fins 17 shown in FIG. 2 are omitted.
 本実施の形態1においては、図2を参照して、第1の熱交換器3が放熱フィン17を有する構成について説明したが、第1の熱交換器3は放熱フィン17を有していない熱交換器であってもよい。 In Embodiment 1, the configuration in which the first heat exchanger 3 has radiation fins 17 was described with reference to FIG. It may be a heat exchanger.
 第1のヘッダ12は、冷媒配管16を介して気液分離器4から流入する冷媒を複数の伝熱管11に分配する分配器の役目を果たす。第2のヘッダ13は、複数の伝熱管11を流通する冷媒を合流させて圧縮機2の冷媒吸入口に流出する合流器の役目を果たす。第1のヘッダ12および第2のヘッダ13のそれぞれは、複数の伝熱管11に分流する冷媒または複数の伝熱管11から流入する冷媒を溜める中空構造を有する。複数の伝熱管11は、第1のヘッダ12に対して、重力方向を基準とした高さの異なる位置に接続されている。第2の熱交換器6は、第1の熱交換器3と同様な構成であり、その詳細な説明を省略する。 The first header 12 serves as a distributor that distributes the refrigerant flowing from the gas-liquid separator 4 through the refrigerant pipes 16 to the plurality of heat transfer tubes 11 . The second header 13 serves as a combiner that joins the refrigerant flowing through the plurality of heat transfer tubes 11 and flows out to the refrigerant suction port of the compressor 2 . Each of the first header 12 and the second header 13 has a hollow structure for accumulating the refrigerant branched to the plurality of heat transfer tubes 11 or the refrigerant flowing from the plurality of heat transfer tubes 11 . The plurality of heat transfer tubes 11 are connected to the first header 12 at different heights with respect to the direction of gravity. The second heat exchanger 6 has the same configuration as the first heat exchanger 3, and detailed description thereof will be omitted.
 気液分離器4は、膨張弁5から第1の熱交換器3に流入する冷媒をガス冷媒および液冷媒に分離する。気液分離器4と第1のヘッダ12とは、ガス冷媒を気液分離器4から第1のヘッダ12に流入させるガスバイパス回路7を介して接続されている。また、気液分離器4と第1のヘッダ12とは、液冷媒を気液分離器4から第1のヘッダ12に流入させる液バイパス回路8を介して接続されている。 The gas-liquid separator 4 separates the refrigerant flowing into the first heat exchanger 3 from the expansion valve 5 into gas refrigerant and liquid refrigerant. The gas-liquid separator 4 and the first header 12 are connected via a gas bypass circuit 7 that allows gas refrigerant to flow from the gas-liquid separator 4 into the first header 12 . Also, the gas-liquid separator 4 and the first header 12 are connected via a liquid bypass circuit 8 that allows the liquid refrigerant to flow from the gas-liquid separator 4 to the first header 12 .
 液バイパス回路8は第1のヘッダ12の上部に接続されている。ガスバイパス回路7は第1のヘッダ12の下部に接続されている。本実施の形態1において、第1のヘッダ12は、第1のヘッダ12の上部から流入する液冷媒を吹き上げるようにガス冷媒が第1のヘッダ12の下部から流入する構造である。ガスバイパス回路7には、ガスバイパス弁14が設けられている。ガスバイパス弁14は、第1のヘッダ12に流入する液冷媒の流量に対応して、吹き上げに必要なガス冷媒の流量が得られる流路抵抗に開度を調整する。以下に、ガスバイパス弁14の構成を具体的に説明する。 The liquid bypass circuit 8 is connected to the top of the first header 12 . A gas bypass circuit 7 is connected to the lower portion of the first header 12 . In Embodiment 1, the first header 12 has a structure in which gas refrigerant flows in from the lower portion of the first header 12 so as to blow up the liquid refrigerant flowing in from the upper portion of the first header 12 . A gas bypass valve 14 is provided in the gas bypass circuit 7 . The gas bypass valve 14 adjusts the degree of opening of the flow path resistance corresponding to the flow rate of the liquid refrigerant flowing into the first header 12 so that the flow rate of the gas refrigerant required for blowing up can be obtained. The configuration of the gas bypass valve 14 will be specifically described below.
 第1のヘッダ12に流入する液冷媒の流量が少ない場合、液冷媒は、重力の影響により、第1のヘッダ12の上方側(図2のZ軸矢印方向)よりも第1のヘッダ12の下方側(図2のZ軸矢印の反対方向)に溜まりやすくなり、複数の伝熱管11のうち、上方側の伝熱管11に流れにくくなる。そのため、複数の伝熱管11のうち、相対的に下方側の伝熱管11に液冷媒が多く流れ、上方側の伝熱管11に流れる液冷媒が減少する。この場合、ガスバイパス弁14は、液冷媒を吹き上げるガス冷媒の量が多くなるように開度を大きくする。これにより、複数の伝熱管11のうち、上方側の伝熱管11にも液冷媒が流れやすくなる。 When the flow rate of the liquid refrigerant flowing into the first header 12 is small, the liquid refrigerant flows through the first header 12 more than the upper side (Z-axis arrow direction in FIG. 2) of the first header 12 due to the effect of gravity. It tends to accumulate in the lower side (opposite direction of the Z-axis arrow in FIG. 2), and it becomes difficult to flow into the upper heat transfer tube 11 among the plurality of heat transfer tubes 11 . Therefore, among the plurality of heat transfer tubes 11, more liquid refrigerant flows in the heat transfer tubes 11 on the lower side, and the amount of liquid refrigerant flowing in the heat transfer tubes 11 on the upper side decreases. In this case, the opening degree of the gas bypass valve 14 is increased so that the amount of gas refrigerant blowing up the liquid refrigerant increases. This makes it easier for the liquid refrigerant to flow through the heat transfer tubes 11 on the upper side among the plurality of heat transfer tubes 11 .
 一方、第1のヘッダ12に流入する液冷媒の流量が多い場合、液冷媒は、重力の影響を受けても流量が多いので、複数の伝熱管11のうち、下方側(図2のZ軸矢印の反対方向)の伝熱管11だけでなく、上方側(図2のZ軸矢印方向)の伝熱管11にも流入しやすくなる。また、本実施の形態1においては、第1のヘッダ12の上方側から第1のヘッダ12内に流入する液冷媒の流量が多くても、液冷媒は、第1のヘッダ12の下方側からガス冷媒によって吹き上げられ、第1のヘッダ12内で拡散する。そのため、液冷媒が複数の伝熱管11により均等に分流しやすくなる。 On the other hand, when the flow rate of the liquid refrigerant flowing into the first header 12 is large, the flow rate of the liquid refrigerant is large even under the influence of gravity. It becomes easier to flow not only into the heat transfer tubes 11 on the opposite side of the arrow) but also into the heat transfer tubes 11 on the upper side (the direction of the Z-axis arrow in FIG. 2). Further, in the first embodiment, even if the flow rate of the liquid refrigerant flowing into the first header 12 from the upper side of the first header 12 is large, the liquid refrigerant flows from the lower side of the first header 12. It is blown up by the gas refrigerant and diffuses inside the first header 12 . Therefore, it becomes easier for the liquid refrigerant to flow evenly through the plurality of heat transfer tubes 11 .
 上記のように、ガスバイパス弁14は、第1のヘッダ12に流入する液冷媒の流量に基づいて、第1のヘッダ12に流入する液冷媒およびガス冷媒の流量比を調整する。ガスバイパス弁14は、例えば、冷媒の流入口および流出口の冷媒圧力差を一定に保つ弁である。気液分離器4から流出する液冷媒と気液分離器4から流出するガス冷媒との流量比が一定と考えると、第1のヘッダ12に流入する液冷媒の流量が多い場合、第1のヘッダ12に流入するガス冷媒の流量も多くなる。ガスバイパス弁14が冷媒の流入口および流出口の冷媒の圧力差を一定に保つ弁である場合、ガス冷媒の流量が少ないと、流入口および流出口の冷媒の圧力差が小さくなるため、ガスバイパス弁14は、冷媒の圧力差を一定に保つために、自動的に開度を大きくする。 As described above, the gas bypass valve 14 adjusts the flow ratio of the liquid refrigerant and gas refrigerant flowing into the first header 12 based on the flow rate of the liquid refrigerant flowing into the first header 12 . The gas bypass valve 14 is, for example, a valve that keeps the refrigerant pressure difference between the refrigerant inlet and outlet constant. Considering that the flow rate ratio between the liquid refrigerant flowing out of the gas-liquid separator 4 and the gas refrigerant flowing out of the gas-liquid separator 4 is constant, when the flow rate of the liquid refrigerant flowing into the first header 12 is large, the first The flow rate of gas refrigerant flowing into the header 12 also increases. If the gas bypass valve 14 is a valve that maintains a constant refrigerant pressure difference between the refrigerant inlet and the refrigerant outlet, the pressure difference between the refrigerant inlet and the refrigerant outlet decreases when the flow rate of the gas refrigerant is low. The bypass valve 14 automatically increases the degree of opening in order to keep the pressure difference of the refrigerant constant.
 ガスバイパス弁14の具体的な構成例は、温度式膨張弁と同様な原理で動作する弁である。ガスバイパス弁14は、冷媒の流入口および流出口の冷媒圧力差を検出するダイヤフラム等の調整弁(図示せず)を有し、調整弁の動作に応じて開度を調整する。この場合、ガスバイパス弁14の開度を制御するコントローラ等の特別な構成を設ける必要がない。 A specific configuration example of the gas bypass valve 14 is a valve that operates on the same principle as a thermal expansion valve. The gas bypass valve 14 has a regulating valve (not shown) such as a diaphragm that detects the refrigerant pressure difference between the refrigerant inlet and outlet, and adjusts the degree of opening according to the operation of the regulating valve. In this case, there is no need to provide a special configuration such as a controller for controlling the degree of opening of the gas bypass valve 14 .
 ガスバイパス弁14の構成の一例を説明する。図3は、図1に示したガスバイパス弁の一構成例を示す模式図である。ガスバイパス弁14は、冷媒流入口51側がガスバイパス回路7を介して気液分離器4と接続され、冷媒流出口52側がガスバイパス回路7を介して第1のヘッダ12と接続されている。ガスバイパス弁14は、ダイヤフラム室53と、バネ54が設けられた圧力室55と、冷媒流入口51から冷媒流出口52に冷媒を流通させるオリフィス56が設けられたオリフィス板と、オリフィス56の開度を調整するニードル57とを有する。 An example of the configuration of the gas bypass valve 14 will be described. FIG. 3 is a schematic diagram showing one configuration example of the gas bypass valve shown in FIG. The gas bypass valve 14 is connected to the gas-liquid separator 4 via the gas bypass circuit 7 on the refrigerant inlet 51 side, and is connected to the first header 12 via the gas bypass circuit 7 on the refrigerant outlet 52 side. The gas bypass valve 14 includes a diaphragm chamber 53, a pressure chamber 55 provided with a spring 54, an orifice plate provided with an orifice 56 for circulating the refrigerant from the refrigerant inlet 51 to the refrigerant outlet 52, and an opening of the orifice 56. and a needle 57 for adjusting the power.
