WO2023008371A1 - Beam member, vehicle door structure, and vehicle - Google Patents
Beam member, vehicle door structure, and vehicle Download PDFInfo
- Publication number
- WO2023008371A1 WO2023008371A1 PCT/JP2022/028629 JP2022028629W WO2023008371A1 WO 2023008371 A1 WO2023008371 A1 WO 2023008371A1 JP 2022028629 W JP2022028629 W JP 2022028629W WO 2023008371 A1 WO2023008371 A1 WO 2023008371A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- beam member
- vehicle
- inner panel
- impact bar
- door structure
- Prior art date
Links
- 239000000463 material Substances 0.000 claims description 36
- 229920005989 resin Polymers 0.000 description 40
- 239000011347 resin Substances 0.000 description 40
- 238000010586 diagram Methods 0.000 description 15
- 238000003780 insertion Methods 0.000 description 14
- 230000037431 insertion Effects 0.000 description 14
- 238000010521 absorption reaction Methods 0.000 description 13
- 238000003466 welding Methods 0.000 description 13
- 229920005992 thermoplastic resin Polymers 0.000 description 12
- 230000035939 shock Effects 0.000 description 11
- 229920000049 Carbon (fiber) Polymers 0.000 description 10
- 239000004917 carbon fiber Substances 0.000 description 10
- 238000005304 joining Methods 0.000 description 9
- 239000000835 fiber Substances 0.000 description 5
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 4
- 238000000034 method Methods 0.000 description 4
- 230000000116 mitigating effect Effects 0.000 description 4
- 239000012783 reinforcing fiber Substances 0.000 description 4
- 229910000838 Al alloy Inorganic materials 0.000 description 3
- 229910000861 Mg alloy Inorganic materials 0.000 description 3
- 239000002131 composite material Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000003677 Sheet moulding compound Substances 0.000 description 2
- 239000000805 composite resin Substances 0.000 description 2
- 230000001788 irregular Effects 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229920002239 polyacrylonitrile Polymers 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000007787 solid Substances 0.000 description 2
- 229920001187 thermosetting polymer Polymers 0.000 description 2
- 239000013585 weight reducing agent Substances 0.000 description 2
- XQUPVDVFXZDTLT-UHFFFAOYSA-N 1-[4-[[4-(2,5-dioxopyrrol-1-yl)phenyl]methyl]phenyl]pyrrole-2,5-dione Chemical compound O=C1C=CC(=O)N1C(C=C1)=CC=C1CC1=CC=C(N2C(C=CC2=O)=O)C=C1 XQUPVDVFXZDTLT-UHFFFAOYSA-N 0.000 description 1
- HECLRDQVFMWTQS-RGOKHQFPSA-N 1755-01-7 Chemical compound C1[C@H]2[C@@H]3CC=C[C@@H]3[C@@H]1C=C2 HECLRDQVFMWTQS-RGOKHQFPSA-N 0.000 description 1
- CMLFRMDBDNHMRA-UHFFFAOYSA-N 2h-1,2-benzoxazine Chemical compound C1=CC=C2C=CNOC2=C1 CMLFRMDBDNHMRA-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- 229920002748 Basalt fiber Polymers 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- 239000004641 Diallyl-phthalate Substances 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 229910001209 Low-carbon steel Inorganic materials 0.000 description 1
- 229930040373 Paraformaldehyde Natural products 0.000 description 1
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004693 Polybenzimidazole Substances 0.000 description 1
- 239000004734 Polyphenylene sulfide Substances 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 206010039203 Road traffic accident Diseases 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 1
- 238000004026 adhesive bonding Methods 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 239000004760 aramid Substances 0.000 description 1
- 229920006231 aramid fiber Polymers 0.000 description 1
- QUDWYFHPNIMBFC-UHFFFAOYSA-N bis(prop-2-enyl) benzene-1,2-dicarboxylate Chemical compound C=CCOC(=O)C1=CC=CC=C1C(=O)OCC=C QUDWYFHPNIMBFC-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 238000005219 brazing Methods 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000011300 coal pitch Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- XLJMAIOERFSOGZ-UHFFFAOYSA-M cyanate Chemical compound [O-]C#N XLJMAIOERFSOGZ-UHFFFAOYSA-M 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 239000011737 fluorine Substances 0.000 description 1
- 229910052731 fluorine Inorganic materials 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 1
- 229920005610 lignin Polymers 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920006287 phenoxy resin Polymers 0.000 description 1
- 239000013034 phenoxy resin Substances 0.000 description 1
- 229920003192 poly(bis maleimide) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920002492 poly(sulfone) Polymers 0.000 description 1
- 229920001230 polyarylate Polymers 0.000 description 1
- 229920002480 polybenzimidazole Polymers 0.000 description 1
- 229920005668 polycarbonate resin Polymers 0.000 description 1
- 239000004431 polycarbonate resin Substances 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 229920001225 polyester resin Polymers 0.000 description 1
- 239000004645 polyester resin Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920001470 polyketone Polymers 0.000 description 1
- 229920005672 polyolefin resin Polymers 0.000 description 1
- -1 polyoxymethylene Polymers 0.000 description 1
- 229920001955 polyphenylene ether Polymers 0.000 description 1
- 229920000069 polyphenylene sulfide Polymers 0.000 description 1
- 229920005990 polystyrene resin Polymers 0.000 description 1
- 239000002964 rayon Substances 0.000 description 1
- 230000003014 reinforcing effect Effects 0.000 description 1
- 125000006850 spacer group Chemical group 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920006345 thermoplastic polyamide Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 239000010936 titanium Substances 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 229920001567 vinyl ester resin Polymers 0.000 description 1
- 239000002759 woven fabric Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60J—WINDOWS, WINDSCREENS, NON-FIXED ROOFS, DOORS, OR SIMILAR DEVICES FOR VEHICLES; REMOVABLE EXTERNAL PROTECTIVE COVERINGS SPECIALLY ADAPTED FOR VEHICLES
- B60J5/00—Doors
Definitions
- the present invention relates to a beam member, a vehicle door structure having the beam member, and a vehicle including the vehicle door structure.
- the vehicle door structure of Patent Document 1 has an inner panel made of a cast material and an upper guard beam that extends in the front-rear direction of the vehicle when the door is closed and has both ends fixed to the inner panel. Both ends of the upper guard beam are fixed to the inner panel via shock load absorbing front/rear brackets. Due to this feature, in the vehicle door structure of Patent Document 1, when another vehicle collides from the side, the shock load acting on the guard beam is transmitted to the inner panel after being relieved by the bracket. It is said that the vehicle door structure is capable of avoiding the extension and sufficiently absorbing the impact load.
- Patent Document 1 only the following 1) and 2) are shown as specific mechanisms for the front/rear brackets to alleviate the impact load.
- first, the shock load mitigating bracket deforms 2.
- Second, the shock load mitigating bracket deforms As described in claim 3, when fastening the guard beam and the bracket by means of a bolt joint, the bolt insertion hole is elongated, and if the vehicle door structure receives an impact, the guard beam (a rod-shaped member ) slide against the front/rear brackets using slotted bolt holes.
- Patent Document 1 Regarding the impact load mitigation mechanism in Patent Document 1, it is unclear from the description in Patent Document 1 how impact energy is preferentially applied to the bracket and causes deformation. This is because, when the vehicle door structure of a certain vehicle receives an impact due to a collision with another vehicle, it is impacted in the vicinity of the rod-shaped member of the beam member arranged over the planar portion of the door, resulting in considerable damage. This is because it is believed that a proportion of the impact energy is first applied to the rod-shaped member (guard beam).
- the present invention provides a beam member that absorbs a large impact and imparts excellent collision safety to a vehicle, a vehicle door structure having the beam member, and a vehicle having the vehicle door structure.
- the present invention provides the following means.
- an impact bar extending in one direction; at least one extensible bracket;
- a beam member comprising The extensible bracket is a substantially half-cylindrical impact bar receiving portion; a flange portion; has At least one of the impact bar receiving portion and the flange portion has an undulating shape, The beam member, wherein the impact bar receiving portion is joined to an end portion of the impact bar.
- brackets are respectively joined to both ends of the impact bar, and at least one of the two brackets is the extensible bracket.
- each of the two brackets has a flange portion and is joined to both ends of the impact bar so that the thickness directions of the flange portions are in the same direction.
- the two brackets are extensible brackets.
- the impact bar is made of a low-ductile material having an elongation rate of 15% or less.
- the extensible bracket is made of a highly ductile material having an elongation rate of more than 15%.
- a vehicle door structure including the beam member according to any one of ⁇ 1> to ⁇ 6> above and an inner panel, The beam member is arranged on the planar portion of the inner panel, and at least a part of the flange portion of the extensible bracket of the beam member is directly or indirectly joined to the inner panel in a state of surface contact. , the vehicle door structure, wherein the beam member is integrated with the inner panel.
- the inner panel is made of a low-ductility material having an elongation rate of 15% or less.
- the beam member has two extensible brackets.
- the two brackets of the beam member are in direct or indirect surface contact with the inner panel in such a manner that the thickness direction of each flange portion is substantially the same as the thickness direction of the inner panel.
- One flange portion of the two brackets of the beam member is joined to an end portion of the planar portion of the inner panel, and the other flange portion of the two brackets is connected to another planar portion of the inner panel.
- ⁇ 12> A vehicle having the vehicle door structure according to any one of ⁇ 7> to ⁇ 11>, wherein the beam member is arranged on the vehicle exterior side and the inner panel is arranged on the vehicle interior side.
- the beam member extends substantially in the longitudinal direction of the vehicle.
- the beam member extends substantially in the vertical direction of the vehicle.
- a beam member that absorbs a large impact by having a specific bracket, and as a result, a vehicle having a vehicle door structure provided with the beam member exhibits excellent collision safety. Become.
- FIG. 1C is a schematic diagram showing an example of an undulating shape of an extensible bracket (pattern 1) in a cross section taken along line AA of FIG. 1C.
- FIG. 1C is a schematic diagram showing another example of the undulating shape of the extensible bracket (pattern 2) in a cross section corresponding to the AA portion of FIG. 1C.
- FIG. 1C is a schematic diagram showing another example of the undulating shape of the extensible bracket (pattern 3) in a cross section corresponding to the AA portion of FIG.
- FIG. 1C is a schematic diagram showing another example of the undulating shape of the extensible bracket (pattern 4) in a cross section corresponding to the AA portion of FIG. 1C.
- FIG. 1B is a schematic diagram showing a state in which the beam member is deformed by an impact in the thickness direction of the extensible bracket, but from the side opposite to the joint surface of the flange portion of the extensible bracket, viewed in the same direction as FIG. 1A.
- 3B is a schematic view of the deformed beam member shown in FIG. 3A viewed from the same direction as in FIG. 1B;
- FIG. 3B is a perspective view of the deformed extensible bracket of the deformed beam member shown in FIG. 3A, viewed from the same direction as the extensible bracket of FIG.
- FIG. 1C is a schematic diagram of 1 C of beam members.
- 1 is a schematic diagram of a vehicle door structure in which a beam member 1A extends in the vehicle front-rear direction and is attached to an inner panel 8 so that joint surfaces 6 of two flange portions 4A face the back side of the paper.
- the beam member 1C of FIG. 4 extends in the longitudinal direction of the vehicle, and is attached to the inner panel 8 so that the joint surface 6 of one flange portion 4A faces the right direction of the vehicle and the joint surface 6 of the other flange portion 4A faces downward.
- 1 is a schematic diagram of an installed vehicle door structure; FIG. FIG.
- FIG. 2 shows a vehicle door structure having a beam member and an auxiliary beam member of the type in which both ends of the rod-shaped member are fastened to a reinforcing object with bolts.
- 5 is a schematic diagram similar to 5.
- FIG. 1 is a schematic diagram of a vehicle door structure in which a beam member 1A extends in the vertical direction of the vehicle and is attached to an inner panel 8 so that joint surfaces 6 of two flange portions 4A face the back side of the paper.
- FIG. 2B is a perspective view of a non-extensible bracket 10 having a profile similar to that of the extensible bracket 2A but without contours.
- FIG. 2 is a schematic diagram of a beam member 1D in which an extensible bracket 2A and a non-extensible bracket 10 are joined to both ends of an impact bar 3A;
- FIG. 4 is a schematic diagram illustrating a vehicle door structure having a beam member 1D, using a vehicle door shape, in which the beam members are arranged in the front-rear direction of the vehicle.
- 1 is a schematic diagram of a beam member in which a bolt is inserted into a bolt fastening hole for the purpose.
- An example of an extensible bracket for use with the present invention having a shape similar to that of FIG. 1C, but with undulations on the impact bar receiving portion but not on the flange portion, viewed in an orientation similar to that of FIG. 1C. is a perspective view of the.
- the beam member disclosed herein is a beam member that includes a unidirectionally extending impact bar and at least one extensible bracket.
- An extensible bracket is provided at the end of the impact bar and has a substantially semi-cylindrical impact bar receiving portion and a flange portion, at least one of the impact bar receiving portion and the flange portion having an undulating shape.
- the extensible bracket is joined to the end of the impact bar at its impact bar receiving portion.
- FIG. 1A is a side view of a beam member 1A with extensible brackets 2A provided at both ends of an impact bar 3A
- FIG. 1B is a plan view of the beam member 1A
- FIG. 1C is an embodiment of the present invention.
- the impact bar 3A is provided so that the joint surfaces 6 of the flange portions 4A of the two identically shaped extensible brackets 2A are oriented in the same direction. 1C as well, in the beam member 1A of FIG. 1A, the joint surfaces 6 of the flange portions 4A of the two extensible brackets 2A are in the same direction (downward in FIG. 1B, back side in FIG. 1A). direction), extensible brackets 2A are provided at both ends of the impact bar 3A.
- An impact bar is a rod-shaped or plate-shaped part that extends in one direction.
- an impact bar has the function of increasing the rigidity of the door and absorbing the impact in order to ensure the safety of the occupants when another vehicle or the like collides with the door.
- the shape of the impact bar is not particularly limited. Examples of impact bars include those having circular, elliptical, polygonal, H-shaped, U-shaped, L-shaped, star-shaped, irregular shapes, and combinations thereof as axial cross-sectional shapes.
- the longitudinal shape of the impact bar may be a linear shape with the same axial cross-sectional shape from one end to the other end, a curved shape with at least a partial bend, or a partially different size or shape of the axial cross-section.
- the impact bar may be hollow, solid, or have hollow and solid portions within it. At least a part of the impact bar may be hollow, and the hollow portion may have ribs, partition walls, steps, or slopes in the longitudinal direction or axial cross-sectional direction of the impact bar.
- the impact bar is preferably made of a low ductility material with an elongation of 15% or less.
- low ductility materials include hard steel, aluminum alloys, magnesium alloys, or composite materials, particularly SMC (sheet molding compound) materials and resin-based fiber-reinforced composite materials (fiber-reinforced resin) is exemplified.
- SMC sheet molding compound
- fiber-reinforced resin resin-based fiber-reinforced composite materials
- a fiber-reinforced resin a fiber-reinforced thermoplastic resin is preferable because it has excellent impact absorption ability, and a carbon fiber-reinforced thermoplastic resin is more preferable because it has not only excellent impact absorption ability but also rigidity.
- the impact bar which has a large size and a proportion of the vehicle weight, made of fiber reinforced resin, especially fiber reinforced thermoplastic resin, more preferably carbon fiber reinforced thermoplastic resin (CFRTP). It is possible to achieve both durability and weight reduction. This is because, in general, fiber-reinforced resins are lighter in weight and have better shock-absorbing ability than metal materials.
- CFRPTP carbon fiber reinforced thermoplastic resin
- the impact bar made of fiber-reinforced resin, it is possible to contribute to impact absorption.
- reinforcing fibers contained in the fiber-reinforced resin one or more types selected from the group consisting of glass fibers, carbon fibers, aramid fibers, boron fibers, and basalt fibers are exemplified.
- Examples of the form of reinforcing fibers include woven fabric, knitted fabric, non-woven fabric, random mat, knit, braid, and those in which a plurality of reinforcing fibers are arranged in one direction.
- Carbon fibers include polyacrylonitrile (PAN)-based carbon fibers, petroleum pitch-based carbon fibers, coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, or vapor growth. exemplified by carbon fiber.
- the resin that is the matrix of the fiber-reinforced resin may be either a thermoplastic resin or a thermosetting resin.
- thermosetting resins include epoxy resins, vinyl ester resins, unsaturated polyester resins, diallyl phthalate resins, phenol resins, bismaleimide resins, cyanate resins, benzoxazine resins, dicyclopentadiene resins, and the like.
- thermoplastic resin those having a softening point within the range of 180° C. to 350° C. are usually used.
- Examples include polyolefin resin, polystyrene resin, thermoplastic polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), Polycarbonate resin, (meth)acrylic resin, polyarylate resin, polyphenylene ether resin, polyimide resin, polyethernitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin, polyketone resin, polyetherketone resin, thermoplastic urethane resin, fluorine-based resins, thermoplastic polybenzimidazole resins, and the like.
- the above elongation rate is a value measured by a tensile test of JIS Z 2241 (corresponding to ISO-6892) for metal materials and JIS K 7161 (corresponding to ISO-527) for resin materials. and preferred.
- the elongation here means the ratio of the elongation between the marked lines on the test piece and the distance between the marked lines before the test piece breaks in the tensile test, expressed as a percentage. It is also called breaking elongation or ultimate elongation.
- the elongation rate may be a value determined by the above JIS or ISO standards, which is measured by a method based on a tensile test.
- a test piece having the dimensions and shape specified by the above JIS and ISO standards is cut out from the measurement object.
- the impact bar is made of an aluminum alloy, a magnesium alloy, or a composite material, particularly a low-ductility material such as the resin-based composite material as described above, the beam member including the impact bar, and thus the vehicle door structure having the same, can be made lightweight. can be preferred.
- the beam member 1A disclosed in FIGS. 1A and 1B is provided with at least one extensible bracket 2A at the end of the impact bar 3A. Both of the two brackets are extensible brackets 2A, which is preferable because the shock absorbing ability is higher than the case where only one bracket is the extensible bracket 2A.
- FIG. 9B shows a beam member 1D of another embodiment. Two brackets 2A, 10, each including at least one extensible bracket 2A, may be provided at both ends of the impact bar 3A, such as the beam member 1D shown in FIG. 9B.
- a bracket is a plate-like component used for fixing members or joining members together.
- the term "plate-like" refers to a shape of a certain object whose thickness (height) is extremely small (for example, 1/5 or less) relative to its width and depth. It may have a part with uneven thickness.
- Brackets are joined to both ends of the impact bar 3A of the beam member 1A, and at least one of the two brackets may be an extensible bracket 2A. If the two brackets attached to both ends of the impact bar 3A are both extensible brackets 2A, the vehicle door structure including the beam member 1A will have a higher impact absorption capability, which is preferable.
- the extensible bracket 2A has a substantially semi-cylindrical impact bar receiving portion 5A and a flange portion 4A. An end portion of the flange portion 4A on the side of the beam member 1A (upper right side in FIG. 1C) is provided with an insertion hole 4a through which a bolt (not shown) is inserted when connecting to the inner panel 8.
- at least one of the impact bar receiving portion 5A and the flange portion 4A is preferably a bracket having an undulating shape.
- FIG. 11 illustrates an extensible bracket 2B of another embodiment. Although the impact bar receiving portion 5A of the extensible bracket 2B of FIG. 11 has an undulating shape, the flange portion 4B does not have an undulating shape.
- both the impact bar receiving portion 5A and the flange portion 4A have undulating shapes like the extensible bracket 2A illustrated in FIG. 1C, and the undulating shape continues to both the impact bar receiving portion 5A and the flange portion 4A is more preferable.
- That the impact bar receiving portion 5A has a substantially semi-cylindrical shape means that, as shown in FIG. 1C, there is a space suitable for joining with the end portion of the rod-shaped impact bar 3A in the thickness direction (upward direction in FIG. 1C). It is a shape with a concave cross section.
- the cross-sectional shape of the impact bar receiving portion 5A is the U-shape shown in FIG. 1C.
- the extensible bracket in FIG. 1C has a so-called open cross-section structure in which the bottom side of the drawing is not closed.
- the impact bar receiving portion 5A may be provided with an insertion hole 5a through which a bolt (not shown) is inserted when connecting to the end portion of the impact bar 3A arranged in the space.
- FIG. 1D Another embodiment of an extensible bracket 2C is illustrated in FIG. 1D.
- the extensible bracket 2C is closed at the bottom side of the drawing, and the impact bar receiving portion 5C has a substantially cylindrical shape. It has a shaped insertion hole 59 .
- an extensible bracket 2C having a so-called closed cross-sectional structure, in which the cross-sectional shape of the impact bar receiving portion 5C is substantially O-shaped, can be preferably used for the beam member.
- the end of the impact bar 3B having a cross-sectional shape corresponding to the insertion hole 59 is inserted into the insertion hole 59, and the impact bar receiving portion 5C and the end of the impact bar 3B are inserted. It should be joined.
- a bolt connecting to the inner panel 8 may be inserted through an insertion hole 4b provided at the end of the flange portion 4A on the side (lower left side in FIG. 1D) connected to the impact bar 3B.
- the undulating shape of the extensible bracket is, as illustrated in the extensible bracket 2A of FIG. It is a shape having protruding parts (convex parts 41, 51) and concave parts (concave parts 42, 52).
- a shape having a plurality of protrusions 41, 51 and recesses 42, 52 is preferable because the impact absorption capacity of the beam member 1A can be further enhanced. and are alternately continuous.
- the plurality of convex portions 41, 51 and concave portions 42, 52 in the undulating shape may all have the same shape and height (depth) or may have different shapes.
- the extensible bracket 2A extends from the side (lower left side in FIG. 1C) connected to the impact bar 3A to the side (upper right side in FIG. 1C) that becomes the end of the beam member 1A. If a plurality of convex portions 51 and concave portions 52 are alternately continuous to the side), the beam member 1A having the extensible bracket 2A can have particularly excellent shock absorbing ability. Therefore, it is preferable.
- FIGS. 2A to 2D An example of a wavy shape as the undulating shape of the extensible bracket 2A is shown in FIGS. 2A to 2D.
- FIG. 2A is a cross-sectional view taken along line AA of FIG. 1C.
- the mating surface 6 of the flange portion 4A of the extensible bracket 2A faces downward.
- 2B to 2D are cross-sectional views corresponding to line AA in FIG. 1C.
- the left side in FIGS. 2A to 2D is the side of the extensible bracket 2A connected to the impact bar 3A (lower left side in FIG. 1C), and the right side in FIGS. 2A to 2D is the end of the beam member 1A (FIG. 1C upper right side).
- the plurality of protrusions and recesses may all have the same shape and height, or may have different shapes. Further, the plurality of recesses 52 may all have the same shape and depth, or may have different shapes.
- the height of the convex portion 51 is the height from the deepest portion of the adjacent concave portion 52 to the highest portion of the convex portion 51 .
- the depth of the recess 52 is the depth from the highest portion of the adjacent protrusion 51 to the deepest portion of the recess 52 .
- the plurality of protrusions 51 may all have the same shape, and the plurality of recesses 52 may all have the same shape (pattern 1).
- the beam member 1A may have recesses 54 whose width in the extending direction is larger than that of the recesses 52 (pattern 2).
- it may have a convex portion 53 whose height is greater than that of the convex portion 51 (pattern 3).
- the corrugated unevenness which is the undulating shape of the extensible bracket 2A shown in FIGS. 2A to 2D, has a curved or flat shape at the top of the convex portion or the deepest portion of the concave portion.
- the shape is not limited, and the top portion of the convex portion and the deepest portion of the concave portion may be sharply pointed.
- the undulating shape of the extensible bracket 2A may be generated only by increasing or decreasing the thickness of the plate-shaped material constituting the extensible bracket 2A, but the plate-shaped material itself is undulated as illustrated in FIGS. It is preferable in terms of contribution to impact absorption ability and easiness of manufacturing.
- the extensible bracket 2A is preferably made of a highly ductile material with an elongation rate of over 15%.
- good ductile materials include resin materials, mild steel, stainless steel, and titanium.
- a preferred method for measuring the elongation value of this good ductility material is as described above for the low ductility material of the impact bar 3A.
- the beam member 1A has an impact bar 3A made of a low ductility material with an elongation rate of 15% or less, and an extensible bracket 2A made of a good ductility material with an elongation rate of more than 15% as at least one of the two brackets. If there is, it becomes a thing excellent in shock absorption ability, and it is preferable.
- brackets including the extensible bracket 2A, and the impact bar 3A are joined.
- means for joining the bracket and the impact bar 3A include mechanical fastening such as bolt and nut tightening, fitting, adhesion, welding, and integral molding such as insert molding.
- the extensible bracket 2A or the impact bar 3A is made of a fusible material such as a thermoplastic resin, vibration welding, ultrasonic welding, infrared welding, or laser welding may be used as the welding means. can.
- FIG. 10 is a side view showing a beam member 1B according to another embodiment of the invention.
- a beam member comprising a unidirectionally extending impact bar and at least one extensible bracket, said extensible bracket having a substantially semi-cylindrical impact bar receiving portion and a flange portion, said At least one of the impact bar receiving portion and the flange portion has an undulating shape, and the impact bar receiving portion is joined to the end portion of the impact bar.
- a beam member 1B is included. That is, the extensible bracket 2A may be joined to only one end of the impact bar 3A, and the beam member 1B joined to the inner panel 8 may be the other end of the impact bar 3A without the bracket.
- FIG. 10 shows a beam member 1B joined to the inner panel 8 by fastening one end of the impact bar 3A with a bolt 13 without a bracket.
- the bracketless end portion of the impact bar 3A may be joined to the inner panel 8 by the joining method other than bolting, such as adhesion.
- the present invention has a substantially semi-cylindrical impact bar receiving portion and a flange portion, and at least one of the impact bar receiving portion and the flange portion has an undulating shape, preferably an elongation rate of 15%. Also included is an extensible bracket made of an excess of good ductility material.
- FIG. 5 is an example of a vehicle door structure having a beam member 1A and an inner panel 8, and is a schematic view of the vehicle door structure for the left side door of the vehicle viewed from the outside of the left side of the vehicle 100 toward the inside of the vehicle. is.
- the beam member 1A is arranged on the vehicle exterior side with respect to the inner panel 8 .
- the inner panel 8 generally has an opening or a step for attachment of functional parts, reduction in weight, designability as a vehicle door, and the like.
- FIG. 5 and FIGS. 6, 7, 8, and 9C which will be described later, the arrangement of the beam members is clearly and simply shown. Only the part is shown, and description of other detailed shapes is omitted.
- the vehicle door structure is designed such that the X direction is the longitudinal direction of the vehicle, the Y direction is the lateral direction of the vehicle, and the Z direction is the vertical direction of the vehicle.
- the +X direction (left direction in FIG. 5) is the front direction of the vehicle
- the -X direction (right direction in FIG. 5) is the rear direction of the vehicle
- the +Y direction (back direction in FIG. 5) is the direction of the vehicle.
- the -Y direction forward direction in FIG. 5) is the left direction of the vehicle
- the +Z direction upward direction in FIG. 5
- the -Z direction downward direction in FIG. 5).
- the longitudinal direction of the vehicle includes not only a completely horizontal direction with respect to the ground plane, but also a slightly inclined direction with respect to the ground plane, such as the beam member 1A of the vehicle door structure shown in FIG. . Therefore, the front-rear direction may be referred to as a substantially front-rear direction. Similarly, the vertical direction of the vehicle may be referred to as a substantially vertical direction.
- the impact force is first applied to the impact bar 3A of the beam member 1A and then transmitted to the extensible bracket 2A and the inner panel 8.
- the extensible bracket 2A and the inner panel 8 are moved to the center of the plus and minus directions of X shown in FIG. It is pulled to the center side in the length direction.
- the "impact absorption stroke” is the extension amount of the extensible bracket 2A in the X-axis direction when the beam member 1A receives an impact force.
- the beam member is shown in FIGS. 1A and 1B before being subjected to an impact force such as that caused by the side impact described above, and the extensible bracket of the beam member is shown prior to being subjected to an impact force.
- 1C illustrates the beam member after being subjected to an impact force in FIGS. 3A and 3B and the extensible bracket of the beam member after being subjected to an impact force in FIG. 3C.
- the buckling of the impact bar 3A upon receiving the impact force pulls the extensible bracket 2A toward the center in the length direction of the beam member 1A, and the undulating shape of the extensible bracket 2A. extends in the length direction of the beam member 1A.
- brackets 10 illustrated in FIG. 9A, which are exemplified in FIG.
- the fastening portion between the bracket 10 and the inner panel 8 for example, the portion provided with the insertion holes 4b and 5a, the insertion hole 4b,
- the beam member 1A including the extensible bracket 2A is exposed to the risk of further damage to the interior of the vehicle due to the rapid breakage of the bolts, etc. inserted in the bracket 5a, which causes the beam member 1A to be violently separated from the inner panel 8. is higher than with a vehicle door structure having a
- FIG. 4 shows a beam member 1C of another embodiment of the invention.
- two extensible brackets 2A are provided at opposite ends of the impact bar 3C in opposite directions.
- the joint surfaces 6 of the flange portions of the two extensible brackets 2A form a right angle.
- Brackets 2A are provided at both ends of the impact bar 3C.
- the two extensible brackets 2A are arranged such that the joint surfaces 6 of the respective flange portions 4A face different directions.
- FIG. 9A shows a perspective view of a non-extensible bracket 10 having a profile similar to that of the extensible bracket 2A but without contours.
- FIG. 9B shows a beam member 1D according to another embodiment of the invention. As illustrated in FIG. 9B, the beam member 1D is provided with an extensible bracket 2A at one end of the impact bar 3A and a non-extensible bracket 10 that is not the extensible bracket 2A at the other end.
- At least one of the two brackets of the beam member 1D is an extensible bracket 2A, the two brackets 2A, 10 both having flange portions 4A, 4, and the two brackets
- the flange portions 4A and 4 of 2A and 10 are joined to both ends of the impact bar 3A so that the thickness directions of the flange portions 4A and 4 are in the same direction, more preferably so that the joining surfaces 6 of the flange portions 4A and 4 are also in the same direction. ing.
- the impact can be absorbed by the extensible bracket 2A.
- FIG. 9C shows a vehicle door structure according to this embodiment.
- the vehicle door structure illustrated in FIG. 9C has a beam member 1D including the extensible bracket described above and an inner panel 8, the beam member 1D being disposed on the planar portion of the inner panel 8, and the beam member 1D
- the beam member 1D is integrated with the inner panel 8 by joining at least a portion of the flange portion 4A of the extensible bracket 2A to the inner panel 8 in direct or indirect surface contact.
- the beam member is disposed on the planar portion of the inner panel” means that both ends of the beam member are joined to the planar portion ends 8A and 8B of the inner panel 8, as illustrated in FIG.
- At least part of the flange portion 4A is “joined in direct surface contact with the inner panel 8” means that, for example, the flange portion 4A and the inner panel 8 are in direct surface contact with a joining member. It means to be joined, to weld the flange portion 4A and the inner panel 8, or to fuse the flange portion 4A and the inner panel 8 together.
- the term "joined in an indirect surface contact state” means that the flange portion 4A and the inner panel 8 are joined in a state in which an inclusion such as a brazing alloy, a joining member, or a spacer is interposed. It means to be
- the flange portion 4A of the extensible bracket 2A of the beam member 1D is joined to the inner panel 8 in direct or indirect surface contact.
- the entire surface of the flange portion 4A of the extensible bracket 2A may be joined to the inner panel 8.
- the entire surfaces of both flange portions 4 of both end brackets may be joined to the inner panel 8 in direct or indirect surface contact.
- the flange portion of one bracket is joined in direct or indirect surface contact with the inner panel 8 over its entire surface, and the flange portion of the other bracket is partially connected directly or indirectly to the inner panel 8. They may be bonded in a state of surface contact.
- a portion of the flange portion of the bracket that is joined to the inner panel in direct or indirect surface contact is herein referred to as a joint surface.
- At least part of the flange portion of the extensible bracket 2A of the beam member 1D may be directly joined to the inner panel 8 in surface contact, but may be indirectly attached to the inner panel via other functional parts. They may be joined in contact.
- the bracket at one end may be joined directly to the inner panel 8 and the bracket at the other end may be joined to the inner panel 8 indirectly in surface contact.
- At least part of the flange portion 4A of the extensible bracket 2A of the beam member 1D is joined to the inner panel 8 by bolt-nut tightening, similar to the above-described joining of the extensible bracket 2A and the impact bar 3A.
- Mechanical fastening, fitting, gluing, or welding are exemplified.
- the flange portion 4A of the extensible bracket 2A or the inner panel 8 is made of a meltable material such as a thermoplastic resin material, vibration welding, ultrasonic welding, infrared welding, or laser welding is used as the welding means. Welding can also be used.
- the inner panel 8 of the vehicle door structure is made of a low-ductile material having an elongation of 15% or less, because the impact absorbing ability of the beam member is easily exhibited.
- Examples of the type and elongation of this low ductility material are as described above for the impact bar of the beam member.
- both the inner panel and the impact bar are made of one or more selected from the group of low ductility materials exemplified above to achieve even greater vehicle weight savings. More preferred.
- the low ductility material is more preferably a fiber reinforced resin, more preferably a fiber reinforced thermoplastic resin, and particularly preferably a carbon fiber reinforced thermoplastic resin.
- the inner panel which is large in size and accounts for a certain proportion of the vehicle weight, is made of fiber-reinforced resin, especially fiber-reinforced thermoplastic resin, and more preferably carbon fiber-reinforced thermoplastic resin (CFRTP), resulting in better collision safety. It is possible to achieve both durability and weight reduction. This is because, in general, fiber-reinforced resins are lighter in weight and have better shock-absorbing ability than metal materials.
- the inner panel made of fiber-reinforced resin, it is possible to contribute to shock absorption.
- the reinforcing fibers contained in the fiber-reinforced resin used for the inner panel and the resin that is the matrix of the fiber-reinforced resin the same fiber-reinforced resin as used for the impact bar can be used.
- the vehicle door structure includes an inner panel 8 made of a low ductility material with an elongation of 15% or less, an impact bar 3A made of a low ductility material with an elongation of 15% or less, and at least one of the two brackets having an elongation
- a beam member having an extensible bracket 2A made of more than 15% of a highly ductile material is particularly preferable because it has excellent impact absorption ability.
- the vehicle door structure has two brackets in its beam member, as illustrated in FIGS.
- the vehicle door structure is such that the two brackets of the beam member as exemplified in FIGS. Y-axis direction, vehicle width direction), and is joined directly or indirectly to the inner panel in a state of surface contact, which facilitates manufacturing and improves impact resistance.
- An excellent vehicle door structure is obtained, which is preferable.
- the vehicle door structure is such that both brackets are extensible brackets.
- FIG. 6 shows the vehicle door structure to which the beam member 1C shown in FIG. It is a schematic diagram.
- the bracket of the beam member 1C is mounted on the inner panel 8 so that the thickness direction of the flange portion of the bracket is substantially the same as the thickness direction of the inner panel 8. It may be difficult to join to In such a case, the beam member 1C of FIG. 4 can be used in a vehicle door construction as illustrated in FIG. That is, the beam member 1C may be attached to the inner panel 8 so that the joint surfaces 6 of the two flange portions 4A of the beam member 1C face different directions.
- the beam member 1C extends in the longitudinal direction of the vehicle 100, the joint surface 6 of one flange portion 4A faces the vehicle right direction (+Y direction), and the joint surface 6 of the other flange portion 4A faces downward (-Z direction). ) may be attached to the inner panel 8.
- the joint surface 6 of the flange portion 4A on the vehicle rear side (-X side) faces the right direction of the vehicle (+Y direction), and the joint surface 6 of the flange portion 4A on the vehicle front side (+X side) faces downward (- Z direction) is attached to the inner panel 8.
- the flange portion of one of the two brackets of the beam member 1A is attached to the planar portion of the inner panel 8.
- a vehicle door structure with excellent impact resistance when one flange portion of the two brackets is joined to an end portion 8A and one flange portion of the two brackets is joined to the other end portion 8B of the planar portion of the inner panel. is preferable.
- the impact bar 3A of the beam member 1A may not be joined to the inner panel 8. More preferably, the vehicle door structure is such that both brackets of the beam member are extensible brackets.
- the two brackets are joined in direct or indirect surface-to-surface contact with the inner panel in such a way that the thickness direction of each flange portion is substantially the same as the thickness direction of the inner panel.
- the two brackets are extensible brackets, and the thickness direction of the flange portion is arranged in substantially the same direction as the thickness direction of the inner panel, and the state is in direct or indirect surface contact with the inner panel. is more preferable. It is more preferable that the joint surfaces of the two brackets face the same direction.
- a vehicle door structure may have a beam member 1A with an extensible bracket as illustrated in FIG. 7 and an auxiliary beam member 9 without an extensible bracket 2A.
- the auxiliary beam member 9 shown in FIG. 7 is of the type in which both ends of a rod-shaped member corresponding to an impact bar are fastened to the object to be reinforced with bolts 13, but the auxiliary beam member is limited to those illustrated in FIG. not.
- auxiliary beam members having box-like brackets with pocket-like insertion holes 59 at one or both ends of the bar member may be used, as shown in FIG. 1D.
- auxiliary beam members may be used having one or both non-extensible brackets 10 shown in FIG. 9A at the ends of the bar.
- a vehicle having the vehicle door structure described above, in which the beam member of the vehicle door structure is arranged on the outside of the vehicle and the inner panel is on the inside of the vehicle, is also an embodiment of the present invention.
- the vehicle may have a vehicle door structure in which the beam members 1A and 1C are arranged to extend in the longitudinal direction of the vehicle 100 indicated by broken lines.
- the vehicle may have a vehicle door structure in which the beam member 1A is arranged to extend in the vertical direction of the vehicle 100.
- FIG. The vehicle here is represented by an automobile, but of course, it may be a so-called flying automobile, a small mobility vehicle, a vehicle that runs on a railroad track, or the like.
- the beam member, vehicle door structure, and vehicle disclosed herein are suitable for use in industries related to vehicles such as automobiles.
- This application claims priority based on Japanese Patent Application No. 2021-125227 filed on July 30, 2021.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Body Structure For Vehicles (AREA)
Abstract
A beam member (1D) comprising an impact bar (3A) extending in one direction and at least one extensible bracket (2A), wherein: the extensible bracket (2A) has a substantially semi-cylindrical impact bar receiving part (5A) and a flange section (4A); at least one of the impact bar receiving part (5A) and the flange section (4A) has an undulating shape; and the impact bar receiving part (5A) is joined to an end of the impact bar (3A).
Description
本発明は、ビーム部材、ビーム材を有する車両ドア構造、及び車両ドア構造を含む車両に関する。
The present invention relates to a beam member, a vehicle door structure having the beam member, and a vehicle including the vehicle door structure.
自動車に代表される車両には、衝突事故時に乗員の被害を最小化できるように様々な安全基準を満たすことが求められている。特に、自動車同士の衝突事故としては、正面衝突よりも側面衝突が起きやすい。側面衝突は正面衝突よりも車体と乗員に深刻な損傷を与えることが多い。そのため、特許文献1のように、車両ドア構造を工夫して、側面衝突時の衝撃吸収能を高めることを図った技術が数多く報告されている。
Vehicles represented by automobiles are required to meet various safety standards in order to minimize damage to passengers in the event of a collision. In particular, side collisions are more likely to occur than head-on collisions between automobiles. Side collisions often cause more serious damage to the vehicle body and occupants than head-on collisions. For this reason, many techniques have been reported, such as Patent Literature 1, in which a vehicle door structure is devised to improve the impact absorption capacity in the event of a side collision.
特許文献1の車両ドア構造は、鋳造材よりなるインナーパネルと、ドア閉にて車両の前後方向に延びて両端部をそれぞれインナーパネルに固定された上部ガードビームとを有している。上部ガードビームの両端部は、衝撃荷重緩和用の前部/後部ブラケットを介してインナーパネルに固定されている。当該特徴により、特許文献1の車両ドア構造では、他の車両が側面衝突してきた時、ガードビームに作用する衝撃荷重がブラケットにより緩和されてから、インナーパネルに伝達するため、インナーパネルにおける亀裂の進展を回避して衝撃荷重を十分に吸収し得る車両ドア構造となるとされている。
The vehicle door structure of Patent Document 1 has an inner panel made of a cast material and an upper guard beam that extends in the front-rear direction of the vehicle when the door is closed and has both ends fixed to the inner panel. Both ends of the upper guard beam are fixed to the inner panel via shock load absorbing front/rear brackets. Due to this feature, in the vehicle door structure of Patent Document 1, when another vehicle collides from the side, the shock load acting on the guard beam is transmitted to the inner panel after being relieved by the bracket. It is said that the vehicle door structure is capable of avoiding the extension and sufficiently absorbing the impact load.
この特許文献1で、前部/後部ブラケットが衝撃荷重を緩和する具体的な機構として示されているのは、以下1)~2)のみである。
1)車両ドア構造が衝撃を受けた場合に、「先ず衝撃荷重緩和用ブラケットが変形」する。
2)その請求項3のとおり、ガードビームとブラケットとのボルト継手による締結において、ボルト挿通孔が長孔状をしていて、車両ドア構造が衝撃を受けた場合には、ガードビーム(棒状部材)が、前部/後部ブラケットに対して、長孔状のボルト挿通孔を利用して摺動する。 In Patent Document 1, only the following 1) and 2) are shown as specific mechanisms for the front/rear brackets to alleviate the impact load.
1) When the vehicle door structure receives an impact, "first, the shock load mitigating bracket deforms".
2) As described in claim 3, when fastening the guard beam and the bracket by means of a bolt joint, the bolt insertion hole is elongated, and if the vehicle door structure receives an impact, the guard beam (a rod-shaped member ) slide against the front/rear brackets using slotted bolt holes.
1)車両ドア構造が衝撃を受けた場合に、「先ず衝撃荷重緩和用ブラケットが変形」する。
2)その請求項3のとおり、ガードビームとブラケットとのボルト継手による締結において、ボルト挿通孔が長孔状をしていて、車両ドア構造が衝撃を受けた場合には、ガードビーム(棒状部材)が、前部/後部ブラケットに対して、長孔状のボルト挿通孔を利用して摺動する。 In Patent Document 1, only the following 1) and 2) are shown as specific mechanisms for the front/rear brackets to alleviate the impact load.
1) When the vehicle door structure receives an impact, "first, the shock load mitigating bracket deforms".
2) As described in claim 3, when fastening the guard beam and the bracket by means of a bolt joint, the bolt insertion hole is elongated, and if the vehicle door structure receives an impact, the guard beam (a rod-shaped member ) slide against the front/rear brackets using slotted bolt holes.
特許文献1の衝撃荷重緩和の機構について、特許文献1の記載からはどのようにブラケットへ優先的に衝撃エネルギーが掛かり変形を生じるのか不明である。何故ならば、ある車両の車両ドア構造が他の車両との衝突により衝撃を受けた場合、ドアの面状部に渡って配置されているビーム部材の棒状部材の近辺で衝突を受け、かなりの割合の衝撃エネルギーがまず棒状部材(ガードビーム)に掛かると思われるからである。
Regarding the impact load mitigation mechanism in Patent Document 1, it is unclear from the description in Patent Document 1 how impact energy is preferentially applied to the bracket and causes deformation. This is because, when the vehicle door structure of a certain vehicle receives an impact due to a collision with another vehicle, it is impacted in the vicinity of the rod-shaped member of the beam member arranged over the planar portion of the door, resulting in considerable damage. This is because it is believed that a proportion of the impact energy is first applied to the rod-shaped member (guard beam).
ブラケットの変形の仕方によっては、その請求項3に示されている、長孔状のボルト挿通孔を利用した摺動による衝撃荷重緩和にも支障が出る可能性がある。特許文献1の記載では、ボルトの軸の端はブラケットの孔を通ってナット締めされており、ブラケットが変形してそのボルト締結孔も変形してナットが抜けるほど広がってしまったならば、衝撃を受けた際に摺動どころかガードビームの一端がブラケットから分離して周辺部位を損壊してしまう恐れがあるからである。
Depending on how the bracket deforms, there is a possibility that impact load mitigation due to sliding using the elongated bolt insertion hole shown in claim 3 will be hindered. According to the description of Patent Document 1, the end of the bolt shaft passes through a hole in the bracket and is fastened with a nut. This is because there is a risk that one end of the guard beam will separate from the bracket and damage the surrounding parts, not to mention sliding, when receiving the force.
更に、特許文献1の長孔状のボルト挿通孔を利用した摺動による衝撃荷重緩和については、確保できる衝撃吸収ストロークは極めて限定されたものになると思われる。長孔状のボルト挿通孔の長径の長さは、サイドビーム端部の薄板部分で、サイドビームとしての強度に支障をきたさない程度に限られる筈だからである。残念ながら制限速度を大幅に超過した速度で走行する違反車両による深刻な交通事故が後を絶たない現状では、できる限り大きい衝撃吸収ストロークを有する車両ドア構造が求められる。
Furthermore, regarding impact load mitigation due to sliding using the elongated bolt insertion hole of Patent Document 1, it seems that the impact absorption stroke that can be secured is extremely limited. This is because the length of the long diameter of the elongated bolt insertion hole should be limited to the extent that the thin plate portion at the end of the side beam does not interfere with the strength of the side beam. Unfortunately, serious traffic accidents caused by violating vehicles traveling at speeds significantly exceeding the speed limit continue to occur, requiring a vehicle door structure having as large a shock absorbing stroke as possible.
本発明は、大きな衝撃を吸収し、車両に優れた衝突安全性を付与するビーム部材、該ビーム部材を有する車両ドア構造、該車両ドア構造を有する車両を提供する。
The present invention provides a beam member that absorbs a large impact and imparts excellent collision safety to a vehicle, a vehicle door structure having the beam member, and a vehicle having the vehicle door structure.
上記課題を解決するために、本発明は以下の手段を提供する。
In order to solve the above problems, the present invention provides the following means.
<1>
一方向に延在するインパクトバーと、
少なくとも1つの伸長性ブラケットと、
を含むビーム部材であって、
前記伸長性ブラケットは、
略半筒形状のインパクトバー受部と、
フランジ部と、
を有し、
前記インパクトバー受部および前記フランジ部の少なくとも一方は起伏形状を有し、
前記インパクトバー受部は前記インパクトバーの端部と接合されている、ビーム部材。
<2>
前記インパクトバーの両方の端部にそれぞれブラケットが接合されており、それら2つのブラケットの少なくとも1つが前記伸長性ブラケットである上記<1>に記載のビーム部材。
<3>
前記2つのブラケットがいずれもフランジ部を有しており、それらのフランジ部の厚み方向が同じ方向になるように、それぞれインパクトバーの両端に接合されている上記<2>に記載のビーム部材。
<4>
前記2つのブラケットがいずれも伸長性ブラケットである、上記<2>または<3>に記載のビーム部材。
<5>
前記インパクトバーが、伸び率15%以下の低延性材料からなるものである上記<1>~<4>のいずれか1つに記載のビーム部材。
<6>
前記伸長性ブラケットが伸び率15%超過の良延性材料からなる上記<1>から<5>のいずれか1つに記載のビーム部材。
<7>
上記<1>から<6>のいずれか1つに記載のビーム部材と、インナーパネルとを有する車両ドア構造であって、
前記ビーム部材が、前記インナーパネルの面状部に配置され、前記ビーム部材の伸長性ブラケットのフランジ部の少なくとも一部が、インナーパネルに直接または間接的に面接触した状態で接合されることにより、前記ビーム部材が前記インナーパネルと一体化されている車両ドア構造。
<8>
前記インナーパネルが、伸び率15%以下の低延性材料からなるものである上記<7>に記載の車両ドア構造。
<9>
前記ビーム部材は2つの前記伸長性ブラケットを有する上記<7>または<8>に記載の車両ドア構造。
<10>
前記ビーム部材の2つのブラケットが、いずれも、それぞれのフランジ部の厚み方向が、前記インナーパネルの厚み方向と略同一方向となる配置にて、前記インナーパネルに直接または間接的に面接触した状態で接合されている上記<9>に記載の車両ドア構造。
<11>
前記ビーム部材の2つのブラケットの一方のフランジ部が、前記インナーパネルの面状部のある端部と接合され、前記2つのブラケットの他方のフランジ部が、前記インナーパネルの面状部の別の端部と接合されている上記<9>または<10>に記載の車両ドア構造。
<12>
上記<7>から<11>のいずれか1つの車両ドア構造を有する車両であって、前記ビーム部材が車両室外側に、前記インナーパネルが車両室内側に配置されている車両。
<13>
前記ビーム部材が車両の略前後方向に延びる配置となる上記<12>の車両。
<14>
前記ビーム部材が車両の略上下方向に延びる配置となる上記<12>の車両。 <1>
an impact bar extending in one direction;
at least one extensible bracket;
A beam member comprising
The extensible bracket is
a substantially half-cylindrical impact bar receiving portion;
a flange portion;
has
At least one of the impact bar receiving portion and the flange portion has an undulating shape,
The beam member, wherein the impact bar receiving portion is joined to an end portion of the impact bar.
<2>
The beam member according to <1> above, wherein brackets are respectively joined to both ends of the impact bar, and at least one of the two brackets is the extensible bracket.
<3>
The beam member according to <2> above, wherein each of the two brackets has a flange portion and is joined to both ends of the impact bar so that the thickness directions of the flange portions are in the same direction.
<4>
The beam member according to <2> or <3> above, wherein the two brackets are extensible brackets.
<5>
The beam member according to any one of <1> to <4> above, wherein the impact bar is made of a low-ductile material having an elongation rate of 15% or less.
<6>
The beam member according to any one of <1> to <5> above, wherein the extensible bracket is made of a highly ductile material having an elongation rate of more than 15%.
<7>
A vehicle door structure including the beam member according to any one of <1> to <6> above and an inner panel,
The beam member is arranged on the planar portion of the inner panel, and at least a part of the flange portion of the extensible bracket of the beam member is directly or indirectly joined to the inner panel in a state of surface contact. , the vehicle door structure, wherein the beam member is integrated with the inner panel.
<8>
The vehicle door structure according to <7> above, wherein the inner panel is made of a low-ductility material having an elongation rate of 15% or less.
<9>
The vehicle door structure according to the above <7> or <8>, wherein the beam member has two extensible brackets.
<10>
The two brackets of the beam member are in direct or indirect surface contact with the inner panel in such a manner that the thickness direction of each flange portion is substantially the same as the thickness direction of the inner panel. The vehicle door structure according to <9> above.
<11>
One flange portion of the two brackets of the beam member is joined to an end portion of the planar portion of the inner panel, and the other flange portion of the two brackets is connected to another planar portion of the inner panel. The vehicle door structure according to <9> or <10> above, which is joined to the end portion.
<12>
A vehicle having the vehicle door structure according to any one of <7> to <11>, wherein the beam member is arranged on the vehicle exterior side and the inner panel is arranged on the vehicle interior side.
<13>
The vehicle according to <12> above, wherein the beam member extends substantially in the longitudinal direction of the vehicle.
<14>
The vehicle according to <12> above, wherein the beam member extends substantially in the vertical direction of the vehicle.
一方向に延在するインパクトバーと、
少なくとも1つの伸長性ブラケットと、
を含むビーム部材であって、
前記伸長性ブラケットは、
略半筒形状のインパクトバー受部と、
フランジ部と、
を有し、
前記インパクトバー受部および前記フランジ部の少なくとも一方は起伏形状を有し、
前記インパクトバー受部は前記インパクトバーの端部と接合されている、ビーム部材。
<2>
前記インパクトバーの両方の端部にそれぞれブラケットが接合されており、それら2つのブラケットの少なくとも1つが前記伸長性ブラケットである上記<1>に記載のビーム部材。
<3>
前記2つのブラケットがいずれもフランジ部を有しており、それらのフランジ部の厚み方向が同じ方向になるように、それぞれインパクトバーの両端に接合されている上記<2>に記載のビーム部材。
<4>
前記2つのブラケットがいずれも伸長性ブラケットである、上記<2>または<3>に記載のビーム部材。
<5>
前記インパクトバーが、伸び率15%以下の低延性材料からなるものである上記<1>~<4>のいずれか1つに記載のビーム部材。
<6>
前記伸長性ブラケットが伸び率15%超過の良延性材料からなる上記<1>から<5>のいずれか1つに記載のビーム部材。
<7>
上記<1>から<6>のいずれか1つに記載のビーム部材と、インナーパネルとを有する車両ドア構造であって、
前記ビーム部材が、前記インナーパネルの面状部に配置され、前記ビーム部材の伸長性ブラケットのフランジ部の少なくとも一部が、インナーパネルに直接または間接的に面接触した状態で接合されることにより、前記ビーム部材が前記インナーパネルと一体化されている車両ドア構造。
<8>
前記インナーパネルが、伸び率15%以下の低延性材料からなるものである上記<7>に記載の車両ドア構造。
<9>
前記ビーム部材は2つの前記伸長性ブラケットを有する上記<7>または<8>に記載の車両ドア構造。
<10>
前記ビーム部材の2つのブラケットが、いずれも、それぞれのフランジ部の厚み方向が、前記インナーパネルの厚み方向と略同一方向となる配置にて、前記インナーパネルに直接または間接的に面接触した状態で接合されている上記<9>に記載の車両ドア構造。
<11>
前記ビーム部材の2つのブラケットの一方のフランジ部が、前記インナーパネルの面状部のある端部と接合され、前記2つのブラケットの他方のフランジ部が、前記インナーパネルの面状部の別の端部と接合されている上記<9>または<10>に記載の車両ドア構造。
<12>
上記<7>から<11>のいずれか1つの車両ドア構造を有する車両であって、前記ビーム部材が車両室外側に、前記インナーパネルが車両室内側に配置されている車両。
<13>
前記ビーム部材が車両の略前後方向に延びる配置となる上記<12>の車両。
<14>
前記ビーム部材が車両の略上下方向に延びる配置となる上記<12>の車両。 <1>
an impact bar extending in one direction;
at least one extensible bracket;
A beam member comprising
The extensible bracket is
a substantially half-cylindrical impact bar receiving portion;
a flange portion;
has
At least one of the impact bar receiving portion and the flange portion has an undulating shape,
The beam member, wherein the impact bar receiving portion is joined to an end portion of the impact bar.
<2>
The beam member according to <1> above, wherein brackets are respectively joined to both ends of the impact bar, and at least one of the two brackets is the extensible bracket.
<3>
The beam member according to <2> above, wherein each of the two brackets has a flange portion and is joined to both ends of the impact bar so that the thickness directions of the flange portions are in the same direction.
<4>
The beam member according to <2> or <3> above, wherein the two brackets are extensible brackets.
<5>
The beam member according to any one of <1> to <4> above, wherein the impact bar is made of a low-ductile material having an elongation rate of 15% or less.
<6>
The beam member according to any one of <1> to <5> above, wherein the extensible bracket is made of a highly ductile material having an elongation rate of more than 15%.
<7>
A vehicle door structure including the beam member according to any one of <1> to <6> above and an inner panel,
The beam member is arranged on the planar portion of the inner panel, and at least a part of the flange portion of the extensible bracket of the beam member is directly or indirectly joined to the inner panel in a state of surface contact. , the vehicle door structure, wherein the beam member is integrated with the inner panel.
<8>
The vehicle door structure according to <7> above, wherein the inner panel is made of a low-ductility material having an elongation rate of 15% or less.
<9>
The vehicle door structure according to the above <7> or <8>, wherein the beam member has two extensible brackets.
<10>
The two brackets of the beam member are in direct or indirect surface contact with the inner panel in such a manner that the thickness direction of each flange portion is substantially the same as the thickness direction of the inner panel. The vehicle door structure according to <9> above.
<11>
One flange portion of the two brackets of the beam member is joined to an end portion of the planar portion of the inner panel, and the other flange portion of the two brackets is connected to another planar portion of the inner panel. The vehicle door structure according to <9> or <10> above, which is joined to the end portion.
<12>
A vehicle having the vehicle door structure according to any one of <7> to <11>, wherein the beam member is arranged on the vehicle exterior side and the inner panel is arranged on the vehicle interior side.
<13>
The vehicle according to <12> above, wherein the beam member extends substantially in the longitudinal direction of the vehicle.
<14>
The vehicle according to <12> above, wherein the beam member extends substantially in the vertical direction of the vehicle.
本発明によれば、特定のブラケットを有することにより大きな衝撃を吸収するビーム部材を提供でき、その結果、そのビーム部材が供えられた車両ドア構造を有する車両が優れた衝突安全性を示すものとなる。
According to the present invention, it is possible to provide a beam member that absorbs a large impact by having a specific bracket, and as a result, a vehicle having a vehicle door structure provided with the beam member exhibits excellent collision safety. Become.
According to the present invention, it is possible to provide a beam member that absorbs a large impact by having a specific bracket, and as a result, a vehicle having a vehicle door structure provided with the beam member exhibits excellent collision safety. Become.
以下、本発明の一実施形態を、適宜、図面も参照して説明する。
Hereinafter, one embodiment of the present invention will be described with reference to the drawings as appropriate.
<代表的な構成>
ここに開示されるビーム部材は、一方向に延在するインパクトバー、および少なくとも1つの伸長性ブラケットを含むビーム部材である。伸長性ブラケットはインパクトバーの端部に備えられており、略半筒形状のインパクトバー受部とフランジ部とを有し、インパクトバー受部とフランジ部の少なくとも一方は起伏形状を有する。伸長性プラケットはそのインパクトバー受部においてインパクトバーの端部と接合されている。 <Typical configuration>
The beam member disclosed herein is a beam member that includes a unidirectionally extending impact bar and at least one extensible bracket. An extensible bracket is provided at the end of the impact bar and has a substantially semi-cylindrical impact bar receiving portion and a flange portion, at least one of the impact bar receiving portion and the flange portion having an undulating shape. The extensible bracket is joined to the end of the impact bar at its impact bar receiving portion.
ここに開示されるビーム部材は、一方向に延在するインパクトバー、および少なくとも1つの伸長性ブラケットを含むビーム部材である。伸長性ブラケットはインパクトバーの端部に備えられており、略半筒形状のインパクトバー受部とフランジ部とを有し、インパクトバー受部とフランジ部の少なくとも一方は起伏形状を有する。伸長性プラケットはそのインパクトバー受部においてインパクトバーの端部と接合されている。 <Typical configuration>
The beam member disclosed herein is a beam member that includes a unidirectionally extending impact bar and at least one extensible bracket. An extensible bracket is provided at the end of the impact bar and has a substantially semi-cylindrical impact bar receiving portion and a flange portion, at least one of the impact bar receiving portion and the flange portion having an undulating shape. The extensible bracket is joined to the end of the impact bar at its impact bar receiving portion.
図1Aは、本発明の一実施形態である、インパクトバー3Aの両端に伸長性ブラケット2Aが供えられたビーム部材1Aの側面図であり、図1Bはビーム部材1Aの平面図であり、図1Cは伸長性ブラケット2Aの斜視図である。このビーム部材1Aでは、2つの同形状の伸長性ブラケット2Aのフランジ部4Aの接合面6が同じ向きになるようにインパクトバー3Aに備えられている。図1Cも併せて参照して更に説明すると、図1Aのビーム部材1Aでは、2つの伸長性ブラケット2Aのフランジ部4Aの接合面6が同じ方向(図1Bの下方向、図1Aの図面の裏側方向)になるように、伸長性ブラケット2Aがインパクトバー3Aの両端に備えられている。
FIG. 1A is a side view of a beam member 1A with extensible brackets 2A provided at both ends of an impact bar 3A, FIG. 1B is a plan view of the beam member 1A, and FIG. 1C is an embodiment of the present invention. is a perspective view of the extensible bracket 2A. In this beam member 1A, the impact bar 3A is provided so that the joint surfaces 6 of the flange portions 4A of the two identically shaped extensible brackets 2A are oriented in the same direction. 1C as well, in the beam member 1A of FIG. 1A, the joint surfaces 6 of the flange portions 4A of the two extensible brackets 2A are in the same direction (downward in FIG. 1B, back side in FIG. 1A). direction), extensible brackets 2A are provided at both ends of the impact bar 3A.
インパクトバーとは一方向に延在する棒状または板状の部品である。一般的に、車両のドア構造において、インパクトバーは、他の車両などがドアに衝突した際に乗員の安全を確保するために、ドアの剛性を高め、衝撃を吸収する機能を有する。インパクトバーの形状は特に限定されない。インパクトバーは、その軸断面形状として、円形、楕円形、多角形、H形、U形、L形、星形、不規則形状、及びこれらを組み合わせた形状などを有すものが例示される。インパクトバーはその長手方向形状として、一方の端部から他方の端部まで同一の軸断面形状を有する直線形状、少なくとも一部が曲がっている曲線形状、部分的に軸断面の大きさや形状が異なっているが傾斜形状などを有するものが例示される。インパクトバーは、その内部に中空、中実、中空と中実の部分があるものであっても良い。インパクトバーは、その少なくとも一部の内部が中空で、その中空部分において、インパクトバーの長手方向または軸断面方向にリブ、隔壁、段差、傾斜を有するものであっても良い。
An impact bar is a rod-shaped or plate-shaped part that extends in one direction. Generally, in the door structure of a vehicle, an impact bar has the function of increasing the rigidity of the door and absorbing the impact in order to ensure the safety of the occupants when another vehicle or the like collides with the door. The shape of the impact bar is not particularly limited. Examples of impact bars include those having circular, elliptical, polygonal, H-shaped, U-shaped, L-shaped, star-shaped, irregular shapes, and combinations thereof as axial cross-sectional shapes. The longitudinal shape of the impact bar may be a linear shape with the same axial cross-sectional shape from one end to the other end, a curved shape with at least a partial bend, or a partially different size or shape of the axial cross-section. However, those having an inclined shape or the like are exemplified. The impact bar may be hollow, solid, or have hollow and solid portions within it. At least a part of the impact bar may be hollow, and the hollow portion may have ribs, partition walls, steps, or slopes in the longitudinal direction or axial cross-sectional direction of the impact bar.
インパクトバーは、伸び率15%以下の低延性材料からなるものであると好ましい。低延性材料としては、硬鋼、アルミニウム合金、マグネシウム合金、または複合材料、特に、SMC(シートモールディングコンパウンド)材や米国特許10,006,677号に示される樹脂系の繊維強化複合材料(繊維強化樹脂)が例示される。繊維強化樹脂としては繊維強化熱可塑性樹脂であるとより衝撃吸収能が優れ好ましく、炭素繊維強化熱可塑性樹脂であると衝撃吸収能だけでなく剛性もより優れたものとなり更に好ましい。寸法も大きく車両重量に占める割合もそれなりにあるインパクトバーを繊維強化樹脂製、特に繊維強化熱可塑性樹脂、更に好ましくは炭素繊維強化熱可塑性樹脂(CFRTP)製とすることにより、より優れた衝突安全性と軽量化の両立が可能になる。一般的に、繊維強化樹脂は金属材料に比べて、軽量で衝撃吸収能に優れているからである。インパクトバーを繊維強化樹脂製とすることで、衝撃吸収に寄与させることができる。
繊維強化樹脂に含まれる強化繊維としてはガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、バサルト繊維からなる群より選ばれる1種類以上が例示される。強化繊維の形態としては、織物、編物、不織布、ランダムマット、ニット、組紐、または、複数条の強化繊維が一方向に配置されたもの例示される。炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、または気相成長系炭素繊維などが例示される。 The impact bar is preferably made of a low ductility material with an elongation of 15% or less. Examples of low ductility materials include hard steel, aluminum alloys, magnesium alloys, or composite materials, particularly SMC (sheet molding compound) materials and resin-based fiber-reinforced composite materials (fiber-reinforced resin) is exemplified. As the fiber-reinforced resin, a fiber-reinforced thermoplastic resin is preferable because it has excellent impact absorption ability, and a carbon fiber-reinforced thermoplastic resin is more preferable because it has not only excellent impact absorption ability but also rigidity. Better collision safety by making the impact bar, which has a large size and a proportion of the vehicle weight, made of fiber reinforced resin, especially fiber reinforced thermoplastic resin, more preferably carbon fiber reinforced thermoplastic resin (CFRTP). It is possible to achieve both durability and weight reduction. This is because, in general, fiber-reinforced resins are lighter in weight and have better shock-absorbing ability than metal materials. By making the impact bar made of fiber-reinforced resin, it is possible to contribute to impact absorption.
As reinforcing fibers contained in the fiber-reinforced resin, one or more types selected from the group consisting of glass fibers, carbon fibers, aramid fibers, boron fibers, and basalt fibers are exemplified. Examples of the form of reinforcing fibers include woven fabric, knitted fabric, non-woven fabric, random mat, knit, braid, and those in which a plurality of reinforcing fibers are arranged in one direction. Carbon fibers include polyacrylonitrile (PAN)-based carbon fibers, petroleum pitch-based carbon fibers, coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, or vapor growth. exemplified by carbon fiber.
繊維強化樹脂に含まれる強化繊維としてはガラス繊維、炭素繊維、アラミド繊維、ボロン繊維、バサルト繊維からなる群より選ばれる1種類以上が例示される。強化繊維の形態としては、織物、編物、不織布、ランダムマット、ニット、組紐、または、複数条の強化繊維が一方向に配置されたもの例示される。炭素繊維としては、ポリアクリロニトリル(PAN)系炭素繊維、石油ピッチ系炭素繊維、石炭ピッチ系炭素繊維、レーヨン系炭素繊維、セルロース系炭素繊維、リグニン系炭素繊維、フェノール系炭素繊維、または気相成長系炭素繊維などが例示される。 The impact bar is preferably made of a low ductility material with an elongation of 15% or less. Examples of low ductility materials include hard steel, aluminum alloys, magnesium alloys, or composite materials, particularly SMC (sheet molding compound) materials and resin-based fiber-reinforced composite materials (fiber-reinforced resin) is exemplified. As the fiber-reinforced resin, a fiber-reinforced thermoplastic resin is preferable because it has excellent impact absorption ability, and a carbon fiber-reinforced thermoplastic resin is more preferable because it has not only excellent impact absorption ability but also rigidity. Better collision safety by making the impact bar, which has a large size and a proportion of the vehicle weight, made of fiber reinforced resin, especially fiber reinforced thermoplastic resin, more preferably carbon fiber reinforced thermoplastic resin (CFRTP). It is possible to achieve both durability and weight reduction. This is because, in general, fiber-reinforced resins are lighter in weight and have better shock-absorbing ability than metal materials. By making the impact bar made of fiber-reinforced resin, it is possible to contribute to impact absorption.
As reinforcing fibers contained in the fiber-reinforced resin, one or more types selected from the group consisting of glass fibers, carbon fibers, aramid fibers, boron fibers, and basalt fibers are exemplified. Examples of the form of reinforcing fibers include woven fabric, knitted fabric, non-woven fabric, random mat, knit, braid, and those in which a plurality of reinforcing fibers are arranged in one direction. Carbon fibers include polyacrylonitrile (PAN)-based carbon fibers, petroleum pitch-based carbon fibers, coal pitch-based carbon fibers, rayon-based carbon fibers, cellulose-based carbon fibers, lignin-based carbon fibers, phenol-based carbon fibers, or vapor growth. exemplified by carbon fiber.
繊維強化樹脂のマトリクスである樹脂としては、熱可塑性樹脂でも熱硬化性樹脂でもよい。熱硬化性樹脂としては、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂、フェノール樹脂、ビスマレイミド樹脂、シアネート樹脂、ベンゾオキサジン樹脂、またはジシクロペンタジエン樹脂などを挙げることができる。熱可塑性樹脂としては、通常、軟化点が180℃~350℃の範囲内のものが用いられ、例えば、ポリオレフィン樹脂、ポリスチレン樹脂、熱可塑性ポリアミド樹脂、ポリエステル樹脂、ポリアセタール樹脂(ポリオキシメチレン樹脂)、ポリカーボネート樹脂、(メタ)アクリル樹脂、ポリアリレート樹脂、ポリフェニレンエーテル樹脂、ポリイミド樹脂、ポリエーテルニトリル樹脂、フェノキシ樹脂、ポリフェニレンスルフィド樹脂、ポリスルホン樹脂、ポリケトン樹脂、ポリエーテルケトン樹脂、熱可塑性ウレタン樹脂、フッ素系樹脂、熱可塑性ポリベンゾイミダゾール樹脂等を挙げることができる。
The resin that is the matrix of the fiber-reinforced resin may be either a thermoplastic resin or a thermosetting resin. Examples of thermosetting resins include epoxy resins, vinyl ester resins, unsaturated polyester resins, diallyl phthalate resins, phenol resins, bismaleimide resins, cyanate resins, benzoxazine resins, dicyclopentadiene resins, and the like. As the thermoplastic resin, those having a softening point within the range of 180° C. to 350° C. are usually used. Examples include polyolefin resin, polystyrene resin, thermoplastic polyamide resin, polyester resin, polyacetal resin (polyoxymethylene resin), Polycarbonate resin, (meth)acrylic resin, polyarylate resin, polyphenylene ether resin, polyimide resin, polyethernitrile resin, phenoxy resin, polyphenylene sulfide resin, polysulfone resin, polyketone resin, polyetherketone resin, thermoplastic urethane resin, fluorine-based resins, thermoplastic polybenzimidazole resins, and the like.
上記の伸び率は、金属材料については、JIS Z 2241(ISO-6892に相当する)、樹脂系の材料についてはJIS K 7161(ISO-527に相当する)の引張試験で測定された値であると好ましい。ここでいう伸び率とは、引張試験において、試験片が破断するまでに,試験片上の標線間に生じた伸びと標線間距離との比を百分率で表したもので,破断時伸び,破断伸度または極限伸び率ともいう。伸び率は、引張試験に準じた方法で測定される上記JISやISOの規格で定められた値であっても良い。本発明に関して、伸長性ブラケット、インパクトバー、またはインナーパネル等の測定対象物の伸び率を測定する場合は、上記のJISやISOの規格で定められる寸法・形状の試験片を測定対象物から切り出して測定に用いることができる。インパクトバーが、アルミニウム合金、マグネシウム合金、および複合材料、特に、上記のような樹脂系複合材料である低延性材料からなると、インパクトバーを含むビーム部材、ひいてはこれを有する車両ドア構造を軽量なものとすることができ好ましい。
The above elongation rate is a value measured by a tensile test of JIS Z 2241 (corresponding to ISO-6892) for metal materials and JIS K 7161 (corresponding to ISO-527) for resin materials. and preferred. The elongation here means the ratio of the elongation between the marked lines on the test piece and the distance between the marked lines before the test piece breaks in the tensile test, expressed as a percentage. It is also called breaking elongation or ultimate elongation. The elongation rate may be a value determined by the above JIS or ISO standards, which is measured by a method based on a tensile test. Regarding the present invention, when measuring the elongation rate of a measurement object such as an extensible bracket, an impact bar, or an inner panel, a test piece having the dimensions and shape specified by the above JIS and ISO standards is cut out from the measurement object. can be used for measurement. If the impact bar is made of an aluminum alloy, a magnesium alloy, or a composite material, particularly a low-ductility material such as the resin-based composite material as described above, the beam member including the impact bar, and thus the vehicle door structure having the same, can be made lightweight. can be preferred.
図1Aおよび図1Bに開示されるビーム部材1Aは、少なくとも1つの伸長性ブラケット2Aがインパクトバー3Aの端部に備えられたものである。2つのブラケットがいずれも伸長性ブラケット2Aであると、1つのブラケットのみが伸長性ブラケット2Aである場合よりも衝撃吸収能が高くなり好ましい。図9Bに他の実施形態のビーム部材1Dを示す。図9Bに示すビーム部材1Dのように、少なくとも1つの伸長性ブラケット2Aを含む2つのブラケット2A、10がそれぞれインパクトバー3Aの両方の端部に備えられていてもよい。ブラケットとは、部材の固定や、部材同士の接合に用いられる板状の部品である。ここで、板状とは、ある物体の形状が、その幅や奥行に対して厚み(高さ)が著しく小さい(例えば1/5以下)形状を指し、湾曲形状、屈曲形状、厚みが異なった部位がある偏肉形状を有するものであっても良い。
The beam member 1A disclosed in FIGS. 1A and 1B is provided with at least one extensible bracket 2A at the end of the impact bar 3A. Both of the two brackets are extensible brackets 2A, which is preferable because the shock absorbing ability is higher than the case where only one bracket is the extensible bracket 2A. FIG. 9B shows a beam member 1D of another embodiment. Two brackets 2A, 10, each including at least one extensible bracket 2A, may be provided at both ends of the impact bar 3A, such as the beam member 1D shown in FIG. 9B. A bracket is a plate-like component used for fixing members or joining members together. Here, the term "plate-like" refers to a shape of a certain object whose thickness (height) is extremely small (for example, 1/5 or less) relative to its width and depth. It may have a part with uneven thickness.
ビーム部材1Aのインパクトバー3Aの両端部にブラケットが接合されており、2つのブラケットの少なくとも1つが伸長性ブラケット2Aであってもよい。インパクトバー3Aの両端部に取り付けられる2つのブラケットがいずれも伸長性ブラケット2Aであると、ビーム部材1Aを含む車両ドア構造がより衝撃吸収能が高いものとなり好ましい。図1Cを例に説明すると、伸長性ブラケット2Aは、略半筒形状のインパクトバー受部5Aとフランジ部4Aとを有する。
フランジ部4Aの、ビーム部材1Aの端部になる側(図1Cの右上側)の端部には、インナーパネル8と接続する際に図示しないボルトが挿通される挿通孔4aが設けられていてもよい。また、フランジ部4Aの、インパクトバー3Aに連なる側(図1Cの左下側)の端部には、インパクトバー3Aと接続する際に図示しないボルトが挿通される挿通孔4bが設けられていてもよい。
ビーム部材1Aにおいては、インパクトバー受部5Aとフランジ部4Aの少なくとも一方は起伏形状を有するブラケットであると好ましい。 Brackets are joined to both ends of theimpact bar 3A of the beam member 1A, and at least one of the two brackets may be an extensible bracket 2A. If the two brackets attached to both ends of the impact bar 3A are both extensible brackets 2A, the vehicle door structure including the beam member 1A will have a higher impact absorption capability, which is preferable. Taking FIG. 1C as an example, the extensible bracket 2A has a substantially semi-cylindrical impact bar receiving portion 5A and a flange portion 4A.
An end portion of theflange portion 4A on the side of the beam member 1A (upper right side in FIG. 1C) is provided with an insertion hole 4a through which a bolt (not shown) is inserted when connecting to the inner panel 8. good too. Further, at the end of the flange portion 4A on the side connected to the impact bar 3A (lower left side in FIG. 1C), there is provided an insertion hole 4b through which a bolt (not shown) is inserted when connecting to the impact bar 3A. good.
In thebeam member 1A, at least one of the impact bar receiving portion 5A and the flange portion 4A is preferably a bracket having an undulating shape.
フランジ部4Aの、ビーム部材1Aの端部になる側(図1Cの右上側)の端部には、インナーパネル8と接続する際に図示しないボルトが挿通される挿通孔4aが設けられていてもよい。また、フランジ部4Aの、インパクトバー3Aに連なる側(図1Cの左下側)の端部には、インパクトバー3Aと接続する際に図示しないボルトが挿通される挿通孔4bが設けられていてもよい。
ビーム部材1Aにおいては、インパクトバー受部5Aとフランジ部4Aの少なくとも一方は起伏形状を有するブラケットであると好ましい。 Brackets are joined to both ends of the
An end portion of the
In the
図11に他の実施形態の伸長性ブラケット2Bを例示する。図11の伸長性ブラケット2Bのインパクトバー受部5Aには起伏形状があるが、フランジ部4Bには起伏形状が無い。
FIG. 11 illustrates an extensible bracket 2B of another embodiment. Although the impact bar receiving portion 5A of the extensible bracket 2B of FIG. 11 has an undulating shape, the flange portion 4B does not have an undulating shape.
図1Cに例示される伸長性ブラケット2Aのように、インパクトバー受部5Aとフランジ部4Aの両方に起伏形状があるものがより好ましく、インパクトバー受部5Aとフランジ部4Aの両方に連なる起伏形状であるとより好ましい。インパクトバー受部5Aが略半筒形状であるとは、図1Cに示すように、棒状のインパクトバー3Aの端部との接合に適した空間部がある、厚み方向(図1Cの上方向)に凹んだ断面を有する形状である。インパクトバー受部5Aの断面形状は図1Cに示されるU字形状(開口部が図1Cの下部側向きで、向きが同様の(図1Cの上方向に凹んだ)V字やW字形状も含む)のほか、半円弧状、M字形状、不規則形状などが例示される。図1Cの伸長性ブラケットは図面下部側が閉じていない、いわゆる開断面構造である。
インパクトバー受部5Aには、上記空間部に配置されるインパクトバー3Aの端部と接続する際に図示しないボルトが挿通される挿通孔5aが設けられていてもよい。 More preferably, both the impactbar receiving portion 5A and the flange portion 4A have undulating shapes like the extensible bracket 2A illustrated in FIG. 1C, and the undulating shape continues to both the impact bar receiving portion 5A and the flange portion 4A is more preferable. That the impact bar receiving portion 5A has a substantially semi-cylindrical shape means that, as shown in FIG. 1C, there is a space suitable for joining with the end portion of the rod-shaped impact bar 3A in the thickness direction (upward direction in FIG. 1C). It is a shape with a concave cross section. The cross-sectional shape of the impact bar receiving portion 5A is the U-shape shown in FIG. 1C. ), a semicircular shape, an M shape, an irregular shape, and the like. The extensible bracket in FIG. 1C has a so-called open cross-section structure in which the bottom side of the drawing is not closed.
The impactbar receiving portion 5A may be provided with an insertion hole 5a through which a bolt (not shown) is inserted when connecting to the end portion of the impact bar 3A arranged in the space.
インパクトバー受部5Aには、上記空間部に配置されるインパクトバー3Aの端部と接続する際に図示しないボルトが挿通される挿通孔5aが設けられていてもよい。 More preferably, both the impact
The impact
図1Dに他の実施形態の伸長性ブラケット2Cを例示する。図1Dに示されるように、伸長性ブラケット2Cの図面下部側が閉じてインパクトバー受部5Cが略筒形状であり、インパクトバー受部5Cはインパクトバー受部5Aの空間部に相当する部分にポケット状の挿入穴59を有する。インパクトバー受部5Cの断面形状が略O字状になっている、いわゆる閉断面構造を有する伸長性ブラケット2Cであっても、ビーム部材に好ましく用いることができる。
図1Dに示す伸長性ブラケット2Cを用いる場合、挿入穴59に対応する断面形状を有するインパクトバー3Bの端部を挿入穴59に挿入し、インパクトバー受部5Cとインパクトバー3Bの端部とを接合すればよい。なお、フランジ部4Aの、インパクトバー3Bに連なる側(図1Dの左下側)の端部に設けられた挿通孔4bには、インナーパネル8と接続するボルトを挿通させてもよい。 Another embodiment of an extensible bracket 2C is illustrated in FIG. 1D. As shown in FIG. 1D, the extensible bracket 2C is closed at the bottom side of the drawing, and the impactbar receiving portion 5C has a substantially cylindrical shape. It has a shaped insertion hole 59 . Even an extensible bracket 2C having a so-called closed cross-sectional structure, in which the cross-sectional shape of the impact bar receiving portion 5C is substantially O-shaped, can be preferably used for the beam member.
When using the extensible bracket 2C shown in FIG. 1D, the end of theimpact bar 3B having a cross-sectional shape corresponding to the insertion hole 59 is inserted into the insertion hole 59, and the impact bar receiving portion 5C and the end of the impact bar 3B are inserted. It should be joined. A bolt connecting to the inner panel 8 may be inserted through an insertion hole 4b provided at the end of the flange portion 4A on the side (lower left side in FIG. 1D) connected to the impact bar 3B.
図1Dに示す伸長性ブラケット2Cを用いる場合、挿入穴59に対応する断面形状を有するインパクトバー3Bの端部を挿入穴59に挿入し、インパクトバー受部5Cとインパクトバー3Bの端部とを接合すればよい。なお、フランジ部4Aの、インパクトバー3Bに連なる側(図1Dの左下側)の端部に設けられた挿通孔4bには、インナーパネル8と接続するボルトを挿通させてもよい。 Another embodiment of an extensible bracket 2C is illustrated in FIG. 1D. As shown in FIG. 1D, the extensible bracket 2C is closed at the bottom side of the drawing, and the impact
When using the extensible bracket 2C shown in FIG. 1D, the end of the
伸長性ブラケットの起伏形状とは、図1Cの伸長性ブラケット2Aに例示されるとおり、インパクトバー受部5Aやフランジ部4Aの表面において、伸長性ブラケット2Aの厚み方向(図1Cの上方向)に突き出た部位(凸部41、51)と凹んだ部位(凹部42、52)とがある形状のことである。起伏形状としては、複数の凸部41、51および凹部42、52がある形状であるとビーム部材1Aの衝撃吸収能をより高めることができ好ましく、複数の凸部41、51と凹部42、52とが交互に連続してある形状であると好ましい。起伏形状にある複数の凸部41、51および凹部42、52は、形状や高さ(深さ)が全て同じものでも、異なったものでもよい。
The undulating shape of the extensible bracket is, as illustrated in the extensible bracket 2A of FIG. It is a shape having protruding parts (convex parts 41, 51) and concave parts (concave parts 42, 52). As the undulating shape, a shape having a plurality of protrusions 41, 51 and recesses 42, 52 is preferable because the impact absorption capacity of the beam member 1A can be further enhanced. and are alternately continuous. The plurality of convex portions 41, 51 and concave portions 42, 52 in the undulating shape may all have the same shape and height (depth) or may have different shapes.
更に、起伏形状としては、図1Cに例示されるように、伸長性ブラケット2Aが、インパクトバー3Aに連なる側(図1Cの左下側)からビーム部材1Aの端部になる側(図1Cの右上側)へ、複数の凸部51および凹部52が交互に連続する形状、例えて言うなら波状形状を有すると、その伸長性ブラケット2Aを有するビーム部材1Aの衝撃吸収能が特に優れたものにできるので好ましい。
Furthermore, as an undulating shape, as illustrated in FIG. 1C, the extensible bracket 2A extends from the side (lower left side in FIG. 1C) connected to the impact bar 3A to the side (upper right side in FIG. 1C) that becomes the end of the beam member 1A. If a plurality of convex portions 51 and concave portions 52 are alternately continuous to the side), the beam member 1A having the extensible bracket 2A can have particularly excellent shock absorbing ability. Therefore, it is preferable.
伸長性ブラケット2Aの起伏形状としての波状形状の例を、図2A~図2Dに示す。図2Aは図1CのA-A線断面図である。図2Aにおいて、伸長性ブラケット2Aのフランジ部4Aの接合面6は下向きである。また、図2B~図2Dは、図1CのA-A線に対応する位置の断面図である。図2A~図2Dにおける左側が、伸長性ブラケット2Aのインパクトバー3Aに連なる側(図1Cの左下側)であり、図2A~図2Dにおける右側がビーム部材1Aの端部になる側(図1Cの右上側)である。伸長性ブラケット2Aの起伏形状としての波状形状について、複数の凸部および凹部は、形状や高さが全て同じものでも、異なったものでもよい。また、複数の凹部52は、形状や深さが全て同じものでも、異なったものでもよい。ここで、凸部51の高さとは、隣接する凹部52の最も深い部分から凸部51の最も高い部分までの高さである。また、凹部52の深さとは、隣接する凸部51の最も高い部分から凹部52の最も深い部分までの深さである。
An example of a wavy shape as the undulating shape of the extensible bracket 2A is shown in FIGS. 2A to 2D. FIG. 2A is a cross-sectional view taken along line AA of FIG. 1C. In FIG. 2A, the mating surface 6 of the flange portion 4A of the extensible bracket 2A faces downward. 2B to 2D are cross-sectional views corresponding to line AA in FIG. 1C. The left side in FIGS. 2A to 2D is the side of the extensible bracket 2A connected to the impact bar 3A (lower left side in FIG. 1C), and the right side in FIGS. 2A to 2D is the end of the beam member 1A (FIG. 1C upper right side). Regarding the wavy shape as the undulating shape of the extensible bracket 2A, the plurality of protrusions and recesses may all have the same shape and height, or may have different shapes. Further, the plurality of recesses 52 may all have the same shape and depth, or may have different shapes. Here, the height of the convex portion 51 is the height from the deepest portion of the adjacent concave portion 52 to the highest portion of the convex portion 51 . The depth of the recess 52 is the depth from the highest portion of the adjacent protrusion 51 to the deepest portion of the recess 52 .
例えば、図2Aに示すように、複数の凸部51が全て同じ形状であり、かつ、複数の凹部52が全て同じ形状であってもよい(パターン1)。
あるいは、図2Bに示すように、ビーム部材1Aの延在方向の幅が凹部52よりも大きい凹部54を有していてもよい(パターン2)。
あるいは、図2C示すように、高さが凸部51よりも大きい凸部53を有していてもよい(パターン3)。
あるいは、図2Dに示すように、深さが凹部52よりも深い凹部56や、深さが凹部52よりも深くかつ幅が凹部52よりも大きい凹部58を有していてもよい(パターン4)。 For example, as shown in FIG. 2A, the plurality ofprotrusions 51 may all have the same shape, and the plurality of recesses 52 may all have the same shape (pattern 1).
Alternatively, as shown in FIG. 2B, thebeam member 1A may have recesses 54 whose width in the extending direction is larger than that of the recesses 52 (pattern 2).
Alternatively, as shown in FIG. 2C, it may have aconvex portion 53 whose height is greater than that of the convex portion 51 (pattern 3).
Alternatively, as shown in FIG. 2D, there may berecesses 56 deeper than the recesses 52 and recesses 58 deeper than the recesses 52 and wider than the recesses 52 (pattern 4). .
あるいは、図2Bに示すように、ビーム部材1Aの延在方向の幅が凹部52よりも大きい凹部54を有していてもよい(パターン2)。
あるいは、図2C示すように、高さが凸部51よりも大きい凸部53を有していてもよい(パターン3)。
あるいは、図2Dに示すように、深さが凹部52よりも深い凹部56や、深さが凹部52よりも深くかつ幅が凹部52よりも大きい凹部58を有していてもよい(パターン4)。 For example, as shown in FIG. 2A, the plurality of
Alternatively, as shown in FIG. 2B, the
Alternatively, as shown in FIG. 2C, it may have a
Alternatively, as shown in FIG. 2D, there may be
図2A~図2Dで示した伸長性ブラケット2Aの起伏形状である波状形状の凹凸は、凸部の頂上部分や凹部の最深部が曲形や平坦な形状であるが、本発明に関してはこれらに限定されず、凸部の頂上部分や凹部の最深部が鋭く尖った形状であってもよい。
The corrugated unevenness, which is the undulating shape of the extensible bracket 2A shown in FIGS. 2A to 2D, has a curved or flat shape at the top of the convex portion or the deepest portion of the concave portion. The shape is not limited, and the top portion of the convex portion and the deepest portion of the concave portion may be sharply pointed.
伸長性ブラケット2Aが有する起伏形状は、伸長性ブラケット2Aを構成する板状素材の肉厚の増減のみにより生じたものでも良いが、図2A~図2Dで例示されるとおり板状素材自体が起伏している形状であると、衝撃吸収能への寄与や製造のし易さの点で好ましい。
The undulating shape of the extensible bracket 2A may be generated only by increasing or decreasing the thickness of the plate-shaped material constituting the extensible bracket 2A, but the plate-shaped material itself is undulated as illustrated in FIGS. It is preferable in terms of contribution to impact absorption ability and easiness of manufacturing.
伸長性ブラケット2Aは伸び率15%超過の良延性材料からなるものであると好ましい。そのような良延性材料としては、樹脂材料、軟鋼、ステンレス鋼、またはチタンが例示される。この良延性材料の伸び率の値の好ましい測定方法については、インパクトバー3Aの低延性材料について前述したとおりである。ビーム部材1Aは、伸び率15%以下の低延性材料からなるインパクトバー3Aと、2つのブラケットのうち少なくとも1つとして、伸び率15%超過の良延性材料からなる伸長性ブラケット2Aを有するものであると衝撃吸収能に優れたものとなり好ましい。
The extensible bracket 2A is preferably made of a highly ductile material with an elongation rate of over 15%. Examples of such good ductile materials include resin materials, mild steel, stainless steel, and titanium. A preferred method for measuring the elongation value of this good ductility material is as described above for the low ductility material of the impact bar 3A. The beam member 1A has an impact bar 3A made of a low ductility material with an elongation rate of 15% or less, and an extensible bracket 2A made of a good ductility material with an elongation rate of more than 15% as at least one of the two brackets. If there is, it becomes a thing excellent in shock absorption ability, and it is preferable.
ビーム部材1Aに関して、伸長性ブラケット2Aも含めブラケットとインパクトバー3Aとは接合されていることが肝要である。ブラケットとインパクトバー3Aとの接合の手段としてはボルト・ナット締めのような機械的締結、嵌合、接着、溶着、またはインサートモールディング等の一体成形が例示される。伸長性ブラケット2Aまたはインパクトバー3Aのいずれかが熱可塑性樹脂系など可溶融性材料からなる場合は、接合手段である溶着として、振動溶着、超音波溶着、赤外線溶着、またはレーザー溶着を用いることもできる。
Regarding the beam member 1A, it is essential that the brackets, including the extensible bracket 2A, and the impact bar 3A are joined. Examples of means for joining the bracket and the impact bar 3A include mechanical fastening such as bolt and nut tightening, fitting, adhesion, welding, and integral molding such as insert molding. When either the extensible bracket 2A or the impact bar 3A is made of a fusible material such as a thermoplastic resin, vibration welding, ultrasonic welding, infrared welding, or laser welding may be used as the welding means. can.
図10は本発明の他の実施形態のビーム部材1Bを示す側面図である。「一方向に延在するインパクトバーと、少なくとも1つの伸長性ブラケットとを含むビーム部材であって、前記伸長性ブラケットは、略半筒形状のインパクトバー受部とフランジ部とを有し、前記インパクトバー受部および前記フランジ部の少なくとも一方は起伏形状を有し、前記インパクトバー受部は前記インパクトバーの端部と接合されている、ビーム部材」としては図10に例示されるような、ビーム部材1Bが含まれる。すなわち、インパクトバー3Aの一端にのみ伸長性ブラケット2Aが接合されており、インパクトバー3Aの他端部はブラケット無しで、インナーパネル8と接合されるビーム部材1Bであってもよい。図10はインパクトバー3Aの一端をブラケット無しでボルト13で締結することによりインナーパネル8に接合させるビーム部材1Bを示している。なお、ボルト締結以外の接着などの前記接合方法でインパクトバー3Aのブラケット無し端部をインナーパネル8に接合してもよい。
FIG. 10 is a side view showing a beam member 1B according to another embodiment of the invention. "A beam member comprising a unidirectionally extending impact bar and at least one extensible bracket, said extensible bracket having a substantially semi-cylindrical impact bar receiving portion and a flange portion, said At least one of the impact bar receiving portion and the flange portion has an undulating shape, and the impact bar receiving portion is joined to the end portion of the impact bar. A beam member 1B is included. That is, the extensible bracket 2A may be joined to only one end of the impact bar 3A, and the beam member 1B joined to the inner panel 8 may be the other end of the impact bar 3A without the bracket. FIG. 10 shows a beam member 1B joined to the inner panel 8 by fastening one end of the impact bar 3A with a bolt 13 without a bracket. The bracketless end portion of the impact bar 3A may be joined to the inner panel 8 by the joining method other than bolting, such as adhesion.
上記から明らかなとおり、本発明には、略半筒形状のインパクトバー受部とフランジ部とを有し、インパクトバー受部とフランジ部の少なくとも一方は起伏形状を有する、好ましくは伸び率15%超過の良延性材料からなる伸長性ブラケットの発明も包含されている。
As is clear from the above, the present invention has a substantially semi-cylindrical impact bar receiving portion and a flange portion, and at least one of the impact bar receiving portion and the flange portion has an undulating shape, preferably an elongation rate of 15%. Also included is an extensible bracket made of an excess of good ductility material.
<衝撃吸収の仕組み>
ここに開示されるビーム部材の衝撃吸収の仕組みについて、図5、図1A~図1C、および図3A~図3Cを参照の上、以下説明する。 <Mechanism of shock absorption>
The shock absorbing mechanism of the beam members disclosed herein will now be described with reference to FIGS. 5, 1A-1C, and 3A-3C.
ここに開示されるビーム部材の衝撃吸収の仕組みについて、図5、図1A~図1C、および図3A~図3Cを参照の上、以下説明する。 <Mechanism of shock absorption>
The shock absorbing mechanism of the beam members disclosed herein will now be described with reference to FIGS. 5, 1A-1C, and 3A-3C.
図5は、ビーム部材1Aと、インナーパネル8とを有する車両ドア構造の一例であって、車両の左側ドア用の車両ドア構造を車両100の左側の車外から車室内の方向に見た模式図である。図5に示すように、場合に、車両の前後方向に渡って、図1Aに示される向きとなる(2つの伸長性ブラケット2Aのフランジ部4Aの接合面6が車室内側を向く)ようにビーム部材が取り付けられた図5に示すように、ビーム部材1Aはインナーパネル8に対して、車両室外側に配置されている。
インナーパネル8は機能部品の取り付けや軽量化、車両ドアとしての意匠性などのため、開口部や段差を有していることが一般的である。図5や後述する図6、図7、図8、および図9Cの車両ドア構造に関する模式図では、ビーム部材の配置を明瞭かつ簡便に示す為、インナーパネル8については外周形状や窓部分の開口部のみを示し、他の詳細形状については表記を省略した。 FIG. 5 is an example of a vehicle door structure having abeam member 1A and an inner panel 8, and is a schematic view of the vehicle door structure for the left side door of the vehicle viewed from the outside of the left side of the vehicle 100 toward the inside of the vehicle. is. As shown in FIG. 5, in the case, the front and rear direction of the vehicle is oriented as shown in FIG. As shown in FIG. 5 with the beam member attached, the beam member 1A is arranged on the vehicle exterior side with respect to the inner panel 8 .
Theinner panel 8 generally has an opening or a step for attachment of functional parts, reduction in weight, designability as a vehicle door, and the like. In the schematic diagrams of FIG. 5 and FIGS. 6, 7, 8, and 9C, which will be described later, the arrangement of the beam members is clearly and simply shown. Only the part is shown, and description of other detailed shapes is omitted.
インナーパネル8は機能部品の取り付けや軽量化、車両ドアとしての意匠性などのため、開口部や段差を有していることが一般的である。図5や後述する図6、図7、図8、および図9Cの車両ドア構造に関する模式図では、ビーム部材の配置を明瞭かつ簡便に示す為、インナーパネル8については外周形状や窓部分の開口部のみを示し、他の詳細形状については表記を省略した。 FIG. 5 is an example of a vehicle door structure having a
The
図5で示される車両ドア構造を有する車両があり、図5で示されるとおりX方向が車両の前後方向、Y方向が車両の左右方向、Z方向が車両の上下方向となるよう車両ドア構造が存在しているとする。ここで、+X方向(図5の左方向)が車両の前方向であり、-X方向(図5の右方向)が車両の後方向であり、+Y方向(図5の奥方向)が車両の右方向であり、-Y方向(図5の手前方向)が車両の左方向であり、+Z方向(図5の上方向)が車両の上方向であり、-Z方向(図5の下方向)が車両の下方向である。この車両ドア構造へ、他の車両が、当該車両100の左側から、つまり、図5で車両ドア構造を見る方向に(+Y方向に)向かって、車両ドア構造のビーム部材1Aの中央付近に側面衝突した場合を想定する。なお、本発明において車両の前後方向とは、地平面に対して完全に水平な方向だけではなく、図5の車両ドア構造のビーム部材1Aのように地平面に対してやや傾いた方向も含む。よって前後方向とは略前後方向と称されても良い。同様に車両の上下方向は、略上下方向と称されても良い。
There is a vehicle having the vehicle door structure shown in FIG. 5. As shown in FIG. 5, the vehicle door structure is designed such that the X direction is the longitudinal direction of the vehicle, the Y direction is the lateral direction of the vehicle, and the Z direction is the vertical direction of the vehicle. Suppose it exists. Here, the +X direction (left direction in FIG. 5) is the front direction of the vehicle, the -X direction (right direction in FIG. 5) is the rear direction of the vehicle, and the +Y direction (back direction in FIG. 5) is the direction of the vehicle. The -Y direction (forward direction in FIG. 5) is the left direction of the vehicle, the +Z direction (upward direction in FIG. 5) is the upward direction of the vehicle, and the -Z direction (downward direction in FIG. 5). is the downward direction of the vehicle. Another vehicle faces this vehicle door structure from the left side of the vehicle 100, that is, in the direction in which the vehicle door structure is viewed in FIG. Assume a collision. In the present invention, the longitudinal direction of the vehicle includes not only a completely horizontal direction with respect to the ground plane, but also a slightly inclined direction with respect to the ground plane, such as the beam member 1A of the vehicle door structure shown in FIG. . Therefore, the front-rear direction may be referred to as a substantially front-rear direction. Similarly, the vertical direction of the vehicle may be referred to as a substantially vertical direction.
上記に想定される側面衝突が起こると、その衝撃力はまず、ビーム部材1Aのインパクトバー3Aに掛かり、次に、伸長性ブラケット2Aとインナーパネル8に伝わる。衝撃力を受け、インパクトバー3Aが変形していくに連れ、伸長性ブラケット2Aとインナーパネル8は図5に示されるXのプラスマイナス方向の中央、つまり他の車両が側面衝突したビーム部材1Aの長さ方向の中央側に引っ張られていく。ここで、伸長性ブラケット2Aの起伏形状がビーム部材1Aの長さ方向に伸長することにより、充分に大きな衝撃吸収ストロークを確保することができ、衝撃のエネルギーを吸収することができる。ここで、「衝撃吸収ストローク」とは、ビーム部材1Aが衝撃力を受けたときの、伸長性ブラケット2AのX軸方向の伸長量である。その結果、衝突によって車両ドア構造が大破するリスク、車両ドア構造からビーム部材が離脱するリスク、離脱したビーム部材が車室内などに危害を及ぼすリスクを著しく低減できる。
When the side impact assumed above occurs, the impact force is first applied to the impact bar 3A of the beam member 1A and then transmitted to the extensible bracket 2A and the inner panel 8. As the impact bar 3A deforms due to the impact force, the extensible bracket 2A and the inner panel 8 are moved to the center of the plus and minus directions of X shown in FIG. It is pulled to the center side in the length direction. Here, by extending the undulating shape of the extensible bracket 2A in the longitudinal direction of the beam member 1A, a sufficiently large shock absorbing stroke can be secured, and the energy of impact can be absorbed. Here, the "impact absorption stroke" is the extension amount of the extensible bracket 2A in the X-axis direction when the beam member 1A receives an impact force. As a result, the risk of the vehicle door structure being severely damaged by a collision, the risk of the beam member separating from the vehicle door structure, and the risk of the separated beam member harming the interior of the vehicle can be significantly reduced.
図5で示される車両ドア構造を有する車両に関し、上記の側面衝突によるような衝撃力を受ける前のビーム部材を図1Aおよび図1Bに、衝撃力を受ける前のビーム部材の伸長性ブラケットを図1Cに、衝撃力を受けた後のビーム部材を図3Aおよび図3Bに、衝撃力を受けた後のビーム部材の伸長性ブラケットを図3Cに例示する。図3A~図3Cに示すように、衝撃力を受けたインパクトバー3Aが座屈することで、伸長性ブラケット2Aがビーム部材1Aの長さ方向の中央側に引っ張られ、伸長性ブラケット2Aの起伏形状がビーム部材1Aの長さ方向に伸長している。
For a vehicle having the vehicle door structure shown in FIG. 5, the beam member is shown in FIGS. 1A and 1B before being subjected to an impact force such as that caused by the side impact described above, and the extensible bracket of the beam member is shown prior to being subjected to an impact force. 1C illustrates the beam member after being subjected to an impact force in FIGS. 3A and 3B and the extensible bracket of the beam member after being subjected to an impact force in FIG. 3C. As shown in FIGS. 3A to 3C, the buckling of the impact bar 3A upon receiving the impact force pulls the extensible bracket 2A toward the center in the length direction of the beam member 1A, and the undulating shape of the extensible bracket 2A. extends in the length direction of the beam member 1A.
もし、車両ドア構造が有するビーム部材1Aのインパクトバー3Aの両端に備えられたブラケットがいずれも起伏形状が無いブラケット10(図9Aに例示され、伸長性ブラケット2Aとの区別のため、「非伸長性ブラケット」と称することがある)である場合、上記のように衝撃力が伝わると、ブラケット10とインナーパネル8との締結部位(例えば挿通孔4b、5aが設けられた部分や挿通孔4b、5aに挿入されたボルト等)に急速に破断が生じ、インナーパネル8からビーム部材1Aが勢いよく離脱し、ビーム部材1Aが更に車室内を破損するリスクが、伸長性ブラケット2Aを含むビーム部材1Aを有する車両ドア構造を用いた場合よりも高くなる。
If the brackets provided on both ends of the impact bar 3A of the beam member 1A of the vehicle door structure are brackets 10 (illustrated in FIG. 9A, which are exemplified in FIG. When the impact force is transmitted as described above, the fastening portion between the bracket 10 and the inner panel 8 (for example, the portion provided with the insertion holes 4b and 5a, the insertion hole 4b, The beam member 1A including the extensible bracket 2A is exposed to the risk of further damage to the interior of the vehicle due to the rapid breakage of the bolts, etc. inserted in the bracket 5a, which causes the beam member 1A to be violently separated from the inner panel 8. is higher than with a vehicle door structure having a
<様々な実施態様>
図4に本発明の他の実施形態のビーム部材1Cを示す。図4に示されるビーム部材1Cでは、インパクトバー3Cの両端に、2つの伸長性ブラケット2Aが別方向に供えられている。このビーム部材1Cでは、ビーム部材をその一端から長手方向(軸方向)に見た場合に、2つの伸長性ブラケット2Aのフランジ部の接合面6同士が、直角をなすように、2つの伸長性ブラケット2Aがインパクトバー3Cの両端に備えられている。この実施態様のように、ビーム部材1Cが取り付けられるインナーパネル8の形状に応じて、2つの伸長性ブラケット2Aが、それぞれのフランジ部4Aの接合面6が別の方向を向くように、インパクトバー3Cの各端部に取り付けられたビーム部材1Cであっても良い。 <Various Embodiments>
FIG. 4 shows abeam member 1C of another embodiment of the invention. In the beam member 1C shown in FIG. 4, two extensible brackets 2A are provided at opposite ends of the impact bar 3C in opposite directions. In this beam member 1C, when the beam member is viewed from one end in the longitudinal direction (axial direction), the joint surfaces 6 of the flange portions of the two extensible brackets 2A form a right angle. Brackets 2A are provided at both ends of the impact bar 3C. As in this embodiment, depending on the shape of the inner panel 8 to which the beam member 1C is attached, the two extensible brackets 2A are arranged such that the joint surfaces 6 of the respective flange portions 4A face different directions. There may be a beam member 1C attached to each end of 3C.
図4に本発明の他の実施形態のビーム部材1Cを示す。図4に示されるビーム部材1Cでは、インパクトバー3Cの両端に、2つの伸長性ブラケット2Aが別方向に供えられている。このビーム部材1Cでは、ビーム部材をその一端から長手方向(軸方向)に見た場合に、2つの伸長性ブラケット2Aのフランジ部の接合面6同士が、直角をなすように、2つの伸長性ブラケット2Aがインパクトバー3Cの両端に備えられている。この実施態様のように、ビーム部材1Cが取り付けられるインナーパネル8の形状に応じて、2つの伸長性ブラケット2Aが、それぞれのフランジ部4Aの接合面6が別の方向を向くように、インパクトバー3Cの各端部に取り付けられたビーム部材1Cであっても良い。 <Various Embodiments>
FIG. 4 shows a
図9Aに、伸長性ブラケット2Aに類似した輪郭形状を有するが起伏形状を有しない非伸長性ブラケット10の斜視図を示す。図9Bに本発明の他の実施形態のビーム部材1Dを示す。図9Bに例示されるとおり、ビーム部材1Dには、インパクトバー3Aの一端に伸長性ブラケット2Aが、もう一方の端部に伸長性ブラケット2Aではない非伸長性ブラケット10が、供えられている。これを別の言い方をすると、ビーム部材1Dの2つのブラケットの少なくとも1つは伸長性ブラケット2Aであり、2つのブラケット2A、10がいずれもフランジ部4A、4を有しており、2つのブラケット2A、10のフランジ部4A、4の厚み方向が同じ方向になるように、より好ましくはそれらフランジ部4A、4の接合面6も同じ向きになるように、それぞれインパクトバー3Aの両端に接合されている。このように、1つの伸長性ブラケット2Aを用いたビーム部材1Dでも、伸長性ブラケット2Aにより衝撃を吸収することができる。
FIG. 9A shows a perspective view of a non-extensible bracket 10 having a profile similar to that of the extensible bracket 2A but without contours. FIG. 9B shows a beam member 1D according to another embodiment of the invention. As illustrated in FIG. 9B, the beam member 1D is provided with an extensible bracket 2A at one end of the impact bar 3A and a non-extensible bracket 10 that is not the extensible bracket 2A at the other end. Stated another way, at least one of the two brackets of the beam member 1D is an extensible bracket 2A, the two brackets 2A, 10 both having flange portions 4A, 4, and the two brackets The flange portions 4A and 4 of 2A and 10 are joined to both ends of the impact bar 3A so that the thickness directions of the flange portions 4A and 4 are in the same direction, more preferably so that the joining surfaces 6 of the flange portions 4A and 4 are also in the same direction. ing. In this way, even with a beam member 1D that uses one extensible bracket 2A, the impact can be absorbed by the extensible bracket 2A.
<<車両ドア構造>>
図9Cに本実施形態にかかる車両ドア構造を示す。図9Cに例示される車両ドア構造は、前記の伸長性ブラケットを含むビーム部材1Dと、インナーパネル8とを有し、ビーム部材1Dが、インナーパネル8の面状部に配置され、ビーム部材1Dの伸長性ブラケット2Aのフランジ部4Aの少なくとも一部が、インナーパネル8に直接または間接的に面接触した状態で接合されることにより、ビーム部材1Dがインナーパネル8と一体化されている。「ビーム部材が、インナーパネルの面状部に配置され」とは、図5などに例示されるとおり、ビーム部材の両端部が、インナーパネル8の面状部の端部8A、8Bに接合され、インパクトバー3Aがインナーパネル8の端部8A、8Bの間の中央部と接合されていないという意味である。「フランジ部4Aの少なくとも一部」がインナーパネル8に「直接、面接触した状態で接合される」とは、例えば、フランジ部4Aとインナーパネル8とが直接、面接触した状態で接合部材により接合されることや、フランジ部4Aとインナーパネル8とが溶接されること、あるいは、フランジ部4Aとインナーパネル8とが融着されること、等をいう。「間接的に面接触した状態で接合される」とは、フランジ部4Aとインナーパネル8との間に、例えば、ロウ付け用の合金や接合部材、スペーサなどの介在物を介した状態で接合されることをいう。 << vehicle door structure >>
FIG. 9C shows a vehicle door structure according to this embodiment. The vehicle door structure illustrated in FIG. 9C has abeam member 1D including the extensible bracket described above and an inner panel 8, the beam member 1D being disposed on the planar portion of the inner panel 8, and the beam member 1D The beam member 1D is integrated with the inner panel 8 by joining at least a portion of the flange portion 4A of the extensible bracket 2A to the inner panel 8 in direct or indirect surface contact. "The beam member is disposed on the planar portion of the inner panel" means that both ends of the beam member are joined to the planar portion ends 8A and 8B of the inner panel 8, as illustrated in FIG. , means that the impact bar 3A is not joined to the central portion between the ends 8A, 8B of the inner panel 8. “At least part of the flange portion 4A” is “joined in direct surface contact with the inner panel 8” means that, for example, the flange portion 4A and the inner panel 8 are in direct surface contact with a joining member. It means to be joined, to weld the flange portion 4A and the inner panel 8, or to fuse the flange portion 4A and the inner panel 8 together. The term "joined in an indirect surface contact state" means that the flange portion 4A and the inner panel 8 are joined in a state in which an inclusion such as a brazing alloy, a joining member, or a spacer is interposed. It means to be
図9Cに本実施形態にかかる車両ドア構造を示す。図9Cに例示される車両ドア構造は、前記の伸長性ブラケットを含むビーム部材1Dと、インナーパネル8とを有し、ビーム部材1Dが、インナーパネル8の面状部に配置され、ビーム部材1Dの伸長性ブラケット2Aのフランジ部4Aの少なくとも一部が、インナーパネル8に直接または間接的に面接触した状態で接合されることにより、ビーム部材1Dがインナーパネル8と一体化されている。「ビーム部材が、インナーパネルの面状部に配置され」とは、図5などに例示されるとおり、ビーム部材の両端部が、インナーパネル8の面状部の端部8A、8Bに接合され、インパクトバー3Aがインナーパネル8の端部8A、8Bの間の中央部と接合されていないという意味である。「フランジ部4Aの少なくとも一部」がインナーパネル8に「直接、面接触した状態で接合される」とは、例えば、フランジ部4Aとインナーパネル8とが直接、面接触した状態で接合部材により接合されることや、フランジ部4Aとインナーパネル8とが溶接されること、あるいは、フランジ部4Aとインナーパネル8とが融着されること、等をいう。「間接的に面接触した状態で接合される」とは、フランジ部4Aとインナーパネル8との間に、例えば、ロウ付け用の合金や接合部材、スペーサなどの介在物を介した状態で接合されることをいう。 << vehicle door structure >>
FIG. 9C shows a vehicle door structure according to this embodiment. The vehicle door structure illustrated in FIG. 9C has a
上記車両ドア構造に関して、ビーム部材1Dの伸長性ブラケット2Aのフランジ部4Aの少なくとも一部が、インナーパネル8に直接または間接的に面接触した状態で接合されている。伸長性ブラケット2Aのフランジ部4Aの全面がインナーパネル8と接合されていてもよい。
インパクトバー3Aの両端に伸長性ブラケット2Aが供えられたビーム部材1Aや、インパクトバー3Aの一端に伸長性ブラケット2A、もう一方の端部に非伸長性ブラケット10が供えられたビーム部材1Dの場合、両端のブラケットの両方のフランジ部4の全面がインナーパネル8に直接または間接的に面接触した状態で接合されていてもよい。あるいは、一方のブラケットのフランジ部は全面がインナーパネル8に直接または間接的に面接触した状態で接合され、もう一方のブラケットのフランジ部は一部の面がインナーパネル8に直接または間接的に面接触した状態で接合されていてもよい。ブラケットのフランジ部で、インナーパネルに直接または間接的に面接触した状態で接合されている部位を、ここでは接合面と称する。 With respect to the vehicle door structure, at least a portion of theflange portion 4A of the extensible bracket 2A of the beam member 1D is joined to the inner panel 8 in direct or indirect surface contact. The entire surface of the flange portion 4A of the extensible bracket 2A may be joined to the inner panel 8.
In the case of abeam member 1A having extensible brackets 2A provided at both ends of an impact bar 3A, or a beam member 1D having an extensible bracket 2A provided at one end of the impact bar 3A and a non-extensible bracket 10 provided at the other end. , the entire surfaces of both flange portions 4 of both end brackets may be joined to the inner panel 8 in direct or indirect surface contact. Alternatively, the flange portion of one bracket is joined in direct or indirect surface contact with the inner panel 8 over its entire surface, and the flange portion of the other bracket is partially connected directly or indirectly to the inner panel 8. They may be bonded in a state of surface contact. A portion of the flange portion of the bracket that is joined to the inner panel in direct or indirect surface contact is herein referred to as a joint surface.
インパクトバー3Aの両端に伸長性ブラケット2Aが供えられたビーム部材1Aや、インパクトバー3Aの一端に伸長性ブラケット2A、もう一方の端部に非伸長性ブラケット10が供えられたビーム部材1Dの場合、両端のブラケットの両方のフランジ部4の全面がインナーパネル8に直接または間接的に面接触した状態で接合されていてもよい。あるいは、一方のブラケットのフランジ部は全面がインナーパネル8に直接または間接的に面接触した状態で接合され、もう一方のブラケットのフランジ部は一部の面がインナーパネル8に直接または間接的に面接触した状態で接合されていてもよい。ブラケットのフランジ部で、インナーパネルに直接または間接的に面接触した状態で接合されている部位を、ここでは接合面と称する。 With respect to the vehicle door structure, at least a portion of the
In the case of a
ビーム部材1Dの伸長性ブラケット2Aのフランジ部の少なくとも一部は、インナーパネル8に直接、面接触した状態で接合されていても良いが、他の機能部品を介して間接的にインナーパネルに面接触した状態で接合されていてもよい。一端のブラケットは、インナーパネル8に直接、もう一方の端部のブラケットはインナーパネル8に間接的に面接触した状態で接合されていても良い。
At least part of the flange portion of the extensible bracket 2A of the beam member 1D may be directly joined to the inner panel 8 in surface contact, but may be indirectly attached to the inner panel via other functional parts. They may be joined in contact. The bracket at one end may be joined directly to the inner panel 8 and the bracket at the other end may be joined to the inner panel 8 indirectly in surface contact.
ビーム部材1Dの伸長性ブラケット2Aのフランジ部4Aの少なくとも一部と、インナーパネル8との接合は、前記の伸長性ブラケット2Aとインパクトバー3Aとの接合と同様に、ボルト・ナット締めのような機械的締結、嵌合、接着、または溶着が例示される。伸長性ブラケット2Aのフランジ部4Aかインナーパネル8のいずれかが熱可塑性樹脂系材料など可溶融性材料からなる場合は、接合手段である溶着として、振動溶着、超音波溶着、赤外線溶着、またはレーザー溶着を用いることもできる。
At least part of the flange portion 4A of the extensible bracket 2A of the beam member 1D is joined to the inner panel 8 by bolt-nut tightening, similar to the above-described joining of the extensible bracket 2A and the impact bar 3A. Mechanical fastening, fitting, gluing, or welding are exemplified. When either the flange portion 4A of the extensible bracket 2A or the inner panel 8 is made of a meltable material such as a thermoplastic resin material, vibration welding, ultrasonic welding, infrared welding, or laser welding is used as the welding means. Welding can also be used.
車両ドア構造のインナーパネル8は、伸び率15%以下の低延性材料からなるものであると、ビーム部材の衝撃吸収能力が発揮されやすくなり好ましい。この低延性材料の種類の例や伸び率についてはビーム部材のインパクトバーについて前述したとおりである。インナーパネルが、アルミニウム合金、マグネシウム合金、および複合材料、特に、上記のような樹脂系複合材料である低延性材料からなるものであると、インナーパネルを有する車両ドア構造を軽量なものとすることができ好ましく、インナーパネルおよびインパクトバーのいずれもが、上に例示される低延性材料の群から選ばれる1つ以上のものからなるものであると、より著しい車両軽量化を達成することができ更に好ましい。その低延性材料としては、繊維強化樹脂であるとより好ましく、繊維強化熱可塑性樹脂であるとより一層好ましく、炭素繊維強化熱可塑性樹脂であると特に好ましい。
寸法も大きく車両重量に占める割合もそれなりにあるインナーパネルを繊維強化樹脂製、特に繊維強化熱可塑性樹脂、更に好ましくは炭素繊維強化熱可塑性樹脂(CFRTP)製とすることにより、より優れた衝突安全性および軽量化の両立が可能になる。一般的に、繊維強化樹脂は金属材料に比べて、軽量で衝撃吸収能に優れているからである。インナーパネルを繊維強化樹脂製とすることで、衝撃吸収に寄与させることができる。インナーパネルに用いる繊維強化樹脂に含まれる強化繊維、および繊維強化樹脂のマトリクスである樹脂としては、インパクトバーに用いる繊維強化樹脂と同様のものを用いることができる。 It is preferable that theinner panel 8 of the vehicle door structure is made of a low-ductile material having an elongation of 15% or less, because the impact absorbing ability of the beam member is easily exhibited. Examples of the type and elongation of this low ductility material are as described above for the impact bar of the beam member. To reduce the weight of a vehicle door structure having an inner panel when the inner panel is made of an aluminum alloy, a magnesium alloy, and a composite material, particularly a low-ductility material such as a resin-based composite material as described above. Preferably, both the inner panel and the impact bar are made of one or more selected from the group of low ductility materials exemplified above to achieve even greater vehicle weight savings. More preferred. The low ductility material is more preferably a fiber reinforced resin, more preferably a fiber reinforced thermoplastic resin, and particularly preferably a carbon fiber reinforced thermoplastic resin.
The inner panel, which is large in size and accounts for a certain proportion of the vehicle weight, is made of fiber-reinforced resin, especially fiber-reinforced thermoplastic resin, and more preferably carbon fiber-reinforced thermoplastic resin (CFRTP), resulting in better collision safety. It is possible to achieve both durability and weight reduction. This is because, in general, fiber-reinforced resins are lighter in weight and have better shock-absorbing ability than metal materials. By making the inner panel made of fiber-reinforced resin, it is possible to contribute to shock absorption. As the reinforcing fibers contained in the fiber-reinforced resin used for the inner panel and the resin that is the matrix of the fiber-reinforced resin, the same fiber-reinforced resin as used for the impact bar can be used.
寸法も大きく車両重量に占める割合もそれなりにあるインナーパネルを繊維強化樹脂製、特に繊維強化熱可塑性樹脂、更に好ましくは炭素繊維強化熱可塑性樹脂(CFRTP)製とすることにより、より優れた衝突安全性および軽量化の両立が可能になる。一般的に、繊維強化樹脂は金属材料に比べて、軽量で衝撃吸収能に優れているからである。インナーパネルを繊維強化樹脂製とすることで、衝撃吸収に寄与させることができる。インナーパネルに用いる繊維強化樹脂に含まれる強化繊維、および繊維強化樹脂のマトリクスである樹脂としては、インパクトバーに用いる繊維強化樹脂と同様のものを用いることができる。 It is preferable that the
The inner panel, which is large in size and accounts for a certain proportion of the vehicle weight, is made of fiber-reinforced resin, especially fiber-reinforced thermoplastic resin, and more preferably carbon fiber-reinforced thermoplastic resin (CFRTP), resulting in better collision safety. It is possible to achieve both durability and weight reduction. This is because, in general, fiber-reinforced resins are lighter in weight and have better shock-absorbing ability than metal materials. By making the inner panel made of fiber-reinforced resin, it is possible to contribute to shock absorption. As the reinforcing fibers contained in the fiber-reinforced resin used for the inner panel and the resin that is the matrix of the fiber-reinforced resin, the same fiber-reinforced resin as used for the impact bar can be used.
車両ドア構造は、伸び率15%以下の低延性材料からなるインナーパネル8、及び、伸び率15%以下の低延性材料からなるインパクトバー3Aと、2つのブラケットのうち少なくとも1つとして、伸び率15%超過の良延性材料からなる伸長性ブラケット2Aを有するビーム部材とを含むものであると特に衝撃吸収能が優れたものとなり好ましい。
The vehicle door structure includes an inner panel 8 made of a low ductility material with an elongation of 15% or less, an impact bar 3A made of a low ductility material with an elongation of 15% or less, and at least one of the two brackets having an elongation A beam member having an extensible bracket 2A made of more than 15% of a highly ductile material is particularly preferable because it has excellent impact absorption ability.
車両ドア構造は、図5~図8に例示されるような、その有するビーム部材に2つのブラケットがあり、それらがいずれも伸長性ブラケットであるものであると、より衝撃に強い構造となり好ましい。
The vehicle door structure has two brackets in its beam member, as illustrated in FIGS.
車両ドア構造は、図5、図7、図8、および図9Cに例示されるような、ビーム部材の2つのブラケットが、いずれも、それぞれのフランジ部の厚み方向が、インナーパネルの厚み方向(Y軸方向、車両幅方向)と略同一方向となる配置にて、インナーパネルに直接または間接的に面接触した状態で接合されているものであると、製造がより容易で、耐衝撃性が優れた車両ドア構造となり好ましい。この車両ドア構造は、2つのブラケットがいずれも伸長性ブラケットであるとより好ましい。
The vehicle door structure is such that the two brackets of the beam member as exemplified in FIGS. Y-axis direction, vehicle width direction), and is joined directly or indirectly to the inner panel in a state of surface contact, which facilitates manufacturing and improves impact resistance. An excellent vehicle door structure is obtained, which is preferable. More preferably, the vehicle door structure is such that both brackets are extensible brackets.
図6は、車両の左側ドア用の車両ドア構造を車外から車室内の方向に見た場合に、車両の前後方向に渡って、図4に示されるビーム部材1Cが取り付けられた車両ドア構造の模式図である。車両ドアのデザインや取り付ける必要がある機能部品との関係上、ビーム部材1Cのブラケットを、そのフランジ部の厚み方向が、インナーパネル8の厚み方向と略同一方向となる配置にて、インナーパネル8に接合するのが困難な場合がある。そのような場合、図4のビーム部材1Cを図6に例示されるように車両ドア構造に用いることができる。すなわち、ビーム部材1Cの2つのフランジ部4Aの接合面6が異なる向きを向くようにインナーパネル8に取り付けてもよい。例えば、ビーム部材1Cが車両100の前後方向に延び、一方のフランジ部4Aの接合面6が車両右方向(+Y方向)を向き、他方のフランジ部4Aの接合面6が下方向(-Z方向)を向くようにインナーパネル8に取り付けてもよい。図6では、車両後側(-X側)のフランジ部4Aの接合面6が車両右方向(+Y方向)を向き、車両前側(+X側)のフランジ部4Aの接合面6が下方向(-Z方向)を向くようにインナーパネル8に取り付けられている。あるいは、車両前側(+X側)のフランジ部4Aの接合面6が車両右方向(+Y方向)を向き、車両後側(-X側)のフランジ部4Aの接合面6が下方向(-Z方向)を向くようにインナーパネル8に取り付けてもよい。
FIG. 6 shows the vehicle door structure to which the beam member 1C shown in FIG. It is a schematic diagram. In consideration of the design of the vehicle door and the functional parts that need to be attached, the bracket of the beam member 1C is mounted on the inner panel 8 so that the thickness direction of the flange portion of the bracket is substantially the same as the thickness direction of the inner panel 8. It may be difficult to join to In such a case, the beam member 1C of FIG. 4 can be used in a vehicle door construction as illustrated in FIG. That is, the beam member 1C may be attached to the inner panel 8 so that the joint surfaces 6 of the two flange portions 4A of the beam member 1C face different directions. For example, the beam member 1C extends in the longitudinal direction of the vehicle 100, the joint surface 6 of one flange portion 4A faces the vehicle right direction (+Y direction), and the joint surface 6 of the other flange portion 4A faces downward (-Z direction). ) may be attached to the inner panel 8. In FIG. 6, the joint surface 6 of the flange portion 4A on the vehicle rear side (-X side) faces the right direction of the vehicle (+Y direction), and the joint surface 6 of the flange portion 4A on the vehicle front side (+X side) faces downward (- Z direction) is attached to the inner panel 8. Alternatively, the joint surface 6 of the flange portion 4A on the vehicle front side (+X side) faces the vehicle right direction (+Y direction), and the joint surface 6 of the flange portion 4A on the vehicle rear side (−X side) faces downward (−Z direction ) may be attached to the inner panel 8.
車両ドア構造は、図5、図6、図7、図8、および図9Cに例示されるような、ビーム部材1Aの2つのブラケットの一方のフランジ部が、インナーパネル8の面状部の、ある端部8Aと接合され、2つのブラケットの一方のフランジ部が、インナーパネルの面状部の別の端部である端部8Bに接合されていると、耐衝撃性が優れた車両ドア構造となり好ましい。ビーム部材1Aのインパクトバー3Aはインナーパネル8と接合されていなくてもよい。この車両ドア構造は、そのビーム部材の2つのブラケットがいずれも伸長性ブラケットであるとより好ましい。2つのブラケットが、いずれも、それぞれのフランジ部の厚み方向が、インナーパネルの厚み方向と略同一方向となる配置にて、インナーパネルに直接または間接的に面接触した状態で接合されているものであるとより好ましい。さらに、2つのブラケットがいずれも伸長性ブラケットであり、かつ、フランジ部の厚み方向が、インナーパネルの厚み方向と略同一方向となる配置にて、インナーパネルに直接または間接的に面接触した状態で接合されているとより一層好ましい。2つのブラケットのそれぞれの接合面が同じ方向を向く配置であると更に好ましい。
5, 6, 7, 8, and 9C, the flange portion of one of the two brackets of the beam member 1A is attached to the planar portion of the inner panel 8. A vehicle door structure with excellent impact resistance when one flange portion of the two brackets is joined to an end portion 8A and one flange portion of the two brackets is joined to the other end portion 8B of the planar portion of the inner panel. is preferable. The impact bar 3A of the beam member 1A may not be joined to the inner panel 8. More preferably, the vehicle door structure is such that both brackets of the beam member are extensible brackets. The two brackets are joined in direct or indirect surface-to-surface contact with the inner panel in such a way that the thickness direction of each flange portion is substantially the same as the thickness direction of the inner panel. is more preferable. Furthermore, the two brackets are extensible brackets, and the thickness direction of the flange portion is arranged in substantially the same direction as the thickness direction of the inner panel, and the state is in direct or indirect surface contact with the inner panel. is more preferable. It is more preferable that the joint surfaces of the two brackets face the same direction.
車両ドア構造は、図7に例示されるように伸長性ブラケットを有するビーム部材1Aとともに、伸長性ブラケット2Aを有しない補助ビーム部材9を有するものであってもよい。図7中の補助ビーム部材9は、インパクトバーに相当する棒状部材の両端をボルト13で補強対象物に締結する形式のものであるが、補助ビーム部材としては図7に例示されるものに限定されない。例えば、棒状部材の端部に一つ、またはその両端部に、図1Dに示すようなポケット状の挿入穴59を有する箱状のブラケットを有する補助ビーム部材を用いてもよい。あるいは、棒状部材の端部に一つ、またはその両端部に図9Aに示す非伸長性ブラケット10を有する補助ビーム部材を用いてもよい。
A vehicle door structure may have a beam member 1A with an extensible bracket as illustrated in FIG. 7 and an auxiliary beam member 9 without an extensible bracket 2A. The auxiliary beam member 9 shown in FIG. 7 is of the type in which both ends of a rod-shaped member corresponding to an impact bar are fastened to the object to be reinforced with bolts 13, but the auxiliary beam member is limited to those illustrated in FIG. not. For example, auxiliary beam members having box-like brackets with pocket-like insertion holes 59 at one or both ends of the bar member may be used, as shown in FIG. 1D. Alternatively, auxiliary beam members may be used having one or both non-extensible brackets 10 shown in FIG. 9A at the ends of the bar.
<<車両>>
上記の車両ドア構造を有する車両であって、車両ドア構造のビーム部材が車両室外側に、インナーパネルが車両室内側になる配置にて車両ドア構造を有する車両も本発明の一実施形態である。図5~7及び図9Cに例示されるとおり、ビーム部材1A、1Cが破線で示す車両100の前後方向に延びる配置となる車両ドア構造を有する車両であってもよい。また、図8に例示されるとおり、ビーム部材1Aが車両100の上下方向に延びる配置となる車両ドア構造を有する車両であっても良い。ここでいう車両とは、自動車に代表されるが、勿論、いわゆる空飛ぶ自動車や小型モビリティー、線路上を走行する車両などであってもよい。 <<Vehicle>>
A vehicle having the vehicle door structure described above, in which the beam member of the vehicle door structure is arranged on the outside of the vehicle and the inner panel is on the inside of the vehicle, is also an embodiment of the present invention. . As illustrated in FIGS. 5 to 7 and 9C, the vehicle may have a vehicle door structure in which the beam members 1A and 1C are arranged to extend in the longitudinal direction of the vehicle 100 indicated by broken lines. Further, as illustrated in FIG. 8, the vehicle may have a vehicle door structure in which the beam member 1A is arranged to extend in the vertical direction of the vehicle 100. FIG. The vehicle here is represented by an automobile, but of course, it may be a so-called flying automobile, a small mobility vehicle, a vehicle that runs on a railroad track, or the like.
上記の車両ドア構造を有する車両であって、車両ドア構造のビーム部材が車両室外側に、インナーパネルが車両室内側になる配置にて車両ドア構造を有する車両も本発明の一実施形態である。図5~7及び図9Cに例示されるとおり、ビーム部材1A、1Cが破線で示す車両100の前後方向に延びる配置となる車両ドア構造を有する車両であってもよい。また、図8に例示されるとおり、ビーム部材1Aが車両100の上下方向に延びる配置となる車両ドア構造を有する車両であっても良い。ここでいう車両とは、自動車に代表されるが、勿論、いわゆる空飛ぶ自動車や小型モビリティー、線路上を走行する車両などであってもよい。 <<Vehicle>>
A vehicle having the vehicle door structure described above, in which the beam member of the vehicle door structure is arranged on the outside of the vehicle and the inner panel is on the inside of the vehicle, is also an embodiment of the present invention. . As illustrated in FIGS. 5 to 7 and 9C, the vehicle may have a vehicle door structure in which the
ここに開示されるビーム部材、車両ドア構造、及び車両は、自動車に代表される車両に関する産業での利用に好適である。
本出願は、2021年7月30日付出願の日本国特願2021-125227号に基づく優先権を主張する。 The beam member, vehicle door structure, and vehicle disclosed herein are suitable for use in industries related to vehicles such as automobiles.
This application claims priority based on Japanese Patent Application No. 2021-125227 filed on July 30, 2021.
本出願は、2021年7月30日付出願の日本国特願2021-125227号に基づく優先権を主張する。 The beam member, vehicle door structure, and vehicle disclosed herein are suitable for use in industries related to vehicles such as automobiles.
This application claims priority based on Japanese Patent Application No. 2021-125227 filed on July 30, 2021.
Claims (14)
- 一方向に延在するインパクトバーと、
少なくとも1つの伸長性ブラケットと、
を含むビーム部材であって、
前記伸長性ブラケットは、
略半筒形状のインパクトバー受部と、
フランジ部と、
を有し、
前記インパクトバー受部および前記フランジ部の少なくとも一方は起伏形状を有し、
前記インパクトバー受部は前記インパクトバーの端部と接合されている、ビーム部材。 an impact bar extending in one direction;
at least one extensible bracket;
A beam member comprising
The extensible bracket is
a substantially half-cylindrical impact bar receiving portion;
a flange portion;
has
At least one of the impact bar receiving portion and the flange portion has an undulating shape,
The beam member, wherein the impact bar receiving portion is joined to an end portion of the impact bar. - 前記インパクトバーの両方の端部にそれぞれブラケットが接合されており、それら2つのブラケットの少なくとも1つが前記伸長性ブラケットである請求項1に記載のビーム部材。 A beam member according to claim 1, wherein brackets are respectively joined to both ends of said impact bar, and at least one of said two brackets is said extensible bracket.
- 前記2つのブラケットがいずれもフランジ部を有しており、それらのフランジ部の厚み方向が同じ方向になるように、それぞれインパクトバーの両端に接合されている請求項2に記載のビーム部材。 The beam member according to claim 2, wherein each of the two brackets has a flange portion and is joined to both ends of the impact bar so that the thickness directions of the flange portions are in the same direction.
- 前記2つのブラケットがいずれも伸長性ブラケットである、請求項2または3に記載のビーム部材。 The beam member according to claim 2 or 3, wherein both said two brackets are extensible brackets.
- 前記インパクトバーが、伸び率15%以下の低延性材料からなるものである請求項1~4のいずれか一項に記載のビーム部材。 The beam member according to any one of claims 1 to 4, wherein the impact bar is made of a low ductility material with an elongation rate of 15% or less.
- 前記伸長性ブラケットが伸び率15%超過の良延性材料からなる請求項1~5のいずれか一項に記載のビーム部材。 The beam member according to any one of claims 1 to 5, wherein the extensible bracket is made of a highly ductile material with an elongation rate of more than 15%.
- 請求項1~6のいずれか一項に記載のビーム部材と、インナーパネルとを有する車両ドア構造であって、
前記ビーム部材が、前記インナーパネルの面状部に配置され、前記ビーム部材の伸長性ブラケットのフランジ部の少なくとも一部が、前記インナーパネルに直接または間接的に面接触した状態で接合されることにより、前記ビーム部材が前記インナーパネルと一体化されている車両ドア構造。 A vehicle door structure comprising the beam member according to any one of claims 1 to 6 and an inner panel,
The beam member is disposed on the planar portion of the inner panel, and at least a portion of the flange portion of the extensible bracket of the beam member is joined to the inner panel in direct or indirect surface contact. the vehicle door structure, wherein the beam member is integrated with the inner panel. - 前記インナーパネルが、伸び率15%以下の低延性材料からなるものである請求項7に記載の車両ドア構造。 The vehicle door structure according to claim 7, wherein the inner panel is made of a low ductility material with an elongation rate of 15% or less.
- 前記ビーム部材は2つの前記伸長性ブラケットを有する請求項7または8に記載の車両ドア構造。 The vehicle door structure according to claim 7 or 8, wherein said beam member has two said extensible brackets.
- 前記ビーム部材の2つのブラケットが、いずれも、それぞれのフランジ部の厚み方向が、前記インナーパネルの厚み方向と略同一方向となる配置にて、前記インナーパネルに直接または間接的に面接触した状態で接合されている請求項9に記載の車両ドア構造。 The two brackets of the beam member are in direct or indirect surface contact with the inner panel in such a manner that the thickness direction of each flange portion is substantially the same as the thickness direction of the inner panel. 10. The vehicle door structure according to claim 9, wherein the door structure is joined with.
- 前記ビーム部材の2つのブラケットの一方のフランジ部が、前記インナーパネルの面状部のある端部と接合され、前記2つのブラケットの他方のフランジ部が、前記インナーパネルの面状部の別の端部と接合されている請求項9または10に記載の車両ドア構造。 One flange portion of the two brackets of the beam member is joined to an end portion of the planar portion of the inner panel, and the other flange portion of the two brackets is connected to another planar portion of the inner panel. Vehicle door structure according to claim 9 or 10, wherein the door structure is joined with an edge.
- 請求項7から11のいずれか1つの車両ドア構造を有する車両であって、前記ビーム部材が車両室外側に、前記インナーパネルが車両室内側に配置されている、車両。 A vehicle having the vehicle door structure according to any one of claims 7 to 11, wherein the beam member is arranged on the vehicle exterior side and the inner panel is arranged on the vehicle interior side.
- 前記ビーム部材が車両の略前後方向に延びる配置となる請求項12に記載の車両。 The vehicle according to claim 12, wherein the beam members are arranged to extend substantially in the longitudinal direction of the vehicle.
- 前記ビーム部材が車両の略上下方向に延びる配置となる請求項12に記載の車両。
13. The vehicle according to claim 12, wherein the beam member is arranged to extend substantially in the vertical direction of the vehicle.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-125227 | 2021-07-30 | ||
JP2021125227 | 2021-07-30 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023008371A1 true WO2023008371A1 (en) | 2023-02-02 |
Family
ID=85086961
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/028629 WO2023008371A1 (en) | 2021-07-30 | 2022-07-25 | Beam member, vehicle door structure, and vehicle |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023008371A1 (en) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5772318U (en) * | 1980-10-21 | 1982-05-04 | ||
US5580120A (en) * | 1995-02-23 | 1996-12-03 | Mascotech Tubular Products, Inc. | Vehicle door intrusion beam |
JP2001277852A (en) * | 2000-03-31 | 2001-10-10 | Isuzu Motors Ltd | Door beam structure of vehicle cab |
KR100765836B1 (en) * | 2006-09-18 | 2007-10-12 | 현대자동차주식회사 | Door locking prevention means of automobile |
JP2014162301A (en) * | 2013-02-22 | 2014-09-08 | Toyota Motor Corp | Vehicle door structure |
JP2015016738A (en) * | 2013-07-09 | 2015-01-29 | トヨタ自動車株式会社 | Vehicle door structure |
-
2022
- 2022-07-25 WO PCT/JP2022/028629 patent/WO2023008371A1/en active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5772318U (en) * | 1980-10-21 | 1982-05-04 | ||
US5580120A (en) * | 1995-02-23 | 1996-12-03 | Mascotech Tubular Products, Inc. | Vehicle door intrusion beam |
JP2001277852A (en) * | 2000-03-31 | 2001-10-10 | Isuzu Motors Ltd | Door beam structure of vehicle cab |
KR100765836B1 (en) * | 2006-09-18 | 2007-10-12 | 현대자동차주식회사 | Door locking prevention means of automobile |
JP2014162301A (en) * | 2013-02-22 | 2014-09-08 | Toyota Motor Corp | Vehicle door structure |
JP2015016738A (en) * | 2013-07-09 | 2015-01-29 | トヨタ自動車株式会社 | Vehicle door structure |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7334828B2 (en) | Force strut brace | |
JP6550419B2 (en) | Bumper beam structure | |
JP4685819B2 (en) | Bumper reinforcement support structure | |
US11279408B2 (en) | Hollow member | |
JP2007523797A (en) | Automotive bumper beam | |
KR100929527B1 (en) | Front side member assembly | |
WO2017135163A1 (en) | Vehicle front-end structure | |
KR101095988B1 (en) | Crash box type bumper | |
JP2004262300A (en) | Bumper reinforcement | |
US11479300B2 (en) | Hollow member | |
JP2008207676A (en) | Automobile body structure | |
JP4856740B2 (en) | Body front structure | |
WO2023008371A1 (en) | Beam member, vehicle door structure, and vehicle | |
JP4830017B2 (en) | Bumper structure for passenger cars | |
EP3386847B1 (en) | Vehicle underbody structure comprising a reinforcement element between a longitudinal beam and a lowerside sill part | |
JP2007055414A (en) | Energy absorbing beam for vehicle, and door structure for vehicle | |
KR101374737B1 (en) | Door impact absorption member for vehicle | |
JP6112670B2 (en) | Automotive bumper beam structure | |
JP4589543B2 (en) | Bumper mounting structure | |
JP2008068822A (en) | Mounting structure for door beam | |
WO2020149308A1 (en) | Automobile side structure and automobile | |
KR100979649B1 (en) | Bumper beam unit for vehicles | |
JP7130589B2 (en) | Impact energy absorbing member | |
KR20070055014A (en) | Front impact absorption means of vehicle | |
JP7473393B2 (en) | Vehicle bumper |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22849432 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22849432 Country of ref document: EP Kind code of ref document: A1 |