JP2007298469A - Monitoring method for gaseous contaminant in air - Google Patents

Monitoring method for gaseous contaminant in air Download PDF

Info

Publication number
JP2007298469A
JP2007298469A JP2006128359A JP2006128359A JP2007298469A JP 2007298469 A JP2007298469 A JP 2007298469A JP 2006128359 A JP2006128359 A JP 2006128359A JP 2006128359 A JP2006128359 A JP 2006128359A JP 2007298469 A JP2007298469 A JP 2007298469A
Authority
JP
Japan
Prior art keywords
air
humidity
room
wind speed
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2006128359A
Other languages
Japanese (ja)
Inventor
Shin Lin Chun
俊興 林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
YUSEI KENKYU KIKINKAI
Original Assignee
YUSEI KENKYU KIKINKAI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by YUSEI KENKYU KIKINKAI filed Critical YUSEI KENKYU KIKINKAI
Priority to JP2006128359A priority Critical patent/JP2007298469A/en
Publication of JP2007298469A publication Critical patent/JP2007298469A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To monitor a concentration of a toxic air contaminant substance, by measuring a contaminant substance in air in a living environment under a condition corresponding to a life of the human being and a working condition. <P>SOLUTION: The contaminant substance in air is measured in response to a portion or the like contacting with an environment easy for growth of a mold bacterium such as a periphery of a working environment (computer disk), a bed and a high humidity portion, which are specified portions in an indoor space with the greatest influence on a health care, out of living spaces of the human being, to be compared with various existing environmental reference, and the propriety of an environmental condition in the living space is determined referring thereto, to be monitored. <P>COPYRIGHT: (C)2008,JPO&INPIT

Description

本発明は、空気中におけるガス状汚染物の捕捉して汚染状況を監視する方法、特に健康を考慮し、日常生活におけるアレルギー源である黴菌を測定するために、生活空間である室内において空気サンプルを採取して汚染状況を監視して生活環境を維持する方法に関するものである。   The present invention relates to a method for capturing gaseous pollutants in the air and monitoring the state of contamination, and in particular, taking into account health, in order to measure gonococcus which is an allergy source in daily life, an air sample in a room that is a living space It is related with the method of collecting living thing, monitoring the pollution situation, and maintaining a living environment.

一般的に言えば、亜熱帯に位置する台湾の生活空間は、高温多湿の環境であり、室内に黴菌がよく発生する。それに加え、家中に充満するダニ、白蟻及びゴキブリ等健康に害する生物から飛散された胞子及び室内空気に充満する粉塵は、日常生活におけるアレルギー源となる。高湿度は、細菌の成長に必要な栄養分を与えるため、室内相対湿度を、60%−65%に控えるのが最も望ましい。除湿機による受動的な除湿以外に、建物自体も良好な採光及び風通しが要求される。空気の流動によって室内の湿度を下げることが可能である。太陽光に含まれている紫外線もある程度の殺菌効果があり、家屋における悪玉菌の成長を抑制することができる。従って、如何にして空気中の黴菌、粉塵及び微生物等のガス状汚染物(bioaerosol)を捕捉し、生活に適するように抑制するかは解決しなければならない課題である。
前述したガス状汚染物は、一般的に言えば、人、動物、植物ないし生態系に影響を与える天然又は合成物質のことを指すが、そのうち、室外空気汚染物の主たるものは、空気中に浮遊する固体粒子、硫化水素、炭化水素、酸化窒素及びハロゲン化メタン等、工業の発展に伴って発生した有害な微粒子、ガスである。
一方、室内の空気汚染物の主たるものは、浮遊粒子、一酸化炭素、二酸化炭素及び空気中の黴菌である。上記の浮遊粒子は、化学成分上大きく異なるほこり、灰、エアロゾル、微量金属等、環境に含まれるすべての有機又は無機化合物を含む。上記のような浮遊粒子が、呼吸道表皮に付着し、刺激するだけでなく、呼吸道の浄化作用を妨げ、更に肺の粘膜を介して呼吸系統や循環系統内に侵入することもあり得る。肺に付着している粒子が長期的に肺に滞留し、呼吸道の慢性炎症その他の慢性的疾病をもたらし、健康に悪い影響を与えるようになる。
Generally speaking, Taiwan's living space located in the subtropics is a hot and humid environment, and gonococci often occur indoors. In addition, spores scattered from health-damaging organisms such as mites, white ants and cockroaches filling the house and dust filling the room air are sources of allergies in daily life. Since high humidity provides nutrients necessary for bacterial growth, it is most desirable to keep room relative humidity at 60% -65%. In addition to passive dehumidification by a dehumidifier, the building itself is required to have good lighting and ventilation. The indoor humidity can be lowered by the flow of air. The ultraviolet rays contained in the sunlight also have a certain sterilizing effect and can suppress the growth of bad bacteria in the house. Therefore, how to capture and control gaseous contaminants (bioaerosol) such as gonococcus, dust and microorganisms in the air and to make them suitable for daily life is a problem to be solved.
The above mentioned gaseous pollutants generally refer to natural or synthetic substances that affect people, animals, plants or ecosystems, of which the major outdoor air pollutants are in the air. These are harmful fine particles and gases generated with industrial development, such as floating solid particles, hydrogen sulfide, hydrocarbons, nitric oxide and halogenated methane.
On the other hand, the main air pollutants in the room are airborne particles, carbon monoxide, carbon dioxide, and bacilli in the air. The suspended particles include all organic or inorganic compounds contained in the environment, such as dust, ash, aerosol, and trace metals that vary greatly in chemical composition. The above suspended particles not only adhere to and stimulate the respiratory tract epidermis, but also impede the purification action of the respiratory tract, and may enter the respiratory system and the circulatory system via the lung mucosa. Particles adhering to the lungs will stay in the lungs for a long time, causing chronic inflammation of the respiratory tract and other chronic illnesses, which will adversely affect health.

予め殺菌した作業(寝室も含む)室内で種々の作業を行う場合でも、実際には、上記作業室内の殺菌が完全ではなく、依然として黴菌や微生物が室内に浮遊している恐れがある。従って、上記作業前後又は作業中に細菌や微生物を捕捉する必要があり、これを培養し、細菌の有無から室内を無菌状態に保っているかどうかを確認することが望ましい。
浮遊している黴菌や微生物の捕捉に最初に使用された設備としては、黴菌や微生物の捕捉装置、上記捕捉装置を支持する支持部材及びモーター駆動により作業室内の空気を吸込む吸引装置からなるものが知られている(実開昭58-84552号公報、実公平6-13476号公報、特開2000-304663号公報)。所定の室内に配備されるこれらの設備が、操作者の手作業で作動され、吸引装置周囲に気流を形成させることにより、黴菌や微生物を吸引装置によって捕捉する。そして、作業室内に循環している空気を作業室外に吸引し、この吸引された空気に水蒸気を噴霧することにより、空気中に浮遊している黴菌や微生物に水蒸気を付着させる。この水蒸気から黴菌や微生物を検出可能な設備も周知されている(特開2000-283910号公報)。
実開昭58-84552号公報 実公平6-13476号公報 特開2000-304663号公報 特開2000-283910号公報
Even when various operations are performed in a preliminarily sterilized room (including a bedroom), actually, the sterilization in the work room is not complete, and there is a possibility that gonococci and microorganisms are still floating in the room. Therefore, it is necessary to capture bacteria and microorganisms before, during, and during the above-described operation, and it is desirable to cultivate them and check whether the room is kept in a sterile state from the presence or absence of bacteria.
The equipment initially used to capture the floating gonococci and microorganisms includes a device for capturing gonococci and microorganisms, a support member that supports the capture device, and a suction device that sucks in air in the working chamber by driving a motor. Known (Japanese Utility Model Publication No. 58-84552, Japanese Utility Model Publication No. 6-13476, Japanese Patent Application Laid-Open No. 2000-304663). These facilities deployed in a predetermined room are manually operated by an operator, and an air current is formed around the suction device to capture the gonococcus and microorganisms by the suction device. Then, the air circulating in the working chamber is sucked out of the working chamber, and water vapor is sprayed on the sucked air, so that the water vapor adheres to gonococci and microorganisms floating in the air. A facility capable of detecting gonococci and microorganisms from this water vapor is also known (Japanese Patent Laid-Open No. 2000-283910).
Japanese Utility Model Publication No.58-84552 No. 6-13476 JP 2000-304663 A JP 2000-283910 A

しかしながら、予め殺菌した作業室内に、上記第1乃至第3の刊行物記載の従来技術の設備を用いると、吸引装置を介して吸引された空気がそのまま室内に排出され、かえって室内のガス流を攪乱し、黴菌や微生物を作業室内に飛散させる恐れがある。一方、上記第4の刊行物記載の従来技術の設備を用いる場合、作業室内に黴菌や微生物を飛散させる恐れはないが、黴菌や微生物を捕捉するための室内の適切な位置を特定しかねる問題点がある。
上記の課題に鑑み、本発明者は、黴菌や微生物を作業室内に飛散させることなく、作業室内の特定位置での黴菌や微生物捕捉を容易にし、生活に適するように制御する方法を提供することを目的とする。人間の生活に適するグリーン(空気汚染無し、水の汚染無し、騒音なし、節電、省エネ)な建物の構築を追求し続けてきた本発明の発明者は、季節毎のサンプルを従来の設備で採取し、採取時間及び設備の特性に基づき、温度、湿度、風速、浮遊粒子、一酸化炭素、二酸化炭素及び空気中の黴菌の濃度等[対照データーとして、各国の環境基準に沿って黴菌の濃度以外の温度、湿度、風速、二酸化炭素等の物理的環境要素を同時に測定する;浮遊粒子-PM10:150μg/m3〔米国環境庁NAAQS(National Ambient Air Quality Standard)24時間平均〕;PM2.5:65μg/m3〔米国環境庁NAAQS(National Ambient Air Quality Standard)24時間平均〕;一酸化炭素-9ppm〔米国環境庁NAAQS(National Ambient Air Quality Standard)8時間平均〕;二酸化炭素-1000ppm〔ASHRAE (American Society of Heating, Refrigerating and Air-Conditioning Engineers)62R(1996 Draft)〕]を、室内空気を監視するための各種パラメーターとして採用することができることを発見し、これらに基づきガス状汚染物を監視して、生活に適する環境を維持できるようにした。
However, if the prior art equipment described in the first to third publications is used in a work chamber sterilized in advance, the air sucked through the suction device is discharged into the room as it is, and the gas flow in the room is changed. May be disturbed and cause gonococci and microorganisms to scatter in the working room. On the other hand, when using the equipment of the prior art described in the fourth publication, there is no risk of gonococcus and microorganisms being scattered in the working room, but it is not possible to identify an appropriate position in the room for capturing the gonococci and microorganisms There is a point.
In view of the above problems, the present inventor provides a method for facilitating the capture of gonococcus and microorganisms at a specific position in the work chamber without causing the gonococcus and microorganisms to scatter in the work chamber, and providing a control method suitable for daily life With the goal. The inventor of the present invention who has continued to pursue the construction of a green (no air pollution, no water pollution, no noise, power saving, energy saving) suitable for human life, collects seasonal samples with conventional equipment. Based on sampling time and equipment characteristics, temperature, humidity, wind speed, airborne particles, carbon monoxide, carbon dioxide, and the concentration of gonorrhea in the air, etc. Simultaneous measurement of physical environmental factors such as temperature, humidity, wind speed, carbon dioxide, etc .; suspended particles-PM10: 150 μg / m 3 [American Environmental Agency NAAQS (National Ambient Air Quality Standard) 24-hour average]; PM2.5: 65μg / m 3 [US Environmental Agency NAAQS (National Ambient Air Quality Standard) 24-hour average]; Carbon monoxide -9ppm [US Environmental Agency NAAQS (National Ambient Air Quality Standard) 8 hour average]; Carbon dioxide -1000ppm [ASHRAE ( American Society of Heating, Refrigera ting and Air-Conditioning Engineers) 62R (1996 Draft)]] can be adopted as various parameters for monitoring indoor air, and based on these, gaseous contaminants are monitored and adapted to life The environment can be maintained.

作業室内における黴菌や微生物の捕捉を容易にするため、一段型アンダーセンサンプラー(Single Stage Anderson Microbial Sampler,AMS)を用いて、生活空間における人間がよく活動を行い、環境からの影響の大きい場所[例えば、客室(コンピューターデスク、A);ベッド(B)、浴室(C)、水生植物栽培室(D)、換気窓(E)、室外(F)]等の特定位置の空気サンプルを採取し、気泡計(Bubble Meter)により流量を調整して、採取時ポンプを用いて空気を吸引し空気中の黴菌サンプルを採取する。サンプル流量を25-31L/minとし、採取時間を数分間から数十分間までとし、採取場所を人間が良く活動する場所とする。
換気窓Eは、作業室内が湿度が高く黴菌の繁殖し易い水生植物栽培室(水槽類)に通じる箇所であり、これを除いたその他の換気窓を全部閉じて、この換気窓のみを開けておいてサンプルを採取すれば、黴菌や微生物がこの換気窓を介して流れるか否かを判断可能となる。室外でサンプルを採取すれば作業室外における黴菌や微生物の濃度を測定でき、室内との比較が可能となる。
In order to facilitate the capture of gonococci and microorganisms in the working room, a single stage Anderson Microbial Sampler (AMS) is used, where people in the living space often perform activities and places that have a large impact from the environment [for example , Guest room (computer desk, A); bed (B), bathroom (C), aquatic plant cultivation room (D), ventilation window (E), outdoor (F)] The flow rate is adjusted with a bubble meter, and air is sucked using a pump at the time of collection to collect a gonococcal sample in the air. The sample flow rate is 25-31 L / min, the collection time is from a few minutes to several tens of minutes, and the collection place is a place where human activities are good.
Ventilation window E is a place that leads to an aquatic plant cultivation room (aquarium) where the working room is highly humid and easy to propagate bacilli, and all other ventilation windows except for this are closed and only this ventilation window is opened. If a sample is collected in this case, it is possible to determine whether or not gonococci and microorganisms flow through the ventilation window. If a sample is taken outdoors, the concentration of gonococci and microorganisms outside the work room can be measured, and comparison with the room is possible.

浮遊粒子、一酸化炭素、二酸化炭素及び空気中の黴菌等の主な室内空気汚染物を、孔径の異なる8.0μm及び0.95μmの篩板を備えた二段型アンダーセンサンプラ(Two-Stage Stage Anderson Microbial Sampler)を用いて上下の二段階で空気汚染物を捕捉する。そのうち、段階0では0-8μmの空気汚染物を、段階1では0.95-8μmの空気汚染物をそれぞれ捕捉可能にした。採取流速を好ましくは28.3LPM(Liter per min)とし、且つ毎回の採取に先立って赤外線自動校正器により校正する。採取に先立って、汚染されないようサンプラを75%のアルコールで殺菌しておくと共に、サンプラの高さを固定する(A-デスクの高さ、B-ベッドの高さ):この条件により呼吸域に近く、実際の呼吸状況を再現可能である。10分、20分、30分の採取時間内に採取位置毎に、3つの流速で採取する。各採取位置で2回繰返して2回サンプル(Sequential duplicate sampling)を採取する。採取後75%のアルコールでサンプラーを殺菌する。サンプリング後、20mlの空気サンプルを取り、実施形態において用意した培地に入れてから封止フイルムで封止し、培養する。
室内外の採取位置の空気品質の基準値に関しては、前記国外の関連機関が規制に従って作成した管理値(環境基準など)を適用すればよい。
気体測定に必要な様々な室内環境パラメーター、例えば、温度、湿度、風速、浮遊粒子、一酸化炭素、二酸化炭素及び空気中の黴菌の濃度等の内、浮遊粒子、黴菌などに関しては、粉塵モニタ(Dust Monitor、Grimm Group.,Model 1105)を用いて室内サンプルを採取し、空気中の粒径の異なる(1、2、5、10、15μm)浮遊粒子の質量濃度(0〜99999μg/m3)を測定する。
温度、湿度、一酸化炭素、二酸化炭素の測定に関しては、直読式室内空気質モニタ(Indoor Air Quality Monitors,Metrosonic Corp.,Model aq-512)で各測定位置における温度、湿度、一酸化炭素、二酸化炭素を連続して(七日間)測定する。
風速の測定に関しては、直読式熱線風速計(Thermoair 3)で測定し、2秒毎に測定値(平均値、最大値、最小値を含む)を記録し、最大連続測定期間を2時間とし、風速は0.01m/sまで判読可能である。湿度及び温度も同時に測定することも可能である。
Two-stage under sensor sampler (Two-Stage Stage Anderson Microbial) equipped with 8.0 and 0.95 μm sieve plates with different pore diameters for airborne contaminants such as airborne particles, carbon monoxide, carbon dioxide, and bacilli in the air Sampler) is used to capture air contaminants in two stages, upper and lower. Of these, 0-8 μm air contaminants were captured at stage 0 and 0.95-8 μm air contaminants were captured at stage 1. The sampling flow rate is preferably 28.3 LPM (Liter per min) and calibrated by an infrared automatic calibrator prior to each sampling. Prior to collection, the sampler is sterilized with 75% alcohol to prevent contamination and the sampler height is fixed (A-desk height, B-bed height). Nearly, the actual breathing situation can be reproduced. Collect at three flow rates for each sampling position within 10 minutes, 20 minutes, and 30 minutes. Repeat twice at each sampling position and take a sample (Sequential duplicate sampling). Sterilize the sampler with 75% alcohol after collection. After sampling, a 20 ml air sample is taken, put into the medium prepared in the embodiment, sealed with a sealing film, and cultured.
As the reference value of the air quality at the sampling position indoors and outdoors, a management value (such as an environmental standard) created by the relevant organizations outside the country in accordance with regulations may be applied.
For various indoor environmental parameters required for gas measurement, such as temperature, humidity, wind speed, suspended particles, carbon monoxide, carbon dioxide and the concentration of gonococci in the air, the dust monitor ( Dust Monitor, Grimm Group., Model 1105) was used to collect indoor samples, and the airborne particle mass concentrations (0-99999μg / m 3 ) with different particle sizes in air (1, 2, 5, 10, 15 μm) Measure.
For temperature, humidity, carbon monoxide, and carbon dioxide measurements, direct reading indoor air quality monitors (Indoor Air Quality Monitors, Metrosonic Corp., Model aq-512) are used to measure temperature, humidity, carbon monoxide, and carbon dioxide at each measurement position. Measure carbon continuously (7 days).
For wind speed measurement, measure directly with a hot-wire anemometer (Thermoair 3), record the measured values (including average, maximum and minimum) every 2 seconds, and set the maximum continuous measurement period to 2 hours. The wind speed can be read up to 0.01m / s. Humidity and temperature can also be measured simultaneously.

本発明においては、従来の測定方法と異なり、人間の生活する空間の内で最もその健康管理上影響の大きい室内空間の特定箇所である、執務環境(コンピュータディスク)周辺、ベッド或いは湿度が高い、などの黴菌の増殖し易い環境に接する箇所、などに応じて空気中の汚染物質を測定して、既存の種々の環境基準と対比し、これらを参照して生活空間のより実態に即した環境条件の適否を判定し、監視することによって、最も好適な生活環境を維持することが出来る。 In the present invention, unlike a conventional measurement method, the specific place of the indoor space that has the greatest influence on the health management in the space where people live, the surroundings of the work environment (computer disk), the bed or the humidity is high, Measure the pollutants in the air according to the location where the gonococcus is prone to growth, etc., and compare it with various existing environmental standards. The most suitable living environment can be maintained by determining the suitability of the conditions and monitoring.

以下、実施例により本発明の技術内容を具体的に説明するが、本発明の請求の範囲は、これらの実施例によって限定されないものである。   Hereinafter, the technical contents of the present invention will be specifically described by way of examples, but the scope of the claims of the present invention is not limited by these examples.

空気中のガス状汚染物質のサンプル採取及びその分析
選定された特定の採取位置〔客室(コンピューターデスク、A);ベッド(B)、浴室(C)、水生植物栽培室(D)、換気窓(E)、室外(F)、図1を参照。〕において、一段型アンダーセンサンプラ(Single Stage Anderson Microbial Sample,AMS)を用いて採取した。気泡計(Bubble Meter)により流量を校正し、ポンプを用いて空気を吸引し、空気中の黴菌サンプルを採取した。採取流量を25-31L/minとし、採取時間を数分から数十分とした。各季節毎に1回行うが、夏の採取時間を比較的短くするのに対し、冬の採取時間を比較的長くする。培地は抗生物質(Chloramphenicol(10mg/l))添加及び非添加のSDA(Sabourand's Dextrose Agar)の二種であり、各培地にそれぞれ20mlのサンプルを入れた。各位置につきそれぞれ2回繰返してサンプルを採取(Sequential duplicate sampling)した。この後、平均値を各採取位置の黴菌の濃度とした。サンプルを採取する前及び採取が終わった後に、それぞれ70%のアルコールにより消毒作業を行った。サンプルの採取後、培地を恒温培養箱に入れて、25℃下3〜7日間培養した。培養した後、培地に成長したコロニー数は、即ちコロニー形成数(Colony Forming Unit,CFU)である。このコロニー形成数を空気採取体積で割ると、濃度になる(単位:コロニー形成数/立方メートル、CFU/m3)。これと同時に顕微鏡検査により黴菌の種類の識別を行った。
室内の空気汚染物の採取は、上下に孔径の異なる8.0μm及び0.95μmの篩板を備えた二段型アンダーセンサンプラにより行った。
Sample collection and analysis of gaseous pollutants in the air Selected specific collection location [guest room (computer desk, A); bed (B), bathroom (C), aquatic plant cultivation room (D), ventilation window ( See E), Outdoor (F), Figure 1. ] Using a single stage Anderson Microbial Sample (AMS). The flow rate was calibrated with a bubble meter, air was sucked in using a pump, and a bacilli sample in the air was collected. The sampling flow rate was 25-31 L / min, and the sampling time was several minutes to several tens of minutes. This is done once every season, but the summer time is relatively short, while the winter time is relatively long. There are two types of medium: SDA (Sabourand's Dextrose Agar) with and without antibiotics (Chloramphenicol (10 mg / l)), and 20 ml of each sample was placed in each medium. Samples were taken twice for each position (Sequential duplicate sampling). Thereafter, the average value was taken as the concentration of koji molds at each sampling position. Disinfection work was performed with 70% alcohol before and after sampling. After collecting the sample, the medium was placed in a constant temperature culture box and cultured at 25 ° C. for 3 to 7 days. The number of colonies grown on the culture medium after culturing is the number of colonies forming (Colony Forming Unit, CFU). Dividing this colony formation number by the air sampling volume gives the concentration (unit: colony formation number / cubic meter, CFU / m 3 ). At the same time, the type of Neisseria gonorrhoeae was identified by microscopic examination.
The collection of air pollutants in the room was carried out by a two-stage type under-sensor sampler equipped with 8.0 μm and 0.95 μm sieve plates with different hole diameters at the top and bottom.

以上の通り採取した空気中のガス状汚染物のサンプルを、後述のように用意された培地にそれぞれ20mlづつ入れて、封止フイルムで封止してから、4℃の冷蔵庫で保存したものを用いて培養する。
〔培地の準備〕
Malt Extract Agar-MEA(Merck)
オートクレーブ(Autoclave):118-121℃ 10mins,15atmにて殺菌。
PH調整(Final) pH5.6±0.2 at 25℃
〔黴菌培養〕
培地を25℃下の恒温培養箱に入れ、3〜7日間培養した。培養後、培地に成長してきたコロニーの数が、即ちコロニー形成数(Colony Forming Unit,CFU)である。コロニー形成数を採取した空気の体積で割れば、濃度(単位:コロニー形成数/立方メートル、CFU/m3)が得られる。
〔空気中の生きた黴菌の濃度〕
培養後の培地から明らかにしたように、黴菌コロニーの生じた培地は、殆どサンプラの第二段階から採取されたものである。これは、採取した環境空気中の真菌は大体0.95-8μmにあることを示している。各特定位置の空気中の生きた黴菌濃度の分布(CFU/m3)は表1の通りである。
Samples of gaseous contaminants in the air collected as described above are placed in a medium prepared as described below, 20 ml each, sealed with a sealing film, and stored in a refrigerator at 4 ° C. Culture.
[Preparation of medium]
Malt Extract Agar-MEA (Merck)
Autoclave: Sterilized at 118-121 ℃ 10mins, 15atm.
PH adjustment (Final) pH5.6 ± 0.2 at 25 ℃
[Koji mold culture]
The medium was placed in a constant temperature culture box at 25 ° C. and cultured for 3 to 7 days. The number of colonies grown on the medium after culturing is the number of colonies forming (Colony Forming Unit, CFU). If the number of colonies formed is divided by the volume of air collected, the concentration (unit: number of colonies formed / cubic meter, CFU / m 3 ) can be obtained.
[Concentration of live Neisseria gonorrhoeae in the air]
As clarified from the culture medium after culturing, the medium in which the Neisseria gonorrhoeae colony was obtained was mostly collected from the second stage of the sampler. This indicates that the collected fungus in the ambient air is approximately 0.95-8 μm. Table 1 shows the distribution (CFU / m 3 ) of live gonococcal concentrations in the air at each specific location.

Figure 2007298469
Figure 2007298469

〔浮遊粒子測定〕
粉塵モニタ(Dust Monitor,Grimm Group.,Model 1105)を用いて、室内の空気サンプルを採取する。一分毎に空気中の異なる浮遊粒子の質量濃度(μg/m3)を一回測定し、サンプル採取後にコンピューターに接続して、データ分析(分析結果は図2の24時間内の各特定位置の浮遊粒子の質量濃度の変化図を参照。)を行った。これと同時に測定した温度及び湿度は表2の通りである。
[Floating particle measurement]
An indoor air sample is taken using a dust monitor (Dust Monitor, Grimm Group., Model 1105). The mass concentration (μg / m 3 ) of different suspended particles in the air is measured once every minute, connected to a computer after sample collection, and data analysis (analysis results are shown in each specific position within 24 hours in Fig. 2). (See change diagram of mass concentration of suspended particles.) Table 2 shows the temperature and humidity measured at the same time.

Figure 2007298469
Figure 2007298469

〔測定結果〕
人的汚染による誤差を避けるため、上記のような採取過程においてブランクテストを行い、培地空白サンプル及び現場空白サンプルも含めて、いずれもコロニーのない空白の管を用いた試験を実施した。粉塵のサンプル濃度の結果から、粉塵モニタによる研究室外の開放空間の結果がやや高い以外、特定位置における粉塵濃度が比較的低く、いずれも上限値以下であることが明らかにした。
空気中におけるガス状汚染物の分析に関しては、各特定位置で繰り返して採取したサンプル濃度の相違が極僅かなものであることが明らかにした。即ち、採取位置A(コンピューターデスク);B(ベッド)、C(浴室)、D(水生植物栽培室)、E(換気窓)における濃度のいずれも、1000CFU/m3(NIOSH、1987;Anthony K.Y.Law, C.K.Chau, Gilbert Y S Chan.2001)未満である。ところが、F(室外)の濃度が1000CFU/m3を上回っており、その他の5つの採取位置よりやや高い。一方、A(コンピューターデスク);B(ベッド)、C(浴室)、D(水生植物栽培室)、E(換気窓)の等5つの採取位置における濃度が低いが、その中のD(水生植物栽培室)及びE(換気窓)における空気中のガス状汚染物質の濃度が比較的高くなっている。一つの換気窓を除いたその他の換気窓を全部閉じれば、採取位置E(換気窓)における濃度が335.7±11.6 CFU/m3となり、A(コンピューターデスク);B(ベッド)、C(浴室)より高く、特にA(コンピューターデスク)、B(ベッド)の2倍以上となっている。また、換気窓が開いている場合、D(水生植物栽培室)に近づけば近づくほど空気中における濃度の高い真菌が水生植物栽培室から室内に流れ込むようになる。先に出願した発明に係る湿度吸収型の石材からなる床の通風構造は、通気性及び湿度・温度抑制作用からこれらの環境条件の維持に適しており、省エネ、快適で健康的な生活環境を提供することができると思われる。
〔Measurement result〕
In order to avoid errors due to human contamination, a blank test was performed in the sampling process as described above, and a test using a blank tube without colonies was performed, including a medium blank sample and a field blank sample. From the results of the dust sample concentration, it was clarified that the dust concentration at the specific position was relatively low and all were below the upper limit, except that the result of the open space outside the laboratory by the dust monitor was slightly high.
Regarding the analysis of gaseous pollutants in the air, it was revealed that the difference in sample concentration repeatedly collected at each specific position was very small. That is, the concentration at each of the collection positions A (computer desk); B (bed), C (bathroom), D (aquatic plant cultivation room), and E (ventilation window) is 1000 CFU / m 3 (NIOSH, 1987; Anthony KYLaw) , CKChau, Gilbert YS Chan. 2001). However, the concentration of F (outdoor) exceeds 1000 CFU / m 3 , which is slightly higher than the other five sampling positions. On the other hand, A (Computer Desk); B (Bed), C (Bathroom), D (Aquatic Plant Cultivation Room), E (Ventilation Window), etc., have low concentrations, but D (Aquatic Plant) The concentration of gaseous pollutants in the air in the cultivation room) and E (ventilation window) is relatively high. If all the other ventilation windows except one ventilation window are closed, the concentration at the sampling position E (ventilation window) will be 335.7 ± 11.6 CFU / m 3 , A (computer desk); B (bed), C (bathroom) Higher, especially more than twice A (computer desk) and B (bed). In addition, when the ventilation window is open, the closer to D (aquatic plant cultivation room), the higher the concentration of fungi in the air flows into the room from the aquatic plant cultivation room. The floor ventilation structure made of moisture-absorbing stones according to the invention filed earlier is suitable for maintaining these environmental conditions because of its air permeability and humidity / temperature control action, and it contributes to energy saving, comfortable and healthy living environment. Seems to be able to provide.

以上の結果から、人間の生活する空間の内でも人間の良く活動する箇所、或いはベッド周辺などの長時間滞在する位置などにより、空気中の汚染物質の種類や濃度が異なり、またその影響も著しく相違することがわかる。
本発明は、上記の通りこのような室内の各種環境パラメータとして温度、湿度、風速、浮遊粒子、一酸化炭素、二酸化炭素及び空気中の黴菌の濃度を採用し、
また、これらの空気中の汚染物質の測定箇所を、人間の生活する空間の内でも人間の良く活動する箇所を選定してそれぞれに適した測定手段によって行うことによって、最も環境条件に適した評価を可能とし、日常生活に適するようにするために生活空間におけるこれらガス状汚染物質の状態を監視することを可能とした。
From the above results, the types and concentrations of pollutants in the air differ depending on the places where people live well or where they stay for a long time, such as around the bed. You can see that they are different.
As described above, the present invention employs temperature, humidity, wind speed, suspended particles, carbon monoxide, carbon dioxide, and the concentration of koji mold in the air as various environmental parameters in the room as described above.
In addition, the measurement points for these pollutants in the air are selected according to the measurement means suitable for each person in the space where people live, and the evaluation method most suitable for the environmental conditions. It has become possible to monitor the state of these gaseous pollutants in the living space in order to be suitable for daily life.

本発明に係る空気中のガス状汚染物の捕捉方法の中の特定位置を示す略図である。1 is a schematic diagram showing a specific position in a method for capturing gaseous contaminants in air according to the present invention. 本発明に係る空気中のガス状汚染物の捕捉方法の中の各特定位置の24時間内浮遊粒子の質量濃度の変化を示す図である。It is a figure which shows the change of the mass concentration of the floating particle within 24 hours of each specific position in the capture | acquisition method of the gaseous contaminant in the air which concerns on this invention.

符号の説明Explanation of symbols

A 客室(コンピューターデスク)
B ベッド
C 浴室
D 水生植物栽培室、
E 換気窓
F 室外
A Guest room (computer desk)
B bed
C bathroom
D Aquatic plant cultivation room,
E Ventilation window
F Outdoor

Claims (5)

温度、湿度、風速、浮遊粒子、一酸化炭素、二酸化炭素及び空気中の黴菌の濃度を室内の環境パラメータとして採用し、
室内のこれらパラメータを測定する位置として生活空間における人間のよく活動してその被る影響の大きい特定位置を1以上選定して行い、
これらの内、黴菌については一段型アンダーセンサンプラを用いて、ポンプを介して流量25-31L/min、採取時間数分から数十分で空気を吸引して、空気サンプルを採取して行い、
他のパラメータは、各種環境基準による温度、湿度、風速、二酸化炭素等の物理的環境測定手段により測定し、
これらのデータを季節毎に測定して、
日常生活に適するようにするために生活空間におけるこれらガス状汚染物質の状態を監視することを特徴とする空気中のガス状汚染物の監視方法。
Adopting temperature, humidity, wind speed, airborne particles, carbon monoxide, carbon dioxide and the concentration of gonococci in the air as indoor environmental parameters,
Select one or more specific locations that are highly affected by human activities in the living space as locations to measure these parameters in the room,
Among these, for gonococci, using a one-stage under-sensor modeler, air is drawn through a pump with a flow rate of 25-31 L / min, sampling time from several minutes to several tens of minutes, and an air sample is collected,
Other parameters are measured by physical environment measuring means such as temperature, humidity, wind speed, carbon dioxide according to various environmental standards,
Measure these data every season,
A method for monitoring gaseous contaminants in the air, characterized by monitoring the state of these gaseous contaminants in the living space in order to be suitable for daily life.
上記室内の各種環境パラメータの測定に用いる装置は、室内空気サンプルを採取して、空気中における粒径の異なる粒子(1、2、5、10、15μm)の浮遊粒子の質量濃度(0-99999μg/m3)を検出する粉塵モニタであることを特徴とする請求項1に記載の方法。 The equipment used for measuring various environmental parameters in the above room collects indoor air samples, and the mass concentration (0-99999μg) of suspended particles of particles (1, 2, 5, 10, 15μm) with different particle sizes in the air The method according to claim 1, wherein the method is a dust monitor that detects / m 3 ). 上記特定位置は、室内が水生植物栽培室などの室内環境中で最も湿度が高く、黴菌などの増殖に適した箇所に通じる換気窓などの箇所であり、
サンプリング条件として、上記換気窓を除いたその他の換気窓を全部閉じ、且つ上記換気窓のみを開けておいてサンプルを採取することにより、ガス状汚染物が換気窓を介して流れるか否かを判断すると共に、室外でサンプルを採取して得た室外のガス状汚染物の質量濃度と比較する、
ことを特徴とする請求項1に記載の方法。
The specific position is a place such as a ventilation window that leads to a place where the room has the highest humidity in an indoor environment such as an aquatic plant cultivation room and is suitable for growth of bacilli,
As a sampling condition, whether or not gaseous contaminants can flow through the ventilation window by closing all other ventilation windows except the ventilation window and collecting the sample with only the ventilation window opened. Judgment and comparison with the outdoor mass concentration of gaseous contaminants obtained by collecting samples outdoors.
The method according to claim 1.
上記特定位置において前記温度、湿度、風速、二酸化炭素等の物理的環境要素を測定するための装置は、7日間連続して、温度、湿度、一酸化炭素及び二酸化炭素を測定する直読式室内空気質モニタであることを特徴とする請求項1に記載の方法。   The device for measuring physical environmental elements such as temperature, humidity, wind speed, carbon dioxide, etc. at the specific position is a direct-reading indoor air that measures temperature, humidity, carbon monoxide and carbon dioxide continuously for 7 days. The method of claim 1, wherein the method is a quality monitor. 前記風速を測定するための装置は、二秒毎に測定値(平均値、最大値及び最小値を含む)を記録し、最大連続測定時間を二時間とし、0.01m/sまでの風速を判読しうると共に、温度及び湿度を測定可能な直読式熱線風速計である、を特徴とする請求項3に記載の方法。   The device for measuring the wind speed records the measured values (including the average value, maximum value, and minimum value) every 2 seconds, sets the maximum continuous measurement time to 2 hours, and reads the wind speed up to 0.01 m / s. 4. The method according to claim 3, wherein the method is a direct-reading hot-wire anemometer capable of measuring temperature and humidity.
JP2006128359A 2006-05-02 2006-05-02 Monitoring method for gaseous contaminant in air Pending JP2007298469A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006128359A JP2007298469A (en) 2006-05-02 2006-05-02 Monitoring method for gaseous contaminant in air

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006128359A JP2007298469A (en) 2006-05-02 2006-05-02 Monitoring method for gaseous contaminant in air

Publications (1)

Publication Number Publication Date
JP2007298469A true JP2007298469A (en) 2007-11-15

Family

ID=38768073

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006128359A Pending JP2007298469A (en) 2006-05-02 2006-05-02 Monitoring method for gaseous contaminant in air

Country Status (1)

Country Link
JP (1) JP2007298469A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110252897A1 (en) * 2010-04-20 2011-10-20 Erik Axel Swenson Versatile remote slit impact air sampler controller system
CN106680436A (en) * 2017-02-27 2017-05-17 上海三因环保科技有限公司 Novel air pollution average concentration measurer
CN113360846A (en) * 2021-06-01 2021-09-07 上海迪勤智能科技有限公司 Online detection method for obtaining air colony group number, medium and electronic equipment thereof
CN113430247A (en) * 2021-06-24 2021-09-24 福建中烟工业有限责任公司 Method for evaluating mildew-proof effect of tobacco leaves
CN113883634A (en) * 2021-10-12 2022-01-04 南京师范大学 Fresh air control system based on outdoor particulate matter balance point concentration and use method thereof
CN114019588A (en) * 2021-11-18 2022-02-08 赵清虎 Hydrological rainfall gauge convenient to erect in field
CN114460195A (en) * 2022-01-27 2022-05-10 河北科技大学 Sampling detection method for perfluoro and polyfluoroalkyl compounds in atmospheric particulates
WO2023008322A1 (en) * 2021-07-30 2023-02-02 ダイキン工業株式会社 Control method for sampling device, sampling device, and sampling system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884552A (en) * 1981-11-16 1983-05-20 Nec Corp Connecting system between transmission communication system and exchange system
JPH05126717A (en) * 1991-11-07 1993-05-21 Hitachi Ltd Dust detection device
JPH0613476Y2 (en) * 1987-05-07 1994-04-06 株式会社 五十嵐電機製作所 Foreign matter collection device in the air
JPH1114112A (en) * 1997-06-20 1999-01-22 Sanpo Denki Kk Method and apparatus for estimating cleanliness performance of ar in clean room, and readable record medium including program recorded therein
JP2000283910A (en) * 1999-03-31 2000-10-13 Daiwa Can Co Ltd Dust monitoring device for sterile filling
JP2000304663A (en) * 1999-04-19 2000-11-02 Midori Anzen Co Ltd Portable sampler for bacteria floating in air
JP2002333403A (en) * 2001-05-09 2002-11-22 Nisca Corp Indoor environment monitoring device and indoor environment monitoring system

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5884552A (en) * 1981-11-16 1983-05-20 Nec Corp Connecting system between transmission communication system and exchange system
JPH0613476Y2 (en) * 1987-05-07 1994-04-06 株式会社 五十嵐電機製作所 Foreign matter collection device in the air
JPH05126717A (en) * 1991-11-07 1993-05-21 Hitachi Ltd Dust detection device
JPH1114112A (en) * 1997-06-20 1999-01-22 Sanpo Denki Kk Method and apparatus for estimating cleanliness performance of ar in clean room, and readable record medium including program recorded therein
JP2000283910A (en) * 1999-03-31 2000-10-13 Daiwa Can Co Ltd Dust monitoring device for sterile filling
JP2000304663A (en) * 1999-04-19 2000-11-02 Midori Anzen Co Ltd Portable sampler for bacteria floating in air
JP2002333403A (en) * 2001-05-09 2002-11-22 Nisca Corp Indoor environment monitoring device and indoor environment monitoring system

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110252897A1 (en) * 2010-04-20 2011-10-20 Erik Axel Swenson Versatile remote slit impact air sampler controller system
CN106680436A (en) * 2017-02-27 2017-05-17 上海三因环保科技有限公司 Novel air pollution average concentration measurer
CN113360846A (en) * 2021-06-01 2021-09-07 上海迪勤智能科技有限公司 Online detection method for obtaining air colony group number, medium and electronic equipment thereof
CN113430247A (en) * 2021-06-24 2021-09-24 福建中烟工业有限责任公司 Method for evaluating mildew-proof effect of tobacco leaves
WO2023008322A1 (en) * 2021-07-30 2023-02-02 ダイキン工業株式会社 Control method for sampling device, sampling device, and sampling system
CN113883634A (en) * 2021-10-12 2022-01-04 南京师范大学 Fresh air control system based on outdoor particulate matter balance point concentration and use method thereof
CN113883634B (en) * 2021-10-12 2022-11-25 南京师范大学 Use method of fresh air control system based on outdoor particulate matter balance point concentration
CN114019588A (en) * 2021-11-18 2022-02-08 赵清虎 Hydrological rainfall gauge convenient to erect in field
CN114460195A (en) * 2022-01-27 2022-05-10 河北科技大学 Sampling detection method for perfluoro and polyfluoroalkyl compounds in atmospheric particulates
CN114460195B (en) * 2022-01-27 2023-09-22 河北科技大学 Sampling detection method for perfluoro and polyfluoroalkyl compounds in atmospheric particulates

Similar Documents

Publication Publication Date Title
JP2007298469A (en) Monitoring method for gaseous contaminant in air
Chegini et al. Indoor and outdoor airborne bacterial and fungal air quality in kindergartens: Seasonal distribution, genera, levels, and factors influencing their concentration
Heudorf et al. Particulate matter and carbon dioxide in classrooms–the impact of cleaning and ventilation
Scheff et al. Indoor air quality in a middle school, Part II: Development of emission factors for particulate matter and bioaerosols
Fabian et al. Ambient bioaerosol indices for indoor air quality assessments of flood reclamation
Thorne et al. Concentrations of bioaerosols, odors, and hydrogen sulfide inside and downwind from two types of swine livestock operations
Basińska et al. Impact of physical and microbiological parameters on proper indoor air quality in nursery
Liu et al. Study on the potential relationships between indoor culturable fungi, particle load and children respiratory health in Xi'an, China
CN205002272U (en) Ecological type air purifier
US20050260569A1 (en) Method, device and system for detecting the presence of microorganisms
CN104535714B (en) By controlling the growth conditions assessment plant device to gray haze Air purification
CN102323115A (en) Air sampler
Zhang et al. Thermal and environmental conditions in Shanghai households: Risk factors for childhood health
Engelhart et al. Air sampling of Aspergillus fumigatus and other thermotolerant fungi: Comparative performance of the Sartorius MD8 airport and the Merck MAS-100 portable bioaerosol sampler
Lee et al. Relationship between indoor and outdoor airborne fungal spores, pollen, and (1→ 3)-β-D-glucan in homes without visible mold growth
CN108676779A (en) A method of detection air clearing product purifies air pnagus medius ability
CN205174636U (en) Portable air purification humidification sterilizer
Alghamdi et al. Distribution and the trend of airborne particles and bio-aerosol concentration in pediatric intensive care units with different ventilation setting at two hospitals in Riyadh, Saudi Arabia
CN210241813U (en) On-line real-time visual monitoring device for air quality of clean operating room
TWI294034B (en) Sampling method for bioaerosol in air
JP6545848B2 (en) Humid heat response device for predicting the potential of airborne microbial contamination in indoor environment and method of manufacturing the same
CN202757231U (en) Air purifier
TWM604049U (en) Diagnostic system for indoor cross-infection risk
Spiegelman et al. The effect of central air filtration and air conditioning on pollen and microbial contamination
Sarah et al. Indoor and outdoor concentrations of bioaerosols and meteorological conditions of selected salons in four areas of Ibadan North local government area

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090410

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091027

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101028

A601 Written request for extension of time

Effective date: 20101227

Free format text: JAPANESE INTERMEDIATE CODE: A601

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20110111

A02 Decision of refusal

Effective date: 20110428

Free format text: JAPANESE INTERMEDIATE CODE: A02