 ダイヤフラム室53は、第1の均圧管61を介して冷媒流入口51側のガスバイパス回路7と接続されている。圧力室55は、第2の均圧管62を介して冷媒流出口52側のガスバイパス回路7と接続されている。ダイヤフラム室53は圧力室55との境界面にダイヤフラム53aを有し、ダイヤフラム53aにはシャフト58が取り付けられている。シャフト58は、ダイヤフラム53aとは反対側の端部にニードル57が取り付けられている。ダイヤフラム53aは、冷媒流入口51と冷媒流出口52との冷媒圧力差ΔPと、バネ54の弾性力とによって、シャフト58の軸方向に沿って移動する。ダイヤフラム53aがシャフト58の軸方向の移動に伴ってニードル57が移動することで、オリフィス56の開度が調整される。その結果、オリフィス56を流通する冷媒の流量が調整され、冷媒圧力差ΔPが一定に保たれる。 The diaphragm chamber 53 is connected via a first pressure equalizing pipe 61 to the gas bypass circuit 7 on the refrigerant inlet 51 side. The pressure chamber 55 is connected to the gas bypass circuit 7 on the refrigerant outlet 52 side via a second pressure equalizing pipe 62 . The diaphragm chamber 53 has a diaphragm 53a on the boundary surface with the pressure chamber 55, and a shaft 58 is attached to the diaphragm 53a. A needle 57 is attached to the end of the shaft 58 opposite to the diaphragm 53a. The diaphragm 53 a moves along the axial direction of the shaft 58 due to the refrigerant pressure difference ΔP between the refrigerant inlet 51 and the refrigerant outlet 52 and the elastic force of the spring 54 . The opening of the orifice 56 is adjusted by moving the needle 57 as the diaphragm 53 a moves in the axial direction of the shaft 58 . As a result, the flow rate of the refrigerant flowing through the orifice 56 is adjusted, and the refrigerant pressure difference ΔP is kept constant.
 次に、図1に示す冷凍サイクル装置1の冷凍サイクルの動作を説明する。第1の熱交換器3が蒸発器として機能する場合を説明する。図4は、図1に示した冷凍サイクル装置による冷凍サイクルの状態線図である。図4に示す状態線図において、横軸は比エンタルピーh[kJ/kg]であり、縦軸は圧力P[MPa]である。図4に示すP1~P8は、図1に示した冷媒回路10における位置p1~p8の冷媒の状態を示す。 Next, the operation of the refrigeration cycle of the refrigeration cycle device 1 shown in FIG. 1 will be described. A case where the first heat exchanger 3 functions as an evaporator will be described. FIG. 4 is a state diagram of a refrigerating cycle by the refrigerating cycle apparatus shown in FIG. In the state diagram shown in FIG. 4, the horizontal axis is the specific enthalpy h [kJ/kg] and the vertical axis is the pressure P [MPa]. P1 to P8 shown in FIG. 4 indicate states of the refrigerant at positions p1 to p8 in the refrigerant circuit 10 shown in FIG.
 圧縮機2は、ガス冷媒を吸入し、吸入したガス冷媒を圧縮して吐出する(図4の位置p1参照)。圧縮機2から吐出されたガス冷媒は、第2の熱交換器6において空気と熱交換することで凝縮され、液冷媒となって第2の熱交換器6から流出する(図4の位置p2参照)。第2の熱交換器6を流出した液冷媒は、膨張弁5によって減圧され、気液二相冷媒になる(図4の位置p3参照)。気液二相冷媒は、気液分離器4に流入すると、液冷媒(図4の位置p4参照)とガス冷媒(図4の位置p5参照)とに分離される。 The compressor 2 sucks gas refrigerant, compresses the sucked gas refrigerant, and discharges it (see position p1 in FIG. 4). The gas refrigerant discharged from the compressor 2 is condensed by exchanging heat with air in the second heat exchanger 6, becomes liquid refrigerant, and flows out of the second heat exchanger 6 (position p2 in FIG. 4). reference). The liquid refrigerant that has flowed out of the second heat exchanger 6 is decompressed by the expansion valve 5 and becomes a gas-liquid two-phase refrigerant (see position p3 in FIG. 4). When the gas-liquid two-phase refrigerant flows into the gas-liquid separator 4, it is separated into a liquid refrigerant (see position p4 in FIG. 4) and a gas refrigerant (see position p5 in FIG. 4).
 液冷媒は、気液分離器4から液バイパス回路8を経由して第1のヘッダ12に到達する。第1のヘッダ12に到達した液冷媒は、第1のヘッダ12の上部から第1のヘッダ12に流入する。気液分離器4で分離されたガス冷媒は、気液分離器4からガスバイパス回路7を流通する。ガスバイパス回路7を流通するガス冷媒は、ガスバイパス弁14によって減圧され、流量が調整された後、第1のヘッダ12の下部から第1のヘッダ12に流入する(図4の位置p6参照)。 The liquid refrigerant reaches the first header 12 from the gas-liquid separator 4 via the liquid bypass circuit 8 . The liquid refrigerant that has reached the first header 12 flows into the first header 12 from the top of the first header 12 . The gas refrigerant separated by the gas-liquid separator 4 flows from the gas-liquid separator 4 through the gas bypass circuit 7 . The gas refrigerant flowing through the gas bypass circuit 7 is depressurized by the gas bypass valve 14, and after the flow rate is adjusted, flows into the first header 12 from the lower part of the first header 12 (see position p6 in FIG. 4). .
 図4に示す位置p6において、ガスバイパス弁14に流入する冷媒の流量が少ない場合、ガスバイパス弁14は、開度を大きくして、ガス冷媒の流量を多くする。ガスバイパス弁14に流入する冷媒の流量が多い場合、ガスバイパス弁14は、開度を小さくして、ガス冷媒の流量を少なくする。 At position p6 shown in FIG. 4, when the flow rate of the refrigerant flowing into the gas bypass valve 14 is low, the gas bypass valve 14 increases the degree of opening to increase the flow rate of the gas refrigerant. When the flow rate of the refrigerant flowing into the gas bypass valve 14 is large, the gas bypass valve 14 reduces the degree of opening to reduce the flow rate of the gas refrigerant.
 第1のヘッダ12の下部から第1のヘッダ12に流入したガス冷媒は、第1のヘッダ12の上部から第1のヘッダ12に流入する液冷媒を吹き上げながら、液冷媒と混合される(図4の位置p7参照)。混合された気液二相冷媒は、複数の伝熱管11に分流する。各伝熱管11を流通する気液二相冷媒は、空気と熱交換を行って蒸発し、ガス化した後、第2のヘッダ13で合流する。第2のヘッダ13で合流したガス冷媒は、圧縮機2の冷媒吸入口から圧縮機2に流入する(図4の位置p8参照)。 The gas refrigerant flowing into the first header 12 from the bottom of the first header 12 is mixed with the liquid refrigerant while blowing up the liquid refrigerant flowing into the first header 12 from the top of the first header 12 (Fig. 4 position p7). The mixed gas-liquid two-phase refrigerant is divided into a plurality of heat transfer tubes 11 . The gas-liquid two-phase refrigerant flowing through each heat transfer tube 11 exchanges heat with the air, evaporates and gasifies, and then joins at the second header 13 . The gas refrigerant that joins at the second header 13 flows into the compressor 2 from the refrigerant suction port of the compressor 2 (see position p8 in FIG. 4).
 このようにして、第1の熱交換器3の第1のヘッダ12の上部から流入する液冷媒の流量に対応して、第1のヘッダ12の下部から適切な量のガス冷媒が吹き上げられる。そのため、複数の伝熱管11の各伝熱管11の冷媒の流量を均等にすることができる。 In this way, an appropriate amount of gas refrigerant is blown up from the lower portion of the first header 12 in accordance with the flow rate of liquid refrigerant flowing from the upper portion of the first header 12 of the first heat exchanger 3 . Therefore, the flow rate of the refrigerant in each heat transfer tube 11 of the plurality of heat transfer tubes 11 can be made uniform.
 なお、本実施の形態1においては、気液分離器4から第1のヘッダ12に流入する液冷媒およびガス冷媒の流量比を一定にするバイパス弁がガスバイパス回路7側に設けられている場合で説明するが、バイパス弁が液バイパス回路8側に設けられていてもよい。図5は、実施の形態1に係る冷凍サイクル装置の別の構成例を示す冷媒回路図である。図5に示すように、液バイパス回路8に液バイパス弁15が設けられる場合、液バイパス弁15は、液バイパス回路8に流入する液冷媒の流量が多い場合、開度を小さくし、液バイパス回路8に流入する液冷媒の流量が少ない場合、開度を大きくする。 In the first embodiment, the gas bypass circuit 7 is provided with a bypass valve that maintains a constant flow rate ratio between the liquid refrigerant and the gas refrigerant flowing from the gas-liquid separator 4 into the first header 12. , a bypass valve may be provided on the liquid bypass circuit 8 side. 5 is a refrigerant circuit diagram showing another configuration example of the refrigeration cycle apparatus according to Embodiment 1. FIG. As shown in FIG. 5, when the liquid bypass circuit 8 is provided with the liquid bypass valve 15, the liquid bypass valve 15 reduces the degree of opening when the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is large. When the flow rate of the liquid refrigerant flowing into the circuit 8 is small, the opening is increased.
 また、図1は、液バイパス回路8が第1のヘッダ12の上部に接続され、ガスバイパス回路7が第1のヘッダ12の下部に接続された構成を示しているが、これらのバイパス回路の接続位置は図1に示す場合に限らない。ガスバイパス回路7は、第1のヘッダ12内における液冷媒の流通方向を基準として、液バイパス回路8が第1のヘッダ12に接続される位置よりも液冷媒の流通方向の下流側に接続されていればよい。この場合においても、第1のヘッダ12内に流入する液冷媒は、第1のヘッダ12内における液冷媒の流通方向の下流側からガス冷媒によって図2に示すZ軸矢印方向に吹き上げられる。 1 shows a configuration in which the liquid bypass circuit 8 is connected to the upper portion of the first header 12, and the gas bypass circuit 7 is connected to the lower portion of the first header 12. These bypass circuits The connection positions are not limited to those shown in FIG. The gas bypass circuit 7 is connected downstream of the position where the liquid bypass circuit 8 is connected to the first header 12 with respect to the direction of liquid refrigerant flow in the first header 12 . It is good if there is In this case as well, the liquid refrigerant flowing into the first header 12 is blown up by the gas refrigerant in the direction of the Z-axis arrow shown in FIG.
 また、本実施の形態1において、第1のヘッダ12は図2に示すY軸に平行に延びるように配置されてもよい。図6は、図2に示した第1の熱交換器の別の設置例を示す側面模式図である。図6は、第1の熱交換器3が、第1のヘッダ12の延びる方向が地面に平行な方向になるように設置される場合の構成を示す。図6に示す設置例において、複数の伝熱管11のうち、最もY軸矢印の反対方向にある伝熱管を第1の伝熱管21と称し、最もY軸矢印方向にある伝熱管を第2の伝熱管22と称する。 Also, in Embodiment 1, the first header 12 may be arranged so as to extend parallel to the Y-axis shown in FIG. FIG. 6 is a schematic side view showing another installation example of the first heat exchanger shown in FIG. FIG. 6 shows a configuration in which the first heat exchanger 3 is installed such that the direction in which the first header 12 extends is parallel to the ground. In the installation example shown in FIG. 6, among the plurality of heat transfer tubes 11, the heat transfer tube closest to the Y-axis arrow is called the first heat transfer tube 21, and the heat transfer tube closest to the Y-axis arrow is called the second heat transfer tube. These are called heat transfer tubes 22 .
 図6に示す設置例の場合、液冷媒は、液バイパス回路8を介して第1のヘッダ12に流れ落ちるが、流れ落ちるときの慣性力によって、液冷媒は第1のヘッダ12内を、破線矢印が示す方向により流れやすくなる。そのため、第1のヘッダ12に流入する冷媒量が少ない場合、第1の伝熱管21よりも第2の伝熱管22側に冷媒が流れやすくなるが、ガスバイパス弁14を介して流通するガス冷媒によって第1の伝熱管21側に吹き上げられる。このように、第1のヘッダ12の延びる方向が地面に平行な方向であってもよい。また、図6に示す設置例において、第1の熱交換器3が地面に対して傾いていてもよい。 In the case of the installation example shown in FIG. 6, the liquid refrigerant flows through the liquid bypass circuit 8 to the first header 12. Due to the inertial force when the liquid refrigerant flows down, the liquid refrigerant flows through the first header 12 as indicated by the dashed arrow. The direction indicated makes it easier to flow. Therefore, when the amount of refrigerant flowing into the first header 12 is small, the refrigerant flows more easily toward the second heat transfer tube 22 than the first heat transfer tube 21, but the gas refrigerant flowing through the gas bypass valve 14 is blown up to the first heat transfer tube 21 side. Thus, the direction in which the first header 12 extends may be parallel to the ground. Moreover, in the installation example shown in FIG. 6, the first heat exchanger 3 may be inclined with respect to the ground.
 さらに、本実施の形態1において、膨張弁5が電子膨張弁であってもよく、圧縮機2が容量を変えることができるインバータ圧縮機であってもよい。膨張弁5が電子膨張弁であり、圧縮機2がインバータ圧縮機である場合、膨張弁5の開度および圧縮機2の運転周波数を制御するコントローラ(図示せず)が冷凍サイクル装置1に設けられていてもよい。 Furthermore, in Embodiment 1, the expansion valve 5 may be an electronic expansion valve, and the compressor 2 may be an inverter compressor whose capacity can be changed. When the expansion valve 5 is an electronic expansion valve and the compressor 2 is an inverter compressor, the refrigeration cycle apparatus 1 is provided with a controller (not shown) for controlling the opening degree of the expansion valve 5 and the operating frequency of the compressor 2. may have been
 本実施の形態1の冷凍サイクル装置1は、第1の熱交換器3と、気液分離器4と、ガスバイパス回路7と、液バイパス回路8とを有する。第1の熱交換器3は、複数の伝熱管11と、冷媒配管16を介して流入する冷媒を複数の伝熱管11に分配する第1のヘッダ12とを有する。気液分離器は、第1の熱交換器3に流入する冷媒をガス冷媒および液冷媒に分離する。ガスバイパス回路7は、気液分離器4と第1のヘッダ12とを接続し、ガス冷媒を気液分離器4から第1のヘッダ12に流入させる。液バイパス回路8は、気液分離器4と第1のヘッダ12とを接続し、液冷媒を気液分離器4から第1のヘッダ12に流入させる。ガスバイパス回路7および液バイパス回路8のうち、少なくとも一方のバイパス回路にバイパス弁が設けられている。バイパス弁は、一方のバイパス回路に流入する冷媒の流量に対応して開度を調整する。バイパス弁は、ガスバイパス弁14または液バイパス弁15である。ガスバイパス回路7は、第1のヘッダ12内における液冷媒の流通方向を基準として、液バイパス回路8が第1のヘッダ12に接続される位置よりも液冷媒の流通方向の下流側の第1のヘッダ12に接続されている。 The refrigeration cycle apparatus 1 of Embodiment 1 has a first heat exchanger 3, a gas-liquid separator 4, a gas bypass circuit 7, and a liquid bypass circuit 8. The first heat exchanger 3 has a plurality of heat transfer tubes 11 and a first header 12 that distributes the refrigerant flowing through the refrigerant pipes 16 to the plurality of heat transfer tubes 11 . The gas-liquid separator separates the refrigerant flowing into the first heat exchanger 3 into gas refrigerant and liquid refrigerant. The gas bypass circuit 7 connects the gas-liquid separator 4 and the first header 12 and causes the gas refrigerant to flow from the gas-liquid separator 4 into the first header 12 . The liquid bypass circuit 8 connects the gas-liquid separator 4 and the first header 12 and causes the liquid refrigerant to flow from the gas-liquid separator 4 to the first header 12 . At least one of the gas bypass circuit 7 and the liquid bypass circuit 8 is provided with a bypass valve. The bypass valve adjusts the degree of opening according to the flow rate of refrigerant flowing into one of the bypass circuits. The bypass valve is either gas bypass valve 14 or liquid bypass valve 15 . The gas bypass circuit 7 is located downstream of the position where the liquid bypass circuit 8 is connected to the first header 12 in the liquid refrigerant circulation direction, with the liquid refrigerant circulation direction in the first header 12 as a reference. is connected to the header 12 of the
 本実施の形態1によれば、バイパス弁がガスバイパス弁14である場合、ガスバイパス回路7に流入するガス冷媒の流量が少ない場合、ガスバイパス弁14は、第1のヘッダ12内で液冷媒の下流側から吹き出されるガス冷媒の流量が多くなるように開度を調整する。ガスバイパス弁14の開度が大きくなると、液冷媒は下流側から吹き上げられるガス冷媒によって第1のヘッダ12の上方向に持ち上げられる。その結果、液冷媒が上方側(図2のZ軸矢印方向)の伝熱管11に流れやすくなり、第1のヘッダ12に流入した気液二相冷媒が複数の伝熱管11に均等に分流する。 According to the first embodiment, when the bypass valve is the gas bypass valve 14 , when the flow rate of the gas refrigerant flowing into the gas bypass circuit 7 is small, the gas bypass valve 14 is closed in the first header 12 with liquid refrigerant. The opening is adjusted so that the flow rate of the gas refrigerant blown out from the downstream side of is increased. When the opening degree of the gas bypass valve 14 increases, the liquid refrigerant is lifted upward of the first header 12 by the gas refrigerant blown up from the downstream side. As a result, the liquid refrigerant flows more easily into the heat transfer tubes 11 on the upper side (in the direction of the Z-axis arrow in FIG. 2), and the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11. .
 一方、ガスバイパス回路7に流入するガス冷媒の流量が多い場合、液冷媒は、複数の伝熱管11のうち、下方側(図2のZ軸矢印の反対方向)の伝熱管11だけでなく、上方側(図2のZ軸矢印方向)の伝熱管11にも流入しやすくなる。また、液冷媒は、ガスバイパス弁14を流通するガス冷媒によって下流側から吹き上げられ、第1のヘッダ12内に拡散されやすくなる。その結果、第1のヘッダ12に流入した気液二相冷媒が複数の伝熱管11に均等に分流する。 On the other hand, when the flow rate of the gas refrigerant flowing into the gas bypass circuit 7 is large, the liquid refrigerant flows not only in the heat transfer tubes 11 on the lower side (opposite direction of the Z-axis arrow in FIG. 2) among the plurality of heat transfer tubes 11, It also becomes easier to flow into the heat transfer tubes 11 on the upper side (in the direction of the Z-axis arrow in FIG. 2). In addition, the liquid refrigerant is blown up from the downstream side by the gas refrigerant flowing through the gas bypass valve 14 and is easily diffused in the first header 12 . As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
 また、本実施の形態1において、バイパス弁が液バイパス弁15である場合、液バイパス回路8に流入する液冷媒の流量が少ない場合、液バイパス弁15は、第1のヘッダ12に流入する液冷媒の流量が多くなるように開度を調整する。これにより、液冷媒が第1のヘッダ12の上方側(図2のZ軸矢印方向)よりも第1のヘッダ12の下方側(図2のZ軸矢印の反対方向)に溜まりやすくなることを抑制できる。また、液冷媒は、流量が少ない場合、第1のヘッダ12の下方側に溜まりやすくなるが、ガス冷媒によって第1のヘッダ12内の上方側に吹き上げられる。液冷媒が第1のヘッダ12の上方側の伝熱管11に流れやすくなる。その結果、第1のヘッダ12に流入した気液二相冷媒が複数の伝熱管11に均等に分流する。 Further, in the first embodiment, when the bypass valve is the liquid bypass valve 15, when the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is small, the liquid bypass valve 15 is configured to prevent the liquid flowing into the first header 12 from flowing into the first header 12. Adjust the opening so that the flow rate of the refrigerant increases. This makes it easier for the liquid refrigerant to accumulate in the lower side of the first header 12 (opposite direction of the Z-axis arrow in FIG. 2) than in the upper side of the first header 12 (in the direction of the Z-axis arrow in FIG. 2). can be suppressed. In addition, when the flow rate of the liquid refrigerant is small, the liquid refrigerant tends to accumulate in the lower side of the first header 12 , but is blown upward in the first header 12 by the gas refrigerant. Liquid refrigerant can easily flow into the heat transfer tubes 11 above the first header 12 . As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
 一方、液バイパス回路8に流入する液冷媒の流量が多い場合、複数の伝熱管11のうち、下側(図2のZ軸矢印の反対方向)の伝熱管11だけでなく、上側(図2のZ軸矢印方向)の伝熱管11にも流入しやすくなるので、液バイパス弁15は開度を全開にする。第1のヘッダ12の上側から第1のヘッダ12内に流入する液冷媒の流量が多くても、液冷媒は、第1のヘッダ12の下側からガス冷媒によって吹き上げられ、液冷媒が第1のヘッダ12内で拡散しやすくなる。その結果、第1のヘッダ12に流入した気液二相冷媒が複数の伝熱管11に均等に分流する。 On the other hand, when the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is large, not only the heat transfer tubes 11 on the lower side (opposite direction of the Z-axis arrow in FIG. 2) among the plurality of heat transfer tubes 11 (Z-axis arrow direction)), the liquid bypass valve 15 is fully opened. Even if the flow rate of the liquid refrigerant flowing into the first header 12 from the upper side of the first header 12 is large, the liquid refrigerant is blown up by the gas refrigerant from the lower side of the first header 12, and the liquid refrigerant flows into the first header. is easily diffused within the header 12 of the As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
 なお、液バイパス回路8に流入する液冷媒の流量が多すぎる場合、液バイパス弁15は、第1のヘッダ12に流入する液冷媒の流量が少なくなるように開度を調整する構成であってもよい。液バイパス回路8に流入する液冷媒の流量が多すぎると、第1のヘッダ12に流入する液冷媒の勢いが強すぎて、一部の伝熱管11に液冷媒が流入する傾向が強くなるからである。この場合、液バイパス弁15が開度を小さくすることで、第1のヘッダ12に流入する液冷媒の流量が適量となり、液冷媒が複数の伝熱管11に均等に分流しやすくなる。その結果、第1のヘッダ12に流入した気液二相冷媒が複数の伝熱管11に均等に分流する。 When the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is too large, the liquid bypass valve 15 is configured to adjust the degree of opening so that the flow rate of the liquid refrigerant flowing into the first header 12 decreases. good too. If the flow rate of the liquid refrigerant flowing into the liquid bypass circuit 8 is too high, the momentum of the liquid refrigerant flowing into the first header 12 becomes too strong, and the liquid refrigerant tends to flow into some of the heat transfer tubes 11. is. In this case, by reducing the degree of opening of the liquid bypass valve 15 , the flow rate of the liquid refrigerant flowing into the first header 12 becomes appropriate, and the liquid refrigerant is easily divided into the plurality of heat transfer tubes 11 evenly. As a result, the gas-liquid two-phase refrigerant that has flowed into the first header 12 is evenly divided into the plurality of heat transfer tubes 11 .
 このようにして、第1の熱交換器3の分配器として機能する第1のヘッダ12において、液冷媒の下流側からガス冷媒が吹き上げられる。そして、第1のヘッダ12に流入する液冷媒またはガス冷媒の流量が、ガスバイパス弁14または液バイパス弁15によって調整される。そのため、第1のヘッダ12に流入する液冷媒が第1のヘッダ12内で拡散し、複数の伝熱管11に気液二相冷媒が均等に分配される。その結果、第1の熱交換器3の熱交換効率が向上する。 Thus, in the first header 12 functioning as a distributor of the first heat exchanger 3, the gas refrigerant is blown up from the downstream side of the liquid refrigerant. Then, the flow rate of liquid refrigerant or gas refrigerant flowing into the first header 12 is adjusted by the gas bypass valve 14 or the liquid bypass valve 15 . Therefore, the liquid refrigerant flowing into the first header 12 diffuses within the first header 12 , and the gas-liquid two-phase refrigerant is evenly distributed to the plurality of heat transfer tubes 11 . As a result, the heat exchange efficiency of the first heat exchanger 3 is improved.
実施の形態2.
 本実施の形態2の冷凍サイクル装置は、バイパス弁がガスバイパス回路および液バイパス回路の両方に設けられた構成である。本実施の形態2においては、実施の形態1で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。
Embodiment 2.
The refrigeration cycle apparatus of Embodiment 2 has a configuration in which bypass valves are provided in both the gas bypass circuit and the liquid bypass circuit. In the second embodiment, the same components as those described in the first embodiment are denoted by the same reference numerals, and detailed description thereof will be omitted.
 本実施の形態2の冷凍サイクル装置の構成を説明する。図7は、実施の形態2に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。図7に示すように、本実施の形態2の冷凍サイクル装置1aは、図1に示した構成の他に、液バイパス弁15が液バイパス回路8に設けられている。 The configuration of the refrigeration cycle apparatus of Embodiment 2 will be described. FIG. 7 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 2. FIG. As shown in FIG. 7, the refrigerating cycle apparatus 1a of Embodiment 2 is provided with a liquid bypass valve 15 in the liquid bypass circuit 8 in addition to the configuration shown in FIG.
 液バイパス弁15は、気液分離器4と第1のヘッダ12との圧力差を大きくする弁である。液バイパス弁15は、例えば、気液分離器4と第1のヘッダ12との圧力差を予め決められた圧力より大きくする圧力調整弁である。気液分離器4と第1のヘッダ12との圧力差を大きくすることで、ガスバイパス回路7から第1のヘッダ12の内部に吹き上げられるガス冷媒の勢いを大きくすることができる。 The liquid bypass valve 15 is a valve that increases the pressure difference between the gas-liquid separator 4 and the first header 12 . The liquid bypass valve 15 is, for example, a pressure regulating valve that makes the pressure difference between the gas-liquid separator 4 and the first header 12 greater than a predetermined pressure. By increasing the pressure difference between the gas-liquid separator 4 and the first header 12, the force of the gas refrigerant blown up into the first header 12 from the gas bypass circuit 7 can be increased.
 次に、図7に示す冷凍サイクル装置1aの冷凍サイクルの動作を説明する。第1の熱交換器3が蒸発器として機能する場合を説明する。図8は、図7に示した冷凍サイクル装置による冷凍サイクルの状態線図である。図8に示す状態線図において、横軸は比エンタルピーh[kJ/kg]であり、縦軸は圧力P[MPa]である。図8に示すP1~P9は、図7に示した冷媒回路10における位置p1~p9の冷媒の状態を示す。 Next, the operation of the refrigeration cycle of the refrigeration cycle device 1a shown in FIG. 7 will be described. A case where the first heat exchanger 3 functions as an evaporator will be described. FIG. 8 is a state diagram of the refrigeration cycle by the refrigeration cycle device shown in FIG. In the state diagram shown in FIG. 8, the horizontal axis is the specific enthalpy h [kJ/kg] and the vertical axis is the pressure P [MPa]. P1 to P9 shown in FIG. 8 indicate states of the refrigerant at positions p1 to p9 in the refrigerant circuit 10 shown in FIG.
 圧縮機2は、ガス冷媒を吸入し、吸入したガス冷媒を圧縮して吐出する(図8の位置p1参照)。圧縮機2から吐出されたガス冷媒は、第2の熱交換器6において空気と熱交換することで凝縮され、液冷媒となって第2の熱交換器6から流出する(図8の位置p2参照)。第2の熱交換器6を流出した液冷媒は、膨張弁5によって減圧され、気液二相冷媒になる(図8の位置p3参照)。気液二相冷媒は、気液分離器4に流入すると、液冷媒(図8の位置p4参照)とガス冷媒(図8の位置p5参照)とに分離される。 The compressor 2 sucks gas refrigerant, compresses the sucked gas refrigerant, and discharges it (see position p1 in FIG. 8). The gas refrigerant discharged from the compressor 2 is condensed by exchanging heat with air in the second heat exchanger 6, becomes liquid refrigerant, and flows out of the second heat exchanger 6 (position p2 in FIG. 8). reference). The liquid refrigerant that has flowed out of the second heat exchanger 6 is decompressed by the expansion valve 5 and becomes a gas-liquid two-phase refrigerant (see position p3 in FIG. 8). When the gas-liquid two-phase refrigerant flows into the gas-liquid separator 4, it is separated into a liquid refrigerant (see position p4 in FIG. 8) and a gas refrigerant (see position p5 in FIG. 8).
 液冷媒は、気液分離器4から液バイパス回路8を流通する。液バイパス回路8を流通する液冷媒は、液バイパス弁15によって減圧され、流量が調整された後、第1のヘッダ12の上部から第1のヘッダ12に流入する(図8の位置p6参照)。一方、気液分離器4で分離されたガス冷媒は、気液分離器4からガスバイパス回路7を流通する。ガスバイパス回路7を流通するガス冷媒は、ガスバイパス弁14によって減圧され、流量が調整された後、第1のヘッダ12の下部から第1のヘッダ12に流入する(図8の位置p7参照)。 The liquid refrigerant flows from the gas-liquid separator 4 through the liquid bypass circuit 8 . The liquid refrigerant flowing through the liquid bypass circuit 8 is depressurized by the liquid bypass valve 15, and after the flow rate is adjusted, flows into the first header 12 from the upper portion of the first header 12 (see position p6 in FIG. 8). . On the other hand, the gas refrigerant separated by the gas-liquid separator 4 flows from the gas-liquid separator 4 through the gas bypass circuit 7 . The gas refrigerant flowing through the gas bypass circuit 7 is decompressed by the gas bypass valve 14, and after the flow rate is adjusted, flows into the first header 12 from the lower part of the first header 12 (see position p7 in FIG. 8). .
 第1のヘッダ12の下部から第1のヘッダ12に流入したガス冷媒は、第1のヘッダ12の上部から第1のヘッダ12に流入する液冷媒を吹き上げながら、液冷媒と混合される(図8の位置p8参照)。混合された気液二相冷媒は、複数の伝熱管11に分流する。各伝熱管11を流通する気液二相冷媒は、空気と熱交換を行って蒸発し、ガス化した後、第2のヘッダ13で合流する。第2のヘッダ13で合流したガス冷媒は、圧縮機2の冷媒吸入口から圧縮機2に流入する(図8の位置p9参照)。 The gas refrigerant flowing into the first header 12 from the bottom of the first header 12 is mixed with the liquid refrigerant while blowing up the liquid refrigerant flowing into the first header 12 from the top of the first header 12 (Fig. 8 position p8). The mixed gas-liquid two-phase refrigerant is divided into a plurality of heat transfer tubes 11 . The gas-liquid two-phase refrigerant flowing through each heat transfer tube 11 exchanges heat with the air, evaporates and gasifies, and then joins at the second header 13 . The gas refrigerant merged at the second header 13 flows into the compressor 2 from the refrigerant suction port of the compressor 2 (see position p9 in FIG. 8).
 液バイパス弁15によって、気液分離器4の内部と第1のヘッダ12の内部との圧力差が大きくなる。そのため、実施の形態1に比べて、図8に示す位置p7において、第1のヘッダ12に流入する液冷媒の下流側から液冷媒に吹き出されるガス冷媒の勢いが大きくなる。 The liquid bypass valve 15 increases the pressure difference between the inside of the gas-liquid separator 4 and the inside of the first header 12 . Therefore, compared to the first embodiment, at the position p7 shown in FIG. 8, the momentum of the gas refrigerant blown out from the downstream side of the liquid refrigerant flowing into the first header 12 to the liquid refrigerant increases.
 本実施の形態2の冷凍サイクル装置1aは、液バイパス回路8に液バイパス弁15が設けられ、液バイパス弁15、気液分離器4と第1のヘッダ12との圧力差を大きくする弁である。本実施の形態2によれば、液冷媒をガス冷媒でより吹き上げられるようになるので、冷媒の流量が少ないとき、第1のヘッダ12内において、より上方向に液冷媒を到達させることができる。 In the refrigeration cycle apparatus 1a of Embodiment 2, a liquid bypass valve 15 is provided in the liquid bypass circuit 8, and the liquid bypass valve 15 is a valve that increases the pressure difference between the gas-liquid separator 4 and the first header 12. be. According to the second embodiment, the liquid refrigerant can be blown up by the gas refrigerant, so when the flow rate of the refrigerant is small, the liquid refrigerant can reach more upward in the first header 12. .
 また、ガスバイパス回路において、ガスバイパス弁の冷媒の入口と出口の圧力差が小さいと、同じ流量の冷媒を流通させるために必要な容量係数(Cv値)が大きくなる。これに対して、本実施の形態2においては、液バイパス弁15によって気液分離器4の内部と第1のヘッダ12の内部との圧力差が大きくなる。そのため、ガスバイパス回路7において、ガスバイパス弁14の前後の圧力差が大きくなり、ガスバイパス弁14に必要なCv値を下げることができる。その結果、ガスバイパス弁14を小型化できる。 Also, in the gas bypass circuit, when the pressure difference between the refrigerant inlet and outlet of the gas bypass valve is small, the capacity coefficient (Cv value) required to circulate the same flow rate of refrigerant increases. In contrast, in Embodiment 2, the liquid bypass valve 15 increases the pressure difference between the inside of the gas-liquid separator 4 and the inside of the first header 12 . Therefore, in the gas bypass circuit 7, the pressure difference before and after the gas bypass valve 14 increases, and the Cv value required for the gas bypass valve 14 can be lowered. As a result, the gas bypass valve 14 can be downsized.
実施の形態3.
 本実施の形態3の冷凍サイクル装置は、冷媒回路における冷媒の流通方向を切り替える四方弁が冷媒回路に設けられた構成である。本実施の形態3においては、実施の形態1および2で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。また、本実施の形態3では、実施の形態2の冷凍サイクル装置1aに四方弁を追加した構成の場合について説明するが、実施の形態1の冷凍サイクル装置1に四方弁を追加した構成であってもよい。
Embodiment 3.
The refrigeration cycle apparatus of Embodiment 3 has a configuration in which a four-way valve for switching the direction of flow of the refrigerant in the refrigerant circuit is provided in the refrigerant circuit. In Embodiment 3, the same components as those described in Embodiments 1 and 2 are denoted by the same reference numerals, and detailed description thereof will be omitted. Further, in the third embodiment, a configuration in which a four-way valve is added to the refrigeration cycle device 1a of the second embodiment will be described. may
 本実施の形態3の冷凍サイクル装置の構成を説明する。図9は、実施の形態3に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。図9に示すように、本実施の形態3の冷凍サイクル装置1bは、図7に示した構成に、四方弁9が追加された構成である。 The configuration of the refrigeration cycle apparatus of Embodiment 3 will be described. FIG. 9 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 3. As shown in FIG. As shown in FIG. 9, the refrigeration cycle apparatus 1b of Embodiment 3 has a configuration in which a four-way valve 9 is added to the configuration shown in FIG.
