WO2023010691A1 - 一种耳机虚拟空间声回放方法、装置、存储介质及耳机 - Google Patents
一种耳机虚拟空间声回放方法、装置、存储介质及耳机 Download PDFInfo
- Publication number
- WO2023010691A1 WO2023010691A1 PCT/CN2021/125220 CN2021125220W WO2023010691A1 WO 2023010691 A1 WO2023010691 A1 WO 2023010691A1 CN 2021125220 W CN2021125220 W CN 2021125220W WO 2023010691 A1 WO2023010691 A1 WO 2023010691A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sound signal
- function
- virtual
- sound
- hrtf
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 44
- 230000005236 sound signal Effects 0.000 claims abstract description 300
- 230000000694 effects Effects 0.000 claims abstract description 39
- 238000012545 processing Methods 0.000 claims abstract description 30
- 238000001914 filtration Methods 0.000 claims abstract description 12
- 238000001228 spectrum Methods 0.000 claims description 36
- 230000008569 process Effects 0.000 claims description 4
- 230000008859 change Effects 0.000 abstract description 9
- 230000006870 function Effects 0.000 description 127
- 210000003128 head Anatomy 0.000 description 25
- 230000004044 response Effects 0.000 description 20
- 238000010586 diagram Methods 0.000 description 4
- 238000012546 transfer Methods 0.000 description 4
- 210000005069 ears Anatomy 0.000 description 3
- 230000002238 attenuated effect Effects 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 230000003447 ipsilateral effect Effects 0.000 description 2
- 230000005238 low-frequency sound signal Effects 0.000 description 2
- 230000003595 spectral effect Effects 0.000 description 2
- 238000013459 approach Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- 230000008094 contradictory effect Effects 0.000 description 1
- 230000007812 deficiency Effects 0.000 description 1
- 210000000613 ear canal Anatomy 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000009499 grossing Methods 0.000 description 1
- 230000005237 high-frequency sound signal Effects 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 238000011160 research Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R1/00—Details of transducers, loudspeakers or microphones
- H04R1/10—Earpieces; Attachments therefor ; Earphones; Monophonic headphones
- H04R1/1083—Reduction of ambient noise
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R5/00—Stereophonic arrangements
- H04R5/033—Headphones for stereophonic communication
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/002—Non-adaptive circuits, e.g. manually adjustable or static, for enhancing the sound image or the spatial distribution
- H04S3/004—For headphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S3/00—Systems employing more than two channels, e.g. quadraphonic
- H04S3/008—Systems employing more than two channels, e.g. quadraphonic in which the audio signals are in digital form, i.e. employing more than two discrete digital channels
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
- H04S7/302—Electronic adaptation of stereophonic sound system to listener position or orientation
- H04S7/303—Tracking of listener position or orientation
- H04S7/304—For headphones
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
- H04S7/307—Frequency adjustment, e.g. tone control
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S7/00—Indicating arrangements; Control arrangements, e.g. balance control
- H04S7/30—Control circuits for electronic adaptation of the sound field
- H04S7/308—Electronic adaptation dependent on speaker or headphone connection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04R—LOUDSPEAKERS, MICROPHONES, GRAMOPHONE PICK-UPS OR LIKE ACOUSTIC ELECTROMECHANICAL TRANSDUCERS; DEAF-AID SETS; PUBLIC ADDRESS SYSTEMS
- H04R2201/00—Details of transducers, loudspeakers or microphones covered by H04R1/00 but not provided for in any of its subgroups
- H04R2201/10—Details of earpieces, attachments therefor, earphones or monophonic headphones covered by H04R1/10 but not provided for in any of its subgroups
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/01—Multi-channel, i.e. more than two input channels, sound reproduction with two speakers wherein the multi-channel information is substantially preserved
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/11—Positioning of individual sound objects, e.g. moving airplane, within a sound field
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2400/00—Details of stereophonic systems covered by H04S but not provided for in its groups
- H04S2400/13—Aspects of volume control, not necessarily automatic, in stereophonic sound systems
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04S—STEREOPHONIC SYSTEMS
- H04S2420/00—Techniques used stereophonic systems covered by H04S but not provided for in its groups
- H04S2420/01—Enhancing the perception of the sound image or of the spatial distribution using head related transfer functions [HRTF's] or equivalents thereof, e.g. interaural time difference [ITD] or interaural level difference [ILD]
Definitions
- the invention relates to the field of virtual hearing technology, in particular to a method, device and storage medium for playing back sound in a virtual space of an earphone after tone color equalization, and an earphone with a virtual space playback effect.
- the virtual spatial sound playback technology simulates the acoustic transmission process from the sound source to both ears.
- the original sound signal without spatial auditory effects is simulated and the output sound generates corresponding spatial hearing when the earphones are played back.
- the existing virtual spatial sound playback technology mainly uses the head-related transfer function (hereinafter referred to as the HRTF function) to filter the original sound signal A 0 without spatial auditory effects, to control and generate equivalent binaural sound to obtain binaural sound signals with spatial auditory effects, output the left-ear sound signal AL ' and right-ear sound signal A R ' respectively through the earphone, and the listener passes the left-ear sound signal AL ' and right-ear sound signal through the earphone
- the signal A R ' can feel that the sound comes from a specific spatial orientation.
- the HRTF function is an acoustic transfer function from a simulated sound source to both ears under free-field conditions, and it includes an HRTF left-ear function and an HRTF right-ear function.
- the HRTF function Since the HRTF function must change the frequency response curve of the input original sound signal A 0 to convey the positioning clues of the 3D space, when the HRTF function is used to generate the 3D space playback effect, it will inevitably lead to spectral distortion of the sound signal, especially in the middle and high frequency bands of the sound. Part of the spectrum is distorted, and the spectral distortion of the sound is manifested by the change of the timbre of the sound during playback. At present, it is a pair of contradictory technical problems to generate 3D spatial playback effect and keep the timbre unchanged after being processed by HRTF function.
- the purpose of the present invention is to overcome the shortcomings and deficiencies of the prior art, and provide a method for equalizing the tone of virtual spatial sound playback of headphones, which can further improve the sound of spatial sound playback, and can flexibly adapt to various sound effect requirements.
- a method for playback of headphone virtual spatial sound comprising:
- the input original sound signal A0 is filtered through the timbre equalization function C to obtain the balanced sound signal A C ; then the balanced sound signal A C is filtered by HRTF function and output to the left ear The sound signal AL and the right ear sound signal AR .
- the spatial orientation information of the virtual sound source to be virtual is the horizontal plane azimuth angle ⁇ , the vertical plane azimuth angle
- f is the frequency of the original sound signal A 0
- f 0 is the frequency division point
- H is the amplitude spectrum of the HRTF function
- K 0 is the equalization gain factor
- G 0 is the overall gain factor.
- the present invention makes the original sound signal without spatial auditory effect filtered by HRTF function to produce spatial auditory effect, and at the same time, performs timbre equalization on the original sound signal to reduce the timbre change during virtual spatial sound playback and the method will not Influence and change the spatial localization performance of the original HRTF.
- the original sound signal includes at least two parallel sub-original sound signals, each sub-original sound signal corresponds to the spatial orientation information of a sub-to-be virtual sound source, and each sub-original sound signal is filtered through the timbre equalization function C Obtain the corresponding sub-balanced sound signal; and then perform HRTF function filter processing on each sub-balanced sound signal to obtain the corresponding sub-left ear sound signal and sub-right ear sound signal.
- the value of the frequency division point f 0 is any frequency value in the range of 400 Hz ⁇ f 0 ⁇ 1.5 kHz, and the frequency division point in this range can achieve a better effect of timbre balance.
- the equalization gain factor K 0 can be set to a value adjusted by the listener according to his or her own needs.
- the present invention also provides a headset virtual spatial sound playback device, including: a timbre equalization filter module and an HRTF filter module, wherein the timbre equalization filter module obtains the original sound signal A 0 and the spatial orientation information of the virtual sound source to be obtained, Then according to the spatial orientation information of the virtual sound source, the original sound signal A0 is filtered through the timbre equalization function C, and the balanced sound signal A C is output; the HRTF filter module obtains the balanced sound signal A C pair and filters it through the HRTF function processing, and output the left-ear sound signal AL and the right-ear sound signal A R .
- a headset virtual spatial sound playback device including: a timbre equalization filter module and an HRTF filter module, wherein the timbre equalization filter module obtains the original sound signal A 0 and the spatial orientation information of the virtual sound source to be obtained, Then according to the spatial orientation information of the virtual sound source, the original sound signal A0 is filtered through the timbre equalization function C, and the balanced sound signal A
- the spatial orientation information of the virtual sound source to be virtual is the horizontal plane azimuth angle ⁇ , the vertical plane azimuth angle
- f is the frequency of the original sound signal A 0
- f 0 is the frequency division point
- H is the amplitude spectrum of the HRTF function
- K 0 is the equalization gain factor
- G 0 is the overall gain factor.
- the original sound signal includes at least two parallel sub-original sound signals, each sub-original sound signal corresponds to the spatial orientation information of a sub-to-be virtual sound source, and each sub-original sound signal is filtered through the timbre equalization function C Obtain the corresponding sub-balanced sound signal; and then perform HRTF function filter processing on each sub-balanced sound signal to obtain the corresponding sub-left ear sound signal and sub-right ear sound signal.
- the value of the frequency division point f 0 is any frequency value in the range of 400Hz ⁇ f0 ⁇ 1.5kHz .
- the equalization gain factor K 0 can be set to a value adjusted by the listener according to his or her own needs.
- the present invention also provides a storage medium for headphone virtual spatial sound playback.
- the storage medium is mainly used for storing programs.
- the input original sound signal A 0 is filtered through the timbre equalization function C to obtain the balanced sound signal A C ; then the balanced sound signal A C is filtered by the HRTF function, and the left ear sound signal AL and the right ear sound signal A R are output ;
- the spatial orientation information of the virtual sound source to be virtual is the horizontal plane azimuth angle ⁇ , the vertical plane azimuth angle
- f is the frequency of the original sound signal A 0
- f 0 is the frequency division point
- H is the amplitude spectrum of the HRTF function
- K 0 is the equalization gain factor
- G 0 is the overall gain factor.
- the original sound signal includes at least two parallel sub-original sound signals, each sub-original sound signal corresponds to the spatial orientation information of a sub-to-be virtual sound source, and each sub-original sound signal is filtered through the timbre equalization function C Obtain the corresponding sub-balanced sound signal; and then perform HRTF function filter processing on each sub-balanced sound signal to obtain the corresponding sub-left ear sound signal and sub-right ear sound signal.
- the value of the frequency division point f 0 is any frequency value in the range of 400Hz ⁇ f0 ⁇ 1.5kHz .
- the present invention also provides an earphone with virtual spatial sound playback effect, which includes a virtual spatial sound playback device, a left-ear speaker and a right-ear speaker, wherein the virtual spatial sound playback device includes a timbre equalization filter module and HRTF Filter module, wherein the timbre equalization filter module obtains the original sound signal A 0 and the spatial orientation information of the virtual sound source, and then filters the original sound signal A 0 through the timbre equalization function C according to the spatial orientation information of the virtual sound source, and outputs The balanced sound signal A C ; the HRTF filter module obtains the balanced sound signal A C pair and filters it through the HRTF function, outputs the left ear sound signal AL through the left ear speaker, and passes the right ear sound signal A R through the right ear speaker;
- the spatial orientation information of the virtual sound source is the azimuth angle ⁇ of the horizontal plane, the azimuth angle of the vertical plane
- f is the frequency of the original sound signal A 0
- f 0 is the frequency division point
- H is the amplitude spectrum of the HRTF function
- K 0 is the equalization gain factor
- G 0 is the overall gain factor.
- the original sound signal includes at least two parallel sub-original sound signals, each sub-original sound signal corresponds to the spatial orientation information of a sub-to-be virtual sound source, and each sub-original sound signal is filtered through the timbre equalization function C Obtain the corresponding sub-balanced sound signal; and then perform HRTF function filter processing on each sub-balanced sound signal to obtain the corresponding sub-left ear sound signal and sub-right ear sound signal.
- the value of the frequency division point f 0 is any frequency value in the range of 400Hz ⁇ f0 ⁇ 1.5kHz .
- the present invention also provides a timbre equalization method for virtual spatial sound playback.
- the sound signal A 0 is subjected to timbre equalization filter processing through the timbre equalization function C to obtain a balanced sound signal A C .
- the spatial orientation information of the virtual sound source to be virtual is the horizontal plane azimuth angle ⁇ , the vertical plane azimuth angle
- f is the frequency of the original sound signal A 0
- f 0 is the frequency division point
- H is the amplitude spectrum of the HRTF function
- K 0 is the equalization gain factor
- G 0 is the overall gain factor.
- the original sound signal includes at least two parallel sub-original sound signals, each sub-original sound signal corresponds to the spatial orientation information of a sub-to-be virtual sound source, and each sub-original sound signal is filtered through the timbre equalization function C Obtain the corresponding sub-balanced sound signal; and then perform HRTF function filter processing on each sub-balanced sound signal to obtain the corresponding sub-left ear sound signal and sub-right ear sound signal.
- the value of the frequency division point f 0 is any frequency value in the range of 400Hz ⁇ f0 ⁇ 1.5kHz .
- FIG. 1 is a flow chart of a method for playing back virtual spatial sound for headphones in the prior art.
- FIG. 2 is a flow chart of a method for playing back headphone virtual spatial sound according to Embodiment 1 of the present invention.
- FIG. 3 is a schematic diagram of a spatial coordinate system defining spatial orientation information.
- Fig. 5 is a schematic diagram of the horizontal azimuth angle ⁇ division of the spatial coordinates.
- Fig. 7 is a flow chart of a method for playing back headphone virtual spatial sound according to Embodiment 2 of the present invention.
- the idea of the present invention is to process the input original sound signal based on the head-related transfer function (hereinafter referred to as HRTF function), and at the same time perform timbre equalization on the original sound signal to adjust its timbre distortion effect.
- the HRTF function is a kind of database that can be measured through precise experiments. This database contains all the data related to the HRTF function, such as the angle, distance, frequency, etc. of the virtual sound source; the spatial orientation information of the virtual sound source can be obtained in The corresponding HRTF left ear function and HRTF right ear function are found in the HRTF database.
- the present invention first divides the frequency of the sound signal, and performs different timbre adjustments according to the two frequency band levels of the low frequency band and the middle and high frequency band.
- the overall gain factor is used to adjust the timbre of the low-frequency sound signal
- the overall gain factor and the equalized gain factor are used to compensate the timbre loss of the original sound signal filtered by the HRTF function for the mid-high frequency sound signal, so as to reduce the timbre of the original sound signal. change.
- the present invention provides a method, device, and storage medium for virtual spatial sound playback of earphones, and an earphone with virtual spatial sound playback effects, which are specifically described through the following embodiments.
- FIG. 2 is a flowchart of a method for playback of virtual spatial sound for headphones according to Embodiment 1 of the present invention.
- the headphone virtual spatial sound playback method of Embodiment 1 of the present invention comprises the following steps:
- step S1 the acquired original sound signal A0 is an audio signal input from a player or system.
- the spatial orientation information of the virtual sound source is the spatial orientation information of the virtual sound source obtained after the listener expects the original sound signal A0 to be processed by virtual spatial acoustic playback. For example, if the listener expects to hear the sound effect after the virtual spatial acoustic playback process is as if the sound source comes from the position directly in front of him, then the spatial orientation information of the position directly in front at this time is defined as the spatial orientation of the virtual sound source information.
- the spatial orientation information of the virtual sound source takes the listener's head as the reference center, and the horizontal azimuth angle ⁇ and the vertical azimuth angle of the virtual sound source relative to the head to represent.
- the spatial orientation information of the virtual sound source is defined through a spatial coordinate system. Please refer to FIG. 3 , which is a schematic diagram of the spatial coordinate system.
- the spatial coordinate system takes the center of the head as the reference origin, and takes the angle between the listener's expected virtual sound source on the horizontal plane and the head directly in front of the head as the horizontal plane azimuth angle ⁇ , when the listener's expected virtual sound source is located on the head On the left side, the value range of the horizontal plane azimuth ⁇ is 0° ⁇ 180°; when the listener expects the virtual sound source to be located on the right side of the head, the value range of the horizontal plane azimuth ⁇ is -180° ⁇ 0°.
- the horizontal azimuth angle ⁇ and the vertical azimuth angle of the spatial orientation information of the virtual sound source are It can be set and adjusted by the listener according to their own needs for the spatial orientation effect of the virtual sound source.
- step S2 the original sound signal A 0 is subjected to equalization filtering processing in the frequency domain of the original sound signal A 0 through the timbre equalization function C to obtain a balanced sound signal A C .
- timbre equalization function C The expression of the timbre equalization function C is defined as
- f is the frequency of the original sound signal A 0
- f 0 is the frequency division point
- H is the amplitude spectrum of the HRTF function
- K 0 is the equalization gain factor
- G 0 is the overall gain factor.
- the original sound signal A 0 is a section of signal containing different frequencies.
- the timbre equalization function C divides the frequency of the original sound signal A 0 first, and divides the frequency division point f 0 into two types of low frequency band and middle and high frequency band. Signal.
- the low-frequency sound signal of the original sound signal A 0 is adjusted by the overall gain factor G 0 ; for the middle and high-frequency sound signal of the original sound signal A 0 , the overall gain factor G 0 , the equalization gain factor K 0 and the HRTF function
- the amplitude spectrum H is adjusted.
- the frequency division point f 0 , the amplitude spectrum H of the HRTF function, the equalization gain factor K 0 , and the overall gain factor G 0 set in the present invention are all related to the horizontal plane azimuth angle ⁇ of the spatial orientation information of the virtual sound source , vertical azimuth Therefore, the timbre equalization function C will be based on the azimuth angle ⁇ of the horizontal plane and the azimuth angle of the vertical plane of the spatial orientation information of the virtual sound source. change with change. The above variables will be explained one by one below.
- the HRTF function frequency response curve of the ear on the same side as the virtual sound source is a flat curve similar to the frequency response curve of the original sound signal A0 , because when the sound frequency is less than 200Hz, the sound wavelength is greater than The size of the head and the scattering effect of the head on sound waves can be ignored; when the sound frequency is greater than 200Hz and less than 1.5kHz, the HRTF function frequency response curve of the ear on the same side as the virtual sound source will increase after a period of rapid monotonous increase In addition, the HRTF function frequency response curve of the ear on the opposite side of the virtual sound source is attenuated due to the shadow effect of the head.
- the sound of the sound source acts as an approximate mirror reflection surface, but at this time the sound wavelength is still larger than the size of the head; when the sound frequency is greater than 1.5kHz, the HRTF function frequency response curve of the ear on the opposite side of the virtual sound source changes It has certain irregularities. This is because when the sound frequency is greater than 1.5kHz, the sound wavelength begins to be smaller than the size of the head, and the head's blocking effect on sound waves will be further expanded. Various effects of the ear canal and auricle on sound waves It will be more clearly reflected in the amplitude spectrum of the frequency.
- the present invention divides the frequency domain of the original sound signal A0 into a low frequency band and a mid-high frequency band with the frequency division point f0 as a boundary, and performs timbre equalization processing on the mid-high frequency band differently from the low frequency band.
- the frequency division point f 0 should be selected as the dividing point where the HRTF function has different influence characteristics on the low frequency and mid-high frequency of the sound source. According to the above analysis, it is usually between 200Hz and 1.5kHz. In addition, since the HRTF function has different influence characteristics on the low frequency and high frequency of the sound source, the boundary point is also affected by the spatial orientation information of the virtual sound source. Through the actual analysis of the HRTF characteristics, the optimal value range of the frequency division point f 0 is 400Hz ⁇ f 0 ⁇ 1.5kHz.
- the frequency division point f0 can also be adjusted by the listener according to his/her own needs.
- the listener can also select the crossover point f 0 as 1.5kHz ⁇ f 0 ⁇ 20kHz.
- the overall gain factor G0 is any constant that can be set according to needs.
- the amplitude spectrum H of the HRTF function is the amplitude spectrum of the HRTF function on the same ear as the virtual sound source, and its expression is
- the HRTF left ear function is the HRTF right ear function.
- the amplitude spectrum H of the HRTF function takes the amplitude spectrum of the HRTF left ear function as
- the virtual sound source is located on the right side of the head, i.e.
- the HRTF function H takes the amplitude spectrum of the HRTF right ear function as
- the selection of the equalization gain factor K0 is related to the spatial orientation of the virtual sound source, and its expression is defined as
- FIG. 5 is a schematic diagram of the horizontal azimuth angle ⁇ partition of the spatial coordinates, where area a is the area close to the left ear of the head, and the value of the horizontal azimuth angle ⁇ of this area is 30° ⁇ 150°; area b is close to For the right ear area of the head, the horizontal azimuth angle ⁇ of this area is -150° ⁇ -30°; area c is the area on the left side of the head close to the vertical plane, and the horizontal azimuth angle ⁇ of this area is set to be 0° ⁇ 30° and 150° ⁇ 180°; area d is the area on the right side of the head close to the mid-vertical plane, and the horizontal azimuth angle ⁇ of this area is -180° ⁇ -150° and -30° ⁇ 0°.
- the sound pressure level of the middle and high frequency parts of the sound reaching the ear on the same side is much greater than that reaching the ear on the opposite side, that is, the sound pressure level of the sound source to be virtual is
- the equalization gain factor K0 can be set to be adjusted by the listener in a certain range according to his own hearing requirements. According to It can be deduced that the value range of the equalization gain factor K0 is Within this range, the equalization gain factor K0 can achieve the purpose of tone balance.
- step S3 the balanced sound signal A C obtained after timbre equalization is filtered through the HRTF left ear function and the HRTF right ear function respectively, and the final output sound signal includes the left ear sound signal AL and the right ear sound signal A R .
- the left ear sound signal AL is the sound signal filtered by the HRTF left ear function of the balanced sound signal A C
- the relational expression between it and the balanced sound signal A C is:
- the left ear sound signal AL is output through the left ear of the earphone
- the right ear sound signal AR is the sound signal processed by the HRTF right ear function filter of the balanced sound signal A C , which is different from the balanced sound signal A C
- the relational expression is The sound signal AR of the right ear is output through the right ear of the earphone.
- the vertical plane azimuth angle of the present embodiment 1 is As an example, the frequency response curves of the original sound signal A0 and the left-ear sound signal AL , wherein the dotted line is the frequency response curve of the original sound signal A0 , and the solid line is the frequency response curve of the left-ear sound signal AL .
- the user can first treat the spatial orientation of the virtual sound source (horizontal plane azimuth angle ⁇ , vertical plane azimuth angle ), and at the same time, the values of frequency division point f 0 , equalization gain factor K 0 and overall gain factor G 0 can also be adjusted according to the listening requirements.
- the timbre equalization function C can be determined. After the original sound signal A0 is filtered by the timbre equalization function C, the loudness of the sound signal in the low frequency band will be increased, and the loudness of the high frequency band will be increased. The sound signal will get a timbre equalization gain, and finally, after being filtered by the HRTF function, a virtual spatial sound with a timbre balance will be obtained.
- this embodiment further provides a headphone virtual spatial sound playback device.
- the device includes a timbre equalization filter module and an HRTF filter module, wherein the timbre equalization filter module obtains the original sound signal A 0 and the spatial orientation information of the virtual sound source to be obtained, and then passes the original sound signal A 0 according to the spatial orientation information of the virtual sound source to be
- the timbre equalization function C performs filtering processing, and outputs the balanced sound signal A C ;
- the HRTF filter module obtains the balanced sound signal A C pair and performs filtering processing on it through the HRTF function, and outputs the left ear sound signal AL and the right ear sound signal A R .
- the present invention adjusts the frequency division of the input original sound signal A 0 with the frequency division point f 0 as the boundary, uses the overall gain factor G 0 to adjust the overall sound pressure level for the whole frequency band, and uses the balanced gain for the middle and high frequency bands
- the factor K 0 adjusts the overall sound power of the middle and high frequency bands, so that the overall sound power of the left ear sound signal AL and the right ear sound signal A R after HRTF function filter processing is kept similar to the sound power of the input original sound signal A 0 , thereby improving timbre.
- the frequency division point f 0 , the overall gain factor G 0 and the equalization gain factor K 0 can also be selected according to special needs, so as to adjust the overall audio loudness, pitch and intercept audio frequency bands, so as to achieve different sound effects and satisfy different audience needs.
- FIG. 7 is a flowchart of a method for playing back virtual spatial sound for headphones according to Embodiment 2 of the present invention.
- the application of Embodiment 2 of the present invention is to simulate the scene of multi-channel surround sound, that is, to define a plurality of fixed spatial positions of virtual sound sources to be virtual, and to input multiple original sound sources equal to the number of defined virtual sound sources through the player or system
- For the sound signal perform timbre equalization and HRTF function spatial sound playback processing on each original sound signal according to its specific spatial position of the virtual sound source, and simultaneously output multiple left-ear sound signals and right-ear sound signals in the left and right earphones respectively , to realize the sound effect of stereo surround sound.
- Specific steps are as follows:
- the original sound signal includes sub-original sound signals A 01 , A 02 ... A 0n and the spatial orientation information of the corresponding n sub-to-be virtual sound sources;
- the sub-original sound signal A 0n is the nth input audio, n ⁇ 2.
- the spatial orientation information of the sub-to-be virtual sound source includes n sub-horizontal plane azimuths ⁇ 1 , ⁇ 2 ... ⁇ n and sub-vertical plane azimuths They are in one-to-one correspondence with sub-original sound signals A 01 , A 02 . . . A 0n respectively.
- Sub-horizontal plane azimuths ⁇ 1 , ⁇ 2 ... ⁇ n and sub-vertical plane azimuths Set them to different fixed values according to the actual scene.
- there are 6 input audio channels including center channel, front left channel, front right channel, rear left surround channel, rear Set the right surround channel and subwoofer channel, corresponding to 6 sub-original sound signals A 01 , A 02 , A 03 , A 04 , A 05 , A 06 , and corresponding sub-horizontal azimuths ⁇ 1 , ⁇ 2 , ⁇ 3 , ⁇ 4 , ⁇ 5 , ⁇ 6 are respectively set to 0°, 30°, -30°, 120°, -120°, 0°, and the azimuth angle of sub-vertical plane Both are set to 0°.
- S2 Perform timbre equalization filtering processing on the sub-original sound signals A 01 , A 02 ... A 0n respectively to obtain n corresponding sub-equalized sound signals A C1 , A C2 ... A Cn ;
- step S2 equalize and filter the sub-original sound signals A 01 , A 02 .
- the frequency division point f 0n , the overall gain factor G 0n and the equalization gain factor K 0n can be set differently corresponding to the sub-original sound signals A 01 , A 02 ... A 0n , so as to adjust the overall sound power and make the sound playback achieve the desired sound Effect.
- S3 Filter the sub-equalized sound signals A C1 , A C2 . . . Left-ear sound signals A L1 , A L2 . . . A Ln and n right-ear sound signals A R1 , A R2 . . . A Rn .
- the expression of the sound signal A Cn is The expression of corresponding output sub-right ear sound signal A Rn and sub-balanced sound signal A Cn is
- the n sub-left-ear sound signals A L1 , A L2 . . . ...A Rn is synthesized into a sound signal for the right ear and output through the right earphone.
- the headphone virtual spatial sound playback device includes n timbre equalization filter modules and n HRTF filter modules, wherein the timbre equalization filter modules obtain sub-original sound signals A 01 , A 02 ... A 0n and corresponding n sub-virtual sound sources to be Then, according to the spatial orientation information of the virtual sound source, the corresponding sub-original sound signals A 01 , A 02 ... A 0n are filtered through the timbre equalization function C, and the sub-balanced sound signals A C1 , A C2 ...
- the HRTF filtering module obtains the corresponding sub-balanced sound signals A C1 , A C2 ... A Cn respectively and performs filtering processing on them through the HRTF function, and the obtained sub-left ear sound signals A L1 , A L2 ... A Ln is synthesized into a left ear signal and output, and at the same time, the obtained sub-right ear sound signals A R1 , A R2 ... A Rn are synthesized into a right ear signal and output.
- the present invention realizes the processing of multiple original sound signals at the same time, each original sound signal corresponds to different spatial orientation information of the virtual sound source, and produces a binaural sound signal with a spatial playback effect after timbre balance, Through the binaural sound signal, the listener can hear multiple sounds and feel that the sounds come from multiple specific spatial positions.
- the present invention can be applied to the scene of simulating multi-channel surround sound, and the stereo surround effect that can be realized by multiple speakers can be realized only through earphones, especially when the original sound signal is high-quality audio, it can realize immersion effect.
- the present invention also provides a storage medium for headphone virtual space sound playback using the method.
- the storage medium is a computer-readable storage medium and is mainly used for storing programs , the program may be the program code corresponding to the headphone virtual space sound playback method in Embodiment 1 and Embodiment 2.
- the present invention also provides a headphone with the effect of headphone virtual space sound playback using the method, the headphone includes a virtual space sound playback device, a left ear speaker and a right earphone Ear speaker, wherein the virtual spatial sound playback device is the earphone virtual spatial sound playback device in Embodiment 1 and Embodiment 2, and the left ear speaker and the right ear speaker are used to output the left ear sound signal and the right ear sound signal of the virtual spatial sound playback device. Ear sound signal to the outside of the earphone.
- the present invention also provides a timbre equalization method for virtual spatial sound playback.
- the sound signal A 0 is subjected to timbre equalization filter processing through the timbre equalization function C to obtain a balanced sound signal A C .
- the timbre equalization function C is the same as the method in Embodiment 1 and Embodiment 2, and will not be repeated here.
- the present invention can be implemented in the form of general DSP hardware circuit or software code, and can also be implemented in HRTF/HRIR data files as a part of head-related transfer function database.
- the method of the present invention can be applied to HRTF/HRIR under earphone and free field conditions.
- the present invention is not limited to the above-mentioned embodiments, if the various changes or deformations of the present invention do not depart from the spirit and scope of the present invention, if these changes and deformations belong to the claims of the present invention and the equivalent technical scope, then the present invention is also It is intended that such modifications and variations are included.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Signal Processing (AREA)
- Multimedia (AREA)
- Stereophonic System (AREA)
Abstract
一种耳机虚拟空间声回放方法,根据待虚拟声源的空间方位信息,对输入的原始声音信号A0通过音色均衡函数C进行滤波处理,获得均衡声音信号AC;再对均衡声音信号AC进行HRTF函数滤波处理,输出左耳声音信号AL和右耳声音信号AR。其中,所述空间方位信息为待虚拟声源的水平面方位角θ、垂直面方位角φ:所述均衡声音信号AC与所述原始声音信号A0的关系表达式为:AC=A0C。本发明使无空间听觉效果的原始声音信号通过HRTF函数滤波产生空间听觉效果的同时,对原始声音信号进行音色均衡减少了虚拟空间声回放时的音色改变且该方法不会影响和改变原始HRTF的空间定位性能。
Description
本发明涉及虚拟听觉技术领域,尤其是涉及一种音色均衡后的耳机虚拟空间声回放方法、装置及存储介质,以及一种具有虚拟空间回放效果的耳机。
虚拟空间声回放技术是通过模拟声源到双耳的声学传输过程的方式,对无空间听觉效果的原始声音信号通过模拟后输出的声音在耳机回放时产生相应的空间听觉,即模拟声源从特定或不同的空间方位发出的空间听觉效果。如图1所示,现有虚拟空间声回放技术主要利用头相关传递函数(以下简称为HRTF函数)对无空间听觉效果的原始声音信号A
0进行滤波处理,控制和产生等效的双耳声压,得到具有空间听觉效果的双耳声音信号,分别通过耳机输出左耳声音信号A
L'和右耳声音信号A
R',听者通过耳机中的左耳声音信号A
L'和右耳声音信号A
R'便可感觉到声音是来自于的某一个特定的空间方位。该HRTF函数是自由场情况下从模拟声源到双耳的声学传递函数,其包括HRTF左耳函数和HRTF右耳函数。利用HRTF函数可实现在便携式移动设备中体验影院般的沉浸式音效。
由于HRTF函数是必须改变输入的原始声音信号A
0的频率响应曲线来传递3D空间的定位线索,因此通过HRTF函数产生3D空间回放效果时必然会导致声音信号的频谱畸变,尤其是声音中高频段部分的频谱畸变,而声音的频谱畸变表现出来就是声音在回放时音色的改变。目前,通过HRTF函数处理后产生3D空间回放效果和保持音色不变是一对相互矛盾的技术问题。
发明内容
本发明的目的在于克服现有技术的缺点与不足,提供一种耳机虚拟空间声回放的音色均衡方法,其可进一步改善空间声回放的音色,同时可灵活适应多种音效需求。
本发明是通过以下技术方案实现的:一种耳机虚拟空间声回放方法,包括:
根据待虚拟声源的空间方位信息,对输入的原始声音信号A
0通过音色均衡函数C进行滤波处理,获得均衡声音信号A
C;再对均衡声音信号A
C进行HRTF函数滤波处理,输出左耳声音信号A
L和右耳声音信号A
R。
其中f为所述原始声音信号A
0的频率,f
0为分频点,H为HRTF函数的幅度谱,K
0为均衡增益因子,G
0为整体增益因子。
相对于现有技术,本发明使无空间听觉效果的原始声音信号通过HRTF函数滤波产生空间听觉效果的同时,对原始声音信号进行音色均衡减少了虚拟空间声回放时的音色改变且该方法不会影响和改变原始HRTF的空间定位性能。
进一步地,所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
进一步地,所述分频点f
0的取值为400Hz≤f
0≤1.5kHz范围中的任意一频率值,该范围的分频点能使音色均衡获得更好的效果。
进一步地,所述均衡增益因子K
0的表达式为
进一步地,所述均衡增益因子K
0的表达式为
基于同一发明构思,本发明还提供一种耳机虚拟空间声回放装置,包括:音色均衡滤波 模块、HRTF滤波模块,其中音色均衡滤波模块获取原始声音信号A
0及待虚拟声源的空间方位信息,然后依据待虚拟声源的空间方位信息对原始声音信号A
0通过音色均衡函数C进行滤波处理,输出均衡声音信号A
C;HRTF滤波模块获取均衡声音信号A
C对并对其通过HRTF函数进行滤波处理,输出左耳声音信号A
L和右耳声音信号A
R。
其中f为所述原始声音信号A
0的频率,f
0为分频点,H为HRTF函数的幅度谱,K
0为均衡增益因子,G
0为整体增益因子。
进一步地,所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
进一步地,所述分频点f
0的取值为400Hz≤f
0≤1.5kHz范围中的任意一频率值。
进一步地,所述均衡增益因子K
0的表达式为
进一步地,所述均衡增益因子K
0的表达式为
此时均衡增益因子K
0可设置为由听者根据自身需求调节的值。
基于同一发明构思,本发明还提供一种耳机虚拟空间声回放的存储介质,该存储介质作为计算机可读存储介质,主要用于存储程序,该程序包括根据待虚拟声源的空间方位信息,对输入的原始声音信号A
0通过音色均衡函数C进行滤波处理,获得均衡声音信号A
C;再对均衡声音信号A
C进行HRTF函数滤波处理,输出左耳声音信号A
L和右耳声音信号A
R;
其中f为所述原始声音信号A
0的频率,f
0为分频点,H为HRTF函数的幅度谱,K
0为均衡增益因子,G
0为整体增益因子。
进一步地,所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
进一步地,所述分频点f
0的取值为400Hz≤f
0≤1.5kHz范围中的任意一频率值。
进一步地,所述均衡增益因子K
0的表达式为
进一步地,所述均衡增益因子K
0的表达式为
基于同一发明构思,本发明还提供一种具有虚拟空间声回放效果的耳机,该耳机包括虚拟空间声回放装置、左耳扬声器和右耳扬声器,其中虚拟空间声回放装置包括音色均衡滤波 模块和HRTF滤波模块,其中音色均衡滤波模块获取原始声音信号A
0及待虚拟声源的空间方位信息,然后依据待虚拟声源的空间方位信息对原始声音信号A
0通过音色均衡函数C进行滤波处理,输出均衡声音信号A
C;HRTF滤波模块获取均衡声音信号A
C对并对其通过HRTF函数进行滤波处理,通过左耳扬声器输出左耳声音信号A
L,通过右耳扬声器右耳声音信号A
R;
其中f为所述原始声音信号A
0的频率,f
0为分频点,H为HRTF函数的幅度谱,K
0为均衡增益因子,G
0为整体增益因子。
进一步地,所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
进一步地,所述分频点f
0的取值为400Hz≤f
0≤1.5kHz范围中的任意一频率值。
进一步地,所述均衡增益因子K
0的表达式为
进一步地,所述均衡增益因子K
0的表达式为
基于同一发明构思,本发明还提供一种虚拟空间声回放的音色均衡方法,其技术方案包 括:在对原始声音信号A
0进行HRTF函数滤波前,根据待虚拟声源的空间方位信息,对原始声音信号A
0通过音色均衡函数C进行音色均衡滤波处理,获得均衡声音信号A
C。
其中f为所述原始声音信号A
0的频率,f
0为分频点,H为HRTF函数的幅度谱,K
0为均衡增益因子,G
0为整体增益因子。
进一步地,所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
进一步地,所述分频点f
0的取值为400Hz≤f
0≤1.5kHz范围中的任意一频率值。
进一步地,所述均衡增益因子K
0的表达式为
进一步地,所述均衡增益因子K
0的表达式为
图1为现有技术耳机虚拟空间声回放方法的流程图。
图2为本发明实施例1的耳机虚拟空间声回放方法的流程图。
图3为定义空间方位信息的空间坐标系的示意图。
图5为空间坐标的水平方位角θ分区示意图。
图7为本发明实施例2的耳机虚拟空间声回放方法的流程框图。
下面结合附图,对本发明的技术方案进行详细的描述。
本发明的构思是基于头相关传递函数(以下简称为HRTF函数)对输入的原始声音信号进行处理的同时,对原始声音信号进行音色均衡,以调整其音色失真的效果。HRTF函数是一类可以通过精密实验测量得到的数据库,该数据库中包含了HRTF函数相关的所有数据,如待虚拟声源的角度、距离、频率等;通过待虚拟声源的空间方位信息可在HRTF数据库中查找到对应的HRTF左耳函数和HRTF右耳函数。在HRTF函数对原始声音信号进行处理的研究中发现,HRTF函数对原始声音信号的低频段和中高频段的影响特性是不同的,并且HRTF函数主要是会导致原始声音信号中的中高频段部分的频谱发生畸变。因此本发明首先对声音信号进行分频,按低频段及中高频段两种频段级别进行不同的音色调整处理。其中,对于低频段声音信号采用整体增益因子进行音色调整,对于中高频段声音信号则以整体增益因子和均衡增益因子补偿经过HRTF函数滤波处理的原始声音信号的音色损失,以减少原始声音信号音色的改变。
基于此,本发明提供一种耳机虚拟空间声回放方法、装置及存储介质,以及具有虚拟空间声回放效果的耳机,具体通过以下多个实施例进行说明。
实施例1
请参阅图2,其为本发明实施例1的耳机虚拟空间声回放方法的流程框图。本发明实施例1的耳机虚拟空间声回放方法包括以下步骤:
S1:获取原始声音信号A
0及待虚拟声源的空间方位信息;
在步骤S1中,获取的原始声音信号A
0是一段来自播放器或系统输入的音频信号。
所述待虚拟声源的空间方位信息是听者期望原始声音信号A
0经虚拟空间声回放处理后得到的虚拟声源的空间方位信息。例如,听者期望经虚拟空间声回放处理后听到的声音效果 是如同声源来自于自己的正前方位置,则此时该正前方位置的空间方位信息就定义为待虚拟声源的空间方位信息。
在本发明中,待虚拟声源的空间方位信息以听者头部作为参照中心,以所述待虚拟声源相对于头部的水平面方位角θ和垂直面方位角
来表征。本实施例通过一空间坐标系定义待虚拟声源的空间方位信息,请参阅图3,其为所述空间坐标系的示意图。所述空间坐标系以头部中心为参考原点,以听者期望的待虚拟声源在水平面上与头正前方的夹角为水平面方位角θ,当听者期望的待虚拟声源位于头部左侧时,所述水平面方位角θ的取值范围为0°≤θ≤180°;当听者期望的待虚拟声源位于头部右侧时,所述水平面方位角θ的取值范围为-180°≤θ≤0°。以听者期望的待虚拟声源与水平面的夹角为垂直面方位角
当听者期望的待虚拟声源位于水平面上方时,所述垂直面方位角
的取值范围为
当听者期望的待虚拟声源位于水平面下方时,所述垂直面方位角
的取值范围为
S2:对所述原始声音信号A
0进行音色均衡滤波处理,得到均衡声音信号A
C;
在步骤S2中,通过音色均衡函数C在所述原始声音信号A
0的频域上对所述原始声音信号A
0进行均衡滤波处理,得到均衡声音信号A
C。所述均衡声音信号A
C与所述原始声音信号A
0的关系表达式为:A
C=A
0C。
所述音色均衡函数C的表达式定义为
其中f为所述原始声音信号A
0的频率,f
0为分频点,H为HRTF函数的幅度谱,K
0为均衡增益因子,G
0为整体增益因子。原始声音信号A
0为包含不同频率的一段信号,该音色均衡函数C首先对原始声音信号A
0进行分频,以分频点f
0为分界点分为低频段及中高频段两组类型的信号。其中,对原始声音信号A
0的低频段声音信号采用整体增益因子G
0进行调整;对于原始声音信号A
0的中高频段声音信号则以整体增益因子G
0、均衡增益因子K
0和HRTF函数的幅度谱H进行调整。
实际上,本发明设定的上述分频点f
0、HRTF函数的幅度谱H、均衡增益因子K
0、整体增益因子G
0均与所述待虚拟声源的空间方位信息的水平面方位角θ、垂直面方位角
有关, 因此,所述音色均衡函数C会根据所述待虚拟声源的空间方位信息的水平面方位角θ、所述垂直面方位角
变化而变化。下面将对上述变量逐一说明。
由于所述分频点f
0与所述HRTF函数的频响曲线有关,在说明所述分频点f
0之前请参阅图4,其为待虚拟声源的空间方位信息的水平面方位角为θ=30°、垂直面方位角为
的原始声音信号A
0频响曲线和处于待虚拟声源同侧耳的HRTF函数的频响曲线图,其中虚线为原始声音信号A
0频响曲线,实线为处于待虚拟声源同侧耳的HRTF函数,即HRTF左耳函数的频响曲线。当声音频率小于200Hz时,此时处于待虚拟声源同侧耳的HRTF函数频响曲线为与原始声音信号A
0频响曲线相似的平坦曲线,这是由于当声音频率小于200Hz时,声音波长大于头部尺寸,头部对声波的散射作用可以被忽略;当声音频率大于200Hz且小于1.5kHz时,此时处于待虚拟声源同侧耳的HRTF函数频响曲线在经过一段快速单调的增加之后增幅会趋于平稳,另外,处于待虚拟声源异侧耳的HRTF函数频响曲线由于头部的阴影作用而被衰减,这是由于当声音频率大于200Hz且小于1.5kHz时,头部对于同侧耳的声源的声音起到一种近似镜像反射面的作用,但此时声音波长仍然大于头部尺寸;当声音频率大于1.5kHz时,此时处于待虚拟声源异侧耳的HRTF函数频响曲线变化具有一定不规则性,这是由于当声音频率大于1.5kHz时声音波长开始小于头部的尺寸,头部对于声波的阻挡作用会进一步扩大,各种由于耳道、耳廓等对于声波产生的影响将更加明显的体现频率的幅度谱上。可见,经过HRTF函数的声音信号的频响曲线在中高频段开始发生变形,中高频段的声音信号发生了频谱畸变。因此本发明以所述分频点f
0为分界,将所述原始声音信号A
0的频域分为低频段和中高频段,并对中高频段做不同于低频段的音色均衡处理。
所述分频点f
0应选择为HRTF函数对声源低频和中高频影响特性不同的分界点,根据上述分析,其通常在200Hz与1.5kHz之间。此外,由于HRTF函数对声源低频和中高频影响特性不同的分界点还受到待虚拟声源的空间方位信息的影响,通过实际分析HRTF特性,该分频点f
0优选取值范围为400Hz≤f
0≤1.5kHz。由于HRTF函数是一个非常个性化的参数模型且听觉滤波器的设计是一个多维度衡量的工作,并且由于满足数学和物理最佳设计的值实际未必满足听感上的需求,因此,为了满足个性化的听感需求下音色均衡的要求,在本实施例中分频点f
0还可由听者根据自身需求来调节设置。此外,为达到听者需求的特殊声音效果,如当只需要对高频段进行均衡增益时,听者对分频点f
0还可以选取为1.5kHz<f
0<20kHz。
此外,为了保持音色均衡函数C以分频点f
0为分界的两段函数的连续性,还需要在分频点f
0附近插值做常规平滑处理。
在确定分频点f
0后,对于原始声音信号A
0的频率f小于分频点f
0的低频段,将其乘以整体增益因子G
0以对原始声音信号A
0的声压级进行调节,所述整体增益因子G
0为可根据需要设定的任意常数。
对于原始声音信号A
0的频率f大于分频点f
0的频段,即中高频段,将其乘以整体增益因子G
0、均衡增益因子K
0以及HRTF函数的幅度谱H的倒数。其中HRTF函数的幅度谱H为与待虚拟声源同侧耳的HRTF函数的幅度谱,其表达式为
其中
为HRTF左耳函数,
为HRTF右耳函数。当待虚拟声源位于头部左侧,即0°<θ<180°时,所述HRTF函数的幅度谱H取HRTF左耳函数的幅度谱即
当待虚拟声源位于头部右侧,即-180°<θ<0°时,所述HRTF函数H取HRTF右耳函数的幅度谱即
当待虚拟声源位于头部中垂面上,即θ=0°或θ=±180°时,所述HRTF函数H可取HRTF左耳函数的幅度谱即
或者HRTF右耳函数的幅度谱即
由于如果HRTF函数对称,则HRTF左耳函数与HRTF右耳函数相等,如果HRTF函数不对称,则HRTF左耳函数与HRTF右耳函数近似,因此在θ=0°或θ=±180°时,所述HRTF函数H可按实际需求选取,其不会影响本方法的实施。
所述均衡增益因子K
0的选取与待虚拟声源的空间方位相关,其表达式定义为
为便于说明所述均衡增益因子K
0与所述待虚拟声源的水平方位角θ的关系,本实施例对空间坐标进行分区。请参阅图5,其为空间坐标的水平方位角θ分区示意图,其中区域a为靠近头部左耳区域,该区域的水平方位角θ取值为30°≤θ≤150°;区域b为靠近头部右耳 区域,该区域的水平方位角θ取值为-150°≤θ≤-30°;区域c为头部左侧靠近中垂面的区域,该区域的水平方位角θ取值为0°≤θ<30°和150°<θ≤180°;区域d为头部右侧靠近中垂面的区域,该区域的水平方位角θ取值为-180°≤θ<-150°和-30°<θ≤0°。
当待虚拟声源的空间方位设定在区域a或区域b时,由于头部的作用使得声音的中高频部分到达同侧耳的声压级远大于到达异侧耳的声压级,即待虚拟声源中的高频部分到达同侧耳的声压级同样远大于到达异侧耳的声压级,可以近似地将待虚拟声源到达同侧耳的中高频声压级等于原始声音信号A
0的声压级,因此,此时所述均衡增益因子K
0的表达式为K
0=1。
当声源的空间方位设定在区域c或区域d时,由于声音的中高频部分到达异侧耳的声压级逐渐逼近到达同侧耳的声压级,即待虚拟声源的中高频部分到达异侧耳的声压级同样逐渐逼近到达同侧耳的声压级,此时待虚拟声源到达异侧耳的声压级将不可再被忽略,为了保证待虚拟声源低频与中高频的能量平衡,需要使待虚拟声源到达左右耳的声功率和与原始声音信号A
0的功率相等,即声功率守恒原则,因此,据该原则可得出所述均衡增益因子K
0的表达式为
进一步,为适应不同的音色均衡需求,当待虚拟声源的空间方位选择在区域c或区域d时,均衡增益因子K
0可设置为由听者根据自身听感需求对进行一定范围的调节,根据
可推导出所述均衡增益因子K
0的取值范围为
在此范围内均衡增益因子K
0均可以实现音色均衡的目的。则当均衡增益因子K
0设置为可由听者根据自身听感进行调节时,所述均衡增益因子K
0的取值表达式简化为:当选择的待虚拟声源的空间方位在区域a或区域b时,所述均衡增益因子K
0的表达式为K
0=1;当选择的待虚拟声源的空间方位在区域c或区域d时,所述均衡增益因子K
0为
中的任意数,即所述均衡增益因子K
0的自由取值表达式为:
S3:分别通过HRTF左耳函数和HRTF右耳函数对所述均衡声音信号A
C进行滤波处理,
分别输出左耳声音信号A
L和右耳声音信号A
R。
在步骤S3中,经过音色均衡后获得的均衡声音信号A
C分别通过HRTF左耳函数和HRTF右耳函数进行滤波处理,最终输出的声音信号包括左耳声音信号A
L和右耳声音信号A
R。其中,所述左耳声音信号A
L为所述均衡声音信号A
C经HRTF左耳函数滤波处理的声音信号,其与所述均衡声音信号A
C的关系表达式为
所述左耳声音信号A
L通过耳机左耳输出;所述右耳声音信号A
R为所述均衡声音信号A
C经HRTF右耳函数滤波处理的声音信号,其与所述均衡声音信号A
C的关系表达式为
所述右耳声音信号A
R通过耳机右耳输出。
请参阅图6,其为本实施例1以待虚拟声源的空间方位信息的水平面方位角为θ=30°、垂直面方位角为
为例的原始声音信号A
0和左耳声音信号A
L的频响曲线图,其中虚线为原始声音信号A
0的频响曲线,实线为左耳声音信号A
L的频响曲线。由于待虚拟声源的空间方位信息的水平面方位角为θ=30°,即待虚拟声源位于头部左侧,所以仅对比原始声音信号A
0和左耳声音信号A
L的频响曲线,可见,经过均衡后的左耳声音信号A
L的频响曲线的中高频段与原始声音信号A
0的频响曲线的中高频段相近,实现了音色改善的效果。
综上,在应用本实施例1的具有音色均衡效果的耳机虚拟空间声回放的方法过程中,使用者首先可对待虚拟声源的空间方位(水平面方位角θ、垂直面方位角
)进行选择,同时,还可根据其听感需求调节分频点f
0、均衡增益因子K
0和整体增益因子G
0的取值。
此外,除了进行音色均衡的调节,为了满足使用者的调节音调的需求,所述均衡增益因子K
0还可为其它取值,如:当需要升高原始声音信号A
0音调时,增强中高频段声功率,使声音听感明亮,此时K
0的取值范围为K
0>1;当需要降低原始声音信号A
0音调时,衰减中高频段声功率,使声音听感沉闷,此时K
0的取值范围为
另外,当需要截断中高频部分以达到一些特殊效果时,使K
0=0。
在使用者选择确定了各参数值后,所述音色均衡函数C即可确定,原始声音信号A
0经过音色均衡函数C滤波后,其低频段的声音信号的响度将得到增益,其中高频段的声音信号将得到音色均衡增益,最后经过HRTF函数滤波后将得到音色均衡的虚拟空间声。
基于本发明实施例1的耳机虚拟空间声回放方法,本实施例还提供一种耳机虚拟空间声回放装置。该装置包括音色均衡滤波模块和HRTF滤波模块,其中音色均衡滤波模块获取原始声音信号A
0及待虚拟声源的空间方位信息,然后依据待虚拟声源的空间方位信息对原始声音信号A
0通过音色均衡函数C进行滤波处理,输出均衡声音信号A
C;HRTF滤波模块获 取均衡声音信号A
C对并对其通过HRTF函数进行滤波处理,输出左耳声音信号A
L和右耳声音信号A
R。
相对于现有技术,本发明对输入的原始声音信号A
0以分频点f
0为界分频调节,对全频段使用整体增益因子G
0调节整体声压级,对中高频段使用均衡增益因子K
0调节中高频段整体声功率,使经过HRTF函数滤波处理后的左耳声音信号A
L和右耳声音信号A
R的整体声功率与输入原始声音信号A
0声功率保持近似,从而改善音色。另外,对分频点f
0、整体增益因子G
0和均衡增益因子K
0的还可以根据特殊需求进行特殊取值,以调节音频整体响度、音调和截取音频频段,从而实现不同声音效果,满足不同的听众需求。
实施例2
请参阅图7,其为本发明实施例2的耳机虚拟空间声回放方法的流程框图。本发明实施例2的应用为模拟多通路环绕声的场景,即定义多个固定的待虚拟声源的空间位置,同时通过播放器或系统输入多个与定义的待虚拟声源数量相等的原始声音信号,分别对每个原始声音信号根据其特定的待虚拟声源的空间位置进行音色均衡和HRTF函数空间声回放处理,在左右耳机中分别同时输出多个左耳声音信号和右耳声音信号,实现立体环绕声的声效。具体步骤如下:
S1:获取原始声音信号,所述原始声音信号包括子原始声音信号A
01、A
02……A
0n及对应的n个子待虚拟声源的空间方位信息;
在步骤S1中,子原始声音信号A
0n为第n个输入音频,n≥2。同时子待虚拟声源的空间方位信息包括n个子水平面方位角θ
1、θ
2……θ
n和子垂直面方位角
分别与子原始声音信号A
01、A
02……A
0n一一对应。
子水平面方位角θ
1、θ
2……θ
n和子垂直面方位角
根据实际场景分别设置为不同的固定值,如模拟5.1声道环绕声时,有6个输入音频包括中央声道、前置左声道、前置右声道、后置左环绕声道、后置右环绕声道和重低音声道,对应有6个子原始声音信号A
01、A
02、A
03、A
04、A
05、A
06,对应的子水平方位角θ
1、θ
2、θ
3、θ
4、θ
5、θ
6分别设置为0°、30°、-30°、120°、-120°、0°,子垂直面方位角
均设置为0°。
S2:对所述子原始声音信号A
01、A
02……A
0n分别进行音色均衡滤波处理,得到对应的n个子均衡声音信号A
C1、A
C2……A
Cn;
在步骤S2中,通过音色均衡函数C
n分别对子原始声音信号A
01、A
02……A
0n逐一进行 均衡滤波处理,所述子均衡声音信号A
Cn与所述子原始声音信号A
0n的关系表达式为:A
Cn=A
0nC
n,其中音色均衡函数C
n的表达式为
其中分频点f
0n、整体增益因子G
0n和均衡增益因子K
0n的取值方法与实施例1中音色均衡函数C的分频点f
0、整体增益因子G
0和均衡增益因子K
0相同,在此不再赘述。分频点f
0n、整体增益因子G
0n和均衡增益因子K
0n可对应子原始声音信号A
01、A
02……A
0n进行不同的设置,从而调试整体声功率,使声音回放达到期望的声音效果。
S3:通过n个与子待虚拟声源的空间方位信息对应的HRTF左耳函数和HRTF右耳函数对所述子均衡声音信号A
C1、A
C2……A
Cn分别进行滤波处理,得到n个子左耳声音信号A
L1、A
L2……A
Ln和n个子右耳声音信号A
R1、A
R2……A
Rn。
在步骤S3中,每个子均衡声音信号A
C1、A
C2……A
Cn分别通过其对应的HRTF左耳函数和HRTF右耳函数进行滤波处理,对应输出的子左耳声音信号A
Ln与子均衡声音信号A
Cn的表达式为
对应输出的子右耳声音信号A
Rn与子均衡声音信号A
Cn的表达式为
在该方法具体的实施中,将n个子左耳声音信号A
L1、A
L2……A
Ln合成为一个左耳声音信号并通过左耳机输出,将n个子右耳声音信号A
R1、A
R2……A
Rn合成为一个右耳声音信号并通过右耳机输出。
基于实施例2的耳机虚拟空间声回放方法,以下对应用该方法的一种耳机虚拟空间声回放装置进行说明。该耳机虚拟空间声回放装置包括n个音色均衡滤波模块和n个HRTF滤波模块,其中音色均衡滤波模块分别获取子原始声音信号A
01、A
02……A
0n及对应的n个子待虚拟声源的空间方位信息,然后分别依据待虚拟声源的空间方位信息对对应的子原始声音信号A
01、A
02……A
0n通过音色均衡函数C进行滤波处理,分别输出子均衡声音信号A
C1、A
C2……A
Cn;HRTF滤波模块分别获取对应的子均衡声音信号A
C1、A
C2……A
Cn对并对其分别通过HRTF函数进行滤波处理,将获得的子左耳声音信号A
L1、A
L2……A
Ln合成为一个左耳信号并输出,同时将获得的子右耳声音信号A
R1、A
R2……A
Rn合成为一个右耳信号并输出。
在实施例2中,本发明实现了同时对多个原始声音信号处理,每个原始声音信号对应不同的待虚拟声源的空间方位信息,产生音色均衡后的空间回放效果的双耳声音信号,听者通过该双耳声音信号可以听到多个声音并能感到声音来自多个特定空间位置。基于此,本发明可应用于模拟多通路环绕声的场景,仅通过耳机就可以实现由多个扬声器才能实现的立体环绕效果,特别是原始声音信号为高品质音频时,可以实现如同置身于影院的沉浸效果。
基于实施例1、实施例2的耳机虚拟空间声回放方法,本发明还提供应用该方法的一种耳机虚拟空间声回放的存储介质,该存储介质作为计算机可读存储介质,主要用于存储程序,该程序可以是实施例1、实施例2中耳机虚拟空间声回放方法对应的程序代码。
基于实施例1、实施例2的耳机虚拟空间声回放方法,本发明还提供应用该方法的一种具有耳机虚拟空间声回放效果的耳机,该耳机包括虚拟空间声回放装置、左耳扬声器和右耳扬声器,其中虚拟空间声回放装置为实施例1、实施例2中的耳机虚拟空间声回放装置,左耳扬声器和右耳扬声器用于输出所述虚拟空间声回放装置的左耳声音信号和右耳声音信号到耳机外部。
基于同一发明构思,本发明还提供一种虚拟空间声回放的音色均衡方法,其技术方案包括:在对原始声音信号A
0进行HRTF函数滤波前,根据待虚拟声源的空间方位信息,对原始声音信号A
0通过音色均衡函数C进行音色均衡滤波处理,获得均衡声音信号A
C。所述音色均衡函数C与实施例1、实施例2中的方法相同,在此不再赘述。
本发明可采用通用DSP硬件电路或软件代码的形式实现,也可以在HRTF/HRIR的数据文件中作为头相关传递函数数据库的一部分实现。本发明的方法可以运用于耳机和自由场条件下的HRTF/HRIR。本发明并不局限于上述实施方式,如果对本发明的各种改动或变形不脱离本发明的精神和范围,倘若这些改动和变形属于本发明的权利要求和等同技术范围之内,则本发明也意图包含这些改动和变形。
Claims (25)
- 根据权利要求1所述的耳机虚拟空间声回放方法,其特征在于:所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
- 根据权利要求1-2任一项所述的耳机虚拟空间声回放方法,其特征在于:所述分频点f 0的取值为400Hz≤f 0≤1.5kHz范围中的任意一频率值。
- 一种耳机虚拟空间声回放装置,包括:音色均衡滤波模块和HRTF滤波模块,其中音色均衡滤波模块获取原始声音信号A 0及待虚拟声源的空间方位信息,然后依据待虚拟声源的空间方位信息对原始声音信号A 0通过音色均衡函数C进行滤波处理,输出均衡声音信号A C;HRTF滤波模块获取均衡声音信号A C对并对其通过HRTF函数进行滤波处理,输出左耳声音信号A L和右耳声音信号A R;所述音色均衡函数C为其中f为所述原始声音信号A 0的频率,f 0为分频点,H为HRTF函数的幅度谱,K 0为均衡增益因子,G 0为整体增益因子。
- 根据权利要求6所述的耳机虚拟空间声回放装置,其特征在于:所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
- 根据权利要求6-7任一项所述的耳机虚拟空间声回放装置,其特征在于:所述分频点f 0的取值为400Hz≤f 0≤1.5kHz范围中的任意一频率值。
- 一种耳机虚拟空间声回放的存储介质,该存储介质作为计算机可读存储介质,主要用于存储程序,该程序包括:根据待虚拟声源的空间方位信息,对输入的原始声音信号A 0通过音色均衡函数C进行滤波处理,获得均衡声音信号A C;再对均衡声音信号A C进行HRTF函数滤波处理,输出左耳声音信号A L和右耳声音信号A R;所述音色均衡函数C为其中f为所述原始声音信号A 0的频率,f 0为分频点,H为HRTF函数的幅度谱,K 0为均衡增益因子,G 0为整体增益因子。
- 根据权利要求11所述的耳机虚拟空间声回放的存储介质,其特征在于:所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
- 根据权利要求11-12任一项所述的耳机虚拟空间声回放的存储介质,其特征在于:所述分频点f 0的取值为400Hz≤f 0≤1.5kHz范围中的任意一频率值。
- 一种具有虚拟空间声回放效果的耳机,包括:虚拟空间声回放装置、左耳扬声器和右耳扬声器,其中虚拟空间声回放装置包括音色均衡滤波模块和HRTF滤波模块,其中音色均衡滤波模块获取原始声音信号A 0及待虚拟声源的空间方位信息,然后依据待虚拟声源的空间方位信息对原始声音信号A 0通过音色均衡函数C进行滤波处理,输出均衡声音信号A C;HRTF滤波模块获取均衡声音信号A C对并对其通过HRTF函数进行滤波处理,通过左耳扬声器输出左耳声音信号A L,通过右耳扬声器右耳声音信号A R;所述音色均衡函数C为其中f为所述原始声音信号A 0的频率,f 0为分频点,H为HRTF函数的幅度谱,K 0为均衡增益因子,G 0为整体增益因子。
- 根据权利要求16所述的具有虚拟空间声回放效果的耳机,其特征在于:所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号 和子右耳声音信号。
- 根据权利要求16-17任一项所述的具有虚拟空间声回放效果的耳机,其特征在于:所述分频点f 0的取值为400Hz≤f 0≤1.5kHz范围中的任意一频率值。
- 根据权利要求21所述的虚拟空间声回放的音色均衡方法,其特征在于:所述原始声音信号包括至少两个并行的子原始声音信号,每一子原始声音信号对应一子待虚拟声源的空间方位信息,每一子原始声音信号通过音色均衡函数C滤波处理得到对应子 均衡声音信号;再对每一子均衡声音信号进行HRTF函数滤波处理得到对应子左耳声音信号和子右耳声音信号。
- 根据权利要求21-22任一项所述的虚拟空间声回放的音色均衡方法,其特征在于:所述分频点f 0的取值为400Hz≤f 0≤1.5kHz范围中的任意一频率值。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US18/685,843 US20240236613A1 (en) | 2021-08-05 | 2021-10-21 | A method, device, storage medium, and headphones of headphone virtual spatial sound playback |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202110896744.6A CN113645531B (zh) | 2021-08-05 | 2021-08-05 | 一种耳机虚拟空间声回放方法、装置、存储介质及耳机 |
CN202110896744.6 | 2021-08-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023010691A1 true WO2023010691A1 (zh) | 2023-02-09 |
Family
ID=78419716
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2021/125220 WO2023010691A1 (zh) | 2021-08-05 | 2021-10-21 | 一种耳机虚拟空间声回放方法、装置、存储介质及耳机 |
Country Status (3)
Country | Link |
---|---|
US (1) | US20240236613A1 (zh) |
CN (1) | CN113645531B (zh) |
WO (1) | WO2023010691A1 (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115604646B (zh) * | 2022-11-25 | 2023-03-21 | 杭州兆华电子股份有限公司 | 一种全景深空间音频处理方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW391148B (en) * | 1997-12-01 | 2000-05-21 | Central Research Lab Ltd | Stereo sound expander |
US20080031462A1 (en) * | 2006-08-07 | 2008-02-07 | Creative Technology Ltd | Spatial audio enhancement processing method and apparatus |
US20080049948A1 (en) * | 2006-04-05 | 2008-02-28 | Markus Christoph | Sound system equalization |
CN101511047A (zh) * | 2009-03-16 | 2009-08-19 | 东南大学 | 双声道立体声分别基于音箱与耳机的三维音效处理方法 |
US20170208392A1 (en) * | 2014-06-03 | 2017-07-20 | Dolby Laboratories Licensing Corporation | Passive and Active Virtual Height Filter Systems for Upward Firing Drivers |
CN111556425A (zh) * | 2020-04-20 | 2020-08-18 | 华南理工大学 | 一种扬声器虚拟声重放的音色均衡方法 |
CN111587582A (zh) * | 2017-10-18 | 2020-08-25 | Dts公司 | 用于3d音频虚拟化的音频信号预调节 |
CN113038355A (zh) * | 2014-03-24 | 2021-06-25 | 三星电子株式会社 | 用于渲染声信号的方法和设备,以及计算机可读记录介质 |
CN113170271A (zh) * | 2019-01-25 | 2021-07-23 | 华为技术有限公司 | 用于处理立体声信号的方法和装置 |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7634092B2 (en) * | 2004-10-14 | 2009-12-15 | Dolby Laboratories Licensing Corporation | Head related transfer functions for panned stereo audio content |
US8428269B1 (en) * | 2009-05-20 | 2013-04-23 | The United States Of America As Represented By The Secretary Of The Air Force | Head related transfer function (HRTF) enhancement for improved vertical-polar localization in spatial audio systems |
CN101835072B (zh) * | 2010-04-06 | 2011-11-23 | 瑞声声学科技(深圳)有限公司 | 虚拟环绕声处理方法 |
CN102572676B (zh) * | 2012-01-16 | 2016-04-13 | 华南理工大学 | 一种虚拟听觉环境实时绘制方法 |
CN104581610B (zh) * | 2013-10-24 | 2018-04-27 | 华为技术有限公司 | 一种虚拟立体声合成方法及装置 |
CN107450819A (zh) * | 2016-06-01 | 2017-12-08 | 中兴通讯股份有限公司 | 声音处理方法和装置 |
CN106454686A (zh) * | 2016-08-18 | 2017-02-22 | 华南理工大学 | 一种基于体感摄像头的多通路环绕声动态双耳重放方法 |
CN107205207B (zh) * | 2017-05-17 | 2019-01-29 | 华南理工大学 | 一种基于中垂面特性的虚拟声像近似获取方法 |
CN108616789B (zh) * | 2018-04-11 | 2021-01-01 | 北京理工大学 | 基于双耳实时测量的个性化虚拟音频回放方法 |
-
2021
- 2021-08-05 CN CN202110896744.6A patent/CN113645531B/zh active Active
- 2021-10-21 WO PCT/CN2021/125220 patent/WO2023010691A1/zh active Application Filing
- 2021-10-21 US US18/685,843 patent/US20240236613A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
TW391148B (en) * | 1997-12-01 | 2000-05-21 | Central Research Lab Ltd | Stereo sound expander |
US20080049948A1 (en) * | 2006-04-05 | 2008-02-28 | Markus Christoph | Sound system equalization |
US20080031462A1 (en) * | 2006-08-07 | 2008-02-07 | Creative Technology Ltd | Spatial audio enhancement processing method and apparatus |
CN101511047A (zh) * | 2009-03-16 | 2009-08-19 | 东南大学 | 双声道立体声分别基于音箱与耳机的三维音效处理方法 |
CN113038355A (zh) * | 2014-03-24 | 2021-06-25 | 三星电子株式会社 | 用于渲染声信号的方法和设备,以及计算机可读记录介质 |
US20170208392A1 (en) * | 2014-06-03 | 2017-07-20 | Dolby Laboratories Licensing Corporation | Passive and Active Virtual Height Filter Systems for Upward Firing Drivers |
CN111587582A (zh) * | 2017-10-18 | 2020-08-25 | Dts公司 | 用于3d音频虚拟化的音频信号预调节 |
CN113170271A (zh) * | 2019-01-25 | 2021-07-23 | 华为技术有限公司 | 用于处理立体声信号的方法和装置 |
CN111556425A (zh) * | 2020-04-20 | 2020-08-18 | 华南理工大学 | 一种扬声器虚拟声重放的音色均衡方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113645531B (zh) | 2024-04-16 |
US20240236613A1 (en) | 2024-07-11 |
CN113645531A (zh) | 2021-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9918179B2 (en) | Methods and devices for reproducing surround audio signals | |
US10104485B2 (en) | Headphone response measurement and equalization | |
US6078669A (en) | Audio spatial localization apparatus and methods | |
US10715917B2 (en) | Sound wave field generation | |
JP5499513B2 (ja) | 音響処理装置、音像定位処理方法および音像定位処理プログラム | |
KR101827032B1 (ko) | 스테레오 영상 확대 시스템 | |
CN108632714B (zh) | 扬声器的声音处理方法、装置及移动终端 | |
US11102577B2 (en) | Stereo virtual bass enhancement | |
WO2012042905A1 (ja) | 音響再生装置および音響再生方法 | |
US10469945B2 (en) | Sound wave field generation based on a desired loudspeaker-room-microphone system | |
US20150350805A1 (en) | Sound wave field generation | |
EP2930955B1 (en) | Adaptive filtering | |
CN111556425B (zh) | 一种扬声器虚拟声重放的音色均衡方法 | |
CN116367050A (zh) | 处理音频信号的方法、存储介质、电子设备和音频设备 | |
WO2023010691A1 (zh) | 一种耳机虚拟空间声回放方法、装置、存储介质及耳机 | |
CN109923877B (zh) | 对立体声音频信号进行加权的装置和方法 | |
US8340322B2 (en) | Acoustic processing device | |
US11388538B2 (en) | Signal processing device, signal processing method, and program for stabilizing localization of a sound image in a center direction | |
WO2022133128A1 (en) | Binaural signal post-processing | |
US11284195B2 (en) | System to move sound into and out of a listener's head using a virtual acoustic system | |
WO2023156274A1 (en) | Apparatus and method for reducing spectral distortion in a system for reproducing virtual acoustics via loudspeakers | |
JP2011015118A (ja) | 音像定位処理装置、音像定位処理方法およびフィルタ係数設定装置 | |
JP2006042316A (ja) | 音像上方拡大回路 | |
JP2003199200A (ja) | ヘッドホーンに類似するリアチャンネルスピーカーシステム及びその方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21952118 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18685843 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21952118 Country of ref document: EP Kind code of ref document: A1 |