WO2023011182A1 - 一种通信装置 - Google Patents

一种通信装置 Download PDF

Info

Publication number
WO2023011182A1
WO2023011182A1 PCT/CN2022/106718 CN2022106718W WO2023011182A1 WO 2023011182 A1 WO2023011182 A1 WO 2023011182A1 CN 2022106718 W CN2022106718 W CN 2022106718W WO 2023011182 A1 WO2023011182 A1 WO 2023011182A1
Authority
WO
WIPO (PCT)
Prior art keywords
channel
radio frequency
antenna group
communication device
control channel
Prior art date
Application number
PCT/CN2022/106718
Other languages
English (en)
French (fr)
Inventor
黄梅玉
高慧
孙绍峰
周加铳
朱庆明
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP22851896.5A priority Critical patent/EP4362346A1/en
Publication of WO2023011182A1 publication Critical patent/WO2023011182A1/zh
Priority to US18/423,498 priority patent/US20240162954A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/336Signal-to-interference ratio [SIR] or carrier-to-interference ratio [CIR]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering

Definitions

  • the embodiments of the present application relate to the communication field, and in particular, to a communication device.
  • nTnR base station that adopts digital-analog hybrid beamforming.
  • Each channel can drive multiple array subunits. Multiple array subunits use analog beamforming and channels use digital beamforming.
  • the beamforming effect of the traditional nTnR base station is poor, while the digital-analog hybrid beamforming method of the nTnR base station adopts analog beamforming among multiple array sub-units, and the single-channel single-beam coverage will become smaller, requiring more An analog beam is time-divisionally scanned to achieve 120° cell coverage.
  • the time-division scanning capability is insufficient, it cannot meet the requirements of the antenna coverage capability.
  • An embodiment of the present application provides a communication device, which is used to simultaneously ensure the requirements of antenna coverage capability and beamforming effect of a base station.
  • the first aspect of the present application provides a communication device, including a first antenna group and a second antenna group, the number of element units in the second antenna group is greater than the number of element units in the first antenna group, the first antenna group and the first radio frequency The channels are connected, and the second antenna group is connected with the second radio frequency channel.
  • Both the first antenna group and the second antenna group in this application are dual-polarized antennas, the number of element units in the first antenna group is an even number, and the number of element units in the second antenna group is also an even number.
  • the first radio frequency channel and the second radio frequency channel are arranged outside the communication device, and the first radio frequency channel and the second radio frequency channel may be included in the radio frequency unit, that is, the communication device is connected to the external radio frequency unit.
  • the communication device includes a first antenna group and a second antenna group, the number of element units in the second antenna group is greater than the number of element units in the first antenna group, the first antenna group is connected to the first radio frequency channel, and the second The two antenna groups are connected to the second radio frequency channel.
  • the first antenna group can be driven by the first radio frequency channel group to meet the antenna coverage requirement of the base station, and the second antenna group can be driven by the second radio frequency channel group to meet the beamforming of the traffic channel of the base station. Requirements, thereby ensuring the antenna coverage capability and beamforming effect requirements of the base station at the same time.
  • the communication device further includes a phase shifter, and the phase shifter is disposed in the second antenna group, and the second antenna group is used to implement analog beamforming by using the phase shifter.
  • the second antenna group implements analog beamforming through a phase shifter, so that the beamforming gain of the second antenna group is higher than the beamforming gain of the first antenna group, thereby passing through the second radio frequency channel
  • the group-driven second antenna group can meet the beamforming requirements of the traffic channel of the base station, improving the feasibility of the solution.
  • the number of element units in the second antenna group is an integer multiple of the number of element units in the first antenna group.
  • the number of subunits in the second antenna group is an integer multiple of the number of subunits in the first antenna group, making the structural design of the antenna group more reasonable, suitable for different design requirements, and improving the solution. of realizability.
  • the control channel of the communication device includes an uplink control channel and a downlink control channel
  • the traffic channel of the communication device includes an uplink traffic channel and a downlink traffic channel; wherein, the coverage of the control channel and the traffic channel
  • the capability difference is greater than zero
  • the coverage capability difference between the control channel and the traffic channel is the minimum value of the uplink coverage capability difference and the downlink coverage capability difference
  • the uplink coverage capability difference is the minimum value of the demodulation threshold of the uplink control channel and the uplink traffic channel
  • the demodulation threshold difference, the downlink coverage capability difference is the difference between the minimum demodulation threshold of the downlink control channel and the demodulation threshold of the downlink traffic channel.
  • the coverage difference between the control channel and the traffic channel is greater than zero, that is, the coverage of the control channel is larger than the coverage of the traffic channel.
  • the design requirements of the first antenna group and the second antenna group are enhanced The beamforming capability of the traffic channel, and improve the coverage of the traffic channel to align the coverage of the control channel and the traffic channel as much as possible, and the number of element units in the second antenna group is greater than the number of element units in the first antenna group,
  • the second antenna group is provided with a phase shifter, and the traffic channel mainly uses the second antenna group to meet this requirement, so that when the coverage of the control channel is larger than the coverage of the traffic channel, the communication device provided by the application can also be used. Align the coverage of control channels and traffic channels as much as possible.
  • the difference between the beamforming gain of the traffic channel and the beamforming gain of the control channel is greater than the coverage difference between the control channel and the traffic channel.
  • the beamforming gain of the traffic channel is greater than the beamforming gain of the control channel, and the coverage of the control channel is greater than the coverage of the traffic channel.
  • the difference between the beamforming gain of the traffic channel and the beamforming gain of the control channel is greater than the poor coverage of the control channel and the traffic channel, that is, it is necessary to increase the beamforming gain of the traffic channel as much as possible, based on which the first radio frequency can be constrained
  • the number of channels, the number of second radio frequency channels, and the number of subunits of the first antenna group and the number of subunits of the second antenna group further align the coverage of the control channel and the traffic channel.
  • the control channel of the communication device includes an uplink control channel and a downlink control channel
  • the traffic channel of the communication device includes an uplink traffic channel and a downlink traffic channel
  • the coverage margin of the control channel is greater than Zero
  • the coverage margin of the control channel is the minimum value of the uplink coverage margin and the downlink coverage margin
  • the uplink coverage margin is the difference between the minimum demodulation threshold of the uplink control channel and the reference value of the control channel
  • the margin is the difference between the minimum value of the demodulation threshold of the downlink control channel and the reference value of the control channel
  • the reference value of the control channel is the signal-to-noise ratio received at the edge of the preset coverage area when the beamforming of the single first radio frequency channel is performed value.
  • the coverage margin of the control channel is greater than zero, that is, it is necessary to ensure that the coverage of the control channel meets the basic requirements, so that the coverage of the traffic channel can be improved as much as possible on the basis of meeting the coverage of the control channel, so that Further improve the coverage of business channels.
  • the difference between the beamforming gain of the communication device and the beamforming gain of the first radio frequency channel is less than or equal to the coverage margin of the control channel.
  • the beamforming gain of all radio frequency channels of the entire communication device is greater than the beamforming gain of the first radio frequency channel, and the beamforming gain of all radio frequency channels is equal to the beamforming gain of the first radio frequency channel If the difference is less than or equal to the coverage margin of the control channel, the coverage of the service channel can be improved as much as possible. Based on this, the number of the first radio frequency channel and the number of the second radio frequency channel can be restricted, thereby further improving the coverage of the service channel .
  • the communication device is an antenna.
  • the communication device may be an antenna, which improves the feasibility of the solution.
  • the communication device further includes a first radio frequency channel and a second radio frequency channel.
  • the first radio frequency channel and the second radio frequency channel are arranged inside the communication device, and the first radio frequency channel and the second radio frequency channel may be included in the radio frequency unit, which improves the feasibility of the solution.
  • the communication device is an active antenna processing unit.
  • the communication device may be an active antenna processing unit, which improves the feasibility of the solution.
  • the communication device further includes a first radio frequency channel, a second radio frequency channel, and a baseband processing unit, and the first radio frequency channel and the second radio frequency channel are respectively connected to the baseband processing unit.
  • the first radio frequency channel and the second radio frequency channel are arranged inside the communication device, the first radio frequency channel and the second radio frequency channel may be included in a radio frequency unit, and the baseband processing unit is connected to the radio frequency unit, that is, the first The first radio frequency channel and the second radio frequency channel are respectively connected to the baseband processing unit.
  • the baseband processing unit may further include a baseband channel.
  • the baseband channel corresponds to the radio frequency channel one by one, which improves the feasibility of the solution.
  • the baseband processing unit is configured to determine the phase of the phase shifter based on the beamforming requirements of the traffic channel of the communication device, and the phase of the phase shifter is based on the traffic channel carried by the second antenna group The air interface channel is determined.
  • the baseband processing unit can determine the phase shifter phase based on the air interface channel carried by the second antenna group based on the traffic channel and send it to the phase shifter, so that the second radio frequency channel can make the second antenna
  • the group realizes higher beamforming requirements, which improves the feasibility of the solution.
  • the communication device is a base station.
  • the communication device may be a base station, which improves the feasibility of the solution.
  • the communication device includes a first antenna group and a second antenna group, the number of element units in the second antenna group is greater than the number of element units in the first antenna group, and the first antenna group is connected to the first radio frequency channel,
  • the second antenna group is connected to the second radio frequency channel, the first antenna group can be driven by the first radio frequency channel group to meet the antenna coverage requirement of the base station, and the second antenna group can be driven by the second radio frequency channel group to meet the beamforming of the traffic channel of the base station shape requirements, thereby simultaneously ensuring the antenna coverage capability and beamforming effect requirements of the base station.
  • FIG. 1 is a schematic diagram of a base station architecture
  • FIG. 2 is a schematic structural diagram of an embodiment of a communication device according to an embodiment of the present application.
  • FIG. 3 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a beamforming effect of another embodiment of a communication device according to an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another embodiment of a communication device according to an embodiment of the present application.
  • An embodiment of the present application provides a communication device, which is used to ensure the antenna coverage capability and beamforming effect requirements of a base station at the same time.
  • the base station 100 includes a baseband processing unit 101, a radio frequency unit 102 and an antenna 103, the baseband processing unit 101 usually uses an indoor baseband processing unit (building base band unite, BBU), and the radio frequency unit 102 can use a radio frequency pull
  • BBU building base band unite
  • the remote radio unit (RRU) can also be coupled with the antenna to form an active antenna unit (AAU).
  • the baseband processing unit 101 includes a baseband channel inside
  • the radio frequency unit 102 includes a radio frequency channel inside
  • the baseband processing unit 101 and the radio frequency unit 102 are connected by an optical fiber
  • the radio frequency unit 102 and the antenna 103 are connected by a cable
  • the baseband processing unit 101 The data is sent to the air interface via the radio frequency unit 102 and the antenna 103 to reach the user equipment.
  • the mobile communication system can be specifically applied to a frequency division duplexing (frequency division duplexing, FDD) system and a time division duplexing (time division duplexing, TDD) system.
  • FDD frequency division duplexing
  • TDD time division duplexing
  • nTnR represents a base station with n receiving and n sending, that is, n channels receive signals and n channels transmit signals.
  • There are control channels and traffic channels in the base station the signal-to-noise ratio of data transmission or reception on the control channel reflects the basic coverage capability of the base station, and the signal-to-noise ratio of data transmission or reception on the traffic channel reflects the service experience of the user equipment.
  • the communication device in the embodiment of the present application will be described below in conjunction with the architecture of the above communication system. Please refer to FIG.
  • the number of subunits in the second antenna group 202 is greater than the number of subunits in the first antenna group 201 , for example, the first antenna group 201 includes 2 array subunits, and the second antenna group 202 includes 6 array subunits.
  • both the first antenna group 201 and the second antenna group 202 are dual-polarized antennas, then the two array subunits of the first antenna group 201 include one column of left polarized array subunits and one column of right polarized array subunits, the first The 6 array subunits of the two antenna group 202 include 3 columns of left polarized array subunits and 3 columns of right polarized array subunits.
  • the left polarized array subunits and the right polarized array subunits have the same symmetrical structure. repeat.
  • the communication device 200 may be connected to a radio frequency channel, and the radio frequency channel may be included in a radio frequency unit, and the radio frequency unit may also be connected to a baseband processing unit.
  • the first antenna group 201 is connected to the first radio frequency channel 203
  • the second antenna group 202 is connected to the second radio frequency channel 204
  • the first radio frequency channel 203 and the second radio frequency channel 204 are included in the radio frequency unit 206
  • the radio frequency unit 206 Connect to the first antenna group 201 and the second antenna group 202 respectively through cables, that is, the first antenna group 201 is connected to the first radio frequency channel 203 through cables
  • the second antenna group 202 is connected to the second radio frequency channel 204 through cables .
  • one column of left polarized array subunits in the two array subunits of the first antenna group 201 is connected to a first radio frequency channel 203
  • one column of right polarized array subunits in the two array subunits is connected to another first
  • the radio frequency channel 203 is connected
  • the 3 columns of left polarized array subunits in the 6 array subunits of the second antenna group 202 are connected to a second radio frequency channel 204
  • the radio frequency channels 204 are connected, that is, one first antenna group 201 corresponds to two first radio frequency channels 203 , and one second antenna group 202 corresponds to two second radio frequency channels 204 .
  • the first radio frequency channel 203 drives the 2-array subunits of the first antenna group 201, and the data of the control channel is mainly sent or received through the 2-array subunits of the first antenna group 201, thereby ensuring the communication device
  • the basic coverage capability of the control channel the second radio frequency channel 204 drives the 6 array subunits of the second antenna group 202, and makes the data of the traffic channel pass through the 2 array subunits of the first antenna group 201 and the 6 array subunits of the second antenna group 202 at the same time.
  • the array subunits transmit or receive, so as to ensure the beamforming capability of the traffic channel of the communication apparatus 200, so as to ensure the service experience of the user equipment.
  • the communication device includes a first antenna group and a second antenna group, the number of element units in the second antenna group is greater than the number of element units in the first antenna group, and the first antenna group is connected to the first radio frequency channel,
  • the second antenna group is connected to the second radio frequency channel, the first antenna group can be driven by the first radio frequency channel group to meet the basic coverage capability requirements of the base station, and the second antenna group can be driven by the second radio frequency channel group to meet the beamforming of the traffic channel of the base station shape requirements, thereby ensuring the basic coverage capability of the base station and the requirements for beamforming effects at the same time.
  • the communication device may specifically be an antenna, an active antenna processing unit or a base station, which are described below:
  • the communication device is an antenna:
  • another embodiment of a communication device provided by an embodiment of the present application includes a first antenna group 301 , a second antenna group 302 and a phase shifter 305 .
  • the first antenna group 301 is connected to the first radio frequency channel 303 of the external radio frequency unit 306 through cables
  • the second antenna group 302 is connected to the second radio frequency channel 304 of the external radio frequency unit 306 through cables.
  • the phase shifter 305 is disposed in the second antenna group 302
  • the second antenna group 302 is used to implement analog beamforming through the phase shifter 305 .
  • the phase shifter 305 is set at the interface of each array subunit in the 6 array subunits of the second antenna group 302, and the 3 columns of left polarized array subunits are coupled as an interface of 1 left polarized array subunit,
  • the interface that couples 3 right polarized array subunits into one right polarized array subunit is respectively connected to two second radio frequency channels 304, and the phase shifter 305 can receive the phase shifter 305 sent by the second radio frequency channel 304,
  • the phase values of the phase shifter 305 are [0°, 0°, 0°], [0°, 120°, 240 °] and [0°, 240°, 120°], the beamforming gain of the 6 array subunits of the second antenna group 302 is higher than that of the 2 array subunits of the first antenna group 301.
  • the number of subunits in the second antenna group 302 is an integer multiple of the number of subunits in the first antenna group 301.
  • the first antenna group 301 includes 2 columns of subunits, that is, 1 column of left polarized elements unit and 1 column of right polarized array subunits
  • the second antenna group 302 may include 4 columns of array subunits, that is, 2 columns of left polarized array subunits and 2 columns of right polarized array subunits.
  • the array subunits of the second antenna group 302 The number is twice the number of the array sub-units of the first antenna group 301, and the second antenna group 302 may also include 6 columns of array sub-units, that is, 3 columns of left polarized array sub-units and 3 columns of right polarized array sub-units.
  • the number of element units in the second antenna group 302 is three times the number of element units in the first antenna group 301 .
  • the second antenna group 302 includes at least 8 rows of array subunits, that is, 4 columns of left polarized array subunits and 4 rows of right-polarized subunits. At this time, the number of subunits in the second antenna group 302 is twice the number of subunits in the first antenna group 301. Other situations will not be described in this embodiment of the application.
  • the number of subunits in the second antenna group 302 is an integer multiple of the number of subunits in the first antenna group 301, the number of first radio frequency channels 303 connected to the antenna, the number of second radio frequency channels 304 and the number of the antenna
  • the number of sub-units in the first antenna group 301 and the number of sub-units in the second antenna group 302 can be optimized based on the requirements of the antenna, which are described below:
  • the control channel of the antenna includes the uplink control channel and the downlink control channel
  • the traffic channel of the antenna includes the uplink traffic channel and the downlink traffic channel
  • the uplink control channel mainly includes the physical random access channel (physical random access channel, PRACH), the physical uplink control channel Channel (physical uplink control channel, PUCCH), traffic channel has physical uplink shared channel (physical uplink shared channel, PUSCH).
  • the ideal 1T1R base station receiving antenna defined in the agreement is taken as the evaluation premise, based on the existing receiver scheme, and according to the link simulation, it is obtained that when the missed detection rate of PRACH is a%, the missed detection rate of PUCCH is at When b% and PUSCH c MBps transmission, the respective demodulation thresholds S PRACH , S PUCCH and S PUSCH are all in dB.
  • the demodulation threshold is used to indicate that PRACH meets the required missed detection rate requirements
  • SNR received signal-to-noise ratio
  • the main downlink control channels or signals include physical downlink control channel (physical downlink control channel, PDCCH), synchronization signal block (synchronization signal block, SSB) and remaining minimum system information (remaining minimum system information, RMSI), downlink business
  • PDCCH physical downlink control channel
  • SSB synchronization signal block
  • RMSI remaining minimum system information
  • PDSCH physical downlink shared channel
  • the coverage of the channel is larger than the coverage of the traffic channel, which can enhance the beamforming capability of the traffic channel and improve the coverage of the traffic channel, so as to align the coverage of the control channel and the traffic channel as much as possible, while the second antenna group
  • the number of sub-units is greater than the number of sub-units in the first antenna group, and the second antenna group is equipped with a phase shifter, and the traffic channel mainly uses the second antenna group to meet this requirement, so that the
  • the difference between the beamforming gain of the traffic channel and the beamforming gain of the control channel is greater than the coverage difference between the control channel and the traffic channel.
  • the nTnR base station drives m array subunits, that is, all the array subunits of the first antenna group 301 and the second antenna group 302 are m columns, the number of the first radio frequency channel 303 is x, and the number of the second radio frequency channel 304 is y,
  • the difference between the beamforming gain of the traffic channel and the beamforming gain of the control channel can be expressed as: 20 x Right now Wherein, the traffic channel is beamformed by the m array subunits of the first antenna group 301 and the second antenna group 302, and the power of each array subunit in the yK array subunits is The power of each array subunit in the x array subunit is 1, then the signal power of the traffic channel can be expressed as While the control channel is mainly beamformed by the x array subunits of the first antenna group 301, the signal power of the control channel can be expressed as x, and the beamforming gain of the traffic channel and the beamforming gain of the control channel can be obtained after the conversion unit is dB The difference in shape gain is and Then the number of the first radio frequency channel 303 connected to the antenna, the number of the second radio frequency channel 304, and the number of the element units of the first antenna group 301 of the antenna and the number of the element units of the second antenna group 302 need to meet the constraint condition, thus Ensure that the
  • the constraints on the number of the first radio frequency channel 303 and the number of the second radio frequency channel 304 connected to the antenna can be embodied in the antenna as the number of interfaces of the first radio frequency channel 303 and the number of interfaces of the second radio frequency channel 304 connected to the antenna.
  • the number of first radio frequency channels connected to the antenna, the number of second radio frequency channels, and the number and The number of sub-elements of the second antenna group ensures the basic coverage capability of the base station and the requirement of beamforming effect when the coverages of the control channel and the traffic channel of the antenna are aligned as much as possible.
  • the demodulation thresholds S PRACH and S PUCCH of the uplink control channel and the demodulation thresholds S PDCCH , S SSB and S RMSI of the downlink control channel are obtained in the same way as in the first case, and the reference value of the control channel is a single first radio frequency channel
  • the number of first radio frequency channels and the second number of radio frequency channels connected to the antenna need to meet the constraints, so as to ensure that the coverage of the control channel of the nTnR base station is improved as much as possible on the basis of the coverage of the control channel of the nTnR base station, and the coverage of the base station is guaranteed. Requirements for antenna coverage capability and beamforming effects.
  • the constraints on the number of first radio frequency channels connected to the antenna and the number of second radio frequency channels may be specifically embodied in the antenna as the number of interfaces of the first radio frequency channel and the number of interfaces of the second radio frequency channel connected to the antenna.
  • K is an integer, that is, the number of element units in the second antenna group is equal to the number of element units in the first antenna group Integer multiples.
  • the communication device 500 is set in an 8T8R base station, and the second antenna group 502 can be set on both sides of the first antenna group 501, and the first antenna group 501 is connected to an external radio frequency unit 506 through a cable.
  • the number is 4, the number of the second radio frequency channel 504 is 4, then the first antenna group 501 is two groups, including 4 array subunits, and the second antenna group 502 is 2 groups, including 2K array subunits, K ⁇ 2 , at this time K is 2, that is, the second antenna group 502 includes 8 array subunits in total, and the phase shifter 505 is arranged in the second antenna group 502 .
  • the communication device 600 is set in an 8T8R base station, the second antenna group 602 can be set in the middle of the first antenna group 601, and the first antenna group 601 is connected to an external radio frequency unit 606 through a cable.
  • the number is 4, the number of the second radio frequency channel 604 is 4, then the first antenna group 601 is two groups, including 4 array subunits, and the second antenna group 602 is 2 groups, including 2K array subunits, K ⁇ 2 , at this time K is 2, that is, the second antenna group 602 includes 8 array subunits in total, and the phase shifter 605 is arranged in the second antenna group 602 .
  • the number of first radio frequency channels and the second number of radio frequency channels connected to the antenna are restricted when the coverage of the service channel is improved as much as possible on the basis of satisfying the coverage of the control channel of the antenna.
  • the coverage of the service channel is improved as much as possible to ensure the basic coverage capability of the base station and the requirements of the beamforming effect.
  • the communication device is an active antenna processing unit:
  • FIG. 7 another embodiment of a communication device 700 provided by the embodiment of the present application includes a first antenna group 701, a second antenna group 702, a first radio frequency channel 703, a second radio frequency channel 704, a phase shifter 705 and a radio frequency unit 706, the first radio frequency channel 703 of the radio frequency unit 706 is connected to the first antenna group 701 through a cable, and the second radio frequency channel 704 of the radio frequency unit 706 is connected to the second antenna group 702 through a cable.
  • the communication device 700 is an active antenna processing unit.
  • the first antenna group 701 includes 2 array subunits
  • the second antenna group 702 includes 4 array subunits
  • the number of first radio frequency channels 703 is 2
  • the number of second radio frequency channels 704 is 2
  • the number of radio frequency units 706 The number can be arbitrary. If the number of radio frequency units 706 is 1, the radio frequency unit 706 includes 4 radio frequency channels, and there are 4 interfaces on the radio frequency unit 706 for connecting the first antenna group 701 and the second antenna through cables.
  • Group 702 is connected, if the number of radio frequency units 706 is 2, each radio frequency unit 706 includes 2 radio frequency channels, and each radio frequency unit 706 has 2 interfaces for connecting the first antenna group 701 and the second antenna group 701 through cables.
  • the antenna group 702 is connected, and the cables may be in one-to-one correspondence with the radio frequency channels.
  • the specific implementation manner of the active antenna processing unit can refer to the antenna in case 1, and will not be repeated in this embodiment of the application.
  • the embodiment of the present application provides an active antenna processing unit, including a first antenna group, a second antenna group, a first radio frequency channel, a second radio frequency channel and a radio frequency unit, and the number of element units in the second antenna group is greater than that of the first The number of subunits of the antenna group, the first antenna group is connected to the first radio frequency channel, the second antenna group is connected to the second radio frequency channel, the first antenna group can be driven by the first radio frequency channel group to meet the basic coverage capability requirements of the base station, The second antenna group is driven by the second radio frequency channel group to meet the beamforming requirement of the traffic channel of the base station, thereby ensuring the basic coverage capability and beamforming effect requirements of the base station at the same time.
  • the communication device is a base station:
  • FIG. 8 another embodiment of a communication device 800 provided by the embodiment of the present application includes a first antenna group 801, a second antenna group 802, a first radio frequency channel 803, a second radio frequency channel 804, a phase shifter 805, a radio frequency unit 806, a first baseband channel 807, a second baseband channel 808 and a baseband processing unit 809, the first radio frequency channel 803 of the radio frequency unit 806 is connected to the first antenna group 801 through a cable, and the second radio frequency channel 804 of the radio frequency unit 808 passes The cable is connected to the second antenna group 802, the first baseband channel 807 of the baseband processing unit 809 is connected to the radio frequency unit 806 through an optical fiber, and the second baseband channel 808 of the baseband processing unit 809 is connected to the radio frequency unit 806 through an optical fiber.
  • the communication device 800 is a base station.
  • the number of subunits of the second antenna group 802 is greater than the number of subunits of the first antenna group 801
  • the baseband processing unit 809 is configured to determine the phase of the phase shifter 805 based on the beamforming requirements of the traffic channel of the communication device 800, The phase of the phase shifter 805 is determined based on the air interface channel carried by the traffic channel in the second antenna group 802 .
  • radio frequency unit 806 may be coupled with the first antenna group 801 and the second antenna group 802 as an AAU.
  • the baseband processing unit 809 can specifically include multiple access channel (multiple access channel) , MAC) resource controller and physical layer, the MAC resource controller manages resource allocation, weights and shapes the control channel and the traffic channel on the first baseband channel 807 and the second baseband channel 808 through the physical layer, and completes digital beamforming, in addition , at each scheduling time of the communication device 800, the baseband processing unit 809 will also determine the phase of the phase shifter 805.
  • the baseband processing unit 809 only needs to consider the beamforming requirements of the traffic channel, and does not need to consider the beamforming requirements of the control channel.
  • Shape requirements that is, the control channel is mainly driven by the first antenna group 801, and the digital beamforming is completed on the first baseband channel 807.
  • the baseband processing unit 809 sends the weight of the phase shifter, that is, the phase of the phase shifter 805, to the phase shifter 805 through the second baseband channel 808, the radio frequency unit 806 and the second radio frequency channel 804, refer to the figure 4.
  • the phase shifter 805 operates the traffic channel according to the phases [0°, 0°, 0°], [0°, 120°, 240°] and [0°, 240°, 120°] of the phase shifter 805
  • Dynamic analog beamforming obtains 3 analog beams, that is, the second radio frequency channel 804 scans 3 analog beams by time division, so as to achieve higher beamforming requirements, and this structure ensures the basic coverage requirements of the control channel, avoiding
  • the control channel performs beam scanning through the phase shifter, which reduces the resource overhead caused by the beam scanning of the control channel. It is possible to use more sub-units to improve the experience of the traffic channel.
  • the embodiment of the present application provides a base station, including a first antenna group, a second antenna group, a first radio frequency channel, a second radio frequency channel, a radio frequency unit, a baseband processing unit, a first baseband channel and a second baseband channel, and the second
  • the number of subunits in the antenna group is greater than the number of subunits in the first antenna group, and the baseband processing unit only considers the beamforming requirements of the traffic channel to determine the phase shifter phase, so that the first antenna group is driven by the first radio frequency channel group to meet
  • the basic coverage capability requirements of the base station, the second antenna group is driven by the second radio frequency channel group to meet the beamforming requirements of the traffic channel of the base station, thereby ensuring the basic coverage capability and beamforming effect requirements of the base station at the same time.
  • the disclosed system, device and method can be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, each unit may exist separately physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units can be implemented in the form of hardware or in the form of software functional units.
  • the integrated unit is realized in the form of a software function unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or part of the contribution to the prior art or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (ROM, read-only memory), random access memory (RAM, random access memory), magnetic disk or optical disc, etc., which can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种通信装置,涉及通信领域。该通信装置具体包括第一天线组和第二天线组,所述第二天线组的阵子单元的数量大于所述第一天线组的阵子单元的数量,所述第一天线组与第一射频通道连接,所述第二天线组与第二射频通道连接。可以通过第一射频通道组驱动第一天线组满足基站的天线覆盖能力需求,通过第二射频通道组驱动第二天线组满足基站的业务信道的波束赋形需求,从而同时保证了基站的天线覆盖能力和波束赋形效果的需求。

Description

一种通信装置
本申请要求于2021年7月31日提交中国国家知识产权局、申请号为202110877269.8、发明名称为“一种通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及通信领域,尤其涉及一种通信装置。
背景技术
随着通信技术的发展,对通信装置的要求也越来越高,例如通信装置的天线覆盖能力和波束赋形效果都需要同时满足人们的需求。
传统的nTnR(n=2或4)基站的每个通道驱动一个阵子单元,每个阵子单元覆盖水平120°波宽。此外,还有一种nTnR基站采用数模混合波束赋型方式,每个通道可以驱动多个阵子单元,多个阵子单元间通过模拟波束赋型,通道间通过数字波束赋型。
但是传统的nTnR基站波束赋型效果较差,而采用数模混合波束赋型方式的nTnR基站的多个阵子单元间通过模拟波束赋型后,单通道的单波束覆盖范围会变小,需要多个模拟波束时分扫描以实现120°小区覆盖,当时分扫描能力不足时也无法满足天线覆盖能力的需求。
发明内容
本申请实施例提供一种通信装置,用于同时保证基站的天线覆盖能力和波束赋形效果的需求。
本申请第一方面提供一种通信装置,包括第一天线组和第二天线组,第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,第一天线组与第一射频通道连接,第二天线组与第二射频通道连接。
本申请中的第一天线组和第二天线组都为双极化天线,第一天线组的阵子单元的数量为偶数,第二天线组的阵子单元的数量也为偶数。
本申请中的第一射频通道和第二射频通道设置在通信装置外部,第一射频通道和第二射频通道可以包含于射频单元中,即该通信装置与外部的射频单元连接。
该第一方面,通信装置包括第一天线组和第二天线组,第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,第一天线组与第一射频通道连接,第二天线组与第二射频通道连接,可以通过第一射频通道组驱动第一天线组满足基站的天线覆盖能力需求,通过第二射频通道组驱动第二天线组满足基站的业务信道的波束赋形需求,从而同时保证了基站的天线覆盖能力和波束赋形效果的需求。
在第一方面的一种可能的实现方式中,通信装置还包括移相器,移相器设置在第二天线组中,第二天线组用于通过移相器实现模拟波束赋形。
该种可能的实现方式中,第二天线组通过移相器实现模拟波束赋形,使得第二天线组的波束赋形增益高于第一天线组的波束赋形增益,从而通过第二射频通道组驱动第二天线组可以满足基站的业务信道的波束赋形需求,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,第二天线组的阵子单元的数量为第一天线组的阵子单元的数量的整数倍。
该种可能的实现方式中,第二天线组的阵子单元的数量为第一天线组的阵子单元的数量的整数倍,使得天线组的结构设计更加合理,适用于不同的设计需求,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,通信装置的控制信道包括上行控制信道和下行控制信道,通信装置的业务信道包括上行业务信道和下行业务信道;其中,控制信道与业务信道的覆盖能力差大于零,控制信道与业务信道的覆盖能力差为上行覆盖能力差与下行覆盖能力差中的最小值,上行覆盖能力差为上行控制信道的解调门限中的最小值与上行业务信道的解调门限的差值,下行覆盖能力差为下行控制信道的解调门限中的最小值与下行业务信道的解调门限的差值。
该种可能的实现方式中,控制信道与业务信道的覆盖能力差大于零,即控制信道的覆盖范围比业务信道的覆盖范围大,此时第一天线组和第二天线组的设计需求为增强业务信道的波束赋形能力,并提高业务信道的覆盖范围以尽可能拉齐控制信道和业务信道的覆盖范围,而第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,且第二天线组中设置有移相器,业务信道主要使用第二天线组则可以满足该需求,使得控制信道的覆盖范围比业务信道的覆盖范围大时,使用本申请提供的通信装置也可以尽可能拉齐控制信道和业务信道的覆盖范围。
在第一方面的一种可能的实现方式中,业务信道的波束赋形增益与控制信道的波束赋形增益的差异大于控制信道与业务信道的覆盖能力差。
该种可能的实现方式中,业务信道的波束赋形增益大于控制信道的波束赋形增益,且控制信道的覆盖能力大于业务信道的覆盖能力,为了尽可能拉齐控制信道和业务信道的覆盖范围,业务信道的波束赋形增益与控制信道的波束赋形增益的差异要大于控制信道与业务信道的覆盖能力差,即需要尽可能提高业务信道的波束赋形增益,基于此可以约束第一射频通道的数量、第二射频通道的数量以及天线的第一天线组的阵子单元的数量和第二天线组的阵子单元的数量,从而进一步拉齐了控制信道和业务信道的覆盖范围。
在第一方面的一种可能的实现方式中,通信装置的控制信道包括上行控制信道和下行控制信道,通信装置的业务信道包括上行业务信道和下行业务信道;其中,控制信道的覆盖余量大于零,控制信道的覆盖余量为上行覆盖余量与下行覆盖余量中的最小值,上行覆盖余量为上行控制信道的解调门限中的最小值与控制信道基准值的差值,下行覆盖余量为下行控制信道的解调门限中的最小值与控制信道基准值的差值,控制信道基准值为单个第一射频通道波束赋型时在预设的覆盖范围边缘处接收的信噪比的值。
该种可能的实现方式中,控制信道的覆盖余量大于零,即需要保证控制信道的覆盖范围满足基础需求,从而可以在满足控制信道的覆盖范围基础上尽可能提升业务信道的覆盖 范围,从而进一步提升业务信道的覆盖范围。
在第一方面的一种可能的实现方式中,通信装置的波束赋型增益与第一射频通道的波束赋型增益的差值小于或等于控制信道的覆盖余量。
该种可能的实现方式中,整个通信装置全部射频通道的波束赋型增益大于第一射频通道的波束赋型增益,且全部射频通道的波束赋型增益与第一射频通道的波束赋型增益的差值小于或等于控制信道的覆盖余量,则可以尽可能的提升业务信道的覆盖范围,基于此可以约束第一射频通道的数量和第二射频通道的数量,从而进一步提升业务信道的覆盖范围。
在第一方面的一种可能的实现方式中,通信装置为天线。
该种可能的实现方式中,通信装置可以为天线,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,通信装置还包括第一射频通道和第二射频通道。
该种可能的实现方式中,第一射频通道和第二射频通道设置在通信装置内部,第一射频通道和第二射频通道可以包含于射频单元中,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,通信装置为有源天线处理单元。
该种可能的实现方式中,通信装置可以为有源天线处理单元,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,通信装置还包括第一射频通道、第二射频通道和基带处理单元,第一射频通道与第二射频通道分别与基带处理单元连接。
该种可能的实现方式中,第一射频通道和第二射频通道设置在通信装置内部,第一射频通道和第二射频通道可以包含于射频单元中,基带处理单元与该射频单元连接,即第一射频通道与第二射频通道分别与基带处理单元连接,基带处理单元还可以包括基带通道,基带通道与射频通道一一对应,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,基带处理单元用于基于通信装置的业务信道的波束赋形需求确定移相器的相位,移相器的相位基于业务信道在第二天线组承载的空口信道决定。
该种可能的实现方式中,基带处理单元可以基于业务信道在第二天线组承载的空口信道决定移相器的相位并下发给移相器,使得第二射频通道通过时分扫描使第二天线组实现更高的波束赋形要求,提升了方案的可实现性。
在第一方面的一种可能的实现方式中,通信装置为基站。
该种可能的实现方式中,通信装置可以为基站,提升了方案的可实现性。
本申请实施例中,通信装置包括第一天线组和第二天线组,第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,第一天线组与第一射频通道连接,第二天线组与第二射频通道连接,可以通过第一射频通道组驱动第一天线组满足基站的天线覆盖能力需求,通过第二射频通道组驱动第二天线组满足基站的业务信道的波束赋形需求,从而同时保证了基站的天线覆盖能力和波束赋形效果的需求。
附图说明
图1为基站的架构示意图;
图2为本申请实施例通信装置的一个实施例的结构示意图;
图3为本申请实施例通信装置的另一实施例的结构示意图;
图4为本申请实施例通信装置的另一实施例的波束赋形效果示意图;
图5为本申请实施例通信装置的另一实施例的结构示意图;
图6为本申请实施例通信装置的另一实施例的结构示意图;
图7为本申请实施例通信装置的另一实施例的结构示意图;
图8为本申请实施例通信装置的另一实施例的结构示意图。
具体实施方式
下面结合附图,对本申请的实施例进行描述,显然,所描述的实施例仅仅是本申请一部分的实施例,而不是全部的实施例。本领域普通技术人员可知,随着技术的发展和新场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
本申请的说明书和权利要求书及上述附图中的术语“第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便这里描述的实施例能够以除了在这里图示或描述的内容以外的顺序实施。此外,术语“包括”和“具有”以及他们的任何变形,意图在于覆盖不排他的包含,例如,包含了一系列步骤或单元的过程、方法、系统、产品或设备不必限于清楚地列出的那些步骤或单元,而是可包括没有清楚地列出的或对于这些过程、方法、产品或设备固有的其它步骤或单元。
在这里专用的词“示例性”意为“用作例子、实施例或说明性”。这里作为“示例性”所说明的任何实施例不必解释为优于或好于其它实施例。
另外,为了更好的说明本申请,在下文的具体实施方式中给出了众多的具体细节。本领域技术人员应当理解,没有某些具体细节,本申请同样可以实施。在一些实例中,对于本领域技术人员熟知的方法、手段、元件和电路未作详细描述,以便于凸显本申请的主旨。
本申请实施例提供了一种通信装置,用于同时保证基站的天线覆盖能力和波束赋形效果的需求。
在移动通信系统中,例如在第四代移动通信技术(4th generation mobile communication technology,4G)和第五代移动通信技术(5th generation mobile communication technology,5G)的移动通信系统中,通常由基站和用户设备组成。在基站侧,请参阅图1,基站100包括基带处理单元101、射频单元102和天线103,基带处理单元101通常使用室内基带处理单元(building base band unite,BBU),射频单元102可以使用射频拉远单元(remote radio unit,RRU),也可以和天线耦合组成有源天线处理单元(active antenna unit,AAU)。其中,基带处理单元101内部包括基带通道,射频单元102内部包括射频通道,基带处理单元101和射频单元102之间通过光纤连接,射频单元102和天线103之间通过线缆连接,基带处理单元101将数据经由射频单元102和天线103发送至空口,达到用户设备。
此外,移动通信系统可以具体应用在频分双工(frequency division duplexing,FDD)系统和时分双工(time division duplexing,TDD)系统。
移动通信系统通常为nTnR(n=2/4/8)的架构,nTnR表示为n收n发的基站,即n个通道接收信号,n个通道发送信号,在基站中存在控制信道和业务信道,控制信道的数据发送或接收的信噪比反映了基站的基本覆盖能力,业务信道的数据发送或接收的信噪比反映了用户设备的业务体验。
下面结合上述通信系统的架构对本申请实施例中的通信装置进行描述,请参阅图2,本申请实施例提供的通信装置200的一实施例包括第一天线组201和第二天线组202。
其中,第二天线组202的阵子单元的数量大于第一天线组201的阵子单元的数量,示例性的,第一天线组201包括2列阵子单元,第二天线组202包括6列阵子单元。
进一步的,第一天线组201和第二天线组202都为双极化天线,则第一天线组201的2列阵子单元包括1列左极化阵子单元和1列右极化阵子单元,第二天线组202的6列阵子单元包括3列左极化阵子单元和3列右极化阵子单元,左极化阵子单元和右极化阵子单元为对称的相同结构,本申请实施例后续不再赘述。
该通信装置200可以连接射频通道,射频通道可以包含在射频单元内,射频单元还可以与基带处理单元连接。具体的,第一天线组201和第一射频通道203连接,第二天线组202和第二射频通道204连接,第一射频通道203和第二射频通道204包含在射频单元206内,射频单元206通过线缆分别和第一天线组201、第二天线组202连接,即第一天线组201通过线缆和第一射频通道203连接,第二天线组202通过线缆和第二射频通道204连接。更具体的,第一天线组201的2列阵子单元中的1列左极化阵子单元和一个第一射频通道203连接,2列阵子单元中的1列右极化阵子单元和另一个第一射频通道203连接,第二天线组202的6列阵子单元中的3列左极化阵子单元和一个第二射频通道204连接,6列阵子单元中的3列右极化阵子单元和一个第二射频通道204连接,即一个第一天线组201对应两个第一射频通道203,一个第二天线组202对应两个第二射频通道204。
在应用过程中,第一射频通道203驱动第一天线组201的2列阵子单元,并使控制信道的数据主要通过第一天线组201的2列阵子单元发送或接收,从而保证该通信装置的控制信道的基本覆盖能力,第二射频通道204驱动第二天线组202的6列阵子单元,并使业务信道的数据同时通过第一天线组201的2列阵子单元和第二天线组202的6列阵子单元发送或接收,从而保证该通信装置200的业务信道的波束赋形能力,从而保证用户设备的业务体验。
本申请实施例中,通信装置包括第一天线组和第二天线组,第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,第一天线组与第一射频通道连接,第二天线组与第二射频通道连接,可以通过第一射频通道组驱动第一天线组满足基站的基本覆盖能力需求,通过第二射频通道组驱动第二天线组满足基站的业务信道的波束赋形需求,从而同时保证了基站的基本覆盖能力和波束赋形效果的需求。
本申请实施例中,通信装置具体可以为天线、有源天线处理单元或基站,下面分别进行说明:
一、通信装置为天线:
请参阅图3,本申请实施例提供的通信装置的另一实施例包括第一天线组301、第二天线组302和移相器305。
其中,第一天线组301通过线缆和外部的射频单元306的第一射频通道303连接,第二天线组302通过线缆和外部的射频单元306的第二射频通道304连接。移相器305设置在第二天线组302中,第二天线组302用于通过移相器305实现模拟波束赋形。示例性的,移相器305设置在第二天线组302的6列阵子单元中的每一列阵子单元的接口,并将3列左极化阵子单元耦合为1个左极化阵子单元的接口,将3列右极化阵子单元耦合为1个右极化阵子单元的接口分别与两个第二射频通道304连接,移相器305可以接收第二射频通道304发送的移相器305的相位,并根据该移相器305的相位完成动态的模拟波束赋形,请参阅图4,移相器305的相位取值为[0°,0°,0°]、[0°,120°,240°]和[0°,240°,120°],第二天线组302的6列阵子单元的波束赋形增益高于第一天线组301的2列阵子单元。
进一步的,第二天线组302的阵子单元的数量为第一天线组301的阵子单元的数量的整数倍,示例性的,第一天线组301包括2列阵子单元,即1列左极化阵子单元和1列右极化阵子单元,则第二天线组302可以包括4列阵子单元,即2列左极化阵子单元和2列右极化阵子单元,此时第二天线组302的阵子单元的数量为第一天线组301的阵子单元的数量的2倍,第二天线组302还可以包括6列阵子单元,即3列左极化阵子单元和3列右极化阵子单元,此时第二天线组302的阵子单元的数量为第一天线组301的阵子单元的数量的3倍。当第一天线组301包括4列阵子单元,即2列左极化阵子单元和2列右极化阵子单元时,第二天线组302至少包括8列阵子单元,即4列左极化阵子单元和4列右极化阵子单元,此时第二天线组302的阵子单元的数量为第一天线组301的阵子单元的数量的2倍,其他情况本申请实施例不再赘述。
当第二天线组302的阵子单元的数量为第一天线组301的阵子单元的数量的整数倍时,该天线连接的第一射频通道303的数量、第二射频通道304的数量以及该天线的第一天线组301的阵子单元的数量和第二天线组302的阵子单元的数量可以基于该天线的需求进行优化,下面分别进行说明:
1.天线的控制信道和业务信道的覆盖范围尽可能拉齐时:
天线的控制信道包括上行控制信道和下行控制信道,天线的业务信道包括上行业务信道和下行业务信道,上行控制信道主要有物理随机接入信道(physical random access channel,PRACH)、物理上行链路控制信道(physical uplink control channel,PUCCH),业务信道有物理上行共享信道(physical uplink shared channel,PUSCH)。根据协议定义的信道编码调制方式,以协议定义的理想1T1R基站收天线为评估前提,基于现有的接收机方案,根据链路仿真得到PRACH在漏检率为a%时、PUCCH漏检率在b%时、PUSCH c MBps传输时各自的解调门限S PRACH、S PUCCH和S PUSCH,其单位都为dB,以PRACH为例,解调门限用来表示PRACH在满足所需的漏检率要求下所能支持的最小接收的信噪比(signal-noise ratio,SNR),即接收的信噪比低于该门限值的用户设备所发送的PRACH无法保证解调性能达到所需漏检要求。同样的,下行主要的控制信道或信号有物理下行控制信道(physical downlink control channel,PDCCH)、同步信号块(synchronization signal block,SSB)和剩余最小系统信息(remaining minimum system information,RMSI),下行业务信道有物理下行共享信道(physical downlink shared channel,PDSCH),采用与上行解调门限相同的计算方式,得到下行各个信道的解调门限:S PDCCH、S SSB、S RMSI和 S PDSCH
通过各自的解调门限可以得到控制信道与业务信道的上行覆盖能力差S UL,gap=min(S PRACH,S PUCCH)-S PUSCH,并得到控制信道与业务信道的下行覆盖能力差S DL,gap=min(S SSB,S RMSI)-S PDSCH,则控制信道与业务信道的覆盖能力差为S gap=min(S UL,gap,S DL,gap),当S gap>0,则表示控制信道的覆盖范围比业务信道的覆盖范围大,可为业务信道增强波束赋型能力,并提高业务信道的覆盖范围,以尽可能拉齐控制信道和业务信道的覆盖范围,而第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,且第二天线组中设置有移相器,业务信道主要使用第二天线组则可以满足该需求,使得控制信道的覆盖范围比业务信道的覆盖范围大时,使用该通信装置也可以尽可能拉齐控制信道和业务信道的覆盖范围。
此时,在一种可能的实施方式中,业务信道的波束赋形增益与控制信道的波束赋形增益的差异大于控制信道与业务信道的覆盖能力差。示例性的,nTnR基站驱动m列阵子单元,即第一天线组301和第二天线组302全部的阵子单元为m列,第一射频通道303数为x,第二射频通道304数为y,第一天线组301和第二天线组302为双极化天线,则x和y都为偶数,第一天线组301包括1列阵子单元,第二天线组302包括K列阵子单元,即第二天线组302的阵子单元的数量是第一天线组301的阵子单元的数量的K倍,则有x+y=n,x+yK=m。
业务信道的波束赋形增益与控制信道的波束赋形增益的差异可以表示为:20 x
Figure PCTCN2022106718-appb-000001
Figure PCTCN2022106718-appb-000002
其中,业务信道由第一天线组301和第二天线组302的m列阵子单元波束赋形,而yK列阵子单元中的每个阵子单元的功率为
Figure PCTCN2022106718-appb-000003
x列阵子单元中的每列阵子单元的功率为1,则业务信道的信号功率可以表示为
Figure PCTCN2022106718-appb-000004
而控制信道主要由第一天线组301的x列阵子单元波束赋形,则控制信道的信号功率可以表示为x,转换单位为dB后就得到业务信道的波束赋形增益与控制信道的波束赋形增益的差异为
Figure PCTCN2022106718-appb-000005
Figure PCTCN2022106718-appb-000006
则天线连接的第一射频通道303的数量、第二射频通道304的数量以及天线的第一天线组301的阵子单元的数量和第二天线组302的阵子单元的数量需要满足该约束条件,从而保证在使用时nTnR基站的业务信道和控制信道的覆盖能力尽可能拉齐,且保证了基站的天线覆盖能力和波束赋形效果的需求,保证控制信道全小区120°范围内的基本覆盖,还避免了控制信道波束扫描带来的资源开销增加,同时又为业务信道增强赋型能力带来业务体验的提升。其中对天线连接的第一射频通道303的数量和第二射频通道304的数量的约束在天线中具体可以体现为天线连接的第一射频通道303的接口数和第二射频通道304的接口数。
示例性的,S gap=6dB,请一并参阅图3,则x=2,y=2,即第一射频通道303的数量为2,第二射频通道304的数量也为2,则第一天线组301为1组,包括2列阵子单元,第二天线组302为1组,包括2K列阵子单元,K≥2,此时K取3,第二天线组302包括6列阵子单元。
本申请实施例通过在天线的控制信道和业务信道的覆盖范围尽可能拉齐时约束了天线连接的第一射频通道数、第二射频通道数以及天线的第一天线组的阵子单元的数量和第二天线组的阵子单元的数量,在天线的控制信道和业务信道的覆盖范围尽可能拉齐时保证了基站的基本覆盖能力和波束赋形效果的需求。
2.满足控制信道的覆盖范围基础上尽可能提升业务信道的覆盖范围时:
通过第1种情况相同的方式获取到上行控制信道的解调门限S PRACH和S PUCCH,以及下行控制信道的解调门限S PDCCH、S SSB和S RMSI,控制信道基准值为单个第一射频通道波束赋型时在预设的覆盖范围边缘处接收的信噪比的值,即该通信装置使用单通道赋型时在预期的覆盖区域边缘处的接收的信噪比的值,表示为S base-20×log 10(n),其中S base为nTnR基站的基本解调信噪比要求,20×log 10(n)为通信装置的通道数n对应的功率之和,则有上行覆盖余量S UL,gap=min(S PRACH,S PUCCH)-S base+20×log 10(n),下行覆盖余量S DL,gap=min(S PDCCH,S SSB,S RMSI)-S base+20×log 10(n),则控制信道的覆盖余量S gap=min(S UL,gap,S DL,gap),当S gap>0,则说明控制信道无需n个通道就可以满足其覆盖范围的需求,此时可以尽可能提升业务信道的覆盖范围,则通信装置的波束赋型增益与第一射频通道的波束赋型增益的差值小于或等于所述控制信道的覆盖余量,即该通信装置的所有射频通道的波束赋型增益与第一射频通道的波束赋型增益的差值小于或等于控制信道的覆盖余量,即S base-20×log 10(n)≤S gap,有S gap+20×log 10(n)>S base,即x的取值为满足
Figure PCTCN2022106718-appb-000007
的最小整数值,此时第二射频通道的数量y=n-x。则天线连接的第一射频通道数和第二射频通道数需要满足该约束条件,从而保证在使用时nTnR基站的控制信道的覆盖范围基础上尽可能提升业务信道的覆盖范围,且保证了基站的天线覆盖能力和波束赋形效果的需求。其中对天线连接的第一射频通道的数量和第二射频通道的数量的约束在天线中具体可以体现为天线连接的第一射频通道的接口数和第二射频通道的接口数。
此外,需要说明的是,当天线的阵面大小只能排列m列等间距的阵子单元时,K为整数,即第二天线组的阵子单元的数量为第一天线组的阵子单元的数量的整数倍。
示例性的,如图5所示,通信装置500设置在8T8R基站中,第二天线组502可以设置在第一天线组501的两边,第一天线组501通过线缆和外部的射频单元506的第一射频通道503连接,第二天线组502通过线缆和外部的射频单元506的第二射频通道504连接,S gap=6dB,则x=4,y=4,即第一射频通道503的数量为4,第二射频通道504的数量为4,则第一天线组501为两组,共包括4列阵子单元,第二天线组502为2组,共包括2K列阵子单元,K≥2,此时K取2,即第二天线组502共包括8列阵子单元,移相器505设置在第二天线组502中。
示例性的,如图6所示,通信装置600设置在8T8R基站中,第二天线组602可以设置在第一天线组601的中间,第一天线组601通过线缆和外部的射频单元606的第一射频通道603连接,第二天线组602通过线缆和外部的射频单元606的第二射频通道504连接,S gap=6dB,则x=4,y=4,即第一射频通道603的数量为4,第二射频通道604的数量为4,则第一天线组601为两组,共包括4列阵子单元,第二天线组602为2组,共包括2K列阵子单元,K≥2,此时K取2,即第二天线组602共包括8列阵子单元,移相器605设置在第二天线组602中。
本申请实施例通过在满足天线的控制信道的覆盖范围基础上尽可能提升业务信道的覆盖范围时约束了天线连接的第一射频通道数和第二射频通道数,在满足天线的控制信道的覆盖范围基础上尽可能提升业务信道的覆盖范围时保证了基站的基本覆盖能力和波束赋形效果的需求。
二、通信装置为有源天线处理单元:
请参阅图7,本申请实施例提供的通信装置700的另一实施例包括第一天线组701、第 二天线组702、第一射频通道703、第二射频通道704、移相器705和射频单元706,射频单元706的第一射频通道703通过线缆与第一天线组701连接,射频单元706的第二射频通道704通过线缆与第二天线组702连接。该通信装置700为有源天线处理单元。
示例性的,第一天线组701包括2列阵子单元,第二天线组702包括4列阵子单元,第一射频通道703的数量为2,第二射频通道704的数量为2,射频单元706的数量可以为任意个,若射频单元706的数量为1,则该射频单元706包括4个射频通道,该射频单元706上有4个接口用于通过线缆与第一天线组701和第二天线组702连接,若射频单元706的数量为2,则每个射频单元706包括2个射频通道,每个射频单元706上都有2个接口用于通过线缆与第一天线组701和第二天线组702连接,线缆可以和射频通道一一对应。
其中,第二天线组702的阵子单元的数量大于第一天线组701的阵子单元的数量,该有源天线处理单元的具体实施方式可以参考情况一的天线,本申请实施例不再赘述。
本申请实施例通过提供一种有源天线处理单元,包括第一天线组、第二天线组、第一射频通道、第二射频通道和射频单元,第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,第一天线组与第一射频通道连接,第二天线组与第二射频通道连接,可以通过第一射频通道组驱动第一天线组满足基站的基本覆盖能力需求,通过第二射频通道组驱动第二天线组满足基站的业务信道的波束赋形需求,从而同时保证了基站的基本覆盖能力和波束赋形效果的需求。
三、通信装置为基站:
请参阅图8,本申请实施例提供的通信装置800的另一实施例包括第一天线组801、第二天线组802、第一射频通道803、第二射频通道804、移相器805、射频单元806、第一基带通道807、第二基带通道808和基带处理单元809,射频单元806的第一射频通道803通过线缆与第一天线组801连接,射频单元808的第二射频通道804通过线缆与第二天线组802连接,基带处理单元809的第一基带通道807通过光纤与射频单元806连接,基带处理单元809的第二基带通道808通过光纤与射频单元806连接。该通信装置800为基站。
其中,第二天线组802的阵子单元的数量大于第一天线组801的阵子单元的数量,基带处理单元809用于基于通信装置800的业务信道的波束赋形需求确定移相器805的相位,移相器805的相位基于业务信道在第二天线组802承载的空口信道决定。
需要说明的是,射频单元806可以和第一天线组801、第二天线组802耦合为AAU。
具体的,以5G通信为例,定义SSB和PDSCH存在同时刻频分调度,即需要在同时刻满足业务信道和控制信道的需求,基带处理单元809具体可以包括多址接入信道(multiple access channel,MAC)资源控制器和物理层,MAC资源控制器管理资源分配,通过物理层在第一基带通道807和第二基带通道808对控制信道和业务信道加权赋型,完成数字波束赋形,此外,在通信装置800的每个调度时刻,基带处理单元809还会确定移相器805的相位,此时基带处理单元809只需要考虑业务信道的波束赋形要求,不需要考虑控制信道的波束赋形要求,即控制信道主要由第一天线组801的驱动,在第一基带通道807完成数字波束赋形,此时业务信道除了在第一基带通道807和第二基带通道808完成数字波束赋形,还会利用移相器805执行模拟波束赋形,而移相器805的相位由基带处理单元809确 定的移相器权值确定,移相器权值w=f(Z),其中H为业务信道在当前时刻所承载的终端在第二天线组802的空口信道,其中Z×Z H=UAU H,Z H为Z的共轭转置矩阵,即对Z×Z H做奇异值分解(singular value decomposition,SVD)得到UAU H,其中矩阵U为Z×Z H的特征向量组成的矩阵,矩阵A的对角元素为奇异值,则w=f(Z)=U(:,1),其中U(:,1)表示U的第一列。
示例性的,S gap=6dB,则x=2,y=2,第一射频通道803的数量为2,第二射频通道804的数量为2,相同的,第一基带通道807的数量为2,第二基带通道808的数量为2,第一天线组801包括2列阵子单元,第二天线组802包括2K列阵子单元,K≥2,此时K取3,即第二天线组802包括6列阵子单元,基带处理单元809通过第二基带通道808、射频单元806和第二射频通道804将移相器权值,即移相器805的相位发送给移相器805,一并参照图4,移相器805根据移相器805的相位[0°,0°,0°]、[0°,120°,240°]和[0°,240°,120°],对业务信道做动态的模拟波束赋形得到3个模拟波束,即第二射频通道804通过时分扫描3个模拟波束,从而实现更高的波束赋形要求,而该结构保证了控制信道的基本覆盖要求,避免了控制信道通过移相器做波束扫描,降低控制信道执行波束扫描带来的资源开销,同时还可以尽可能利用阵面大小能力,使得业务信道覆盖进一步增强,在阵面大小设计需求范围内可尽可能利用更多阵子单元来提升业务信道的体验。
本申请实施例通过提供一种基站,包括第一天线组、第二天线组、第一射频通道、第二射频通道、射频单元、基带处理单元、第一基带通道和第二基带通道,第二天线组的阵子单元的数量大于第一天线组的阵子单元的数量,基带处理单元只考虑业务信道的波束赋形需求来确定移相器相位,从而通过第一射频通道组驱动第一天线组满足基站的基本覆盖能力需求,通过第二射频通道组驱动第二天线组满足基站的业务信道的波束赋形需求,从而同时保证了基站的基本覆盖能力和波束赋形效果的需求。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统,装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统,装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,read-only memory)、 随机存取存储器(RAM,random access memory)、磁碟或者光盘等各种可以存储程序代码的介质。

Claims (13)

  1. 一种通信装置,其特征在于,包括第一天线组和第二天线组,所述第二天线组的阵子单元的数量大于所述第一天线组的阵子单元的数量,所述第一天线组与第一射频通道连接,所述第二天线组与第二射频通道连接。
  2. 根据权利要求1所述的通信装置,其特征在于,所述通信装置还包括移相器,所述移相器设置在所述第二天线组中,所述第二天线组用于通过所述移相器实现模拟波束赋形。
  3. 根据权利要求1或2所述的通信装置,其特征在于,所述第二天线组的阵子单元的数量为所述第一天线组的阵子单元的数量的整数倍。
  4. 根据权利要求3所述的通信装置,其特征在于,所述通信装置的控制信道包括上行控制信道和下行控制信道,所述通信装置的业务信道包括上行业务信道和下行业务信道;
    其中,所述控制信道与所述业务信道的覆盖能力差大于零,所述控制信道与所述业务信道的覆盖能力差为上行覆盖能力差与下行覆盖能力差中的最小值,所述上行覆盖能力差为所述上行控制信道的解调门限中的最小值与所述上行业务信道的解调门限的差值,所述下行覆盖能力差为所述下行控制信道的解调门限中的最小值与所述下行业务信道的解调门限的差值。
  5. 根据权利要求4所述的通信装置,其特征在于,所述业务信道的波束赋形增益与所述控制信道的波束赋形增益的差异大于所述控制信道与所述业务信道的覆盖能力差。
  6. 根据权利要求3所述的通信装置,其特征在于,所述通信装置的控制信道包括上行控制信道和下行控制信道,所述通信装置的业务信道包括上行业务信道和下行业务信道;
    其中,所述控制信道的覆盖余量大于零,所述控制信道的覆盖余量为上行覆盖余量与下行覆盖余量中的最小值,所述上行覆盖余量为所述上行控制信道的解调门限中的最小值与控制信道基准值的差值,所述下行覆盖余量为所述下行控制信道的解调门限中的最小值与所述控制信道基准值的差值,所述控制信道基准值为单个所述第一射频通道波束赋型时在预设的覆盖范围边缘处接收的信噪比的值。
  7. 根据权利要求6所述的通信装置,其特征在于,所述通信装置的波束赋型增益与所述第一射频通道的波束赋型增益的差值小于或等于所述控制信道的覆盖余量。
  8. 根据权利要求1、2或4-7中任一项所述的通信装置,其特征在于,所述通信装置为天线。
  9. 根据权利要求1、2或4-7中任一项所述的通信装置,其特征在于,所述通信装置还包括所述第一射频通道和所述第二射频通道。
  10. 根据权利要求9所述的通信装置,其特征在于,所述通信装置为有源天线处理单元。
  11. 根据权利要求2或4-7中任一项所述的通信装置,其特征在于,所述通信装置还包括所述第一射频通道、所述第二射频通道和基带处理单元,所述第一射频通道与所述第二射频通道分别与所述基带处理单元连接。
  12. 根据权利要求11所述的通信装置,其特征在于,所述基带处理单元用于基于所述通信装置的业务信道的波束赋形需求确定所述移相器的相位,所述移相器的相位基于所述业务信道在所述第二天线组承载的空口信道决定。
  13. 根据权利要求11或12所述的通信装置,其特征在于,所述通信装置为基站。
PCT/CN2022/106718 2021-07-31 2022-07-20 一种通信装置 WO2023011182A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22851896.5A EP4362346A1 (en) 2021-07-31 2022-07-20 Communication apparatus
US18/423,498 US20240162954A1 (en) 2021-07-31 2024-01-26 Communication apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110877269.8A CN115694574A (zh) 2021-07-31 2021-07-31 一种通信装置
CN202110877269.8 2021-07-31

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/423,498 Continuation US20240162954A1 (en) 2021-07-31 2024-01-26 Communication apparatus

Publications (1)

Publication Number Publication Date
WO2023011182A1 true WO2023011182A1 (zh) 2023-02-09

Family

ID=85060137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106718 WO2023011182A1 (zh) 2021-07-31 2022-07-20 一种通信装置

Country Status (4)

Country Link
US (1) US20240162954A1 (zh)
EP (1) EP4362346A1 (zh)
CN (1) CN115694574A (zh)
WO (1) WO2023011182A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060003697A1 (en) * 2004-07-05 2006-01-05 Ntt Docomo, Inc. Repeating station, a communication apparatus, and a directivity control method
CN205657184U (zh) * 2016-03-31 2016-10-19 中国移动通信有限公司研究院 一种宏站天线
CN108155932A (zh) * 2016-12-05 2018-06-12 中兴通讯股份有限公司 一种射频拉远单元及基站
CN213212383U (zh) * 2020-11-12 2021-05-14 广州极飞科技股份有限公司 天线装置、雷达系统及可移动平台

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060003697A1 (en) * 2004-07-05 2006-01-05 Ntt Docomo, Inc. Repeating station, a communication apparatus, and a directivity control method
CN205657184U (zh) * 2016-03-31 2016-10-19 中国移动通信有限公司研究院 一种宏站天线
CN108155932A (zh) * 2016-12-05 2018-06-12 中兴通讯股份有限公司 一种射频拉远单元及基站
CN213212383U (zh) * 2020-11-12 2021-05-14 广州极飞科技股份有限公司 天线装置、雷达系统及可移动平台

Also Published As

Publication number Publication date
EP4362346A1 (en) 2024-05-01
US20240162954A1 (en) 2024-05-16
CN115694574A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
EP3308476B1 (en) Apparatus and method for performing beamforming by using antenna array in wireless communication system
RU2756893C2 (ru) Многоузловая система mimo-связи с формированием гибридной диаграммы направленности в архитектуре l1-разбиения
US10312980B2 (en) Method and apparatus for multiuser MIMO beamforming training
WO2020063038A1 (en) Timing advance in new radio
US9160430B2 (en) Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method
US10038480B2 (en) Power control method and device for forming multiple beams in wireless communication system
CN109565324A (zh) 用户设备操作管理的系统和方法
WO2009152695A1 (zh) 分布式天线系统及其数据传输方法、中心控制器
WO2018028501A1 (zh) 一种下行接收波束训练信号的传输方法及装置
US20190123991A1 (en) Systems and Methods for a Sounding Frame in an IEEE 802.11AX Compliant Network
JP2012502539A (ja) ビーム形成システムおよびビーム形成方法
US11075674B2 (en) Method, system and apparatus
Jiang et al. Wireless fronthaul for 5G and future radio access networks: Challenges and enabling technologies
CN107171709B (zh) 一种应用于聚集用户场景下的大规模mimo系统预编码方法
CN110650525B (zh) 一种多波束分配功率mac协议通信方法
Okuyama et al. 5G distributed massive MIMO with ultra-high density antenna deployment in low SHF bands
Tateishi et al. 5G experimental trial achieving over 20 Gbps using advanced multi-antenna solutions
JP2018182660A (ja) 無線通信装置及び再送制御方法
Satyanarayana et al. Adaptive transceiver design for C-RAN in mmWave communications
WO2011150764A1 (zh) 信号传输方法、装置和基站
WO2023011182A1 (zh) 一种通信装置
CN101472287B (zh) 基于智能天线技术的通信系统组网方法及装置
WO2018196518A1 (zh) 波束控制方法、基站和终端
CN101783699A (zh) 多用户mimo系统中下行链路的信号发射方法和装置
Zhao et al. On the efficiency of multi-beam medium access for millimeter-wave networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851896

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022851896

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202417007689

Country of ref document: IN

ENP Entry into the national phase

Ref document number: 2022851896

Country of ref document: EP

Effective date: 20240126

NENP Non-entry into the national phase

Ref country code: DE