WO2023008463A1 - Neutralizing human antibody against wild type strain and mutant strain of sars-cov-2 and antigen-binding fragment thereof - Google Patents

Neutralizing human antibody against wild type strain and mutant strain of sars-cov-2 and antigen-binding fragment thereof Download PDF

Info

Publication number
WO2023008463A1
WO2023008463A1 PCT/JP2022/028885 JP2022028885W WO2023008463A1 WO 2023008463 A1 WO2023008463 A1 WO 2023008463A1 JP 2022028885 W JP2022028885 W JP 2022028885W WO 2023008463 A1 WO2023008463 A1 WO 2023008463A1
Authority
WO
WIPO (PCT)
Prior art keywords
antibody
amino acid
acid sequence
cov
antigen
Prior art date
Application number
PCT/JP2022/028885
Other languages
French (fr)
Japanese (ja)
Inventor
りゅう 三浦
幸人 石坂
美華子 上野
賢志 忽那
翔 齋藤
基 木村
Original Assignee
株式会社イーベック
国立研究開発法人国立国際医療研究センター
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社イーベック, 国立研究開発法人国立国際医療研究センター filed Critical 株式会社イーベック
Publication of WO2023008463A1 publication Critical patent/WO2023008463A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K39/00Medicinal preparations containing antigens or antibodies
    • A61K39/395Antibodies; Immunoglobulins; Immune serum, e.g. antilymphocytic serum
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • A61P31/12Antivirals
    • A61P31/14Antivirals for RNA viruses
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K16/00Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies
    • C07K16/08Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses
    • C07K16/10Immunoglobulins [IGs], e.g. monoclonal or polyclonal antibodies against material from viruses from RNA viruses
    • C07K16/1002Coronaviridae
    • C07K16/1003Severe acute respiratory syndrome coronavirus 2 [SARS‐CoV‐2 or Covid-19]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/74Vectors or expression systems specially adapted for prokaryotic hosts other than E. coli, e.g. Lactobacillus, Micromonospora
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/80Vectors or expression systems specially adapted for eukaryotic hosts for fungi
    • C12N15/81Vectors or expression systems specially adapted for eukaryotic hosts for fungi for yeasts
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N5/00Undifferentiated human, animal or plant cells, e.g. cell lines; Tissues; Cultivation or maintenance thereof; Culture media therefor
    • C12N5/10Cells modified by introduction of foreign genetic material

Definitions

  • the present invention generally binds to the spike (S) protein of Severe acute respiratory syndrome coronavirus 2 (hereinafter referred to as "SARS-CoV-2”), including mutant strains, of SARS - Monoclonal antibodies that neutralize the biological activity of CoV-2, and antigen-binding fragments thereof, and their use as medicaments.
  • SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2
  • COVID-19 severe acute respiratory disease novel coronavirus infection
  • SARS-CoV-2 has a typical betacoronavirus morphology. Similar to other coronaviruses, spherical virus particles with a diameter of about 100 nm are surrounded by a lipid bilayer envelope (outer membrane), and crown-like projections (spikes) are present on the envelope surface.
  • the spike is composed of a spike (S) protein trimer and binds to the angiotensin-converting enzyme 2 (ACE2) receptor (receptor) on the human cell membrane (Non-Patent Documents 1 and 2). After binding, the spike is activated by host cell proteases (Non-Patent Documents 3, 4), the viral envelope and the host cell membrane fuse, and the virus enters the cytoplasm.
  • the S protein can suppress infection by inhibiting the binding of the spike and ACE2, which is the first step in virus infection of cells, and is therefore a target for antibody therapy including vaccines (Non-Patent Document 5). ).
  • SARS-CoV-2 has about 30,000 bases of positive single-stranded RNA as its genome. RNA is known to be less stable and more susceptible to mutation than DNA. SARS-CoV-2 also has mutations in the S protein that can affect increased transmissibility, virulence, antigenic changes, and the efficacy of acquired immunity in previously infected individuals and vaccinated individuals. Several novel mutant strains are emerging.
  • the characteristic of the Indian type is a mutation called "L452R". It shows that the 452nd amino acid of the S protein, which is used by viruses to invade cells, was mutated from L (leucine) to R (arginine). Although the B.1.617 variant's infectivity and pathogenicity are still unclear, the UK Public Health Agency announced on June 9, 2021 that the delta strain is about 60% more infectious than the alpha strain. Regarding the effectiveness of vaccines, Pfizer and AstraZeneca's vaccines are said to be less protective with only one dose, but more effective with two doses.
  • antibody drugs that utilize neutralizing monoclonal antibodies have been proven to have not only “therapeutic” effects but also “preventive” effects, so at present antibody drugs can counter SARS-CoV-2. It is expected to be the only therapeutic agent. In addition, it has the advantage of being able to manufacture pharmaceuticals of the same quality in large quantities.
  • the present inventors aim to develop novel antibody drugs that correspond to wild type and / or mutant strains of SARS-CoV-2, from B lymphocytes isolated from the peripheral blood of SARS-CoV-2 infected recoverers attempted to obtain antibodies for As a result, we discovered a human-derived monoclonal antibody that binds to the SARS-CoV-2 S protein and neutralizes the viral activity of SARS-CoV-2 (wild type and/or mutant strains).
  • the present disclosure includes the following [1] to [14].
  • [1] A monoclonal antibody against the SARS-CoV-2 coronavirus that binds to the spike protein of the SARS-CoV-2 coronavirus and neutralizes its viral activity, and an antigen-binding fragment thereof.
  • a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having 90% or more identity with the amino acid sequence of SEQ ID NO: 1;
  • amino acid sequence of SEQ ID NO: 9 or a heavy chain containing amino acids having 90% or more identity with the amino acid sequence of SEQ ID NO: 9, and the amino acid sequence of SEQ ID NO: 10 or 90% or more with the amino acid sequence of SEQ ID NO: 10 The antibody or antigen-binding fragment thereof according to [1] or [2] above, comprising a light chain comprising identical amino acids.
  • variable region of the heavy chain is (a) a heavy chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:2; (b) a heavy chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:3; and (c) a heavy chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:4; contains (ii) the variable region of the light chain is (a) a light chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:6; (b) a light chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:7; and (c) a light chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:8;
  • the antibody or antigen-binding fragment thereof according to any one of [1] to [3] above, containing [5]
  • [6] The antibody or antigen-binding fragment thereof according to any one of [1] to [5] above, wherein K against S protein trimer, alpha-type receptor binding site (RBD), delta-type RBD
  • K against S protein trimer, alpha-type receptor binding site (RBD), delta-type RBD An antibody or antigen-binding fragment thereof having a D value of 1 ⁇ 10 ⁇ 9 M or less and a K D value of 1 ⁇ 10 ⁇ 10 M or less against kappa-type RBD.
  • [7] Treatment or prevention of SARS-CoV-2 coronavirus infection comprising the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above and a pharmaceutically acceptable carrier
  • a pharmaceutical composition for [8] (1) Use of the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above in the treatment or prevention of SARS-CoV-2 coronavirus infection, (2) Use of the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above in the manufacture of a medicament for the treatment or prevention of SARS-CoV-2 coronavirus infection, or (3) A method for treating or preventing SARS-CoV-2 coronavirus infection, wherein the subject or patient in need thereof is subjected to any one of [1] to [6] above.
  • a method comprising administering an antibody or antigen-binding fragment thereof.
  • the pharmaceutical composition, use, or method of [9] above, wherein the mutant strain is an alpha strain, a delta strain, or a kappa strain.
  • An isolated nucleic acid molecule encoding the amino acid sequence of the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above, or any of these nucleic acid molecules and highly stringent An isolated nucleic acid molecule that hybridizes under suitable conditions.
  • [12] A recombinant expression vector incorporating the isolated nucleic acid molecule of [11] above.
  • the monoclonal antibodies, or antigen-binding fragments thereof, that neutralize the biological activity of SARS-CoV-2 according to the present invention bind to the S protein of wild-type and/or mutant SARS-CoV-2. , loses (neutralizes) its biological activity and is therefore useful in the prevention or treatment of SARS-CoV-2 infection. In particular, it is useful as a neutralizing antibody against SARS-CoV-2 mutant strains with increased transmissibility and pathogenicity.
  • the fully human monoclonal antibodies or antigen-binding fragments thereof against the S protein of SARS-CoV-2 according to the present invention have no or at least reduced immunogenicity in humans compared to antibodies that are not fully human antibodies. They have the advantage of having fewer side effects when administered to a human subject or patient because they have no or at least a reduced immune response compared to antibodies that are not fully human antibodies.
  • FIG. 2 is a flow chart showing the procedure for producing an anti-SARS-CoV-2-S antibody according to the present invention.
  • FIG. 2 shows the nucleotide and corresponding amino acid sequences of the genes encoding the heavy and light chains of an anti-SARS-CoV-2-S antibody (EV053264b) according to the invention.
  • amino acids are represented by single-letter codes. Dark shaded amino acid sequences are signal sequences, light shaded amino acid sequences are variable region amino acid sequences, and underlined amino acid sequences are CDRs (Kabat).
  • Fig. 10 shows the results of measuring the neutralizing activity of the anti-SARS-CoV-2-S antibody (EV053264b) according to the present invention against wild strain, alpha strain, delta strain, and kappa strain.
  • Severe acute respiratory syndrome coronavirus 2 Severe acute respiratory syndrome coronavirus 2
  • SARS-CoV-2 severe acute respiratory syndrome coronavirus 2
  • the genome of SARS-CoV-2 consists of 30 kb of single-stranded RNA, and its gene shares 80% homology with the SARS coronavirus (SARS-CoV) that caused a pandemic in 2002-2003 ( Zhou P. et al., Nature, 579:270-273, 2020 (Non-Patent Document 2)).
  • Coronavirus particles are composed of three proteins: the spike (S) protein, the envelope (E) protein, and the membrane (M) protein. Crown-like projections (spikes) on the virus surface, which are morphological features, are formed by S protein trimers.
  • SARS-CoV-2 spike (S) protein SARS-CoV-2 S protein
  • SARS-CoV-2 S protein is one of the glycoproteins present on the surface of the SARS-CoV-2 virus and consists of 1181 amino acid residues. (GenBank Protein Accesion # QHD43416.1). Strains of SARS-CoV-2 with the S protein identified in this GenBank Protein Accesion # QHD43416.1 are referred to herein as "wild strains.”
  • the S protein contains two functional domains, S1, which contains the N-terminal domain (NTD) and receptor binding domain (RBD), and S2, which mediates the fusion of the viral and host cell membranes. Spike first binds to host cell ACE2 via the RBD.
  • the ACE2-bound spike is activated by being cleaved by two host cell proteases (TMPRSS2 and furin), fuses the viral membrane with the cell membrane, and delivers viral genes into the cell. After that, it forms a structure surrounded by a lipid bilayer membrane in the cell and replicates the viral genes therein (Non-Patent Document 4). Therefore, infection can be suppressed by inhibiting the binding of spike and ACE2, which is an early stage of infection.
  • TMPRSS2 and furin two host cell proteases
  • mutant strain is defined as a SAR-CoV-2 strain that has a mutation in the S protein of wild-type SARS-CoV-2.
  • mutant strains include the aforementioned three strains of alpha strain (British type), beta strain (South African type), and gamma strain (Brazilian type) having the N501Y mutation, as well as the Indian type mutant virus ( named "B.1.617”).
  • the Indotype includes three subgroups (B.1.617.1 (“kappa strains”), B.1.617.2 (“delta strains”), B.1.617.3), which are has a mutation called L452R in which the 452nd amino acid located within the RBD of is changed from L (leucine) to R (arginine).
  • the kappa strain has a mutation called E484Q in the RBD and the delta strain has a mutation called T478K.
  • SARS-CoV-2 includes its wild strains and mutant strains unless otherwise specified.
  • Antibodies that bind to the S protein of SARS-CoV-2 binds to any site of the S protein of SARS-CoV-2
  • the epitope can be, for example, a linear epitope, a discontinuous sequence epitope, a conformational epitope, or a fragment of the S protein, or the like. It is not limited to RBD.
  • anti-SARS-CoV-2 antibody As used herein, the terms “anti-SARS-CoV-2 antibody”, “antibody capable of neutralizing SARS-CoV-2”, “anti-SARS-CoV-2 S protein antibody”, “SARS-CoV-2 S
  • antibody that binds to a protein As mentioned above, spikes that play an important role in the early stages of infection are formed by S protein trimers.
  • S protein trimer was used as an antigen in the examples described later.
  • a specific example of the human monoclonal antibody according to the present invention described in the Examples is herein referred to as "EV053264b".
  • Antibody refers to four polypeptide chains, namely two heavy (H) chains and two light (L) chains, which are interconnected by disulfide bonds. It is intended to refer to an immunoglobulin molecule consisting of conjugates. Monoclonal antibodies in the present invention also consist of immunoglobulin molecules each containing two heavy (H) and light (L) chains. Each H chain consists of an H chain variable region (sometimes referred to as “HCVR” or “VH”) and an H chain constant region (the H chain constant region consists of three domains, “CH1”, “CH2 ”, and “CH3” (generic name: CH)).
  • Each L chain consists of an L chain variable region (sometimes referred to as “LCVR” or “VL”) and an L chain constant region (the L chain constant region consists of one domain and is sometimes referred to as "C”).
  • L chain variable region sometimes referred to as "LCVR” or “VL”
  • L chain constant region consists of one domain and is sometimes referred to as "C”
  • the region up to the beginning of each constant region also called constant region or constant region
  • variable region or variable region
  • VH and VL are important in that they are involved in antibody binding specificity. Because antibodies interact with target antigens primarily through the amino acid residues of VH and VL, the amino acid sequences within the variable regions vary more between individual antibodies than sequences outside of the variable regions.
  • VH and VL can be further subdivided into regions called framework regions (FR) that are more constant among different antibodies and hypervariable regions called complementarity determining regions (CDR).
  • FR framework regions
  • CDR complementarity determining regions
  • binding to the SARS-CoV-2 S protein and exhibiting the biological activity of SARS-CoV-2 can be performed by techniques well known in the art.
  • Neutralizing human monoclonal antibodies, monoclonal antibodies (including chimeric antibodies and humanized antibodies), or antigen-binding fragments thereof can be obtained. These antibodies are within the scope of the invention.
  • Antibody "antigen-binding fragments" refers to one or more antibodies capable of binding to an antigen (the S protein of SARS-CoV-2). refers to a fragment (e.g., VH) of The fragment also includes a peptide having the minimum amino acid sequence that binds to the antigen.
  • binding moieties included within the term "antigen-binding fragment" of an antibody include (i) Fab fragments, (ii) F(ab')2 fragments, (iii) Fd fragments consisting of the VH and CH1 domains, (iv) an Fv fragment consisting of the VL and VH domains of a single arm of the antibody, (v) a dAb fragment consisting of the VH domain (Ward ES. et al., Nature, 341:544-546, 1989) (vi) binds (vii) bispecific antibodies, and (viii) multispecific antibodies.
  • antibody when the term "antibody” is used without particular distinction, it includes not only full-length antibodies but also such "antigen-binding fragments.”
  • Isotype Heavy chains are divided into ⁇ chain, ⁇ chain, ⁇ chain, ⁇ chain, and ⁇ chain, depending on the difference in the constant region.
  • immunoglobulins are formed.
  • IgG has four subclasses, IgG1 to IgG4. On the other hand, it is divided into ⁇ chain and ⁇ chain depending on the difference in the light chain constant region.
  • the class (subclass) of the antibody EV053264b shown in Examples below is IgG1( ⁇ ).
  • Antibodies of the present invention or antigen-binding fragments thereof (or "viral activity” or “infectivity”) (the terms are used interchangeably herein), or at least inhibit infection. (hereinafter referred to as “the antibody of the present invention”).
  • the antibodies of the present invention bind to the S protein of either or both wild-type and mutant SARS-CoV-2 and are capable of neutralizing the biological activity of said protein or antigen binding thereof. It is a sex fragment.
  • the antibodies of the present invention are antibodies or antigen-binding fragments thereof that can bind to the S protein of both wild-type and mutant SARS-CoV-2 and neutralize the biological activity of the protein. be.
  • the antibodies of the present invention are antibodies or antigen-binding fragments thereof that are capable of binding to the S protein of mutant SARS-CoV-2 and neutralizing the biological activity of said protein.
  • Table 1 shows the correspondence between human-derived anti-SARS-CoV-2 antibodies and antigen-binding fragments thereof according to one embodiment of the antibody of the present invention and the SEQ ID NOs of their amino acid sequences in the sequence listing.
  • the monoclonal antibody EV053264b according to one embodiment of the antibody of the present invention comprises a heavy chain (HC) consisting of the amino acid sequence of SEQ ID NO:9 and a light chain (LC) consisting of the amino acid sequence of SEQ ID NO:10.
  • the heavy chain variable region consists of the amino acid sequence of SEQ ID NO:1
  • the light chain variable region consists of the amino acid sequence of SEQ ID NO:5.
  • CDR1 consists of the amino acid sequence of SEQ ID NO:2
  • CDR2 consists of the amino acid sequence of SEQ ID NO:3
  • CDR3 consists of the amino acid sequence of SEQ ID NO:4.
  • CDR1 consists of the amino acid sequence of SEQ ID NO:6
  • CDR2 consists of the amino acid sequence of SEQ ID NO:7
  • CDR3 consists of the amino acid sequence of SEQ ID NO:8.
  • Antibodies of the present invention include not only those containing amino acid sequences such as the specific heavy chains or light chains shown in SEQ ID NOS: 1 to 10, their variable regions, or their CDRs, but also Included are anti-SARS-CoV-2 antibodies that comprise substantially identical amino acid sequences and are capable of binding to the SARS-CoV-2 S protein and neutralizing the biological activity of SARS-CoV-2.
  • the term "substantially identical” means that one or more amino acid residues are deleted, substituted, inserted, or added in the amino acid sequence of the antibody of the present invention, or any two or more of these When the combination is made, it means that there is a deletion, substitution, insertion, or addition of one or more amino acid residues at any position in the same sequence and one or more amino acid sequences. Two or more of deletions, substitutions, insertions and additions may occur simultaneously.
  • amino acid sequences substantially identical to the amino acid sequences of specific heavy or light chains, variable regions thereof, or CDRs thereof shown in each of SEQ ID NOS: 1-10 are represented by SEQ ID NOS: 1-10. 20, at least, for example, about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more It includes amino acid sequences that have an identity (or sequence identity) greater than.
  • Antibodies of the invention as long as they retain activity equivalent to that of the limiting monoclonal antibody (EV053264b) (i.e., binds to the SARS-CoV-2 S protein and neutralizes the viral activity of SARS-CoV-2) can be included in the range of Antibodies of the present invention may include antibodies whose amino acid sequences other than the CDRs are also derived from humans.
  • the antibody can be included in the antibody of 1 to several (specifically, 1 to 30, 1 to 25, 1 to 20, 1 to 15, 1 to 10, 1 to 9) in the framework region (FR) as necessary , 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or 1) amino acid residue deletion, substitution, insertion , additions, or combinations of any two or more of these.
  • amino acids that make up proteins in nature can be grouped according to the properties of their side chains.
  • amino acids with similar biochemical properties include aromatic amino acids (tyrosine, phenylalanine, tryptophan), Basic amino acids (lysine, arginine, histidine), acidic amino acids (aspartic acid, glutamic acid), neutral amino acids (serine, threonine, asparagine, glutamine), amino acids with hydrocarbon chains (alanine, valine, leucine, isoleucine, proline) , and others (glycine, methionine, cysteine). Substitutions of amino acid residues between amino acid residues having side chains with similar biochemical properties can be made while retaining the biological activity of the original protein.
  • amino acid residues included in the same group of the following groupings can be substituted for each other (while retaining the biological activity of the original protein).
  • Group A leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, o-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine;
  • Group B aspartic acid, glutamic acid, isoaspartic acid , isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid;
  • Group C asparagine, glutamine;
  • Group D lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid;
  • Group E proline, 3-hydroxyproline, 4-hydroxyproline;
  • Group F serine, thre
  • the present disclosure provides monoclonal antibodies and antigen-binding fragments thereof characterized by the constitutions of [1] to [6] below.
  • [1] A monoclonal antibody against the SARS-CoV-2 coronavirus that binds to the spike protein of the SARS-CoV-2 coronavirus and neutralizes its viral activity, and an antigen-binding fragment thereof.
  • a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 80% (or at least 90% or 95%) identity with the amino acid sequence of SEQ ID NO: 1; [1] above, which contains the amino acid sequence of SEQ ID NO:5 or a light chain variable region comprising an amino acid sequence having at least 80% (or at least 90% or 95%) identity with the amino acid sequence of SEQ ID NO:5 or an antigen-binding fragment thereof.
  • variable region of the heavy chain is (a) a heavy chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:2; (b) a heavy chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:3; and (c) a heavy chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:4; contains (ii) the variable region of the light chain is (a) a light chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:6; (b) a light chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:7; and (c) a light chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:8;
  • the antibody or antigen-binding fragment thereof according to any one of [1] to [3] above, containing [5]
  • [6] The antibody or antigen-binding fragment thereof according to any one of [1] to [5] above, wherein the K value for S protein trimer, alpha-type RBD, and delta-type RBD is 1 ⁇
  • the invention also provides nucleic acid molecules that encode the amino acid sequences of the antibodies of the invention.
  • nucleic acid molecules are provided that encode the amino acid sequences of monoclonal antibodies and antigen-binding fragments thereof characterized by each of [1] to [6] above.
  • an anti-SARS-CoV-2 antibody or antigen-binding fragment thereof capable of binding to the S protein of SARS-CoV-2 and neutralizing its biological activity i.e., typically An isolated nucleic acid (molecule) (polynucleotide) that has a high degree of identity with the amino acid sequence of a monoclonal antibody and an antigen-binding fragment thereof characterized by the construction of each of [1] to [6] above.
  • a nucleic acid ie, an isolated nucleic acid selected from those that hybridize to the nucleic acid under highly stringent conditions is provided.
  • nucleic acid is DNA or RNA, typically DNA.
  • Highly stringent conditions are, for example, 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 50% formamide, and 50°C. (See, e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press (1989), especially Section 11.45 “Conditions for Hybridization of Oligonucleotide Probes”). Under these conditions, it can be expected that polynucleotides (eg, DNA) having higher identity can be efficiently obtained as the temperature is raised. However, multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration can be considered as factors that affect the stringency of hybridization, and those skilled in the art can select these factors as appropriate. It is possible to achieve similar stringency in .
  • Nucleic acids that hybridize under highly stringent conditions include nucleic acids encoding amino acid sequences, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% Nucleic acids having greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, or greater than 99% identity are included.
  • nucleotide sequences can be determined using the identity search algorithm described above (Karlin S and Altschu SF, PNAS, 87:2264-2268, 1990; PNAS, 90:5873-5877, 1993). .
  • the present invention relates to a vector incorporating the nucleic acid molecule, a host cell into which the vector has been introduced, and a method for producing an antibody using these vectors.
  • Antibodies of the present invention can also be produced as recombinant human antibodies using known methods (Boulianne GL et al., Nature, 312:643-646, 1984, Jones PT et al., Nature, 321:522-525 , 1986, etc.).
  • the antibody of the present invention can be produced by culturing host cells introduced with the vector of the present invention and purifying the produced antibody from the culture supernatant. More specifically, cDNAs encoding VH and VL are inserted into animal cell expression vectors containing genes encoding human antibody CH and/or human antibody CL produced from the same cell or different human cells, respectively. It can be produced by constructing a human antibody expression vector and introducing it into animal cells for expression.
  • the vector that incorporates the nucleic acid encoding the VH or VL of the antibody of the present invention is not necessarily limited, but it is possible to use a vector that is commonly used for expression of protein genes and the like and that is particularly suitable for expression of antibody genes or a vector for high expression. can.
  • Non-limiting examples include vectors containing FE promoters and/or CMV enhancers.
  • expression vectors incorporating nucleic acids encoding VH or VL are usually prepared and co-transfected into host cells, but they may be incorporated into a single expression vector.
  • the host cells into which the expression vector is introduced are not necessarily limited, but include cells that are commonly used for expression of protein genes, etc., and are particularly suitable for expression of antibody genes. Examples thereof include bacteria (E. coli, etc.), actinomycetes, yeast, insect cells (SF9, etc.), and mammalian cells (COS-1, CHO, myeloma cells, etc.).
  • recombinant animal cell lines that stably produce the antibodies at high levels, such as CHO cell lines, are generally used.
  • Known methods can be used for generating such recombinant cell lines, cloning, gene amplification and screening for high expression (for example, Omasa T., J. Biosci. Bioeng., 94: 600-605 , 2002, etc.).
  • the above recombinant antibodies include antigen-binding fragments such as Fab (Fragment of antigen binding), Fab', F(ab') 2 , antibody
  • An active fragment bound by a linker or the like for example, single chain antibody (single chain Fv: scFv) or disulfide stabilized antibody (disulfide stabilized Fv: dsFv)
  • a peptide containing an active antibody fragment for example, a peptide containing CDRs
  • These can be produced by known methods such as treating the antibody of the present invention with an appropriate proteolytic enzyme or genetic recombination techniques.
  • Antibody purification can be performed using known purification means such as salting out, gel filtration, ion exchange chromatography, or affinity chromatography.
  • scFv single chain Fragment of variable region
  • phage display antibody technology which uses genetic engineering technology to express recombinant antibodies on the surface of phages.
  • Antibodies can also be expressed as phage fusion proteins to obtain specific antibodies.
  • This technology is highly evaluated as a humanized antibody production technology that can avoid immunity and can replace the cell fusion method.
  • Specific antibodies or antigen-binding fragments thereof produced using this technique with reference to, for example, the amino acid sequences of SEQ ID NOs: 2-4 and 6-8 are also within the scope of the present invention.
  • an antibody obtained by applying Potellegent technology, which significantly improves the ADCC activity of an antibody by modifying the sugar chain portion of the antibody, to the antibody of the present invention (Niwa R et al., Clin. Cancer Res. ., 10:6248-6255, 2004) and an antibody obtained by applying Complement technology that improves CDC activity to the antibody of the present invention (Kanda Y. et al., Glycobiology, 17:104 -118, 2007) are also within the scope of the present invention.
  • antibodies obtained by modifying the amino acid sequence of the constant region portion of the antibody to modify ADCC activity WO2007/039682 and WO2007/100083
  • CDC activity WO2007/011041 and WO2011/091078
  • an antibody or an antigen-binding fragment thereof obtained by applying a technique for partial substitution of the Fc region (see WO2006/071877) to add protease resistance ability to the antibody and enable oral administration, It is within the scope of the present invention.
  • mice, rabbits, and goats are usually used to obtain polyclonal antibodies and monoclonal antibodies. Since it has a sequence characteristic of animal species, if it is administered to humans as it is, it may be recognized as a foreign substance by the human immune system and cause a human anti-animal antibody response (that is, the production of antibodies against antibodies).
  • the anti-SARS-CoV-2 monoclonal antibody or antigen-binding fragment thereof according to the present invention can be obtained from antibody-producing cells derived from the blood of a person who has recovered from SARS-CoV-2 infection, and is a fully human antibody.
  • This fully human antibody even when administered to the human body as an antibody drug, does not have immunogenicity, or at least has reduced immunogenicity compared to an antibody that is not a fully human antibody, and no immune response is observed, or It has at least a reduced advantage compared to antibodies that are not fully human antibodies.
  • compositions containing an antibody of the invention, use of an antibody of the invention as a medicament, use of an antibody of the invention for the manufacture of a medicament, and treatment or prevention comprising administering an antibody of the invention to a patient includes the use of the antibody of the present invention as a medicament.
  • pharmaceutical compositions for preventing or treating SARS-CoV-2 infection are provided comprising an antibody of the invention and a pharmaceutically acceptable carrier.
  • use of the antibodies of the invention in treating or preventing SARS-CoV-2 coronavirus infection is provided.
  • use of the antibody of the invention in the manufacture of a medicament for the treatment or prevention of SARS-CoV-2 coronavirus infection is provided.
  • a method of treating or preventing SARS-CoV-2 coronavirus infection comprising administering an antibody of the invention to a subject or patient in need thereof.
  • the anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention binds to the S protein of SARS-CoV-2 and has a high neutralizing ability. It is useful as a prophylactic or therapeutic drug for
  • pharmaceutically acceptable carrier includes any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents and the like that are physiologically compatible.
  • Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate-buffered saline, dextrose, glycerol, ethanol, etc., and combinations thereof.
  • the composition can contain pH adjusting agents and isotonic agents, such as sugars, polyalcohols such as mannitol and sorbitol, or sodium chloride.
  • Pharmaceutically acceptable carriers can further contain minor amounts of auxiliary substances such as wetting and emulsifying agents, preservatives, buffers and stabilizers, which enhance the preservation or effectiveness of the antibody or antibody portion. .
  • compositions include, for example, solutions (eg, injectable and infusible solutions), dispersions, suspensions, tablets, capsules, troches, pills, powders, liposomes, suppositories, liquids, semisolids, and the like. , including solid dosage forms.
  • Dosage forms may vary depending on the intended mode of administration and therapeutic application. Examples include those in the form of injectable or infusible solutions, such as compositions similar to those commonly used for passive immunization of humans with other antibodies.
  • the dosage form can be parenteral (eg, intravenously, subcutaneously, intraperitoneally, intramuscularly).
  • antibody can be administered by intravenous infusion or injection.
  • antibody can be administered by intramuscular or subcutaneous injection.
  • Anti-SARS-CoV-2 antibodies and antigen-binding fragments thereof according to the present invention are obtained by cloning the DNA encoding the target antibody through various steps from the blood of a person who has recovered from SARS-CoV-2 infection. It can be obtained by performing production.
  • FIG. 1 shows a flow chart of the steps for producing the anti-SARS-CoV-2-S antibody according to the present invention.
  • S protein B lymphocytes are separated from the blood of a person who has recovered from SARS-CoV-2 infection, and proliferation of the B lymphocytes is induced.
  • the method for inducing proliferation is known per se, and for example, a transformation method (Kozbor D. and Roder JC., Immunol Today, 4:72-9, 1983).
  • Antibody-producing cells are identified from the B lymphocyte group.
  • the B lymphocytes are seeded on a cell microarray, and cells producing S protein-binding antibodies are selected and isolated using glass slides or microbeads on which S protein trimers are immobilized.
  • S Protein cDNA is synthesized from the S protein-binding antibody-producing B lymphocytes identified or isolated above, and the antibody gene is cloned. The acquired gene is introduced into CHO cells, antibody is expressed, and antigen-binding and neutralizing activity are measured.
  • the anti-SARS-CoV-2 antibody obtained as described above is a fully human antibody produced from B lymphocytes sensitized in the human body, it is possible to have an immune response to the antibody when administered to humans. It has the advantage of being less sensitive.
  • Another feature is that it uses the EB virus, which has the activity of infecting B lymphocytes and inducing their proliferation.
  • the advantage of the EB virus method is that it can produce natural antibodies produced in the human body, and that antibodies can be obtained even from cells with a very low positive rate.
  • the antigen-binding property of an antibody or antibody composition can be evaluated by an ELISA method, a surface plasmon resonance (SPR) method, or the like.
  • SPR surface plasmon resonance
  • the ability of the antibody to suppress the biological activity of the S protein of SARS-CoV-2 in vitro can be evaluated by receptor binding inhibition assays such as ELISA, neutralization assays, and the like.
  • a known method can be used to measure the binding activity between an antibody and the S protein of SARS-CoV-2.
  • ELISA using the S protein trimer or the RBD in the S protein as an antigen can be employed.
  • binding affinity to S protein or RBD can be measured by a protein interaction analyzer such as Biacore T200 (registered trademark).
  • the human anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention has a binding affinity (K D value) to wild-type S protein, alpha-type RBD, and delta-type RBD of 1 ⁇ 10 ⁇ It can be 8 M or less, or it can be 1 ⁇ 10 ⁇ 9 M or less.
  • the human anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention has a binding affinity (K D value) for kappa-type RBD of 1 ⁇ 10 ⁇ 8 M or less and 1 ⁇ 10 ⁇ 9 M or less. , or 1 ⁇ 10 ⁇ 10 M or less. (See “5. Antigen binding (affinity) evaluation” and FIG. 3 in Examples)
  • neutralizing refers to antigens (SARS-CoV-2 ) by, for example, at least about 5-100%, 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100% %, or 80 to 100% reduction.
  • Evaluation of the in vitro neutralization ability of anti-SARS-CoV-2 antibodies can be performed using wild-type and/or mutant strains of SARS-CoV-2 (e.g., alpha, delta, kappa strains).
  • the wild strain used is the JPN/TY/WK-521 strain, and mutant strains such as JPN/QK002/2020 as the alpha strain, JPN/TKYTK1734/2021 as the delta strain, and JPN/TKYTK5356/2021 as the kappa strain.
  • the anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention has a SARS-CoV-2 infectivity evaluation system using the Vero cells described above, and about 200 It has 50% infection inhibitory activity (IC50) at ng/mL or less, approximately 100 ng/mL or less, approximately 50 ng/mL or less, or approximately 20 ng/mL or less.
  • IC50 infection inhibitory activity
  • a non-limiting example of the mutant strain described above includes the Delta strain.
  • Fig. 1 shows the flowchart of the procedure for producing the anti-SARS-CoV-2-S antibody according to the present invention.
  • the screening targeted antibodies against the S protein trimer (AcroBiosystem), which is the major neutralizing target of SARS-CoV-2, and the wells containing target antibody-positive cells were identified by ELISA.
  • S protein trimer AcroBiosystem
  • Neutralizing activity was measured in each well in which anti-SARS-CoV-2 antibody production was confirmed, and neutralizing antibody-positive wells were identified.
  • the cells in the neutralizing antibody-positive well are seeded on a cell microarray, and a slide glass or microbeads on which the S protein trimer is immobilized are used to isolate single cells that produce the target antibody. released.
  • Antibody genes were amplified by PCR using the cDNA obtained by reverse transcription from total-RNA of antibody-producing cells using oligo-dT primer as a template. The primers used for PCR were designed based on a database of cDNAs encoding human IgG antibody H and L chains. A 5′-end primer and a 3′-end primer were designed to amplify the H chain from the translation initiation site to the constant region, and the L chain to amplify the full-length cDNA.
  • the obtained antibody gene encodes an anti-SARS-CoV-2 antibody
  • H chain and L chain genes were each inserted into an expression vector and simultaneously introduced into CHO-K1 cells. Gene transfer was performed using Lipofectamine LTX and Plus Reagent (Thermo Fisher Scientific) under the manufacturer's recommended conditions. Two days later, the culture supernatant was collected, and the antibody in the culture supernatant bound to the S protein of SARS-CoV-2 by ELISA using a multiwell plate with S protein trimer immobilized. bottom. For clones confirmed to bind to the S protein, the neutralizing activity was measured using the culture supernatant.
  • the obtained anti-SARS-CoV-2 neutralizing antibody expression vector was introduced into ExpiCHO cells (Thermo Fisher Scientific), and the culture supernatant was collected. This culture supernatant was subjected to affinity purification using a Protein A column (Cytiva) to obtain a purified antibody. Gene introduction, culture, and purification were performed under the manufacturer's recommended conditions. After purification, antibody H chain (about 50 kDa) and antibody L chain (about 25 kDa) were confirmed by SDS-PAGE.
  • Anti-SARS-CoV-2 antibody antigen binding activity evaluation using S protein trimer, alpha-type RBD, delta-type RBD, and kappa-type RBD using Biacore T-200 affinity analysis was performed.
  • Anti-human IgG was immobilized on a sensor chip using a human IgG capture kit (Cytiva), and an anti-SARS-CoV-2 antibody was captured and used as a ligand.
  • Analytes used were S protein trimer, alpha-type RBD, delta-type RBD, and kappa-type RBD (AcroBiosystem), respectively. The results are shown in FIG.
  • Anti-SARS-CoV-2 antibody (EV053264b) binds to S protein trimers, alpha-type RBDs, and delta-type RBDs with K D values of 1.0 nM or less and to kappa-type RBDs with K D values of 0.1 nM or less. showed activity.
  • Neutralizing activity was confirmed as an evaluation of the efficacy of the anti-SARS-CoV-2 antibody.
  • Neutralizing activity was evaluated by antibody inhibition rate of SARS-CoV-2 delta strain infection.
  • Virus neutralization experiments using antibodies are based on the COVID19 serological test manual published by the National Institute of Infectious Diseases. Conducted according to https://www.niid.go.jp/niid/images/pathol/pdf/COVID-19Serology_Ver1.pdf .
  • Virus strain From the National Institute of Infectious Diseases, wild strain (JPN/TY/WK-521 strain), alpha strain (JPN/QK002/2020 strain), delta strain (JPN/TKYTK1734/2021 strain), and kappa strain ( JPN/TKYTK5356/2021 strain) was obtained.
  • Virus stocks were serially diluted using Opti-MEM (Thermo Fisher Scientific) and added to 96-well plates. One dilution series was applied to eight wells as one set. Three to four days later, the virus concentration at which half of the eight wells showed CPE (Cytopathertic effects) was calculated as the 50% infectious dose (TCID50, Median tissue culture infectious dose).
  • IC50 50% inhibitory concentration (IC50) of the purified antibody (EV053264b) was evaluated using a 96-well plate (Thermo Fisher Scientific). That is, an antibody solution diluted with Opti-MEM to a final concentration of 250 ng/mL to 0.25 ng/mL was added to one column of a 96-well plate. Next, an equal amount of the virus solution adjusted to a final MOI of 0.01 was added to a 96-well plate, shaken and reacted at 37°C for 1 hour, and 100 ⁇ L each was added to the cell plate.
  • the antibody of the present invention showed an infection-suppressing effect against wild strain, alpha strain, kappa strain, and delta strain, and the IC50 value was calculated to be 20 ng/mL or less.
  • the anti-SARS-CoV-2 antibody of the present invention is useful for applications in fields such as pharmaceutical compositions for preventing or treating diseases associated with SARS-CoV-2.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Virology (AREA)
  • Microbiology (AREA)
  • Medicinal Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plant Pathology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pulmonology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Communicable Diseases (AREA)
  • Oncology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Cell Biology (AREA)
  • Epidemiology (AREA)
  • Peptides Or Proteins (AREA)

Abstract

The present invention provides a human-derived monoclonal antibody against SARS-CoV-2 coronavirus, said antibody binding to the S protein of SARS-CoV-2 coronavirus and neutralizing the viral activity, an antigen-binding fragment thereof, a nucleic acid encoding the antibody or the antigen-binding fragment thereof, and a pharmaceutical composition for treating or preventing SARS-CoV-2 coronavirus infection, said composition containing the antibody or the antigen-binding fragment thereof.

Description

SARS-CoV-2野生株および変異株に対する中和ヒト抗体およびその抗原結合性断片Neutralizing human antibodies and antigen-binding fragments thereof against SARS-CoV-2 wild-type and mutant strains
 本発明は、概して、変異株を含む重症急性呼吸器症候群コロナウイルス2(Severe acute respiratory syndrome coronavirus 2)(以下、「SARS-CoV-2」と称する)のスパイク (S)タンパク質に結合し、SARS-CoV-2の生物活性を中和するモノクローナル抗体、およびその抗原結合性断片、ならびにその医薬としての使用に関する。 The present invention generally binds to the spike (S) protein of Severe acute respiratory syndrome coronavirus 2 (hereinafter referred to as "SARS-CoV-2"), including mutant strains, of SARS - Monoclonal antibodies that neutralize the biological activity of CoV-2, and antigen-binding fragments thereof, and their use as medicaments.
 2019年に中国武漢で最初に発生した新興コロナウイルスSARS-CoV-2は、重症急性呼吸器疾患新型コロナウイルス感染症(以下、「COVID-19」と称する)として「パンデミック」と呼ばれる世界的大流行を引き起こした。COVID-19の臨床的特徴には、発熱、空咳、倦怠感などがあり、呼吸不全を引き起こして死に至る可能性がある。2021年6月9日の時点で、世界保健機関は173,331,478の確定症例、3,735,571人の死亡を報告しており、未だ感染拡大は衰えることなく、変異株による感染も世界的に急速に増加している。 The emerging coronavirus SARS-CoV-2, which first emerged in Wuhan, China in 2019, has become a global pandemic known as severe acute respiratory disease novel coronavirus infection (hereinafter referred to as "COVID-19"). sparked an epidemic. Clinical features of COVID-19 include fever, dry cough, and malaise, which can lead to respiratory failure and death. As of June 9, 2021, the World Health Organization has reported 173,331,478 confirmed cases and 3,735,571 deaths. there is
 SARS-CoV-2は、典型的なベータコロナウイルスの形態を有する。他のコロナウイルスと同様、直径約100nmの球形ウイルス粒子は、脂質二重膜のエンベロープ(外膜)に包まれ、エンベロープ表面上には王冠様突起(スパイク)が存在する。 SARS-CoV-2 has a typical betacoronavirus morphology. Similar to other coronaviruses, spherical virus particles with a diameter of about 100 nm are surrounded by a lipid bilayer envelope (outer membrane), and crown-like projections (spikes) are present on the envelope surface.
 スパイクはスパイク(S)タンパク質3量体で構成され、ヒト細胞膜のアンジオテンシン変換酵素2(ACE2)受容体(レセプター)に結合する(非特許文献1、2)。結合後、スパイクは宿主細胞のプロテアーゼにより活性化され(非特許文献3、4)、ウイルスエンベロープと宿主細胞膜が融合して、ウイルスが細胞質内に侵入する。つまり、ウイルスが細胞に感染する最初の段階であるスパイクとACE2との結合を阻害することで感染を抑制できるため、Sタンパク質はワクチンを含めた抗体治療の標的となっている(非特許文献5)。 The spike is composed of a spike (S) protein trimer and binds to the angiotensin-converting enzyme 2 (ACE2) receptor (receptor) on the human cell membrane (Non-Patent Documents 1 and 2). After binding, the spike is activated by host cell proteases (Non-Patent Documents 3, 4), the viral envelope and the host cell membrane fuse, and the virus enters the cytoplasm. In other words, the S protein can suppress infection by inhibiting the binding of the spike and ACE2, which is the first step in virus infection of cells, and is therefore a target for antibody therapy including vaccines (Non-Patent Document 5). ).
 SARS-CoV-2は、約3万塩基のプラス一本鎖RNAをゲノムとして有している。RNAはDNAよりも安定性が低く、突然変異が生じやすいことが知られている。SARS-CoV-2においても、伝播性・病原性の増加、抗原性の変化や、すでに感染した人やワクチン接種者が獲得した免疫の効果に影響を与える可能性のあるSタンパク質に変異を有する複数の新規変異株の流行が起こっている。 SARS-CoV-2 has about 30,000 bases of positive single-stranded RNA as its genome. RNA is known to be less stable and more susceptible to mutation than DNA. SARS-CoV-2 also has mutations in the S protein that can affect increased transmissibility, virulence, antigenic changes, and the efficacy of acquired immunity in previously infected individuals and vaccinated individuals. Several novel mutant strains are emerging.
 SARS-CoV-2のSタンパク質に変異を有する新規変異株として、感染性・伝播のしやすさに影響があるとされる「N501Y」変異を有するイギリス型(B.1.1.7:「アルファ株」と称される)、南アフリカ型(B.1.351:「ベータ株」と称される)、 ブラジル型(P1:「ガンマ株」と称される)が知られている。特にアルファ株については、2次感染率の増加や、死亡リスクの増加の可能性が疫学データから示唆されている。 As a novel mutant strain with a mutation in the S protein of SARS-CoV-2, the British type (B.1.1.7: alpha strain ), the South African type (B.1.351: termed 'beta strain'), and the Brazilian type (P1: termed 'gamma strain'). Especially for alpha strains, epidemiological data suggest that there is a possibility of increased secondary infection rate and increased mortality risk.
日本国内では2021年5月24日の時点で11,235人のアルファ株への感染が確認されたが、厚生労働省は「英国型変異株の割合が全国で約8割になり、一部の地域を除いて従来株からほぼ置き換わったと推定される」という分析結果をまとめている。 In Japan, as of May 24, 2021, 11,235 people were confirmed to be infected with the alpha strain, but the Ministry of Health, Labor and Welfare said, ``The proportion of the British variant is about 80% nationwide, and some areas are It is estimated that it has almost replaced the conventional strain, except for the
 アルファ株に続く脅威と考えられているのがインドで感染者が急増している新規変異株である。2021年5月11日、WHOはこの変異型ウイルス(B.1.617:インド型)をVOC(Variant of Concern、注視すべき変異)に指定した。同変異型ウイルスには、3種類のサブグループ(B.1.617.1、B.1.617.2、B.1.617.3)があり、WHOはB.1.617.1を「カッパ株」、B.1.617.2を「デルタ株」と命名した。特にデルタ株は、WHOの2021年6月15日付の発表によると80以上の国や地域に拡大し、感染力が強く、世界的な主流になりつつある、としている。アルファ株による感染第2波に襲われたイギリスではワクチン接種の広がりによりアルファ株の収束に成功しているが、現在の感染の主体はデルタ株に置き換わったとしている。 A new mutant strain, with a rapidly increasing number of infected people in India, is considered to be a threat following the alpha strain. On May 11, 2021, WHO designated this mutant virus (B.1.617: Indotype) as a VOC (Variant of Concern). There are three subgroups (B.1.617.1, B.1.617.2, B.1.617.3) of the same mutant virus, and WHO calls B.1.617.1 "kappa strain", B.1.617 .2 was named the "delta strain". In particular, according to the WHO announcement dated June 15, 2021, the delta strain has spread to more than 80 countries and regions, is highly contagious, and is becoming a global mainstream. In the UK, which was attacked by the second wave of infection due to the alpha strain, the spread of vaccination has succeeded in converging the alpha strain, but it is said that the main cause of the current infection has been replaced by the delta strain.
 日本国内でもデルタ株の感染が拡大している。厚生労働省によると、2021年6月7日時点で確認された感染者は12都府県の87人であり、増加ペースが加速している。7月中旬には新規感染者の過半数を占めるとの試算もあり、専門家は拡大防止に向け監視体制の強化を訴えている。 Infection with the delta strain is spreading in Japan as well. According to the Ministry of Health, Labor and Welfare, as of June 7, 2021, 87 people in 12 prefectures have been confirmed to be infected, and the pace of increase is accelerating. It is estimated that by mid-July, the new infections will account for the majority of the cases, and experts are calling for the strengthening of the monitoring system to prevent the spread of the disease.
 インド型の特徴は「L452R」と呼ばれる変異である。ウイルスが細胞に侵入する際に使うSタンパク質の452番目のアミノ酸が、L(ロイシン)からR(アルギニン)に変異したことを示す。B.1.617変異株の感染性や病原性についてはまだ不透明であるが、英国公衆衛生庁は、2021年6月9日、デルタ株の感染性は、アルファ株より60%程度高いと公表した。また、ワクチンの効果に関しては、ファイザーとアストラゼネカのワクチンは1回接種のみでは防御効果が低下するものの、2回接種すれば防御効果は高いとしている。 The characteristic of the Indian type is a mutation called "L452R". It shows that the 452nd amino acid of the S protein, which is used by viruses to invade cells, was mutated from L (leucine) to R (arginine). Although the B.1.617 variant's infectivity and pathogenicity are still unclear, the UK Public Health Agency announced on June 9, 2021 that the delta strain is about 60% more infectious than the alpha strain. Regarding the effectiveness of vaccines, Pfizer and AstraZeneca's vaccines are said to be less protective with only one dose, but more effective with two doses.
 しかし、ワクチンの効果には個人差がある可能性が指摘され、また、ワクチン接種ができない健康上の問題をかかえる人もいる。「ワクチン忌避」感情も存在するのが実情である。ワクチンだけでは感染を完全には抑えられない現状を踏まえ、治療薬はワクチンを補う重要な要素となる。 However, it has been pointed out that there may be individual differences in the effectiveness of the vaccine, and some people have health problems that prevent vaccination. The fact is that there is also a feeling of “vaccine avoidance”. Given that vaccines alone cannot completely control infections, therapeutic drugs are an important complement to vaccines.
 治療薬の中で、モノクローナル中和抗体を活用した抗体医薬は「治療」効果のみならず、「予防」効果も実証されていることから、現時点で抗体医薬品が、SARS-CoV-2に対抗できる唯一の治療薬であると期待されている。加えて、大量に同品質の医薬製造が可能であるという利点を有する。 Among therapeutic drugs, antibody drugs that utilize neutralizing monoclonal antibodies have been proven to have not only “therapeutic” effects but also “preventive” effects, so at present antibody drugs can counter SARS-CoV-2. It is expected to be the only therapeutic agent. In addition, it has the advantage of being able to manufacture pharmaceuticals of the same quality in large quantities.
 このような状況下、SARS-CoV-2 Sタンパク質に結合し、SARS-CoV-2のウイルス活性を中和するヒトモノクローナル抗体、またはその抗原結合断片を含む、SARS-CoV-2感染症を治療または予防するための新規の抗体医薬品の開発が求められている。 Under these circumstances, treat SARS-CoV-2 infection containing human monoclonal antibodies, or antigen-binding fragments thereof, that bind to the SARS-CoV-2 S protein and neutralize the viral activity of SARS-CoV-2. Or development of the novel antibody drug for prevention is called for.
 本発明者らは、SARS-CoV-2の野生株および/または変異株に対応する新規の抗体医薬品の開発を目的とし、SARS-CoV-2感染回復者の末梢血から分離したBリンパ球からの抗体取得を試みた。その結果、SARS-CoV-2 Sタンパク質に結合し、SARS-CoV-2(野生株および変異株のいずれか、またはその両方)のウイルス活性を中和するヒト由来モノクローナル抗体を見出すに至った。 The present inventors aim to develop novel antibody drugs that correspond to wild type and / or mutant strains of SARS-CoV-2, from B lymphocytes isolated from the peripheral blood of SARS-CoV-2 infected recoverers attempted to obtain antibodies for As a result, we discovered a human-derived monoclonal antibody that binds to the SARS-CoV-2 S protein and neutralizes the viral activity of SARS-CoV-2 (wild type and/or mutant strains).
 したがって、本開示は、以下の[1]から[14]を含む。
 [1]SARS-CoV-2コロナウイルスのスパイクタンパク質に結合し、そのウイルス活性を中和するSARS-CoV-2コロナウイルスに対するモノクローナル抗体およびその抗原結合性断片。
 [2]配列番号1のアミノ酸配列または配列番号1のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含む重鎖可変領域、および、
 配列番号5のアミノ酸配列または配列番号5のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含む軽鎖可変領域を含有する、上記[1]に記載の抗体またはその抗原結合性断片。
 [3]配列番号9のアミノ酸配列または配列番号9のアミノ酸配列と90%以上の同一性を有するアミノ酸を含む重鎖、および
 配列番号10のアミノ酸配列または配列番号10のアミノ酸配列と90%以上の同一性を有するアミノ酸を含む軽鎖
を含む、上記[1]または[2]に記載の抗体またはその抗原結合性断片。
 [4](i)重鎖の可変領域が、
(a)配列番号2のアミノ酸配列を含む重鎖CDR1のアミノ酸配列、
(b)配列番号3のアミノ酸配列を含む重鎖CDR2のアミノ酸配列、および
(c)配列番号4のアミノ酸配列を含む重鎖CDR3のアミノ酸配列、
を含有し、
(ii)軽鎖の可変領域が、
(a)配列番号6のアミノ酸配列を含む軽鎖CDR1のアミノ酸配列、
(b)配列番号7のアミノ酸配列を含む軽鎖CDR2のアミノ酸配列、および
(c)配列番号8のアミノ酸配列を含む軽鎖CDR3のアミノ酸配列、
を含有する、上記[1]~[3]のいずれか一項に記載の抗体またはその抗原結合性断片。
 [5]上記[1]~[4]のいずれか一項に記載の抗体またはその抗原結合性断片であって、SARS-CoV-2野生株および変異株のいずれかまたはその両方に対する中和活性(IC50)が、約20 ng/mL以下である抗体またはその抗原結合性断片。
 [6]上記[1]~[5]のいずれか一項に記載の抗体またはその抗原結合性断片であって、Sタンパク質3量体、アルファ型レセプター結合部位(RBD)、デルタ型RBDに対するKD値が1×10-9M以下であり、かつ、カッパ型RBDに対するKD値が1×10-10M以下である抗体またはその抗原結合性断片。
 [7]上記[1]~[6]のいずれか一項に記載の抗体またはその抗原結合性断片および薬学的に許容可能な担体を含む、SARS-CoV-2コロナウイルス感染症を治療または予防するための医薬組成物。
 [8](1)SARS-CoV-2コロナウイルス感染症の治療もしくは予防における、上記[1]~[6]のいずれか一項に記載の抗体もしくはその抗原結合性断片の使用、
 (2)SARS-CoV-2コロナウイルス感染症の治療もしくは予防のための医薬の製造における、上記[1]~[6]のいずれか一項に記載の抗体もしくはその抗原結合性断片の使用、または
 (3)SARS-CoV-2コロナウイルス感染症を治療もしくは予防するための方法であって、それを必要とする対象もしくは患者に上記[1]~[6]のいずれか一項に記載の抗体もしくはその抗原結合性断片を投与することを含む方法。
 [9]上記SARS-CoV-2が変異株である、上記[7]に記載の医薬組成物、または上記[8]に記載の使用もしくは方法。
 [10]上記変異株がアルファ株、デルタ株、またはカッパ株である、上記[9]に記載の医薬組成物、使用、または方法。
 [11]上記[1]~[6]のいずれか一項に記載の抗体またはその抗原結合性断片のアミノ酸配列をコードする単離された核酸分子、またはこれらの核酸分子のいずれかと高ストリンジェントな条件でハイブリダイズする単離された核酸分子。
 [12]上記[11]に記載の単離された核酸分子を組み込んだ組換え発現ベクター。
 [13]上記[12]に記載の組換え発現ベクターが導入された単離された宿主細胞。
 [14]上記[13]に記載の宿主細胞を培養し、上記培養された宿主細胞から抗体を精製することを含む、上記[1]~[6]のいずれか一項に記載の抗体またはその抗原結合性断片の製造方法。
Accordingly, the present disclosure includes the following [1] to [14].
[1] A monoclonal antibody against the SARS-CoV-2 coronavirus that binds to the spike protein of the SARS-CoV-2 coronavirus and neutralizes its viral activity, and an antigen-binding fragment thereof.
[2] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having 90% or more identity with the amino acid sequence of SEQ ID NO: 1;
The antibody or antigen-binding fragment thereof according to [1] above, which comprises a light chain variable region comprising the amino acid sequence of SEQ ID NO:5 or an amino acid sequence having 90% or more identity with the amino acid sequence of SEQ ID NO:5.
[3] the amino acid sequence of SEQ ID NO: 9 or a heavy chain containing amino acids having 90% or more identity with the amino acid sequence of SEQ ID NO: 9, and the amino acid sequence of SEQ ID NO: 10 or 90% or more with the amino acid sequence of SEQ ID NO: 10 The antibody or antigen-binding fragment thereof according to [1] or [2] above, comprising a light chain comprising identical amino acids.
[4] (i) the variable region of the heavy chain is
(a) a heavy chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:2;
(b) a heavy chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:3; and (c) a heavy chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:4;
contains
(ii) the variable region of the light chain is
(a) a light chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:6;
(b) a light chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:7; and (c) a light chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:8;
The antibody or antigen-binding fragment thereof according to any one of [1] to [3] above, containing
[5] The antibody or antigen-binding fragment thereof according to any one of [1] to [4] above, which has neutralizing activity against either or both of a SARS-CoV-2 wild type and a mutant strain An antibody or antigen-binding fragment thereof having an (IC50) of about 20 ng/mL or less.
[6] The antibody or antigen-binding fragment thereof according to any one of [1] to [5] above, wherein K against S protein trimer, alpha-type receptor binding site (RBD), delta-type RBD An antibody or antigen-binding fragment thereof having a D value of 1×10 −9 M or less and a K D value of 1×10 −10 M or less against kappa-type RBD.
[7] Treatment or prevention of SARS-CoV-2 coronavirus infection, comprising the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above and a pharmaceutically acceptable carrier A pharmaceutical composition for
[8] (1) Use of the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above in the treatment or prevention of SARS-CoV-2 coronavirus infection,
(2) Use of the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above in the manufacture of a medicament for the treatment or prevention of SARS-CoV-2 coronavirus infection, or (3) A method for treating or preventing SARS-CoV-2 coronavirus infection, wherein the subject or patient in need thereof is subjected to any one of [1] to [6] above. A method comprising administering an antibody or antigen-binding fragment thereof.
[9] The pharmaceutical composition according to [7] above, or the use or method according to [8] above, wherein the SARS-CoV-2 is a mutant strain.
[10] The pharmaceutical composition, use, or method of [9] above, wherein the mutant strain is an alpha strain, a delta strain, or a kappa strain.
[11] An isolated nucleic acid molecule encoding the amino acid sequence of the antibody or antigen-binding fragment thereof according to any one of [1] to [6] above, or any of these nucleic acid molecules and highly stringent An isolated nucleic acid molecule that hybridizes under suitable conditions.
[12] A recombinant expression vector incorporating the isolated nucleic acid molecule of [11] above.
[13] An isolated host cell into which the recombinant expression vector of [12] above has been introduced.
[14] The antibody of any one of [1] to [6] above, which comprises culturing the host cell of [13] above and purifying the antibody from the cultured host cell, or the antibody thereof A method for producing an antigen-binding fragment.
 本発明に係るSARS-CoV-2の生物活性を中和するモノクローナル抗体、またはその抗原結合性断片は、野生株および変異株のいずれかまたはその両方のSARS-CoV-2のSタンパク質に結合し、その生物活性を喪失(中和)させることから、SARS-CoV-2感染症の予防または治療において有用である。とりわけ、伝播性・病原性の増加したSARS-CoV-2の変異株に対する中和抗体として有用である。さらに、本発明に係るSARS-CoV-2のSタンパク質に対する完全ヒトモノクローナル抗体またはその抗原結合性断片は、ヒトに対する免疫原性がないか、または完全ヒト抗体でない抗体と比較して少なくとも低減されており、免疫反応は見られないか、または完全ヒト抗体でない抗体と比較して少なくとも低減されていることから、ヒトである対象または患者に投与した際に副作用が少ないという利点がある。 The monoclonal antibodies, or antigen-binding fragments thereof, that neutralize the biological activity of SARS-CoV-2 according to the present invention bind to the S protein of wild-type and/or mutant SARS-CoV-2. , loses (neutralizes) its biological activity and is therefore useful in the prevention or treatment of SARS-CoV-2 infection. In particular, it is useful as a neutralizing antibody against SARS-CoV-2 mutant strains with increased transmissibility and pathogenicity. Further, the fully human monoclonal antibodies or antigen-binding fragments thereof against the S protein of SARS-CoV-2 according to the present invention have no or at least reduced immunogenicity in humans compared to antibodies that are not fully human antibodies. They have the advantage of having fewer side effects when administered to a human subject or patient because they have no or at least a reduced immune response compared to antibodies that are not fully human antibodies.
本発明に係る抗SARS-CoV-2-S抗体の作製手順をフローチャートで表した図である。FIG. 2 is a flow chart showing the procedure for producing an anti-SARS-CoV-2-S antibody according to the present invention. 本発明に係る抗SARS-CoV-2-S抗体(EV053264b)の重鎖および軽鎖をコードする遺伝子のヌクレオチド配列および対応するアミノ酸配列を示す図である。図中、アミノ酸は一文字表記で表されている。濃い影を付したアミノ酸配列はシグナル配列、薄い影を付したアミノ酸配列は可変領域のアミノ酸配列、下線を付したアミノ酸配列はCDR(Kabat)をそれぞれ示す。FIG. 2 shows the nucleotide and corresponding amino acid sequences of the genes encoding the heavy and light chains of an anti-SARS-CoV-2-S antibody (EV053264b) according to the invention. In the figure, amino acids are represented by single-letter codes. Dark shaded amino acid sequences are signal sequences, light shaded amino acid sequences are variable region amino acid sequences, and underlined amino acid sequences are CDRs (Kabat). 本発明に係る抗SARS-CoV-2-S抗体(EV053264b)の野生型スパイク3量体、アルファ株RBD、デルタ株RBD、およびカッパ株RBDへの親和性(または結合活性)をBiacore T-200を使用して解析した結果を示す図である。The affinity (or binding activity) of the anti-SARS-CoV-2-S antibody (EV053264b) according to the present invention to the wild-type spike trimer, alpha strain RBD, delta strain RBD, and kappa strain RBD was measured using a Biacore T-200 It is a figure which shows the result analyzed using. 本発明に係る抗SARS-CoV-2-S抗体(EV053264b)の野生株、アルファ株、デルタ株、およびカッパ株に対する中和活性測定の結果を示す図である。Fig. 10 shows the results of measuring the neutralizing activity of the anti-SARS-CoV-2-S antibody (EV053264b) according to the present invention against wild strain, alpha strain, delta strain, and kappa strain.
 以下、添付の図面を参照して本発明の実施形態について具体的に説明するが、当該実施形態は専ら本発明の原理を理解することを容易にするためのものであり、本発明の範囲は、下記の実施形態に限定されるものではない。当業者が本明細書の開示及び当該分野の技術常識に基づいて以下に示す本発明の実施形態の各要素を適宜当業者に自明な等価物に置換した他の実施形態も、本発明の範囲に含まれることが理解されるであろう。本発明の説明のために以下において引用する各文献は、その全体が本明細書中に参考として援用される。 Hereinafter, embodiments of the present invention will be specifically described with reference to the accompanying drawings, but the embodiments are solely for the purpose of facilitating understanding of the principles of the present invention, and the scope of the present invention is , is not limited to the following embodiments. Other embodiments in which a person skilled in the art replaces each element of the embodiments of the present invention shown below with equivalents obvious to a person skilled in the art based on the disclosure of the present specification and the common general technical knowledge in the field are also within the scope of the present invention It will be understood to be included in Each of the documents cited below for the description of the present invention is hereby incorporated by reference in its entirety.
 1.用語の説明
 本明細書において、本発明に関連して用いられる科学用語および専門用語は、特に断らない限り、当業者によって一般に理解される意味を有する。さらに、文脈により別に必要とされない限り、単数用語は複数を含み、複数用語は単数を含む。一般に、本明細書に記載されている細胞培養、分子生物学、免疫学、微生物学、遺伝学およびタンパク質と核酸化学の技術に関連して用いられる命名法は、当該分野で周知であり、かつ一般に使用されているものである。
1. Explanation of Terms As used herein, scientific and technical terms used in connection with the present invention have the meanings that are commonly understood by those of ordinary skill in the art, unless otherwise specified. Further, unless otherwise required by context, singular terms shall include pluralities and plural terms shall include the singular. In general, the nomenclature used in connection with the techniques of cell culture, molecular biology, immunology, microbiology, genetics and protein and nucleic acid chemistry described herein are well known in the art and It is commonly used.
 1)重症急性呼吸器症候群コロナウイルス2(SARS-CoV-2)
 「重症急性呼吸器症候群コロナウイルス2」(「SARS-CoV-2」と略す。)は、コロナウイルス科の一種で、ベータコロナウイルス属に属するウイルスである。SARS-CoV-2のゲノムは30kbの1本鎖RNAからなり、その遺伝子は2002年から2003年に世界的な流行が起こったSARSコロナウイルス(SARS-CoV)と80%の相同性を有する(Zhou P. et al., Nature, 579:270-273, 2020(非特許文献2))。コロナウイルス粒子はスパイク(S)タンパク質、エンベロープ(E)タンパク質、および膜(M)タンパク質の3つのタンパク質で構成されている。形態学的特徴であるウイルス表面の王冠様突起(スパイク)はSタンパク質3量体により形成される。
1) Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)
"Severe acute respiratory syndrome coronavirus 2" (abbreviated as "SARS-CoV-2") is a virus belonging to the family Coronaviridae and belonging to the genus Betacoronavirus. The genome of SARS-CoV-2 consists of 30 kb of single-stranded RNA, and its gene shares 80% homology with the SARS coronavirus (SARS-CoV) that caused a pandemic in 2002-2003 ( Zhou P. et al., Nature, 579:270-273, 2020 (Non-Patent Document 2)). Coronavirus particles are composed of three proteins: the spike (S) protein, the envelope (E) protein, and the membrane (M) protein. Crown-like projections (spikes) on the virus surface, which are morphological features, are formed by S protein trimers.
 2)SARS-CoV-2スパイク(S)タンパク質
 「SARS-CoV-2 Sタンパク質」は、SARS-CoV-2ウイルス表面に存在する糖タンパク質の1つであり、1181個のアミノ酸残基から構成されている(GenBank Protein Accesion # QHD43416.1)。本明細書中、このGenBank Protein Accesion # QHD43416.1で特定されるSタンパク質を有するSARS-CoV-2の株を「野生株」と呼ぶ。Sタンパク質は、N末ドメイン(NTD)、およびレセプター結合部位(recepter binding domain; RBD)を含むS1と、ウイルスと宿主細胞の膜の融合を仲介するS2の2つの機能ドメインを含む。スパイクは、まず、RBDを介して宿主細胞のACE2に結合する。ACE2に結合したスパイクは宿主細胞の2種のプロテアーゼ(TMPRSS2、フリン)により開裂を受けて活性化し、ウイルス膜を細胞膜と融合させてウイルス遺伝子を細胞内に送り込む。その後、細胞内で脂質二重膜に包まれた構造を形成し、この中でウイルスの遺伝子を複製する(非特許文献4)。したがって、感染の初期段階であるスパイクとACE2との結合を阻害することで感染を抑制しうる。
2) SARS-CoV-2 spike (S) protein “SARS-CoV-2 S protein” is one of the glycoproteins present on the surface of the SARS-CoV-2 virus and consists of 1181 amino acid residues. (GenBank Protein Accesion # QHD43416.1). Strains of SARS-CoV-2 with the S protein identified in this GenBank Protein Accesion # QHD43416.1 are referred to herein as "wild strains." The S protein contains two functional domains, S1, which contains the N-terminal domain (NTD) and receptor binding domain (RBD), and S2, which mediates the fusion of the viral and host cell membranes. Spike first binds to host cell ACE2 via the RBD. The ACE2-bound spike is activated by being cleaved by two host cell proteases (TMPRSS2 and furin), fuses the viral membrane with the cell membrane, and delivers viral genes into the cell. After that, it forms a structure surrounded by a lipid bilayer membrane in the cell and replicates the viral genes therein (Non-Patent Document 4). Therefore, infection can be suppressed by inhibiting the binding of spike and ACE2, which is an early stage of infection.
 本願明細書中、「変異株」は、野生型のSARS-CoV-2のSタンパク質に変異を有するSAR-CoV-2の株として定義される。変異株の非限定的な例には、前述のN501Y変異を有するアルファ株(イギリス型)、ベータ株(南アフリカ型)、およびガンマ株(ブラジル型)の三種に加え、インド型の変異型ウイルス(「B.1.617」と命名)が含まれる。インド型には、3種類のサブグループ(B.1.617.1(「カッパ株」)、B.1.617.2(「デルタ株」)、B.1.617.3)が含まれ、これらは、Sタンパク質のRBD内に位置する452番目のアミノ酸がL(ロイシン)からR(アルギニン)変化したL452Rと呼ばれる変異を有する。この変異に加え、カッパ株はRBD内にE484Qと呼ばれる変異を有し、デルタ株はT478Kと呼ばれる変異を有する。 In the present specification, a "mutant strain" is defined as a SAR-CoV-2 strain that has a mutation in the S protein of wild-type SARS-CoV-2. Non-limiting examples of mutant strains include the aforementioned three strains of alpha strain (British type), beta strain (South African type), and gamma strain (Brazilian type) having the N501Y mutation, as well as the Indian type mutant virus ( named "B.1.617"). The Indotype includes three subgroups (B.1.617.1 (“kappa strains”), B.1.617.2 (“delta strains”), B.1.617.3), which are has a mutation called L452R in which the 452nd amino acid located within the RBD of is changed from L (leucine) to R (arginine). In addition to this mutation, the kappa strain has a mutation called E484Q in the RBD and the delta strain has a mutation called T478K.
 本明細書中、単に「SARS-CoV-2」という場合、特に限定しない限り、その野生株および変異株を含む。  In this specification, simply referring to "SARS-CoV-2" includes its wild strains and mutant strains unless otherwise specified.
 3)SARS-CoV-2のSタンパク質に結合する抗体
 本明細書中、用語「SARS-CoV-2のSタンパク質に結合する抗体」は、SARS-CoV-2のSタンパク質の任意の部位に結合する抗体を意味し、エピトープは、例えば、線状エピトープ、不連続配列エピトープ、立体構造的エピトープ、またはSタンパク質の断片等であり得る。RBDに限定されるものではない。本明細書中で、用語「抗SARS-CoV-2抗体」、「SARS-CoV-2を中和し得る抗体」、「抗SARS-CoV-2 Sタンパク質抗体」「SARS-CoV-2のSタンパク質に結合する抗体」、「SARS-CoV-2の生物活性を中和し得る抗体」等は、互換的に使用され、SARS-CoV-2のSタンパク質に結合することによってSARS-CoV-2の生物活性を阻害する抗体を指すものとする。前述のように、感染の初期段階において重要な役割を有するスパイクはSタンパク質3量体により形成される。なお、後述の実施例では、Sタンパク質3量体を抗原として使用した。また、実施例に記載する本発明に係るヒトモノクローナル抗体の具体例を、本明細書では「EV053264b」と称する。
3) Antibodies that bind to the S protein of SARS-CoV-2 As used herein, the term "antibody that binds to the S protein of SARS-CoV-2" binds to any site of the S protein of SARS-CoV-2 The epitope can be, for example, a linear epitope, a discontinuous sequence epitope, a conformational epitope, or a fragment of the S protein, or the like. It is not limited to RBD. As used herein, the terms "anti-SARS-CoV-2 antibody", "antibody capable of neutralizing SARS-CoV-2", "anti-SARS-CoV-2 S protein antibody", "SARS-CoV-2 S The terms "antibody that binds to a protein", "antibody capable of neutralizing the biological activity of SARS-CoV-2", etc. are used interchangeably to identify SARS-CoV-2 by binding to the S protein of SARS-CoV-2. is intended to refer to an antibody that inhibits the biological activity of As mentioned above, spikes that play an important role in the early stages of infection are formed by S protein trimers. In addition, the S protein trimer was used as an antigen in the examples described later. A specific example of the human monoclonal antibody according to the present invention described in the Examples is herein referred to as "EV053264b".
 4)抗体
 本明細書で使用される「抗体」という用語は、4本のポリペプチド鎖、すなわち、2本の重(H)鎖および2本の軽(L)鎖であってジスルフィド結合によって相互結合されたものからなる免疫グロブリン分子を指すものとする。本発明におけるモノクローナル抗体も、各々2本の重鎖(H鎖)および軽鎖(L鎖)を含む免疫グロブリン分子からなる。各H鎖は、H鎖可変部領域(「HCVR」または「VH」と称す場合がある)とH鎖不変部領域(H鎖不変部領域は3つのドメインからなり、それぞれ「CH1」、「CH2」、「CH3」と称す場合がある(総称:CH))からなる。各L鎖は、L鎖可変部領域(「LCVR」または「VL」と称す場合がある)とL鎖不変部領域(L鎖不変部領域は1つのドメインからなり、「C」と称す場合がある)からなり、それぞれの不変部領域(不変領域、または定常領域とも呼ぶ)の始まる前までを可変部領域(または可変領域)と呼ぶ。
4) Antibody As used herein, the term "antibody" refers to four polypeptide chains, namely two heavy (H) chains and two light (L) chains, which are interconnected by disulfide bonds. It is intended to refer to an immunoglobulin molecule consisting of conjugates. Monoclonal antibodies in the present invention also consist of immunoglobulin molecules each containing two heavy (H) and light (L) chains. Each H chain consists of an H chain variable region (sometimes referred to as “HCVR” or “VH”) and an H chain constant region (the H chain constant region consists of three domains, “CH1”, “CH2 ”, and “CH3” (generic name: CH)). Each L chain consists of an L chain variable region (sometimes referred to as "LCVR" or "VL") and an L chain constant region (the L chain constant region consists of one domain and is sometimes referred to as "C"). The region up to the beginning of each constant region (also called constant region or constant region) is called a variable region (or variable region).
 特に、VHおよびVLは、抗体の結合特異性に関与する点で重要である。抗体はVHおよびVLのアミノ酸残基を主に通じて標的抗原と相互作用するため、可変部領域内のアミノ酸配列は可変部領域の外にある配列よりも個々の抗体間の違いが大きい。さらに、VHおよびVLにおいても、各種抗体間でより一定に保たれたフレームワーク領域(FR)と呼ばれる領域と相補性決定領域(CDR)と呼ばれる超可変性の領域にさらに細分することができる。VHおよびVLは、それぞれ3つのCDRおよび4つのFRからなり、これらはFR1、CDR1、FR2、CDR2、FR3、CDR3、FR4の順序でアミノ末端からカルボキシ末端まで配列している。 In particular, VH and VL are important in that they are involved in antibody binding specificity. Because antibodies interact with target antigens primarily through the amino acid residues of VH and VL, the amino acid sequences within the variable regions vary more between individual antibodies than sequences outside of the variable regions. In addition, VH and VL can be further subdivided into regions called framework regions (FR) that are more constant among different antibodies and hypervariable regions called complementarity determining regions (CDR). VH and VL consist of three CDRs and four FRs, respectively, which are arranged from amino-terminus to carboxy-terminus in the order FR1, CDR1, FR2, CDR2, FR3, CDR3, FR4.
 可変部領域を示すアミノ酸配列や、CDRのアミノ酸配列をもとにすれば、当該技術分野における周知の技術によって、SARS-CoV-2のSタンパク質に結合し、SARS-CoV-2の生物活性を中和し得るヒトモノクローナル抗体、モノクローナル抗体(キメラ抗体、ヒト化抗体も含む)、またはそれらの抗原結合性断片を得ることができる。これらの抗体は、本発明の範囲内にある。 Based on the amino acid sequence representing the variable region and the amino acid sequence of the CDRs, binding to the SARS-CoV-2 S protein and exhibiting the biological activity of SARS-CoV-2 can be performed by techniques well known in the art. Neutralizing human monoclonal antibodies, monoclonal antibodies (including chimeric antibodies and humanized antibodies), or antigen-binding fragments thereof can be obtained. These antibodies are within the scope of the invention.
 5)抗体の「抗原結合性断片」(または単に「抗体断片」)
 本明細書で使用される抗体の「抗原結合性断片」(または単に「抗体断片」)という用語は、抗原(SARS-CoV-2のSタンパク質)に結合する能力を有する1つまたは複数の抗体のフラグメント(例えばVH)を指す。なお、そのフラグメントには抗原に結合する最小限のアミノ酸配列を有するペプチドも含むものとする。抗体の「抗原結合性断片」という用語内に含まれる結合部分の例としては、(i) Fab断片、(ii) F(ab')2断片、(iii) VHおよびCH1ドメインからなるFd断片、(iv) 抗体の単一アームのVLおよびVHドメインからなるFv断片、(v) VHドメインからなるdAb断片(Ward ES. et al., Nature, 341:544-546, 1989)(vi)結合するのに十分なフレームワークを有する単離された相補性決定領域(CDR)、(vii) 二重特異性抗体、および(viii) 多特異性抗体などがあげられる。なお、本明細書において、特に区別せずに単に「抗体」という場合、完全長の抗体のみならず、このような「抗原結合性断片」も含むものとする。
5) Antibody "antigen-binding fragments" (or simply "antibody fragments")
The term "antigen-binding fragment" of an antibody (or simply "antibody fragment") as used herein refers to one or more antibodies capable of binding to an antigen (the S protein of SARS-CoV-2). refers to a fragment (e.g., VH) of The fragment also includes a peptide having the minimum amino acid sequence that binds to the antigen. Examples of binding moieties included within the term "antigen-binding fragment" of an antibody include (i) Fab fragments, (ii) F(ab')2 fragments, (iii) Fd fragments consisting of the VH and CH1 domains, (iv) an Fv fragment consisting of the VL and VH domains of a single arm of the antibody, (v) a dAb fragment consisting of the VH domain (Ward ES. et al., Nature, 341:544-546, 1989) (vi) binds (vii) bispecific antibodies, and (viii) multispecific antibodies. In the present specification, when the term "antibody" is used without particular distinction, it includes not only full-length antibodies but also such "antigen-binding fragments."
 6)アイソタイプ
 重鎖は定常領域の違いにより、γ鎖、μ鎖、α鎖、δ鎖、ε鎖に分けられ、この違いによりそれぞれIgG、IgM、IgA、IgD、IgEの5種類のクラス(アイソタイプ)の免疫グロブリンが形成される。さらにヒトの場合、IgGにはIgG1~IgG4の4つのサブクラスが存在する。一方、軽鎖定常領域の違いにより、κ鎖、λ鎖に分けられる。なお、後述の実施例で示す抗体EV053264bのクラス(サブクラス)はIgG1(λ)である。
6) Isotype Heavy chains are divided into γ chain, μ chain, α chain, δ chain, and ε chain, depending on the difference in the constant region. ) immunoglobulins are formed. Furthermore, in humans, IgG has four subclasses, IgG1 to IgG4. On the other hand, it is divided into κ chain and λ chain depending on the difference in the light chain constant region. The class (subclass) of the antibody EV053264b shown in Examples below is IgG1(λ).
 2.本発明に係る抗体またはその抗原結合性断片
 本発明は、一つの局面において、重症急性呼吸器症候群コロナウイルス2(「SARS-CoV-2」)に結合し、SARS-CoV-2の「生物活性」(または「ウイルス活性」もしくは「感染能」)(これらの用語は本明細書中、互換的に使用される。)を中和、または少なくとも感染を抑制し得るモノクローナル抗体またはその抗原結合性断片(以下、「本発明の抗体」という。)を提供する。特定的には、本発明の抗体は、野生株および変異株のいずれかまたはその両方のSARS-CoV-2のSタンパク質に結合し、該タンパク質の生物活性を中和し得る抗体またはその抗原結合性断片である。より特定的には、本発明の抗体は、野生株および変異株の両方のSARS-CoV-2のSタンパク質に結合し、該タンパク質の生物活性を中和し得る抗体またはその抗原結合性断片である。とりわけ、本発明の抗体は、変異株のSARS-CoV-2のSタンパク質に結合し、該タンパク質の生物活性を中和し得る抗体またはその抗原結合性断片である。
2. Antibodies of the present invention or antigen-binding fragments thereof (or "viral activity" or "infectivity") (the terms are used interchangeably herein), or at least inhibit infection. (hereinafter referred to as "the antibody of the present invention"). Specifically, the antibodies of the present invention bind to the S protein of either or both wild-type and mutant SARS-CoV-2 and are capable of neutralizing the biological activity of said protein or antigen binding thereof. It is a sex fragment. More particularly, the antibodies of the present invention are antibodies or antigen-binding fragments thereof that can bind to the S protein of both wild-type and mutant SARS-CoV-2 and neutralize the biological activity of the protein. be. In particular, the antibodies of the present invention are antibodies or antigen-binding fragments thereof that are capable of binding to the S protein of mutant SARS-CoV-2 and neutralizing the biological activity of said protein.
 これら抗体の作製方法としては、公知の方法を用いることができる(Riechmann L. et al., Nature, 332:323-327, 1988)。そのような方法の非限定的な例として、本発明においては、後述の実施例で示す手順を含む、完全ヒト抗体の作製方法を用いることができる。 As methods for producing these antibodies, known methods can be used (Riechmann L. et al., Nature, 332: 323-327, 1988). As a non-limiting example of such a method, in the present invention, a method for producing a fully human antibody, including the procedures shown in the examples below, can be used.
 本発明の抗体の一実施形態に係るヒト由来抗SARS-CoV-2抗体、およびその抗原結合性断片と、それらの配列表におけるアミノ酸配列の配列番号との対応関係を表1に示す。
Figure JPOXMLDOC01-appb-T000001
Table 1 shows the correspondence between human-derived anti-SARS-CoV-2 antibodies and antigen-binding fragments thereof according to one embodiment of the antibody of the present invention and the SEQ ID NOs of their amino acid sequences in the sequence listing.
Figure JPOXMLDOC01-appb-T000001
 本発明の抗体の一実施形態に係るモノクローナル抗体EV053264bは、配列番号9のアミノ酸配列からなる重鎖(HC)および配列番号10のアミノ酸配列からなる軽鎖(LC)を含む。 The monoclonal antibody EV053264b according to one embodiment of the antibody of the present invention comprises a heavy chain (HC) consisting of the amino acid sequence of SEQ ID NO:9 and a light chain (LC) consisting of the amino acid sequence of SEQ ID NO:10.
 EV053264bの重鎖および軽鎖のそれぞれにおいて、重鎖可変部領域は配列番号1のアミノ酸配列からなり、軽鎖可変部領域は配列番号5のアミノ酸配列からなる。 In each of the heavy and light chains of EV053264b, the heavy chain variable region consists of the amino acid sequence of SEQ ID NO:1, and the light chain variable region consists of the amino acid sequence of SEQ ID NO:5.
 EV053264bの重鎖可変部領域において、CDR1は配列番号2のアミノ酸配列からなり、CDR2は配列番号3のアミノ酸配列からなり、CDR3は配列番号4のアミノ酸配列からなる。 In the heavy chain variable region of EV053264b, CDR1 consists of the amino acid sequence of SEQ ID NO:2, CDR2 consists of the amino acid sequence of SEQ ID NO:3, and CDR3 consists of the amino acid sequence of SEQ ID NO:4.
 EV053264bの軽鎖可変部領域において、CDR1は配列番号6のアミノ酸配列からなり、CDR2は配列番号7のアミノ酸配列からなり、CDR3は配列番号8のアミノ酸配列からなる。 In the light chain variable region of EV053264b, CDR1 consists of the amino acid sequence of SEQ ID NO:6, CDR2 consists of the amino acid sequence of SEQ ID NO:7, and CDR3 consists of the amino acid sequence of SEQ ID NO:8.
 本発明の抗体としては、上記の配列番号1~10で示される特定の重鎖または軽鎖、その可変領域、あるいはそのCDR等のアミノ酸配列を含むもののみならず、これらのアミノ酸配列に対して実質的に同一なアミノ酸配列を含み、かつSARS-CoV-2のSタンパク質に結合し、SARS-CoV-2の生物活性を中和し得る抗SARS-CoV-2抗体が含まれる。ここで、「実質的に同一」という用語は、本発明の抗体のアミノ酸配列において1以上のアミノ酸残基が欠失、置換、挿入、付加の存在を意味し、またはこれらのいずれか2つ以上の組み合わせがされた時は、同一配列中の任意かつ1または複数のアミノ酸配列中の位置において、1または複数のアミノ酸残基の欠失、置換、挿入、または付加があることを意味し、欠失、置換、挿入および付加のうち2種以上が同時に生じてもよい。 Antibodies of the present invention include not only those containing amino acid sequences such as the specific heavy chains or light chains shown in SEQ ID NOS: 1 to 10, their variable regions, or their CDRs, but also Included are anti-SARS-CoV-2 antibodies that comprise substantially identical amino acid sequences and are capable of binding to the SARS-CoV-2 S protein and neutralizing the biological activity of SARS-CoV-2. Here, the term "substantially identical" means that one or more amino acid residues are deleted, substituted, inserted, or added in the amino acid sequence of the antibody of the present invention, or any two or more of these When the combination is made, it means that there is a deletion, substitution, insertion, or addition of one or more amino acid residues at any position in the same sequence and one or more amino acid sequences. Two or more of deletions, substitutions, insertions and additions may occur simultaneously.
 典型的には、配列番号1~10の各々で示される特定の重鎖または軽鎖、その可変領域、あるいはそのCDR等のアミノ酸配列に対して実質的に同一なアミノ酸配列は、配列番号1~20の各々に対して、少なくとも、例えば、約80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、99%、またはそれを超える同一性(または配列同一性)を有するアミノ酸配列を含む。 Typically, amino acid sequences substantially identical to the amino acid sequences of specific heavy or light chains, variable regions thereof, or CDRs thereof shown in each of SEQ ID NOS: 1-10 are represented by SEQ ID NOS: 1-10. 20, at least, for example, about 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 99%, or more It includes amino acid sequences that have an identity (or sequence identity) greater than.
 例えば、上記のEV053264bのアミノ酸配列中のアミノ酸残基数の約20%以下(または、約15%、10%、9%、8%、7%、6%、5%、4%、3%、2%、もしくは1%以下)のアミノ酸残基の欠失、置換、挿入、付加、またはこれらのいずれか2つ以上の組み合わせの変異を有するアミノ酸配列を有するモノクローナル抗体であっても、上記の非限定的なモノクローナル抗体(EV053264b)の活性(すなわち、SARS-CoV-2 Sタンパク質に結合し、SARS-CoV-2のウイルス活性を中和する)と同等の活性を保持する限り、本発明の抗体の範囲に含まれ得る。本発明の抗体において、CDR以外のアミノ酸配列もヒト由来である抗体が含まれ得るが、CDR以外のアミノ酸配列が他の抗体、特に、他種の抗体由来である、いわゆるCDR移植抗体も本発明の抗体に包含され得る。必要に応じてフレームワーク領域(FR)に1ないし数個(具体的には、1~30個、1~25個、1~20個、1~15個、1~10個、1~9個、1~8個、1~7個、1~6個、1~5個、1~4個、1~3個、1~2個または1個)のアミノ酸残基の欠失、置換、挿入、付加、またはこれらのいずれか2つ以上の組み合わせの変異があってもよい。 For example, about 20% or less of the number of amino acid residues in the above amino acid sequence of EV053264b (or about 15%, 10%, 9%, 8%, 7%, 6%, 5%, 4%, 3%, 2%, or 1% or less) of amino acid residues deletion, substitution, insertion, addition, or a monoclonal antibody having an amino acid sequence with a combination of any two or more thereof, Antibodies of the invention as long as they retain activity equivalent to that of the limiting monoclonal antibody (EV053264b) (i.e., binds to the SARS-CoV-2 S protein and neutralizes the viral activity of SARS-CoV-2) can be included in the range of Antibodies of the present invention may include antibodies whose amino acid sequences other than the CDRs are also derived from humans. can be included in the antibody of 1 to several (specifically, 1 to 30, 1 to 25, 1 to 20, 1 to 15, 1 to 10, 1 to 9) in the framework region (FR) as necessary , 1 to 8, 1 to 7, 1 to 6, 1 to 5, 1 to 4, 1 to 3, 1 to 2 or 1) amino acid residue deletion, substitution, insertion , additions, or combinations of any two or more of these.
 自然界のタンパク質を構成しているアミノ酸は、それらの側鎖の特性によって群分け可能であり、例えば、同様な生化学的特性を有するアミノ酸群としては、芳香族アミノ酸(チロシン、フェニルアラニン、トリプトファン)、塩基性アミノ酸(リジン、アルギニン、ヒスチジン)、酸性アミノ酸(アスパラギン酸、グルタミン酸)、中性アミノ酸(セリン、トレオニン、アスパラギン、グルタミン)、炭化水素鎖を有するアミノ酸(アラニン、バリン、ロイシン、イソロイシン、プロリン)、およびその他(グリシン、メチオニン、システイン)の群などに分類できる。同様な生化学的特性を有する側鎖を有するアミノ酸残基間のアミノ酸残基の置換は、元のタンパク質の生物学的活性を保持したまま行われ得る。 Amino acids that make up proteins in nature can be grouped according to the properties of their side chains. For example, amino acids with similar biochemical properties include aromatic amino acids (tyrosine, phenylalanine, tryptophan), Basic amino acids (lysine, arginine, histidine), acidic amino acids (aspartic acid, glutamic acid), neutral amino acids (serine, threonine, asparagine, glutamine), amino acids with hydrocarbon chains (alanine, valine, leucine, isoleucine, proline) , and others (glycine, methionine, cysteine). Substitutions of amino acid residues between amino acid residues having side chains with similar biochemical properties can be made while retaining the biological activity of the original protein.
 例えば、下記の様な群分けの同一群に含まれるアミノ酸残基(非天然型のアミノ酸も含む)は(元のタンパク質の生物学的活性を保持したまま)相互に置換可能であり得る。A群:ロイシン、イソロイシン、ノルロイシン、バリン、ノルバリン、アラニン、2-アミノブタン酸、メチオニン、o-メチルセリン、t-ブチルグリシン、t-ブチルアラニン、シクロヘキシルアラニン; B群:アスパラギン酸、グルタミン酸、イソアスパラギン酸、イソグルタミン酸、2-アミノアジピン酸、2-アミノスベリン酸; C群:アスパラギン、グルタミン; D群:リジン、アルギニン、オルニチン、2,4-ジアミノブタン酸、2,3-ジアミノプロピオン酸; E群:プロリン、3-ヒドロキシプロリン、4-ヒドロキシプロリン; F群:セリン、スレオニン、ホモセリン; G群:フェニルアラニン、チロシン、トリプトファン。 For example, amino acid residues (including unnatural amino acids) included in the same group of the following groupings can be substituted for each other (while retaining the biological activity of the original protein). Group A: leucine, isoleucine, norleucine, valine, norvaline, alanine, 2-aminobutanoic acid, methionine, o-methylserine, t-butylglycine, t-butylalanine, cyclohexylalanine; Group B: aspartic acid, glutamic acid, isoaspartic acid , isoglutamic acid, 2-aminoadipic acid, 2-aminosuberic acid; Group C: asparagine, glutamine; Group D: lysine, arginine, ornithine, 2,4-diaminobutanoic acid, 2,3-diaminopropionic acid; Group E : proline, 3-hydroxyproline, 4-hydroxyproline; Group F: serine, threonine, homoserine; Group G: phenylalanine, tyrosine, tryptophan.
 なお、アミノ酸配列や塩基配列の同一性は、カーリンおよびアルチュールによるアルゴリズムBLAST(Karlin S and Altschu SF, PNAS, 87:2264-2268, 1990; PNAS, 90:5873-5877, 1993)を用いて決定できる。BLASTのアルゴリズムに基づいたBLASTNやBLASTXと呼ばれるプログラムが開発されている(Altschul SF. et al., J Mol Biol, 215:403-410,1990)。BLASTNを用いて塩基配列を解析する場合は、パラメーターは、例えばscore=100、word length=12とする。また、BLASTXを用いてアミノ酸配列を解析する場合は、パラメーターは、例えばscore=50、word length=3とする。BLASTとGapped BLASTプログラムを用いる場合は、各プログラムのデフォルトパラメーターを用いる。あるいは、タンパク質のアミノ酸配列の同一性を求める際、比較する2種類のタンパク質のアミノ酸配列を並べ、同じアミノ酸残基である部分の数を数えることにより「(同一なアミノ酸残基数/タンパク質全長のアミノ酸残基数)×100(%)」により求めることもできる。 The identity of amino acid sequences and nucleotide sequences is determined using the BLAST algorithm by Karlin and Altschu (Karlin S and Altschu SF, PNAS, 87:2264-2268, 1990; PNAS, 90:5873-5877, 1993). can. Programs called BLASTN and BLASTX based on the BLAST algorithm have been developed (Altschul SF. et al., J Mol Biol, 215:403-410, 1990). When analyzing the base sequence using BLASTN, the parameters are, for example, score=100 and wordlength=12. When analyzing an amino acid sequence using BLASTX, the parameters are, for example, score=50 and word length=3. When using BLAST and Gapped BLAST programs, use the default parameters for each program. Alternatively, when determining the identity of the amino acid sequences of proteins, the amino acid sequences of the two types of proteins to be compared are aligned and the number of portions with the same amino acid residues is counted. number of amino acid residues) x 100 (%)".
 したがって、代表的には、本開示は、一つの局面において、下記[1]から[6]のそれぞれの構成によって特徴付けられるモノクローナル抗体およびその抗原結合性断片を提供する。
 [1]SARS-CoV-2コロナウイルスのスパイクタンパク質に結合し、そのウイルス活性を中和するSARS-CoV-2コロナウイルスに対するモノクローナル抗体およびその抗原結合性断片。
 [2]配列番号1のアミノ酸配列または配列番号1のアミノ酸配列と少なくとも80%(または、少なくとも90%もしくは95%)の同一性を有するアミノ酸配列を含む重鎖可変領域、および、
 配列番号5のアミノ酸配列または配列番号5のアミノ酸配列と少なくとも80%(または、少なくとも90%もしくは95%)の同一性を有するアミノ酸配列を含む軽鎖可変領域を含有する、上記[1]に記載の抗体またはその抗原結合性断片。
 [3]配列番号9のアミノ酸配列または配列番号9のアミノ酸配列と少なくとも80%(または、少なくとも90%もしくは95%)の同一性を有するアミノ酸を含む重鎖、および
 配列番号10のアミノ酸配列または配列番号10のアミノ酸配列と少なくとも80%(または、少なくとも90%もしくは95%)の同一性を有するアミノ酸を含む軽鎖
を含む、上記[1]または[2]に記載の抗体またはその抗原結合性断片。
 [4](i)重鎖の可変領域が、
(a)配列番号2のアミノ酸配列を含む重鎖CDR1のアミノ酸配列、
(b)配列番号3のアミノ酸配列を含む重鎖CDR2のアミノ酸配列、および
(c)配列番号4のアミノ酸配列を含む重鎖CDR3のアミノ酸配列、
を含有し、
(ii)軽鎖の可変領域が、
(a)配列番号6のアミノ酸配列を含む軽鎖CDR1のアミノ酸配列、
(b)配列番号7のアミノ酸配列を含む軽鎖CDR2のアミノ酸配列、および
(c)配列番号8のアミノ酸配列を含む軽鎖CDR3のアミノ酸配列、
を含有する、上記[1]~[3]のいずれか一項に記載の抗体またはその抗原結合性断片。
 [5]上記[1]~[4]のいずれか一項に記載の抗体またはその抗原結合性断片であって、SARS-CoV-2野生株および変異株のいずれかまたはその両方に対する中和活性(IC50)が、約20 ng/mL以下である抗体またはその抗原結合性断片。
 [6]上記[1]~[5]のいずれか一項に記載の抗体またはその抗原結合性断片であって、Sタンパク質3量体、アルファ型RBD、デルタ型RBDに対するKD値が1×10-9M以下であり、かつ、カッパ型RBDに対するKD値が1×10-10M以下である抗体またはその抗原結合性断片。
Accordingly, typically, in one aspect, the present disclosure provides monoclonal antibodies and antigen-binding fragments thereof characterized by the constitutions of [1] to [6] below.
[1] A monoclonal antibody against the SARS-CoV-2 coronavirus that binds to the spike protein of the SARS-CoV-2 coronavirus and neutralizes its viral activity, and an antigen-binding fragment thereof.
[2] a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having at least 80% (or at least 90% or 95%) identity with the amino acid sequence of SEQ ID NO: 1;
[1] above, which contains the amino acid sequence of SEQ ID NO:5 or a light chain variable region comprising an amino acid sequence having at least 80% (or at least 90% or 95%) identity with the amino acid sequence of SEQ ID NO:5 or an antigen-binding fragment thereof.
[3] a heavy chain comprising the amino acid sequence of SEQ ID NO: 9 or amino acids having at least 80% (or at least 90% or 95%) identity with the amino acid sequence of SEQ ID NO: 9, and the amino acid sequence or sequence of SEQ ID NO: 10 The antibody or antigen-binding fragment thereof of [1] or [2] above, comprising a light chain comprising amino acids having at least 80% (or at least 90% or 95%) identity with the amino acid sequence of number 10 .
[4] (i) the variable region of the heavy chain is
(a) a heavy chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:2;
(b) a heavy chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:3; and (c) a heavy chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:4;
contains
(ii) the variable region of the light chain is
(a) a light chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:6;
(b) a light chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:7; and (c) a light chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:8;
The antibody or antigen-binding fragment thereof according to any one of [1] to [3] above, containing
[5] The antibody or antigen-binding fragment thereof according to any one of [1] to [4] above, which has neutralizing activity against either or both of a SARS-CoV-2 wild type and a mutant strain An antibody or antigen-binding fragment thereof having an (IC50) of about 20 ng/mL or less.
[6] The antibody or antigen-binding fragment thereof according to any one of [1] to [5] above, wherein the K value for S protein trimer, alpha-type RBD, and delta-type RBD is 1 × An antibody or antigen-binding fragment thereof that is 10 −9 M or less and has a K D value of 1×10 −10 M or less for kappa-type RBD.
 3.本発明の抗体をコードする核酸
 本発明はまた、別の局面において、本発明の抗体のアミノ酸配列をコードする核酸分子を提供する。典型的には、上述の[1]から[6]のそれぞれによって特徴付けられるモノクローナル抗体およびその抗原結合性断片のアミノ酸配列をコードする単離された核酸分子を提供する。
3. Nucleic Acids Encoding Antibodies of the Invention In another aspect, the invention also provides nucleic acid molecules that encode the amino acid sequences of the antibodies of the invention. Typically, isolated nucleic acid molecules are provided that encode the amino acid sequences of monoclonal antibodies and antigen-binding fragments thereof characterized by each of [1] to [6] above.
 さらに、非限定的な例として、SARS-CoV-2のSタンパク質に結合し、その生物活性を中和し得る抗SARS-CoV-2抗体またはその抗原結合性断片(すなわち、典型的には、上述の[1]から[6]のそれぞれの構成によって特徴付けられるモノクローナル抗体およびその抗原結合性断片)のアミノ酸配列をコードする核酸(分子)(ポリヌクレオチド)と高い同一性を有する単離された核酸(すなわち高ストリンジェントな条件下で該核酸とハイブリダイズする核酸から選択される単離された核酸)が提供される。ここで、「高い同一性を有する」とは、高ストリンジェントな条件下で所定の核酸配列に対してハイブリダイズすることができる程度の配列同一性を意味し、例えば、少なくとも約60%、70%、80%、85%、90%、91%、92%、93%、94%、95%、96%、97%、98%、または99%、またはそれを超える同一性を有することを意味する。例えば、上記核酸はDNAまたはRNAであり、典型的には、DNAである。 Further, as a non-limiting example, an anti-SARS-CoV-2 antibody or antigen-binding fragment thereof capable of binding to the S protein of SARS-CoV-2 and neutralizing its biological activity (i.e., typically An isolated nucleic acid (molecule) (polynucleotide) that has a high degree of identity with the amino acid sequence of a monoclonal antibody and an antigen-binding fragment thereof characterized by the construction of each of [1] to [6] above. A nucleic acid (ie, an isolated nucleic acid selected from those that hybridize to the nucleic acid under highly stringent conditions) is provided. Here, "having high identity" means a degree of sequence identity that allows hybridization to a given nucleic acid sequence under highly stringent conditions, e.g., at least about 60%, 70% %, 80%, 85%, 90%, 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, or 99% or more identity do. For example, the nucleic acid is DNA or RNA, typically DNA.
 「高ストリンジェントな条件」は、例えば、5×SSC、5×デンハルト溶液、0.5%SDS、50%ホルムアミド、50℃の条件である。(例えば、J.SambrookらのMolecular Cloning, A Laboratory Manual 2nd ed.,Cold Spring Harbor Laboratory Press(1989), 特に11.45節"Conditions for Hybridization of Oligonucleotide Probes"参照)。これらの条件において、温度を上げるほど高い同一性を有するポリヌクレオチド(例えば、DNA)が効率的に得られることが期待できる。ただし、ハイブリダイゼーションのストリンジェンシーに影響する要素としては温度、プローブ濃度、プローブの長さ、イオン強度、時間、塩濃度など複数の要素が考えられ、当業者であればこれら要素を適宜選択することで同様のストリンジェンシーを実現することが可能である。 "Highly stringent conditions" are, for example, 5 x SSC, 5 x Denhardt's solution, 0.5% SDS, 50% formamide, and 50°C. (See, e.g., J. Sambrook et al., Molecular Cloning, A Laboratory Manual 2nd ed., Cold Spring Harbor Laboratory Press (1989), especially Section 11.45 "Conditions for Hybridization of Oligonucleotide Probes"). Under these conditions, it can be expected that polynucleotides (eg, DNA) having higher identity can be efficiently obtained as the temperature is raised. However, multiple factors such as temperature, probe concentration, probe length, ionic strength, time, and salt concentration can be considered as factors that affect the stringency of hybridization, and those skilled in the art can select these factors as appropriate. It is possible to achieve similar stringency in .
 上記高ストリンジェントな条件でハイブリダイズする核酸としては、アミノ酸配列をコードする核酸と、例えば、70%以上、80%以上、85%以上、90%以上、91%以上、92%以上、93%以上、94%以上、95%以上、96%以上、97%以上、98%以上、または99%以上の同一性を有する核酸が含まれる。 Nucleic acids that hybridize under highly stringent conditions include nucleic acids encoding amino acid sequences, for example, 70% or more, 80% or more, 85% or more, 90% or more, 91% or more, 92% or more, 93% Nucleic acids having greater than 94%, greater than 95%, greater than 96%, greater than 97%, greater than 98%, or greater than 99% identity are included.
 塩基配列の同一性は、上述した同一性検索アルゴリズムなどを利用して決定することが出来る(Karlin S and Altschu SF, PNAS, 87:2264-2268, 1990; PNAS, 90:5873-5877, 1993)。 The identity of nucleotide sequences can be determined using the identity search algorithm described above (Karlin S and Altschu SF, PNAS, 87:2264-2268, 1990; PNAS, 90:5873-5877, 1993). .
 4.本発明に係るベクター、宿主細胞および抗体の作製方法
 本発明は、さらに別の局面において、上記核酸分子を組み込んだベクターおよびそのベクターが導入された宿主細胞、これらを用いる抗体の作製方法に関する。
4. Vector, Host Cell, and Antibody Production Method According to the Present Invention In still another aspect, the present invention relates to a vector incorporating the nucleic acid molecule, a host cell into which the vector has been introduced, and a method for producing an antibody using these vectors.
 本発明の抗体は、公知の方法を用いた組換えヒト抗体としても作製できる(Boulianne GL et al., Nature,312:643-646,1984 、Jones PT et al., Nature,321:522-525,1986など参照)。例えば、本発明の抗体は、本発明に係るベクターを導入した宿主細胞を培養し、培養上清などから、産生された抗体を精製することによって作製することができる。より具体的には、VHおよびVLをコードするcDNAを同一細胞または別のヒト細胞より作製したヒト抗体CHおよび/またはヒト抗体CLをコードする遺伝子を含有する動物細胞用発現ベクターにそれぞれ挿入してヒト抗体発現ベクターを構築し、動物細胞へ導入し発現させることにより製造することができる。 Antibodies of the present invention can also be produced as recombinant human antibodies using known methods (Boulianne GL et al., Nature, 312:643-646, 1984, Jones PT et al., Nature, 321:522-525 , 1986, etc.). For example, the antibody of the present invention can be produced by culturing host cells introduced with the vector of the present invention and purifying the produced antibody from the culture supernatant. More specifically, cDNAs encoding VH and VL are inserted into animal cell expression vectors containing genes encoding human antibody CH and/or human antibody CL produced from the same cell or different human cells, respectively. It can be produced by constructing a human antibody expression vector and introducing it into animal cells for expression.
 本発明の抗体のVHまたはVLをコードする核酸を組み込むベクターとしては、必ずしも限定されないが、タンパク質遺伝子等の発現に汎用され、特に抗体遺伝子の発現に適合するベクターまたは高発現用ベクターを用いることができる。非限定的な例としては、FEプロモーターおよび/またはCMVエンハンサーを含有するベクターが挙げられる。また、通常VHまたはVLをコードする核酸を組み込んだ発現ベクターをそれぞれ作製し、宿主細胞にコトランスフェクトするが、単一の発現ベクターに組み込んでも良い。 The vector that incorporates the nucleic acid encoding the VH or VL of the antibody of the present invention is not necessarily limited, but it is possible to use a vector that is commonly used for expression of protein genes and the like and that is particularly suitable for expression of antibody genes or a vector for high expression. can. Non-limiting examples include vectors containing FE promoters and/or CMV enhancers. In addition, expression vectors incorporating nucleic acids encoding VH or VL are usually prepared and co-transfected into host cells, but they may be incorporated into a single expression vector.
 発現ベクターを導入する宿主細胞としては、必ずしも限定されないが、蛋白質遺伝子等の発現に汎用され、特に抗体遺伝子の発現に適合する細胞が含まれる。例えば、細菌(大腸菌等)、放線菌、酵母、昆虫細胞(SF9等)、哺乳類細胞(COS-1、CHO、ミエローマ細胞等)が挙げられる。 The host cells into which the expression vector is introduced are not necessarily limited, but include cells that are commonly used for expression of protein genes, etc., and are particularly suitable for expression of antibody genes. Examples thereof include bacteria (E. coli, etc.), actinomycetes, yeast, insect cells (SF9, etc.), and mammalian cells (COS-1, CHO, myeloma cells, etc.).
 組換え抗体を工業的に生産するためには、一般的には当該抗体を安定して高生産する組換動物細胞株、例えば、CHO細胞株が利用される。そのような組換細胞株の作製、クローン化、高発現のための遺伝子増幅およびスクリーニングは公知の方法を用いることができる(例えば、Omasa T., J. Biosci. Bioeng., 94:600-605, 2002等参照)。 For the industrial production of recombinant antibodies, recombinant animal cell lines that stably produce the antibodies at high levels, such as CHO cell lines, are generally used. Known methods can be used for generating such recombinant cell lines, cloning, gene amplification and screening for high expression (for example, Omasa T., J. Biosci. Bioeng., 94: 600-605 , 2002, etc.).
 上記の組換え抗体には、重鎖2本と軽鎖2本からなる抗体のほかに、抗原結合性断片、例えばFab (Fragment of antigen binding)、Fab'、F(ab')、抗体の活性断片をリンカー等で結合したもの(例えば一本鎖抗体(single chain Fv:scFv)やジスルフィド安定化抗体(disulfide stabilized Fv:dsFv))、抗体の活性断片を含むペプチド(例えばCDR を含有するペプチド)が含まれる。これらは、本発明の抗体を適当なタンパク質分解酵素で処理する方法または遺伝子組換技術等、公知の方法で製造することができる。 In addition to antibodies consisting of two heavy chains and two light chains, the above recombinant antibodies include antigen-binding fragments such as Fab (Fragment of antigen binding), Fab', F(ab') 2 , antibody An active fragment bound by a linker or the like (for example, single chain antibody (single chain Fv: scFv) or disulfide stabilized antibody (disulfide stabilized Fv: dsFv)), a peptide containing an active antibody fragment (for example, a peptide containing CDRs) ) is included. These can be produced by known methods such as treating the antibody of the present invention with an appropriate proteolytic enzyme or genetic recombination techniques.
 抗体の精製は、塩析法、ゲル濾過法、イオン交換クロマト法またはアフィニティークロマト法等の公知の精製手段を用いて行うことができる。 Antibody purification can be performed using known purification means such as salting out, gel filtration, ion exchange chromatography, or affinity chromatography.
 その他、遺伝子工学技術を活用して組み換え抗体(リコンビナント抗体)をファージ表面に発現させる、ファージディスプレイ抗体技術により、人工的にVH、VL遺伝子をシャッフリングさせ多様化したscFv(single chain Fragment of variable region)抗体をファージ融合タンパクとして発現させ、特異抗体を得ることもできる。この技術は、免疫を回避でき、さらに細胞融合法に変わるヒト化抗体作製技術として高く評価されている。この技術を用いて、本願明細書における、例えば、配列番号2~4、および、6~8のアミノ酸配列を参考に作製した特異抗体またはその抗原結合性断片も、本発明の範囲内にある。 In addition, scFv (single chain Fragment of variable region) diversified by artificially shuffling VH and VL genes using phage display antibody technology, which uses genetic engineering technology to express recombinant antibodies on the surface of phages. Antibodies can also be expressed as phage fusion proteins to obtain specific antibodies. This technology is highly evaluated as a humanized antibody production technology that can avoid immunity and can replace the cell fusion method. Specific antibodies or antigen-binding fragments thereof produced using this technique with reference to, for example, the amino acid sequences of SEQ ID NOs: 2-4 and 6-8 are also within the scope of the present invention.
 さらには、抗体の糖鎖部分の修飾により抗体のADCC活性を大幅に改善するポテリジェント(Potellegent)技術を本発明の抗体に応用して得られた抗体(Niwa R et al., Clin. Cancer Res., 10:6248-6255, 2004参照)や、CDC活性を改善するコンプリジェント(Complegnent)技術を本発明の抗体に応用して得られた抗体(Kanda Y. et al., Glycobiology, 17:104-118, 2007参照)も、本発明の範囲内にある。同様に、抗体の定常領域部分のアミノ酸配列を修飾することにより、ADCC活性(WO2007/039682及びWO2007/100083)やCDC活性(WO2007/011041及びWO2011/091078)を改変する方法で得られた抗体も、本発明の範囲内にある。 Furthermore, an antibody obtained by applying Potellegent technology, which significantly improves the ADCC activity of an antibody by modifying the sugar chain portion of the antibody, to the antibody of the present invention (Niwa R et al., Clin. Cancer Res. ., 10:6248-6255, 2004) and an antibody obtained by applying Complement technology that improves CDC activity to the antibody of the present invention (Kanda Y. et al., Glycobiology, 17:104 -118, 2007) are also within the scope of the present invention. Similarly, antibodies obtained by modifying the amino acid sequence of the constant region portion of the antibody to modify ADCC activity (WO2007/039682 and WO2007/100083) or CDC activity (WO2007/011041 and WO2011/091078). , are within the scope of the present invention.
 さらに、当該抗体にプロテアーゼ耐性能力を付加し、経口投与可能にするために行うFc領域の部分的な置換技術(WO2006/071877参照)を応用して得られた抗体またはその抗原結合性断片も、本発明の範囲内にある。 Furthermore, an antibody or an antigen-binding fragment thereof obtained by applying a technique for partial substitution of the Fc region (see WO2006/071877) to add protease resistance ability to the antibody and enable oral administration, It is within the scope of the present invention.
 なお、抗体作製の手法として、通常はマウス、ウサギ、ヤギ等の実験動物を利用してポリクローナル抗体や、モノクローナル抗体を取得することが行われているが、このようにして得られる抗体は用いた動物種に特徴的な配列を有しているので、そのままヒトに投与するとヒト免疫系により異物として認識され、ヒト抗動物抗体応答が起こる(即ち、抗体の抗体を作ってしまう)ことがある。 As a technique for producing antibodies, laboratory animals such as mice, rabbits, and goats are usually used to obtain polyclonal antibodies and monoclonal antibodies. Since it has a sequence characteristic of animal species, if it is administered to humans as it is, it may be recognized as a foreign substance by the human immune system and cause a human anti-animal antibody response (that is, the production of antibodies against antibodies).
 本発明に係る抗SARS-CoV-2モノクローナル抗体またはその抗原結合性断片は、SARS-CoV-2感染回復者の血液由来の抗体産生細胞から得ることができ、それは完全ヒト抗体である。この完全ヒト抗体は、抗体医薬として人体に投与したとしても、免疫原性を有さないか、または完全ヒト抗体でない抗体と比較して少なくとも低減されており、免疫反応は見られないか、または完全ヒト抗体でない抗体と比較して少なくとも低減されているという利点がある。 The anti-SARS-CoV-2 monoclonal antibody or antigen-binding fragment thereof according to the present invention can be obtained from antibody-producing cells derived from the blood of a person who has recovered from SARS-CoV-2 infection, and is a fully human antibody. This fully human antibody, even when administered to the human body as an antibody drug, does not have immunogenicity, or at least has reduced immunogenicity compared to an antibody that is not a fully human antibody, and no immune response is observed, or It has at least a reduced advantage compared to antibodies that are not fully human antibodies.
 5.本発明の抗体を含有する医薬組成物、本発明の抗体の医薬としての使用、医薬の製造のための本発明の抗体の使用、および本発明の抗体を患者に投与することを含む治療または予防方法
 本発明は、さらに別の局面において、本発明の抗体を医薬として使用することを含む。一実施形態において、本発明の抗体および薬学的に許容可能な担体を含む、SARS-CoV-2感染を予防または治療するための医薬組成物が提供される。一実施形態において、SARS-CoV-2コロナウイルス感染症の治療または予防における、本発明の抗体の使用が提供される。さらに、一実施形態において、SARS-CoV-2コロナウイルス感染症の治療または予防のための医薬の製造における、本発明の抗体の使用が提供される。さらに、一実施形態において、SARS-CoV-2コロナウイルス感染症の治療または予防方法であって、それを必要とする対象または患者に本発明の抗体を投与することを含む方法が提供される。
5. Pharmaceutical compositions containing an antibody of the invention, use of an antibody of the invention as a medicament, use of an antibody of the invention for the manufacture of a medicament, and treatment or prevention comprising administering an antibody of the invention to a patient Methods The present invention, in yet another aspect, includes the use of the antibody of the present invention as a medicament. In one embodiment, pharmaceutical compositions for preventing or treating SARS-CoV-2 infection are provided comprising an antibody of the invention and a pharmaceutically acceptable carrier. In one embodiment, use of the antibodies of the invention in treating or preventing SARS-CoV-2 coronavirus infection is provided. Furthermore, in one embodiment there is provided use of the antibody of the invention in the manufacture of a medicament for the treatment or prevention of SARS-CoV-2 coronavirus infection. Further, in one embodiment, a method of treating or preventing SARS-CoV-2 coronavirus infection is provided comprising administering an antibody of the invention to a subject or patient in need thereof.
 特に、本発明に係る抗SARS-CoV-2抗体またはその抗原結合性断片は、SARS-CoV-2のSタンパク質に結合し、高い中和能を有するので、SARS-CoV-2が関与する疾患の予防または治療薬として有用である。 In particular, the anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention binds to the S protein of SARS-CoV-2 and has a high neutralizing ability. It is useful as a prophylactic or therapeutic drug for
 本明細書中で使用される用語「薬学的に許容可能な担体」には、生理学的に適合可能な任意の、または全ての溶媒、分散媒、コーティング、等張剤および吸収遅延剤などが含まれる。 As used herein, the term "pharmaceutically acceptable carrier" includes any and all solvents, dispersion media, coatings, isotonic and absorption delaying agents and the like that are physiologically compatible. be
 薬学的に許容可能な担体の例には、水、塩類溶液、リン酸緩衝化生理食塩水、デキストロース、グリセロール、エタノールなどの1種または複数、ならびにこれらの組合せが含まれる。注射剤などとして使用される場合、pH調節剤や等張剤、例えば糖や、マンニトール、ソルビトールなどのポリアルコール、または塩化ナトリウムを組成物中に含むことができる。薬学的に許容可能な担体には、さらに、湿潤剤や乳化剤、防腐剤、緩衝剤、安定化剤など、抗体または抗体部分の保存性または有効性を増大させる少量の補助物質を含めることができる。 Examples of pharmaceutically acceptable carriers include one or more of water, saline, phosphate-buffered saline, dextrose, glycerol, ethanol, etc., and combinations thereof. When used as an injection or the like, the composition can contain pH adjusting agents and isotonic agents, such as sugars, polyalcohols such as mannitol and sorbitol, or sodium chloride. Pharmaceutically acceptable carriers can further contain minor amounts of auxiliary substances such as wetting and emulsifying agents, preservatives, buffers and stabilizers, which enhance the preservation or effectiveness of the antibody or antibody portion. .
 本発明の医薬組成物は、様々な剤型にすることができる。そのような組成物には、例えば、溶液(例えば注射可能であり輸液可能な溶液)や分散液、懸濁液、錠剤、カプセル、トローチ、ピル、粉末、リポソーム、坐剤など、液体、半固体、固体の剤型が含まれる。剤型は、意図される投与形態および治療の適用例により異なり得る。例えば、一般に他の抗体でヒトを受動免疫化するために使用されるものと同様の組成物など、注射可能または輸液可能な溶液の形にあるものが含まれる。例えば、投与形態は、非経口的なもの(例えば静脈内、皮下、腹腔内、筋肉内から)であり得る。あるいは、抗体は、静脈輸液または静脈注射によって投与され得る。あるいは、抗体は筋肉内注射または皮下注射によって投与され得る。 The pharmaceutical composition of the present invention can be made into various dosage forms. Such compositions include, for example, solutions (eg, injectable and infusible solutions), dispersions, suspensions, tablets, capsules, troches, pills, powders, liposomes, suppositories, liquids, semisolids, and the like. , including solid dosage forms. Dosage forms may vary depending on the intended mode of administration and therapeutic application. Examples include those in the form of injectable or infusible solutions, such as compositions similar to those commonly used for passive immunization of humans with other antibodies. For example, the dosage form can be parenteral (eg, intravenously, subcutaneously, intraperitoneally, intramuscularly). Alternatively, antibody can be administered by intravenous infusion or injection. Alternatively, antibody can be administered by intramuscular or subcutaneous injection.
 6.本発明に係る抗SARS-CoV-2抗体およびその抗原結合性断片を取得する方法
 次に、本発明に係る抗SARS-CoV-2モノクローナル抗体およびその抗原結合性断片を得た方法について説明するが、本発明に係る抗体等を得る方法はこれらの記載に何ら限定されるものではなく、上述したとおり、当業者の通常の創作能力の範囲内での変更または修飾が可能である。
6. Methods for obtaining anti-SARS-CoV-2 antibodies and antigen-binding fragments thereof according to the present invention Next, methods for obtaining anti-SARS-CoV-2 monoclonal antibodies and antigen-binding fragments thereof according to the present invention will be described. , The method of obtaining the antibody, etc. of the present invention is not limited to these descriptions, and as described above, changes or modifications within the scope of ordinary creativity of those skilled in the art are possible.
 本発明に係る抗SARS-CoV-2抗体およびその抗原結合性断片は、SARS-CoV-2感染回復者の血液から種々の工程を経て、目的抗体をコードするDNAをクローニング後、遺伝子発現、抗体産生を行うことによって得ることができる。以上の本発明に係る抗SARS-CoV-2-S抗体の作製工程のフローチャートを図1に示す。 Anti-SARS-CoV-2 antibodies and antigen-binding fragments thereof according to the present invention are obtained by cloning the DNA encoding the target antibody through various steps from the blood of a person who has recovered from SARS-CoV-2 infection. It can be obtained by performing production. FIG. 1 shows a flow chart of the steps for producing the anti-SARS-CoV-2-S antibody according to the present invention.
 1)SARS-CoV-2のSタンパク質に対する完全ヒト抗体産生細胞の増殖誘導
 SARS-CoV-2感染回復者の血液からBリンパ球を分離し、該Bリンパ球の増殖を誘導する。増殖誘導の方法自体は公知であり、例えばガンの誘因因子となる「エプスタイン・バールウイルス(EBウイルス)」(Epstein-Barr virus)(以下、「EBV」と称す)を用いたトランスフォーム法(Kozbor D. and Roder JC., Immunol Today, 4:72-9, 1983)により行うことができる。
1) Proliferation induction of fully human antibody-producing cells against SARS-CoV-2 S protein B lymphocytes are separated from the blood of a person who has recovered from SARS-CoV-2 infection, and proliferation of the B lymphocytes is induced. The method for inducing proliferation is known per se, and for example, a transformation method (Kozbor D. and Roder JC., Immunol Today, 4:72-9, 1983).
 2)SARS-CoV-2のSタンパク質に対する完全ヒト抗体産生細胞の同定
 Sタンパク質3量体を固相したELISA、および、培養上清の中和活性測定により、上述のEBVの感染により増殖誘導されたBリンパ球群から、抗体産生細胞を同定する。場合により、前記Bリンパ球をセルマイクロアレイに播種し、Sタンパク質3量体を固相したスライドガラスあるいはマイクロビーズを用いてSタンパク質結合抗体を産生する細胞を選択、単離する。
2) Identification of fully human antibody-producing cells against the S protein of SARS-CoV-2 By ELISA with the S protein trimer as a solid phase and by measuring the neutralizing activity of the culture supernatant, proliferation was induced by the above-mentioned EBV infection. Antibody-producing cells are identified from the B lymphocyte group. In some cases, the B lymphocytes are seeded on a cell microarray, and cells producing S protein-binding antibodies are selected and isolated using glass slides or microbeads on which S protein trimers are immobilized.
 3)SARS-CoV-2のSタンパク質に対する完全ヒト抗体の遺伝子獲得および抗体産生
 上述の同定あるいは単離したSタンパク質結合抗体産生Bリンパ球からcDNAを合成し、抗体遺伝子をクローニングする。獲得遺伝子をCHO細胞に導入し、抗体を発現させ、抗原結合性、および中和活性を測定する。
3) Gene Acquisition and Antibody Production of Fully Human Antibody Against SARS-CoV-2 S Protein cDNA is synthesized from the S protein-binding antibody-producing B lymphocytes identified or isolated above, and the antibody gene is cloned. The acquired gene is introduced into CHO cells, antibody is expressed, and antigen-binding and neutralizing activity are measured.
 上述のようにして得られた抗SARS-CoV-2抗体は、ヒト体内で感作されたBリンパ球から作製した完全ヒト抗体であるので、ヒトに投与された場合の抗体に対する免疫反応の可能性が低いという利点がある。 Since the anti-SARS-CoV-2 antibody obtained as described above is a fully human antibody produced from B lymphocytes sensitized in the human body, it is possible to have an immune response to the antibody when administered to humans. It has the advantage of being less sensitive.
 また、Bリンパ球に感染して増殖誘導させる活性があるEBウイルスを利用している点も特徴である。EBウイルス法の利点は、ヒトの体内で作られるナチュラルな抗体を作製できる点、および陽性率の非常に低い細胞からでも抗体が獲得できる点である。 Another feature is that it uses the EB virus, which has the activity of infecting B lymphocytes and inducing their proliferation. The advantage of the EB virus method is that it can produce natural antibodies produced in the human body, and that antibodies can be obtained even from cells with a very low positive rate.
 7.In vitroでの活性を評価する方法
 抗体または抗体組成物の抗原結合性は、ELISA法、表面プラズモン共鳴(SPR)法などにより評価できる。また、SARS-CoV-2のSタンパク質の生物活性を当該抗体がin vitroで抑制する能力は、ELISAなどの受容体結合阻害アッセイ法および中和アッセイ法などにより評価できる。
7. Method for Evaluating In Vitro Activity The antigen-binding property of an antibody or antibody composition can be evaluated by an ELISA method, a surface plasmon resonance (SPR) method, or the like. In addition, the ability of the antibody to suppress the biological activity of the S protein of SARS-CoV-2 in vitro can be evaluated by receptor binding inhibition assays such as ELISA, neutralization assays, and the like.
 1)抗原結合活性
 抗体とSARS-CoV-2のSタンパク質との結合性を測定するには、公知の方法を用いることができる。例えば、当該Sタンパク質3量体、または、Sタンパク質内のRBDを抗原としたELISAを採用して行うことができる。あるいは、Sタンパク質あるいはRBDへの結合親和性をBiacore T200(登録商標)のような蛋白質相互作用解析装置により測定することができる。結合親和性(KD値)は、当該測定法で得られたkd(解離定数)とka(結合定数)の比(KD=kd/ka)で表示される。例えば、本発明に係るヒト抗SARS-CoV-2抗体またはその抗原結合性断片は、野生型Sタンパク質、アルファ型RBD、およびデルタ型RBDへの結合親和性(KD値)が1×10-8M以下であり得、または1×10-9M以下であり得る。さらに、本発明に係るヒト抗SARS-CoV-2抗体またはその抗原結合性断片は、カッパ型RBDに対する結合親和性(KD値)が1×10-8M以下、1×10-9M以下、または1×10-10M以下であり得る。(実施例の「5. 抗原結合性(アフィニティー)評価」および図3を参照)
1) Antigen-binding activity A known method can be used to measure the binding activity between an antibody and the S protein of SARS-CoV-2. For example, ELISA using the S protein trimer or the RBD in the S protein as an antigen can be employed. Alternatively, binding affinity to S protein or RBD can be measured by a protein interaction analyzer such as Biacore T200 (registered trademark). The binding affinity (K D value) is expressed as the ratio of kd (dissociation constant) to ka (binding constant) obtained by the measurement method (K D =kd/ka). For example, the human anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention has a binding affinity (K D value) to wild-type S protein, alpha-type RBD, and delta-type RBD of 1×10 It can be 8 M or less, or it can be 1×10 −9 M or less. Furthermore, the human anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention has a binding affinity (K D value) for kappa-type RBD of 1×10 −8 M or less and 1×10 −9 M or less. , or 1×10 −10 M or less. (See “5. Antigen binding (affinity) evaluation” and FIG. 3 in Examples)
 2)In vitro中和活性
 本明細書で使用される、「中和」、「阻害効果」、「阻害」、「抑制」、「阻害し得る」等々の用語は、抗原(SARS-CoV-2)に起因する生物活性を、例えば、少なくとも約5~100%、10~100%、20~100%、30~100%、40~100%、50~100%、60~100%、70~100%、または80~100%低減させることをいう。
2) In Vitro Neutralizing Activity As used herein, the terms “neutralizing”, “inhibitory effect”, “inhibition”, “suppression”, “capable of inhibiting”, etc. refer to antigens (SARS-CoV-2 ) by, for example, at least about 5-100%, 10-100%, 20-100%, 30-100%, 40-100%, 50-100%, 60-100%, 70-100% %, or 80 to 100% reduction.
 抗SARS-CoV-2抗体のin vitro中和能評価については、SARS-CoV-2の野生株および/または変異株(例:アルファ株、デルタ株、カッパ株)を用いて実施することができる。例えば、使用する野生株としては、JPN/TY/WK-521株、および変異株、例えば、アルファ株としてJPN/QK002/2020、デルタ株としてJPN/TKYTK1734/2021、カッパ株としてJPN/TKYTK5356/2021を使用し、Vero E6細胞にTMPRSS2 cDNAを導入した細胞株(Matsuyama S et al., 2020)への感染能を抗SARS-CoV-2抗体存在下で調べることにより、当該抗体の中和能を評価出来る(実施例の「6.中和活性評価」および図4を参照)。 Evaluation of the in vitro neutralization ability of anti-SARS-CoV-2 antibodies can be performed using wild-type and/or mutant strains of SARS-CoV-2 (e.g., alpha, delta, kappa strains). . For example, the wild strain used is the JPN/TY/WK-521 strain, and mutant strains such as JPN/QK002/2020 as the alpha strain, JPN/TKYTK1734/2021 as the delta strain, and JPN/TKYTK5356/2021 as the kappa strain. was used to examine the ability to infect Vero E6 cells with TMPRSS2 cDNA-introduced cell lines (Matsuyama S et al., 2020) in the presence of anti-SARS-CoV-2 antibodies, thereby confirming the neutralizing ability of the antibodies. can be evaluated (see "6. Evaluation of neutralizing activity" in Examples and Fig. 4).
 典型的には、本発明に係る抗SARS-CoV-2抗体またはその抗原結合性断片は、上記Vero細胞を用いたSARS-CoV-2感染能の評価系で、変異株に対して、約200 ng/mL以下、約100 ng/mL以下、約50 ng/mL以下、または約20 ng/mL以下で50%の感染阻害活性(IC50)を有する。上記の変異株の非限定的な例として、デルタ株が含まれる。 Typically, the anti-SARS-CoV-2 antibody or antigen-binding fragment thereof according to the present invention has a SARS-CoV-2 infectivity evaluation system using the Vero cells described above, and about 200 It has 50% infection inhibitory activity (IC50) at ng/mL or less, approximately 100 ng/mL or less, approximately 50 ng/mL or less, or approximately 20 ng/mL or less. A non-limiting example of the mutant strain described above includes the Delta strain.
 以下、本発明を実施例によりさらに具体的に説明するが、本発明はこれらの実施例により何ら制限されるものではない。 The present invention will be described in more detail below with reference to examples, but the present invention is not limited to these examples.
 本発明に係る抗SARS-CoV-2-S抗体の作製手順のフローチャートを図1に示す。 Fig. 1 shows the flowchart of the procedure for producing the anti-SARS-CoV-2-S antibody according to the present invention.
 1. SARS-CoV-2に対する完全ヒト抗体の遺伝子クローニング
 下記手順により本実施例に係るモノクローナル抗体の遺伝子クローニングを行った。
 1)SARS-CoV-2感染回復者の末梢血を採取した。
 2)末梢血単核細胞(PBMC)を遠心により分離した。
 3)PBMCからBリンパ球を分離し、EBVを感染させた。感染細胞は96ウェルプレートに播種し、3週間程度培養した。
 4)培養上清中の抗SARS-CoV-2抗体の1次スクリーニングを行った。スクリーニングはSARS-CoV-2の主要な中和ターゲットであるSタンパク質3量体(AcroBiosystem)に対する抗体を対象とし、ELISA法により目的抗体陽性細胞が存在するウェルを同定した。
 5)抗SARS-CoV-2抗体産生が確認された各ウェルの中和活性を測定し、中和抗体陽性ウェルを特定した。
 6)中和抗体陽性ウェルの培養上清を用い、産生する抗体のアイソタイプをELISA法により確認した。すなわち、Sタンパク質3量体を固相化した抗SARS-CoV-2抗体スクリーニングプレートを用い、2次抗体としてそれぞれのアイソタイプおよびサブクラスに特異的な抗体を使用した。
 7)場合により、中和抗体陽性ウェルの細胞をセルマイクロアレイに播種し、Sタンパク質3量体を固相化したスライドグラス、あるいはマイクロビーズを使用し、目的抗体を産生しているシングル細胞を単離した。
 9)抗体産生細胞のtotal-RNAから、oligo-dTプライマーを用いて逆転写し、得られたcDNAを鋳型としてPCR法による抗体遺伝子の増幅を行った。PCRに使用したプライマーは、ヒトIgG抗体H鎖およびL鎖をコードするcDNAのデータベースをもとに設計した。H鎖は翻訳開始地点から定常領域までを、L鎖は完全長のcDNAを増幅するため、5’末端側プライマー、および3’末端側プライマーを設計した。
1. Gene cloning of fully human antibody against SARS-CoV-2 Gene cloning of the monoclonal antibody according to this example was performed by the following procedure.
1) Peripheral blood was collected from a person who recovered from SARS-CoV-2 infection.
2) Peripheral blood mononuclear cells (PBMC) were separated by centrifugation.
3) B lymphocytes were isolated from PBMC and infected with EBV. Infected cells were seeded on a 96-well plate and cultured for about 3 weeks.
4) Primary screening of anti-SARS-CoV-2 antibodies in the culture supernatant was performed. The screening targeted antibodies against the S protein trimer (AcroBiosystem), which is the major neutralizing target of SARS-CoV-2, and the wells containing target antibody-positive cells were identified by ELISA.
5) Neutralizing activity was measured in each well in which anti-SARS-CoV-2 antibody production was confirmed, and neutralizing antibody-positive wells were identified.
6) Using the culture supernatant of neutralizing antibody-positive wells, the isotype of the antibodies produced was confirmed by ELISA. That is, an anti-SARS-CoV-2 antibody screening plate on which the S protein trimer was immobilized was used, and antibodies specific to each isotype and subclass were used as secondary antibodies.
7) In some cases, the cells in the neutralizing antibody-positive well are seeded on a cell microarray, and a slide glass or microbeads on which the S protein trimer is immobilized are used to isolate single cells that produce the target antibody. released.
9) Antibody genes were amplified by PCR using the cDNA obtained by reverse transcription from total-RNA of antibody-producing cells using oligo-dT primer as a template. The primers used for PCR were designed based on a database of cDNAs encoding human IgG antibody H and L chains. A 5′-end primer and a 3′-end primer were designed to amplify the H chain from the translation initiation site to the constant region, and the L chain to amplify the full-length cDNA.
 2.得られた抗体遺伝子が抗SARS-CoV-2抗体をコードしていることの確認
 得られたH鎖およびL鎖の遺伝子をそれぞれ発現ベクターに挿入し、CHO-K1細胞に同時に導入した。遺伝子導入はリポフェクタミンLTXとプラス試薬(Thermo Fisher Scientific)により、メーカーの推奨条件で行った。2日後に培養上清を回収し、Sタンパク質3量体を固相化したマルチウェルプレートを用いたELISA法により培養上清中の抗体がSARS-CoV-2のSタンパク質に結合することを確認した。Sタンパク質への結合が確認されたクローンについては、培養上清を用いて中和活性を測定した。
2. Confirmation that the obtained antibody gene encodes an anti-SARS-CoV-2 antibody The obtained H chain and L chain genes were each inserted into an expression vector and simultaneously introduced into CHO-K1 cells. Gene transfer was performed using Lipofectamine LTX and Plus Reagent (Thermo Fisher Scientific) under the manufacturer's recommended conditions. Two days later, the culture supernatant was collected, and the antibody in the culture supernatant bound to the S protein of SARS-CoV-2 by ELISA using a multiwell plate with S protein trimer immobilized. bottom. For clones confirmed to bind to the S protein, the neutralizing activity was measured using the culture supernatant.
 3.塩基配列に基づく抗体のアミノ酸配列の決定
 H鎖およびL鎖それぞれの塩基配列をABIシークエンサー(Thermo Fisher Scientific)により確認した。得られた塩基配列より、抗体のシグナル配列、H鎖およびL鎖のアミノ酸配列、可変領域のアミノ酸配列、及び相補性決定領域(CDR)のアミノ酸配列をそれぞれ決定した(図2)。CDRの解析にはKabatの方法(www.bioinf.org.uk:Dr.Andrew C.R. Martin’s Group, Antibodies: General Information)を用いた。得られた抗体(EV053264b)のH鎖およびL鎖のアミノ酸配列、可変領域のアミノ酸配列、及び相補性決定領域(CDR)のアミノ酸配列の配列番号を表1にそれぞれ示す。また、アイソタイプおよびサブクラスについても確認した。
3. Determination of Amino Acid Sequence of Antibody Based on Nucleotide Sequence The nucleotide sequences of each of the H chain and L chain were confirmed using an ABI sequencer (Thermo Fisher Scientific). From the obtained nucleotide sequences, the antibody signal sequence, H chain and L chain amino acid sequences, variable region amino acid sequence, and complementarity determining region (CDR) amino acid sequence were determined (Fig. 2). The Kabat method (www.bioinf.org.uk: Dr. Andrew CR Martin's Group, Antibodies: General Information) was used for CDR analysis. Table 1 shows the sequence numbers of the H chain and L chain amino acid sequences, the variable region amino acid sequence, and the complementarity determining region (CDR) amino acid sequence of the obtained antibody (EV053264b). Isotype and subclass were also confirmed.
 4.抗体タンパク質の産生および精製
 得られた抗SARS-CoV-2中和抗体発現ベクターをExpiCHO細胞(Thermo Fisher Scientific)に導入し、培養上清を回収した。この培養上清をProteinAカラム(Cytiva)を使用したアフィニティー精製にかけ、精製抗体を得た。遺伝子導入、培養、精製はメーカーの推奨条件で行った。精製後、SDS-PAGEによる抗体H鎖(約50kDa)、抗体L鎖(約25kDa)の確認を行った。
4. Production and Purification of Antibody Protein The obtained anti-SARS-CoV-2 neutralizing antibody expression vector was introduced into ExpiCHO cells (Thermo Fisher Scientific), and the culture supernatant was collected. This culture supernatant was subjected to affinity purification using a Protein A column (Cytiva) to obtain a purified antibody. Gene introduction, culture, and purification were performed under the manufacturer's recommended conditions. After purification, antibody H chain (about 50 kDa) and antibody L chain (about 25 kDa) were confirmed by SDS-PAGE.
 5.抗原結合性(アフィニティー)評価
 抗SARS-CoV-2抗体の抗原結合活性評価として、Sタンパク質3量体、アルファ型RBD、デルタ型RBD、およびカッパ型RBDを用いてBiacore T-200によるアフィニティー解析を行なった。human IgG capture kit(Cytiva)によりセンサーチップに抗ヒトIgGを固定化し、抗SARS-CoV-2抗体をキャプチャーさせてリガンドとした。アナライトはSタンパク質3量体、アルファ型RBD、デルタ型RBD、およびカッパ型RBD(AcroBiosystem)をそれぞれ使用した。結果を図3に示す。抗SARS-CoV-2抗体(EV053264b)のSタンパク質3量体、アルファ型RBD、およびデルタ型RBDに対するKD値は1.0 nM以下、カッパ型RBDに対するKD値は0.1nM以下と非常に高い結合活性を示した。
5. Evaluation of antigen binding (affinity) Anti-SARS-CoV-2 antibody antigen binding activity evaluation using S protein trimer, alpha-type RBD, delta-type RBD, and kappa-type RBD using Biacore T-200 affinity analysis was performed. Anti-human IgG was immobilized on a sensor chip using a human IgG capture kit (Cytiva), and an anti-SARS-CoV-2 antibody was captured and used as a ligand. Analytes used were S protein trimer, alpha-type RBD, delta-type RBD, and kappa-type RBD (AcroBiosystem), respectively. The results are shown in FIG. Anti-SARS-CoV-2 antibody (EV053264b) binds to S protein trimers, alpha-type RBDs, and delta-type RBDs with K D values of 1.0 nM or less and to kappa-type RBDs with K D values of 0.1 nM or less. showed activity.
 6.中和活性評価
 抗SARS-CoV-2抗体の有効性評価として中和活性を確認した。中和活性はSARS-CoV-2デルタ株感染の抗体による阻止率で評価した。抗体によるウイルス中和実験は国立感染症研究所が公表したCOVID19血清学的検査マニュアル
https://www.niid.go.jp/niid/images/pathol/pdf/COVID-19Serology_Ver1.pdfに準じて実施した。
6. Evaluation of neutralizing activity Neutralizing activity was confirmed as an evaluation of the efficacy of the anti-SARS-CoV-2 antibody. Neutralizing activity was evaluated by antibody inhibition rate of SARS-CoV-2 delta strain infection. Virus neutralization experiments using antibodies are based on the COVID19 serological test manual published by the National Institute of Infectious Diseases.
Conducted according to https://www.niid.go.jp/niid/images/pathol/pdf/COVID-19Serology_Ver1.pdf .
1)培養細胞
 Vero E6細胞にTMPRSS2 cDNAを導入した細胞株(Matsuyama S et al.,PNAS, 117:7001-7003, 2020)をJapanese Collection of Research Bioresources (JCRB)から入手した(JCRB1819 VeroE6 /TMPRSS2)。細胞の維持は、牛胎児血清(FCS、fetal calf serum)を10%の濃度で添加したDulbecco Modified Eagle’s medium (DMEM、 Nissui) にさらに400 μg/mLネオマイシン(G418、Sigma-Aldrich)を加えた培養液を使用した。37℃、5%CO2下に維持し、継代の際には、リン酸バッファー(Phosphate buffer saline (-), PBS、Nissui)で2回リンスした後、0.25%トリプシン/EDTA液(Lonza)を10 cm plateあたり1 mL添加した。10% FCS/DMEMで細胞を回収し、x120 gで5分間、遠心した。上清を除去した後、4% FCS/DMEMに懸濁し、細胞濃度をカウント後、96穴プレート(Thermo Fisher Scientific)に1ウェルあたり、104個/100 μLで播種した。ウイルス感染実験は、細胞プレート作製の翌日に行なった。
1) Cultured cells Vero E6 cells into which TMPRSS2 cDNA was introduced (Matsuyama S et al., PNAS, 117:7001-7003, 2020) were obtained from the Japanese Collection of Research Bioresources (JCRB) (JCRB1819 VeroE6 /TMPRSS2). . Cells were maintained in Dulbecco Modified Eagle's medium (DMEM, Nissui) supplemented with 10% fetal calf serum (FCS) and 400 μg/mL neomycin (G418, Sigma-Aldrich). liquid was used. Maintain at 37°C, 5% CO 2 , rinse twice with phosphate buffer (Phosphate buffer saline (-), PBS, Nissui), then add 0.25% trypsin/EDTA solution (Lonza). was added at 1 mL per 10 cm plate. Cells were harvested with 10% FCS/DMEM and centrifuged at x120 g for 5 minutes. After removing the supernatant, the cells were suspended in 4% FCS/DMEM, counted, and seeded at 10 4 cells/100 μL per well in a 96-well plate (Thermo Fisher Scientific). Viral infection experiments were performed the day after cell plate preparation.
2)ウイルス株
 国立感染症研究所から、野生株(JPN/TY/WK―521株)、アルファ株(JPN/QK002/2020株)、デルタ株(JPN/TKYTK1734/2021株)、およびカッパ株(JPN/TKYTK5356/2021株)を入手した。Opti-MEM(Thermo Fisher Scientific)を用いて、ウイルスストック液を段階的に希釈し、96穴プレートに添加した。一つの希釈系列をワンセットとして8つのウェルに作用した。3-4日後、8つの内の半分のウェルがCPE(Cytopathertic effects)を示すウイルス濃度を50%感染量(TCID50、Median tissue culture infectious dose)として算出した。
2) Virus strain From the National Institute of Infectious Diseases, wild strain (JPN/TY/WK-521 strain), alpha strain (JPN/QK002/2020 strain), delta strain (JPN/TKYTK1734/2021 strain), and kappa strain ( JPN/TKYTK5356/2021 strain) was obtained. Virus stocks were serially diluted using Opti-MEM (Thermo Fisher Scientific) and added to 96-well plates. One dilution series was applied to eight wells as one set. Three to four days later, the virus concentration at which half of the eight wells showed CPE (Cytopathertic effects) was calculated as the 50% infectious dose (TCID50, Median tissue culture infectious dose).
3)IC50の算出
 精製抗体(EV053264b)の50% 抑制濃度(IC50)を96穴プレート(Thermo Fisher Scientific)を用いて評価した。即ち、Opti-MEMで最終濃度が250 ng/mLから0.25 ng/mLになるように希釈した抗体溶液を、96穴プレートの縦1列に添加した。次に、最終MOIが0.01になるように調製したウイルス液を、96穴プレートに等量添加し、1時間、37度で振盪・反応させた後、細胞プレートに100μLずつ添加した。野生株の場合は2日後、アルファ株およびカッパ株の場合は3日後、デルタ株の場合は4日後、細胞増殖・毒性アッセイキット(富士フィルム和光純薬)溶液を10μLずつ、それぞれのウェルに添加した後、37度で培養を継続した。2-3時間後、OD450nmの吸光度をプレートリーダー(BIO-RAD、Model 550)測定し、培養液だけを添加したウェルの値をバックグラウンドとして各値から差し引いた値を元に、非感染サンプルに対しての割合(%)を算出し、各抗体濃度における中和活性(阻害)率を算出した(図4)。IC50は、以下の計算式から算出した。
IC50=10^(LOG(A/B)*(50-C)/(D-C)+LOG(B))
A:50%を挟む高い濃度, B:50%を挟む低い濃度
C:Bでの阻害率, D:Aでの阻害率
3) Calculation of IC50 The 50% inhibitory concentration (IC50) of the purified antibody (EV053264b) was evaluated using a 96-well plate (Thermo Fisher Scientific). That is, an antibody solution diluted with Opti-MEM to a final concentration of 250 ng/mL to 0.25 ng/mL was added to one column of a 96-well plate. Next, an equal amount of the virus solution adjusted to a final MOI of 0.01 was added to a 96-well plate, shaken and reacted at 37°C for 1 hour, and 100 µL each was added to the cell plate. After 2 days for the wild strain, after 3 days for the alpha and kappa strains, and after 4 days for the delta strain, 10 μL of Cell Proliferation and Toxicity Assay Kit (Fuji Film Wako Pure Chemical) solution was added to each well. After that, culture was continued at 37 degrees. After 2-3 hours, the absorbance at OD450nm was measured with a plate reader (BIO-RAD, Model 550), and the value of wells to which only the culture medium was added was subtracted from each value. The ratio (%) to the antibody was calculated, and the neutralizing activity (inhibition) rate at each antibody concentration was calculated (Fig. 4). IC50 was calculated from the following formula.
IC50=10^(LOG(A/B)*(50-C)/(DC)+LOG(B))
A: High concentration between 50%, B: Low concentration between 50%
C: Inhibition rate at B, D: Inhibition rate at A
 本発明の抗体は、野生株、アルファ株、カッパ株、デルタ株いずれに対して感染抑制効果を示し、IC50値は20 ng/mL以下と算出された。 The antibody of the present invention showed an infection-suppressing effect against wild strain, alpha strain, kappa strain, and delta strain, and the IC50 value was calculated to be 20 ng/mL or less.
 本発明の抗SARS-CoV-2抗体は、SARS-CoV-2が関与する疾患を予防または治療するための医薬組成物等の分野における適用に有用である。 The anti-SARS-CoV-2 antibody of the present invention is useful for applications in fields such as pharmaceutical compositions for preventing or treating diseases associated with SARS-CoV-2.
[配列の簡単な説明]
>EV053264b HCVR
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTSYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYFCARGSGSGPRYYLDY(配列番号1)
 
>EV053264b HCDR1
SGSYYWS(配列番号2)
 
>EV053264b HCDR2
YIYYSGSTSYNPSLKS(配列番号3)
 
>EV053264b HCDR3
GSGSGPRYYLDY(配列番号4)
 
>EV053264b LCVR
SYVLTQPPSVSVAPGQTASITCGGNNIGSKSVHWYRQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYFCQVWDSSSDHPNYV(配列番号5)
 
>EV053264b LCDR1
GGNNIGSKSVH(配列番号6)
 
>EV053264b LCDR2
YDSDRPS(配列番号7)
 
>EV053264b LCDR3
QVWDSSSDHPNYV(配列番号8)
 
>EV053264b HC
QVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTSYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYFCARGSGSGPRYYLDYWGQGTLVTVSATSTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK(配列番号9)
 
>EV053264b LC
SYVLTQPPSVSVAPGQTASITCGGNNIGSKSVHWYRQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYFCQVWDSSSDHPNYVFGTGTRVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS(配列番号10)
 
>EV053264b HC(シグナル配列を含む)をコードするDNA
ATGAAGCACCTGTGGTTCTTCCTCCTCCTGGTGGCAGCTCCCAGATGGGTCCTGTCCCAGGTGCAGCTGCAGGAGTCGGGCCCAGGACTGGTGAAGCCTTCGGAGACCCTGTCCCTCACCTGCACTGTCTCTGGTGGCTCCGTCAGCAGTGGTAGTTACTACTGGAGCTGGATCCGGCAGCCCCCAGGGAAGGGACTGGAGTGGATTGGGTATATCTATTACAGTGGGAGCACCAGTTACAACCCCTCCCTCAAGAGTCGAGTCACCATGTCAGTAGACACGTCCAAGAACCAGTTCTCCCTGAAGCTGAGCTCTGTGACCGCTGCGGACACGGCCGTGTATTTCTGTGCGAGAGGGTCTGGTTCGGGGCCTCGTTACTACTTAGACTACTGGGGCCAGGGAACCCTGGTCACCGTCTCCGCAACCTCCACCAAGGGCCCATCGGTCTTCCCCCTGGCACCCTCCTCCAAGAGCACCTCTGGGGGCACAGCGGCCCTGGGCTGCCTGGTCAAGGACTACTTCCCCGAACCGGTGACGGTGTCGTGGAACTCAGGCGCCCTGACCAGCGGCGTGCACACCTTCCCGGCTGTCCTACAGTCCTCAGGACTCTACTCCCTCAGCAGCGTGGTGACCGTGCCCTCCAGCAGCTTGGGCACCCAGACCTACATCTGCAACGTGAATCACAAGCCCAGCAACACCAAGGTGGACAAGAAAGTTGAGCCCAAATCTTGTGACAAAACTCACACATGCCCACCGTGCCCAGCACCTGAACTCCTGGGGGGACCGTCAGTCTTCCTCTTCCCCCCAAAACCCAAGGACACCCTCATGATCTCCCGGACCCCTGAGGTCACATGCGTGGTGGTGGACGTGAGCCACGAAGACCCTGAGGTCAAGTTCAACTGGTACGTGGACGGCGTGGAGGTGCATAATGCCAAGACAAAGCCGCGGGAGGAGCAGTACAACAGCACGTACCGTGTGGTCAGCGTCCTCACCGTCCTGCACCAGGACTGGCTGAATGGCAAGGAGTACAAGTGCAAGGTCTCCAACAAAGCCCTCCCAGCCCCCATCGAGAAAACCATCTCCAAAGCCAAAGGGCAGCCCCGAGAACCACAGGTGTACACCCTGCCCCCATCCCGGGATGAGCTGACCAAGAACCAGGTCAGCCTGACCTGCCTGGTCAAAGGCTTCTATCCCAGCGACATCGCCGTGGAGTGGGAGAGCAATGGGCAGCCGGAGAACAACTACAAGACCACGCCTCCCGTGCTGGACTCCGACGGCTCCTTCTTCCTCTACAGCAAGCTCACCGTGGACAAGAGCAGGTGGCAGCAGGGGAACGTCTTCTCATGCTCCGTGATGCATGAGGCTCTGCACAACCACTACACGCAGAAGAGCCTCTCCCTGTCTCCGGGTAAATGA(配列番号11)
 
>EV053264b HC(シグナル配列を含む)
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSVSSGSYYWSWIRQPPGKGLEWIGYIYYSGSTSYNPSLKSRVTMSVDTSKNQFSLKLSSVTAADTAVYFCARGSGSGPRYYLDYWGQGTLVTVSATSTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK(配列番号12)
 
>EV053264b LC(シグナル配列を含む)をコードするDNA
ATGGCCTGGACCGTTCTCCTCCTCGGCCTCCTCTCTCACTGCACAGGCTCTGTGACCTCCTATGTGCTGACTCAGCCACCCTCAGTGTCAGTGGCCCCAGGACAGACGGCCAGCATTACCTGTGGGGGAAACAACATTGGAAGTAAAAGTGTGCACTGGTACCGGCAGAAGCCAGGCCAGGCCCCTGTGCTGGTCATCTATTATGATAGCGACCGGCCCTCAGGGATCCCTGAGCGATTCTCTGGCTCCAACTCTGGGAACACGGCCACCCTGACCATCAGCAGGGTCGAAGCCGGGGATGAGGCCGACTATTTCTGTCAGGTGTGGGACAGTAGTAGTGATCATCCTAATTATGTCTTCGGAACTGGGACCAGGGTCACCGTCCTAGGTCAGCCCAAGGCCAACCCCACTGTCACTCTGTTCCCGCCCTCCTCTGAGGAGCTCCAAGCCAACAAGGCCACACTAGTGTGTCTGATCAGTGACTTCTACCCGGGAGCTGTGACAGTGGCCTGGAAGGCAGATGGCAGCCCCGTCAAGGCGGGAGTGGAGACCACCAAACCCTCCAAACAGAGCAACAACAAGTACGCGGCCAGCAGCTACCTGAGCCTGACGCCCGAGCAGTGGAAGTCCCACAGAAGCTACAGCTGCCAGGTCACGCATGAAGGGAGCACCGTGGAGAAGACAGTGGCCCCTACAGAATGTTCATAG(配列番号13)
 
>EV053264b LC(シグナル配列を含む)
MAWTVLLLGLLSHCTGSVTSYVLTQPPSVSVAPGQTASITCGGNNIGSKSVHWYRQKPGQAPVLVIYYDSDRPSGIPERFSGSNSGNTATLTISRVEAGDEADYFCQVWDSSSDHPNYVFGTGTRVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS(配列番号14)
[Brief description of the array]
>EV053264b HCVR
QVQLQESGPGLVKPSETLSLTCTVSGGSVS SGSYYWS WIRQPPGKGLEWIG YIYYSGSTSYNPSLKS RVTMSVDTSKNQFSLKLSSVTAADTAVYFCAR GSGSGPRYYLDY (SEQ ID NO: 1)

>EV053264b HCDR1
SGSYYWS (SEQ ID NO: 2)

>EV053264b HCDR2
YIYYSGSTSYNPSLKS (SEQ ID NO: 3)

>EV053264b HCDR3
GSGSGPRYYLDY (SEQ ID NO: 4)

>EV053264b LCVR
SYVLTQPPSVVSVAPGQTASITC GGNNIGSKSVH WYRQKPGQAPVLVIY YDSDRPS GIPERFSGSNSGNTATLTISRVEAGDEADYFC QVWDSSSDHPNYV (SEQ ID NO: 5)

>EV053264b LCDR1
GGNNIGSKSVH (SEQ ID NO: 6)

>EV053264b LCDR2
YDSDRPS (SEQ ID NO: 7)

>EV053264b LCDR3
QVWDSSSDHPNYV (SEQ ID NO: 8)

>EV053264b HC
QVQLQESGPGLVKPSETLSLTCTVSGGSVS SGSYYWS WIRQPPGKGLEWIG YIYYSGSTSYNPSLKS RVTMSVDTSKNQFSLKLSSVTAADTAVYFCAR GSGSGPRYYLDY WGQGTLVTVSATSTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK(配列番号9)

>EV053264b LC
SYVLTQPPSVVSVAPGQTASITC GGNNIGSKSVH WYRQKPGQAPVLVIY YDSDRPS GIPERFSGSNSGNTATLTISRVEAGDEADYFC QVWDSSSDHPNYV FGTGTRVTVLGQPKANPTVTLFPPSSEELQANKATLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHRSYSCQVTHEGSTVEKTVAPTECS)

>DNA encoding EV053264b HC (including signal sequence)
(SEQ ID NO: 11)

>EV053264b HC (includes signal sequence)
MKHLWFFLLLVAAPRWVLSQVQLQESGPGLVKPSETLSLTCTVSGGSVS SGSYYWS WIRQPPGKGLEWIG YIYYSGSTSYNPSLKS RVTMSVDTSKNQFSLKLSSVTAADTAVYFCAR GSGSGPRYYLDY WGQGTLVTVSATSTKGPSVFPLAPSSKSTSGGTAALGCLVKDYFPEPVTVSWNSGALTSGVHTFPAVLQSSGLYSLSSVVTVPSSSLGTQTYICNVNHKPSNTKVDKKVEPKSCDKTHTCPPCPAPELLGGPSVFLFPPKPKDTLMISRTPEVTCVVVDVSHEDPEVKFNWYVDGVEVHNAKTKPREEQYNSTYRVVSVLTVLHQDWLNGKEYKCKVSNKALPAPIEKTISKAKGQPREPQVYTLPPSRDELTKNQVSLTCLVKGFYPSDIAVEWESNGQPENNYKTTPPVLDSDGSFFLYSKLTVDKSRWQQGNVFSCSVMHEALHNHYTQKSLSLSPGK(配列番号12)

>DNA encoding EV053264b LC (including signal sequence)
(SEQ ID NO: 13)

>EV053264b LC (including signal sequence)
MAWTVLLLGLLSHCTGSVTSYVLTQPPSVVSVAPGQTASITC GGNNIGSKSVH WYRQKPGQAPVLVIY YDSDRPS GIPERFSGSNSGNTATLTISRVEAGDEADYFC QVWDSSSDHPNYV FGTGTRVTVLGQPKANPTVTLFPPSSEELQANKATLLVCLISDFYPGAVTVAWKADGSPVKAGVETTKPSKQSNNKYAASSYLSLTPEQWKSHREKSTVVTEC (sequence number 1)

Claims (14)

  1.  SARS-CoV-2コロナウイルスのスパイクタンパク質に結合し、そのウイルス活性を中和するSARS-CoV-2コロナウイルスに対するモノクローナル抗体およびその抗原結合性断片。 A monoclonal antibody against the SARS-CoV-2 coronavirus that binds to the spike protein of the SARS-CoV-2 coronavirus and neutralizes its viral activity, and an antigen-binding fragment thereof.
  2.  配列番号1のアミノ酸配列または配列番号1のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含む重鎖可変領域、および、
     配列番号5のアミノ酸配列または配列番号5のアミノ酸配列と90%以上の同一性を有するアミノ酸配列を含む軽鎖可変領域を含有する、請求項1に記載の抗体またはその抗原結合性断片。
    a heavy chain variable region comprising the amino acid sequence of SEQ ID NO: 1 or an amino acid sequence having 90% or more identity with the amino acid sequence of SEQ ID NO: 1; and
    2. The antibody or antigen-binding fragment thereof according to claim 1, comprising a light chain variable region comprising the amino acid sequence of SEQ ID NO:5 or an amino acid sequence having 90% or more identity with the amino acid sequence of SEQ ID NO:5.
  3.  配列番号9のアミノ酸配列または配列番号9のアミノ酸配列と90%以上の同一性を有するアミノ酸を含む重鎖、および
     配列番号10のアミノ酸配列または配列番号10のアミノ酸配列と90%以上の同一性を有するアミノ酸を含む軽鎖
    を含む、請求項1または2に記載の抗体またはその抗原結合性断片。
    a heavy chain comprising the amino acid sequence of SEQ ID NO: 9 or amino acids having 90% or more identity with the amino acid sequence of SEQ ID NO: 9, and an amino acid sequence of SEQ ID NO: 10 or having 90% or more identity with the amino acid sequence of SEQ ID NO: 10 3. The antibody or antigen-binding fragment thereof of claim 1 or 2, comprising a light chain comprising amino acids having
  4. (i)重鎖の可変領域が、
    (a)配列番号2のアミノ酸配列を含む重鎖CDR1のアミノ酸配列、
    (b)配列番号3のアミノ酸配列を含む重鎖CDR2のアミノ酸配列、および
    (c)配列番号4のアミノ酸配列を含む重鎖CDR3のアミノ酸配列、
    を含有し、
    (ii)軽鎖の可変領域が、
    (a)配列番号6のアミノ酸配列を含む軽鎖CDR1のアミノ酸配列、
    (b)配列番号7のアミノ酸配列を含む軽鎖CDR2のアミノ酸配列、および
    (c)配列番号8のアミノ酸配列を含む軽鎖CDR3のアミノ酸配列、
    を含有する、請求項1~3のいずれか一項に記載の抗体またはその抗原結合性断片。
    (i) the variable region of the heavy chain is
    (a) a heavy chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:2;
    (b) a heavy chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:3; and (c) a heavy chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:4;
    contains
    (ii) the variable region of the light chain is
    (a) a light chain CDR1 amino acid sequence comprising the amino acid sequence of SEQ ID NO:6;
    (b) a light chain CDR2 amino acid sequence comprising the amino acid sequence of SEQ ID NO:7; and (c) a light chain CDR3 amino acid sequence comprising the amino acid sequence of SEQ ID NO:8;
    The antibody or antigen-binding fragment thereof according to any one of claims 1 to 3, comprising
  5.  請求項1~4のいずれか一項に記載の抗体またはその抗原結合性断片であって、SARS-CoV-2野生株および変異株のいずれかまたはその両方に対する中和活性(IC50)が、約20 ng/mL以下である抗体またはその抗原結合性断片。 The antibody or antigen-binding fragment thereof according to any one of claims 1 to 4, wherein the neutralizing activity (IC50) against either or both of the SARS-CoV-2 wild type and mutant strain is about An antibody or antigen-binding fragment thereof that is 20 ng/mL or less.
  6.  請求項1~5のいずれか一項に記載の抗体またはその抗原結合性断片であって、Sタンパク質3量体、アルファ型RBD、およびデルタ型RBD対するKD値が1×10-9M以下であり、かつ、カッパ型RBD対するKD値が1×10-10M以下である抗体またはその抗原結合性断片。 The antibody or antigen-binding fragment thereof according to any one of claims 1 to 5, which has a K D value of 1 × 10 -9 M or less for S protein trimer, alpha-type RBD, and delta-type RBD and a K D value for kappa-type RBD of 1×10 −10 M or less, or an antigen-binding fragment thereof.
  7.  請求項1~6のいずれか一項に記載の抗体またはその抗原結合性断片および薬学的に許容可能な担体を含む、SARS-CoV-2コロナウイルス感染症を治療または予防するための医薬組成物。 A pharmaceutical composition for treating or preventing SARS-CoV-2 coronavirus infection, comprising the antibody or antigen-binding fragment thereof according to any one of claims 1 to 6 and a pharmaceutically acceptable carrier .
  8.  (1)SARS-CoV-2コロナウイルス感染症の治療もしくは予防における、請求項1~6のいずれか一項に記載の抗体もしくはその抗原結合性断片の使用、
     (2)SARS-CoV-2コロナウイルス感染症の治療もしくは予防のための医薬の製造における、請求項1~6のいずれか一項に記載の抗体もしくはその抗原結合性断片の使用、または
     (3)SARS-CoV-2コロナウイルス感染症を治療もしくは予防するための方法であって、それを必要とする対象もしくは患者に請求項1~6のいずれか一項に記載の抗体もしくはその抗原結合性断片を投与することを含む、方法。
    (1) use of the antibody or antigen-binding fragment thereof according to any one of claims 1 to 6 in the treatment or prevention of SARS-CoV-2 coronavirus infection;
    (2) Use of the antibody or antigen-binding fragment thereof according to any one of claims 1 to 6 in the manufacture of a medicament for treating or preventing SARS-CoV-2 coronavirus infection, or (3 ) A method for treating or preventing SARS-CoV-2 coronavirus infection, comprising administering the antibody of any one of claims 1 to 6 or its antigen-binding ability to a subject or patient in need thereof. A method comprising administering a fragment.
  9.  前記SARS-CoV-2が変異株である、請求項7に記載の医薬組成物、または請求項8に記載の使用もしくは方法。 The pharmaceutical composition according to claim 7, or the use or method according to claim 8, wherein said SARS-CoV-2 is a mutant strain.
  10.  前記変異株がアルファ株、デルタ株、またはカッパ株である、請求項9に記載の医薬組成物、使用、または方法。 The pharmaceutical composition, use or method according to claim 9, wherein said mutant strain is an alpha strain, a delta strain, or a kappa strain.
  11.  請求項1~6のいずれか一項に記載の抗体またはその抗原結合性断片のアミノ酸配列をコードする単離された核酸分子、またはこれらの核酸分子のいずれかと高ストリンジェントな条件でハイブリダイズする単離された核酸分子。 An isolated nucleic acid molecule that encodes the amino acid sequence of the antibody or antigen-binding fragment thereof of any one of claims 1 to 6, or that hybridizes with any of these nucleic acid molecules under highly stringent conditions An isolated nucleic acid molecule.
  12.  請求項11に記載の単離された核酸分子を組み込んだ組換え発現ベクター。 A recombinant expression vector incorporating the isolated nucleic acid molecule according to claim 11.
  13.  請求項12に記載の組換え発現ベクターが導入された単離された宿主細胞。 An isolated host cell into which the recombinant expression vector according to claim 12 has been introduced.
  14.  請求項13に記載の宿主細胞を培養し、前記培養された宿主細胞から抗体を精製することを含む、請求項1~6のいずれか一項に記載の抗体またはその抗原結合性断片の製造方法。  A method for producing the antibody or antigen-binding fragment thereof according to any one of claims 1 to 6, which comprises culturing the host cell according to claim 13 and purifying the antibody from the cultured host cell. . 
PCT/JP2022/028885 2021-07-28 2022-07-27 Neutralizing human antibody against wild type strain and mutant strain of sars-cov-2 and antigen-binding fragment thereof WO2023008463A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-123259 2021-07-28
JP2021123259 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023008463A1 true WO2023008463A1 (en) 2023-02-02

Family

ID=85087721

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028885 WO2023008463A1 (en) 2021-07-28 2022-07-27 Neutralizing human antibody against wild type strain and mutant strain of sars-cov-2 and antigen-binding fragment thereof

Country Status (1)

Country Link
WO (1) WO2023008463A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10787501B1 (en) * 2020-04-02 2020-09-29 Regeneron Pharmaceuticals, Inc. Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10787501B1 (en) * 2020-04-02 2020-09-29 Regeneron Pharmaceuticals, Inc. Anti-SARS-CoV-2-spike glycoprotein antibodies and antigen-binding fragments

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
ANONYMOUS: "New acquisition of human super-neutralizing antibodies that can protect against infection by mutant strains of many types of new coronaviruses through consolidating Toyama University's original core technologies", PUBLIC RELATIONS AND FUNDS OFFICE, GENERAL AFFAIRS DIVISION, GENERAL AFFAIRS DEPARTMENT, 16 June 2021 (2021-06-16), XP093030821, Retrieved from the Internet <URL:https://www.u-toyama.ac.jp/wp/wp-content/uploads/20210616.pdf> [retrieved on 20230310] *
COPIN RICHARD; BAUM ALINA; WLOGA ELZBIETA; PASCAL KRISTEN E.; GIORDANO STEPHANIE; FULTON BENJAMIN O.; ZHOU ANBO; NEGRON NICOLE; LA: "The monoclonal antibody combination REGEN-COV protects against SARS-CoV-2 mutational escape in preclinical and human studies", CELL, ELSEVIER, AMSTERDAM NL, vol. 184, no. 15, 5 June 2021 (2021-06-05), Amsterdam NL , pages 3949, XP086700962, ISSN: 0092-8674, DOI: 10.1016/j.cell.2021.06.002 *
HUANG YANG, SUN HUI, YU HAI, LI SHAOWEI, ZHENG QINGBING, XIA NINGSHAO: "Neutralizing antibodies against SARS-CoV-2: current understanding, challenge and perspective", ANTIBODY THERAPEUTICS, vol. 3, no. 4, 8 December 2020 (2020-12-08), pages 285 - 299, XP055953140, DOI: 10.1093/abt/tbaa028 *
LIU LIHONG; WANG PENGFEI; NAIR MANOJ S.; YU JIAN; RAPP MICAH; WANG QIAN; LUO YANG; CHAN JASPER F.-W.; SAHI VINCENT; FIGUEROA AMIR;: "Potent neutralizing antibodies against multiple epitopes on SARS-CoV-2 spike", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 584, no. 7821, 22 July 2020 (2020-07-22), London, pages 450 - 456, XP037223585, ISSN: 0028-0836, DOI: 10.1038/s41586-020-2571-7 *
PLANAS DELPHINE; VEYER DAVID; BAIDALIUK ARTEM; STAROPOLI ISABELLE; GUIVEL-BENHASSINE FLORENCE; RAJAH MAARAN MICHAEL; PLANCHAIS CYR: "Reduced sensitivity of SARS-CoV-2 variant Delta to antibody neutralization", NATURE, NATURE PUBLISHING GROUP UK, LONDON, vol. 596, no. 7871, 8 July 2021 (2021-07-08), London, pages 276 - 280, XP037535483, ISSN: 0028-0836, DOI: 10.1038/s41586-021-03777-9 *
WANG LINGSHU, ZHOU TONGQING, ZHANG YI, YANG EUN SUNG, SCHRAMM CHAIM A., SHI WEI, PEGU AMARENDRA, OLONINIYI OLAMIDE K., HENRY AMY R: "Supplementary Material: Ultrapotent antibodies against diverse and highly transmissible SARS-CoV-2 variants", SCIENCE, AMERICAN ASSOCIATION FOR THE ADVANCEMENT OF SCIENCE, US, vol. 373, no. 6556, 13 August 2021 (2021-08-13), US , XP055910563, ISSN: 0036-8075, DOI: 10.1126/science.abh1766 *

Similar Documents

Publication Publication Date Title
KR101390015B1 (en) Monoclonal antibody capable of binding to specific discontinuous epitope occurring in ad1 region of human cytomegalovirus gb glycoprotein, and antigen-binding fragment thereof
Kim et al. An anti-Gn glycoprotein antibody from a convalescent patient potently inhibits the infection of severe fever with thrombocytopenia syndrome virus
EP3271390B1 (en) A serotype cross-reactive, dengue neutralizing antibody and uses thereof
KR20100091195A (en) Anti-rsv g protein antibodies
EP3220947B1 (en) Antibodies that potently neutralize rabies virus and other lyssaviruses and uses thereof
WO2023019723A1 (en) Monoclonal antibody 32c7, and preparation method therefor and use thereof
HUE035609T2 (en) Human monoclonal antibody with specificity for dengue virus serotype 1 e protein and uses thereof
CN114644708B (en) Respiratory syncytial virus specific binding molecules
CN110088131B (en) anti-CHIKV antibodies and uses thereof
CN113527473A (en) Fully human monoclonal antibody and application thereof
CA3026169A1 (en) Humanized antibodies against enterovirus 71
WO2020186687A1 (en) Human antibody specifically binding four serotypes of dengue viruses
EP4206224A1 (en) Human antibody or antigen-binding fragment thereof against coronavirus spike protein
WO2014115893A1 (en) Human antibody specific to human metapneumovirus, or antigen-binding fragment thereof
WO2014061783A1 (en) Human antibody specific to toxin produced from clostridium difficile, or antigen-binding fragment thereof
CN116693671A (en) Novel coronavirus neutralizing antibody, and preparation method and application thereof
WO2023008463A1 (en) Neutralizing human antibody against wild type strain and mutant strain of sars-cov-2 and antigen-binding fragment thereof
WO2022210830A1 (en) Anti-sars-cov-2 antibody
WO2022250107A1 (en) Human neutralizing antibody against wild-type strain and mutant strain of sars-cov-2, and antigen-binding fragment thereof
WO2023145859A1 (en) HUMAN NEUTRALIZING ANTIBODY AGAINST SARS-CoV-2 HAVING BREADTH TO VARIANT STRAINS, AND ANTIGEN-BINDING FRAGMENT THEREOF
EP2374816B1 (en) Binding molecules against Chikungunya virus and uses thereof
JP2024509933A (en) Anti-varicella-zoster virus antibodies and their uses
JP2011072248A (en) Human antibody against rabies virus and composition thereof
CN107286237B (en) Acquisition and application of anti-hepatitis C virus antibody
WO2010074218A1 (en) Anti-human midkine antibody

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849524

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE