WO2023012413A1 - Telescope - Google Patents

Telescope Download PDF

Info

Publication number
WO2023012413A1
WO2023012413A1 PCT/FR2022/051310 FR2022051310W WO2023012413A1 WO 2023012413 A1 WO2023012413 A1 WO 2023012413A1 FR 2022051310 W FR2022051310 W FR 2022051310W WO 2023012413 A1 WO2023012413 A1 WO 2023012413A1
Authority
WO
WIPO (PCT)
Prior art keywords
primary mirror
mirror
primary
telescope
support
Prior art date
Application number
PCT/FR2022/051310
Other languages
English (en)
Inventor
Paul GHENO
Damien ROY
Original Assignee
Gheno Paul
Roy Damien
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Gheno Paul, Roy Damien filed Critical Gheno Paul
Publication of WO2023012413A1 publication Critical patent/WO2023012413A1/fr

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors
    • G02B7/183Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors specially adapted for very large mirrors, e.g. for astronomy, or solar concentrators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/02Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors
    • G02B23/06Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices involving prisms or mirrors having a focussing action, e.g. parabolic mirror
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/16Housings; Caps; Mountings; Supports, e.g. with counterweight
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B7/00Mountings, adjusting means, or light-tight connections, for optical elements
    • G02B7/18Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors
    • G02B7/182Mountings, adjusting means, or light-tight connections, for optical elements for prisms; for mirrors for mirrors

Definitions

  • the present invention generally relates to telescopes.
  • a telescope is an optical instrument which makes it possible to see specific celestial objects which are difficult to perceive or are invisible to the naked eye.
  • the opposite faces of the primary mirror have different curvatures, so that this telescope makes it possible to benefit from two different focal lengths and thus makes it possible to vary the size of the object observed between two sizes.
  • the present invention aims to provide a new telescope to overcome all or part of the problems outlined above.
  • the invention relates to a telescope comprising:
  • a primary optical system comprising a primary mirror support for receiving a primary mirror, also called lens;
  • a secondary optical system comprising a secondary mirror support for receiving a secondary mirror
  • the primary optical system comprising a primary mirror holding system for holding a primary mirror on the primary mirror support, the primary mirror holding system is adjustable so as to be able to delimit different sizes of reception of the primary mirror on the primary mirror support.
  • Such a telescope design which includes a primary mirror holding system which is adjustable so as to be able to receive and hold different sizes of primary mirror, makes it possible to easily change the primary mirror in order to be able to adapt the quantity of light collected to the level desired observation detail.
  • the telescope may also comprise one or more of the following characteristics taken in any technically acceptable combination.
  • the spacing adjustment system comprises:
  • a system of telescopic tubes comprising one or more interior telescopic tubes mounted to slide relative to one or more exterior telescopic tubes, and
  • the primary optical system, the secondary optical system and the spacing adjustment system forming an optical assembly which has a longitudinal axis
  • the telescope also includes a support structure that includes:
  • fork block which carries the optical assembly, said fork block being articulated at the fork around an axis orthogonal to the longitudinal axis of the optical assembly.
  • the telescope comprises a system for adjusting the balancing of the optical assembly with respect to the support structure, by sliding the optical assembly parallel to its longitudinal axis.
  • the balancing adjustment system comprises a rack system carried by the outer tube(s) of the telescopic tube system, and a motorization carried by the fork block.
  • the adjustable holding system of the primary mirror comprises several holding devices mounted to move, preferably continuously, for example along slideways, between a separated position and a close position. relative to each other to allow different sizes of receiving space to be delineated for the primary mirror.
  • each holding device is provided with a locking mechanism, for example formed by a mounting of the bolt-nut type cooperating with a groove made in the support of the primary mirror, to allow to lock the position of the retaining device on the support of the primary mirror.
  • a locking mechanism for example formed by a mounting of the bolt-nut type cooperating with a groove made in the support of the primary mirror, to allow to lock the position of the retaining device on the support of the primary mirror.
  • each holding device comprises a lateral jaw, which is movable on the support of the primary mirror, to come into abutment against the edge of the primary mirror, and an upper jaw, movable relative to the lateral jaw to come into abutment against a reflecting face of the primary mirror.
  • the secondary optical system comprises at least one, preferably several, observation orifice(s) to enable the secondary mirror to be observed.
  • the secondary optical system comprises a mechanism for orienting the secondary mirror towards any one of the observation orifices, the orientation mechanism comprising for example a motor coupled to a shaft on which the secondary mirror is fixed.
  • the telescope comprises at least one of the following observation devices:
  • each observation device being associated with an observation orifice of the secondary optical system, towards which the secondary mirror is oriented or orientable.
  • the telescope comprises said secondary mirror.
  • the telescope comprises said primary mirror.
  • the invention also relates to a method for mounting a second primary mirror instead of a first primary mirror in a telescope according to any one of the embodiments proposed above, the telescope comprising a mirror secondary carried by the secondary mirror support, the method comprising the following steps:
  • the method also comprises the step of adjusting the position of equilibrium of the optical assembly, which comprises the primary optical system, the spacing adjustment system and the secondary optical system, with respect to a support structure which carries said optical assembly.
  • Such a process thus makes it possible to replace a given primary mirror with another primary mirror of larger diameter without having to change the entire telescope.
  • the adjustable holding system makes it possible to receive and hold the new primary mirror and the spacing adjustment system makes it possible to adjust the distance between the new primary mirror and the secondary mirror to adjust the focal length of the telescope according to the diameter of the new primary mirror.
  • the user can select the primary mirror that he wishes to use, for example a primary mirror of small size, of reduced cost, to learn about astronomy, while having the possibility, later, to choose another primary mirror of larger dimension, to observe the objects with more detail.
  • Figure 1 is a perspective view of the optical assembly of a telescope according to one embodiment of the invention, the optical assembly being provided with a small primary mirror;
  • Figure 2 is a side view of the optical assembly of Figure 1, carried by a support structure;
  • Figure 3 is a perspective view of the telescope optical assembly of Figure 1, the optical assembly being provided with a larger primary mirror, the distance between the primary mirror and the secondary mirror being suitable;
  • FIG. 4 is a side view of the optical assembly of Figure 3, carried by the support structure, the balancing position of the optical assembly relative to the support structure being adapted to the primary mirror of larger size;
  • FIG. 5 is a perspective view of the support structure of the optical assembly of the telescope, which comprises a base and a foot, called fork, to which is coupled a device, called fork block which carries the assembly telescope optics;
  • FIG. 6 is a perspective view of the fork block through which extends a system of telescopic tubes, the figure showing a motorization included in the fork block configured to cooperate with a rack system carried by the tubes exteriors of the telescopic tube system to allow the position of the optical assembly to be moved relative to the fork block in order to balance the telescope;
  • FIG. 7 is a perspective view of the secondary optical system of the optical assembly of the telescope which includes a secondary mirror that can be oriented towards different viewing ports;
  • FIG. 8 is a perspective view of the primary mirror support plate equipped with the adjustable mirror holding system, in the active position for holding a mirror on the plate;
  • FIG. 9 is a side view of the primary mirror support plate, equipped with the adjustable mirror holding system of Figure 8;
  • Figure 10 is a flowchart showing several steps of a method for mounting a primary mirror in a telescope according to one embodiment of the invention.
  • the focal length represents the distance between the primary mirror, also called objective, and the focus of the telescope at which the secondary mirror is located.
  • focal length of a telescope The longer the focal length of a telescope, the more it allows high magnifications, to the detriment of a reduction in the field of vision and luminosity. Long focal lengths are mainly used to study planetary surfaces and small objects, while for observing or photographing large deep sky objects, one will choose shorter focal lengths.
  • a reflector telescope has been shown which makes it possible to selectively receive different sizes of primary mirrors to allow the telescope to be adapted to the needs of the astronomer, without having to replace the entire telescope.
  • the telescope thus has a modular aspect allowing the user to choose the primary mirror that he wishes to use and for example to replace a primary mirror with another larger primary mirror in order to be able to collect more light and thus allow the user to view more details of the object they wish to observe with the telescope.
  • This telescope thus makes it possible to change the primary mirror to another primary mirror of different diameter, thickness and/or curvature.
  • the telescope 1 comprises an optical assembly 100 carried by a support structure 900.
  • the optical assembly 100 includes a primary optical system 11 which includes a support 113 to receive a primary mirror 7.
  • the primary mirror is concave so that it returns the photons to a point which is the “image focus” or even focal point.
  • the primary mirror of the telescope is used to "collect” the light.
  • the optical assembly 100 also includes a secondary optical system 12 which receives the secondary mirror 8.
  • the secondary mirror is intended to be positioned in the image focal point of the primary mirror.
  • the primary optical system 11 makes it possible to receive different primary mirror dimensions corresponding therefore to different focal lengths.
  • the optical assembly 100 also includes a spacing adjustment system 13 which makes it possible to adjust the distance between the support 113 of the primary mirror 7 and the support 121 of the secondary mirror 8, and therefore to adjust the distance between the mirror primary 7 and secondary mirror 8 to be able to position secondary mirror 8 at the focal point of primary mirror 7.
  • the primary optical system comprises a body 110 which carries the support 113 for receiving the primary mirror 7.
  • the support 113 which makes it possible to receive a primary mirror 7 is a plate.
  • the primary optical system 11 comprises an adjustment mechanism (not shown) for the orientation of the support 113 to allow the primary mirror 7 to be oriented towards the secondary mirror 8.
  • the support of the mirror secondary 8 is also provided with an adjustment mechanism (not shown) for the orientation of the support of the secondary mirror to adjust the position of the secondary mirror with respect to the mirror primary.
  • the body 110 of the primary optical system 11 can accommodate a fan (not shown) for the temperature setting of the primary mirror 7.
  • the secondary optical system 12 comprises a body 120 which is provided with a support 121 for the secondary mirror 8.
  • the support 121 of the secondary mirror comprises a motor 122, such as a servomotor, having an output shaft 123 on which the secondary mirror 8 is fixed.
  • the motorized shaft 123 on which the secondary mirror 8 is fixed forms an angular orientation system 1280 of the mirror.
  • the secondary mirror is inclined with respect to the shaft 123.
  • a rotation of the output shaft makes it possible to change the orientation of the secondary mirror and to direct it towards the observation orifice 1281, 1282 or 1283 wish.
  • the body 120 thus has several, for example three, observation orifices.
  • the telescope comprises a secondary mirror observation system.
  • the telescope can thus be equipped with different observation devices (not shown) each associated with an observation orifice.
  • Observation devices can include an eyepiece for a direct-to-eye observation mode, a digital reflex camera or a CCD-type digital camera.
  • the or each observation device can be mounted so as to be able to approach or move away from the secondary mirror 8 to facilitate focusing.
  • the advantage of being able to rotate the secondary mirror 8 with the associated motor is to limit manipulation of the telescope by the user when the telescope is in operation.
  • the secondary mirror it is possible to provide for the secondary mirror to remain fixed and for it to be the observation devices which are movable, in order to be selectively positioned facing the same observation orifice associated with the secondary mirror.
  • the spacing adjustment system 13 makes it possible to adjust the spacing between the body 110 of the primary optical system 11 and the body 120 of the secondary optical system 12.
  • the spacing adjustment system 13 thus makes it possible to adjust the distance between the primary mirror 7 carried by the support 113 and the secondary mirror 8 carried by the support 121, and therefore to adapt the focal length of the telescope according to characteristics of the primary mirror 7 used, and in particular according to its diameter.
  • the spacing adjustment system 13 comprises one or more interior telescopic tubes 132 mounted to slide with respect to one or more exterior telescopic tubes 131 .
  • the adjustment system 13 comprises a system of telescopic interlocking tubes.
  • the adjustment system 13 comprises two sets of telescopic tubes, located on either side of the longitudinal axis A100 of the optical assembly 100 of the telescope.
  • Each set of telescopic tubes comprises an outer tube 131 and an inner tube 132 mounted to slide relative to the outer tube 131.
  • the adjustment system 13 also comprises a system for driving the interior telescopic tube(s) 132 with respect to the exterior telescopic tube(s) 131.
  • the system for driving the interior telescopic tube(s) interior telescopic tubes 132 with respect to the exterior telescopic tube(s) 131 may comprise one or more motors or cylinders, for example with a worm or rod, to actuate the displacement of the interior tube(s) in the direction of an exit or a re-entry with respect to the corresponding outer tube(s).
  • each outer tube 131 has one end fixed to the body 110 of the primary optical system 11, and each inner tube 132 has one end fixed to the body 120 of the secondary optical system 12.
  • Each outer tube 131 is carried by the fork block 19, which is part of the support structure 900 shown below, being mounted slidably movable relative to the fork block 19 through an adjustment system 15 d balancing described below.
  • the fork block 19 has through passages 193 through which the outer tubes 131 extend.
  • each motor or cylinder of the spacing adjustment system 13 is fixed to the body 110 of the primary optical system 11, to which is also fixed each outer tube 131, and the corresponding inner tube 132, which is coupled to the body 120 of the secondary optical system 12 is coupled to the worm or rod of the motor or cylinder.
  • the actuation of the motors or jacks of the spacing adjustment system 13 causes the inner tubes 132 to extend or re-enter relative to the outer tubes 131 and therefore the body 120 to move away from or closer to the optical system.
  • secondary 12 with respect to the body 110 of the primary optical system 11, which thus modifies the distance between the primary mirror 7 and the secondary mirror 8.
  • the telescope comprises a connecting body 19, called a fork block, through which extends the optical assembly 100, in particular the outer tubes 131.
  • the fork block is part of the support structure 900 which carries the optical assembly 100.
  • the fork block 19 is articulated to the fork 9, presented below, around an axis A2.
  • the telescope 1 also includes a balancing adjustment system 15 which adjusts the position of the optical assembly 100 by sliding the optical assembly 100 relative to the fork block 19
  • the balancing adjustment system 15 makes it possible to move the assembly formed by the primary optical system, the secondary optical system and the spacing adjustment system 13 with respect to the support structure.
  • the balancing adjustment system 15 makes it possible to move the primary optical system 11 closer or further apart, relative to the fork block 19, depending on one or more characteristics of the primary mirror used.
  • the primary mirror can have different sizes, in particular different diameters.
  • the balancing adjustment system 15 makes it possible to balance the optical assembly 100 on the support structure 900.
  • the adjustment of the position of the optical assembly 100 is carried out so as to obtain a position of equilibrium of said optical assembly 100 which is substantially horizontal.
  • the adjustment system 15 comprises a rack system 151, carried by the spacing adjustment system 13, and a motorization 152 carried by the fork block 19.
  • the rack system 151 to comprise a rack fixed to each outer tube of the spacing adjustment system 13, and for the motorization 152 to comprise for each rack a motor whose output shaft, of the worm screw type, is configured to drive a gear which cooperates with the teeth of the rack fixed to the corresponding outer tube.
  • the fork block 19 is carried by a foot 9, called fork. As shown in Figure 5, the fork 9 has a U shape.
  • the fork block 19 is pivotally mounted on the free ends of the fork 9, around the horizontal axis A2 which is orthogonal to the longitudinal axis A100 of the optical assembly 100.
  • a motorization system 92 makes it possible to pivot the fork block 19 and therefore the optical assembly 100 around the horizontal axis A2 for observation monitoring upwards or downwards.
  • the motorization system 92 is preferably housed in the fork 9, at the level of the pivot connection of the fork block relative to the fork.
  • the fork 9 is itself pivotally mounted on a base 109 around a vertical axis A1.
  • the pivot axis A1 of the fork 9 passes through the middle of the fork 9 so that the fork 9 can turn on itself.
  • a motorization 91 preferably housed in the fork 9, makes it possible to drive the fork 9 in rotation with respect to the base 109.
  • the support structure 900 of the telescope which thus allows the orientation of the optical system by pivoting along two axes of mobility, thus makes it possible to monitor the observation of an object in the sky.
  • the holding system 3 keeps the primary mirror 7 on the support 113 of the support system 11 of the primary mirror.
  • the holding system 3 is adjustable to delimit a housing of adjustable diameter, to be able to replace a first primary mirror 7 with a second primary mirror T which has a different diameter from the first primary mirror.
  • the adjustable holding system 3 makes it possible to receive, instead of a first primary mirror, a second primary mirror which also has a thickness and/or a curvature different from that of the first primary mirror.
  • the holding system 3 comprises several holding devices 31 mounted to move, preferably continuously.
  • the holding devices 31 are movable along slideways 331, between a separated position and a close position with respect to each other, preferably in the direction of the same point corresponding to the center of the primary mirror.
  • each slide 331 is oriented with the other slides towards the center of the support 113, preferably being regularly distributed, for example at 90° around the center of the support.
  • Each holding device 31 comprises a lateral jaw 310 capable of coming into abutment against the edge of the primary mirror 7, and an upper jaw 37 capable of coming into abutment against the reflecting face of the primary mirror 7.
  • the lateral jaw 310 of the holding device 31 extends perpendicularly to the mean plane of the support 113.
  • the lateral jaw 310 has a U-shape.
  • the upper jaw 37 comprises a retaining tab, mounted to slide along the side jaw 310.
  • the vertical jaw 37 projects from the lateral jaw 310 towards the center of the support 113 to form a bearing abutment against the upper face of the primary mirror.
  • each holding device 31 is provided with a locking mechanism which makes it possible to lock the position of the holding device 31 on the support 113.
  • the locking mechanism may comprise a bolt-nut type assembly.
  • the locking mechanism thus comprises a tightening bolt 91 (also called a tightening screw) and a nut 92 trapped in a groove 309 and cooperating with the shank of the bolt 91 .
  • the top of the groove 309 communicates with the guide rail (slide) 331 .
  • the underside of the groove 309 is open to allow the end of the bolt 91 opposite the head of the bolt to pass, which is in contact with the retaining lug of the upper jaw 37.
  • the upper and lower openings of the groove 309 each have a smaller width than the zone of the groove which houses the nut 92, to hold the latter in the groove.
  • the groove can be open at one longitudinal end to open onto the peripheral periphery of the support 113 to allow the mounting of the nut in the groove.
  • the telescope can be fitted with a control unit (not shown).
  • the control unit makes it possible to control all or part of the electronic systems of the telescope, such as the spacing adjustment system 13, the balancing adjustment system 15, the secondary mirror orientation system and/or the motors 91, 92 pivot drive of the optical assembly around the axes A1, A2.
  • the telescope may include a distance sensor system to measure the distance between the primary optical system 11 and the secondary optical system 12.
  • the telescope may include an angle sensor system to measure the inclination of the optical assembly 100 relative to the fork or the base of the support structure 900.
  • the telescope comprises a man-machine interface comprising a control panel making it possible to control all or part of said adjustment or orientation systems and/or motorization of the telescope.
  • the motorization 92 which makes it possible to pivot the optical assembly 100 around the axis A2 to be driven to bring the optical assembly 100 horizontal using a sensor system for measuring the angle of the optical assembly 100 relative to the horizontal.
  • the control unit can then control a reduction in the grip of the motorization 92 on the fork block and a displacement of the position of the optical assembly 100 with respect to the fork block 19, that is to say according to the longitudinal axis A100 of the optical assembly 100 to, using the angle sensor system, identify the position of horizontal equilibrium of the optical assembly 100 with respect to the support structure.
  • control unit can be made in the form of a processor and a data memory in which computer instructions that can be executed by said processor are stored, or even in the form of a microcontroller.
  • control unit can be performed by instruction sets or computer modules implemented in a processor or controller or be performed by dedicated electronic components or components of the FPGA type or ASIC. It is also possible to combine computer parts and electronic parts.
  • the control unit is thus an electronic and/or computer unit.
  • said unit is configured to carry out a given operation, this means that the unit comprises computer instructions and the corresponding means of execution which make it possible to carry out said operation and/or that the unit comprises electronic components correspondents.
  • the telescope described above makes it possible to implement a method for mounting a second primary mirror 7' in place of a first primary mirror 7 in a telescope as described above.
  • the method comprises the following steps.
  • a primary mirror 7 is initially present as illustrated in Figure 1, the user deactivates (step 1010) the adjustable holding system 3 to remove the first primary mirror 7 from the primary optical system 11 .
  • the adjustable retaining system 3 illustrated in Figures 8 and 9 the user can, for each retaining device 31, loosen the system formed by the bolt 91 and the nut 92 to raise the upper jaw 37 and move the assembly back of the corresponding holding device 31 along the groove (slide) 331 with respect to the mirror to be removed.
  • the second primary mirror T is then positioned (step 1020) on the support 113 by adjusting the holding system 3 to hold the second primary mirror T in position.
  • the lateral and vertical jaws of each holding device 31 are thus brought together against the contour of the mirror, then the corresponding locking mechanism 91, 92 is activated.
  • the spacing between the second primary mirror 7' and the secondary mirror 8 is then adjusted according to the diameter of the second primary mirror 7' to position the secondary mirror at the optical focus of the second primary mirror.
  • the collimation process which corresponds to the alignment of the primary mirror with the secondary mirror and the observation device, can be carried out by the user via the collimation mechanism associated with the primary mirror support 113 which can comprise a system of studs including springs and screws allowing the sides of the mirror to be raised (by unscrewing) or lowered (by screwing).
  • the collimation mechanism associated with the primary mirror support 113 which can comprise a system of studs including springs and screws allowing the sides of the mirror to be raised (by unscrewing) or lowered (by screwing).
  • the position of the optical assembly 100 can be adjusted with respect to the fork block 19 to balance the optical assembly 100 on the support structure, so that in equilibrium the longitudinal axis A100 of the optical assembly 100 is substantially horizontal.
  • the secondary mirror can have a diameter between 31mm and 88mm without it being necessary to change the secondary mirror when changing the primary mirror.
  • the distance between the support of the primary mirror and the point of rotation of the fork block at the junction of the fork can be adjusted over a range of 250mm thanks to the system racks.
  • the telescope thus makes it possible to benefit from a reflector telescope for the general public, modular, in the sense that it is capable of selectively accommodating different sizes of primary mirrors thanks to the adjustable holding system which comprises clamping devices whose positions are adjustable to suit the diameter and thickness of the primary mirror.
  • the adjustable holding system which comprises clamping devices whose positions are adjustable to suit the diameter and thickness of the primary mirror.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Telescopes (AREA)

Abstract

L'invention concerne un télescope comprenant un système optique primaire (11) comprenant un support (113) de miroir primaire permettant de recevoir un miroir primaire (7), un système optique secondaire (12) comprenant un support (121) de miroir secondaire permettant de recevoir un miroir secondaire (8); et un système de réglage (13) d'écartement permettant de régler la distance entre le support (113) de miroir primaire et le support (121) de miroir secondaire. Le système optique primaire (11) comprend un système de maintien (3) de miroir primaire permettant de maintenir un miroir primaire (7) sur le support (113) de miroir primaire. Le système de maintien (3) de miroir primaire est réglable de manière à pouvoir délimiter différentes tailles d'espace de réception du miroir primaire sur le support (113) de miroir primaire. L'invention concerne aussi un procédé correspondant.

Description

Description
Titre de l'invention : TELESCOPE
[0001] DOMAINE DE L’INVENTION
[0002] La présente invention concerne de manière générale les télescopes.
[0003] ART ANTERIEUR
[0004] Un télescope est un instrument d'optique qui permet d'apercevoir des objets célestes ponctuels difficilement perceptibles ou invisibles à l'œil nu.
[0005] On connaît de l’état de la technique des télescopes réflecteurs munis de miroirs primaires concaves, par exemple paraboliques, qui collectent puis renvoient les photons en un point focal appelé « foyer image ». Le faisceau convergent peut être renvoyé vers un oculaire à l'aide d'un miroir secondaire qui est plan.
[0006] Cependant, on constate que l’astronome qui souhaite évoluer dans sa pratique pour pouvoir observer avec plus de détails certains objets, doit acheter un nouveau télescope qui permet de collecter plus de lumière, ce qui représente un investissement financier important.
[0007] On connaît du document US6061175 un télescope qui est conçu pour recevoir un miroir primaire monté pivotant autour d’un axe orthogonal à l’axe longitudinal du télescope pour pouvoir utiliser l’une ou l’autre des faces opposées du miroir primaire.
[0008] Les faces opposées du miroir primaire présentent des courbures différentes, de sorte que ce télescope permet de bénéficier de deux longueur focales différentes et permet ainsi de faire varier la grosseur de l’objet observé entre deux tailles.
[0009] Cependant, un tel télescope ne permet pas d’augmenter la lumière collectée. Ainsi, lorsque le miroir primaire est pivoté pour utiliser la face du miroir primaire qui grossit l’objet observé, la lumière collectée reste la même que celle obtenue avec l’autre face du miroir primaire, de sorte que l’astronome ne peut pas observer l’objet avec plus de détails. [0010] La présente invention a pour but de proposer un nouveau télescope permettant de pallier tout ou partie des problèmes exposés ci-dessus.
[0011] RESUME DE L’INVENTION
[0012] A cet effet, l’invention a pour objet un télescope comprenant :
- un système optique primaire comprenant un support de miroir primaire permettant de recevoir un miroir primaire, encore appelé objectif ;
- un système optique secondaire comprenant un support de miroir secondaire permettant de recevoir un miroir secondaire ; et
- un système de réglage d'écartement permettant de régler la distance entre le support de miroir primaire et le support de miroir secondaire ; caractérisé en ce que, le système optique primaire comprenant un système de maintien de miroir primaire permettant de maintenir un miroir primaire sur le support de miroir primaire, le système de maintien de miroir primaire est réglable de manière à pouvoir délimiter différentes tailles d’espace de réception du miroir primaire sur le support de miroir primaire.
[0013] Une telle conception de télescope qui comprend un système de maintien de miroir primaire qui est réglable de manière à pouvoir recevoir et maintenir différentes tailles de miroir primaire, permet de changer aisément de miroir primaire pour pouvoir adapter la quantité de lumière collectée au niveau de détail d’observation souhaité.
[0014] Le télescope peut aussi comporter une ou plusieurs des caractéristiques suivantes prises dans toute combinaison techniquement admissible.
[0015] Selon une caractéristique optionnelle de l’invention, le système de réglage d’écartement comprend :
- un système de tubes télescopiques comprenant un ou des tubes télescopiques intérieurs montés coulissants par rapport à un ou des tubes télescopiques extérieurs, et
- un mécanisme d'entraînement du ou des tubes télescopiques intérieurs par rapport au(x) tube(s) télescopique(s) extérieur(s).
[0016] Selon une caractéristique optionnelle de l’invention, le système optique primaire, le système optique secondaire et le système de réglage d'écartement formant un ensemble optique qui présente un axe longitudinal, le télescope comprend aussi une structure support qui inclut :
- un pied, appelé fourche ; et
- un corps de liaison, appelé bloc-fourche, qui porte l’ensemble optique, ledit bloc-fourche étant articulé à la fourche autour d’un axe orthogonal à l’axe longitudinal de l’ensemble optique.
[0017] Selon une caractéristique optionnelle de l’invention, le télescope comprend un système de réglage d’équilibrage de l'ensemble optique par rapport à la structure support, par coulissement de l'ensemble optique parallèlement à son axe longitudinal.
[0018] Selon une caractéristique optionnelle de l’invention, le système de réglage d’équilibrage comprend un système à crémaillère porté par le ou les tubes extérieurs du système de tubes télescopiques, et une motorisation portée par le bloc-fourche.
[0019] Selon une caractéristique optionnelle de l’invention, le système de maintien réglable du miroir primaire comprend plusieurs dispositifs de maintien montés mobiles à déplacement, de préférence en continu, par exemple le long de glissières, entre une position écartée et une position rapprochée les uns par rapport aux autres pour permettre de délimiter différentes tailles d’espace de réception pour le miroir primaire.
[0020] Selon une caractéristique optionnelle de l’invention, chaque dispositif de maintien est muni d’un mécanisme de verrouillage, par exemple formé par un montage de type boulon-écrou coopérant avec une gorge ménagée dans le support du miroir primaire, pour permettre de verrouiller la position du dispositif de maintien sur le support du miroir primaire.
[0021] Selon une caractéristique optionnelle de l’invention, chaque dispositif de maintien comprend un mors latéral, qui est déplaçable sur le support du miroir primaire, pour venir en butée contre le chant du miroir primaire, et un mors supérieur, déplaçable par rapport au mors latéral pour venir en butée contre une face réfléchissante du miroir primaire.
[0022] Selon une caractéristique optionnelle de l’invention, le système optique secondaire comprend au moins un, de préférence plusieurs, orifice(s) d’observation pour permettre d'observer le miroir secondaire. [0023] Selon une caractéristique optionnelle de l’invention, le système optique secondaire comprend un mécanisme d'orientation du miroir secondaire vers l’un quelconque des orifices d’observation, le mécanisme d'orientation comprenant par exemple un moteur couplé à un arbre sur lequel est fixé le miroir secondaire.
[0024] Selon une caractéristique optionnelle de l’invention, le télescope comprend au moins l’un des dispositifs d’observation suivants :
- un porte-oculaire pour un mode d'observation direct à l'œil,
- un boitier reflex de photographie, et
- une caméra numérique de type CCD, le ou chaque dispositif d’observation étant associé à un orifice d’observation du système optique secondaire, vers lequel le miroir secondaire est orienté ou orientable.
[0025] Selon une caractéristique optionnelle de l’invention, le télescope comprend ledit miroir secondaire.
[0026] Selon une caractéristique optionnelle de l’invention, le télescope comprend ledit miroir primaire.
[0027] L'invention concerne également un procédé de montage d’un deuxième miroir primaire à la place d’un premier miroir primaire dans un télescope conforme à l’un quelconque des modes de réalisation proposés ci-dessus, le télescope comprenant un miroir secondaire porté par le support de miroir secondaire, le procédé comprenant les étapes suivantes :
- désactivation du système de maintien réglable pour retirer le premier miroir primaire par rapport au support du miroir primaire du système optique primaire ;
- réglage du système de maintien pour positionner le deuxième miroir primaire et le maintenir sur le support du miroir primaire du système optique primaire ;
- réglage de l’écartement entre le deuxième miroir primaire et le miroir secondaire, en fonction d’au moins une dimension, de préférence au moins le diamètre, du deuxième miroir primaire.
[0028] Selon une caractéristique optionnelle de l’invention, le procédé comprend aussi l’étape de réglage de la position d’équilibre de l’ensemble optique, qui comprend le système optique primaire, le système de réglage d'écartement et le système optique secondaire, par rapport à une structure support qui porte ledit ensemble optique.
[0029] Un tel procédé permet ainsi de remplacer un miroir primaire donné par un autre miroir primaire de plus grand diamètre sans avoir à changer l’ensemble du télescope.
[0030] En effet le système de maintien réglable permet de recevoir et maintenir le nouveau miroir primaire et le système de réglage d’écartement permet de régler la distance entre le nouveau miroir primaire et le miroir secondaire pour régler la longueur focale du télescope en fonction du diamètre du nouveau miroir primaire. Par ailleurs, au moment de l’achat du télescope, l’utilisateur peut sélectionner le miroir primaire qu’il souhaite utiliser, par exemple un miroir primaire de petite dimension, de coût réduit, pour s’initier à l’astronomie, tout en ayant la possibilité, plus tard, de choisir un autre miroir primaire de plus grande dimension, pour observer les objets avec plus de détail.
[0031] BREVE DESCRIPTION DES DESSINS
[0032] D'autres caractéristiques et avantages de l'invention ressortiront encore de la description qui suit, laquelle est purement illustrative et non limitative et doit être lue en regard des dessins annexés, sur lesquels :
[0033] - la Figure 1 est une vue en perspective de l’ensemble optique d’un télescope selon un mode de réalisation de l’invention, l’ensemble optique étant muni d’un miroir primaire de petite taille ;
[0034] - la Figure 2 est une vue de côté de l’ensemble optique de la Figure 1 , porté par une structure support ;
[0035] - la Figure 3 est une vue en perspective de l’ensemble optique de télescope de la Figure 1 , l’ensemble optique étant muni d’un miroir primaire de plus grande taille, la distance entre le miroir primaire et le miroir secondaire étant adaptée ;
[0036] - la Figure 4 est une vue de côté de l’ensemble optique de la Figure 3, porté par la structure support, la position d’équilibrage de l’ensemble optique par rapport à la structure support étant adaptée au miroir primaire de plus grande taille ; [0037] - la Figure 5 est une vue en perspective de la structure support de l’ensemble optique du télescope, qui comprend un socle et un pied, appelé fourche, auquel est couplé un dispositif, appelé bloc-fourche qui porte l’ensemble optique du télescope ;
[0038] - la Figure 6 est une vue en perspective du bloc-fourche à travers lequel s’étend un système de tubes télescopiques, la figure montrant une motorisation inclue dans le bloc fourche configurée pour coopérer avec un système de crémaillère porté par les tubes extérieurs du système de tubes télescopiques pour permettre de déplacer la position de l’ensemble optique par rapport au bloc- fourche afin d’équilibrer le télescope ;
[0039] - la Figure 7 est une vue en perspective du système optique secondaire de l’ensemble optique du télescope qui comprend un miroir secondaire orientable vers différents orifices d’observation ;
[0040] - la Figure 8 est une vue en perspective du plateau support de miroir primaire équipé du système réglable de maintien de miroir, en position active de maintien d’un miroir sur le plateau ;
[0041] - la Figure 9 est une vue de côté du plateau support de miroir primaire, équipé du système réglable de maintien de miroir de la Figure 8 ;
[0042] - la Figure 10 est un logigramme montrant plusieurs étapes d’un procédé de montage d’un miroir primaire dans un télescope selon un mode de réalisation de l’invention.
[0043] DESCRIPTION DETAILLEE
[0044] Le concept de l'invention est décrit plus complètement ci-après avec référence aux dessins joints, sur lesquels des modes de réalisation du concept de l'invention sont montrés. Sur les dessins, la taille et les tailles relatives des éléments peuvent être exagérées à des fins de clarté. Des numéros similaires font référence à des éléments similaires sur tous les dessins. Cependant, ce concept de l'invention peut être mis en œuvre sous de nombreuses formes différentes et ne devrait pas être interprété comme étant limité aux modes de réalisation exposés ici. Au lieu de cela, ces modes de réalisation sont proposés de sorte que cette description soit complète, et communiquent l'étendue du concept de l'invention aux hommes du métier. [0045] Une référence dans toute la spécification à « un mode de réalisation » signifie qu'une fonctionnalité, une structure, ou une caractéristique particulière décrite en relation avec un mode de réalisation est incluse dans au moins un mode de réalisation de la présente invention. Ainsi, l'apparition de l'expression « dans un mode de réalisation » à divers emplacements dans toute la spécification ne fait pas nécessairement référence au même mode de réalisation. En outre, les fonctionnalités, les structures, ou les caractéristiques particulières peuvent être combinées de n'importe quelle manière appropriée dans un ou plusieurs modes de réalisation.
[0046] Généralités
[0047] La longueur focale, exprimée en millimètres, représente la distance entre le miroir primaire, encore appelé objectif, et le foyer du télescope au niveau duquel est situé le miroir secondaire.
[0048] Plus la longueur focale d’un télescope est longue, plus il permet des grossissements élevés, au détriment d'une diminution du champ visuel et de la luminosité. Les longues focales sont principalement utilisées pour étudier des surfaces planétaires et des petits objets, alors que pour observer ou photographier de grands objets du ciel profond, on choisira de plus courtes focales.
[0049] En référence aux figures, on a représenté un télescope réflecteur qui permet de recevoir sélectivement différentes tailles de miroirs primaires pour permettre d’adapter le télescope aux besoins de l’astronome, sans avoir à remplacer l’ensemble du télescope.
[0050] Le télescope présente ainsi un aspect modulaire permettant à l’utilisateur de choisir le miroir primaire qu’il souhaite utiliser et par exemple de remplacer un miroir primaire par un autre miroir primaire de plus grande taille pour pouvoir collecter plus de lumière et ainsi permettre à l’utilisateur de visualiser plus de détails de l’objet qu’il souhaite observer avec le télescope.
[0051] Ce télescope permet ainsi de changer de miroir primaire par un autre miroir primaire de diamètre, épaisseur et/ou courbure différents.
[0052] Comme illustré à la figure 1 , le télescope 1 comprend un ensemble optique 100 porté par une structure support 900. [0053] L’ensemble optique 100 comprend un système optique primaire 11 qui comprend un support 113 pour recevoir un miroir primaire 7.
[0054] Le miroir primaire est concave de sorte qu’il renvoie les photons en un point qui est le « foyer image » ou encore point focal. Le miroir primaire du télescope permet de « collecter » la lumière. Plus le miroir primaire présente une grande surface et plus la quantité de lumière collectée sera importante. Donc, plus l’objet observé sera lumineux et ses détails visibles par l’observateur. Autrement dit, plus le miroir primaire est grand, et plus il collecte de lumière et permet d'affiner les détails des structures observées en planétaire et en ciel profond des objets peu lumineux et de petite taille apparente.
[0055] L’ensemble optique 100 comprend aussi un système optique secondaire 12 qui reçoit le miroir secondaire 8. Le miroir secondaire est destiné à être positionné dans le foyer image du miroir primaire.
[0056] Comme détaillé ci-après, le système optique primaire 11 permet de recevoir différentes dimensions de miroir primaire correspondant donc à différentes longueurs focales.
[0057] L’ensemble optique 100 comprend aussi un système de réglage 13 d’écartement qui permet de régler la distance entre le support 113 du miroir primaire 7 et le support 121 du miroir secondaire 8, et donc de régler la distance entre le miroir primaire 7 et le miroir secondaire 8 pour pouvoir positionner le miroir secondaire 8 au point focal du miroir primaire 7.
[0058] Système optique primaire
[0059] Le système optique primaire comprend un corps 110 qui porte le support 113 de réception du miroir primaire 7. Dans l'exemple illustré aux figures, le support 113 qui permet de recevoir un miroir primaire 7 est un plateau.
[0060] Selon un aspect particulier, le système optique primaire 11 comprend un mécanisme de réglage (non représenté) de l’orientation du support 113 pour permettre d’orienter le miroir primaire 7 vers le miroir secondaire 8. Avantageusement, le support du miroir secondaire 8 est aussi muni d’un mécanisme de réglage (non représenté) de l’orientation du support du miroir secondaire pour régler la position du miroir secondaire par rapport au miroir primaire. Ces mécanismes de réglage permettent de réaliser la collimation des miroirs, c'est-à-dire l’alignement des deux miroirs.
[0061 ] Le corps 110 du système optique primaire 11 peut loger un ventilateur (non représenté) pour la mise en température du miroir primaire 7.
[0062] Système optique secondaire
[0063] Le système optique secondaire 12 comprend un corps 120 qui est muni d’un support 121 pour le miroir secondaire 8. Dans l'exemple illustré aux figures et comme illustré plus particulièrement à la Figure 7, le support 121 du miroir secondaire comprend un moteur 122, tel qu’un servomoteur, présentant un arbre 123 de sortie sur lequel est fixé le miroir secondaire 8.
[0064] Selon un mode de réalisation, l’arbre 123 motorisé sur lequel est fixé le miroir secondaire 8 forme un système d’orientation 1280 angulaire du miroir. En effet, le miroir secondaire est incliné par rapport à l’arbre 123. Ainsi une rotation de l’arbre de sortie permet de changer l’orientation du miroir secondaire et de le diriger vers l’orifice d’observation 1281 , 1282 ou 1283 souhaité.
[0065] Dans l'exemple illustré aux figures, le corps 120 présente ainsi plusieurs, par exemple trois, orifices d’observation.
[0066] Selon un aspect particulier, le télescope comprend un système d’observation du miroir secondaire. Le télescope peut ainsi être équipé de différents dispositifs d’observation (non représentés) associés chacun à un orifice d’observation. Les dispositifs d’observation peuvent comprendre un porte-oculaire pour un mode d'observation direct à l'œil, un boitier reflex de photographie numérique ou encore une caméra numérique de type CCD. Le ou chaque dispositif d’observation peut être monté mobile pour pouvoir se rapprocher ou s'éloigner du miroir secondaire 8 pour faciliter la mise au point.
[0067] L’avantage de pouvoir faire tourner le miroir secondaire 8 avec le moteur associé est de limiter la manipulation du télescope par l’utilisateur lorsque le télescope est en fonctionnement.
[0068] En variante, on peut prévoir que le miroir secondaire reste fixe et que ce soit les dispositifs d’observation qui soient déplaçables, pour être sélectivement positionnés en regard d’un même orifice d’observation associé au miroir secondaire.
[0069] Système de réglage d'écartement
[0070] Le système de réglage 13 d'écartement permet de régler l’écartement entre le corps 110 du système optique primaire 11 et le corps 120 du système optique secondaire 12.
[0071] Le système de réglage 13 d'écartement permet ainsi de régler la distance entre le miroir primaire 7 porté par le support 113 et le miroir secondaire 8 porté par le support 121 , et donc d’adapter la longueur focale du télescope en fonction des caractéristiques du miroir primaire 7 utilisé, et en particulier en fonction de son diamètre.
[0072] Selon un mode de réalisation, le système de réglage 13 de l'écartement comprend un ou des tubes 132 télescopiques intérieurs montés coulissants par rapport à un ou des tubes télescopiques extérieurs 131 . Autrement dit, le système de réglage 13 comprend un système de tubes à emboîtement télescopique. Dans l'exemple illustré aux figures, le système de réglage 13 comprend deux ensembles de tubes télescopiques, situés de part et d’autre de l’axe longitudinal A100 de l’ensemble optique 100 du télescope. Chaque ensemble de tubes télescopiques comprend un tube extérieur 131 et un tube intérieur 132 monté coulissant par rapport au tube extérieur 131.
[0073] Le système de réglage 13 comprend aussi un système d'entraînement du ou des tubes 132 télescopiques intérieur par rapport au(x) tube(s) télescopique(s) extérieur(s) 131. Le système d'entraînement du ou des tubes 132 télescopiques intérieur par rapport au(x) tube(s) télescopique(s) extérieur(s) 131 peut comprendre un ou des moteurs ou vérins, par exemple à vis sans fin ou tige, pour actionner le déplacement du ou des tubes intérieurs dans le sens d’une sortie ou d’une rentrée par rapport au(x) tube(s) extérieur(s) correspondant.
[0074] Dans l'exemple illustré aux figures, chaque tube extérieur 131 présente une extrémité fixée au corps 110 du système optique primaire 11 , et chaque tube intérieur 132 présente une extrémité fixée au corps 120 du système optique secondaire 12. [0075] Chaque tube extérieur 131 est porté par le bloc-fourche 19, qui fait partie de la structure support 900 présentée ci-après, en étant monté déplaçable à coulissement par rapport au bloc-fourche 19 grâce à un système de réglage 15 d’équilibrage décrit ci-après. En particulier, le bloc-fourche 19 présente des passages traversant 193 à travers lesquels s’étendent les tubes extérieurs 131 .
[0076] Selon un mode de réalisation, chaque moteur ou vérin du système de réglage 13 d'écartement, est fixé au corps 110 du système optique primaire 11 , auquel est aussi fixé chaque tube extérieur 131 , et le tube intérieur 132 correspondant, qui est couplé au corps 120 du système optique secondaire 12 est couplé à la vis sans fin ou tige du moteur ou vérin.
[0077] Ainsi, l’actionnement des moteurs ou vérins du système de réglage d’écartement 13 entraine la sortie ou la rentée des tubes intérieurs 132 par rapport aux tubes extérieurs 131 et donc l’éloignement ou le rapprochement du corps 120 du système optique secondaire 12, par rapport au corps 110 du système optique primaire 11 , ce qui modifie ainsi la distance entre le miroir primaire 7 et le miroir secondaire 8.
[0078] Bloc-fourche
[0079] Le télescope comprend un corps de liaison 19, appelé bloc-fourche, à travers lequel s’étend l’ensemble optique 100, en particulier les tubes extérieurs 131 . Le bloc-fourche fait partie de la structure support 900 qui porte l'ensemble optique 100.
[0080] Comme illustré à la Figure 5, le bloc-fourche 19 est articulé à la fourche 9, présentée ci-après, autour d’un axe A2.
[0081] Comme illustré à la figure 6, le télescope 1 comprend aussi un système de réglage 15 d’équilibrage qui permet de régler la position de l'ensemble optique 100 par coulissement de l’ensemble optique 100 par rapport au bloc-fourche 19. Autrement dit, le système de réglage 15 d’équilibrage permet de déplacer l’ensemble formé du système optique primaire, du système optique secondaire et du système de réglage d’écartement 13 par rapport à la structure support.
[0082] En particulier, le système de réglage 15 d’équilibrage permet de rapprocher ou écarter le système optique primaire 11 , par rapport au bloc-fourche 19, en fonction d’une ou plusieurs caractéristiques du miroir primaire utilisé. Comme rappelé ci-dessus le miroir primaire peut présenter différentes tailles, en particulier différents diamètres.
[0083] Le système de réglage 15 d’équilibrage permet d’équilibrer l’ensemble optique 100 sur la structure support 900. Préférentiellement le réglage de la position de l’ensemble optique 100 est effectué de manière à obtenir une position d’équilibre dudit ensemble optique 100 qui est sensiblement horizontale.
[0084] Dans l'exemple illustré aux figures, le système de réglage 15 comprend un système à crémaillère 151 , porté par le système de réglage d’écartement 13, et une motorisation 152 portée par le bloc-fourche 19.
[0085] Comme illustré à la Figure 6, on peut prévoir que le système à crémaillère 151 comprend une crémaillère fixée sur chaque tube extérieur du système de réglage 13 d’écartement, et que la motorisation 152 comprend pour chaque crémaillère un moteur dont l’arbre de sortie, de type vis sans fin, est configuré pour entrainer un engrenage qui coopère avec des dents de la crémaillère fixée sur le tube extérieur correspondant.
[0086] Structure support
[0087] Le bloc-fourche 19 est portée par un pied 9, appelé fourche. Comme illustré à la Figure 5, la fourche 9 a une forme de U.
[0088] Le bloc-fourche 19 est monté pivotant sur les extrémités libres de la fourche 9, autour de l’axe horizontal A2 qui est orthogonal à l’axe longitudinal A100 de l’ensemble optique 100.
[0089] Un système de motorisation 92 permet de pivoter le bloc-fourche 19 et donc l’ensemble optique 100 autour de l’axe horizontal A2 pour le suivi d’observation vers le haut ou vers le bas. Le système de motorisation 92 est de préférence logé dans la fourche 9, au niveau de la liaison de pivotement du bloc-fourche par rapport à la fourche.
[0090] La fourche 9 est elle-même montée pivotante sur un socle 109 autour d’un axe A1 vertical. L’axe A1 de pivotement de la fourche 9 passe au milieu de la fourche 9 de sorte que la fourche 9 peut tourner sur elle-même. Une motorisation 91 , de préférence logée dans la fourche 9 permet d’entrainer en rotation la fourche 9 par rapport au socle 109. [0091] La structure support 900 du télescope, qui permet ainsi l'orientation du système optique par pivotement selon deux axes de mobilité, permet ainsi d'assurer le suivi d'observation d'un objet dans le ciel.
[0092] Système de maintien de miroir primaire
[0093] Comme illustré à la figure 8, le système de maintien 3 permet de maintenir le miroir primaire 7 sur le support 113 du système support 11 de miroir primaire.
[0094] Le système de maintien 3 est réglable pour délimiter un logement de diamètre réglable, pour pouvoir remplacer un premier miroir primaire 7 par un deuxième miroir primaire T qui présente un diamètre différent du premier miroir primaire.
[0095] On peut prévoir que le système de maintien 3 réglable permet de recevoir, à la place d’un premier miroir primaire, un deuxième miroir primaire qui présente aussi une épaisseur et/ou une courbure différente de celle du premier miroir primaire.
[0096] Selon le mode de réalisation illustré aux figures et plus particulièrement à la Figure 8 ou 9, le système de maintien 3 comprend plusieurs dispositifs de maintien 31 montés mobiles à déplacement, de préférence en continu.
[0097] Dans l'exemple illustré aux figures, les dispositifs de maintien 31 sont déplaçables le long de glissières 331 , entre une position écartée et une position rapprochée les uns par rapport aux autres, de préférence en direction d’un même point correspondant au centre du miroir primaire.
[0098] Préférentiellement, chaque glissière 331 est orientée avec les autres glissières vers le centre du support 113, en étant répartis de préférence régulièrement, par exemple à 90° autour du centre du support.
[0099] Chaque dispositif de maintien 31 comprend un mors latéral 310 apte à venir en butée contre le chant du miroir primaire 7, et un mors supérieur 37 apte à venir en butée contre la face réfléchissante du miroir primaire 7.
[0100] Le mors latéral 310 du dispositif de maintien 31 s’étend perpendiculairement au plan moyen du support 113. Dans l'exemple illustré aux figures, le mors latéral 310 présente une forme en U.
[0101] Le mors supérieur 37 comprend une patte de maintien, montée coulissante le long du mors latéral 310. [0102] Le mors vertical 37 s’étend en saillie du mors latéral 310 vers le centre du support 113 pour former une butée d’appui contre la face supérieure du miroir primaire.
[0103] Dans le mode de réalisation illustré aux Figures 8 et 9, chaque dispositif de maintien 31 est muni d’un mécanisme de verrouillage qui permet de verrouiller la position du dispositif de maintien 31 sur le support 113.
[0104] Le mécanisme de verrouillage peut comprendre un montage de type boulon- écrou. Le mécanisme de verrouillage comprend ainsi un boulon 91 de serrage (encore appelé vis de serrage) et un écrou 92 emprisonné dans une gorge 309 et coopérant avec la tige du boulon 91 . Le dessus de la gorge 309 communique avec le rail de guidage (glissière) 331 . Le dessous de la gorge 309 est ouvert pour laisser passer l’extrémité du boulon 91 opposée à la tête du boulon qui est en contact avec la patte de maintien du mors supérieur 37.
[0105] Les ouvertures supérieure et inférieure de la gorge 309 présentent chacune une largeur plus petite que la zone de la gorge qui loge l’écrou 92, pour maintenir celui-ci dans la gorge. La gorge peut être ouverte à une extrémité longitudinale pour déboucher sur le pourtour périphérique du support 113 pour permettre le montage de l’écrou dans la gorge.
[0106] Ainsi un serrage du boulon 91 entraine un appui du mors supérieur 37 sur le miroir primaire et de l’écrou 92 contre les bords supérieurs de la gorge 309, de sorte que le système de mors 310, 37 est immobilisé.
[0107] On peut prévoir que le mécanisme de verrouillage soit commun à chaque dispositif de maintien 31 , et/ou que le mécanisme de verrouillage permette d’amener simultanément ou de manière synchronisée chaque dispositif de maintien contre le miroir primaire.
[0108] Unité de pilotage
[0109] Le télescope peut être muni d’une unité de pilotage (non représentée). L’unité de pilotage permet de piloter tout ou partie des systèmes électronique du télescope, tels que le système de réglage 13 d’écartement, le système de réglage 15 d’équilibrage, le système d’orientation du miroir secondaire et/ou les motorisations 91 , 92 d’entrainement à pivotement de l’ensemble optique autour des axes A1 , A2. [0110] Le télescope peut comprendre un système de capteur de distance pour mesurer la distance entre le système optique primaire 11 et le système optique secondaire 12. Le télescope peut comprendre un système de capteur angulaire pour mesurer l’inclinaison de l’ensemble optique 100 par rapport à la fourche ou au socle de la structure support 900.
[0111] Selon un mode de réalisation, le télescope comprend une interface homme- machine comprenant un panneau de contrôle permettant de commander tout ou partie desdits systèmes de réglage ou d’orientation et/ou motorisation du télescope.
[0112] En particulier on peut prévoir que l’utilisateur rentre une ou des caractéristiques du miroir primaire installé, telle que son diamètre, et que l’unité de pilotage commande le système de réglage 13 d’écartement, le système de réglage 15 d’équilibrage pour un réglage automatique de la distance entre le miroir primaire et le miroir secondaire afin que le miroir secondaire soit au foyer optique du miroir primaire, et/ou un réglage automatique de la position de l’ensemble optique 100 par rapport au bloc-fourche 19 pour obtenir une position d’équilibre horizontale.
[0113] Pour le réglage de la position du centre de gravité de l’ensemble optique par rapport à la structure support, on peut prévoir que la motorisation 92 qui permet de faire pivoter l’ensemble optique 100 autour de l’axe A2 soit pilotée pour amener l’ensemble optique 100 à l'horizontal à l’aide d’un système de capteur permettant de mesure l’angle de l’ensemble optique 100 par rapport à l’horizontale. L’unité de pilotage peut alors commander une diminution de l’emprise de la motorisation 92 sur le bloc-fourche et un déplacement de la position de l’ensemble optique 100 par rapport au bloc fourche 19, c'est-à-dire selon l’axe longitudinal A100 de l’ensemble optique 100 pour, à l’aide du système de capteur d’angle, identifier la position d'équilibre horizontale de l’ensemble optique 100 par rapport à la structure support.
[0114] En variante, on peut prévoir que les différents réglages et orientations puissent être réalisés manuellement. [0115] L’unité de pilotage peut être réalisée sous la forme d’un processeur et d’une mémoire de données dans laquelle sont stockées des instructions informatiques exécutables par ledit processeur, ou encore sous la forme d’un microcontrôleur.
[0116] En particulier, les fonctions et étapes opérées par l’unité de pilotage peuvent être réalisées par des jeux d’instructions ou modules informatiques implémentés dans un processeur ou contrôleur ou être réalisées par des composants électroniques dédiés ou des composants de type FPGA ou ASIC. Il est aussi possible de combiner des parties informatiques et des parties électroniques.
[0117] L’unité de pilotage est ainsi une unité électronique et/ou informatique. Lorsqu’il est précisé que ladite unité est configurée pour réaliser une opération donnée, cela signifie que l’unité comprend des instructions informatiques et les moyens d’exécution correspondants qui permettent de réaliser ladite opération et/ou que l’unité comprend des composants électroniques correspondants.
[0118] Procédé
[0119] Le télescope décrit ci-dessus permet de mettre en œuvre un procédé de montage d’un deuxième miroir primaire 7’ à la place d’un premier miroir primaire 7 dans un télescope tel que décrit ci-dessus.
[0120] Le procédé comprend les étapes suivantes. Lorsqu’un miroir primaire 7 est initialement présent comme illustré à la Figure 1 , l’utilisateur désactive (étape 1010) le système de maintien 3 réglable pour retirer le premier miroir primaire 7 du système optique primaire 11 . Avec le système de maintien 3 réglable illustré aux Figures 8 et 9, l’utilisateur peut, pour chaque dispositif de maintien 31 , desserrer le système formé du boulon 91 et de l’écrou 92 pour relever le mors supérieur 37 et reculer l’ensemble du dispositif de maintien 31 correspondant le long de la rainure (glissière) 331 par rapport au miroir à retirer.
[0121] Comme illustré à la figure 3, le deuxième miroir primaire T est ensuite positionné (étape 1020) sur le support 113 en réglant le système de maintien 3 pour maintenir le deuxième miroir primaire T en position. Les mors latéraux et verticaux de chaque dispositif de maintien 31 sont ainsi rapprochés contre le contour du miroir, puis le mécanisme de verrouillage 91 , 92 correspondant est activé. [0122] A l’étape 1030, l’écartement entre le deuxième miroir primaire 7’ et le miroir secondaire 8 est ensuite réglé en fonction du diamètre du deuxième miroir primaire 7’ pour positionner le miroir secondaire au foyer optique du deuxième miroir primaire.
[0123] Le processus de collimation qui correspond à l’alignement du miroir primaire avec le miroir secondaire et le dispositif d'observation, peut être effectué par l'utilisateur via le mécanisme de collimation associé au support 113 de miroir primaire qui peut comprendre un système de plots incluant des ressorts et des vis permettant de faire remonter (en dévissant) ou redescendre (en vissant) des côtés du miroir.
[0124] Puis la position de l'ensemble optique 100 peut être réglée par rapport au bloc-fourche 19 pour équilibrer l'ensemble optique 100 sur la structure support, de manière qu’à l’équilibre l’axe longitudinal A100 de l’ensemble optique 100 soit sensiblement horizontal.
[0125] Ainsi comme illustré aux Figures 1 à 4, un utilisateur peut remplacer le miroir primaire 7 du télescope de la Figure 1 , par un autre miroir primaire T de plus grand diamètre (Figure 3).
[0126] On peut ainsi prévoir que le télescope puisse recevoir un miroir primaire qui présente un diamètre compris entre 150mm et 300mm. Le miroir secondaire peut présenter un diamètre compris entre 31 mm et 88mm sans qu’il soit nécessaire de changer de miroir secondaire lorsque l’on change de miroir primaire.
[0127] On peut prévoir que la distance entre les faces des miroirs primaire et secondaire soit réglable entre 750 et 1200mm par l'action du système de tubes télescopiques. Pour le positionnement d'équilibrage de l’ensemble optique, on peut prévoir que la distance entre le support du miroir primaire et le point de rotation du bloc -fourche à la jonction de la fourche peut être réglée sur une plage de 250mm grâce au système de crémaillères.
[0128] Le télescope permet ainsi de bénéficier d’un télescope réflecteur grand public, modulaire, en ce sens qu’il est capable d’accueillir sélectivement différentes tailles de miroirs primaires grâce au système de maintien réglable qui comprend des dispositifs de serrage dont les positions sont ajustables pour s’adapter au diamètre et à l’épaisseur du miroir primaire. [0129] L'invention n’est pas limitée aux modes de réalisation illustrés dans les dessins.
[0130] De plus, le terme « comprenant » n’exclut pas d’autres éléments ou étapes. En outre, des caractéristiques ou étapes qui ont été décrites en référence à l’un des modes de réalisation exposés ci-dessus peuvent également être utilisées en combinaison avec d’autres caractéristiques ou étapes d’autres modes de réalisation exposés ci-dessus.

Claims

Revendications
1 . Télescope comprenant : un système optique primaire (11 ) comprenant un support (113) de miroir primaire permettant de recevoir un miroir primaire (7), encore appelé objectif ; un système optique secondaire (12) comprenant un support (121 ) de miroir secondaire permettant de recevoir un miroir secondaire (8) ; et un système de réglage (13) d'écartement permettant de régler la distance entre le support (113) de miroir primaire et le support (121 ) de miroir secondaire ; caractérisé en ce que, le système optique primaire (11 ) comprenant un système de maintien (3) de miroir primaire permettant de maintenir un miroir primaire (7) sur le support (113) de miroir primaire, le système de maintien (3) de miroir primaire est réglable de manière à pouvoir délimiter différentes tailles d’espace de réception du miroir primaire sur le support (113) de miroir primaire.
2. Télescope selon la revendication 1 , dans lequel le système de réglage (13) d’écartement comprend :
- un système de tubes télescopiques comprenant un ou des tubes (132) télescopiques intérieurs montés coulissants par rapport à un ou des tubes (131 ) télescopiques extérieurs, et
- un mécanisme d'entraînement du ou des tubes (132) télescopiques intérieurs par rapport au(x) tube(s) (131 ) télescopique(s) extérieur(s).
3. Télescope selon la revendication 1 ou 2, dans lequel, le système optique primaire (11 ), le système optique secondaire (12) et le système de réglage (13) d'écartement formant un ensemble optique (100) qui présente un axe longitudinal (A100), le télescope comprend aussi une structure support (900) qui inclut :
- un pied (9), appelé fourche ; et
- un corps de liaison (19), appelé bloc-fourche, qui porte l’ensemble optique (100), ledit bloc-fourche (19) étant articulé à la fourche (9) autour d’un axe (A2) orthogonal à l’axe longitudinal (A100) de l’ensemble optique (100).
4. Télescope selon la revendication 3, dans lequel le télescope comprend un système de réglage (15) d’équilibrage de l'ensemble optique (100) par rapport à la structure support (900), par coulissement de l'ensemble optique (100) parallèlement à son axe longitudinal (A100).
5. Télescope selon les revendications 2 et 4, dans lequel le système de réglage (15) d’équilibrage comprend un système à crémaillère (151 ) porté par le ou les tubes extérieurs du système de tubes télescopiques, et une motorisation (152) portée par le bloc-fourche (19).
6. Télescope selon l'une quelconque des revendications précédentes, dans lequel le système de maintien (3) réglable du miroir primaire comprend plusieurs dispositifs de maintien (31 ) montés mobiles à déplacement, de préférence en continu, par exemple le long de glissières (331 ), entre une position écartée et une position rapprochée les uns par rapport aux autres pour permettre de délimiter différentes tailles d’espace de réception pour le miroir primaire.
7. Télescope selon la revendication 6, dans lequel chaque dispositif de maintien (31 ) est muni d’un mécanisme de verrouillage (91 , 92, 309), par exemple formé par un montage de type boulon-écrou coopérant avec une gorge ménagée dans le support (113) du miroir primaire, pour permettre de verrouiller la position du dispositif de maintien (31 ) sur le support (113) du miroir primaire (7).
8. Télescope selon la revendication 6 ou 7, dans lequel chaque dispositif de maintien (31 ) comprend un mors latéral (310), qui est déplaçable sur le support (113) du miroir primaire (7), pour venir en butée contre le chant du miroir primaire (7), et un mors supérieur (37), déplaçable par rapport au mors latéral pour venir en butée contre une face réfléchissante du miroir primaire (7).
9. Télescope selon l'une quelconque des revendications précédentes, dans lequel le système optique secondaire (12) comprend au moins un, de préférence plusieurs, orifice(s) d’observation (1281 , 1282, 1283) pour permettre d'observer le miroir secondaire (8).
10. Télescope selon la revendication 9, dans lequel le système optique secondaire (12) comprend un mécanisme d'orientation (1280) du miroir secondaire (8) vers l’un quelconque des orifices d’observation (1281 , 1282, 1283), le mécanisme d'orientation (1280) comprenant par exemple un moteur (122) couplé à un arbre (123) sur lequel est fixé le miroir secondaire (8).
11 . Télescope selon la revendication 9 ou 10, dans lequel le télescope comprend au moins l’un des dispositifs d’observation suivants :
- un porte-oculaire pour un mode d'observation direct à l'œil,
- un boitier reflex de photographie, et
- une caméra numérique de type CCD, le ou chaque dispositif d’observation étant associé à un orifice d’observation du système optique secondaire (12), vers lequel le miroir secondaire (8) est orienté ou orientable.
12. Télescope selon l'une quelconque des revendications précédentes, dans lequel le télescope comprend ledit miroir secondaire (8).
13. Télescope selon l'une quelconque des revendications précédentes, dans lequel le télescope comprend ledit miroir primaire (7).
14. Procédé de montage d’un deuxième miroir primaire (7’) à la place d’un premier miroir primaire (7) dans un télescope conforme à l’une quelconque des revendications précédentes, le télescope comprenant un miroir secondaire (8) porté par le support (121) de miroir secondaire, le procédé comprenant les étapes suivantes :
- désactivation (1010) du système de maintien (3) réglable pour retirer le premier miroir primaire (7) par rapport au support (113) du miroir primaire du système optique primaire (11 ) ;
- réglage (1020) du système de maintien (3) pour positionner le deuxième miroir primaire (7’) et le maintenir sur le support (113) du miroir primaire du système optique primaire (11 ) ; - réglage (1030) de l’écartement entre le deuxième miroir primaire (7’) et le miroir secondaire (8), en fonction d’au moins une dimension, de préférence au moins le diamètre, du deuxième miroir primaire (7’).
15. Procédé selon la revendication 14, dans lequel le procédé comprend aussi l’étape de réglage (1040) de la position d’équilibre de l’ensemble optique (100), qui comprend le système optique primaire (11 ), le système de réglage (13) d'écartement et le système optique secondaire (12), par rapport à une structure support (900) qui porte ledit ensemble optique (100).
PCT/FR2022/051310 2021-08-03 2022-06-30 Telescope WO2023012413A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2108447A FR3126048B1 (fr) 2021-08-03 2021-08-03 Telescope
FRFR2108447 2021-08-03

Publications (1)

Publication Number Publication Date
WO2023012413A1 true WO2023012413A1 (fr) 2023-02-09

Family

ID=78212220

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/FR2022/051310 WO2023012413A1 (fr) 2021-08-03 2022-06-30 Telescope

Country Status (2)

Country Link
FR (1) FR3126048B1 (fr)
WO (1) WO2023012413A1 (fr)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902204A1 (de) * 1979-01-20 1980-07-24 Zeiss Carl Fa Fangspiegel-wechselvorrichtung fuer astronomische teleskope
US6061175A (en) 1998-06-03 2000-05-09 Watters; George M. Multi-focal-ratio reflector telescopes
CN110196481A (zh) * 2019-05-15 2019-09-03 中国空气动力研究与发展中心超高速空气动力研究所 一种大口径纹影主镜支撑系统

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2902204A1 (de) * 1979-01-20 1980-07-24 Zeiss Carl Fa Fangspiegel-wechselvorrichtung fuer astronomische teleskope
US6061175A (en) 1998-06-03 2000-05-09 Watters; George M. Multi-focal-ratio reflector telescopes
CN110196481A (zh) * 2019-05-15 2019-09-03 中国空气动力研究与发展中心超高速空气动力研究所 一种大口径纹影主镜支撑系统

Also Published As

Publication number Publication date
FR3126048B1 (fr) 2023-06-23
FR3126048A1 (fr) 2023-02-10

Similar Documents

Publication Publication Date Title
EP3128894B1 (fr) Réfracteur et procédé de mesure de réfraction utilisant un tel réfracteur
FR2914208A1 (fr) Dispositif d'insertion et de sertissage de bague pour fixation a bague sertie sur une tige.
FR2658313A1 (fr) Barillet d'objectif zoom.
FR2458824A1 (fr) Mecanisme de reglage de l'ecartement interoculaire de jumelles
WO2023012413A1 (fr) Telescope
EP0674775A1 (fr) Telescope pour imagerie infrarouge ou visible
EP2549765B1 (fr) Système de prise de vues stéreoscopiques comportant des moyens de calibration des ojectifs de prise de vues
EP4034932B1 (fr) Telescope equipe d'un dispositif de reglage de l'inclinaison et de la position d'un miroir
FR2922324A1 (fr) Systeme d'imagerie a modification de front d'onde et procede d'augmentation de la profondeur de champ d'un systeme d'imagerie.
EP4154046A1 (fr) Instrument d'imagerie
FR2835928A1 (fr) Structure pour l'assemblage d'une paire de jumelles avec fonction de photographie
EP3542207B1 (fr) Afficheur tête-haute pour véhicule automobile
FR2799846A1 (fr) Monture de diapositive stereoscopique, visionneuse pour diapositives stereoscopiques et masque a motif de collimation
FR2722006A1 (fr) Procede d'athermalisation de camera thermique a balayage et combinaison optique de mise en oeuvre
EP0343082B1 (fr) Appareil pour réaliser le balayage d'un faisceau lumineux rigoureusment plan et parallèle à un axe donné
FR2580870A1 (fr) Appareil de regulation de caracteristiques d'un faisceau lumineux, notamment d'un laser de puissance
EP2473824B1 (fr) Interféromètre à compensation de champ
WO2023247709A1 (fr) Plateforme dʼobservation spatiale
FR2658319A1 (fr) Viseur d'appareil photo comportant une fonction de macrophotographie.
FR2745095A1 (fr) Objectif zoom a focalisation interne
EP3204700B1 (fr) Procédé de guidage en rotation d'un réflecteur solaire et réflecteur solaire
EP3948387A1 (fr) Fixation d'un miroir sur un support
EP3076065A1 (fr) Tete panoramique 3d
FR2880431A1 (fr) Dispositif de retroprojection
WO2021111068A1 (fr) Systeme d'optique adaptative a temps de reponse ameliore, utilisation et procede afferents

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748397

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022748397

Country of ref document: EP

Effective date: 20240304