 四方弁9は、圧縮機2から吐出される冷媒の流通方向について、圧縮機2から第1の熱交換器3への流通方向である第1の流通方向または圧縮機2から第2の熱交換器6への流通方向である第2の流通方向に設定する。圧縮機2から吐出される冷媒の流通方向が第1の流通方向に設定された場合、第1の熱交換器3が凝縮器として機能し、第2の熱交換器6が蒸発器として機能する。圧縮機2から吐出される冷媒の流通方向が第2の流通方向に設定された場合、第1の熱交換器3が蒸発器として機能し、第2の熱交換器6が凝縮器として機能する。 The four-way valve 9 allows the refrigerant discharged from the compressor 2 to flow in the first flow direction from the compressor 2 to the first heat exchanger 3 or from the compressor 2 to the second heat exchange direction. The second direction of flow, which is the direction of flow to the vessel 6, is set. When the flow direction of the refrigerant discharged from the compressor 2 is set to the first flow direction, the first heat exchanger 3 functions as a condenser and the second heat exchanger 6 functions as an evaporator. . When the flow direction of the refrigerant discharged from the compressor 2 is set to the second flow direction, the first heat exchanger 3 functions as an evaporator and the second heat exchanger 6 functions as a condenser. .
 液バイパス弁15は、第1の熱交換器3が蒸発器として機能する場合、実施の形態2と同様に開状態になるが、第1の熱交換器3が凝縮器として機能する場合、閉状態になる構成である。ガスバイパス弁14は、第1の熱交換器3が蒸発器として機能する場合、実施の形態1および2と同様にガス流量を調整する開度になるが、第1の熱交換器3が凝縮器として機能する場合、全開状態になる構成である。本実施の形態3では、重力方向を基準とする高さについて、液バイパス回路8よりも低い位置でガスバイパス回路7が第1のヘッダ12に接続されている。第1の熱交換器3が凝縮器として機能する場合に、ガスバイパス弁14が全開状態になると、複数の伝熱管11から第1のヘッダ12に流入する液冷媒がガスバイパス回路7を介して気液分離器4にスムーズに流通しやすくなる。 The liquid bypass valve 15 is open when the first heat exchanger 3 functions as an evaporator, as in the second embodiment, but is closed when the first heat exchanger 3 functions as a condenser. It is a configuration that becomes a state. When the first heat exchanger 3 functions as an evaporator, the gas bypass valve 14 is opened to adjust the gas flow rate as in the first and second embodiments. When functioning as a vessel, it is configured to be in a fully open state. In the third embodiment, the gas bypass circuit 7 is connected to the first header 12 at a position lower than the liquid bypass circuit 8 with respect to the height relative to the direction of gravity. When the first heat exchanger 3 functions as a condenser and the gas bypass valve 14 is fully opened, the liquid refrigerant flowing from the heat transfer tubes 11 into the first header 12 flows through the gas bypass circuit 7. Smooth flow to the gas-liquid separator 4 is facilitated.
 次に、図9に示す冷凍サイクル装置1bの冷凍サイクルの動作を説明する。本実施の形態3では、第1の熱交換器3が凝縮器として機能する場合を説明する。第1の熱交換器3が蒸発器として機能する場合の冷凍サイクルの動作は、実施の形態2で説明した動作と同様になるので、その詳細な説明を省略する。 Next, the operation of the refrigeration cycle of the refrigeration cycle device 1b shown in FIG. 9 will be described. Embodiment 3 describes a case where the first heat exchanger 3 functions as a condenser. Since the operation of the refrigeration cycle when the first heat exchanger 3 functions as an evaporator is the same as the operation described in Embodiment 2, detailed description thereof will be omitted.
 図10は、図9に示した冷凍サイクル装置による冷凍サイクルの状態線図である。図10に示す状態線図において、横軸は比エンタルピーh[kJ/kg]であり、縦軸は圧力P[MPa]である。図10に示す位置p1、p2、p5およびp8~p10は、図9に示した冷媒回路10における位置p1~p10のうち、代表的な位置の冷媒の状態を示す。 FIG. 10 is a state diagram of the refrigeration cycle by the refrigeration cycle device shown in FIG. In the state diagram shown in FIG. 10, the horizontal axis is the specific enthalpy h [kJ/kg] and the vertical axis is the pressure P [MPa]. Positions p1, p2, p5, and p8 to p10 shown in FIG. 10 indicate states of refrigerant at representative positions among positions p1 to p10 in the refrigerant circuit 10 shown in FIG.
 圧縮機2は、ガス冷媒を吸入し、吸入したガス冷媒を圧縮して吐出する(図10の位置p1参照)。圧縮機2から吐出されたガス冷媒は、四方弁9を介して、第2のヘッダ13の方に流通する(図10の位置p9参照)。第2のヘッダ13に流入したガス冷媒は、複数の伝熱管11に分流する。複数の伝熱管11の各伝熱管11において、ガス冷媒は空気と熱交換を行って液化する。複数の伝熱管11の各伝熱管11で液化した冷媒は、第1のヘッダ12に合流する(図10の位置p8参照)。 The compressor 2 sucks gas refrigerant, compresses the sucked gas refrigerant, and discharges it (see position p1 in FIG. 10). Gas refrigerant discharged from the compressor 2 flows through the four-way valve 9 toward the second header 13 (see position p9 in FIG. 10). The gas refrigerant that has flowed into the second header 13 is divided into a plurality of heat transfer tubes 11 . In each heat transfer tube 11 of the plurality of heat transfer tubes 11, the gas refrigerant exchanges heat with the air and is liquefied. The refrigerant liquefied in each heat transfer tube 11 of the plurality of heat transfer tubes 11 joins the first header 12 (see position p8 in FIG. 10).
 複数の伝熱管11から第1のヘッダ12に流入した液冷媒は自重によって第1のヘッダ12の下部側に流れる。ガスバイパス弁14が全開状態であるため、第1のヘッダ12の下部に流れた液冷媒は、第1のヘッダ12の下部に溜まることなく、ガスバイパス回路7を経由して気液分離器4に流通する(図10の位置p5参照)。そのため、第1のヘッダ12の下部に液冷媒が溜まることが抑制される。複数の伝熱管11のうち、低い位置にある伝熱管11を流通する液冷媒は、第1のヘッダ12の下部に液冷媒が滞留していないので、伝熱管11からスムーズに流出し、ガスバイパス回路7を経由して気液分離器4に流入することができる。 The liquid refrigerant that has flowed into the first header 12 from the plurality of heat transfer tubes 11 flows to the lower side of the first header 12 due to its own weight. Since the gas bypass valve 14 is in the fully open state, the liquid refrigerant that has flowed to the lower portion of the first header 12 does not accumulate in the lower portion of the first header 12 and passes through the gas bypass circuit 7 to the gas-liquid separator 4. (see position p5 in FIG. 10). Therefore, accumulation of the liquid refrigerant in the lower portion of the first header 12 is suppressed. Among the plurality of heat transfer tubes 11, the liquid refrigerant flowing through the lower heat transfer tubes 11 does not stay in the lower part of the first header 12, so the liquid refrigerant smoothly flows out of the heat transfer tubes 11 and bypasses the gas. It can flow into the gas-liquid separator 4 via the circuit 7 .
 液冷媒は、気液分離器4から膨張弁5に流入すると、膨張弁5によって減圧され、気液二相冷媒になる(図10の位置p2参照)。気液二相冷媒は、第2の熱交換器6に流入する。第2の熱交換器6において、気液二相冷媒は、空気と熱交換を行って蒸発し、ガス化した後、第2の熱交換器6から流出する。第2の熱交換器6から流出したガス冷媒は、圧縮機2の冷媒吸入口から圧縮機2に流入する(図10の位置p10参照)。 When the liquid refrigerant flows from the gas-liquid separator 4 into the expansion valve 5, it is decompressed by the expansion valve 5 and becomes a gas-liquid two-phase refrigerant (see position p2 in FIG. 10). The gas-liquid two-phase refrigerant flows into the second heat exchanger 6 . In the second heat exchanger 6 , the gas-liquid two-phase refrigerant exchanges heat with air to evaporate and gasify, and then flows out of the second heat exchanger 6 . The gas refrigerant that has flowed out of the second heat exchanger 6 flows into the compressor 2 from the refrigerant suction port of the compressor 2 (see position p10 in FIG. 10).
 本実施の形態3の冷凍サイクル装置1bは、冷媒回路10における冷媒の流通方向について、第1の流通方向または第2の流通方向に設定する四方弁9を有する。ガスバイパス弁14は、冷媒の流通方向が四方弁9によって第2の流通方向に設定された場合、全開状態になる構成である。 The refrigeration cycle device 1b of Embodiment 3 has a four-way valve 9 that sets the flow direction of the refrigerant in the refrigerant circuit 10 to the first flow direction or the second flow direction. The gas bypass valve 14 is configured to be fully opened when the flow direction of the refrigerant is set to the second flow direction by the four-way valve 9 .
 冷媒回路における冷媒の流通方向が第1の熱交換器が凝縮器として機能する第1の流通方向である場合、凝縮した液冷媒が第1のヘッダの下部に溜まる。第1のヘッダの下部に液冷媒が溜まると、伝熱管の第1のヘッダへの冷媒出口が液冷媒で塞がれてしまう。この場合、第1のヘッダの下部の伝熱管の冷媒の流れが悪くなり、第1の熱交換器の熱交換効率が低下する。これに対して、本実施の形態3によれば、冷媒の流通方向が第1の流通方向である場合に、第1のヘッダ12の下方側に接続されたガスバイパス回路7に設けられたガスバイパス弁14が全開状態になる。そのため、第1のヘッダ12の下部からガスバイパス回路7を介して液冷媒が気液分離器4に流れやすくなり、第1のヘッダ12の下部に液冷媒が溜まることが抑制される。その結果、第1の熱交換器3の下方側の伝熱管11も冷媒が流れやすくなり、第1の熱交換器3の熱交換効率が向上する。 When the refrigerant circulation direction in the refrigerant circuit is the first circulation direction in which the first heat exchanger functions as a condenser, the condensed liquid refrigerant accumulates in the lower portion of the first header. If the liquid refrigerant accumulates in the lower portion of the first header, the refrigerant outlet of the heat transfer tube to the first header will be blocked by the liquid refrigerant. In this case, the flow of the refrigerant in the heat transfer tubes under the first header is deteriorated, and the heat exchange efficiency of the first heat exchanger is lowered. On the other hand, according to the third embodiment, when the flow direction of the refrigerant is the first flow direction, the gas bypass circuit 7 provided in the gas bypass circuit 7 connected to the lower side of the first header 12 Bypass valve 14 is fully opened. Therefore, the liquid refrigerant can easily flow from the lower portion of the first header 12 to the gas-liquid separator 4 via the gas bypass circuit 7, and the accumulation of the liquid refrigerant in the lower portion of the first header 12 can be suppressed. As a result, the refrigerant can easily flow through the heat transfer tubes 11 on the lower side of the first heat exchanger 3, and the heat exchange efficiency of the first heat exchanger 3 is improved.
実施の形態4.
 本実施の形態4の冷凍サイクル装置は、伝熱管を流通する冷媒の温度に対応して、バイパス弁の開度を制御するものである。本実施の形態4においては、実施の形態1~3で説明した構成と同一の構成に同一の符号を付し、その詳細な説明を省略する。また、本実施の形態4では、実施の形態3の冷凍サイクル装置をベースにして説明するが、本実施の形態4を実施の形態1または2の冷凍サイクル装置に適用してもよい。
Embodiment 4.
The refrigeration cycle apparatus of Embodiment 4 controls the degree of opening of the bypass valve according to the temperature of the refrigerant flowing through the heat transfer tubes. In the fourth embodiment, the same reference numerals are assigned to the same configurations as those described in the first to third embodiments, and detailed description thereof will be omitted. Further, although the fourth embodiment will be described based on the refrigeration cycle apparatus of the third embodiment, the fourth embodiment may be applied to the refrigeration cycle apparatus of the first or second embodiment.
 本実施の形態4の冷凍サイクル装置の構成を説明する。図11は、実施の形態4に係る冷凍サイクル装置の一構成例を示す冷媒回路図である。図11に示す冷凍サイクル装置1cは、図9に示した構成に、冷媒の温度を検出する第1の温度センサ31および第2の温度センサ32と、コントローラ40とが追加された構成である。第1の温度センサ31および第2の温度センサ32は、例えば、サーミスタである。第1の温度センサ31、第2の温度センサ32、ガスバイパス弁14および液バイパス弁15のそれぞれは、コントローラ40と信号線(図示せず)を介して接続されている。 The configuration of the refrigeration cycle apparatus of Embodiment 4 will be described. 11 is a refrigerant circuit diagram showing a configuration example of a refrigeration cycle apparatus according to Embodiment 4. FIG. A refrigeration cycle apparatus 1c shown in FIG. 11 has a configuration in which a first temperature sensor 31 and a second temperature sensor 32 for detecting the temperature of the refrigerant, and a controller 40 are added to the configuration shown in FIG. The first temperature sensor 31 and the second temperature sensor 32 are, for example, thermistors. Each of the first temperature sensor 31, the second temperature sensor 32, the gas bypass valve 14 and the liquid bypass valve 15 is connected to the controller 40 via a signal line (not shown).
 第1の温度センサ31は、図2に示した重力方向(Z軸矢印の反対)を基準とする高さについて、複数の伝熱管11のうち最も高い位置にある伝熱管である第1の伝熱管21に設けられている。第2の温度センサ32は、重力方向を基準として、複数の伝熱管11のうち最も低い位置にある伝熱管である第2の伝熱管22に設けられている。 The first temperature sensor 31 is the first heat transfer tube, which is the highest heat transfer tube among the plurality of heat transfer tubes 11 with respect to the height based on the direction of gravity (opposite to the Z-axis arrow) shown in FIG. It is provided on the heat tube 21 . The second temperature sensor 32 is provided on the second heat transfer tube 22, which is the lowest heat transfer tube among the plurality of heat transfer tubes 11 with respect to the direction of gravity.
 図12は、図11に示したコントローラの一構成例を示す機能ブロック図である。コントローラ40は、例えば、マイクロコンピュータである。コントローラ40は、判定手段42と、弁制御手段43とを有する。判定手段42は、第1の温度センサ31の検出値と第2の温度センサ32の検出値との温度差Tdを算出する。判定手段42は、温度差Tdが予め決められた閾値Tthより大きいか否かを判定し、判定結果の情報を弁制御手段43に送信する。 FIG. 12 is a functional block diagram showing one configuration example of the controller shown in FIG. Controller 40 is, for example, a microcomputer. The controller 40 has determination means 42 and valve control means 43 . The determination means 42 calculates the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 . The determination means 42 determines whether or not the temperature difference Td is greater than a predetermined threshold value Tth, and transmits information on the determination result to the valve control means 43 .
 弁制御手段43は、温度差Tdが閾値Tthより大きい場合、温度差Tdが閾値Tth以下になるように、ガスバイパス弁14および液バイパス弁15のうち、少なくとも一方のバイパス弁の開度を調節する。以下に、弁制御手段43によるバイパス弁の開度の調整方法の具体例を説明する。 When the temperature difference Td is greater than the threshold value Tth, the valve control means 43 adjusts the opening degree of at least one of the gas bypass valve 14 and the liquid bypass valve 15 so that the temperature difference Td becomes equal to or less than the threshold value Tth. do. A specific example of a method for adjusting the degree of opening of the bypass valve by the valve control means 43 will be described below.
 熱交換器が蒸発器として機能する場合、伝熱管を流れる冷媒の流量が少ないと、冷媒の温度が高くなる。例えば、第1の熱交換器3が蒸発器として機能する場合において、第2の伝熱管22を流通する冷媒の流量が第1の伝熱管21を流通する冷媒の流量に比べて少ないと、第2の温度センサ32の検出値が第1の温度センサ31の検出値に比べて大きくなる。第1の温度センサ31の検出値と第2の温度センサ32の検出値との温度差Tdが閾値Tthより大きくなると、弁制御手段43は、ガスバイパス弁14の開度を小さくする。これにより、ガス冷媒の吹き出し量が減り、液冷媒が第1のヘッダ12の下部側に流れ落ちやすくなり、第2の伝熱管22側を流通する冷媒の流量が増加する。また、弁制御手段43は、液バイパス弁15の開度を大きくしてもよい。この場合、液冷媒の流量が増え、ガス冷媒の吹き出しに逆らって第1のヘッダ12の下部側により流れる量が増え、第2の伝熱管22側を流通する冷媒の流量が増加する。さらに、弁制御手段43は、ガスバイパス弁14の開度を小さくし、液バイパス弁15の開度を大きくしてもよい。いずれの場合でも、複数の伝熱管11を流通する冷媒の流量が均等になる。 When the heat exchanger functions as an evaporator, the temperature of the refrigerant increases when the flow rate of the refrigerant flowing through the heat transfer tubes is low. For example, when the first heat exchanger 3 functions as an evaporator, if the flow rate of the refrigerant flowing through the second heat transfer tubes 22 is less than the flow rate of the refrigerant flowing through the first heat transfer tubes 21, The detected value of the second temperature sensor 32 becomes larger than the detected value of the first temperature sensor 31 . When the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 becomes larger than the threshold value Tth, the valve control means 43 reduces the opening degree of the gas bypass valve 14 . As a result, the amount of gas refrigerant blowing out is reduced, the liquid refrigerant tends to flow down to the lower side of the first header 12, and the flow rate of the refrigerant flowing through the second heat transfer tubes 22 increases. Further, the valve control means 43 may increase the opening degree of the liquid bypass valve 15 . In this case, the flow rate of the liquid refrigerant increases, the flow rate of the gas refrigerant increases from the lower side of the first header 12 against the blowout, and the flow rate of the refrigerant flowing through the second heat transfer tubes 22 increases. Furthermore, the valve control means 43 may reduce the opening degree of the gas bypass valve 14 and increase the opening degree of the liquid bypass valve 15 . In either case, the flow rate of the refrigerant flowing through the plurality of heat transfer tubes 11 becomes uniform.
 一方、熱交換器が凝縮器として機能する場合、伝熱管を流れる冷媒の流量が少ないと、冷媒の温度が低くなる。例えば、第1の熱交換器3が凝縮器として機能する場合において、第1の伝熱管21を流通する冷媒の流量が第2の伝熱管22を流通する冷媒の流量に比べて少ないと、第1の温度センサ31の検出値が第2の温度センサ32の検出値よりも小さくなる。第1の温度センサ31の検出値と第2の温度センサ32の検出値との温度差Tdが閾値Tthより大きくなると、弁制御手段43は、ガスバイパス弁14の開度を大きくする。これにより、実施の形態3で説明したように、第2の伝熱管22側を流通する冷媒がよりスムーズに流れるようになり、第2の伝熱管22側の冷媒の流量を増加させることができる。その結果、複数の伝熱管11を流通する冷媒の流量が均等になる。 On the other hand, when the heat exchanger functions as a condenser, the temperature of the refrigerant decreases when the flow rate of the refrigerant flowing through the heat transfer tubes is low. For example, when the first heat exchanger 3 functions as a condenser, if the flow rate of the refrigerant flowing through the first heat transfer tube 21 is less than the flow rate of the refrigerant flowing through the second heat transfer tube 22, The detected value of the first temperature sensor 31 becomes smaller than the detected value of the second temperature sensor 32 . When the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 becomes larger than the threshold value Tth, the valve control means 43 increases the opening degree of the gas bypass valve 14 . As a result, as described in Embodiment 3, the refrigerant flowing through the second heat transfer tube 22 side flows more smoothly, and the flow rate of the refrigerant on the second heat transfer tube 22 side can be increased. . As a result, the flow rate of the refrigerant flowing through the plurality of heat transfer tubes 11 becomes uniform.
 なお、本実施の形態4において、第1の伝熱管21に第1の温度センサ31が設けられ、第2の伝熱管22に第2の温度センサ32が設けられている場合で説明するが、いずれか一方の伝熱管に温度センサが設けられていればよい。例えば、複数の伝熱管11のうち、冷媒の流量が相対的に少ない伝熱管が予めわかる場合、冷媒の流量が少ない伝熱管に温度センサを設ければよい。この場合、弁制御手段43は、温度センサの検出値が予め決められた範囲になるようにガスバイパス弁14または液バイパス弁15の開度を調整する。 In the fourth embodiment, the first heat transfer tube 21 is provided with the first temperature sensor 31 and the second heat transfer tube 22 is provided with the second temperature sensor 32. Any one of the heat transfer tubes may be provided with a temperature sensor. For example, if a heat transfer tube having a relatively low flow rate of refrigerant among the plurality of heat transfer tubes 11 is known in advance, a temperature sensor may be provided for the heat transfer tube having a low flow rate of refrigerant. In this case, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 so that the detection value of the temperature sensor falls within a predetermined range.
 ここで、図12に示したコントローラ40のハードウェア構成の一例を説明する。図13は、図12に示したコントローラの一構成例を示すハードウェア構成図である。コントローラ40の各種機能が専用のハードウェアで実行される場合、図12に示したコントローラ40は、図13に示すように、処理回路80で構成される。図12に示した判定手段42および弁制御手段43の各機能は、処理回路80により実現される。 Here, an example of the hardware configuration of the controller 40 shown in FIG. 12 will be described. 13 is a hardware configuration diagram showing a configuration example of the controller shown in FIG. 12. FIG. When various functions of the controller 40 are executed by dedicated hardware, the controller 40 shown in FIG. 12 is configured with a processing circuit 80 as shown in FIG. Each function of the determination means 42 and the valve control means 43 shown in FIG. 12 is implemented by the processing circuit 80 .
 各機能がハードウェアで実行される場合、処理回路80は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、または、これらを組み合わせたものに該当する。判定手段42および弁制御手段43の各手段の機能のそれぞれを処理回路80で実現してもよい。また、判定手段42および弁制御手段43の各手段の機能を1つの処理回路80で実現してもよい。 When each function is performed by hardware, the processing circuit 80 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate). Array), or a combination thereof. Each of the functions of the determination means 42 and the valve control means 43 may be realized by the processing circuit 80 . Further, the function of each means of the determination means 42 and the valve control means 43 may be realized by one processing circuit 80 .
 また、図12に示したコントローラ40の別のハードウェア構成の一例を説明する。図14は、図12に示したコントローラの別の構成例を示すハードウェア構成図である。コントローラ40の各種機能がソフトウェアで実行される場合、図12に示したコントローラ40は、図14に示すように、CPU(Central Processing Unit)等のプロセッサ81、およびメモリ82で構成される。判定手段42および弁制御手段43の各機能は、プロセッサ81およびメモリ82により実現される。図14は、プロセッサ81およびメモリ82がバス83を介して接続されることを示す。メモリ82は、閾値Tthを記憶している。 An example of another hardware configuration of the controller 40 shown in FIG. 12 will also be described. 14 is a hardware configuration diagram showing another configuration example of the controller shown in FIG. 12. FIG. When various functions of the controller 40 are executed by software, the controller 40 shown in FIG. 12 is composed of a processor 81 such as a CPU (Central Processing Unit) and a memory 82 as shown in FIG. Each function of the determination means 42 and the valve control means 43 is implemented by the processor 81 and the memory 82 . FIG. 14 shows that processor 81 and memory 82 are connected via bus 83 . The memory 82 stores the threshold Tth.
 各機能がソフトウェアで実行される場合、判定手段42および弁制御手段43の機能は、ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェアおよびファームウェアは、プログラムとして記述され、メモリ82に格納される。プロセッサ81は、メモリ82に記憶されたプログラムを読み出して実行することにより、各手段の機能を実現する。 When each function is executed by software, the functions of the determination means 42 and the valve control means 43 are realized by software, firmware, or a combination of software and firmware. Software and firmware are written as programs and stored in memory 82 . The processor 81 implements the functions of each means by reading and executing the programs stored in the memory 82 .
 メモリ82として、例えば、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable and Programmable ROM)およびEEPROM(Electrically Erasable and Programmable ROM)等の不揮発性の半導体メモリが用いられる。また、メモリ82として、RAM(Random Access Memory)の揮発性の半導体メモリが用いられてもよい。さらに、メモリ82として、磁気ディスク、フレキシブルディスク、光ディスク、CD(Compact Disc)、MD(Mini Disc)およびDVD(Digital Versatile Disc)等の着脱可能な記録媒体が用いられてもよい。 As the memory 82, for example, non-volatile semiconductor memories such as ROM (Read Only Memory), flash memory, EPROM (Erasable and Programmable ROM) and EEPROM (Electrically Erasable and Programmable ROM) are used. As the memory 82, a volatile semiconductor memory of RAM (Random Access Memory) may be used. Furthermore, as the memory 82, removable recording media such as magnetic disks, flexible disks, optical disks, CDs (Compact Discs), MDs (Mini Discs) and DVDs (Digital Versatile Discs) may be used.
 次に、本実施の形態4の冷凍サイクル装置1cの動作を説明する。図15は、図12に示したコントローラが実行する制御方法の手順を示すフローチャートである。ここでは、第1の熱交換器3が蒸発器として機能する場合について説明する。コントローラ40は、一定の周期で図15に示すフローにしたがって動作する。 Next, the operation of the refrigeration cycle device 1c of Embodiment 4 will be described. 15 is a flow chart showing the procedure of a control method executed by the controller shown in FIG. 12. FIG. Here, a case where the first heat exchanger 3 functions as an evaporator will be described. The controller 40 operates according to the flow shown in FIG. 15 at regular intervals.
 判定手段42は、第1の温度センサ31および第2の温度センサ32からそれぞれの検出値を取得する(ステップS101)。判定手段42は、第1の温度センサ31の検出値と第2の温度センサ32の検出値との温度差Tdを算出する。そして、判定手段42は、温度差Tdが閾値Tthより大きいか否かを判定する(ステップS102)。ステップS102の判定の結果、温度差Tdが閾値Tth以下である場合、コントローラ40は処理を終了する。 The determination means 42 acquires detection values from the first temperature sensor 31 and the second temperature sensor 32 (step S101). The determination means 42 calculates the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 . Then, the determination means 42 determines whether or not the temperature difference Td is greater than the threshold value Tth (step S102). When the temperature difference Td is equal to or less than the threshold value Tth as a result of the determination in step S102, the controller 40 ends the process.
 一方、ステップS102の判定の結果、温度差Tdが閾値Tthより大きい場合、判定手段42は判定結果の情報を弁制御手段43に送信する。弁制御手段43は、温度差Tdが閾値Tthより大きい旨の情報を判定手段42から受信すると、温度差Tdが閾値Tth以下になるように、ガスバイパス弁14または液バイパス弁15の開度を調節する(ステップS103)。 On the other hand, if the result of determination in step S102 is that the temperature difference Td is greater than the threshold value Tth, the determination means 42 transmits information on the determination result to the valve control means 43. When the valve control means 43 receives information indicating that the temperature difference Td is greater than the threshold value Tth from the determination means 42, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 so that the temperature difference Td becomes equal to or less than the threshold value Tth. Adjust (step S103).
 なお、第1の温度センサ31が第1の伝熱管21に設けられているが、第2の温度センサ32が第2の伝熱管22に設けられていない場合、図15に示すフローにおいて、コントローラ40は、次のように動作する。第1の熱交換器3が凝縮器として機能する場合、ステップS101において、判定手段42は第1の温度センサ31から検出値を取得する。ステップS102において、判定手段42は、第1の温度センサ31の検出値が予め決められた第1の温度範囲以内か否かを判定する。第1の温度センサ31の検出値が第1の温度範囲以内でない場合、ステップS103において、弁制御手段43は、ガスバイパス弁14または液バイパス弁15の開度を調節する。例えば、ステップS102の判定において、第1の温度センサ31の検出値が第1の温度範囲より小さい場合、第1の伝熱管21に流入する冷媒の流量が少ないと考えられる。この場合、弁制御手段43は、ガスバイパス弁14の開度を大きくする。これにより、第1の伝熱管21を流通する冷媒の流量を増やすことができる。 Note that when the first temperature sensor 31 is provided on the first heat transfer tube 21 but the second temperature sensor 32 is not provided on the second heat transfer tube 22, in the flow shown in FIG. 40 operates as follows. When the first heat exchanger 3 functions as a condenser, the determination means 42 acquires a detection value from the first temperature sensor 31 in step S101. In step S102, the determination means 42 determines whether the detected value of the first temperature sensor 31 is within a predetermined first temperature range. If the detected value of the first temperature sensor 31 is not within the first temperature range, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 in step S103. For example, when the detection value of the first temperature sensor 31 is lower than the first temperature range in the determination of step S102, it is considered that the flow rate of the refrigerant flowing into the first heat transfer tube 21 is small. In this case, the valve control means 43 increases the opening degree of the gas bypass valve 14 . Thereby, the flow rate of the refrigerant flowing through the first heat transfer tubes 21 can be increased.
 また、第1の温度センサ31が第1の伝熱管21に設けられていないが、第2の温度センサ32が第2の伝熱管22に設けられている場合、図15に示すフローにおいて、コントローラ40は、次のように動作する。第1の熱交換器3が蒸発器として機能する場合、ステップS101において、判定手段42は第2の温度センサ32から検出値を取得する。ステップS102において、判定手段42は、第2の温度センサ32の検出値が予め決められた第2の温度範囲以内か否かを判定する。第2の温度センサ32の検出値が第2の温度範囲以内でない場合、ステップS103において、弁制御手段43は、ガスバイパス弁14または液バイパス弁15の開度を調節する。例えば、ステップS102の判定において、第2の温度センサ32の検出値が第2の温度範囲より大きい場合、第2の伝熱管22に流入する冷媒の流量が少ないと考えられる。この場合、弁制御手段43は、ガスバイパス弁14の開度を小さくする、または液バイパス弁15の開度を大きくする。これにより、第2の伝熱管22を流通する冷媒の流量を増やすことができる。 Further, when the first temperature sensor 31 is not provided on the first heat transfer tube 21 but the second temperature sensor 32 is provided on the second heat transfer tube 22, in the flow shown in FIG. 40 operates as follows. When the first heat exchanger 3 functions as an evaporator, the determination means 42 acquires a detection value from the second temperature sensor 32 in step S101. In step S102, the determination means 42 determines whether or not the detected value of the second temperature sensor 32 is within a predetermined second temperature range. If the detected value of the second temperature sensor 32 is not within the second temperature range, the valve control means 43 adjusts the opening degree of the gas bypass valve 14 or the liquid bypass valve 15 in step S103. For example, when the detection value of the second temperature sensor 32 is larger than the second temperature range in the determination of step S102, it is considered that the flow rate of the refrigerant flowing into the second heat transfer tube 22 is small. In this case, the valve control means 43 reduces the opening degree of the gas bypass valve 14 or increases the opening degree of the liquid bypass valve 15 . Thereby, the flow rate of the refrigerant flowing through the second heat transfer tubes 22 can be increased.
 また、本実施の形態4において、膨張弁5が電子膨張弁であり、圧縮機2が容量を変化させることができるインバータ圧縮機である場合、コントローラ40が膨張弁5の開度および圧縮機2の運転周波数を制御してもよい。 Further, in the fourth embodiment, if the expansion valve 5 is an electronic expansion valve and the compressor 2 is an inverter compressor that can change the capacity, the controller 40 controls the opening degree of the expansion valve 5 and the compressor 2 may control the operating frequency of
 本実施の形態4の冷凍サイクル装置1cは、第1の伝熱管21および第2の伝熱管22のうち、少なくとも一方の伝熱管に設けられた温度センサと、コントローラ40とを有する。コントローラ40は、温度センサの検出値が予め決められた範囲になるように、ガスバイパス弁14または液バイパス弁15の開度を調節する。 The refrigeration cycle apparatus 1c of Embodiment 4 has a temperature sensor provided in at least one of the first heat transfer tube 21 and the second heat transfer tube 22, and a controller 40. Controller 40 adjusts the degree of opening of gas bypass valve 14 or liquid bypass valve 15 so that the detected value of the temperature sensor falls within a predetermined range.
 本実施の形態4によれば、第1の伝熱管21または第2の伝熱管22に設けられた温度センサの検出値が予め決められた範囲になるようにガスバイパス弁14または液バイパス弁15の開度が調整されるため、複数の伝熱管11により均等に冷媒が流通する。そのため、第1の熱交換器3の熱交換効率が向上する。 According to the fourth embodiment, gas bypass valve 14 or liquid bypass valve 15 is adjusted so that the detected value of the temperature sensor provided in first heat transfer tube 21 or second heat transfer tube 22 is within a predetermined range. is adjusted, the refrigerant flows evenly through the heat transfer tubes 11 . Therefore, the heat exchange efficiency of the first heat exchanger 3 is improved.
 また、本実施の形態4において、第1の伝熱管21に第1の温度センサ31が設けられ、第2の伝熱管22に第2の温度センサ32が設けられていてもよい。この場合、コントローラ40は、第1の温度センサ31の検出値と第2の温度センサ32の検出値との温度差Tdが閾値Tth以下になるように、ガスバイパス弁14または液バイパス弁15の開度を調節してもよい。第1の熱交換器3の複数の伝熱管11に分流する冷媒の流量が精度よく推定することができ、第1の熱交換器3の熱交換効率がさらに向上する。 Further, in Embodiment 4, the first heat transfer tube 21 may be provided with the first temperature sensor 31 and the second heat transfer tube 22 may be provided with the second temperature sensor 32 . In this case, the controller 40 operates the gas bypass valve 14 or the liquid bypass valve 15 so that the temperature difference Td between the detection value of the first temperature sensor 31 and the detection value of the second temperature sensor 32 is equal to or less than the threshold value Tth. You can adjust the opening. The flow rate of the refrigerant branched to the plurality of heat transfer tubes 11 of the first heat exchanger 3 can be accurately estimated, and the heat exchange efficiency of the first heat exchanger 3 is further improved.
 1、1a~1c 冷凍サイクル装置、2 圧縮機、3 第1の熱交換器、4 気液分離器、5 膨張弁、6 第2の熱交換器、7 ガスバイパス回路、8 液バイパス回路、9 四方弁、10 冷媒回路、11 伝熱管、12 第1のヘッダ、13 第2のヘッダ、14 ガスバイパス弁、15 液バイパス弁、16 冷媒配管、17 放熱フィン、21 第1の伝熱管、22 第2の伝熱管、31 第1の温度センサ、32 第2の温度センサ、40 コントローラ、42 判定手段、43 弁制御手段、51 冷媒流入口、52 冷媒流出口、53 ダイヤフラム室、53a ダイヤフラム、54 バネ、55 圧力室、56 オリフィス、57 ニードル、58 シャフト、61 第1の均圧管、62 第2の均圧管、80 処理回路、81 プロセッサ、82 メモリ、83 バス。 1, 1a to 1c refrigeration cycle device, 2 compressor, 3 first heat exchanger, 4 gas-liquid separator, 5 expansion valve, 6 second heat exchanger, 7 gas bypass circuit, 8 liquid bypass circuit, 9 Four-way valve 10 Refrigerant circuit 11 Heat transfer tube 12 First header 13 Second header 14 Gas bypass valve 15 Liquid bypass valve 16 Refrigerant piping 17 Radiation fin 21 First heat transfer tube 22 Second 2 heat transfer tubes, 31 first temperature sensor, 32 second temperature sensor, 40 controller, 42 determination means, 43 valve control means, 51 refrigerant inlet, 52 refrigerant outlet, 53 diaphragm chamber, 53a diaphragm, 54 spring , 55 pressure chamber, 56 orifice, 57 needle, 58 shaft, 61 first pressure equalization pipe, 62 second pressure equalization pipe, 80 processing circuit, 81 processor, 82 memory, 83 bus.

Claims (8)

  1.  複数の伝熱管と冷媒配管を介して流入する冷媒を前記複数の伝熱管に分配する第1のヘッダとを有する第1の熱交換器と、
     前記第1の熱交換器に流入する冷媒をガス冷媒および液冷媒に分離する気液分離器と、
     前記気液分離器と前記第1のヘッダとを接続し、前記ガス冷媒を前記気液分離器から前記第1のヘッダに流入させるガスバイパス回路と、
     前記気液分離器と前記第1のヘッダとを接続し、前記液冷媒を前記気液分離器から前記第1のヘッダに流入させる液バイパス回路と、
     前記ガスバイパス回路および前記液バイパス回路のうち、少なくとも一方のバイパス回路に設けられたバイパス弁と、を有し、
     前記ガスバイパス回路は、前記第1のヘッダ内における前記液冷媒の流通方向を基準として、前記液バイパス回路が前記第1のヘッダに接続される位置よりも前記流通方向の下流側において前記第1のヘッダに接続されている、
     冷凍サイクル装置。
    a first heat exchanger having a plurality of heat transfer tubes and a first header for distributing refrigerant flowing through refrigerant piping to the plurality of heat transfer tubes;
    a gas-liquid separator that separates the refrigerant flowing into the first heat exchanger into a gas refrigerant and a liquid refrigerant;
    a gas bypass circuit that connects the gas-liquid separator and the first header and causes the gas refrigerant to flow from the gas-liquid separator into the first header;
    a liquid bypass circuit that connects the gas-liquid separator and the first header and causes the liquid refrigerant to flow from the gas-liquid separator into the first header;
    a bypass valve provided in at least one of the gas bypass circuit and the liquid bypass circuit;
    The gas bypass circuit is located downstream of the position where the liquid refrigerant is connected to the first header in the direction of flow, with respect to the direction of flow of the liquid refrigerant in the first header. connected to the header of the
    Refrigeration cycle equipment.
  2.  前記バイパス弁は、前記バイパス弁への前記冷媒の流入口および流出口の前記冷媒の圧力差を一定に保つ弁である、
     請求項1に記載の冷凍サイクル装置。
    The bypass valve is a valve that maintains a constant pressure difference of the refrigerant between an inflow port and an outflow port of the refrigerant to the bypass valve.
    The refrigeration cycle apparatus according to claim 1.
  3.  前記バイパス弁として、前記ガスバイパス回路に設けられたガスバイパス弁と、前記液バイパス回路に設けられた液バイパス弁と、を有する、
     請求項1または2に記載の冷凍サイクル装置。
    The bypass valve includes a gas bypass valve provided in the gas bypass circuit and a liquid bypass valve provided in the liquid bypass circuit,
    The refrigeration cycle apparatus according to claim 1 or 2.
  4.  前記液バイパス弁は、前記気液分離器と前記第1のヘッダとの圧力差を大きくする弁である、
     請求項3に記載の冷凍サイクル装置。
    The liquid bypass valve is a valve that increases the pressure difference between the gas-liquid separator and the first header.
    The refrigeration cycle device according to claim 3.
  5.  前記複数の伝熱管は、前記第1のヘッダに対して重力方向を基準とする高さが互いに異なる位置に接続され、
     前記ガスバイパス回路は、前記液バイパス回路が前記第1のヘッダに接続される位置よりも低い位置で前記第1のヘッダに接続されている、
     請求項1~4のいずれか1項に記載の冷凍サイクル装置。
    the plurality of heat transfer tubes are connected to positions with different heights relative to the first header with respect to the direction of gravity;
    The gas bypass circuit is connected to the first header at a position lower than the position at which the liquid bypass circuit is connected to the first header.
    The refrigeration cycle apparatus according to any one of claims 1 to 4.
  6.  前記冷媒を圧縮して吐出する圧縮機と、
     前記圧縮機から吐出される冷媒を空気と熱交換させる第2の熱交換器と、
     前記第2の熱交換器から流出する冷媒を膨張させ、膨張した冷媒を前記気液分離器に流出する膨張弁と、
     前記圧縮機から吐出される冷媒の流通方向について、前記圧縮機から前記第1の熱交換器への流通方向である第1の流通方向または前記圧縮機から前記第2の熱交換器への流通方向である第2の流通方向に設定する四方弁と、を有し、
     前記第1の熱交換器は、前記四方弁によって前記冷媒の流通方向が前記第1の流通方向に設定された場合に前記四方弁から流入する冷媒を前記複数の伝熱管に分配する第2のヘッダを有し、
     前記バイパス弁が、前記ガスバイパス回路に設けられ、前記冷媒の流通方向が前記四方弁によって前記第2の流通方向に設定された場合に全開状態になる、
     請求項5に記載の冷凍サイクル装置。
    a compressor for compressing and discharging the refrigerant;
    a second heat exchanger for heat-exchanging the refrigerant discharged from the compressor with air;
    an expansion valve for expanding the refrigerant flowing out of the second heat exchanger and flowing out the expanded refrigerant to the gas-liquid separator;
    Regarding the flow direction of the refrigerant discharged from the compressor, a first flow direction that is a flow direction from the compressor to the first heat exchanger or a flow direction from the compressor to the second heat exchanger a four-way valve that is set in a second flow direction that is the direction of
    The first heat exchanger distributes the refrigerant flowing in from the four-way valve to the plurality of heat transfer tubes when the flow direction of the refrigerant is set to the first flow direction by the four-way valve. has a header,
    The bypass valve is provided in the gas bypass circuit, and is fully opened when the flow direction of the refrigerant is set to the second flow direction by the four-way valve.
    The refrigeration cycle apparatus according to claim 5.
  7.  前記冷媒の温度を検出する温度センサと、
     前記温度センサの検出値が予め決められた範囲になるように前記バイパス弁の開度を調節するコントローラと、をさらに有し、
     前記複数の伝熱管は、前記第1のヘッダに対して重力方向を基準とする高さが互いに異なる位置に接続され、
     前記温度センサは、
     前記複数の伝熱管のうち、最も高い位置にある伝熱管である第1の伝熱管および最も低い位置にある伝熱管である第2の伝熱管のうち、少なくとも一方の伝熱管に設けられている、
     請求項1または2に記載の冷凍サイクル装置。
    a temperature sensor that detects the temperature of the refrigerant;
    a controller that adjusts the degree of opening of the bypass valve so that the detected value of the temperature sensor falls within a predetermined range;
    the plurality of heat transfer tubes are connected to positions with different heights relative to the first header with respect to the direction of gravity;
    The temperature sensor is
    provided in at least one of the first heat transfer tube, which is the highest heat transfer tube among the plurality of heat transfer tubes, and the second heat transfer tube, which is the lowest heat transfer tube. ,
    The refrigeration cycle apparatus according to claim 1 or 2.
  8.  前記温度センサとして、前記第1の伝熱管に設けられた第1の温度センサと、前記第2の伝熱管に設けられた第2の温度センサとを有し、
     前記コントローラは、
     前記第1の温度センサの検出値と前記第2の温度センサの検出値との温度差が予め決められた閾値以下になるように前記バイパス弁の開度を調節する、
     請求項7に記載の冷凍サイクル装置。
    As the temperature sensors, a first temperature sensor provided in the first heat transfer tube and a second temperature sensor provided in the second heat transfer tube,
    The controller is
    adjusting the degree of opening of the bypass valve so that the temperature difference between the detected value of the first temperature sensor and the detected value of the second temperature sensor is equal to or less than a predetermined threshold;
    The refrigeration cycle apparatus according to claim 7.
PCT/JP2021/028789 2021-08-03 2021-08-03 Refrigeration cycle device WO2023012899A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2021/028789 WO2023012899A1 (en) 2021-08-03 2021-08-03 Refrigeration cycle device
JP2023539421A JPWO2023012899A1 (en) 2021-08-03 2021-08-03
CN202180100905.4A CN117693655A (en) 2021-08-03 2021-08-03 Refrigeration cycle device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/028789 WO2023012899A1 (en) 2021-08-03 2021-08-03 Refrigeration cycle device

Publications (1)

Publication Number Publication Date
WO2023012899A1 true WO2023012899A1 (en) 2023-02-09

Family

ID=85154418

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/028789 WO2023012899A1 (en) 2021-08-03 2021-08-03 Refrigeration cycle device

Country Status (3)

Country Link
JP (1) JPWO2023012899A1 (en)
CN (1) CN117693655A (en)
WO (1) WO2023012899A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282670A (en) * 1989-04-24 1990-11-20 Matsushita Electric Ind Co Ltd Heat exchanger
JP2017223386A (en) * 2016-06-13 2017-12-21 パナソニックIpマネジメント株式会社 Heat exchanger
JP2018059673A (en) * 2016-10-06 2018-04-12 株式会社日立製作所 Heat exchanger and heat pump device using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02282670A (en) * 1989-04-24 1990-11-20 Matsushita Electric Ind Co Ltd Heat exchanger
JP2017223386A (en) * 2016-06-13 2017-12-21 パナソニックIpマネジメント株式会社 Heat exchanger
JP2018059673A (en) * 2016-10-06 2018-04-12 株式会社日立製作所 Heat exchanger and heat pump device using the same

Also Published As

Publication number Publication date
CN117693655A (en) 2024-03-12
JPWO2023012899A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
JP6359102B2 (en) Outdoor unit and refrigeration cycle equipment
KR101153513B1 (en) A refrigerant system and the method of controlling for the same
JP4726845B2 (en) Refrigeration air conditioner
KR102170528B1 (en) Air conditioner
JP5034066B2 (en) Air conditioner
JP2005076933A (en) Refrigeration cycle system
JP2006275435A (en) Gas-liquid separator and air-conditioner
JP2015145742A (en) Refrigeration device
JP2009186033A (en) Two-stage compression type refrigerating device
KR20140048620A (en) Turbo chiller
US8769968B2 (en) Refrigerant system and method for controlling the same
JP5409318B2 (en) HEAT PUMP DEVICE AND HEAT PUMP DEVICE OPERATION METHOD
AU2015211804B2 (en) Heat source unit
JP6467011B2 (en) air conditioner
WO2023012899A1 (en) Refrigeration cycle device
JP2008151394A (en) Air conditioner
JP6964776B2 (en) Refrigeration cycle equipment
KR20150133565A (en) Economizer comprising condenser and turbo chiller comprising the same
JP6157182B2 (en) Refrigeration equipment
JP6552721B2 (en) Air conditioner
JP5627564B2 (en) Refrigeration cycle system
WO2023042289A1 (en) Refrigeration cycle device
JP2017146042A (en) Refrigeration cycle device
JP7204947B2 (en) air conditioner
US20230272952A1 (en) Refrigeration cycle apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952728

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023539421

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE