WO2023008322A1 - Control method for sampling device, sampling device, and sampling system - Google Patents

Control method for sampling device, sampling device, and sampling system Download PDF

Info

Publication number
WO2023008322A1
WO2023008322A1 PCT/JP2022/028433 JP2022028433W WO2023008322A1 WO 2023008322 A1 WO2023008322 A1 WO 2023008322A1 JP 2022028433 W JP2022028433 W JP 2022028433W WO 2023008322 A1 WO2023008322 A1 WO 2023008322A1
Authority
WO
WIPO (PCT)
Prior art keywords
sampling
target area
sampling device
optimal
distribution
Prior art date
Application number
PCT/JP2022/028433
Other languages
French (fr)
Japanese (ja)
Inventor
翠芳 黄
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Publication of WO2023008322A1 publication Critical patent/WO2023008322A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N1/00Sampling; Preparing specimens for investigation
    • G01N1/02Devices for withdrawing samples
    • G01N1/22Devices for withdrawing samples in the gaseous state
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/04Programme control other than numerical control, i.e. in sequence controllers or logic controllers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the present invention relates to the field of detection, and more particularly to a sampling device control method, sampling device and system.
  • Conventional air sampling and detection technologies mainly include the following methods.
  • Another method is to sample at a fixed point in the room, and after sampling is completed, it is directly transported to the detection center for analysis of the results. exists and the location of the contamination source cannot be defined.
  • the embodiments of the present invention provide a sampling device control method, a sampling device and a system, firstly obtain the environment distribution situation in the target area, and Based on the actual environmental distribution situation in the area, the optimum sampling position is identified, and the sampling device is driven to move to the optimum sampling position for air sampling. In this way, based on the actual environmental conditions in the room, it is possible to identify the optimum sampling position and directly move to the optimum sampling position for sampling, thereby improving the reliability of the sampling result and the sampling efficiency. Moreover, according to the distribution characteristics of different pollution sources in the environment, it is possible to achieve purposeful sampling of various pollution sources, and achieve sampling accuracy, flexibility and diversity.
  • obtaining an environmental distribution within a target area obtaining an environmental distribution within a target area; and identifying an optimal sampling position within the target area based on the environmental distribution within the target area. and driving the sampling device to move to the optimum sampling position for air sampling.
  • the moving part moves to an optimal sampling position within a target area to perform air sampling based on a control command. and wherein the optimum sampling position is identified based on the environmental distribution within the target area.
  • the sampling device according to the second aspect of the embodiment of the present invention, and a detection device for detecting the sample collected by the sampling device and acquiring detection data of the sample.
  • a sampling system comprising:
  • One of the beneficial effects of the embodiments of the present invention is to identify the optimum sampling position based on the actual environmental conditions in the room, and directly move to the optimum sampling position for sampling, so that the reliability of the sampling result is improved. and can improve the sampling efficiency, and according to the environmental distribution characteristics of different pollution sources, achieve purposeful sampling of various pollution sources, and achieve sampling accuracy, flexibility and diversity. can be done.
  • Feature information described and illustrated by one embodiment may be used in the same or similar form in one or more other embodiments, combined with feature information in other embodiments, or combined with feature information in other embodiments. Information can be substituted.
  • FIG. 4 is a flow chart of a method for obtaining environment distribution in a target area according to Embodiment 1 of the present invention
  • Fig. 4 is a flow chart of a method of moving the sampling device to acquire a map area according to the first embodiment of the present invention
  • FIG. 4 is a flow chart of another method for obtaining environment distribution within a target area according to Embodiment 1 of the present invention
  • FIG. Fig. 4 is a flowchart of a method for implementing step 103 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of another method for implementing step 103 according to Embodiment 1 of the present invention
  • FIG. 4 is a flowchart of another method for implementing step 103 according to Embodiment 1 of the present invention
  • FIG. 4 is a flow chart of an embodiment of a sampling device control method according to Embodiment 1 of the present invention
  • FIG. 4 is a structural diagram of a sampling device according to Embodiment 2 of the present invention
  • 1 is an external view of a sampling device according to Example 1 of the present invention
  • FIG. 1 is a top view of a sampling device according to Example 1 of the present invention
  • FIG. 9 is a cross-sectional view of the sampling device taken along line AA shown in FIG. 8
  • FIG. 4 is an exploded structural view of a set locking member and a first collection tube according to Embodiment 1 of the present invention
  • 1 is a structural diagram of a valve assembly according to Embodiment 1 of the present invention
  • FIG. 4 is a structural diagram of a valve assembly according to Embodiment 1 of the present invention
  • FIG. 1 is an exploded view of a particulate matter collection assembly according to Embodiment 1 of the present invention
  • FIG. FIG. 9 is another cross-sectional view of the sampling device taken along line AA shown in FIG. 8; 9 is a further cross-sectional view of the sampling device along line AA shown in FIG. 8; FIG. 9 is a further cross-sectional view of the sampling device along line AA shown in FIG. 8;
  • FIG. 4 is a structural diagram of a sampling system according to Embodiment 3 of the present invention; 9 is a flow chart of the operation of the sampling system according to Example 3 of the present invention;
  • Embodiment 1 of the present invention provides a control method for a sampling device.
  • FIG. 1 is a flow chart of a sampling device control method according to a first embodiment of the present invention. As shown in FIG. 1 , the method includes steps 101 of obtaining an environment profile within a target area, and identifying an optimal sampling location within the target area based on the environment profile within the target area. 102 and driving 103 the sampling device to move to the optimal sampling position and perform air sampling.
  • the sampling device control method can be performed by a single controller, which may be provided in the sampling device or in a separate control device, and , may be provided on a cloud server.
  • the target area refers to a sampled target area, such as an indoor space.
  • the target area may be a room in the room or the entire indoor space.
  • the sampling device is a movable sampling device. A specific structure of the sampling device will be described in detail below.
  • the sampling device can collect various samples, for example, the sampling target of the sampling device is at least one of various allergens and various toxic and harmful gases in the air. include.
  • the sampling targets of the sampling device include, for example, allergens adhering to particulate matter such as pollen, mold and mites, and toxic and harmful gases in the air such as formaldehyde and VOC.
  • the environmental distribution within the target area can include the distribution of environmental parameters related to the distribution of sampling targets of the sampling device.
  • the environment distribution status within the target area includes at least one of airflow distribution, temperature distribution, and humidity distribution within the target area.
  • the amount of formaldehyde emitted is highest at the highest temperature, and for VOCs in air, the temperature is between 15°C and 25°C.
  • the concentration of VOCs is most active, and this temperature interval is also the optimum temperature range and location for sampling, and the effect of humidity is the greatest on mites adhering to particulate matter in the air.
  • the relative humidity reaches 60% to 80%, mites are most active, and on the mold attached to the particulate matter in the air, the effect of humidity is also the greatest, and the place where the humidity is high. We found that the location with the best mold growth environment and highest humidity was the best location to collect the mold.
  • FIG. 2 is a flow chart of a method for acquiring the environment distribution status within the target area according to the first embodiment of the present invention. As shown in FIG. 2, the method includes steps 201 of obtaining map information of a target area, and steps 202 of determining airflow distribution within the target area based on the map information of the target area.
  • the map information of the target area is a plan view of the target area including, for example, the floor plan of the current area, and the distribution information of obstacles such as furniture and household items.
  • a location with high airtightness is specified based on the airflow distribution, that is, after passing through the natural wind simulation, a location with poor ventilation due to shielding appears, and the pollution source at this location is also the least affected by the outside. It's the place. Therefore, collecting a sample of the contaminant at that location allows the collection of the maximum content of the contaminant closest to the actual target area, thereby further improving collection accuracy.
  • the map information of the target area can be obtained according to various methods, for example, the user or the property developer provides the map information, or moves the sampling device to obtain the location information. Map information can also be established by
  • FIG. 3 is a flow chart of a method of moving the sampling device to acquire a map area according to the first embodiment of the present invention. As shown in FIG. 3, the method includes the step 301 of moving the sampling device to circle the target area and performing movement positioning, the step 302 of obtaining the position information of the target area, and based on the position information, , and a step 303 of establishing a plan view of the target area.
  • the airflow distribution within the target area is identified based on the map information of the target area.
  • the map information of the target area is input to the first simulation module or the first machine learning module, and the airflow distribution map within the target area is output.
  • the first simulation module may be various simulation models such as a Computational Fluid Dynamics (CFD) simulation model.
  • CFD Computational Fluid Dynamics
  • the first machine learning module may be, for example, a model based on various types of machine learning, such as a support vector machine (SVM) model or a convolutional neural network (CNN) model.
  • SVM support vector machine
  • CNN convolutional neural network
  • FIG. 4 is a flow chart of another method for obtaining the environment distribution situation within the target area according to the first embodiment of the present invention. As shown in FIG. 4, the method includes step 401 of collecting temperature and/or humidity data within a target area, step 402 of obtaining map information of the target area, and temperature and/or humidity data within the target area. determining 403 the temperature and/or humidity distribution within the target area based on the data and map information of the target area.
  • Collecting temperature and/or humidity data within the target area in step 401 can be obtained in a variety of ways.
  • the sampling device may be provided with a temperature sensor and/or a humidity sensor, and the sampling device may be moved to acquire temperature and/or humidity data at multiple locations within the target area.
  • step 402 The specific method of obtaining the map information of the target area in step 402 can refer to the implementation of step 201 and will not be described in detail here.
  • the temperature distribution and/or humidity distribution within the target area is identified based on the temperature and/or humidity data within the target area and the map information of the target area.
  • temperature and/or humidity data within the target area and map information of the target area are input to a second simulation module or a second machine learning module, and a temperature distribution map and/or humidity distribution map within the target area is generated. Output.
  • the second simulation module may be various simulation models such as a computational fluid dynamics (CFD) simulation model.
  • CFD computational fluid dynamics
  • the second machine learning module may be a model based on various types of machine learning, such as a support vector machine (SVM) model or a convolutional neural network (CNN) model.
  • SVM support vector machine
  • CNN convolutional neural network
  • step 102 After obtaining the environmental distribution within the target area, in step 102, based on the environmental distribution within the target area, the optimal sampling position within the target area is identified.
  • step 102 the environment distribution situation within the target area is input to the third machine learning model, and the optimal sampling position within the target area is output.
  • the third machine learning module may be a model based on various types of machine learning, such as a support vector machine (SVM) model or a convolutional neural network (CNN) model.
  • SVM support vector machine
  • CNN convolutional neural network
  • step 102 the optimal sampling position within the target area is identified based on the environment distribution situation within the target area and a pre-established lookup table.
  • step 102 in addition to obtaining the optimal sampling location in step 102, further identifying the type of pollution source corresponding to the optimal sampling location according to the environmental distribution in the target area. can be done.
  • the airflow distribution, temperature distribution and/or humidity distribution in the target area output by the CFD simulation model are indicated by different colors, for example, different colors indicate areas and positions with different numerical values.
  • a pre-established lookup table maps temperature and/or humidity to what is sampled.
  • the method determines a route to travel to the optimal sampling location based on the optimal sampling location within the target area and map information of the target area.
  • a step of identifying 104 may further be included.
  • the path is the shortest path that avoids obstacles in the target area and reaches the optimal sampling position.
  • step 103 drive the sampling device to follow the identified path to move to the optimum sampling position for air sampling.
  • FIG. 5 is a flow chart of a method for implementing step 103 according to the first embodiment of the present invention. As shown in FIG. 5, the method includes step 501 of driving a sampling device to move to the optimal sampling position; controlling the sampling device to time-divisionally sample at least two types of pollution sources; and sampling 502 different pollution sources at different times.
  • the sampling device switches between different sample collection members to sample different contamination sources. That is, the sampling device has multiple sample collection members for sampling different sources of contamination.
  • samples from different contamination sources can be collected by time-division sampling, as opposed to the case where there is one optimal sampling position.
  • the sample collection member can include at least one particulate matter collection assembly and at least one gas collection assembly.
  • FIG. 6 is a flowchart of another method for implementing step 103 according to Embodiment 1 of the present invention. As shown in FIG. 6, the method includes step 601 of driving the sampling device to sequentially move to at least two optimal sampling locations; and a controlling step 602 .
  • the sampling device switches between different sample collection members to sample different contamination sources. That is, the sampling device has multiple sample collection members for sampling different sources of contamination.
  • samples from different contamination sources can be collected by sequentially moving to each optimal sampling location.
  • step 103 after the sampling device is moved to the optimal sampling position, it may be adjusted to a preset sampling height and control the sampling device to perform air sampling.
  • height adjustments to the sampling device may be performed by the user or automatically by the sampling device.
  • the preset height can be set according to the actual situation.
  • the preset height is a number in the range of 1-1.5 meters.
  • the method includes steps 105 of generating a logistics order for removing samples on-site after sampling by the sampling device is finished; It can further include steps 106 of obtaining detection data for the collected sample, and generating 107 a detection report based on the detection data and transmitting or publishing the detection report to a server.
  • the published content of the detection report includes data corresponding to temperature and humidity, CO2, formaldehyde, VOC, PM2.5, mold, pollen and mites, and animal hair, and some corresponding
  • the improvement proposals can include a range of products and solutions as well as methods for rapidly removing allergens and harmful gases.
  • FIG. 7 is a flow chart of an embodiment of a sampling device control method according to Embodiment 1 of the present invention. As shown in FIG. 7, the method includes step 701 of controlling to turn on a sampling device, step 702 of obtaining environmental distribution within the target area, and based on the environmental distribution within the target area, , step 703 of identifying the optimal sampling position within the target area, step 704 of controlling the sampling device to reach the optimal sampling position by the controller, and step 704 of controlling the sampling device to adjust the height by the controller.
  • step 705 of specifying a sampling time step 706 of collecting at least two allergen (particulate matter) samples and collecting at least two gas samples, and after collecting the samples, Step 707 of generating a logistics order and taking away samples on-site; Step 708 of obtaining detection data for at least two allergen (particulate matter) samples and at least two gas samples; and reporting based on the detection data. and a step 709 of generating and presenting to the client.
  • the controller is, for example, the controller of the sampling device, may be a controller provided separately, or may be a controller provided in the cloud server.
  • the optimum sampling position is specified, and the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency.
  • the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency.
  • Embodiment 2 of the present invention provides a sampling device that is the controlled object of the control method described in Embodiment 1, and the relevant content can refer to the implementation of the method described in Embodiment 1, the same content or Relevant parts of the content will not be repeated.
  • FIG. 8 is a structural diagram of a sampling device according to Embodiment 2 of the present invention.
  • a sampling device 800 includes a moving unit 801 and a device main unit 802. driving the apparatus body to perform air sampling by moving to an optimum sampling position within a target area according to a control command, wherein the optimum sampling position is based on the environmental distribution situation within the target area; identified by
  • the sampling device can collect various samples, for example, the sampling target of the sampling device is at least one of various allergens and various toxic and harmful gases in the air. include.
  • the sampling targets of the sampling device include, for example, allergens adhering to particulate matter such as pollen, mold and mites, and toxic and harmful gases in the air such as formaldehyde and VOC.
  • the moving part 801 may be various moving structures that can be driven to move the sampling device.
  • moving portion 801 includes wheels, which transmit traction.
  • the sampling device 800 can perform various moving operations such as straight running, turning, rotating, accelerating, decelerating, and stopping within the target area.
  • FIG. 9 is an external view of the sampling device according to Example 1 of the present invention.
  • the sampling device 800 further includes a packaging box 803 in which the moving part 801 and the device main body 802 are placed, and the packaging box 803 is provided with a handle 804 .
  • the portability and reliability of the sampling device can be improved, for example, a packaging box can facilitate rental or sale to users, and can provide protection during the transportation process.
  • a packaging box can facilitate rental or sale to users, and can provide protection during the transportation process.
  • the device is small and sophisticated.
  • the apparatus body 802 includes a case 805, an intake passage and an exhaust passage, a gas passage 806 embedded in the case, and an inlet 807 of the gas passage 806.
  • a particulate collection assembly (not shown in FIG. 8) for collecting airborne particulate matter and a gas collection assembly 808 disposed within the gas passage for collecting airborne gas samples; , is mounted in the gas passage and includes a fan 809 for providing pneumatic power, a battery for powering, and a controller 811 for controlling the operating state and movement of the sampling device.
  • allergen-laden particulate matter and gas can be collected simultaneously, and the particulate matter collection assembly and the gas collection assembly are provided in the same gas passageway to diversify the sampling while increasing the volume. to be smaller.
  • collecting particulate matter at the inlet of the gas passage avoids cross-contamination of the inside of the gas passage and affecting the results of gas sampling.
  • the case 805 can include an upper case, a lower case and two side cases.
  • the upper case includes a first subcase, a second subcase and a third subcase.
  • the first sub-case is the upper surface of the case, one end of the first sub-case is seamlessly connected to the second sub-case, and the other end is relatively parallel to the second sub-case. Connects seamlessly to the case.
  • the first sub-case is perpendicular to the second and third sub-cases, and the two sub-cases are slidably connected to the upper case.
  • the assembled upper case and lower case are combined to form a sampling device.
  • the gas passage 806 may have one inlet 807, or may have two inlets 807, left and right, as shown in FIG.
  • the gas passageway 806 may include only one intake passageway, which collects particulate matter with different contaminant sources (eg, allergens) by switching filters.
  • contaminant sources eg, allergens
  • FIG. 10 is a top view of the sampling device according to Example 1 of the present invention.
  • the gas passageway 806 includes only one intake passageway, which is connected to the exhaust passageway, and the particulate collection assembly includes at least two filters 812, rotating discs 813 and Including a rotating shaft (not shown), the at least two filters 812 are mounted within the rotating disk 813 and positioned in the same horizontal plane, one of which is positioned within the intake passage. can be rotated about the axis of rotation.
  • the volume of the sampling device can be reduced to the maximum, realizing diversified detection while reducing the structure.
  • the corresponding allergen attached to the particulate matter needs to be collected, it can be collected by rotating the knob on the top surface of the case and correspondingly turning the collecting sample filter to the air inlet. It realizes even more diverse detection after reducing the volume.
  • FIG. 11 is a cross-sectional view of the sampling device taken along line AA shown in FIG.
  • the gas passageway 806 includes only one intake passageway, which is connected to the exhaust passageway, and the particulate collection assembly includes at least two push-pull rods and at least two A filter 812 is included and one of the at least two push-pull rods pushes one of the at least two filters 812 into the intake passage.
  • the side wall of the intake passage is set grooved
  • the gas collection assembly includes at least two collection tubes, the at least two collection tubes respectively disposed within the intake passage. one end is fixed in the set groove and the other end is inserted in the intake passage.
  • the at least two collection tubes are provided in parallel within the intake passage, the collection tubes comprising a collection member fixedly connected at its end to the set groove, and a collection member fixed within the collection member to collect the sample. and a detection core for collecting.
  • the collection tube realizes detachable operation, which facilitates sampling, and the whole process does not involve the intervention of external elements, and the hand directly touches to cross and contaminate the sample in the collection tube. to avoid affecting detection results.
  • a set locking member can be further provided in the set groove, and the at least two collection tubes include a first collection tube.
  • FIG. 12 is an exploded structural view of the set locking member and the first collection tube according to the first embodiment of the present invention.
  • the first collection tube 814 has a male thread 815 on the outside of the end thereof, and a female thread 817 is provided in the set locking member 816 so that the first collection tube 814 can be set locking. Threaded into member 816 .
  • the at least two collection tubes can further include a second collection tube 818 locked within the set locking member 816 .
  • the first collection tube and the set locking member are screwed and fixed, and the fixation is stable without falling off due to vibration due to strong wind or operation of the sampling device.
  • a valve assembly may be provided at the inlet of the intake passage.
  • FIG. 13 is a structural diagram of a valve assembly according to Example 1 of the present invention.
  • the valve assembly includes a cover plate 819 and a self-folding structure 820, wherein the self-folding structure 820 includes a motor and a folding arm, and the cover plate 819 is actuated by the motor. As the folding arms are driven, they cover or open the intake passage.
  • the number of cover plates 819 is adapted to the number of intake passage inlets, ie one cover plate 819 covers one intake passage.
  • the top surface of the cover plate 819 may be flush with the top surface of the case 805 . This makes the overall sampling device smaller in volume and more portable.
  • the device main unit 802 can further include a communication module (not shown) that communicates with a cloud server.
  • the cloud server can further calculate the degree of fatigue and comfort and transmit it to the display screen by the communication module.
  • a drop groove is provided at the inlet of the intake passage, and the particulate matter collection assembly is provided within the drop groove.
  • FIG. 14 is an exploded view of the particulate matter collection assembly according to Example 1 of the present invention. As shown in FIG. 14, the particulate collection assembly includes an upper pressure sheet 821 and a lower pressure sheet 822 with a central filter (not shown in FIG. 14).
  • the filter can be better fixed and particulate matter can be better collected.
  • the body of the filter can be directly layered according to the particle size of the particulate matter, and the filter can be removed.
  • a first layer collects particulate matter with a large particle size through a filter
  • a second layer collects particulate matter with a small particle size. In this way, it is possible to avoid collecting all the particulate matter in one filter, achieve stratified sampling, and further reduce the volume of the sampling device.
  • the exhaust passage and the intake passage may be provided perpendicular to each other.
  • FIG. 15 is another cross-sectional view of the sampling device taken along line AA shown in FIG. As shown in FIG. 15, the intake passage 823 and the exhaust passage 824 are provided perpendicularly.
  • FIG. 16 is a further cross-sectional view of the sampling device along line AA shown in FIG.
  • the intake passage 823 and the exhaust passage 824 are provided perpendicularly, and the exhaust passage 824 is provided in a trapezoidal shape.
  • each inner wall of the exhaust passage can be provided with additional cushioning lining 831 to reduce fan and exhaust noise and further improve the user experience of the sampling device.
  • the exhaust passage and the intake passage may be provided along the same direction.
  • FIG. 17 is a further cross-sectional view of the sampling device along line AA shown in FIG. As shown in FIG. 17, the intake passage 823 and the exhaust passage 824 are provided along the same direction (that is, the vertical direction).
  • the fan 809 can be provided within the exhaust passage or within the intake passage.
  • the suction force can be increased, the intake speed can be improved, and the exhaust path can be shortened.
  • the cross-sectional views of the first intake passage and the second intake passage are provided in a U shape.
  • the air volume is increased, and when the gas sample is collected, the better the contact of the gas with the collection tube, the better the collection effect.
  • the fan 809 is far from the air inlet, and the air intake passage is a curved passage.
  • the air intake passage is extended, the wind force is larger, the air volume is more sufficient, and the particulate matter is filtered and the gas is It creates a good spatial foundation for the collection of the , and the collection effect of the filter and the collection tube is better.
  • the device body 802 may further include an up/down button 825, a switch button 826, a tray 827 and an elevating bracket 828, as shown in FIG.
  • the height of the sampling device can be adjusted by raising and lowering the elevation bracket 828 with the up and down button 825 .
  • a switch button 826 can control the on and off of the sampling device.
  • the device body 802 may further include at least one of a temperature sensor, a humidity sensor, various types of particulate matter sensors, and a carbon dioxide sensor.
  • the exhaust passage 824 has an exhaust port 830 .
  • the optimum sampling position is identified, and the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency.
  • the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency.
  • Example 3 of the present invention provides a sampling system comprising the sampling device as described in Example 2, the specific implementation of which is referred to the implementation of the device as described in Example 2 and the method as described in Example 1. and do not repeat the same or related parts of the content.
  • FIG. 18 is a structural diagram of a sampling system according to Embodiment 3 of the present invention.
  • a sampling system 1800 includes a sampling device 1801 and samples collected by the sampling device, a detection device 1802 that obtains detection data for the .
  • the sampling device 1801 generates a detection report based on the detection data and transmits or publishes the detection report to a server.
  • the specific structure and function of the sampling device 1801 can refer to the device described in Example 2 and the method described in Example 1, and will not be repeated here.
  • FIG. 19 is a flow chart of the operation of the sampling system according to Example 3 of the present invention. As shown in FIG. 19, the flow of operation is step 1901 in which the control module turns on the sampling device, step 1902 in which the environmental profile within the target area is obtained, and step 1903 in which the optimal sampling position is identified.
  • step 1904 driving the sampling device to reach and sample the optimum sampling position; step 1905 adjusting the sampling device to the corresponding sample collection member and adjusting the corresponding height; turning on the valve assembly; , air enters the passageway, the first particulate collection assembly collects an allergen (particulate matter) sample, the first gas detection assembly collects a gas sample 1906; Step 1907 of turning off and driving the sampling device to reach and collect the next optimal position point, and automatically adjusting to the corresponding sample collection member after reaching the position point so that the sampling device corresponds step 1908, turn on the valve assembly to allow air into the passageway, the second particulate collection assembly collects the allergen (particulate matter) sample, and the second gas detection assembly collects the gas Step 1909 of collecting samples and step 1910 by analogy therewith until the sampling is finished; transmitting the sensor data to the display screen in real time or to the server in the cloud via the 4G module; step 1911, after the detection is finished, the cloud server generates a logistics order, and the logistics person takes the sample off-site
  • the optimum sampling position is specified, and the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency.
  • the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency.
  • the above apparatus and method according to the embodiments of the present invention may be realized by hardware or by combining software with hardware.
  • the present invention relates to such a computer readable program which, when executed by a logic component, causes the logic component to implement the device or component described above, or causes the logic component to implement any of the above methods or methods. steps can be realized.
  • Embodiments of the present invention further relate to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, and flash memories.
  • each step according to the present solution means does not limit the order of steps before and after, on the premise that it does not affect the implementation of the concrete solution means, and the step written before is executed first. may be carried out later, or may be carried out at the same time as the later steps, as long as the solution can be implemented, should be regarded as belonging to the protection scope of the present application.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Automation & Control Theory (AREA)
  • Molecular Biology (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

This invention provides a control method for a sampling device, a sampling device, and a sampling system. An optimal sampling location is identified on the basis of the actual environmental conditions in a room, and sampling is performed by moving directly to the optimal sampling location, thus enabling improved reliability of sampling results and higher sampling efficiency. Also, on the basis of the distribution characteristics for an environment with different contamination sources, sampling that matches the purpose for various contamination sources can be realized, thus enabling the achievement of higher sampling accuracy, flexibility, and diversity.

Description

サンプリング装置の制御方法、サンプリング装置及びサンプリングシステムSampling device control method, sampling device and sampling system
 本発明は、検出の分野に関し、特にサンプリング装置の制御方法、サンプリング装置及びシステムに関する。 The present invention relates to the field of detection, and more particularly to a sampling device control method, sampling device and system.
 ユーザが室内空気の品質にますます重視することにつれて、室内空気の検出技術は、多く注目されてくる。空気サンプリングは、室内空気の検出の技術の重要な一環である。 As users attach more and more importance to the quality of indoor air, indoor air detection technology is receiving a lot of attention. Air sampling is an important part of the art of indoor air detection.
 従来の空気サンプリング及び検出技術は、主に以下のいくつかの方法を含む。一つは、センサを用いて検出する方法であるが、通常、これらのセンサは、例えば、温度、湿度、PM2.5、ホルムアルデヒド、VOC等のような一般的なパラメータ及びいくつかの汚染物のみを検出することができ、かつ検出結果の精度が低い。  Conventional air sampling and detection technologies mainly include the following methods. One is to use sensors for detection, but usually these sensors only detect common parameters such as temperature, humidity, PM2.5, formaldehyde, VOCs, etc. and some pollutants. can be detected, and the accuracy of the detection result is low.
 もう一つは、従来のオンサイト空気サンプリングサービスであるが、このようなサンプリングサービスは、比較的に価格が高く、同時に検出者が一連の設備機器を携帯してお宅まで訪問して、サンプルを収集した後で実験室に戻して分析する必要がある。このようなサンプリング及び検出方式は、大量の人的資源を消費する必要があり、かつコストが高い。 The other is the traditional on-site air sampling service, but this kind of sampling service is relatively expensive, and at the same time, the detector will come to your home with a set of equipment to collect the sample. must be returned to the laboratory for analysis after collection. Such sampling and detection schemes require the consumption of large amounts of human resources and are costly.
 また、さらにある方法は、室内のある固定地点でサンプリングし、サンプリングが終了した後で検出センターに直接搬送して結果分析を行うが、このようなサンプリング方式は、サンプリング結果が精確ではないという問題が存在し、かつ、汚染源の位置を明確にすることができない。 In addition, another method is to sample at a fixed point in the room, and after sampling is completed, it is directly transported to the detection center for analysis of the results. exists and the location of the contamination source cannot be defined.
 近年、さらに移動可能なサンプリング装置が登場するが、現在の移動可能なサンプリング装置は、室内で全ての地点のサンプリングや検出を行ったり、予めマークされた複数の固定位置でサンプリングや検出を行ったりする。したがって、検出効率が低く、検出結果の正確性が低いという問題が存在する。 In recent years, more mobile sampling devices have emerged, but current mobile sampling devices can sample and detect all points in the room or sample and detect at multiple pre-marked fixed locations. do. Therefore, there is a problem that the detection efficiency is low and the accuracy of the detection result is low.
 以上の技術的背景に対する紹介は、本発明の技術的解決手段を明確で、完全に説明しやすく、かつ当業者の理解を容易にするために説明されるものに過ぎないということに注意すべきである。これらの解決手段が本発明の背景技術の部分に説明されただけで上記の技術的解決手段は当業者に公知されると考えられない。 It should be noted that the above introduction to the technical background is merely described to make the technical solutions of the present invention clear, complete and easy to explain, and to facilitate the understanding of those skilled in the art. is. It is not considered that the above technical solutions are known to those skilled in the art, just because these solutions are described in the background art part of the present invention.
 上記問題のうちの少なくとも一つを解決するために、本発明の実施例は、サンプリング装置の制御方法、サンプリング装置及びシステムを提供し、まず、目標領域内の環境分布状況を取得するとともに、目標領域内の実際の環境分布状況に基づいて、最適なサンプリング位置を特定することによって、最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動する。このように、室内の実際の環境状況に基づいて、最適なサンプリング位置を特定するとともに最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 To solve at least one of the above problems, the embodiments of the present invention provide a sampling device control method, a sampling device and a system, firstly obtain the environment distribution situation in the target area, and Based on the actual environmental distribution situation in the area, the optimum sampling position is identified, and the sampling device is driven to move to the optimum sampling position for air sampling. In this way, based on the actual environmental conditions in the room, it is possible to identify the optimum sampling position and directly move to the optimum sampling position for sampling, thereby improving the reliability of the sampling result and the sampling efficiency. Moreover, according to the distribution characteristics of different pollution sources in the environment, it is possible to achieve purposeful sampling of various pollution sources, and achieve sampling accuracy, flexibility and diversity.
 本発明の実施例の第一態様によれば、目標領域内の環境分布状況を取得することと、前記目標領域内の環境分布状況に基づいて、前記目標領域内の最適なサンプリング位置を特定することと、前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動することと、を含むサンプリング装置の制御方法を提供する。 According to a first aspect of an embodiment of the present invention, obtaining an environmental distribution within a target area; and identifying an optimal sampling position within the target area based on the environmental distribution within the target area. and driving the sampling device to move to the optimum sampling position for air sampling.
 本発明の実施例の第二態様によれば、移動部と装置本体部とを含み、前記移動部は、制御命令に基づいて、目標領域内の最適なサンプリング位置に移動して空気サンプリングを行うように前記装置本体部を駆動し、前記最適なサンプリング位置は、前記目標領域内の環境分布状況に基づいて特定される、サンプリング装置を提供する。 According to a second aspect of the embodiment of the present invention, comprising a moving part and an apparatus main body part, the moving part moves to an optimal sampling position within a target area to perform air sampling based on a control command. and wherein the optimum sampling position is identified based on the environmental distribution within the target area.
 本発明の実施例の第三態様によれば、本発明の実施例の第二態様に記載のサンプリング装置と、前記サンプリング装置により収集されたサンプルを検出し、サンプルの検出データを取得する検出装置と、を含むサンプリングシステムを提供する。 According to a third aspect of an embodiment of the present invention, the sampling device according to the second aspect of the embodiment of the present invention, and a detection device for detecting the sample collected by the sampling device and acquiring detection data of the sample. and a sampling system comprising:
 本発明の実施例の有益な効果の一つとして、室内の実際の環境状況に基づいて最適なサンプリング位置を特定するとともに、最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 One of the beneficial effects of the embodiments of the present invention is to identify the optimum sampling position based on the actual environmental conditions in the room, and directly move to the optimum sampling position for sampling, so that the reliability of the sampling result is improved. and can improve the sampling efficiency, and according to the environmental distribution characteristics of different pollution sources, achieve purposeful sampling of various pollution sources, and achieve sampling accuracy, flexibility and diversity. can be done.
 後述の説明と図面を参照して、本発明の特定の実施形態が詳しく開示されており、本発明の原理が採用され得る態様が明示されている。本発明の実施形態は範囲上で規制されないと理解されるべきである。添付した請求項の精神と条項の範囲内で、本発明の実施形態には、多くの変更、補正及び同等が含まれている。 With reference to the following description and drawings, specific embodiments of the invention are disclosed in detail to demonstrate the manner in which the principles of the invention may be employed. It should be understood that embodiments of the invention are not limited in scope. Embodiments of the invention include many variations, modifications and equivalents within the spirit and terms of the appended claims.
 一つの実施形態により説明し示された特徴情報は、同じ又は類似する形態で一つ以上の他の実施形態で使用されたり、他の実施形態における特徴情報と組み合わせたり、他の実施形態における特徴情報を代替することができる。 Feature information described and illustrated by one embodiment may be used in the same or similar form in one or more other embodiments, combined with feature information in other embodiments, or combined with feature information in other embodiments. Information can be substituted.
 「包括/含む」という用語は、本明細書の使用時に特徴情報、要素、ステップ又はアセンブリの存在を指すが、一つ以上の他の特徴情報、要素、ステップ又はアセンブリの存在又は付加を排除するものではないことを強調すべきである。 The term "inclusive/including" as used herein refers to the presence of a characteristic information, element, step or assembly, but excludes the presence or addition of one or more other characteristic information, elements, steps or assemblies. It should be emphasized that it is not
 以下の図面を参照して本発明の多くの方面をよりよく理解することができる。図面中の部材は、比例して描かれるものではなく、本発明の原理を示すためだけである。本発明のいくつかの部分を示したり説明したりしやすくするために、図面において対応する部分が拡大されたり、縮小されたりする可能性がある。本発明の一つの図面又は一つの実施形態に記載されている要素及び特徴情報は、一つ以上の他の図面又は実施形態に示されている要素及び特徴情報と組み合わせることができる。また、図面において、類似する符号は、いくつかの図面における対応する部材を示し、かつ、一つ以上の実施形態で使用される対応する部材を指示するために用いられることができる。図面において、
本発明の実施例1に係るサンプリング装置の制御方法のフローチャートである。 本発明の実施例1に係る目標領域内の環境分布状況を取得する方法のフローチャートである。 本発明の実施例1に係るサンプリング装置を移動させて地図領域を取得する方法のフローチャートである。 本発明の実施例1に係る目標領域内の環境分布状況を取得する別の方法のフローチャートである。 本発明の実施例1に係るステップ103を実現する方法のフローチャートである。 本発明の実施例1に係るステップ103を実現する別の方法のフローチャートである。 本発明の実施例1に係るサンプリング装置の制御方法の実施例のフローチャートである。 本発明の実施例2に係るサンプリング装置の構造図である。 本発明の実施例1に係るサンプリング装置の外観図である。 本発明の実施例1に係るサンプリング装置の上面図である。 図8に示すA-A線に沿ったサンプリング装置の断面図である。 本発明の実施例1に係るセット係止部材と第一収集管の分解構造図である。 本発明の実施例1に係るバルブアセンブリの構造図である。 本発明の実施例1に係る粒子状物質収集アセンブリの分解図である。 図8に示すA-A線に沿ったサンプリング装置の別の断面図である。 図8に示すA-A線に沿ったサンプリング装置のさらなる断面図である。 図8に示すA-A線に沿ったサンプリング装置のさらなる断面図である。 本発明の実施例3に係るサンプリングシステムの構造図である。 本発明の実施例3に係るサンプリングシステムの動作のフローチャートである。
Many aspects of the invention can be better understood with reference to the following drawings. The elements in the drawings are not drawn to scale and are only for illustrating the principles of the invention. Corresponding portions may be enlarged or reduced in the drawings to facilitate illustration and description of some portions of the present invention. Elements and feature information shown in one drawing or embodiment of the invention can be combined with elements and feature information shown in one or more other drawings or embodiments. Also, in the drawings, like reference numerals may be used to denote corresponding elements in the several drawings and to designate corresponding elements used in one or more embodiments. In the drawing:
4 is a flow chart of a control method for the sampling device according to the first embodiment of the present invention; Fig. 4 is a flow chart of a method for obtaining environment distribution in a target area according to Embodiment 1 of the present invention; Fig. 4 is a flow chart of a method of moving the sampling device to acquire a map area according to the first embodiment of the present invention; FIG. 4 is a flow chart of another method for obtaining environment distribution within a target area according to Embodiment 1 of the present invention; FIG. Fig. 4 is a flowchart of a method for implementing step 103 according to Embodiment 1 of the present invention; FIG. 4 is a flowchart of another method for implementing step 103 according to Embodiment 1 of the present invention; FIG. 4 is a flow chart of an embodiment of a sampling device control method according to Embodiment 1 of the present invention; FIG. 4 is a structural diagram of a sampling device according to Embodiment 2 of the present invention; 1 is an external view of a sampling device according to Example 1 of the present invention; FIG. 1 is a top view of a sampling device according to Example 1 of the present invention; FIG. FIG. 9 is a cross-sectional view of the sampling device taken along line AA shown in FIG. 8; FIG. 4 is an exploded structural view of a set locking member and a first collection tube according to Embodiment 1 of the present invention; 1 is a structural diagram of a valve assembly according to Embodiment 1 of the present invention; FIG. 1 is an exploded view of a particulate matter collection assembly according to Embodiment 1 of the present invention; FIG. FIG. 9 is another cross-sectional view of the sampling device taken along line AA shown in FIG. 8; 9 is a further cross-sectional view of the sampling device along line AA shown in FIG. 8; FIG. 9 is a further cross-sectional view of the sampling device along line AA shown in FIG. 8; FIG. FIG. 4 is a structural diagram of a sampling system according to Embodiment 3 of the present invention; 9 is a flow chart of the operation of the sampling system according to Example 3 of the present invention;
 以下、本発明の好適な実施形態について、図面を参照しながら説明する。
(実施例1)
 本発明の実施例1は、サンプリング装置の制御方法を提供する。図1は、本発明の実施例1に係るサンプリング装置の制御方法のフローチャートである。図1に示すように、該方法は、目標領域内の環境分布状況を取得するステップ101と、該目標領域内の環境分布状況に基づいて、該目標領域内の最適なサンプリング位置を特定するステップ102と、該最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動するステップ103と、を含む。
Preferred embodiments of the present invention will be described below with reference to the drawings.
(Example 1)
Embodiment 1 of the present invention provides a control method for a sampling device. FIG. 1 is a flow chart of a sampling device control method according to a first embodiment of the present invention. As shown in FIG. 1 , the method includes steps 101 of obtaining an environment profile within a target area, and identifying an optimal sampling location within the target area based on the environment profile within the target area. 102 and driving 103 the sampling device to move to the optimal sampling position and perform air sampling.
 このように、室内の実際の環境状況に基づいて、最適なサンプリング位置を特定するとともに、最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 In this way, based on the actual environmental conditions in the room, it is possible to identify the optimum sampling position and directly move to the optimum sampling position for sampling, thereby improving the reliability of the sampling result and the sampling efficiency. And, based on the distribution characteristics of different pollution sources in the environment, purposeful sampling of various pollution sources can be achieved, and sampling accuracy, flexibility and diversity can be achieved.
 本発明の実施例において、サンプリング装置の制御方法は、一つのコントローラにより実行されることができ、該コントローラは、サンプリング装置に設けられてもよく、別個の制御装置に設けられてもよく、また、クラウドのサーバに設けられてもよい。 In an embodiment of the present invention, the sampling device control method can be performed by a single controller, which may be provided in the sampling device or in a separate control device, and , may be provided on a cloud server.
 本発明の実施例において、目標領域とは、例えば、室内空間などのサンプリングされる目標領域を指す。 In an embodiment of the present invention, the target area refers to a sampled target area, such as an indoor space.
 例えば、目標領域は、室内のある部屋であり、又は、室内空間全体であってもよい。 For example, the target area may be a room in the room or the entire indoor space.
 本発明の実施例において、該サンプリング装置は、移動可能なサンプリング装置である。サンプリング装置の具体的な構造について、以下に詳しく説明する。 In an embodiment of the invention, the sampling device is a movable sampling device. A specific structure of the sampling device will be described in detail below.
 本発明の実施例において、該サンプリング装置は、様々なサンプルを収集することができ、例えば、該サンプリング装置のサンプリング対象は、空気中の様々なアレルゲン及び様々な有毒有害ガスのうちの少なくとも一種を含む。 In an embodiment of the present invention, the sampling device can collect various samples, for example, the sampling target of the sampling device is at least one of various allergens and various toxic and harmful gases in the air. include.
 例えば、サンプリング装置のサンプリング対象は、例えば、花粉、カビ及びダニなどの粒子状物質に付着したアレルゲンと、例えば、ホルムアルデヒド、VOCなどの空気中の有毒有害ガスと、を含む。 For example, the sampling targets of the sampling device include, for example, allergens adhering to particulate matter such as pollen, mold and mites, and toxic and harmful gases in the air such as formaldehyde and VOC.
 本発明の実施例において、目標領域内の環境分布状況は、サンプリング装置のサンプリング対象の分布に関連する環境パラメータの分布状況を含むことができる。 In an embodiment of the present invention, the environmental distribution within the target area can include the distribution of environmental parameters related to the distribution of sampling targets of the sampling device.
 例えば、目標領域内の環境分布状況は、該目標領域内の気流分布、温度分布及び湿度分布のうちの少なくとも一つを含む。 For example, the environment distribution status within the target area includes at least one of airflow distribution, temperature distribution, and humidity distribution within the target area.
 発明者らは、例えば、空気中のホルムアルデヒドに対して、温度が最も高い場合に、ホルムアルデヒドの放出量が最も大きいことと、空気中のVOCに対して、温度が15度~25度の間にある場合に、VOCの濃度の活躍度が最も大きく、この温度区間も最適なサンプリングの温度範囲及び位置であることと、空気中の粒子状物質に付着したダニに対して、湿度の影響が最も大きく、相対湿度が60%~80%に達する場合に、ダニが最も活発であることと、空気中の粒子状物質に付着したカビに対して、同じく湿度の影響が最も大きく、湿度が大きい場所ほど、カビの成長環境が最もよく、湿度が最も大きい位置は、カビを収集する最適な位置であることと、を発見した。 For example, for formaldehyde in air, the amount of formaldehyde emitted is highest at the highest temperature, and for VOCs in air, the temperature is between 15°C and 25°C. In some cases, the concentration of VOCs is most active, and this temperature interval is also the optimum temperature range and location for sampling, and the effect of humidity is the greatest on mites adhering to particulate matter in the air. Large, when the relative humidity reaches 60% to 80%, mites are most active, and on the mold attached to the particulate matter in the air, the effect of humidity is also the greatest, and the place where the humidity is high. We found that the location with the best mold growth environment and highest humidity was the best location to collect the mold.
 このように、環境要素を考慮に入れることにより、各汚染源の収集精度を向上させることができ、目標領域内の各汚染源に関する最大汚染程度を収集することができる。 In this way, by taking environmental factors into account, the collection accuracy of each pollution source can be improved, and the maximum pollution degree for each pollution source within the target area can be collected.
 以下、目標領域内の気流分布及び温度/湿度分布を取得することについて、それぞれ説明する。 Acquiring the airflow distribution and temperature/humidity distribution in the target area will be described below.
 図2は、本発明の実施例1に係る目標領域内の環境分布状況を取得する方法のフローチャートである。図2に示すように、該方法は、目標領域の地図情報を取得するステップ201と、該目標領域の地図情報に基づいて、該目標領域内の気流分布を特定するステップ202と、を含む。 FIG. 2 is a flow chart of a method for acquiring the environment distribution status within the target area according to the first embodiment of the present invention. As shown in FIG. 2, the method includes steps 201 of obtaining map information of a target area, and steps 202 of determining airflow distribution within the target area based on the map information of the target area.
 本発明の実施例において、目標領域の地図情報は、例えば、現在領域の間取り、家具及び家庭用品等の障害物の分布情報を含む目標領域の平面図である。 In the embodiment of the present invention, the map information of the target area is a plan view of the target area including, for example, the floor plan of the current area, and the distribution information of obstacles such as furniture and household items.
 このように、例えば、気流分布に基づいて気密性の高い位置を特定し、すなわち、自然風シミュレーションを経た後、遮蔽による通風不順な位置が現れ、この位置の汚染源も外部からの影響が最も小さい場所である。したがって、該位置で汚染源のサンプルを収集すれば、実際の目標領域に最も近い汚染源の最大含有量を収集することができ、それにより、収集精度をさらに向上させる。 In this way, for example, a location with high airtightness is specified based on the airflow distribution, that is, after passing through the natural wind simulation, a location with poor ventilation due to shielding appears, and the pollution source at this location is also the least affected by the outside. It's the place. Therefore, collecting a sample of the contaminant at that location allows the collection of the maximum content of the contaminant closest to the actual target area, thereby further improving collection accuracy.
 ステップ201において、様々な方法に基づいて目標領域の地図情報を取得することができ、例えば、ユーザ又は不動産デベロッパーは、該地図情報を提供し、又は、サンプリング装置を移動させて位置情報を取得することにより地図情報を確立することもできる。 In step 201, the map information of the target area can be obtained according to various methods, for example, the user or the property developer provides the map information, or moves the sampling device to obtain the location information. Map information can also be established by
 図3は、本発明の実施例1に係るサンプリング装置を移動させて地図領域を取得する方法のフローチャートである。図3に示すように、該方法は、サンプリング装置を移動させて目標領域を周回するとともに、移動位置決めを行うステップ301と、目標領域の位置情報を取得するステップ302と、該位置情報に基づいて、目標領域の平面図を確立するステップ303と、を含む。 FIG. 3 is a flow chart of a method of moving the sampling device to acquire a map area according to the first embodiment of the present invention. As shown in FIG. 3, the method includes the step 301 of moving the sampling device to circle the target area and performing movement positioning, the step 302 of obtaining the position information of the target area, and based on the position information, , and a step 303 of establishing a plan view of the target area.
 ステップ202において、該目標領域の地図情報に基づいて、該目標領域内の気流分布を特定する。 At step 202, the airflow distribution within the target area is identified based on the map information of the target area.
 例えば、該目標領域の地図情報を第一シミュレーションモジュール又は第一機械学習モジュールに入力し、該目標領域内の気流分布図を出力する。 For example, the map information of the target area is input to the first simulation module or the first machine learning module, and the airflow distribution map within the target area is output.
 例えば、該第一シミュレーションモジュールは、例えば、数値流体力学(CFD、Computational Fluid Dynamics)シミュレーションモデルなどの様々なシミュレーションモデルであってもよい。 For example, the first simulation module may be various simulation models such as a Computational Fluid Dynamics (CFD) simulation model.
 該第一機械学習モジュールは、例えば、サポートベクターマシン(SVM)モデル又は畳み込みニューラルネットワーク(CNN)モデルなどの様々なタイプの機械学習に基づくモデルであってもよい。 The first machine learning module may be, for example, a model based on various types of machine learning, such as a support vector machine (SVM) model or a convolutional neural network (CNN) model.
 図4は、本発明の実施例1に係る目標領域内の環境分布状況を取得する別の方法のフローチャートである。図4に示すように、該方法は、目標領域内の温度及び/又は湿度データを収集するステップ401と、目標領域の地図情報を取得するステップ402と、該目標領域内の温度及び/又は湿度データ及び該目標領域の地図情報に基づいて、該目標領域内の温度分布及び/又は湿度分布を特定するステップ403と、を含む。 FIG. 4 is a flow chart of another method for obtaining the environment distribution situation within the target area according to the first embodiment of the present invention. As shown in FIG. 4, the method includes step 401 of collecting temperature and/or humidity data within a target area, step 402 of obtaining map information of the target area, and temperature and/or humidity data within the target area. determining 403 the temperature and/or humidity distribution within the target area based on the data and map information of the target area.
 このように、現在の温度及び/又は湿度データに対応し、異なる汚染源分布に対応することができることにより、異なる制御ポリシーを対応して調整する。すなわち、実際の温度及び/又は湿度データに対して、異なる場所で異なる汚染物のサンプリングを行うと、サンプリングの目的性をより強くし、サンプリング効果がよりよくなる。 In this way, different control policies can be adjusted accordingly by being able to respond to current temperature and/or humidity data and respond to different pollution source distributions. That is, sampling different contaminants at different locations for the actual temperature and/or humidity data makes the sampling more purposeful and the sampling effect better.
 ステップ401において、目標領域内の温度及び/又は湿度データを収集することは、様々な方法で取得することができる。例えば、サンプリング装置に温度センサ及び/又は湿度センサを設け、サンプリング装置を移動させることにより、目標領域内の複数の位置の温度及び/又は湿度データを取得する。 Collecting temperature and/or humidity data within the target area in step 401 can be obtained in a variety of ways. For example, the sampling device may be provided with a temperature sensor and/or a humidity sensor, and the sampling device may be moved to acquire temperature and/or humidity data at multiple locations within the target area.
 このように、室内にセンサを別途配置する必要がなく、簡単な構造によりデータ収集の機能を実現することができ、さらにコストが低減する。 In this way, there is no need to install a separate sensor in the room, the data collection function can be realized with a simple structure, and the cost is further reduced.
 ステップ402において、目標領域の地図情報を取得する具体的な方法は、ステップ201の実施を参照することができ、ここでは詳しい説明を省略する。 The specific method of obtaining the map information of the target area in step 402 can refer to the implementation of step 201 and will not be described in detail here.
 ステップ403において、該目標領域内の温度及び/又は湿度データ及び該目標領域の地図情報に基づいて、該目標領域内の温度分布及び/又は湿度分布を特定する。 At step 403, the temperature distribution and/or humidity distribution within the target area is identified based on the temperature and/or humidity data within the target area and the map information of the target area.
 例えば、該目標領域内の温度及び/又は湿度データ及び該目標領域の地図情報を第二シミュレーションモジュール又は第二機械学習モジュールに入力し、該目標領域内の温度分布図及び/又は湿度分布図を出力する。 For example, temperature and/or humidity data within the target area and map information of the target area are input to a second simulation module or a second machine learning module, and a temperature distribution map and/or humidity distribution map within the target area is generated. Output.
 例えば、該第二シミュレーションモジュールは、例えば、数値流体力学(CFD)シミュレーションモデルなどの様々なシミュレーションモデルであってもよい。 For example, the second simulation module may be various simulation models such as a computational fluid dynamics (CFD) simulation model.
 例えば、該第二機械学習モジュールは、例えば、サポートベクターマシン(SVM)モデル又は畳み込みニューラルネットワーク(CNN)モデルなどの様々なタイプの機械学習に基づくモデルであってもよい。 For example, the second machine learning module may be a model based on various types of machine learning, such as a support vector machine (SVM) model or a convolutional neural network (CNN) model.
 該目標領域内の環境分布状況を取得した後、ステップ102において、該目標領域内の環境分布状況に基づいて、該目標領域内の最適なサンプリング位置を特定する。 After obtaining the environmental distribution within the target area, in step 102, based on the environmental distribution within the target area, the optimal sampling position within the target area is identified.
 例えば、ステップ102において、該目標領域内の環境分布状況を第三機械学習モデルに入力し、該目標領域内の最適なサンプリング位置を出力する。 For example, in step 102, the environment distribution situation within the target area is input to the third machine learning model, and the optimal sampling position within the target area is output.
 例えば、該第三機械学習モジュールは、例えば、サポートベクターマシン(SVM)モデル又は畳み込みニューラルネットワーク(CNN)モデルなどの様々なタイプの機械学習に基づくモデルであってもよい。 For example, the third machine learning module may be a model based on various types of machine learning, such as a support vector machine (SVM) model or a convolutional neural network (CNN) model.
 また、例えば、ステップ102において、該目標領域内の環境分布状況と予め確立されたルックアップテーブルに基づいて、該目標領域内の最適なサンプリング位置を特定する。 Also, for example, in step 102, the optimal sampling position within the target area is identified based on the environment distribution situation within the target area and a pre-established lookup table.
 本発明の実施例において、ステップ102において、最適なサンプリング位置を取得する以外に、さらに、該目標領域内の環境分布状況に基づいて、該最適なサンプリング位置に対応する汚染源の種類を特定することができる。 In an embodiment of the present invention, in addition to obtaining the optimal sampling location in step 102, further identifying the type of pollution source corresponding to the optimal sampling location according to the environmental distribution in the target area. can be done.
 このように、特定した位置で目的に合ったサンプリングを行うことができ、サンプリング効率及びサンプリング正確性をさらに向上させる。 In this way, it is possible to perform purposeful sampling at a specified position, further improving sampling efficiency and sampling accuracy.
 例えば、CFDシミュレーションモデルにより出力された目標領域内の気流分布、又は、温度分布及び/又は湿度分布は、異なる色により示され、例えば、異なる色は、数値が異なる領域及び位置を示す。例えば、予め確立されたルックアップテーブルにおいて、温度及び/又は湿度をサンプリング対象に対応付ける。 For example, the airflow distribution, temperature distribution and/or humidity distribution in the target area output by the CFD simulation model are indicated by different colors, for example, different colors indicate areas and positions with different numerical values. For example, a pre-established lookup table maps temperature and/or humidity to what is sampled.
 このように、どの位置でどのようなサンプルを収集するかを簡単で便利に特定することができることによって、低コストでサンプリングの目的性及び正確性を実現する。 In this way, it is possible to easily and conveniently specify what kind of sample is to be collected at which position, thereby realizing the purposefulness and accuracy of sampling at low cost.
 本発明の実施例において、例えば、図1に示すように、該方法は、該目標領域内の最適なサンプリング位置及び該目標領域の地図情報に基づいて、該最適なサンプリング位置に移動する経路を特定するステップ104をさらに含むことができる。 In an embodiment of the present invention, for example, as shown in FIG. 1, the method determines a route to travel to the optimal sampling location based on the optimal sampling location within the target area and map information of the target area. A step of identifying 104 may further be included.
 例えば、該経路は、該目標領域内の障害物を避けて該最適なサンプリング位置に達する最短経路である。 For example, the path is the shortest path that avoids obstacles in the target area and reaches the optimal sampling position.
 このように、サンプリングの効率をさらに向上させることができる。 In this way, the efficiency of sampling can be further improved.
 それに応じて、ステップ103において、特定された経路に従って、該最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動する。 Accordingly, in step 103, drive the sampling device to follow the identified path to move to the optimum sampling position for air sampling.
 図5は、本発明の実施例1に係るステップ103を実現する方法のフローチャートである。図5に示すように、該方法は、該最適なサンプリング位置に移動させるようにサンプリング装置を駆動するステップ501と、少なくとも二種類の汚染源を時分割でサンプリングするように該サンプリング装置を制御し、ここに、異なる時間帯に異なる汚染源をサンプリングするステップ502と、を含む。 FIG. 5 is a flow chart of a method for implementing step 103 according to the first embodiment of the present invention. As shown in FIG. 5, the method includes step 501 of driving a sampling device to move to the optimal sampling position; controlling the sampling device to time-divisionally sample at least two types of pollution sources; and sampling 502 different pollution sources at different times.
 例えば、異なる時間帯に、該サンプリング装置は、異なるサンプル収集部材を切り替えて用いて、異なる汚染源をサンプリングする。すなわち、該サンプリング装置は、異なる汚染源をサンプリングする複数のサンプル収集部材を有する。 For example, at different times, the sampling device switches between different sample collection members to sample different contamination sources. That is, the sampling device has multiple sample collection members for sampling different sources of contamination.
 このように、最適なサンプリング位置が一つである場合に対して、時分割サンプリングにより、異なる汚染源からのサンプルを収集することができる。 In this way, samples from different contamination sources can be collected by time-division sampling, as opposed to the case where there is one optimal sampling position.
 本発明の実施例において、サンプル収集部材は、少なくとも一つの粒子状物質収集アセンブリ及び少なくとも一つのガス収集アセンブリを含むことができる。 In embodiments of the invention, the sample collection member can include at least one particulate matter collection assembly and at least one gas collection assembly.
 図6は、本発明の実施例1に係るステップ103を実現する別の方法のフローチャートである。図6に示すように、該方法は、少なくとも二つの最適なサンプリング位置に順次移動するようにサンプリング装置を駆動するステップ601と、異なる最適なサンプリング位置で異なる汚染源をサンプリングするように該サンプリング装置を制御するステップ602と、を含む。 FIG. 6 is a flowchart of another method for implementing step 103 according to Embodiment 1 of the present invention. As shown in FIG. 6, the method includes step 601 of driving the sampling device to sequentially move to at least two optimal sampling locations; and a controlling step 602 .
 例えば、異なる最適なサンプリング位置で、該サンプリング装置は、異なるサンプル収集部材を切り替えて用いて、異なる汚染源をサンプリングする。すなわち、該サンプリング装置は、異なる汚染源をサンプリングする複数のサンプル収集部材を有する。 For example, at different optimal sampling positions, the sampling device switches between different sample collection members to sample different contamination sources. That is, the sampling device has multiple sample collection members for sampling different sources of contamination.
 このように、異なる汚染源に対応する複数の最適なサンプリング位置を有する状況に対して、各最適なサンプリング位置に順次移動することにより、異なる汚染源からのサンプルを収集することができる。 Thus, for situations with multiple optimal sampling locations corresponding to different contamination sources, samples from different contamination sources can be collected by sequentially moving to each optimal sampling location.
 ステップ103において、さらに、該サンプリング装置が最適なサンプリング位置に移動した後で、予め設定されたサンプリング高さに調整され、空気サンプリングを行うように該サンプリング装置を制御してもよい。 In step 103, after the sampling device is moved to the optimal sampling position, it may be adjusted to a preset sampling height and control the sampling device to perform air sampling.
 本発明の実施例において、サンプリング装置に対する高さの調整は、ユーザにより実行されてもよく、サンプリング装置により自動的に実行されてもよい。 In embodiments of the present invention, height adjustments to the sampling device may be performed by the user or automatically by the sampling device.
 本発明の実施例において、該予め設定された高さは、実際の状況に応じて設定されることができる。例えば、該予め設定された高さは、1~1.5メートルの範囲内の数値である。 In the embodiment of the present invention, the preset height can be set according to the actual situation. For example, the preset height is a number in the range of 1-1.5 meters.
 このように、地面塵埃の影響を受けることを回避することができると同時に、サンプリングの正確性を確保することができる。 In this way, it is possible to avoid being affected by ground dust and at the same time ensure the accuracy of sampling.
 本発明の実施例において、図1に示すように、該方法は、該サンプリング装置によるサンプリングが終了した後で、オンサイトでサンプルを持ち去るための物流オーダーを生成するステップ105と、該サンプリング装置により収集されたサンプルの検出データを取得するステップ106と、該検出データに基づいて検出報告を生成するとともに、該検出報告をサーバに送信する又は公開するステップ107と、をさらに含むことができる。 In an embodiment of the present invention, as shown in FIG. 1, the method includes steps 105 of generating a logistics order for removing samples on-site after sampling by the sampling device is finished; It can further include steps 106 of obtaining detection data for the collected sample, and generating 107 a detection report based on the detection data and transmitting or publishing the detection report to a server.
 このように、検出報告を効率的に生成することができることにより、ユーザ又は公衆は、検出結果及び他の有用な情報をタイムリーに取得することができる。 By being able to generate detection reports efficiently in this way, users or the public can obtain detection results and other useful information in a timely manner.
 本発明の実施例において、例えば、該検出報告の公開内容は、温湿度、CO2、ホルムアルデヒド、VOC、PM2.5、カビ、花粉及びダニ、及び動物の毛髪に対応するデータ、及びいくつかの対応する改善提案であり、改善提案は、アレルゲン及び有害ガスを迅速に除去する方式を含むだけでなく、一連の製品及び解決手段を含むことができる。 In an embodiment of the present invention, for example, the published content of the detection report includes data corresponding to temperature and humidity, CO2, formaldehyde, VOC, PM2.5, mold, pollen and mites, and animal hair, and some corresponding The improvement proposals can include a range of products and solutions as well as methods for rapidly removing allergens and harmful gases.
 図7は、本発明の実施例1に係るサンプリング装置の制御方法の実施例のフローチャートである。図7に示すように、該方法は、サンプリング装置をオンにするように制御するステップ701と、目標領域内の環境分布状況を取得するステップ702と、該目標領域内の環境分布状況に基づいて、該目標領域内の最適なサンプリング位置を特定するステップ703と、コントローラにより最適なサンプリング位置に到達するようにサンプリング装置を制御するステップ704と、コントローラにより高さを調整するようにサンプリング装置を制御するとともに、サンプリング時間を指定するステップ705と、少なくとも二種類のアレルゲン(粒子状物質)サンプルを収集するとともに、少なくとも二種類のガスサンプルを収集するステップ706と、サンプルの収集が終了した後で、物流オーダーを生成し、オンサイトでサンプルを持ち去るステップ707と、少なくとも二種類のアレルゲン(粒子状物質)サンプル及び少なくとも二種類のガスサンプルの検出データを取得するステップ708と、検出データに基づいて報告を生成するとともに、クライアントに開示するステップ709と、を含む。 FIG. 7 is a flow chart of an embodiment of a sampling device control method according to Embodiment 1 of the present invention. As shown in FIG. 7, the method includes step 701 of controlling to turn on a sampling device, step 702 of obtaining environmental distribution within the target area, and based on the environmental distribution within the target area, , step 703 of identifying the optimal sampling position within the target area, step 704 of controlling the sampling device to reach the optimal sampling position by the controller, and step 704 of controlling the sampling device to adjust the height by the controller. and step 705 of specifying a sampling time, step 706 of collecting at least two allergen (particulate matter) samples and collecting at least two gas samples, and after collecting the samples, Step 707 of generating a logistics order and taking away samples on-site; Step 708 of obtaining detection data for at least two allergen (particulate matter) samples and at least two gas samples; and reporting based on the detection data. and a step 709 of generating and presenting to the client.
 本発明の実施例において、該コントローラは、例えば、サンプリング装置のコントローラであり、別個に設けられたコントローラであってもよく、クラウドサーバに設けられたコントローラであってもよい。 In an embodiment of the present invention, the controller is, for example, the controller of the sampling device, may be a controller provided separately, or may be a controller provided in the cloud server.
 上記の実施例によりわかるように、室内の実際の環境状況に基づいて、最適なサンプリング位置を特定するとともに、最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 As can be seen from the above examples, based on the actual environmental conditions in the room, the optimum sampling position is specified, and the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency. can be improved, and based on the environmental distribution characteristics of different pollution sources, it is possible to achieve targeted sampling for various pollution sources, and achieve sampling accuracy, flexibility and versatility.
(実施例2)
 本発明の実施例2は、実施例1に記載の制御方法の制御対象であるサンプリング装置を提供し、関連内容は、実施例1に記載の方法の実施を参照することができ、同じ内容または内容の関連するところについて、繰返して説明しない。
(Example 2)
Embodiment 2 of the present invention provides a sampling device that is the controlled object of the control method described in Embodiment 1, and the relevant content can refer to the implementation of the method described in Embodiment 1, the same content or Relevant parts of the content will not be repeated.
 図8は、本発明の実施例2に係るサンプリング装置の構造図であり、図8に示すように、サンプリング装置800は、移動部801と装置本体部802と、を含み、移動部801は、制御命令に基づいて、目標領域内の最適なサンプリング位置に移動して、空気サンプリングを行うように該装置本体部を駆動し、該最適なサンプリング位置は、該目標領域内の環境分布状況に基づいて特定される。 FIG. 8 is a structural diagram of a sampling device according to Embodiment 2 of the present invention. As shown in FIG. 8, a sampling device 800 includes a moving unit 801 and a device main unit 802. driving the apparatus body to perform air sampling by moving to an optimum sampling position within a target area according to a control command, wherein the optimum sampling position is based on the environmental distribution situation within the target area; identified by
 このように、室内の実際の環境状況に基づいて、最適なサンプリング位置を特定するとともに、最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 In this way, based on the actual environmental conditions in the room, it is possible to identify the optimum sampling position and directly move to the optimum sampling position for sampling, thereby improving the reliability of the sampling result and the sampling efficiency. And, based on the distribution characteristics of different pollution sources in the environment, purposeful sampling of various pollution sources can be achieved, and sampling accuracy, flexibility and diversity can be achieved.
 本発明の実施例において、該サンプリング装置は、様々なサンプルを収集することができ、例えば、該サンプリング装置のサンプリング対象は、空気中の様々なアレルゲン及び様々な有毒有害ガスのうちの少なくとも一種を含む。 In an embodiment of the present invention, the sampling device can collect various samples, for example, the sampling target of the sampling device is at least one of various allergens and various toxic and harmful gases in the air. include.
 例えば、サンプリング装置のサンプリング対象は、例えば、花粉、カビ及びダニなどの粒子状物質に付着したアレルゲンと、例えば、ホルムアルデヒド、VOCなどの空気中の有毒有害ガスと、を含む。 For example, the sampling targets of the sampling device include, for example, allergens adhering to particulate matter such as pollen, mold and mites, and toxic and harmful gases in the air such as formaldehyde and VOC.
 本発明の実施例において、移動部801は、サンプリング装置を移動するように駆動することができる様々な移動構造であってもよい。例えば、図8に示すように、移動部801は、ホイールを含み、それは牽引力を伝達する。これにより、サンプリング装置800は、目標領域内に、例えば、直線走行、旋回、回転、加速、減速、停止等の様々な移動動作を行うことができる。 In embodiments of the present invention, the moving part 801 may be various moving structures that can be driven to move the sampling device. For example, as shown in FIG. 8, moving portion 801 includes wheels, which transmit traction. As a result, the sampling device 800 can perform various moving operations such as straight running, turning, rotating, accelerating, decelerating, and stopping within the target area.
 図9は、本発明の実施例1に係るサンプリング装置の外観図である。図9に示すように、サンプリング装置800は、該移動部801と該装置本体部802が内部に置かれる包装箱803をさらに含み、該包装箱803には、ハンドル804が設けられている。 FIG. 9 is an external view of the sampling device according to Example 1 of the present invention. As shown in FIG. 9, the sampling device 800 further includes a packaging box 803 in which the moving part 801 and the device main body 802 are placed, and the packaging box 803 is provided with a handle 804 .
 このように、サンプリング装置の携帯性及び信頼性を向上させることができ、例えば、包装箱があれば、レンタル又はユーザへの販売が便利になり、かつ、輸送過程において保護作用を果たすことができるほか、装置が小さくて精巧である。 In this way, the portability and reliability of the sampling device can be improved, for example, a packaging box can facilitate rental or sale to users, and can provide protection during the transportation process. In addition, the device is small and sophisticated.
 図8に示すように、該装置本体部802は、ケース805と、吸気通路及び排気通路を含み、かつ該ケース内に埋め込まれて設けられるガス通路806と、該ガス通路806の入口807に設けられ、空気中の粒子状物質を収集するための粒子状物質収集アセンブリ(図8に不図示)と、該ガス通路内に設けられ、空気中のガスサンプルを収集するためのガス収集アセンブリ808と、該ガス通路内に設けられ、空気動力を提供するためのファン809と、電力を供給する電池と、該サンプリング装置の動作状態及び移動を制御するコントローラ811と、を含む。 As shown in FIG. 8, the apparatus body 802 includes a case 805, an intake passage and an exhaust passage, a gas passage 806 embedded in the case, and an inlet 807 of the gas passage 806. a particulate collection assembly (not shown in FIG. 8) for collecting airborne particulate matter and a gas collection assembly 808 disposed within the gas passage for collecting airborne gas samples; , is mounted in the gas passage and includes a fan 809 for providing pneumatic power, a battery for powering, and a controller 811 for controlling the operating state and movement of the sampling device.
 このように、アレルゲンの付着した粒子状物質及びガスを同時に収集することができるとともに、粒子状物質収集アセンブリ及びガス収集アセンブリが同一のガス通路内に設けられ、サンプリングが多様化になりながら、体積を小さくする。なお、ガス通路の入口に粒子状物質を収集することによって、ガス通路の内部を二次汚染して、ガスサンプリングの結果に影響を与えることを回避する。 In this way, allergen-laden particulate matter and gas can be collected simultaneously, and the particulate matter collection assembly and the gas collection assembly are provided in the same gas passageway to diversify the sampling while increasing the volume. to be smaller. In addition, collecting particulate matter at the inlet of the gas passage avoids cross-contamination of the inside of the gas passage and affecting the results of gas sampling.
 例えば、ケース805は、上部ケース、下部ケース及び二つの側部ケースを含むことができる。該上部ケースは、第一サブケースと、第二サブケースと、第三サブケースとを含む。該第一サブケースは、ケースの上面であり、第一サブケースの一端は、第二サブケースにシームレスに接続され、他端は、該第二サブケースと相対的に平行に設けられる第三ケースにシームレスに接続される。該第一サブケースは、該第二サブケースと第三サブケースに垂直であり、二つのサブケースは前記上部ケースに摺動可能に接続される。組み立てられた上部ケースと下部ケースは組み合わせられてサンプリング装置を形成する。 For example, the case 805 can include an upper case, a lower case and two side cases. The upper case includes a first subcase, a second subcase and a third subcase. The first sub-case is the upper surface of the case, one end of the first sub-case is seamlessly connected to the second sub-case, and the other end is relatively parallel to the second sub-case. Connects seamlessly to the case. The first sub-case is perpendicular to the second and third sub-cases, and the two sub-cases are slidably connected to the upper case. The assembled upper case and lower case are combined to form a sampling device.
 本発明の実施例において、ガス通路806は、一つの入口807を有してもよく、又は、図8に示すように、左右の二つの入口807を有してもよい。 In embodiments of the present invention, the gas passage 806 may have one inlet 807, or may have two inlets 807, left and right, as shown in FIG.
 本発明の実施例において、ガス通路806は、一つの吸気通路のみを含むことができ、フィルタを切り替えることにより異なる汚染源(例えば、アレルゲン)が付着した粒子状物質を収集する。 In an embodiment of the present invention, the gas passageway 806 may include only one intake passageway, which collects particulate matter with different contaminant sources (eg, allergens) by switching filters.
 図10は、本発明の実施例1に係るサンプリング装置の上面図である。図10に示すように、該ガス通路806は、一つの吸気通路のみを含み、該吸気通路は、該排気通路に接続され、粒子状物質収集アセンブリは、少なくとも二つのフィルタ812、回転ディスク813及び回転軸(不図示)を含み、該少なくとも二つのフィルタ812は、該回転ディスク813内に設けられるとともに、同一の水平面に位置し、かつ、そのうちの一つのフィルタを該吸気通路内に位置させるように該回転軸を中心として回転することができる。 FIG. 10 is a top view of the sampling device according to Example 1 of the present invention. As shown in FIG. 10, the gas passageway 806 includes only one intake passageway, which is connected to the exhaust passageway, and the particulate collection assembly includes at least two filters 812, rotating discs 813 and Including a rotating shaft (not shown), the at least two filters 812 are mounted within the rotating disk 813 and positioned in the same horizontal plane, one of which is positioned within the intake passage. can be rotated about the axis of rotation.
 このように、一つの吸気通路及び吸気口のみを設けることで、サンプリング装置の体積を最大限に減少させることができ、構造を小さくした上で多様化検出を実現する。粒子状物質に付着した対応するアレルゲンを収集する必要がある場合、ケースの上表面のノブを回転させ、対応して収集するサンプルフィルタを吸気口に回転させれば収集することができる。体積を小さくした上で、さらにより多様な検出を実現する。 In this way, by providing only one intake passage and intake port, the volume of the sampling device can be reduced to the maximum, realizing diversified detection while reducing the structure. When the corresponding allergen attached to the particulate matter needs to be collected, it can be collected by rotating the knob on the top surface of the case and correspondingly turning the collecting sample filter to the air inlet. It realizes even more diverse detection after reducing the volume.
 図11は、図8に示すA-A線に沿ったサンプリング装置の断面図である。図11に示すように、該ガス通路806は、一つの吸気通路のみを含み、該吸気通路は、該排気通路に接続され、該粒子状物質収集アセンブリは、少なくとも二つのプッシュプルロッド及び少なくとも二つのフィルタ812を含み、該少なくとも二つのプッシュプルロッドのうちの一つのプッシュプルロッドは、該少なくとも二つのフィルタ812のうちの一つのフィルタを該吸気通路内に押し込む。 FIG. 11 is a cross-sectional view of the sampling device taken along line AA shown in FIG. As shown in FIG. 11, the gas passageway 806 includes only one intake passageway, which is connected to the exhaust passageway, and the particulate collection assembly includes at least two push-pull rods and at least two A filter 812 is included and one of the at least two push-pull rods pushes one of the at least two filters 812 into the intake passage.
 このように、体積を小さくした上で、騒音を低減すると同時に、サンプリング精度を向上させることができる。 In this way, it is possible to reduce the volume, reduce noise, and improve the sampling accuracy.
 本発明の実施例において、例えば、該吸気通路の側壁にセット溝が開けられ、該ガス収集アセンブリは、少なくとも二つの収集管を含み、該少なくとも二つの収集管は、該吸気通路内にそれぞれ設けられ、一端が該セット溝内に固定され、他端が該吸気通路内に挿入される。 In an embodiment of the present invention, for example, the side wall of the intake passage is set grooved, the gas collection assembly includes at least two collection tubes, the at least two collection tubes respectively disposed within the intake passage. one end is fixed in the set groove and the other end is inserted in the intake passage.
 例えば、該少なくとも二つの収集管は、該吸気通路内に平行に設けられ、該収集管は、端部が該セット溝に固定接続される収集部材と、該収集部材内に固定され、サンプルを収集するための検出コアとを含む。 For example, the at least two collection tubes are provided in parallel within the intake passage, the collection tubes comprising a collection member fixedly connected at its end to the set groove, and a collection member fixed within the collection member to collect the sample. and a detection core for collecting.
 このように、収集管は、着脱可能な操作を実現することにより、サンプリングしやすくなるとともに、全過程で外部要素の介入がなく、手が直接接触して、収集管内のサンプルを交差して汚染して検出結果に影響を与えることを回避する。 In this way, the collection tube realizes detachable operation, which facilitates sampling, and the whole process does not involve the intervention of external elements, and the hand directly touches to cross and contaminate the sample in the collection tube. to avoid affecting detection results.
 本発明の実施例において、セット溝にセット係止部材をさらに設けることができ、該少なくとも二つの収集管は、第一収集管を含む。 In an embodiment of the present invention, a set locking member can be further provided in the set groove, and the at least two collection tubes include a first collection tube.
 図12は、本発明の実施例1に係るセット係止部材と第一収集管の分解構造図である。 FIG. 12 is an exploded structural view of the set locking member and the first collection tube according to the first embodiment of the present invention.
 図12に示すように、該第一収集管814の端部外側に雄ネジ815を有し、該セット係止部材816内に雌ネジ817が設けられ、該第一収集管814がセット係止部材816内に螺合される。 As shown in FIG. 12, the first collection tube 814 has a male thread 815 on the outside of the end thereof, and a female thread 817 is provided in the set locking member 816 so that the first collection tube 814 can be set locking. Threaded into member 816 .
 なお、該少なくとも二つの収集管は、該セット係止部材816内に係止される第二収集管818をさらに含むことができる。 It should be noted that the at least two collection tubes can further include a second collection tube 818 locked within the set locking member 816 .
 このように、第一収集管とセット係止部材は、螺着固定され、サンプリング装置の強風又は動作による振動に伴って脱落することなく、固定が安定する。 In this way, the first collection tube and the set locking member are screwed and fixed, and the fixation is stable without falling off due to vibration due to strong wind or operation of the sampling device.
 なお、取り外しをより便利で迅速にするために、係止設置してもよい。 In addition, in order to make removal more convenient and quick, it may be installed with a lock.
 本発明の実施例において、該吸気通路の入口にバルブアセンブリが設けられてもよい。 In an embodiment of the present invention, a valve assembly may be provided at the inlet of the intake passage.
 図13は、本発明の実施例1に係るバルブアセンブリの構造図である。図13に示すように、バルブアセンブリは、カバープレート819と、自動折り畳み構造820とを含み、ここに、該自動折り畳み構造820は、モータ及び折り畳みアームを含み、該カバープレート819は、該モータにより折り畳みアームを駆動するにつれて、吸気通路をカバーする又は吸気通路を開いたりする。 FIG. 13 is a structural diagram of a valve assembly according to Example 1 of the present invention. As shown in FIG. 13, the valve assembly includes a cover plate 819 and a self-folding structure 820, wherein the self-folding structure 820 includes a motor and a folding arm, and the cover plate 819 is actuated by the motor. As the folding arms are driven, they cover or open the intake passage.
 本発明の実施例において、カバープレート819の数は、吸気通路の入口の数に適応し、すなわち、一つのカバープレート819は、一本の吸気通路をカバーする。 In an embodiment of the present invention, the number of cover plates 819 is adapted to the number of intake passage inlets, ie one cover plate 819 covers one intake passage.
 このように、サンプリング装置が動作しない場合、サンプリングされるサンプルが外部汚染源から影響を受けないように保護すると同時に、吸気通路が汚染されないように保護することができる。 In this way, when the sampling device is not in operation, it is possible to protect the sample to be sampled from being affected by external sources of contamination and at the same time protect the intake passage from contamination.
 また、カバープレート819の上面は、ケース805の上面と面一であってもよい。これにより、サンプリング装置全体の体積がより小さく、より携帯しやすい。 Also, the top surface of the cover plate 819 may be flush with the top surface of the case 805 . This makes the overall sampling device smaller in volume and more portable.
 本発明の実施例において、該装置本体部802は、クラウドのサーバと通信する通信モジュール(不図示)をさらに含むことができる。 In an embodiment of the present invention, the device main unit 802 can further include a communication module (not shown) that communicates with a cloud server.
 このように、サンプリング装置と外部とのデータ伝送を実現することができる。 In this way, data transmission between the sampling device and the outside can be realized.
 なお、クラウドのサーバは、疲労度及び快適さをさらに算出して、該通信モジュールにより表示スクリーンに伝送することができる。 In addition, the cloud server can further calculate the degree of fatigue and comfort and transmit it to the display screen by the communication module.
 本発明の実施例において、例えば、該吸気通路の入口に、落込溝が設けられ、該粒子状物質収集アセンブリは、該落込溝内に設けられる。 In an embodiment of the present invention, for example, a drop groove is provided at the inlet of the intake passage, and the particulate matter collection assembly is provided within the drop groove.
 図14は、本発明の実施例1に係る粒子状物質収集アセンブリの分解図である。図14に示すように、粒子状物質収集アセンブリは、上部押圧シート821と下部押圧シート822とを含み、中央にフィルタ(図14に不図示)を含む。 FIG. 14 is an exploded view of the particulate matter collection assembly according to Example 1 of the present invention. As shown in FIG. 14, the particulate collection assembly includes an upper pressure sheet 821 and a lower pressure sheet 822 with a central filter (not shown in FIG. 14).
 このように、フィルタをよりよく固定し、粒子状物質をよりよく収集することができる。 In this way, the filter can be better fixed and particulate matter can be better collected.
 又は、フィルタの本体を粒子状物質の粒径に応じて直接階層化することができ、かつ、フィルタを取り外すことができる。例えば、第一層は、フィルタにより粒径が大きい粒子状物質を収集し、第二層は、粒径が小さい粒子状物質を収集する。このように、全ての粒子状物質がいずれも一つのフィルタに収集されることを回避し、階層化のサンプリングを行い、さらにサンプリング装置の体積を小さくすることができる。 Alternatively, the body of the filter can be directly layered according to the particle size of the particulate matter, and the filter can be removed. For example, a first layer collects particulate matter with a large particle size through a filter, and a second layer collects particulate matter with a small particle size. In this way, it is possible to avoid collecting all the particulate matter in one filter, achieve stratified sampling, and further reduce the volume of the sampling device.
 本発明の実施例において、該排気通路は、該吸気通路と互いに垂直して設けられてもよい。 In an embodiment of the present invention, the exhaust passage and the intake passage may be provided perpendicular to each other.
 このように、垂直して接続されることにより、吸気通路と排気通路の接続箇所に一つのコーナーがあり、コーナーに大きな空間が形成されると、サンプリング装置の体積が縮小する。また、この空間は、空気を緩衝し、騒音を低減する。 By connecting them vertically in this way, there is one corner at the connection point of the intake passage and the exhaust passage, and if a large space is formed at the corner, the volume of the sampling device is reduced. This space also buffers the air and reduces noise.
 図15は、図8に示すA-A線に沿ったサンプリング装置の別の断面図である。図15に示すように、吸気通路823と排気通路824は垂直して設けられる。 FIG. 15 is another cross-sectional view of the sampling device taken along line AA shown in FIG. As shown in FIG. 15, the intake passage 823 and the exhaust passage 824 are provided perpendicularly.
 なお、排気通路を台形に設けることにより、より迅速に排気することができる。且つ、排気が一定の夾角を呈するようにして、さらに排気面積を増大させることにより、騒音を低減する。なお、曲面に設けることができ、C字形を呈する。より一層、排気面積が拡大する。 By providing a trapezoidal exhaust passage, it is possible to exhaust air more quickly. In addition, noise is reduced by increasing the exhaust area by making the exhaust air have a certain included angle. In addition, it can be provided on a curved surface and presents a C shape. The exhaust area is further expanded.
 図16は、図8に示すA-A線に沿ったサンプリング装置のさらなる断面図である。図16に示すように、吸気通路823と排気通路824は、垂直して設けられ、なお、排気通路824は、台形に設けられる。本発明の実施例において、排気通路の各内側壁に、緩衝綿831を増加させてファン及び排気の騒音を低減させることができ、さらにサンプリング装置のユーザ体験をよりよくする。 FIG. 16 is a further cross-sectional view of the sampling device along line AA shown in FIG. As shown in FIG. 16, the intake passage 823 and the exhaust passage 824 are provided perpendicularly, and the exhaust passage 824 is provided in a trapezoidal shape. In embodiments of the present invention, each inner wall of the exhaust passage can be provided with additional cushioning lining 831 to reduce fan and exhaust noise and further improve the user experience of the sampling device.
 本発明の実施例において、該排気通路と該吸気通路は、同じ方向に沿って設けられてもよい。 In the embodiment of the present invention, the exhaust passage and the intake passage may be provided along the same direction.
 このように、風は、ケースの上方から吸気され、ケースの下方から排気され、下方が対向するのは配置面であり、騒音を低減することができ、下方が配置面に塞がれた後、騒音を大幅に低減することができる。 In this way, the wind is taken in from the top of the case and exhausted from the bottom of the case. , the noise can be greatly reduced.
 図17は、図8に示すA-A線に沿ったサンプリング装置のさらなる断面図である。図17に示すように、吸気通路823と排気通路824は、同じ方向(すなわち、上下方向)に沿って設けられる。 FIG. 17 is a further cross-sectional view of the sampling device along line AA shown in FIG. As shown in FIG. 17, the intake passage 823 and the exhaust passage 824 are provided along the same direction (that is, the vertical direction).
 本発明の実施例において、該ファン809は、該排気通路内又は該吸気通路内に設けられることができる。 In an embodiment of the present invention, the fan 809 can be provided within the exhaust passage or within the intake passage.
 このように、吸引力を増大させ、吸気速度を向上させるとともに、排気の経路を短縮することができる。 In this way, the suction force can be increased, the intake speed can be improved, and the exhaust path can be shortened.
 なお、第一吸気通路及び第二吸気通路の断面図は、U字状を呈して設けられる。経路を延長することにより、風量を増大させ、ガスサンプルを収集する時、ガスの収集管との接触がより十分であれば、収集の効果がよりよい。また、ファン809は、吸気口から遠く、且つ、吸気通路は、曲線通路であり、吸気経路が延長されると、風力をより大きくし、風量がより十分になり、粒子状物質の濾過及びガスの収集に良好な空間基礎を作成し、さらにフィルタ及び収集管の収集効果がよくなる。 The cross-sectional views of the first intake passage and the second intake passage are provided in a U shape. By extending the path, the air volume is increased, and when the gas sample is collected, the better the contact of the gas with the collection tube, the better the collection effect. In addition, the fan 809 is far from the air inlet, and the air intake passage is a curved passage. When the air intake passage is extended, the wind force is larger, the air volume is more sufficient, and the particulate matter is filtered and the gas is It creates a good spatial foundation for the collection of the , and the collection effect of the filter and the collection tube is better.
 本発明の実施例において、図8に示すように、該装置本体部802は、上下ボタン825、スイッチボタン826、トレイ827及び昇降ブラケット828をさらに含むことができる。ここに、上下ボタン825により昇降ブラケット828を昇降させることによって、サンプリング装置の高さを調整することができる。スイッチボタン826によりサンプリング装置のオン及びオフを制御することができる。 In an embodiment of the present invention, the device body 802 may further include an up/down button 825, a switch button 826, a tray 827 and an elevating bracket 828, as shown in FIG. Here, the height of the sampling device can be adjusted by raising and lowering the elevation bracket 828 with the up and down button 825 . A switch button 826 can control the on and off of the sampling device.
 本発明の実施例において、該装置本体部802は、温度センサ、湿度センサ、様々な仕様の粒子状物質センサ及び二酸化炭素センサのうちの少なくとも一種をさらに含むことができる。 In an embodiment of the present invention, the device body 802 may further include at least one of a temperature sensor, a humidity sensor, various types of particulate matter sensors, and a carbon dioxide sensor.
 なお、さらに、センサの検出データを表示スクリーン829に表示し、多様な収集を実現することができる。 Further, it is possible to display the data detected by the sensor on the display screen 829 and realize various collections.
 なお、排気通路824は、排気口830を有する。 Note that the exhaust passage 824 has an exhaust port 830 .
 上記の実施例により分かるように、室内の実際の環境状況に基づいて、最適なサンプリング位置を特定するとともに、最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 As can be seen from the above examples, based on the actual environmental conditions in the room, the optimum sampling position is identified, and the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency. can be improved, and based on the environmental distribution characteristics of different pollution sources, it is possible to achieve targeted sampling for various pollution sources, and achieve sampling accuracy, flexibility and versatility.
(実施例3)
 本発明の実施例3は、実施例2に記載のサンプリング装置を含むサンプリングシステムを提供し、その具体的な実施は、実施例2に記載の装置及び実施例1に記載の方法の実施を参照することができ、同じ内容または内容の関連するところについて、繰返して説明しない。
(Example 3)
Example 3 of the present invention provides a sampling system comprising the sampling device as described in Example 2, the specific implementation of which is referred to the implementation of the device as described in Example 2 and the method as described in Example 1. and do not repeat the same or related parts of the content.
 図18は、本発明の実施例3に係るサンプリングシステムの構造図であり、図18に示すように、サンプリングシステム1800は、サンプリング装置1801と、該サンプリング装置により収集されたサンプルを検出し、サンプルの検出データを取得する検出装置1802と、を含む。 FIG. 18 is a structural diagram of a sampling system according to Embodiment 3 of the present invention. As shown in FIG. 18, a sampling system 1800 includes a sampling device 1801 and samples collected by the sampling device, a detection device 1802 that obtains detection data for the .
 本発明の実施例において、該サンプリング装置1801は、該検出データに基づいて検出報告を生成するとともに、該検出報告をサーバに送信する又は公開する。 In an embodiment of the present invention, the sampling device 1801 generates a detection report based on the detection data and transmits or publishes the detection report to a server.
 本発明の実施例において、サンプリング装置1801の具体的な構造及び機能は、実施例2に記載の装置及び実施例1に記載の方法を参照することができ、ここで、繰返して説明しない。 In the embodiments of the present invention, the specific structure and function of the sampling device 1801 can refer to the device described in Example 2 and the method described in Example 1, and will not be repeated here.
 図19は、本発明の実施例3に係るサンプリングシステムの動作のフローチャートである。図19に示すように、その動作のフローは、制御モジュールがサンプリング装置をオンにするステップ1901と、目標領域内の環境分布状況を取得するステップ1902と、最適なサンプリング位置を特定するステップ1903と、最適なサンプリング位置に到達してサンプリングするようにサンプリング装置を駆動するステップ1904と、対応するサンプル収集部材に調整され、サンプリング装置が対応する高さを調整するステップ1905と、バルブアセンブリをオンにし、通路に空気が入り、第一粒子状物質収集アセンブリは、アレルゲン(粒子状物質)サンプルを収集し、第一ガス検出アセンブリは、ガスサンプルを収集するステップ1906と、一定期間後、バルブアセンブリをオフにし、次の最適な位置点に到達して収集するようにサンプリング装置を駆動するステップ1907と、位置点に到達した後で、対応するサンプル収集部材に自動的に調整され、サンプリング装置が対応する高さを調整するステップ1908と、バルブアセンブリをオンにし、通路に空気が入り、第二粒子状物質収集アセンブリは、アレルゲン(粒子状物質)サンプルを収集し、第二ガス検出アセンブリは、ガスサンプルを収集するステップ1909と、サンプリングが終了するまで、これによって類推するステップ1910と、センサデータを表示スクリーンにリアルタイムに伝送するか又は4Gモジュールを介してクラウドのサーバに伝送し、さらに、ウィーチャットのアプリケーションを介して可視化するステップ1911と、検出が終了した後で、クラウドのサーバは、物流オーダーを生成し、物流担当者はオンサイトでサンプルを持ち去るステップ1912と、対応するアレルゲン(粒子状物質)サンプル及びガス検出サンプルを検出するステップ1913と、検出報告を生成し、検出報告をクラウドのサーバにアップロードし、さらに、ウィーチャットのアプリケーションを介して直接に可視化するステップ1914と、を含む。 FIG. 19 is a flow chart of the operation of the sampling system according to Example 3 of the present invention. As shown in FIG. 19, the flow of operation is step 1901 in which the control module turns on the sampling device, step 1902 in which the environmental profile within the target area is obtained, and step 1903 in which the optimal sampling position is identified. , step 1904 driving the sampling device to reach and sample the optimum sampling position; step 1905 adjusting the sampling device to the corresponding sample collection member and adjusting the corresponding height; turning on the valve assembly; , air enters the passageway, the first particulate collection assembly collects an allergen (particulate matter) sample, the first gas detection assembly collects a gas sample 1906; Step 1907 of turning off and driving the sampling device to reach and collect the next optimal position point, and automatically adjusting to the corresponding sample collection member after reaching the position point so that the sampling device corresponds step 1908, turn on the valve assembly to allow air into the passageway, the second particulate collection assembly collects the allergen (particulate matter) sample, and the second gas detection assembly collects the gas Step 1909 of collecting samples and step 1910 by analogy therewith until the sampling is finished; transmitting the sensor data to the display screen in real time or to the server in the cloud via the 4G module; step 1911, after the detection is finished, the cloud server generates a logistics order, and the logistics person takes the sample off-site step 1912, and the corresponding allergen (particulate matter ) detect samples and gas detection samples 1913; generate detection reports, upload detection reports to servers in the cloud, and visualize them directly through the WeChat application 1914;
 上記の実施例によりわかるように、室内の実際の環境状況に基づいて、最適なサンプリング位置を特定するとともに、最適なサンプリング位置に直接移動してサンプリングを行い、サンプリング結果の信頼性及びサンプリング効率を向上させることができ、且つ、異なる汚染源の環境に対する分布特性に基づいて、様々な汚染源に対する目的に合ったサンプリングを実現し、サンプリングの正確性、柔軟性及び多様性を実現することができる。 As can be seen from the above examples, based on the actual environmental conditions in the room, the optimum sampling position is specified, and the sampling is performed by directly moving to the optimum sampling position to improve the reliability of the sampling result and the sampling efficiency. can be improved, and based on the environmental distribution characteristics of different pollution sources, it is possible to achieve targeted sampling for various pollution sources, and achieve sampling accuracy, flexibility and versatility.
 本発明の実施例に係る以上の装置及び方法は、ハードウェアで実現されてもよく、ハードウェアにソフトウェアを組み合わせることで実現されてもよい。本発明は、このようなコンピュータ読取可能なプログラムに関し、該プログラムがロジック部品により実行される時、該ロジック部品に上記装置又は構成部品を実現させるか、又は該ロジック部品に以上の様々な方法又はステップを実現させることができる。 The above apparatus and method according to the embodiments of the present invention may be realized by hardware or by combining software with hardware. The present invention relates to such a computer readable program which, when executed by a logic component, causes the logic component to implement the device or component described above, or causes the logic component to implement any of the above methods or methods. steps can be realized.
 本発明の実施例は、さらに以上のプログラムを記憶するための記憶媒体、例えばハードディスク、磁気ディスク、光ディスク、DVD、flashメモリなどに関する。 Embodiments of the present invention further relate to storage media for storing the above programs, such as hard disks, magnetic disks, optical disks, DVDs, and flash memories.
 なお、本解決手段に係る各ステップの限定は、具体的な解決手段の実施に影響を与えない前提で、ステップの前後順序を限定するものではなく、前に書かれるステップは、先に実行されてもよく、後に実行されてもよく、さらに後のステップと同時に実行されてもよく、本解決手段を実施することができれば、いずれも本願の保護範囲に属すると見なすべきである。 In addition, the limitation of each step according to the present solution means does not limit the order of steps before and after, on the premise that it does not affect the implementation of the concrete solution means, and the step written before is executed first. may be carried out later, or may be carried out at the same time as the later steps, as long as the solution can be implemented, should be regarded as belonging to the protection scope of the present application.
 以上、具体的な実施形態を参照して本発明を説明したが、当業者であれば、これらの説明は、いずれも例示的なものであり、本発明の保護範囲を限定するものではないことがわかるはずである。当業者は、本発明の精神及び原理に基づいて本発明に様々な変形及び補正を行うことができ、これらの変形及び補正も本発明の範囲内にある。  Although the present invention has been described with reference to specific embodiments, it will be understood by those skilled in the art that these descriptions are for illustrative purposes only and do not limit the protection scope of the present invention. should be understood. Persons skilled in the art can make various modifications and amendments to the present invention based on the spirit and principles of the invention, and these modifications and amendments are also within the scope of the present invention. 

Claims (27)

  1.  目標領域内の環境分布状況を取得することと、
     前記目標領域内の環境分布状況に基づいて、前記目標領域内の最適なサンプリング位置を特定することと、
     前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動することと、を含む、
    ことを特徴とするサンプリング装置の制御方法。
    obtaining an environment distribution situation within the target area;
    identifying an optimal sampling position within the target area based on the environment distribution situation within the target area;
    driving a sampling device to move to the optimal sampling location for air sampling;
    A sampling device control method characterized by:
  2.  前記目標領域内の環境分布状況は、前記目標領域内の気流分布、温度分布及び湿度分布のうちの少なくとも一つを含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    the environment distribution status within the target area includes at least one of airflow distribution, temperature distribution, and humidity distribution within the target area;
    2. The method of controlling a sampling device according to claim 1, wherein:
  3.  前記目標領域内の環境分布状況を取得することは、
     目標領域の地図情報を取得することと、
     前記目標領域の地図情報に基づいて、前記目標領域内の気流分布を特定することと、を含む、
    ことを特徴とする請求項1または2に記載のサンプリング装置の制御方法。
    Acquiring the environment distribution status within the target area includes:
    obtaining map information for a target area;
    determining an airflow distribution within the target area based on map information of the target area;
    3. The method of controlling a sampling device according to claim 1, wherein:
  4.  前記目標領域の地図情報に基づいて、前記目標領域内の気流分布を特定する前記ことは、
     前記目標領域の地図情報を第一シミュレーションモジュールまたは第一機械学習モジュールに入力し、前記目標領域内の気流分布図を出力することを含む、
    ことを特徴とする請求項3に記載のサンプリング装置の制御方法。
    Identifying an airflow distribution in the target area based on map information of the target area,
    inputting map information of the target area into a first simulation module or a first machine learning module, and outputting an airflow distribution map in the target area;
    4. The control method of the sampling device according to claim 3, characterized in that:
  5.  前記目標領域内の環境分布状況を取得することは、
     目標領域内の温度及び/又は湿度データを収集することと、
     目標領域の地図情報を取得することと、
     前記目標領域内の温度および/または湿度データ及び前記目標領域の地図情報に基づいて、前記目標領域内の温度分布および/または湿度分布を特定することと、を含む、
    ことを特徴とする請求項1または2に記載のサンプリング装置の制御方法。
    Acquiring the environment distribution status within the target area includes:
    collecting temperature and/or humidity data within the target area;
    obtaining map information for a target area;
    determining temperature distribution and/or humidity distribution within the target area based on temperature and/or humidity data within the target area and map information of the target area;
    3. The method of controlling a sampling device according to claim 1, wherein:
  6.  前記目標領域内の温度および/または湿度データ及び前記目標領域の地図情報に基づいて、前記目標領域内の温度分布および/または湿度分布を特定する前記ことは、
     前記目標領域内の温度および/または湿度データ及び前記目標領域の地図情報を第二シミュレーションモジュールまたは第二機械学習モジュールに入力し、前記目標領域内の温度分布図および/または湿度分布図を出力することを含む、
    ことを特徴とする請求項5に記載のサンプリング装置の制御方法。
    determining temperature distribution and/or humidity distribution within said target area based on temperature and/or humidity data within said target area and map information of said target area;
    inputting temperature and/or humidity data in the target area and map information of the target area into a second simulation module or a second machine learning module, and outputting a temperature distribution map and/or a humidity distribution map in the target area; including
    6. The method of controlling a sampling device according to claim 5, wherein:
  7.  前記目標領域内の環境分布状況に基づいて、前記目標領域内の最適なサンプリング位置を特定する前記ことは、
     前記目標領域内の環境分布状況を第三機械学習モデルに入力し、前記目標領域内の最適なサンプリング位置を出力することを含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    Identifying an optimal sampling position within the target area based on the environmental distribution situation within the target area,
    inputting the environment distribution situation within the target area into a third machine learning model and outputting the optimal sampling position within the target area;
    2. The method of controlling a sampling device according to claim 1, wherein:
  8.  前記目標領域内の環境分布状況に基づいて、前記目標領域内の最適なサンプリング位置を特定する前記ことは、
     前記目標領域内の環境分布状況と予め確立されたルックアップテーブルに基づいて、前記目標領域内の最適なサンプリング位置を特定することを含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    Identifying an optimal sampling position within the target area based on the environmental distribution situation within the target area,
    identifying an optimal sampling location within the target area based on an environmental profile within the target area and a pre-established lookup table;
    2. The method of controlling a sampling device according to claim 1, wherein:
  9.  前記目標領域内の環境分布状況に基づいて、前記目標領域内の最適なサンプリング位置を特定する前記ことは、
     前記目標領域内の環境分布状況に基づいて、前記目標領域内の最適なサンプリング位置および前記最適なサンプリング位置に対応する汚染源の種類を特定することを含む、
    ことを特徴とする請求項1または7または8に記載のサンプリング装置の制御方法。
    Identifying an optimal sampling position within the target area based on the environmental distribution situation within the target area,
    Identifying an optimal sampling location within the target area and a type of pollution source corresponding to the optimal sampling location based on the environmental distribution within the target area;
    9. The control method of the sampling device according to claim 1, 7 or 8, characterized in that:
  10.  前記目標領域内の最適なサンプリング位置及び前記目標領域の地図情報に基づいて、前記最適なサンプリング位置に移動する経路を特定することをさらに含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    further comprising identifying a route to travel to the optimal sampling location based on the optimal sampling location within the target area and map information of the target area;
    2. The method of controlling a sampling device according to claim 1, wherein:
  11.  前記経路は、前記目標領域内の障害物を避けて前記最適なサンプリング位置に達する最短経路である、
    ことを特徴とする請求項10に記載のサンプリング装置の制御方法。
    The path is the shortest path that avoids obstacles in the target area and reaches the optimal sampling position.
    11. The method of controlling a sampling device according to claim 10, wherein:
  12.  前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動する前記ことは、
     特定された経路に従って、前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動することを含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    said driving the sampling device to move to said optimal sampling position for air sampling;
    driving a sampling device according to the identified path to move to the optimal sampling location for air sampling;
    2. The method of controlling a sampling device according to claim 1, wherein:
  13.  前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動する前記ことは、
     前記最適なサンプリング位置に移動するようにサンプリング装置を駆動することと、
     少なくとも二種類の汚染源を時分割でサンプリングして、異なる時間帯に異なる汚染源をサンプリングするように前記サンプリング装置を制御することと、を含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    said driving the sampling device to move to said optimal sampling position for air sampling;
    driving a sampling device to move to the optimal sampling position;
    sampling at least two contamination sources in a time division manner and controlling the sampling device to sample different contamination sources at different times;
    2. The method of controlling a sampling device according to claim 1, wherein:
  14.  前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動する前記ことは、
     少なくとも二つの最適なサンプリング位置に順次移動させるようにサンプリング装置を駆動することと、
     異なる最適なサンプリング位置で異なる汚染源をサンプリングするように前記サンプリング装置を制御することと、を含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    said driving the sampling device to move to said optimal sampling position for air sampling;
    driving the sampling device to sequentially move to at least two optimal sampling positions;
    controlling the sampling device to sample different pollution sources at different optimal sampling locations;
    2. The method of controlling a sampling device according to claim 1, wherein:
  15.  前記最適なサンプリング位置に移動して空気サンプリングを行うようにサンプリング装置を駆動する前記ことは、
     前記サンプリング装置が最適なサンプリング位置に移動した後で、予め設定されたサンプリング高さに調整され、空気サンプリングを行うように前記サンプリング装置を制御することをさらに含む、
    ことを特徴とする請求項12から請求項14の何れか1項に記載のサンプリング装置の制御方法。
    said driving the sampling device to move to said optimal sampling position for air sampling;
    further comprising controlling the sampling device to adjust to a preset sampling height and perform air sampling after the sampling device has moved to an optimal sampling position;
    15. The method of controlling a sampling device according to any one of claims 12 to 14, characterized by:
  16.  前記サンプリング装置によるサンプリングが終了した後で、オンサイトでサンプルを持ち去るための物流オーダーを生成することと、
     前記サンプリング装置により収集されたサンプルの検出データを取得することと、
     前記検出データに基づいて検出報告を生成するとともに、前記検出報告をサーバに送信する又は公開することと、をさらに含む、
    ことを特徴とする請求項1に記載のサンプリング装置の制御方法。
    generating a logistics order for taking samples off-site after sampling by the sampling device is finished;
    obtaining detection data of samples collected by the sampling device;
    generating a detection report based on the detection data and transmitting or publishing the detection report to a server;
    2. The method of controlling a sampling device according to claim 1, wherein:
  17.  移動部と、装置本体部と、を含み、
     前記移動部は、制御命令に基づいて、目標領域内の最適なサンプリング位置に移動して空気サンプリングを行うように前記装置本体部を駆動し、
     前記最適なサンプリング位置は、前記目標領域内の環境分布状況に基づいて特定される、
    ことを特徴とするサンプリング装置。
    including a moving part and a device main body,
    The moving unit drives the device main unit so as to move to an optimal sampling position within the target area and perform air sampling based on a control command,
    wherein the optimal sampling position is identified based on the environmental distribution within the target area;
    A sampling device characterized by:
  18.  前記移動部と前記装置本体部が内部に置かれる包装箱をさらに含み、
     前記包装箱には、ハンドルが設けられている、
    ことを特徴とする請求項17に記載のサンプリング装置。
    further comprising a packaging box in which the moving part and the device body part are placed;
    The packaging box is provided with a handle,
    18. The sampling device according to claim 17, characterized in that:
  19.  前記装置本体部は、
     ケースと、
     吸気通路及び排気通路を含み、かつ前記ケース内に埋め込まれて設けられるガス通路と、
     前記ガス通路の入口に設けられ、空気中の粒子状物質を収集するための粒子状物質収集アセンブリと、
     前記ガス通路内に設けられ、空気中のガスサンプルを収集するためのガス収集アセンブリと、
     前記ガス通路内に設けられ、空気動力を提供するためのファンと、
     電力を供給する電池と、
     前記サンプリング装置の動作状態及び移動を制御するコントローラと、を含む、
    ことを特徴とする請求項17に記載のサンプリング装置。
    The device main body is
    a case;
    a gas passage including an intake passage and an exhaust passage and provided embedded in the case;
    a particulate collection assembly at the inlet of the gas passage for collecting airborne particulate matter;
    a gas collection assembly disposed within the gas passage for collecting an airborne gas sample;
    a fan in the gas passage for providing pneumatic power;
    a battery for powering;
    a controller that controls the operating state and movement of the sampling device;
    18. The sampling device according to claim 17, characterized in that:
  20.  前記ガス通路は、一つの吸気通路のみを含み、前記吸気通路は、前記排気通路に接続され、
     前記粒子状物質収集アセンブリは、少なくとも二つのフィルタ、回転ディスク及び回転軸を含み、
     前記少なくとも二つのフィルタは、前記回転ディスク内に設けられるとともに、同一の水平面に位置し、かつ、そのうちの一つのフィルタを前記吸気通路内に位置させるように前記回転軸を中心として回転することができる、
    ことを特徴とする請求項19に記載のサンプリング装置。
    the gas passageway includes only one intake passageway, the intake passageway being connected to the exhaust passageway;
    the particulate collection assembly includes at least two filters, a rotating disk and a rotating shaft;
    The at least two filters are provided in the rotating disk, are positioned in the same horizontal plane, and can rotate about the rotation axis so as to position one of the filters in the intake passage. can,
    20. The sampling device according to claim 19, characterized by:
  21.  前記ガス通路は、一つの吸気通路のみを含み、前記吸気通路は、前記排気通路に接続され、
     前記粒子状物質収集アセンブリは、少なくとも二つのプッシュプルロッド及び少なくとも二つのフィルタを含み、前記少なくとも二つのプッシュプルロッドのうちの一つのプッシュプルロッドは、前記少なくとも二つのフィルタのうちの一つのフィルタを前記吸気通路内に押し込む、
    ことを特徴とする請求項19に記載のサンプリング装置。
    the gas passageway includes only one intake passageway, the intake passageway being connected to the exhaust passageway;
    The particulate collection assembly includes at least two push-pull rods and at least two filters, one push-pull rod of the at least two push-pull rods connecting one of the at least two filters to the intake air. push into the aisle
    20. The sampling device according to claim 19, characterized by:
  22.  前記吸気通路の側壁にセット溝が開けられ、
     前記ガス収集アセンブリは、少なくとも二つの収集管を含み、
     前記少なくとも二つの収集管は、前記吸気通路内にそれぞれ設けられ、一端が前記セット溝内に固定され、他端が前記吸気通路内に挿入される、
    ことを特徴とする請求項19に記載のサンプリング装置。
    A set groove is formed in the side wall of the intake passage,
    the gas collection assembly includes at least two collection tubes;
    The at least two collection tubes are respectively installed in the intake passage, one end is fixed in the set groove, and the other end is inserted into the intake passage.
    20. The sampling device according to claim 19, characterized by:
  23.  前記少なくとも二つの収集管は、前記吸気通路内に平行に設けられ、
     前記収集管は、端部が前記セット溝に固定接続される収集部材と、前記収集部材内に固定され、サンプルを収集するための検出コアとを含む、
    ことを特徴とする請求項22に記載のサンプリング装置。
    the at least two collection tubes are arranged in parallel within the intake passage;
    The collection tube includes a collection member whose end is fixedly connected to the set groove, and a detection core fixed within the collection member for collecting a sample.
    23. A sampling device according to claim 22, characterized in that:
  24.  前記セット溝は、セット係止部材をさらに含み、
     前記少なくとも二つの収集管は、第一収集管を含み、
     前記第一収集管の端部外側に雄ネジを有し、前記セット係止部材内に雌ネジが設けられ、
     前記第一収集管がセット係止部材内に螺合される、
    ことを特徴とする請求項22に記載のサンプリング装置。
    the set groove further includes a set locking member,
    said at least two collection tubes including a first collection tube;
    a male thread is provided on the outside of the end of the first collection tube, and a female thread is provided in the set locking member;
    the first collection tube is threaded into a set locking member;
    23. A sampling device according to claim 22, characterized in that:
  25.  前記少なくとも二つの収集管は、第二収集管をさらに含み、
     前記第二収集管は、前記セット係止部材内に係止される、
    ことを特徴とする請求項22に記載のサンプリング装置。
    said at least two collection tubes further comprising a second collection tube;
    the second collection tube is locked within the set locking member;
    23. A sampling device according to claim 22, characterized in that:
  26.  前記装置本体部は、
     クラウドのサーバと通信する通信モジュールをさらに含む、
    ことを特徴とする請求項19に記載のサンプリング装置。
    The device main body is
    further including a communication module that communicates with a server in the cloud;
    20. The sampling device according to claim 19, characterized by:
  27.  請求項17~26のいずれか1項に記載のサンプリング装置と、
     前記サンプリング装置により収集されたサンプルを検出し、サンプルの検出データを取得する検出装置と、を含む、
    ことを特徴とするサンプリングシステム。
    A sampling device according to any one of claims 17 to 26;
    a detection device that detects the sample collected by the sampling device and obtains detection data of the sample;
    A sampling system characterized by:
PCT/JP2022/028433 2021-07-30 2022-07-22 Control method for sampling device, sampling device, and sampling system WO2023008322A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110871553.4 2021-07-30
CN202110871553.4A CN115683749A (en) 2021-07-30 2021-07-30 Control method of sampling device, sampling device and system

Publications (1)

Publication Number Publication Date
WO2023008322A1 true WO2023008322A1 (en) 2023-02-02

Family

ID=85057981

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028433 WO2023008322A1 (en) 2021-07-30 2022-07-22 Control method for sampling device, sampling device, and sampling system

Country Status (2)

Country Link
CN (1) CN115683749A (en)
WO (1) WO2023008322A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479022B1 (en) 2023-05-18 2024-05-08 株式会社 ハル・インダストリ Odor collection method and odor collection device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134091A (en) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd Particle size measuring apparatus
JP2001147227A (en) * 1999-11-19 2001-05-29 Nippon Fine Chemical Kk Apparatus for simply measuring air pollutants
JP2005144317A (en) * 2003-11-14 2005-06-09 Horiba Ltd Filter for trapping granular substance and granular substance sampler using the same
JP2007298469A (en) * 2006-05-02 2007-11-15 Yusei Kenkyu Kikinkai Monitoring method for gaseous contaminant in air
US20100030382A1 (en) * 2008-07-31 2010-02-04 University Of Medicine And Dentistry Of New Jersey Inhalable particulate environmental robotic sampler
JP2010050302A (en) * 2008-08-22 2010-03-04 Murata Mfg Co Ltd Method and device for detecting operation of shutter mechanism, and frequency adjusting device
CN208254893U (en) * 2018-06-06 2018-12-18 青岛崂应环境科技有限公司 A kind of surrounding air comprehensively sampling device
CN208366956U (en) * 2018-07-13 2019-01-11 中国环境科学研究院 A kind of stationary source concentration analysis device
CN209784001U (en) * 2019-04-17 2019-12-13 南昌航空大学 Atmospheric particulate matter sampler
CN209979315U (en) * 2019-04-30 2020-01-21 河南博晟检验技术有限公司 Novel atmospheric sampling appearance

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07134091A (en) * 1993-11-10 1995-05-23 Mitsubishi Heavy Ind Ltd Particle size measuring apparatus
JP2001147227A (en) * 1999-11-19 2001-05-29 Nippon Fine Chemical Kk Apparatus for simply measuring air pollutants
JP2005144317A (en) * 2003-11-14 2005-06-09 Horiba Ltd Filter for trapping granular substance and granular substance sampler using the same
JP2007298469A (en) * 2006-05-02 2007-11-15 Yusei Kenkyu Kikinkai Monitoring method for gaseous contaminant in air
US20100030382A1 (en) * 2008-07-31 2010-02-04 University Of Medicine And Dentistry Of New Jersey Inhalable particulate environmental robotic sampler
JP2010050302A (en) * 2008-08-22 2010-03-04 Murata Mfg Co Ltd Method and device for detecting operation of shutter mechanism, and frequency adjusting device
CN208254893U (en) * 2018-06-06 2018-12-18 青岛崂应环境科技有限公司 A kind of surrounding air comprehensively sampling device
CN208366956U (en) * 2018-07-13 2019-01-11 中国环境科学研究院 A kind of stationary source concentration analysis device
CN209784001U (en) * 2019-04-17 2019-12-13 南昌航空大学 Atmospheric particulate matter sampler
CN209979315U (en) * 2019-04-30 2020-01-21 河南博晟检验技术有限公司 Novel atmospheric sampling appearance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7479022B1 (en) 2023-05-18 2024-05-08 株式会社 ハル・インダストリ Odor collection method and odor collection device

Also Published As

Publication number Publication date
CN115683749A (en) 2023-02-03

Similar Documents

Publication Publication Date Title
WO2023008322A1 (en) Control method for sampling device, sampling device, and sampling system
JP6797204B2 (en) Air quality management systems and methods, as well as analysis servers
CN108826488B (en) A kind of indoor pollution purification removal device and method sourcing formula automatically
EP3332923A1 (en) Multi-functional home service robot
CN101886988B (en) Tri-channel atmosphere particulate matter sampler
JP2008533419A (en) Multi-point air sampling system with common sensor to provide mixed air quality parameter information for monitoring and building control
CN203274135U (en) Public place and business place environment managing device
CN204255789U (en) A kind of constant temperature and humidity cleaning weighs environmental control equipment
CN2856967Y (en) Medium flow air particles sampler
JP2016142489A (en) Air cleaner monitoring device and air cleaner management system
CN212747888U (en) Wisdom building site environmental monitoring device
CN114298557A (en) Community environment quality analysis method and device
KR102168445B1 (en) Moving Robot and controlling method
CN104316444A (en) Domestic air quality detection device
CN209446590U (en) A kind of chemical illumination immunity analysis instrument
CN207798611U (en) A kind of automation atmosphere particle monitoring equipment
CN203069419U (en) Atmospheric particulate sampler
CN204128929U (en) Domestic air quality detection device
KR20190087872A (en) Apparatus for measuring airborne microbial and air conditioning system having the same
CN208795288U (en) Fugitive dust and noise monitor instrument in a kind of air
CN114689478B (en) Air quality detection device and method
WO2022265085A1 (en) Control method and device for purification equipment, and purification equipment
CN111257514A (en) Environment detection equipment and detection method for improving detection precision
CN109612006A (en) A kind of fresh air system improving Dense crowd indoor air quality
CN218099086U (en) Atmospheric pollutant sulfur hexafluoride detection device based on unmanned aerial vehicle carries on

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849384

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE