WO2023011026A1 - 投影方法、装置与系统及非易失性计算机可读存储介质 - Google Patents

投影方法、装置与系统及非易失性计算机可读存储介质 Download PDF

Info

Publication number
WO2023011026A1
WO2023011026A1 PCT/CN2022/100115 CN2022100115W WO2023011026A1 WO 2023011026 A1 WO2023011026 A1 WO 2023011026A1 CN 2022100115 W CN2022100115 W CN 2022100115W WO 2023011026 A1 WO2023011026 A1 WO 2023011026A1
Authority
WO
WIPO (PCT)
Prior art keywords
color
projection
area
light
monochromatic light
Prior art date
Application number
PCT/CN2022/100115
Other languages
English (en)
French (fr)
Inventor
王振
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Publication of WO2023011026A1 publication Critical patent/WO2023011026A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/12Picture reproducers
    • H04N9/31Projection devices for colour picture display, e.g. using electronic spatial light modulators [ESLM]

Definitions

  • the present application relates to the field of projection technology, and in particular to a projection method, a projection device, a projection system, and a non-volatile computer-readable storage medium.
  • single-color and two-color projection equipment need to use color wheels to produce other colors.
  • blue light sources are generally used to irradiate colors.
  • a round of phosphors are used to excite other colors, thus producing the colors required for the image.
  • color mixing will occur at the junction of the two colors of the wheel, which may cause the gray scale of the projected image to vary. Smooth, the phenomenon of moiré and contour lines on the image.
  • Embodiments of the present application provide a projection method, a projection device, a projection system, and a non-volatile computer-readable storage medium.
  • the projection method in the embodiment of the present application includes: obtaining the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, the color mixing ratio is the projection duration of the first monochromatic light and the The projection duration ratio of the second single color; and projecting an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the projection device in the embodiment of the present application includes an acquisition module and a projection module.
  • the acquisition module can be used to acquire the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, and the color mixing ratio is the projection duration of the first monochromatic light and the projection duration of the second monochromatic light. Ratio of projection durations.
  • the projection module can be used for projecting an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the projection system has a light source, a color wheel, a digital micromirror device, one or more processors, memory and one or more programs.
  • the light source is used for emitting light.
  • the color wheel is used to adjust the color of the light emitted by the light source.
  • the digital micromirror device is used to project light passing through the color wheel.
  • the one or more programs are stored in the memory and executed by the one or more processors, and the programs include instructions for executing the projection method described in the embodiments of the present application.
  • the projection method includes: obtaining the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, and the color mixing ratio is the projection duration of the first monochromatic light and the projection duration of the second monochromatic light a ratio of projection duration; and projecting an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the processors can realize the projection described in the embodiment of the present application.
  • the projection method includes: obtaining the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, and the color mixing ratio is the projection duration of the first monochromatic light and the projection duration of the second monochromatic light a ratio of projection duration; and projecting an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the projection method, projection device, projection system, and non-volatile computer-readable storage medium in the embodiments of the present application can obtain the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, and obtain the color mixing ratio between the first monochromatic light and the second monochromatic light when the light is irradiated.
  • the image is projected according to the color mixing ratio.
  • it can make full use of the light emitted from the color mixing area and reduce the loss of brightness; The phenomenon of contour lines.
  • FIG. 1 is a schematic flowchart of a projection method in some embodiments of the present application.
  • FIG. 2 is a schematic structural diagram of a projection system in some embodiments of the present application.
  • FIG. 3 is a schematic structural diagram of a projection device in some embodiments of the present application.
  • Figure 4 is a schematic diagram of a color wheel in some embodiments of the present application.
  • FIG. 5 is a schematic diagram of pixels on a projection surface in some embodiments of the present application.
  • Figure 6 is a schematic diagram of a color wheel in some embodiments of the present application.
  • FIG. 7 is a schematic flowchart of a projection method in some embodiments of the present application.
  • Fig. 8 is a schematic diagram of a display screen and projection patterns in some embodiments of the present application.
  • FIG. 9 is a schematic flowchart of a projection method in some embodiments of the present application.
  • FIG. 10 is a schematic flowchart of a projection method in some embodiments of the present application.
  • Fig. 11 is a schematic diagram of a display screen and projection patterns in some embodiments of the present application.
  • FIG. 12 is a schematic flowchart of a projection method in some embodiments of the present application.
  • FIG. 13 is a schematic flowchart of a projection method in some embodiments of the present application.
  • Fig. 14 is a schematic diagram of a connection relationship between a computer-readable storage medium and a processor in some embodiments of the present application.
  • An embodiment of the present application provides a projection method, which includes:
  • the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light
  • the projection method also includes:
  • the digital micromirror device is projected to form a pattern when the light irradiates the color mixing area, and the pattern includes a reference area and a correction area.
  • obtaining the color mixing ratio of the first monochromatic light and the second monochromatic light in the color mixing area of the color wheel includes:
  • the pattern includes a plurality of reference areas and a plurality of correction areas, and the reference areas and the correction areas are arranged alternately.
  • the projection forms a pattern, including:
  • the light of the full color segment is opened and projected by the digital micromirror device to form a reference area;
  • the first monochromatic light and the second monochromatic light are released and projected through the digital micromirror device to form a correction area.
  • the color mixing ratio is obtained according to the pattern, including:
  • the color mixing ratio of the correction area is obtained according to the color information of the reference area and the color information of the correction area, where the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light.
  • the color information includes color information and brightness information.
  • the color information includes brightness and color
  • the color mixing ratio of the correction area is obtained according to the color information of the reference area and the color information of the correction area, including:
  • the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light is taken as the color mixing ratio.
  • adjusting the ratio of the projection duration light of the first monochrome to the projection duration of the second monochrome includes:
  • the ratio of wherein, the first step corresponds to the projection duration of the first monochrome, and the second step corresponds to the projection duration of the second monochrome.
  • the embodiment of the present application also provides a projection device, wherein the projection device includes: an acquisition module, the acquisition module 11 is used to acquire the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light; and a projection module, which is used to project an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the projection device includes: an acquisition module, the acquisition module 11 is used to acquire the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel, the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light; and a projection module, which is used to project an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the projection module is also used for: forming a pattern by projecting when the light irradiates the color mixing area through the digital micromirror device, and the pattern includes a reference area and a correction area; the acquisition module is also used for: acquiring the color mixing area of the color wheel.
  • the acquiring module is also used for: acquiring the color mixing ratio according to the pattern.
  • the pattern includes a plurality of reference areas and a plurality of correction areas, and the reference areas and the correction areas are arranged alternately.
  • the projection module is also used for: opening and projecting the light of the full color segment through the digital micromirror device to form a reference area; and opening and projecting the first monochromatic light and the second monochromatic light through the digital micromirror device to form correction area.
  • the obtaining module is also used for: obtaining the color information of the reference area and the color information of the correction area;
  • the color mixing ratio of the correction area is obtained according to the color information of the reference area and the color information of the correction area, where the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light.
  • the color information includes color information and brightness information.
  • the color information includes brightness and color
  • the obtaining module is also used to: obtain the brightness threshold according to the brightness of the reference area, and obtain the color threshold according to the color of the reference area; adjust the projection duration of the first monochromatic light and the projection of the second monochromatic light The ratio of the duration, so that the brightness of the correction area reaches the brightness threshold and the color of the correction area reaches the color threshold; and when the brightness of the correction area reaches the brightness threshold and the color of the correction area reaches the color threshold, the projection duration of the first monochromatic light and The ratio of the projection duration of the second monochrome is used as the color mixing ratio.
  • the obtaining module is also used for: obtaining the projection duration of the color mixing area; obtaining the minimum step length of the digital micromirror device;
  • the first step length and the second step length are used to adjust the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light, wherein the first step corresponds to the projection duration of the first monochromatic light, and the second step length Corresponds to the projection duration of the second monochrome.
  • the embodiment of the present application also provides a projection system, wherein the projection system includes: a light source, the light source is used to emit light; a color wheel, the color wheel is used to adjust the color of the light emitted by the light source; a digital micromirror device, used for the digital micromirror device for projecting light through a color wheel; one or more processors, memory; and one or more programs, wherein the one or more programs are stored in the memory and executed by the one or more processors, the programs including for Instructions to perform any of the above projection methods.
  • the projection system includes: a light source, the light source is used to emit light; a color wheel, the color wheel is used to adjust the color of the light emitted by the light source; a digital micromirror device, used for the digital micromirror device for projecting light through a color wheel; one or more processors, memory; and one or more programs, wherein the one or more programs are stored in the memory and executed by the one or more processors, the programs including for Instructions
  • Embodiments of the present application also provide a non-volatile computer-readable storage medium containing a computer program.
  • the processors are enabled to implement any one of the above projection methods.
  • An embodiment of the present application provides a projection method. Please refer to Figure 1, the projection method of the embodiment of the present application includes:
  • the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light
  • the embodiment of the present application further provides a projection system 100 , and the projection method in the embodiment of the present application can be applied to the projection system 100 .
  • Projection system 100 includes light source 20, color wheel 40, digital micromirror device 50, one or more processors 30, memory 60, and one or more programs.
  • One or more programs are stored in the memory 60 and executed by one or more processors 30 , the programs include instructions for executing the projection method of the embodiments of the present application. That is, when the processor 30 executes the program, the processor 30 can implement the methods in steps 01 and 02.
  • the processor 30 can be used to: obtain the color mixing ratio of the first monochromatic light and the second monochromatic light in the color mixing area of the color wheel 40 ; and control projecting an image according to the color mixing ratio when the light irradiates the color mixing area.
  • the number of light sources 20 may be one or two.
  • the two light sources 20 emit light of different colors. For example, one light source 20 emits blue light, and the other light source 20 emits red light.
  • the light source 20 may be a laser light source 20, for example, the light source 20 is a laser.
  • the projection system 100 may further include a shaping element 91 for shaping the light emitted by the light source 20 and emitting the shaped light to the color wheel 40 .
  • the color wheel 40 is used to adjust the color of the light emitted by the light source 20 .
  • the color wheel 40 may be a fluorescent wheel, and the light with a preset intensity emitted by the light source 20 irradiates the fluorescent material of the fluorescent wheel to generate fluorescence of a corresponding color.
  • the light source 20 emits a blue laser, and the blue laser irradiates on the fluorescent wheel and excites the green fluorescent powder to generate green fluorescent light.
  • the light source 20 emits blue laser light, and the blue laser light irradiates the fluorescent wheel but does not irradiate the fluorescent material, but irradiates the light-transmitting material, then the blue laser light directly transmits through the color wheel 40 .
  • the color wheel 40 is provided with coatings of different colors to form regions of different colors.
  • color wheel 40 includes a red zone, a blue zone, and a green zone.
  • red light is emitted from the color wheel 40 after the light irradiates the red area
  • blue light is emitted from the color wheel 40 after the light irradiates the blue area
  • green light is emitted from the color wheel 40 after the light irradiates the green area.
  • the color wheel 40 may further include one or more of a yellow area, a magenta area, a cyan area, and a white area, which is not limited here.
  • the DMD 50 is used to project the light passing through the color wheel 40 .
  • the digital micromirror device 50 can receive light emitted from the color wheel 40 and can selectively project the light entering the digital micromirror device 50 onto a projection surface.
  • the projection surface may be a display screen 80 , a wall surface, a projection cloth, etc., which is not limited here.
  • the projection system 100 may further include a lens 70, and the light emitted from the digital micromirror device 50 passes through the lens 70 and is projected on the projection surface with a preset focal length.
  • the digital micromirror device 50 includes a plurality of micromirrors, and the microreflectors correspond to the pixels on the projection surface.
  • the digital micromirror device 50 adjusts the opening and closing time of the micromirrors to control the pixels corresponding to the microreflectors on the projection surface.
  • the color and brightness of each pixel can be adjusted, so that the color and brightness projected by the projection system 100 on each pixel position on the projection surface can be adjusted.
  • the projection system 100 further includes a display screen 80, which can be used as a projection surface, and the light emitted from the digital micromirror device 50 passes through the lens 70 and is projected on the display screen 80 to display images.
  • projection system 100 also includes filter 92 .
  • the filter 92 is used to filter out part of the light in the color segment, so as to ensure that the color segment of the light entering the DMD 50 corresponds to the color of the color wheel 40 .
  • the filter 92 is a filter wheel that rotates synchronously with the color wheel 40. When the red light emitted from the color wheel 40 passes through the filter 92, the filter 92 filters out the light outside the red color segment to ensure that it enters the The light of the digital micromirror device 50 is the light of the red color segment.
  • the embodiment of the present application further provides a projection device 10 , which can be applied to the projection system 100 .
  • the projection device 10 includes an acquisition module 11 and a projection module 13 .
  • the acquisition module 11 can be used to implement the method in 01
  • the projection module 13 can be used to implement the method in 02. That is, the acquiring module 11 can be used to acquire the color mixing ratio of the first monochromatic light and the second monochromatic light in the color mixing area of the color wheel 40 .
  • the projection module 13 can be used to project an image according to the color mixing ratio when the light irradiates the color mixing area.
  • FIG. 4 illustrates a three-color color wheel 40 .
  • the color wheel 40 includes a blue region Sb, a red region Sr and a green region Sg.
  • the projection system 100 determines the area irradiated by the light source 20 at the current moment through a calibration point (not shown in the figure).
  • the calibration point is set at the color junction of the color wheel 40 , or on a motor (not shown) that drives the color wheel 40 to rotate, or on a shaft connected to the color wheel 40 , which is not limited here.
  • the sensor detects the calibration point, it means that the light starts to illuminate a certain color area.
  • the moment when the light irradiates each monochromatic area can be determined, that is, it is determined that each monochromatic light enters the digital micromirror device 50 moment.
  • the digital micromirror device 50 can determine the color of the monochromatic light entering the digital micromirror device 50 at any time, so that the corresponding color can be projected on each pixel of the projection surface according to the color information of the projection screen.
  • the projection surface includes a pixel P1 , a pixel P2 , a pixel P3 , and a pixel P4 , and the color wheel 40 rotates once for one frame of image projection on the projection surface.
  • the pixel P1, the pixel P2, and the pixel P3 are required to display blue
  • the pixel P4 is required to display purple.
  • the digital micromirror device 50 projects the blue light on the pixel P1, the pixel P2, the pixel P3, and the pixel P4;
  • the digital micromirror device 50 projects red light on the pixel P4;
  • the pixel P1, pixel P2, and pixel P3 display blue, and pixel P4 displays blue first, and then red.
  • the pixel P4 observed by the human eye is a mixed color of blue and red—purple.
  • the pixel P1, pixel P2, and pixel P3 are in (0-0.25) ms displays blue, and does not display color in (0.25-1.00) ms, so that the user can see pixel P1, pixel P2, and pixel P3 in this frame as blue; pixel P4 displays blue in (0-0.25) ms, and in ( 0.25-0.50) ms displays red, and does not display color at (0.50-1.00) ms. Due to the persistence of vision of the human eye, the user sees that the color of pixel P4 in this frame is purple formed by mixing blue and red. Values are determined by when blue and red are displayed respectively.
  • FIG. 4 and FIG. 6 there is often a color mixing area at the junction of two single-color areas of the color wheel 40 , that is, a border transition area between two adjacent single-color areas.
  • a color mixing area at the junction of two single-color areas of the color wheel 40 , that is, a border transition area between two adjacent single-color areas.
  • the light irradiates the color mixing area, there will be two kinds of monochromatic light entering the digital micromirror device 50. If the digital micromirror device 50 is in the open state to project light during this period, the projected picture seen by the human eye is two kinds of monochromatic light. mixed colors.
  • the color mixing area S12 is between the first monochrome area S1 and the second monochrome area S2, the first monochrome area S1 is a blue area, and the second monochrome area S2 is a red area, then when the light irradiates the color mixing area S12 and When the digital micromirror device 50 is turned on to project light, the projected picture seen by human eyes is purple formed by mixing red light and blue light.
  • the projection system 100 can determine which area of the color wheel 40 the light irradiates when the calibration point is detected, so that it can determine which area of the color wheel 40 the light irradiates at any time in combination with the rotation speed of the color wheel 40, that is, it can determine which area of the color wheel 40 the light is irradiating at any time.
  • the color of light from the micromirror device 50 is often used to calibrate the starting point or end point of a single color, that is, to calibrate the boundary position between two adjacent single colors.
  • the digital micromirror It is difficult for the device 50 to determine the actual proportion of each monochromatic color in the color mixing area, which may cause the color of the monochromatic light actually entering the digital micromirror device 50 to be different from the monochromatic light currently entering the digital micromirror device 50 determined by the projection system 100 according to the calibration point.
  • the colors are different, which will affect the color performance of the projected image.
  • the light irradiates the color mixing area S12 between the blue area S1 and the red area S2, the color mixing area S12 includes the blue part D1 and the red part D2, if the color wheel 40 rotates counterclockwise, the light spot actually passes through the radius R1 Only then enter the red part D2 from the blue part D1.
  • the projection system 100 considers that the light spot enters the red part D2 from the blue part D1 after passing through the radius R2. If the projection system 100 wants the digital micromirror device 50 to project red light, then the digital micromirror device 50 will project light when the light spot passes through the radius R2, causing the digital micromirror device 50 to actually project two kinds of blue light and red light.
  • the light of different colors will cause the gray scale of the projected image to be uneven, which may lead to phenomena such as ripples and contour lines in the projected image.
  • the digital micromirror device 50 when the light irradiates the color mixing area S12 , S23 or S31 , the digital micromirror device 50 does not project light, so as to ensure smooth grayscale of the projected image.
  • the light entering the DMD 50 after passing through the color mixing area S12 , S23 or S31 is not utilized, there is a loss of brightness, resulting in a large decrease in the brightness of the image projected by the projection system 100 .
  • the larger the number of color mixing regions of the color wheel 40 and the larger the range (angle) of the color mixing regions the greater the decrease in brightness of the image projected by the projection system 100 .
  • the projection method, projection system 100, and projection device 10 of the embodiments of the present application can obtain the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel 40, and project according to the color mixing ratio when the light irradiates the color mixing area.
  • the image can make full use of the light emitted from the color mixing area to reduce the loss of brightness; on the other hand, it can accurately project monochromatic light to ensure smooth gray scale of the projected image and avoid the phenomenon of ripples and contour lines in the image.
  • the projection method also includes:
  • the digital micromirror device is projected to form a pattern when the light irradiates the color mixing area, and the pattern includes a reference area and a correction area.
  • the processor 30 may also be used to implement the methods in 03 , 04 and 011 . That is, the processor 30 can also be used to: obtain the color mixing area of the color wheel 40 ; and project the light to form a pattern when the light irradiates the color mixing area through the digital micromirror device 50 .
  • the acquisition module 11 can also be used to implement the methods in 03 and 011
  • the projection module 13 can also be used to implement the method in 04 . That is, the acquiring module 11 can also be used to acquire the color mixing area of the color wheel 40 and acquire the color mixing ratio according to the pattern.
  • the projection module 13 can also be used to form a pattern by projecting when the light irradiates the color mixing area through the digital micromirror device 50 .
  • the color mixing area is an area divided by optical calculation in advance.
  • the boundary of each color area on the color wheel 40 and the boundary of the color mixing area can be determined according to the calibration points, so that the area currently irradiated by the light can be determined in combination with the rotation speed of the color wheel 40 .
  • FIG. 8 is an example of a pattern formed by projection of the digital micromirror device 50 when the light irradiates the color mixing area, and the pattern includes a reference area Sc and a correction area Sj. Please combine FIG. 2 and FIG.
  • the digital micromirror device 50 keeps open light and projects it to form a reference Area Sc, that is, any entry into the digital micromirror device 50 within this period of time is projected to form a reference area Sc, so that the color displayed in the reference area Sc is according to the first monochrome part D1 and the second monochrome part D1 in the color mixing area S12.
  • the actual proportion of the part D2 corresponds to the color formed by mixing the first monochromatic light and the second monochromatic light, and the color includes color and brightness.
  • the digital micromirror device 50 opens to project the first monochromatic light, According to the set second time, the second monochromatic light is projected. In this way, if it is detected on the projection surface that the color of the correction area Sj is consistent or approximately consistent with the color of the reference area Sc, it is considered that the time between the first time and the second time
  • the ratio is the actual ratio of the first monochromatic part D1 and the second monochromatic part D2 in the color mixing area S12.
  • 04 when the light irradiates the color mixing area, it is projected to form a pattern, including:
  • the color mixing ratio is the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light.
  • the processor 30 may also be used to implement the methods in 041 , 042 , 0111 and 0112 . That is, the processor 30 can also be used to: control the digital micromirror device 50 to open the light of the full color segment and project it to form a reference area, and control the digital micromirror device 50 to open the first monochromatic light and the second monochromatic light And perform projection to form the correction area, obtain the color information of the reference area and the color information of the correction area, and obtain the color mixing ratio of the correction area according to the color information of the reference area and the color information of the correction area.
  • the acquisition module 11 can also be used to implement the methods in 0111 and 0112
  • the projection module 13 can also be used to implement the methods in 041 and 042 . That is, the obtaining module 11 can also be used to obtain the color information of the reference area Sc and the color information of the correction area Sj, and obtain the color mixing ratio of the correction area Sj according to the color information of the reference area Sc and the color information of the correction area Sj.
  • the projection module 13 can also be used to open the light of the full color segment through the digital micromirror device 50 and project it to form the reference area Sc, open the first monochromatic light and the second monochromatic light through the digital micromirror device 50 and project it to form Correction area Sj.
  • the color information includes color information and brightness information.
  • 0111 Obtain the color information of the reference area and the color information of the correction area.
  • human eyes can observe the color of the reference area and the color of the correction area on the projection surface, so as to feed back the color information of the reference area to the projection system 100 and the color information of the correction area;
  • electronic devices such as mobile phones and cameras can be used to photograph the projection surface to obtain the color information of the reference area and the color information of the correction area, and the color information of the reference area and the color information of the correction area The information is transmitted to projection system 100 .
  • the color wheel 40 there may be multiple color mixing areas in the color wheel 40.
  • the single color area adjacent to the color mixing area is used as the first single color area and the second single color area.
  • the light emitted from the first monochromatic area is the first monochromatic light; the light emitted from the second monochromatic area is the second monochromatic light.
  • the color mixing ratio of the color mixing area S12 between the blue area and the red area the area S1 is regarded as the first monochromatic area, the first monochromatic light is blue light, the area S2 is regarded as the second monochromatic area, and the second monochromatic area is used.
  • the second monochromatic light is red light; when obtaining the color mixing ratio of the color mixing area S23 between the red area and the green area, the area S2 is used as the first monochromatic area, the first monochromatic light is red light, and the area S3 is used as the first monochromatic area.
  • Two monochromatic areas the second monochromatic light is green light; when obtaining the color mixing ratio of the color mixing area S31 between the green area and the blue area, the area S3 is used as the first monochromatic area, and the first monochromatic light is green
  • the region S1 is used as the second monochromatic region
  • the second monochromatic light is blue light.
  • the digital micromirror device 50 when obtaining the color mixing ratio of a certain color mixing area, the digital micromirror device 50 is not open for projection when the light irradiates the area other than the color mixing area, and the digital micromirror device 50 is in accordance with 041 and 041 when the light irradiates the color mixing area.
  • the regular projection of 042 forms a reference area and a correction area, so that when obtaining the color mixing ratio of a certain color mixing area, the digital micromirror device 50 only projects the first monochromatic light and the second monochromatic light.
  • the color shown in the reference area must be the mixed color of the first monochromatic light and the second monochromatic light
  • the color displayed in the correction area must be the color of the first monochromatic light, the color of the second monochromatic light, or the first color of the first monochromatic light.
  • One of the mixed colors of a monochromatic light and a second monochromatic light For example, when obtaining the color mixing ratio of the color mixing area between the blue area and the red area, the reference area displays purple, and the calibration area displays blue correspondingly according to the projection duration of the blue light and the projection duration of the red light of the digital micromirror device 50. , red, or purple.
  • the light of the digital micromirror device 50 opening the full-color segment is projected to form a reference area, wherein the light of the opening full-color segment indicates that the digital micromirror device 50 remains open, that is, any light entering the digital micromirror device 50
  • the monochromatic light is projected on the reference area.
  • the ratio of the first monochromatic light and the second monochromatic light projected on the reference area must be consistent with the ratio of the first monochromatic part and the second monochromatic part in the color mixing area. For example, when obtaining the color mixing ratio of the color mixing area between the blue area and the red area, the proportion of blue light and red light participating in the purple displayed in the reference area is the ratio of the blue part and the red part in the color mixing area.
  • the digital micromirror device 50 releases the first monochromatic light and the second monochromatic light and projects them to form a correction area, wherein the digital micromirror device 50 releases the first monochromatic light according to the preset first time T1.
  • the colored light is projected to adjust the projection time of the first monochromatic light; and the second monochromatic light is released for projection according to a preset second time T2 to adjust the projection time of the second monochromatic light.
  • the projection duration of the first monochromatic light corresponding to the correction area is the same as the projection duration of the second monochromatic light
  • the ratio of the duration can reflect the ratio of the projection duration of the first monochromatic light corresponding to the reference area to the projection duration of the second monochromatic light, that is, the ratio of the first time T1 to the second time T2 can reflect the ratio of the first monochromatic light in the color mixing area and the ratio of the second monochrome, so that the ratio of the first time T1 to the second time T2 as the color mixing ratio can reflect the ratio of the first monochromatic light to the second monochromatic light corresponding to the color mixing area.
  • the pattern includes a plurality of reference areas and a plurality of correction areas, and the reference areas and the correction areas are arranged alternately. In this way, the distances between the pixels at each position in the calibration area and the nearest reference area are close, so as to compare the colors of the reference area and the calibration area more accurately.
  • the projection surface is a display screen 80
  • the pattern includes a reference area and a correction area, each of which occupies half of the display screen 80 .
  • the color of the part close to the reference area and the part far away from the correction area may be inconsistent.
  • the color of the part above the calibration area close to the reference area is lighter, and the color of the part below the calibration area far from the reference area is darker, making it difficult to compare the colors of the reference area and the calibration area more accurately.
  • FIG. 8 and FIG. 11 Compared with the pattern shown in FIG. 11, the pattern according to the embodiment of the present application (as shown in FIG. 8) includes multiple reference areas and multiple correction areas, and the reference areas and correction areas are arranged alternately so that for a more accurate comparison of the color of the reference area and the calibration area.
  • 0112 Acquire the color mixing ratio of the correction area according to the color information of the reference area and the color information of the correction area, including:
  • the processor 30 may also be used to implement the methods in 121 , 122 and 123 . That is, the processor 30 can also be used to: obtain the brightness threshold according to the brightness of the reference area, and obtain the color threshold according to the color of the reference area; adjust the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light, so that The brightness of the correction area reaches the brightness threshold and the color of the correction area reaches the color threshold; and when the brightness of the correction area reaches the brightness threshold and the color of the correction area reaches the color threshold, the projection duration of the first monochrome light and the second monochrome
  • the ratio of projection time is used as the color mixing ratio.
  • the acquisition module 11 may also be used to implement the methods in 121 and 123
  • the projection module 13 may also be used to implement the method in 122 . That is, the acquisition module 11 can also be used to: acquire the brightness threshold according to the brightness of the reference area, and acquire the color threshold according to the color of the reference area; and when the brightness of the correction area reaches the brightness threshold and the color of the correction area reaches the color threshold, the The ratio of the projection duration of a monochromatic light to the projection duration of a second monochromatic light is used as the color mixing ratio.
  • the projection module 13 can also be used to: adjust the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light, so that the brightness of the correction area reaches the brightness threshold and the color of the correction area reaches the color threshold;
  • the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light is the color mixing ratio.
  • the brightness threshold and the color threshold are respectively determined by the brightness and color of the reference area Sc.
  • the projected pattern can be photographed by electronic devices such as mobile phones and cameras, and the brightness and color values of the reference area Sc and the brightness and color values of the correction area Sj can be obtained.
  • the range of the brightness value and the RGB color value is [0, 255]
  • the brightness threshold is the interval of the brightness value ⁇ 5 of the reference area Sc
  • the color threshold is the interval of the color value ⁇ 5 of the reference area Sc; when each of the reference area Sc When the average brightness of the pixels is 180, the brightness threshold is [175, 185], and when the average brightness value of each pixel in the correction area Sj is within the interval [175, 185], it is considered that the brightness of the correction area Sj reaches the brightness threshold; when referring to When the average RGB color values of each pixel in the area Sc are 128, 0, 128, the color thresholds are [123, 133], [0, 5], [123, 133].
  • the RGB color values are taken as an example for illustration.
  • other color value representation methods may also be used, which are not limited here.
  • the brightness and color of the correction area Sj are related to the projection duration of the first monochromatic light and the projection duration of the second monochromatic light in the correction area Sj.
  • the projection duration of one of the first monochromatic light or the second monochromatic light is first adjusted to adjust the brightness of the correction area Sj to be close to the brightness of the reference area Sc, and then adjust the projection duration of the other monochromatic light.
  • the Projection duration so that the color of the correction area Sj is close to the color of the reference area Sc, and then continue to adjust the projection duration of the first monochromatic light and the second monochromatic light according to the feedback of the brightness value and color value of the correction area Sj, until the correction area
  • the brightness of Sj reaches the brightness threshold and the color of the correction area Sj reaches the color threshold.
  • the first monochromatic light is blue light
  • the second monochromatic light is red light
  • the mixed color of the first monochromatic light and the second monochromatic light is purple. Since the red light contributes more to the brightness of the mixed color, it is necessary to adjust the correction first.
  • the projection duration of red light in area Sj is such that the brightness of calibration area Sj is close to the brightness of reference area Sc, and then the projection duration of blue light in calibration area Sj is adjusted so that the color of calibration area Sj is close to the color of reference area Sc, and then according to the calibration area
  • the feedback of the brightness value and color value of Sj continues to adjust the projection duration of red light and blue light until the brightness of the correction area Sj reaches the brightness threshold and the color of the correction area Sj reaches the color threshold.
  • the ratio of the projection duration of the red light to the blue light that is, the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light is is the mixing ratio.
  • 122 adjusting the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light, including:
  • the processor 30 may also be used to implement the methods in 1221 , 1222 and 1223 . That is, the processor 30 can also be used to: obtain the projection duration of the color mixing area; obtain the duration of the minimum step of the digital micromirror device 50; The first step and the second step of the mirror device 50 are used to adjust the ratio of the projection duration of the first monochromatic light to the projection duration of the second monochromatic light.
  • the acquisition module 11 may also be used to implement the methods in 1221 and 1222
  • the projection module 13 may also be used to implement the method in 1223 . That is, the acquiring module 11 can also be used to: acquire the projection duration of the color mixing area; and acquire the minimum step length of the digital micromirror device 50 .
  • the projection module 13 can also be used to: adjust the first step and the second step of the digital micromirror device 50 according to the brightness threshold, the color threshold, the projection duration of the color mixing area and the minimum step, so as to adjust the projection of the first monochromatic light The ratio of the duration to the projection duration of the second monochrome.
  • the projection duration of the first monochromatic light can be controlled by adjusting the first step length M1 of the digital micromirror device 50, that is, the first time T1 is controlled;
  • the second step size M2 of the mirror device 50 controls the projection duration of the second monochromatic light, that is, controls the second time T2.
  • the total projection duration of the first monochromatic light and the second monochromatic light on the reference area Sc is the projection duration T of the color mixing area.
  • the total step size Mh is to ensure that the adjusted first step size M1 and second step size M2 are accurate, so that the color mixing ratio calculated according to the first step size and the second step size is closer to the real color mixing ratio.
  • the first monochromatic part D1 in the color mixing area S12 can also be determined according to the color mixing ratio, and the first monochromatic light can be used to project. The first monochromatic light emitted by the color part D1 is projected, thereby improving the brightness of the projected image.
  • the more accurate the obtained color mixing ratio is the more it can ensure that the light emitted by the first monochromatic part D1 is the first monochromatic light, and the gray scale produced by projecting the light emitted by the first monochromatic part D1 is smoother.
  • the second monochromatic light emitted from the second monochromatic part D2 in the second monochromatic area S2 and the color mixing area S12 can be used for projection, so as to enhance the brightness of the projected image.
  • the monochromatic area corresponding to the monochromatic light and the part corresponding to the monochromatic light in each color mixing area related to the monochromatic light can be used at most
  • the emitted monochromatic light is projected to improve the brightness of the projected image and ensure smooth grayscale of the projected image.
  • the monochromatic area corresponding to the first monochromatic light is the first monochromatic area S1
  • the color mixing areas related to the first monochromatic light are the color mixing area S12 and the color mixing area S31.
  • the part corresponding to the first monochromatic light in the region S12 is the first monochromatic part D1
  • the part corresponding to the first monochromatic light in the color mixing region S31 is the first monochromatic part D1"
  • the first monochromatic part D1 The ratio can be determined according to the color mixing ratio of the color mixing area S12
  • the ratio of the first monochrome part D1" can be determined according to the color mixing ratio of the color mixing area S31.
  • the projection method in the embodiment of the present application can also use the first monochromatic part D1 and the first monochromatic part D1" to project the first monochromatic light to increase the brightness of the projected image.
  • the embodiment of the present application can obtain the color mixing ratio of the first monochromatic light and the second monochromatic light corresponding to the color mixing area of the color wheel 40, and project an image according to the color mixing ratio when the light irradiates the color mixing area, so that the projected image can be Produces smooth gray scales and improves the brightness of projected images.
  • one or more non-transitory computer-readable storage media 300 containing a computer program 301 when the computer program 301 is executed by one or more processors 30, the processors 30 can Execute the projection method of any of the above-mentioned embodiments, for example, implement one or more steps in steps 01, 02, 03, 04, 011, 0111, 0112, 121, 122, 123, 1221, 1222, 1223, 041 and 042 .
  • the processors 30 are made to perform the following steps:
  • processors 30 when the computer program 301 is executed by one or more processors 30, the processors 30 are made to perform the following steps:
  • the digital micromirror device 50 is projected to form a pattern when the light irradiates the color mixing area, and the pattern includes a reference area and a correction area;
  • the ratio of the projection duration wherein, the first step corresponds to the projection duration of the first monochrome, and the second step corresponds to the projection duration of the second monochrome;

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Projection Apparatus (AREA)

Abstract

一种投影方法、投影装置、投影系统及非易失性计算机可读存储介质。投影方法包括:获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,混色比例是第一单色光的投影时长和第二单色光的投影时长之比;及在光线照射混色区域时根据混色比例投影图像。

Description

投影方法、装置与系统及非易失性计算机可读存储介质
优先权信息
本申请请求2021年8月04日向中国国家知识产权局提交的、专利申请号为202110893067.2的专利申请的优先权和权益,并且通过参照将其全文并入此处。
技术领域
本申请涉及投影技术领域,特别涉及一种投影方法、投影装置、投影系统及非易失性计算机可读存储介质。
背景技术
目前投影机主要有是分为单色光源,双色光源光源和三色光源光源三种类型,单色和双色的投影设备需要用到色轮来产生其他颜色,例如,一般用蓝色光源照射色轮的荧光粉来激发出其他颜色,这样就产生了图像所需要的颜色。针对单色和双色的投影系统,由于色轮的颜色位置标定点的一致性和色轮镀膜的均匀性问题,轮子两个颜色交界的地方就会成产生混色,可能导致投影图像的灰阶不平滑,在图像上产生波纹和等高线的现象。
发明内容
本申请实施方式提供了一种投影方法、投影装置、投影系统及非易失性计算机可读存储介质。
本申请实施方式的投影方法包括:获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比;及在光线照射所述混色区域时根据所述混色比例投影图像。
本申请实施方式的投影装置包括获取模块及投影模块。获取模块可用于获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比。投影模块可用于在光线照射所述混色区域时根据所述混色比例投影图像。
本申请实施方式的投影系统光源、色轮、数字微镜器件、一个或多个处理器、存储器和一个或多个程序。其中,所述光源用于发射光线。所述色轮用于调节所述光源发射的光线的颜色。所述数字微镜器件用于投影经过所述色轮的光线。所述一个或多个程序被存储在所述存储器中,并且被所述一个或多个处理器执行,所述程序包括用于执行本申请实施方式所述的投影方法的指令。投影方法包括:获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比;及在光线照射所述混色区域时根据所述混色比例投影图像。
本申请实施方式的一种包含计算机程序的非易失性计算机可读存储介质,当所述计算机程序被一个或多个处理器执行时,使得所述处理器实现本申请实施方式所述的投影方法。投影方法包括:获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比;及在光线照射所述混色区域时根据所述混色比例投影图像。
本申请实施方式的投影方法、投影装置、投影系统及非易失性计算机可读存储介质能够获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,在光线照射混色区域时根据混色比例投影图像,一方面能够充分利用自混色区域出射的光线,减少亮度损失;另一方面能够准确地投影单色光,确保投影图像的灰阶平滑,且避免图像出现波纹和等高线的现象。
本申请实施方式的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本申请的实践了解到。
附图说明
本申请的上述和/或附加的方面和优点可以从结合下面附图对实施方式的描述中将变得明显和容易理解,其中:
图1是本申请某些实施方式的投影方法的流程示意图;
图2是本申请某些实施方式的投影系统的结构示意图;
图3是本申请某些实施方式的投影装置的结构示意图;
图4是本申请某些实施方式的色轮的示意图;
图5是本申请某些实施方式的投影面的像素的示意图;
图6是本申请某些实施方式的色轮的示意图;
图7是本申请某些实施方式的投影方法的流程示意图;
图8是本申请某些实施方式的显示屏及投影图案的示意图;
图9是本申请某些实施方式的投影方法的流程示意图;
图10是本申请某些实施方式的投影方法的流程示意图;
图11是本申请某些实施方式的显示屏及投影图案的示意图;
图12是本申请某些实施方式的投影方法的流程示意图;
图13是本申请某些实施方式的投影方法的流程示意图;
图14是本申请某些实施方式的计算机可读存储介质与处理器的连接关系示意图。
具体实施方式
下面详细描述本申请的实施方式,所述实施方式的示例在附图中示出,其中,相同或类似的标号自始至终表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施方式是示例性的,仅用于解释本申请的实施方式,而不能理解为对本申请的实施方式的限制。
本申请实施方式提供一种投影方法,其中,包括:
获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,混色比例是第一单色光的投影时长和第二单色的投影时长之比;及
在光线照射混色区域时根据混色比例投影图像。
其中,投影方法还包括:
获取色轮的混色区域;及
通过数字微镜器件在光线照射混色区域时投影以形成图案,图案包括参考区和校正区。
其中,获取色轮的混色区域中的第一单色光与第二单色光的混色比例,包括:
根据图案获取混色比例。
其中,图案包括多个参考区和多个校正区,参考区和校正区交替排布。
其中,在光线照射混色区域时投影形成图案,包括:
通过数字微镜器件开放全色段的光线并进行投影以形成参考区;及
通过数字微镜器件开放第一单色光和第二单色光并进行投影以形成校正区。
其中,根据图案获取混色比例,包括:
获取参考区的色彩信息及校正区的色彩信息;及
根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例,混色比例是第一单色光的投影时长和第二单色的投影时长之比。
其中,色彩信息包括颜色信息和亮度信息。
其中,色彩信息包括亮度和颜色,根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例,包括:
根据参考区的亮度获取亮度阈值,及根据参考区的颜色获取颜色阈值;
调节第一单色光的投影时长和第二单色的投影时长之比,使校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值;及
在校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值时,将第一单色光的投影时长和第二单色的投影时长之比作为混色比例。
其中,调节第一单色的投影时长光和第二单色的投影时长之比,包括:
获取混色区域的投影时长;
获取数字微镜器件的最小步长的时长;及
根据亮度阈值、颜色阈值、混色区域的投影时长及最小步长调节数字微镜器件的第一步长及第二步长,以调节第一单色光的投影时长和第二单色的投影时长之比,其中,第一步长对应第一单色的投影时长,第二步长对应第二单色的投影时长。
本申请实施方式还提供一种投影装置,其中,投影装置包括:获取模块,获取模块11用于获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,混色比例是第一单色光的投影时长和第二单色的投影时长之比;及投影模块,投影模块用于在光线照射混色区域时根据混色比例投影图像。
其中,投影模块还用于:通过数字微镜器件在光线照射混色区域时投影以形成图案,图案包括参考区和校正区;获取模块还用于:获取色轮的混色区域。
其中,获取模块还用于:根据图案获取混色比例。
其中,图案包括多个参考区和多个校正区,参考区和校正区交替排布。
其中,投影模块还用于:通过数字微镜器件开放全色段的光线并进行投影以形成参考区;及通过数字微镜器件开放第一单色光和第二单色光并进行投影以形成校正区。
其中,获取模块还用于:获取参考区的色彩信息及校正区的色彩信息;及
根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例,混色比例是第一单色光的投影时长和第二单色的投影时长之比。
其中,色彩信息包括颜色信息和亮度信息。
其中,色彩信息包括亮度和颜色,获取模块还用于:根据参考区的亮度获取亮度阈值,及根据参考区的颜色获取颜色阈值;调节第一单色光的投影时长和第二单色的投影时长之比,使校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值;及在校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值时,将第一单色光的投影时长和第二单色的投影时长之比作为混色比例。
其中,获取模块还用于:获取混色区域的投影时长;获取数字微镜器件的最小步长的时长;及根据亮度阈值、颜色阈值、混色区域的投影时长及最小步长调节数字微镜器件的第一步长及第二步长,以调节第一单色光的投影时长和第二单色的投影时长之比,其中,第一步长对应第一单色的投影时长,第二步长对应第二单色的投影时长。
本申请实施方式还提供一种投影系统,其中,投影系统包括:光源,光源用于发射光线;色轮,色轮用于调节光源发射的光线的颜色;数字微镜器件,数字微镜器件用于投影经过色轮的光线;一个或多个处理器、存储器;和一个或多个程序,其中一个或多个程序被存储在存储器中,并且被一个或多个处理器执行,程序包括用于执行上述任意一项的投影方法的指令。
本申请实施方式还提供一种包含计算机程序的非易失性计算机可读存储介质,当计算 机程序被一个或多个处理器执行时,使得处理器实现上述任意一项的投影方法。
本申请实施方式提供一种投影方法。请参阅图1,本申请实施方式的投影方法包括:
01:获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,混色比例是第一单色光的投影时长和第二单色的投影时长之比;及
02:在光线照射混色区域时根据混色比例投影图像。
请参阅图2,本申请实施方式还提供一种投影系统100,本申请实施方式的投影方法可应用于投影系统100。投影系统100包括光源20、色轮40、数字微镜器件50、一个或多个处理器30、存储器60、和一个或多个程序。一个或多个程序被存储在存储器60中,并且被一个或多个处理器30执行,程序包括用于执行本申请实施方式的投影方法的指令。即,处理器30执行程序时,处理器30可以实现步骤01及02中的方法。即,处理器30可以用于:获取色轮40的混色区域中的第一单色光与第二单色光的混色比例;及在光线照射混色区域时控制根据混色比例投影图像。
其中,光源20的数量可以是一个或两个。当光源20的数量为两个时,两个光源20发射不同颜色的光线。例如一个光源20发射蓝色光线,另一个光源20发射红色光线。
在某些实施方式中,光源20可以是激光光源20,例如光源20是激光器。
在某些实施方式中,投影系统100还可包括整形元件91,整形元件91用于整形光源20出射的光线,并将整形后的光线出射至色轮40。
色轮40用于调节光源20发射的光线的颜色。在某些实施方式中,色轮40可以是荧光轮,光源20发射的具有预设强度光线照射荧光轮的荧光材料后产生对应颜色的荧光。例如光源20发射蓝色激光,蓝色激光照射在荧光轮上并激发绿色的荧光粉以产生绿色荧光。再例如,光源20发射蓝色激光,蓝色激光照射在荧光轮上但不照射荧光材料,而是照射透光材料,则蓝色激光直接透射色轮40。在某些实施方式中,色轮40设有不同颜色的镀膜,以形成不同颜色的区域。在某些实施方式中,色轮40包括红色区域、蓝色区域和绿色区域。对应地,光线照射红色区域后自色轮40出射红色光,光线照射蓝色区域后自色轮40出射蓝色光,光线照射绿色区域后自色轮40出射绿色光。在某些实施方式中,色轮40还可包括黄色区域、品红色区域、青色区域、白色区域中的一种或多种区域,在此不作限制。
数字微镜器件50用于投影经过色轮40的光线。具体地,数字微镜器件50能够接收自色轮40出射的光线,并能够选择性地将进入数字微镜器件50的光线投影至投影面。其中,投影面可以是显示屏80、墙面、投影布等,在此不作限制。在某些实施方式中,投影系统100还可包括镜头70,数字微镜器件50出射的光线经过镜头70后以预设的焦距投影在投影面上。数字微镜器件50包括多个微反射镜,微反射镜与投影面的像素对应, 数字微镜器件50通过调节微反射镜的开闭时间,以对投影面上与该微反射镜对应的像素的颜色和亮度进行调节,从而能够调节投影系统100在投影面上各像素位置所投影的颜色和亮度。
在某些实施方式中,投影系统100还包显示屏80,显示屏80可作为投影面,自数字微镜器件50出射的光线经过镜头70后投影在显示屏80以显示图像。
在某些实施方式中,投影系统100还包括滤光件92。滤光件92用于滤除部分色段的光线,以确保进入数字微镜器件50的光线的色段与色轮40的颜色对应。例如,滤光件92是与色轮40同步转动的滤光轮,当自色轮40出射的红色光透射滤光件92时,滤光件92滤除红色色段以外的光线,以确保进入数字微镜器件50的光线是红色色段的光线。
请参阅图2及图3,本申请实施方式还提供一种投影装置10,投影装置10可应用于投影系统100。投影装置10包括获取模块11及投影模块13。获取模块11可用于实现01中的方法,投影模块13可用于实现02中的方法。即,获取模块11可用于获取色轮40的混色区域中的第一单色光与第二单色光的混色比例。投影模块13可用于在光线照射混色区域时根据混色比例投影图像。
请参阅图4,图4示意一种3色色轮40,色轮40包括蓝色区域Sb、红色区域Sr和绿色区域Sg。请结合图2,在某些实施方式中,投影系统100通过标定点(图未示出)确定光源20在当前时刻照射的区域。例如,标定点设置在色轮40的颜色交界处,或者设置在驱动色轮40转动的马达(图未示出)上,或者设置在与色轮40连接的转轴上,在此不作限制。当传感器检测到标定点,则代表光线开始照射某一颜色区域。根据标定点并结合色轮40上各区域的边界之间的角度关系及色轮40的转速,可以确定光线照射每个单色区域的时刻,即确定每种单色光进入数字微镜器件50的时刻。如此,数字微镜器件50能够确定任意时段进入数字微镜器件50的单色光的颜色,从而能够根据投影画面的色彩信息在投影面的各像素投影对应的颜色。
请参阅图4及图5,例如,投影面包括像素P1、像素P2、像素P3、及像素P4,投影面上投影一帧画面,色轮40就转动一周。假设根据某一帧的色彩信息,要求像素P1、像素P2、像素P3显示蓝色,像素P4显示紫色。则在这一帧的时间内,当光源20出射的光线照射蓝色区域Sb时,数字微镜器件50将蓝色光投影在像素P1、像素P2、像素P3、及像素P4;当光源20出射的光线照射红色区域Sr时,数字微镜器件50将红色光投影在像素P4;当光源20出射的光线照射绿色区域Sg时,数字微镜器件50不开放,在该帧图像的显示周期内,像素P1、像素P2、像素P3显示蓝色,像素P4先显示蓝色,后显示红色,人眼观测到的像素P4是蓝色与红色的混合色---紫色。进一步,若每帧时长为1ms,蓝色区域Sb、红色区域Sr和绿色区域Sg占色轮40的角度比例为1:1:2,则像素P1、像素P2、 像素P3在(0-0.25)ms显示蓝色,在(0.25-1.00)ms不显示颜色,从而用户在该帧能看见像素P1、像素P2、像素P3为蓝色;像素P4在(0-0.25)ms显示蓝色,在(0.25-0.50)ms显示红色,在(0.50-1.00)ms不显示颜色,由于人眼的视觉暂留现象,在该帧用户看见像素P4的颜色为蓝色和红色混色形成的紫色,紫色的色值由蓝色和红色各自显示的时间确定。
请参阅图4及图6,在色轮40的两个单色区域的交界处往往存在混色区域,即相邻两种单色的交界过渡区。当光线照射混色区域的时段内,会有两种单色光进入数字微镜器件50,如果在这个时段数字微镜器件50处于打开状态投影光线,人眼看到的投影画面是两种单色光的混色。例如混色区域S12在第一单色区域S1和第二单色区域S2之间,第一单色区域S1是蓝色区域,第二单色区域S2是红色区域,则在光线照射混色区域S12且数字微镜器件50处于打开状态投影光线时,人眼看到的投影画面是红色光和蓝色光混合形成的紫色。
投影系统100能够确定检测到标定点时光线照射在色轮40的哪一区域,从而能够结合色轮40的转速确定任意时刻光线照射在色轮40的哪一区域,即能够确定任意时刻进入数字微镜器件50的光线的颜色。其中,标定点往往用于标定某一单色的起点或终点,也即是标定相邻两种单色的分界位置。然而,考虑标定点标定的位置与单色的起点的实际位置之间存在的误差、色轮40的镀膜均匀性不一致、及整形后照射在色轮40的光斑的实际大小等问题,数字微镜器件50难以确定混色区域中各单色的实际占比,可能导致实际进入数字微镜器件50的单色光的颜色与投影系统100根据标定点确定的当前进入数字微镜器件50的单色光的颜色不同,影响投影图像的色彩表现。
请参阅图6,例如光线照射蓝色区域S1和红色区域S2之间的混色区域S12,混色区域S12包括蓝色部分D1和红色部分D2,若色轮40逆时针转动,则光斑实际经过半径R1之后才由蓝色部分D1进入红色部分D2。然而,投影系统100认为光斑经过半径R2之后便由蓝色部分D1进入红色部分D2。若投影系统100想要让数字微镜器件50投影红色光线,则数字微镜器件50在光斑经过半径R2时便会投影光线,导致数字微镜器件50实际投影了蓝色光线和红色光线两种颜色的光线,从而导致投影图像的灰阶不平滑,可能导致投影图像出现波纹和等高线等现象。
在一些实施方式中,在光线照射混色区域S12、S23或S31时,数字微镜器件50不投影光线,以确保投影图像的灰阶平滑。然而,由于经过混色区域S12、S23或S31后进入数字微镜器件50的光线没有得到利用,存在亮度损失,导致投影系统100投影的图像的亮度大幅下降。色轮40的混色区域数量越多,混色区域的范围(角度)越大,则投影系统100投影的图像的亮度下降幅度越大。
本申请实施方式的投影方法、投影系统100及投影装置10能够获取色轮40的混色区域对应的第一单色光与第二单色光的混色比例,在光线照射混色区域时根据混色比例投影图像,一方面能够充分利用自混色区域出射的光线,减少亮度损失;另一方面能够准确地投影单色光,确保投影图像的灰阶平滑,且避免图像出现波纹和等高线的现象。
下面结合附图作进一步说明。
请参阅图7,在某些实施方式中,投影方法还包括:
03:获取色轮的混色区域;及
04:通过数字微镜器件在光线照射混色区域时投影以形成图案,图案包括参考区和校正区。
01:获取色轮的混色区域中的第一单色光与第二单色光的混色比例,包括:
011:根据图案获取混色比例。
请结合图2,在某些实施方式中,处理器30还可以用于实现03、04及011中的方法。即,处理器30还可以用于:获取色轮40的混色区域;及通过数字微镜器件50在光线照射混色区域时投影以形成图案。
请结合图3,在某些实施方式中,获取模块11还可以用于实现03及011中的方法,投影模块13还可用于实现04中的方法。即,获取模块11还可以用于获取色轮40的混色区域及根据图案获取混色比例。投影模块13还可用于通过数字微镜器件50在光线照射混色区域时投影以形成图案。
请结合图6,混色区域是预先经过光学测算后划分的区域。根据标定点可以确定色轮40上各颜色区域的分界,及混色区域的边界,从而能够结合色轮40的转速确定光线当前照射的区域。
请参阅图8,图8是数字微镜器件50在光线照射混色区域时投影形成的图案的示例,图案包括参考区Sc和校正区Sj。请结合图2及图6,其中,在光线照射第一单色区域S1和第二单色区域S2之间的混色区域S12的时间段T内,数字微镜器件50保持开放光线并投影形成参考区Sc,即该时间段内任何进入数字微镜器件50均被投影形成参考区Sc,如此,在参考区Sc显示的色彩是按照混色区域S12中的第一单色部分D1及第二单色部分D2的实际比例对应的第一单色光和第二单色光的比例混色形成的色彩,色彩包括颜色和亮度。同时,在光线照射第一单色区域S1和第二单色区域S2之间的混色区域S12的时间段T内,数字微镜器件50按照设定的第一时间开放投影第一单色光、按照设定的第二时间开放投影第二单色光,如此,若在投影面上检测到校正区Sj的色彩和参考区Sc的色彩一致或近似一致,则认为第一时间与第二时间的比例即为混色区域S12中的第一单色部分D1及第二单色部分D2的实际比例。若在投影面上检测到校正区Sj的色彩和参考区Sc的 色彩存在差异,则调整时间段T内开放投影第一单色光的第一时间和开放投影第二单色光的第二时间,直至在投影面上检测到校正区Sj的色彩和参考区Sc的色彩一致或近似一致。
具体地,请参阅图9及图10,在某些实施方式中,04:在光线照射混色区域时投影以形成图案,包括:
041:通过数字微镜器件开放全色段的光线并进行投影以形成参考区;及
042:通过数字微镜器件开放第一单色光和第二单色光并进行投影以形成校正区。
011:根据图案获取混色比例,包括:
0111:获取参考区的色彩信息及校正区的色彩信息;及
0112:根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例,混色比例是第一单色光的投影时长和第二单色的投影时长之比。
请结合图2,在某些实施方式中,处理器30还可以用于实现041、042、0111及0112中的方法。即,处理器30还可以用于:通过控制数字微镜器件50开放全色段的光线并进行投影以形成参考区、通过控制数字微镜器件50开放第一单色光和第二单色光并进行投影以形成校正区、获取参考区的色彩信息及校正区的色彩信息、及根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例。
请结合图3及图8,在某些实施方式中,获取模块11还可以用于实现0111及0112中的方法,投影模块13还可用于实现041及042中的方法。即,获取模块11还可以用于获取参考区Sc的色彩信息及校正区Sj的色彩信息、及根据参考区Sc的色彩信息和校正区Sj的色彩信息获取校正区Sj的混色比例。投影模块13还可用于通过数字微镜器件50开放全色段的光线并进行投影以形成参考区Sc、通过数字微镜器件50开放第一单色光和第二单色光并进行投影以形成校正区Sj。
其中,色彩信息包括颜色信息和亮度信息。0111:获取参考区的色彩信息及校正区的色彩信息,在一个实施例中,可以是人眼观察投影面上参考区的色彩和校正区的色彩,以向投影系统100反馈参考区的色彩信息及校正区的色彩信息;在又一实施例中,可以使用手机、相机等电子设备拍摄投影面获取参考区的色彩信息及校正区的色彩信息,并将参考区的色彩信息及校正区的色彩信息传输至投影系统100。
请结合图6,色轮40可能存在多个混色区域,在获取某一混色区域的混色比例时,将该混色区域相邻的单色区域作为第一单色区域和第二单色区域,自第一单色区域出射的光线为第一单色光;自第二单色区域出射的光线为第二单色光。例如在获取蓝色区域和红色区域之间的混色区域S12的混色比例时,将区域S1作为第一单色区域,第一单色光为蓝色光,将区域S2作为第二单色区域,第二单色光为红色光;在获取红色区域和绿色区域之间的混色区域S23的混色比例时,将区域S2作为第一单色区域,第一单色光为红色 光,将区域S3作为第二单色区域,第二单色光为绿色光;在获取绿色区域和蓝色区域之间的混色区域S31的混色比例时,将区域S3作为第一单色区域,第一单色光为绿色光,将区域S1作为第二单色区域,第二单色光为蓝色光。
请结合图2,在获取某一混色区域的混色比例时,在光线照射该混色区域以外的区域时数字微镜器件50不开放投影,在光线照射该混色区域时数字微镜器件50按照041及042的投影规则投影形成参考区和校正区,如此,在获取某一混色区域的混色比例时,数字微镜器件50仅投影第一单色光和第二单色光。从而参考区显示的色彩一定是第一单色光和第二单色光的混色的色彩,校正区显示的色彩一定是第一单色光的色彩、第二单色光的色彩、或第一单色光和第二单色光的混色的色彩中的一种。例如在获取蓝色区域和红色区域之间的混色区域的混色比例时,参考区显示紫色,校正区域根据数字微镜器件50开放蓝色光的投影时长和开放红色光的投影时长,对应显示蓝色、红色、或紫色。
根据041中的方法,数字微镜器件50开放全色段的光线并进行投影以形成参考区,其中,开放全色段的光线指数字微镜器件50保持开放,即任何进入数字微镜器件50的单色光均被投影在参考区。如此,投影在参考区的第一单色光与第二单色光的比例一定与混色区域中第一单色部分和第二单色部分的比例一致。例如在获取蓝色区域和红色区域之间的混色区域的混色比例时,参考区显示的紫色中蓝色光和红色光参与的比例是混色区域中蓝色部分和红色部分的比例。
根据042中的方法,数字微镜器件50开放第一单色光和第二单色光并进行投影以形成校正区,其中,数字微镜器件50按预设的第一时间T1开放第一单色光进行投影,以调节第一单色光的投影时间;及按预设的第二时间T2开放第二单色光进行投影,以调节第二单色光的投影时间。
请结合0112中的方法:根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例。其中,数字微镜器件50投影形成参考区的第一单色光和第二单色光的比例是固定的,参考区显示的色彩也是固定的。校正区显示的色彩由数字微镜器件50投影至参考区的第一单色光和第二单色光的比例确定,即校正区对应的第一单色光的投影时长与第二单色光的投影时长的比例,也即是第一时间T1和第二时间T2的比例。当根据参考区的色彩信息和校正区的色彩信息能够确定参考区的色彩与校正区的色彩一致或近似一致时,校正区对应的第一单色光的投影时长与第二单色光的投影时长的比例能够反映参考区对应的第一单色光的投影时长与第二单色光的投影时长的比例,即第一时间T1和第二时间T2的比例能够反映混色区域中第一单色和第二单色的占比,从而将第一时间T1和第二时间T2的比例作为混色比例能够反映混色区域对应的第一单色光与第二单色光的比例。
请参阅图8,在某些实施方式中,图案包括多个参考区和多个校正区,参考区和校正 区交替排布。如此,校正区内各位置的像素到最邻近的参考区的距离接近,以便于更准确地比较参考区和校正区的色彩。请参阅图11,在一个实施例中,投影面为显示屏80,图案包括一个参考区和一个校正区,参考区和校正区各占显示屏80的一半。在投影系统100镜头70的视场角及显示屏80的均匀性的影响下,人眼或设备拍摄而观察到的校正区中,靠近参考区的部分和远离校正区的部分的色彩可能不一致,例如校正区上方靠近参考区的部分的色彩偏浅、校正区下方远离参考区的部分的色彩偏深,导致比较参考区和校正区的色彩时不容易比较准确。请结合图8及图11,相较于图11示意的图案,本申请实施方式的图案(如图8所示)包括多个参考区和多个校正区,参考区和校正区交替排布以便于更准确地比较参考区和校正区的色彩。
请参阅图12,在某些实施方式中,0112:根据参考区的色彩信息和校正区的色彩信息获取校正区的混色比例,包括:
121:根据参考区的亮度获取亮度阈值,及根据参考区的颜色获取颜色阈值;
122:调节第一单色光的投影时长和第二单色的投影时长之比,使校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值;及
123:在校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值时,将第一单色光的投影时长和第二单色的投影时长之比作为混色比例。
请结合图2,在某些实施方式中,处理器30还可以用于实现121、122及123中的方法。即,处理器30还可以用于:根据参考区的亮度获取亮度阈值,及根据参考区的颜色获取颜色阈值;调节第一单色光的投影时长和第二单色的投影时长之比,使校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值;及在校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值时,将第一单色光的投影时长和第二单色的投影时长之比作为混色比例。
请结合图3,在某些实施方式中,获取模块11还可以用于实现121及123中的方法,投影模块13还可以用于实现122中的方法。即,获取模块11还可以用于:根据参考区的亮度获取亮度阈值,及根据参考区的颜色获取颜色阈值;及在校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值时,将第一单色光的投影时长和第二单色的投影时长之比作为混色比例。投影模块13还可以用于:调节第一单色光的投影时长和第二单色的投影时长之比,使校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值;
请结合图6及图8,在某些实施方式中,在校正区Sj的亮度达到亮度阈值且校正区Sj的颜色达到颜色阈值时,认为校正区Sj的色彩与参考区Sc的色彩近似一致,此时第一单色光的投影时长和所述第二单色的投影时长之比,即第一时间T1与第二时间T2之比即为混色比例。
其中,亮度阈值和颜色阈值分别由参考区Sc的亮度和颜色确定。在一个实施例中, 可通过手机、相机等电子设备拍摄投影图案,并获取参考区Sc的亮度值、颜色值,及获取校正区Sj的亮度值、颜色值。例如,亮度值和RGB颜色值的范围是[0,255],亮度阈值是参考区Sc的亮度值±5的区间,颜色阈值是参考区Sc的颜色值±5的区间;当参考区Sc各像素的平均亮度为180时,亮度阈值为[175,185],当校正区Sj的各像素的平均亮度值在区间[175,185]内时则认为校正区Sj的亮度达到亮度阈值;当参考区Sc各像素的平均RGB颜色值为128,0,128时,颜色阈值为[123,133],[0,5],[123,133]。本例中以RGB颜色值作为示例进行说明,在确定参考区Sc和校正区Sj的颜色值时还可以采用其他颜色值的表示方式,在此不作限制。
校正区Sj的亮度和颜色与校正区Sj第一单色光的投影时长和第二单色的投影时长相关。在一个实施例中,先调整第一单色光或第二单色光之一的投影时长,以将校正区Sj的亮度调整至与参考区Sc的亮度接近,再调整另一单色光的投影时长,使校正区Sj的颜色与参考区Sc的颜色接近,之后根据校正区Sj的亮度值和颜色值的反馈继续调整第一单色光和第二单色光的投影时长,直至校正区Sj的亮度达到亮度阈值且校正区Sj的颜色达到颜色阈值。例如第一单色光是蓝色光,第二单色光是红色光,第一单色光和第二单色光的混色是紫色,由于红色光对混色的亮度贡献较大,因此先调整校正区Sj红色光的投影时长,使校正区Sj的亮度接近参考区Sc的亮度,再调整校正区Sj蓝色光的投影时长,使校正区Sj的颜色与参考区Sc的颜色接近,之后根据校正区Sj的亮度值和颜色值的反馈继续调整红色光和蓝光的投影时长,直至校正区Sj的亮度达到亮度阈值且校正区Sj的颜色达到颜色阈值。当校正区Sj的亮度达到亮度阈值且校正区Sj的颜色达到颜色阈值时,红色光和蓝光的投影时长之比,即第一单色光的投影时长和第二单色的投影时长之比即为混色比例。
进一步地,请参阅图13,在某些实施方式中,122:调节第一单色光的投影时长和第二单色的投影时长之比,包括:
1221:获取混色区域的投影时长;
1222:获取数字微镜器件的最小步长的时长;及
1223:根据亮度阈值、颜色阈值、混色区域的投影时长及最小步长调节数字微镜器件的第一步长及第二步长,以调节第一单色光的投影时长和第二单色的投影时长之比,其中,第一步长对应第一单色的投影时长,第二步长对应第二单色的投影时长。
请结合图2,在某些实施方式中,处理器30还可以用于实现1221、1222及1223中的方法。即,处理器30还可以用于:获取混色区域的投影时长;获取数字微镜器件50的最小步长的时长;及根据亮度阈值、颜色阈值、混色区域的投影时长及最小步长调节数字微镜器件50的第一步长及第二步长,以调节第一单色光的投影时长和第二单色的投影时 长之比。
请结合图3,在某些实施方式中,获取模块11还可以用于实现1221及1222中的方法,投影模块13还可用于实现1223中的方法。即,获取模块11还可以用于:获取混色区域的投影时长;及获取数字微镜器件50的最小步长的时长。投影模块13还可以用于:根据亮度阈值、颜色阈值、混色区域的投影时长及最小步长调节数字微镜器件50的第一步长及第二步长,以调节第一单色光的投影时长和第二单色的投影时长之比。
请结合图6及图8,在某些实施方式中,可通过调整数字微镜器件50的第一步长M1控制第一单色光的投影时长,即控制第一时间T1;通过调整数字微镜器件50的第二步长M2控制第二单色光的投影时长,即控制第二时间T2。其中,第一步长M1和第二步长M2的最小调整尺度是数字微镜器件50的最小步长M0,即当M1=n1*M0,M2=n2*M0,n1、n2为自然数。假设数字微镜器件50的最小步长的时长为Tm。当n1=0时,第一步长为0,则数字微镜器件50没有开放投影第一单色光。当n1=1时,第一步长M1=1*M0,第一步长M1对应的第一时间T1=1*Tm,即数字微镜器件50开放第一单色光投影的时间为1*Tm。以此类推,当第一步长M1=n1*M0时,对应的第一时间T1=n1*Tm。类似地,当第二步长M2=n2*M0时,对应的第二时间T2=n2*Tm。
由于在光线照射混色区域时,数字微镜器件50在参考区Sc保持开放投影,因此第一单色光和第二单色光在参考区Sc的总投影时长为混色区域的投影时长T。理论上,当校正区Sj的色彩与参考区Sc的色彩一致时,第一时间T1与第二时间T2之和同样为混色区域的投影时长T,即T1+T2=T。在混色区域的投影时长T和数字微镜器件50的最小步长的时长Tm已知的情况下,可以确定混色区域对应的总步长Mh,即T=Tm*n,Mh=n*M0。也即是说,当校正区Sj的色彩与参考区Sc的色彩一致时,混色区域对应的总步长Mh是第一步长M1与第二步长M2之和,即Mh=M1+M2=n1*M0+n2*M0=(n1+n2)*M0=n*M0,n1+n2=n。如此,在某些实施方式中,在根据亮度阈值和颜色阈值调整第一步长和第二步长的同时,还需确保第一步长M1与第二步长M2之和等于混色区域对应的总步长Mh,以确保调整后的第一步长M1和第二步长M2准确,使根据第一步长和第二步长计算出的混色比例更接近真实的混色比例。
请结合图6,例如,总步长Mh=30M0,第一步长M1=9M0,第二步长M2=20M0,此时校正区Sj的亮度达到亮度阈值,且校正区Sj的颜色达到颜色阈值。由于M1+M2=9M0+20M0=29M0,29M0<30M0,说明仍有1个最小步长M0的调整空间使校正区Sj的色彩更接近参考区Sc的色彩。则可以分别尝试第一步长M1=10M0、第二步长M2=20M0及第一步长M1=9M0、第二步长M2=21M0两种调整方法,并在调整后检测校正区Sj的亮度值和颜色值,以确定通过哪一种调整方法调整后,校正区Sj的色彩更接近 参考区Sc的色彩。例如,当第一步长M1=10M0,第二步长M2=20M0时,校正区Sj的色彩更接近参考区Sc的色彩,则根据第一步长M1和第二步长确定混色比例,混色比例=M1:M2=1:2,即混色区域S12中第一单色部分D1和第二单色部分D2的比例D1:D2=1:2。如此,能够确定混色区域S12中第一单色部分D1和第二单色部分D2的占比。
在一些实施例中,为了避免投影图像的灰阶不平滑,在光线照射混色区域时不投影光线,导致混色区域的单色光没有得到利用,会导致投影图像的亮度下降。本申请的实施方式中,除了能够利用第一单色区域S1出射的第一单色光进行投影,还能够根据混色比例确定混色区域S12中的第一单色部分D1,并能够利用第一单色部分D1出射的第一单色光进行投影,从而提升投影图像的亮度。其中,获取的混色比例越准确,则越能够确保第一单色部分D1出射的光线均为第一单色光,投影第一单色部分D1出射的光线产生的灰阶越平滑。类似地,本申请的实施方式最多能够利用第二单色区域S2及混色区域S12中的第二单色部分D2出射的第二单色光进行投影,以提升投影图像的亮度。进一步地,本申请的实施方式中,在投影某一单色光时,最多能够利用该单色光对应的单色区域及每个该单色光相关的混色区域中该单色光对应的部分出射的该单色光进行投影,以能够提升投影图像的亮度,及能够确保投影图像的灰阶平滑。
例如,在图6示意的色轮40中,第一单色光对应的单色区域为第一单色区域S1,第一单色光相关的混色区域为混色区域S12和混色区域S31,在混色区域S12中与第一单色光对应的部分是第一单色部分D1,在混色区域S31中与第一单色光对应的部分是第一单色部分D1”,第一单色部分D1的占比可根据混色区域S12的混色比例确定,第一单色部分D1”的占比可根据混色区域S31的混色比例确定。相较于只利用第一单色区域S1投影第一单色光的方案,本申请实施方式的投影方法还可利用第一单色部分D1和第一单色部分D1”投影第一单色光,以提升投影图像的亮度。
综上,本申请的实施方式能够获取色轮40的混色区域对应的第一单色光与第二单色光的混色比例,在光线照射混色区域时根据混色比例投影图像,从而能够使投影图像产生平滑的灰阶,及提高投影图像的亮度。
请参阅图14,本申请实施方式的一个或多个包含计算机程序301的非易失性计算机可读存储介质300,当计算机程序301被一个或多个处理器30执行时,使得处理器30可执行上述任一实施方式的投影方法,例如实现步骤01、02、03、04、011、0111、0112、121、122、123、1221、1222、1223、041及042中的一项或多项步骤。
例如,当计算机程序301被一个或多个处理器30执行时,使得处理器30执行以下步骤:
01:获取色轮40的混色区域对应的第一单色光与第二单色光的混色比例,混色比例 是第一单色光的投影时长和第二单色的投影时长之比;及
02:在光线照射混色区域时根据混色比例投影图像。
再例如,在计算机程序301被一个或多个处理器30执行时,使得处理器30执行以下步骤:
03:获取色轮40的混色区域;
04:通过数字微镜器件50在光线照射混色区域时投影以形成图案,图案包括参考区和校正区;
0111:获取参考区的色彩信息及校正区的色彩信息;
121:根据参考区的亮度获取亮度阈值,及根据参考区的颜色获取颜色阈值
1221:获取混色区域的投影时长;
1222:获取数字微镜器件50的最小步长的时长;
1223:根据亮度阈值、颜色阈值、混色区域的投影时长及最小步长调节数字微镜器件50的第一步长及第二步长,以调节第一单色光的投影时长和第二单色的投影时长之比,其中,第一步长对应第一单色的投影时长,第二步长对应第二单色的投影时长;
123:在校正区的亮度达到亮度阈值且校正区的颜色达到颜色阈值时,将第一单色光的投影时长和第二单色的投影时长之比作为混色比例;及
02:在光线照射混色区域时根据混色比例投影图像。
在本说明书的描述中,参考术语“一个实施方式”、“一些实施方式”、“示意性实施方式”、“示例”、“具体示例”或“一些示例”等的描述意指结合所述实施方式或示例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施方式或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施方式或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施方式或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本邻域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。
流程图中或在此以其他方式描述的任何过程或方法描述可以被理解为,表示包括一个或更多个用于实现特定逻辑功能或过程的步骤的可执行指令的代码的模块、片段或部分,并且本申请的优选实施方式的范围包括另外的实现,其中可以不按所示出或讨论的顺序,包括根据所涉及的功能按基本同时的方式或按相反的顺序,来执行功能,这应被本申请的实施例所属技术邻域的技术人员所理解。
尽管上面已经示出和描述了本申请的实施方式,可以理解的是,上述实施方式是示例性的,不能理解为对本申请的限制,本邻域的普通技术人员在本申请的范围内可以对上述实施方式进行变化、修改、替换和变型。

Claims (20)

  1. 一种投影方法,其中,包括:
    获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比;及
    在光线照射所述混色区域时根据所述混色比例投影图像。
  2. 根据权利要求1所述的投影方法,其中,所述投影方法还包括:
    获取色轮的混色区域;及
    通过数字微镜器件在光线照射所述混色区域时投影以形成图案,所述图案包括参考区和校正区。
  3. 根据权利要求2所述的投影方法,其中,所述获取所述色轮的混色区域中的第一单色光与第二单色光的混色比例,包括:
    根据所述图案获取所述混色比例。
  4. 根据权利要求2所述的投影方法,其中,所述图案包括多个参考区和多个校正区,所述参考区和所述校正区交替排布。
  5. 根据权利要求2所述的投影方法,其中,所述在光线照射所述混色区域时投影形成图案,包括:
    通过数字微镜器件开放全色段的光线并进行投影以形成所述参考区;及
    通过数字微镜器件开放所述第一单色光和所述第二单色光并进行投影以形成所述校正区。
  6. 根据权利要求2所述的投影方法,其中,所述根据所述图案获取所述混色比例,包括:
    获取所述参考区的色彩信息及所述校正区的色彩信息;及
    根据所述参考区的色彩信息和所述校正区的色彩信息获取所述校正区的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比。
  7. 根据权利要求6所述的投影方法,其中,所述色彩信息包括颜色信息和亮度信息。
  8. 根据权利要求6所述的投影方法,其中,所述色彩信息包括亮度和颜色,所述根据所述参考区的色彩信息和所述校正区的色彩信息获取所述校正区的混色比例,包括:
    根据所述参考区的亮度获取亮度阈值,及根据所述参考区的颜色获取颜色阈值;
    调节所述第一单色光的投影时长和所述第二单色的投影时长之比,使所述校正区的亮度达到所述亮度阈值且所述校正区的颜色达到所述颜色阈值;及
    在所述校正区的亮度达到所述亮度阈值且所述校正区的颜色达到所述颜色阈值时,将所述第一单色光的投影时长和所述第二单色的投影时长之比作为所述混色比例。
  9. 根据权利要求8所述的投影方法,其中,所述调节所述第一单色的投影时长光和所述第二单色的投影时长之比,包括:
    获取所述混色区域的投影时长;
    获取所述数字微镜器件的最小步长的时长;及
    根据所述亮度阈值、所述颜色阈值、所述混色区域的投影时长及所述最小步长调节所述数字微镜器件的第一步长及第二步长,以调节所述第一单色光的投影时长和所述第二单色的投影时长之比,其中,所述第一步长对应所述第一单色的投影时长,所述第二步长对应所述第二单色的投影时长。
  10. 一种投影装置,其中,包括:
    获取模块,所述获取模块用于获取色轮的混色区域对应的第一单色光与第二单色光的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比;及
    投影模块,所述投影模块用于在光线照射所述混色区域时根据所述混色比例投影图像。
  11. 根据权利要求10所述的投影装置,其中,
    所述投影模块还用于:通过数字微镜器件在光线照射所述混色区域时投影以形成图案,所述图案包括参考区和校正区;
    所述获取模块还用于:获取色轮的混色区域。
  12. 根据权利要求11所述的投影装置,其中,所述获取模块还用于:
    根据所述图案获取所述混色比例。
  13. 根据权利要求11所述的投影装置,其中,所述图案包括多个参考区和多个校正区, 所述参考区和所述校正区交替排布。
  14. 根据权利要求11所述的投影装置,其中,所述投影模块还用于:
    通过数字微镜器件开放全色段的光线并进行投影以形成所述参考区;及
    通过数字微镜器件开放所述第一单色光和所述第二单色光并进行投影以形成所述校正区。
  15. 根据权利要求11所述的投影装置,其中,所述获取模块还用于:
    获取所述参考区的色彩信息及所述校正区的色彩信息;及
    根据所述参考区的色彩信息和所述校正区的色彩信息获取所述校正区的混色比例,所述混色比例是所述第一单色光的投影时长和所述第二单色的投影时长之比。
  16. 根据权利要求15所述的投影装置,其中,所述色彩信息包括颜色信息和亮度信息。
  17. 根据权利要求15所述的投影装置,其中,所述色彩信息包括亮度和颜色,所述获取模块还用于:
    根据所述参考区的亮度获取亮度阈值,及根据所述参考区的颜色获取颜色阈值;
    调节所述第一单色光的投影时长和所述第二单色的投影时长之比,使所述校正区的亮度达到所述亮度阈值且所述校正区的颜色达到所述颜色阈值;及
    在所述校正区的亮度达到所述亮度阈值且所述校正区的颜色达到所述颜色阈值时,将所述第一单色光的投影时长和所述第二单色的投影时长之比作为所述混色比例。
  18. 根据权利要求17所述的投影装置,其中,所述获取模块还用于:
    获取所述混色区域的投影时长;
    获取所述数字微镜器件的最小步长的时长;及
    根据所述亮度阈值、所述颜色阈值、所述混色区域的投影时长及所述最小步长调节所述数字微镜器件的第一步长及第二步长,以调节所述第一单色光的投影时长和所述第二单色的投影时长之比,其中,所述第一步长对应所述第一单色的投影时长,所述第二步长对应所述第二单色的投影时长。
  19. 一种投影系统,其中,所述投影系统包括:
    光源,所述光源用于发射光线;
    色轮,所述色轮用于调节所述光源发射的光线的颜色;
    数字微镜器件,所述数字微镜器件用于投影经过所述色轮的光线;
    一个或多个处理器、存储器;和
    一个或多个程序,其中所述一个或多个程序被存储在所述存储器中,并且被所述一个或多个处理器执行,所述程序包括用于执行权利要求1至9任意一项所述的投影方法的指令。
  20. 一种包含计算机程序的非易失性计算机可读存储介质,当所述计算机程序被一个或多个处理器执行时,使得所述处理器实现权利要求1至9中任意一项所述的投影方法。
PCT/CN2022/100115 2021-08-04 2022-06-21 投影方法、装置与系统及非易失性计算机可读存储介质 WO2023011026A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110893067.2A CN115706785A (zh) 2021-08-04 2021-08-04 投影方法、装置与系统及非易失性计算机可读存储介质
CN202110893067.2 2021-08-04

Publications (1)

Publication Number Publication Date
WO2023011026A1 true WO2023011026A1 (zh) 2023-02-09

Family

ID=85154235

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/100115 WO2023011026A1 (zh) 2021-08-04 2022-06-21 投影方法、装置与系统及非易失性计算机可读存储介质

Country Status (2)

Country Link
CN (1) CN115706785A (zh)
WO (1) WO2023011026A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315604A1 (en) * 2007-11-28 2010-12-16 Koninklijke Philips Electronics N.V. Illumination system, method and projection device for controlling light emitted during a spoke time period
CN102854733A (zh) * 2012-08-06 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103676427A (zh) * 2012-08-31 2014-03-26 卡西欧计算机株式会社 有效利用轮辐期间提供高画质图像的投影装置、投影方法
CN104756005A (zh) * 2012-11-07 2015-07-01 日立麦克赛尔株式会社 投影型影像显示装置
CN111338166A (zh) * 2018-12-19 2020-06-26 青岛海信激光显示股份有限公司 激光光源及激光投影机
CN111812930A (zh) * 2019-04-10 2020-10-23 卡西欧计算机株式会社 投影装置、投影控制装置以及记录介质

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100385879B1 (ko) * 2000-10-26 2003-06-02 엘지전자 주식회사 액정 프로젝터의 광학계
US20080218458A1 (en) * 2007-03-02 2008-09-11 Taro Endo Color display system
EP1653748A1 (en) * 2004-10-27 2006-05-03 Deutsche Thomson-Brandt Gmbh Sequential colour display device
CN102929083B (zh) * 2011-08-11 2016-03-16 深圳市绎立锐光科技开发有限公司 投影装置及其色轮延迟时间的调整方法
US8941678B2 (en) * 2012-07-27 2015-01-27 Eastman Kodak Company Display system providing observer metameric failure reduction
CN107991834B (zh) * 2015-11-04 2020-05-15 海信集团有限公司 光源的双色轮同步控制方法
CN109324464A (zh) * 2017-07-31 2019-02-12 成都理想境界科技有限公司 一种光纤扫描投影设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100315604A1 (en) * 2007-11-28 2010-12-16 Koninklijke Philips Electronics N.V. Illumination system, method and projection device for controlling light emitted during a spoke time period
CN102854733A (zh) * 2012-08-06 2013-01-02 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103676427A (zh) * 2012-08-31 2014-03-26 卡西欧计算机株式会社 有效利用轮辐期间提供高画质图像的投影装置、投影方法
CN104756005A (zh) * 2012-11-07 2015-07-01 日立麦克赛尔株式会社 投影型影像显示装置
CN111338166A (zh) * 2018-12-19 2020-06-26 青岛海信激光显示股份有限公司 激光光源及激光投影机
CN111812930A (zh) * 2019-04-10 2020-10-23 卡西欧计算机株式会社 投影装置、投影控制装置以及记录介质

Also Published As

Publication number Publication date
CN115706785A (zh) 2023-02-17

Similar Documents

Publication Publication Date Title
TWI248553B (en) Adaptive image display
US7283181B2 (en) Selectable color adjustment for image display
US7391475B2 (en) Display image generation with differential illumination
EP2271120B1 (en) Light source device, video projector and video projection method
US7692866B2 (en) Display systems with and methods for multiple source colour illumination
JP6016068B2 (ja) 画像投影装置及びその制御方法並びにプログラム
US10542240B2 (en) Projector and method for controlling rotation of phosphor wheel and color wheel in projector
TWI277821B (en) Projector
US9380278B2 (en) Video projection device and method with control of light source based on image signal
CN108965841B (zh) 一种投影光学系统及投影显示方法
CN105911807A (zh) 激光投影方法及激光投影机
JP2003279887A (ja) Dmdプロジェクターとその映像信号補正方法
JP2005266324A (ja) 投射光学装置および投射型画像表示装置
KR100904814B1 (ko) 프로젝터, 공간 광변조기를 제어하는 방법 및 제어용 프로그램 기록매체
JP2003324670A (ja) 投写型映像表示装置
CN109561289B (zh) 调整用图像生成装置、调整用图像生成方法以及存储介质
JP4739035B2 (ja) プロジェクタ装置
WO2023011026A1 (zh) 投影方法、装置与系统及非易失性计算机可读存储介质
JP4552985B2 (ja) 画像表示装置
CN111025621A (zh) 用于投影设备的可调色轮系统及其调节方法
CN111240145B (zh) 光阀驱动控制方法及投影设备
CN111246187B (zh) 光阀驱动控制方法及投影设备
WO2020108233A1 (zh) 一种激光投影设备及激光投影方法
CN106125480B (zh) 图像色温的调节方法和装置
YENKE CROSS-REFERENCE TO RELATED APPLICATIONS

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22851742

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE