WO2023008261A1 - Power generation facility and power generation method - Google Patents

Power generation facility and power generation method Download PDF

Info

Publication number
WO2023008261A1
WO2023008261A1 PCT/JP2022/028082 JP2022028082W WO2023008261A1 WO 2023008261 A1 WO2023008261 A1 WO 2023008261A1 JP 2022028082 W JP2022028082 W JP 2022028082W WO 2023008261 A1 WO2023008261 A1 WO 2023008261A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
power generation
floating body
module
wave
Prior art date
Application number
PCT/JP2022/028082
Other languages
French (fr)
Japanese (ja)
Inventor
聡 児玉
Original Assignee
三菱重工業株式会社
三菱パワー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社, 三菱パワー株式会社 filed Critical 三菱重工業株式会社
Priority to GB2401022.5A priority Critical patent/GB2623913A/en
Publication of WO2023008261A1 publication Critical patent/WO2023008261A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • B63B2035/4433Floating structures carrying electric power plants
    • B63B2035/4466Floating structures carrying electric power plants for converting water energy into electric energy, e.g. from tidal flows, waves or currents
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient

Definitions

  • This disclosure relates to power generation facilities and power generation methods that generate power using tidal currents.
  • Patent Literature 1 discloses a hull equipped with photovoltaic power generation equipment, wind power generation equipment, wave power generation equipment, and tidal power generation equipment.
  • Patent Document 1 a power conversion device that converts wave energy and tidal energy into power is provided. It is not preferable because it causes energy loss in the generator. Assuming that the number of power converters will increase as power generation equipment becomes larger or scales up, it is necessary to consider an installation form that has a wide range of applications. In particular, unlike the hull that can navigate by itself, such as Patent Document 1, when installing power converters on a floating body moored in the ocean, it is preferable to be able to flexibly cope with an increase or decrease in the number of installations.
  • the present disclosure has been made in view of such circumstances, and provides a power generation facility and a power generation method that can efficiently increase the number of power conversion devices that convert tidal power and / or wave power into power and maintenance work. intended to provide
  • a power generation facility includes a floating body that is moored and floats on a water surface, a plurality of power conversion modules that are provided on the floating body and convert tidal currents and/or wave power into power, and , a common power generation module that converts the motive power led from each power conversion module into electric power, and a power transmission module that transmits the power generated by the power generation module to the outside.
  • a power generation method includes a step of converting tidal currents and/or wave power into power by a plurality of power conversion modules provided on a floating body that is moored and floating on the water surface; It includes a step of converting the motive power introduced from the power conversion module into electric power, and a step of transmitting the electric power generated by the power generation module to the outside by a power transmission module.
  • FIG. 1 is a schematic configuration diagram showing power generation equipment according to a first embodiment of the present disclosure
  • FIG. FIG. 2 is a schematic configuration diagram showing a hydraulic circuit of the tidal current power generation facility of FIG. 1
  • FIG. 3 is a schematic configuration diagram showing a modification of FIG. 2
  • FIG. 2 is a schematic configuration diagram showing an air flow of the wave power generation facility of FIG. 1
  • FIG. 5 is a schematic configuration diagram showing a modification of FIG. 4
  • FIG. 3 is a plan view showing a state in which a plurality of floating bodies are arranged; It is the bottom view which showed the power generation equipment which concerns on 2nd Embodiment.
  • FIG. 8 is a longitudinal sectional view showing a schematic configuration of the power generation equipment of FIG. 7;
  • FIG. 8 is a longitudinal sectional view showing a schematic configuration of the power generation equipment of FIG. 7;
  • FIG. 8 is a bottom view showing a state in which a plurality of floating bodies of FIG. 7 are arranged;
  • FIG. 8 is a bottom view of the floating body of FIG. 7;
  • 10B is a side view of FIG. 10A;
  • FIG. FIG. 4 is a bottom view showing a state in which the floating body is moored with mooring cables having expansion devices.
  • FIG. 1 shows a power generation facility 1 according to the first embodiment.
  • the power generation facility 1 includes a floating body 3 , a tidal power generation facility 5 , a wave power generation facility 7 , and a solar power generation device 9 .
  • the floating body 3 has a hollow box shape, for example, a rectangular parallelepiped, and floats on the sea surface WS.
  • the floating body 3 is moored to a fixed point in the sea (not shown) by a mooring cable 11 .
  • the tidal power generation facility 5 includes a tidal turbine 13 .
  • the tidal current turbine 13 is rotated by the tidal current TS.
  • the rotational force of the tidal current turbine 13 is transmitted from the horizontally extending first shaft 15 to the vertically extending second shaft 17 .
  • two bevel gears 16 are provided between the first shaft 15 and the second shaft 17 .
  • the method is not limited to bevel gears as long as the horizontal rotational force generated by the tidal current turbine 13 can be converted into vertical rotational force.
  • the second shaft 17 is provided so as to pass through the floating body 3 .
  • a hydraulic pump 19 is connected to the second shaft 17 .
  • the hydraulic pump 19 is provided above the floating body 3, that is, above the sea surface WS. This facilitates access to the hydraulic pump 19 and facilitates maintenance.
  • the hydraulic pump 19 is driven by the rotational force transmitted from the second shaft 17, and the working fluid (working oil) is pressurized to a pressure equal to or higher than a predetermined pressure. Thereby, the tidal current TS is converted into power (hydraulic pressure). Hydraulic oil pressurized by the hydraulic pump 19 is guided to the hydraulic motor 23 through the hydraulic piping 21 .
  • the tidal current TS reverses (commutates) the flow direction several times a day.
  • a hydraulic circuit 25 is provided as shown in FIG. 2 so that the hydraulic fluid guided to the hydraulic motor 23 flows in one direction even if the tidal current TS is commutated.
  • solid-line arrows indicate the rotation and flow direction of each part when the tidal current turbine 13 rotates forward
  • broken-line arrows indicate the rotation and flow direction of the tidal current turbine 13 when the tidal current turbine 13 rotates in the reverse direction.
  • a rotary positive displacement pump such as a gear pump or a screw pump is used as the hydraulic pump 19 .
  • the hydraulic circuit 25 has a diamond-shaped hydraulic bridge circuit 25b, and a check valve 25a is provided on each of the four sides of the hydraulic bridge circuit 25b.
  • a check valve 25a is provided on each of the four sides of the hydraulic bridge circuit 25b.
  • the wave power generation facility 7 includes a wave turbine 33.
  • the wave turbine 33 is rotated by air discharged from the space S1 and sucked into the space S1.
  • the space S ⁇ b>1 is formed by an outer shell 35 provided on the side of the floating body 3 .
  • the outer shell 35 is formed such that its upper portion is fixed to the upper portion of the floating body 3 and its lower portion is submerged in water.
  • the lower part of the outer shell 35 is open so that seawater can enter.
  • An opening 35a is formed in the upper portion of the outer shell 35, and air enters and exits the space S1 through the opening 35a.
  • the rotational force of the wave turbine 33 is transmitted to the horizontally extending third shaft 37 to drive the hydraulic pump 38 .
  • This converts the wave force into power (hydraulic pressure).
  • Hydraulic oil pressurized by the hydraulic pump 38 is guided to the hydraulic motor 23 through the hydraulic piping 39 .
  • the wave turbine 33 and the hydraulic pump 38 are provided on both sides of the floating body 3, respectively.
  • the wave power turbine 33, the hydraulic pump 38, and the like constitute a power conversion module M1 that converts wave power into hydraulic pressure.
  • Each hydraulic pipe 39 of the wave turbine 33 merges with the hydraulic pipe 21 of the tidal current turbine 13 and is led to a common hydraulic motor 23. That is, the hydraulic fluid pressurized by the plurality of power conversion modules M1 is collected and led to the common hydraulic motor 23 .
  • the volume occupied by the air in the space S1 fluctuates according to the period of the waves, and accordingly the direction of the air entering and exiting the opening 35a is reversed. Therefore, the configuration as shown in FIG. 4 is adopted.
  • a solid-line arrow indicates when the sea surface WS rises in the space S1
  • a broken-line arrow indicates when the sea surface WS descends.
  • the wave turbine 33 on the right side in FIG. 4 rotates when the sea surface WS rises and the air in the space S1 is discharged. Specifically, the air discharged from the opening 35a passes through the check valve 40, rotates the wave turbine 33, and is then discharged to the outside. Rotational force of the wave turbine 33 is transmitted to the hydraulic pump 38 via the third shaft 37 . When the sea surface WS descends, the check valve 40 prevents the air from flowing to the wave turbine 33, so that the sea surface WS does not reverse.
  • the wave turbine 33 on the left side in FIG. 4 rotates when the sea surface WS descends and sucks air into the space S1. Specifically, the outside air flows through the check valve 40 to the wave turbine 33 by sucking air from the opening 35a. This causes the wave turbine 33 to rotate, and the rotational force of the wave turbine 33 is transmitted to the hydraulic pump 38 via the third shaft 37 .
  • the check valve 40 prevents air from flowing to the wave turbine 33, so the reverse rotation does not occur.
  • hydraulic pressure is generated by one of the wave turbines 33 each time the sea surface WS rises and falls.
  • a configuration using one wave turbine 33 is also possible.
  • a plurality of check valves 42 are used to provide a discharge air path 44a flowing in the discharge direction and a suction air path 44b flowing in the suction direction.
  • a common air path 44c is used for both the discharge air path 44a and the suction air path 44b.
  • a generator 24 is connected to the hydraulic motor 23 as shown in FIG.
  • the hydraulic motor 23 is rotationally driven by the hydraulic pressure of hydraulic oil supplied from the power conversion module M1, and the rotational force of the hydraulic motor 23 rotationally drives the generator 24 to generate power.
  • the hydraulic motor 23 and the generator 24 constitute a power generation module M2.
  • the power generated by the generator 24 is sent to the power transmission facility 26 and transmitted to the outside via the power transmission line 26a.
  • the power transmission facility 26 constitutes a power transmission module M3.
  • the power generation module M2 and the power transmission module M3 are integrated.
  • the power generation module M2 and the power transmission module M3 may be provided separately.
  • the power conversion module M1, power generation module M2, and power transmission module M3 are monitored and controlled by a control unit (not shown).
  • the control unit is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and a wired or wireless communication device.
  • a series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing. As a result, various functions are realized.
  • the program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via wired or wireless communication means. may be applied.
  • Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
  • FIG. 6 shows a state in which a plurality of floating bodies 3 are arranged.
  • a plurality of floating bodies 3 are arranged vertically and horizontally in plan view.
  • One floating body 3 is provided with a power generation module M2 and a power transmission module M3 (power generation floating body 3A).
  • a plurality of other floating bodies 3 are provided with power conversion modules M1 (power conversion floating bodies 3B).
  • the power conversion module M1 is not provided in the power generation floating body 3A.
  • the power conversion floating body 3B is not provided with the power generation module M2 and the power transmission module M3. Therefore, in the configuration shown in FIG. 6, a power generation floating body 3A having common power generation modules M2 and power transmission modules M3 mounted thereon is provided for a plurality of power conversion floating bodies 3B.
  • Each floating body 3 is connected to each other so that it can be disconnected. Thereby, each floating body 3 can be separated from the other floating bodies 3 .
  • a solar power generation device 9 is provided on the upper portion of the floating body 3.
  • the solar power generation device 9 has a solar cell panel 9a, and a space for installing hydraulic pumps 19, 38 and the like is formed between the solar cell panel 9a and the floating body 3.
  • Electric power generated by the photovoltaic power generation device 9 is sent to the power transmission facility 26 .
  • the power output and the like of the photovoltaic power generation device 9 are controlled by a control unit (not shown).
  • the effects of the present embodiment described above are as follows. Since the functions of power conversion, power generation and power transmission are divided into the modules M1, M2 and M3, the power conversion module M1, the power generation module M2 and the power transmission module M3 can be arranged separately. This increases the degree of freedom in combining the modules M1, M2, and M3, and the modules M1, M2, and M3 are arranged according to the installation situation when the power generation facility 1 is enlarged by increasing the number of floating bodies 3. can do.
  • the hydraulic motor 23 and the generator 24 can be increased in capacity, the loss at the time of power conversion can be reduced, and the power generation efficiency can be increased.
  • the number of installed power generation modules M2 can be reduced, and the cost for introduction and maintenance can be reduced.
  • a plurality of power generation modules M2 and power transmission modules M3 can be installed. Since the floating body 3 has a large occupied space and is not equipped with a wind power generator that increases the installation cost, the utilization efficiency of the installation space (the amount of power generated per unit space) is high, and the installation cost can be reduced.
  • a solar power generation device 9 is provided for the floating body 3.
  • power can be generated by sunlight in addition to tidal currents and wave power, and the capacity of the power generation equipment 1 can be increased. It is possible to maintain a high facility utilization rate because power generation can be expected from either natural energy regardless of day or night, weather, or season.
  • tidal currents can be predicted with high accuracy over the long term, making it easier to predict power generation and formulate maintenance plans.
  • a plurality of power conversion floating bodies 3B each having only the power conversion module M1 provided on the floating body 3 are provided, and power is supplied from each power conversion floating body 3B to the power generation floating body 3A provided with the common power generation module M2 to generate power. .
  • a plurality of common power generation floating bodies 3A can also be provided, and are configured in consideration of the facility scale, reliability, and maintenance plan.
  • Each floating body 3 can be disconnected from another floating body 3. As a result, power generation as the power generation equipment 1 can be continued after only the specific floating body 3 is disconnected during maintenance or the like.
  • FIG. 7 shows the floating body 3' in plan view.
  • the floating body 3' has floating body parts 50 on both sides. That is, the floating body 3' is of a catamaran type.
  • Each floating body part 50 has a box shape with a space inside, and is provided along the longitudinal direction.
  • a plurality of partition walls 52 are provided between the left and right floating body portions 50 in the figure.
  • Each partition 52 is a plate-like body and extends so as to connect the left and right floating body portions 50 .
  • Each partition wall 52 is provided at substantially constant intervals in the longitudinal direction at predetermined intervals.
  • a space S1 is formed by the left and right floating body parts 50 and the partition walls 52 adjacent in the longitudinal direction.
  • the space S1 is used to drive the wave turbine 33 as described in the first embodiment. Therefore, a wave turbine 33 can be provided in each space S1.
  • the wave turbines 33 are shown only for two spaces S1 in FIG. 7, the wave turbines 33 may be provided for all the spaces S1.
  • the wave turbine 33 is provided within the space S1.
  • the air in the space S1 enters and leaves the outside through the opening 35a.
  • a plurality of tidal current turbines 13 are provided for each floating body portion 50 so that the second shaft 17 penetrates through the floating body portion 50 .
  • the number of tidal current turbines 13 is arbitrary and is appropriately set according to the amount of power generation required.
  • a plurality of floating bodies 3' shown in FIG. 7 can be connected and arranged.
  • the floating bodies 3' may be arranged in the horizontal direction (width direction), or the floating bodies may be arranged in the vertical direction (longitudinal direction) or the vertical and horizontal directions.
  • a keel (rudder) 54 may be provided at the bottom of each floating body section 50 so as to protrude downward.
  • the tidal current turbine 13 and the wave turbine 33 are omitted in FIGS. 10A and 10B.
  • the keel 54 allows the attitude of the floating body 3' to be adjusted so that the tidal current turbine 13 faces the direction of the tidal current TS.
  • the mooring ropes 11 are used to support the four corners of the floating body 3′ in plan view, and the mooring ropes 11 are supported by reels (expansion devices) 56 provided at the respective mooring points on the floating body 3′. You can stretch it.
  • the posture of the floating body 3' can be appropriately set according to the direction of the tidal current TS. In this case, compared with the case of using the keel 54, the movement of the floating body 3' can be kept within a narrow range.
  • a catamaran type floating body is formed by providing floating body portions 50 along the longitudinal direction on both sides of the floating body 3'.
  • a plurality of partition walls 52 extending between the floating body portions 50 are provided in the longitudinal direction.
  • a plurality of spaces S1 in which the volume of the gas phase changes according to changes in waves are formed in the area surrounded by the floating body portion 50 and the partition walls 52 on both sides. Since power can be obtained from wave power using a plurality of spaces S1, greater energy can be recovered from wave power.
  • the attitude of the floating body 3' can be appropriately controlled according to the direction of the tidal current TS.
  • hydraulic pressure has been described as an example of power converted by tidal power and wave power, but the power to be converted is not limited to hydraulic pressure, and other power to be converted, such as air pressure, may be used.
  • a power generation facility includes a floating body that is moored and floats on a water surface, a plurality of power conversion modules that are provided on the floating body and convert tidal currents and/or wave power into power, and each of the power conversion modules a common power generation module that converts the motive power led from the power generation module into power; and a power transmission module that transmits the power generated by the power generation module to the outside.
  • each function such as power conversion, power generation and power transmission is separated for each module
  • the power conversion module, power generation module and power transmission module can be arranged separately.
  • the degree of freedom in combination of each module increases, and each module can be arranged according to the installation situation, for example, when increasing the number of floating bodies to increase the scale of the power generation facility.
  • the motive power generated by a plurality of power conversion modules is led to a common power generation module, compared to the case where each power conversion module is provided with a power generation module corresponding one-to-one to generate power, the loss during power conversion is reduced. less, and the power generation efficiency can be increased.
  • the number of installed power generation modules can be reduced, and the cost for introduction and maintenance can be reduced.
  • the power conversion module has a function of converting power obtained from, for example, tidal currents or wave power into hydraulic pressure. It is preferable that the floating body is not equipped with a wind power generator that increases the installation cost.
  • the floating body includes a photovoltaic power generation device.
  • a plurality of power conversion floating bodies are provided, and power is supplied from each power conversion floating body to a common power generation floating body to generate power. As a result, it is possible to easily cope with the scale-up of power generation facilities by increasing the number of power conversion floating bodies.
  • a plurality of power generation floating bodies may be provided.
  • the power generation floating body may be used as a power generation and transmission floating body by providing a power transmission module.
  • the power conversion floating body and the power generation floating body are connected so as to be able to be disconnected from the other floating body.
  • the floating body includes floating body portions provided along the longitudinal direction on both sides, and a plurality of partition walls extending between the floating body portions and provided in the longitudinal direction. and obtaining power from wave force using a plurality of spaces surrounded by each of the floating body portions and each of the bulkheads.
  • a catamaran type floating body is formed by providing a floating body part along the longitudinal direction on each side.
  • a plurality of partition walls extending between the floating body portions are provided in the longitudinal direction.
  • a plurality of spaces whose volumes change according to changes in waves are formed in the areas surrounded by the floating bodies on both sides and the partition walls. Because multiple spaces can be used to derive power from the wave force, more energy can be recovered from the wave force.
  • the floating body includes a keel.
  • a power generation facility includes a mooring cable for mooring the floating body, an expansion/contraction device for expanding and contracting the mooring cable, and a control unit for controlling the expansion/contraction device in accordance with tidal currents.
  • a power generation method includes a step of converting tidal currents and/or wave power into power by a plurality of power conversion modules provided on a floating body that is moored and floating on the water surface; It has a step of converting the motive power led from the power conversion module into electric power, and a step of transmitting the electric power generated by the power generation module to the outside by a power transmission module.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ocean & Marine Engineering (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Abstract

Provided is a power generation facility that is able to achieve an increase in natural energy power conversion devices efficiently. This power generation facility (1) comprises: a floating body (3) that is moored, and floats on the surface of water; a plurality of power conversion modules (M1) that are provided on the floating body (3), and that convert tidal currents and wave power to power; shared power generation modules (M2) for converting the power derived from each power conversion module (M1) to electricity; and a power transmission module (M3) for transmitting the electricity generated by the power generation modules (M2) to the outside. The floating body (3) is provided with a solar power generation device (9).

Description

発電設備及び発電方法Power generation equipment and power generation method
 本開示は、潮流によって発電する発電設備及び発電方法に関するものである。 This disclosure relates to power generation facilities and power generation methods that generate power using tidal currents.
 海洋において自然エネルギーから電力を得る発電設備が種々提案されている。例えば、特許文献1には、太陽光発電設備、風力発電設備、波力発電設備及び潮流発電設備を備えた船体が開示されている。 Various power generation facilities have been proposed to obtain power from natural energy in the ocean. For example, Patent Literature 1 discloses a hull equipped with photovoltaic power generation equipment, wind power generation equipment, wave power generation equipment, and tidal power generation equipment.
実用新案登録第3169982号公報Utility Model Registration No. 3169982
 しかし、特許文献1では波力エネルギーと潮流エネルギーを動力に変換する動力変換装置が設けられているが、それぞれに発電機が設置されているため、設置及び保守コストが増大するだけでなく、各発電機でエネルギー損失が発生するので好ましくない。
 発電設備の大型化あるいは規模拡大等に伴い、動力変換装置が増台することを想定して、適用範囲が広い設置形態を検討する必要がある。特に、特許文献1のような自ら航行できる船体と異なり、海洋に係留された浮体に対して動力変換装置を設置する場合には、設置台数の増減に柔軟に対応できることが好ましい。
However, in Patent Document 1, a power conversion device that converts wave energy and tidal energy into power is provided. It is not preferable because it causes energy loss in the generator.
Assuming that the number of power converters will increase as power generation equipment becomes larger or scales up, it is necessary to consider an installation form that has a wide range of applications. In particular, unlike the hull that can navigate by itself, such as Patent Document 1, when installing power converters on a floating body moored in the ocean, it is preferable to be able to flexibly cope with an increase or decrease in the number of installations.
 本開示は、このような事情に鑑みてなされたものであって、潮力及び/又は波力を動力に変換する動力変換装置の増台及び保守作業を効率良く実現できる発電設備及び発電方法を提供することを目的とする。 The present disclosure has been made in view of such circumstances, and provides a power generation facility and a power generation method that can efficiently increase the number of power conversion devices that convert tidal power and / or wave power into power and maintenance work. intended to provide
 本開示の一態様に係る発電設備は、係留されて水面上に浮かぶ浮体と、前記浮体に設けられ、潮流及び/又は波力を動力に変換する複数の動力変換モジュールと、前記浮体に設けられ、各前記動力変換モジュールから導かれた動力を電力に変換する共通の発電モジュールと、前記発電モジュールで発電した電力を外部へ送電する送電モジュールと、を備えている。 A power generation facility according to an aspect of the present disclosure includes a floating body that is moored and floats on a water surface, a plurality of power conversion modules that are provided on the floating body and convert tidal currents and/or wave power into power, and , a common power generation module that converts the motive power led from each power conversion module into electric power, and a power transmission module that transmits the power generated by the power generation module to the outside.
 本開示の一態様に係る発電方法は、係留されて水面上に浮かぶ浮体に設けられた複数の動力変換モジュールによって潮流及び/又は波力を動力に変換する工程と、共通の発電モジュールによって各前記動力変換モジュールから導かれた動力を電力に変換する工程と、送電モジュールによって前記発電モジュールで発電した電力を外部へ送電する工程と、を備えている。 A power generation method according to an aspect of the present disclosure includes a step of converting tidal currents and/or wave power into power by a plurality of power conversion modules provided on a floating body that is moored and floating on the water surface; It includes a step of converting the motive power introduced from the power conversion module into electric power, and a step of transmitting the electric power generated by the power generation module to the outside by a power transmission module.
 潮力及び/又は波力を動力に変換する動力変換装置の増台を効率良く実現できる。 It is possible to efficiently increase the number of power converters that convert tidal power and/or wave power into power.
本開示の第1実施形態に係る発電設備を示した概略構成図である。1 is a schematic configuration diagram showing power generation equipment according to a first embodiment of the present disclosure; FIG. 図1の潮流発電設備の油圧回路を示した概略構成図である。FIG. 2 is a schematic configuration diagram showing a hydraulic circuit of the tidal current power generation facility of FIG. 1; 図2の変形例を示した概略構成図である。FIG. 3 is a schematic configuration diagram showing a modification of FIG. 2; 図1の波力発電設備の空気流れを示した概略構成図である。FIG. 2 is a schematic configuration diagram showing an air flow of the wave power generation facility of FIG. 1; 図4の変形例を示した概略構成図である。FIG. 5 is a schematic configuration diagram showing a modification of FIG. 4; 複数の浮体が並べられた状態を示した平面図である。FIG. 3 is a plan view showing a state in which a plurality of floating bodies are arranged; 第2実施形態に係る発電設備を示した底面図である。It is the bottom view which showed the power generation equipment which concerns on 2nd Embodiment. 図7の発電設備の概略構成を示した縦断面図である。FIG. 8 is a longitudinal sectional view showing a schematic configuration of the power generation equipment of FIG. 7; 図7の浮体を複数並べた状態を示した底面図である。FIG. 8 is a bottom view showing a state in which a plurality of floating bodies of FIG. 7 are arranged; 図7の浮体の底面図である。FIG. 8 is a bottom view of the floating body of FIG. 7; 図10Aの側面図である。10B is a side view of FIG. 10A; FIG. 伸縮装置を備えた係留索で浮体を係留した状態を示した底面図である。FIG. 4 is a bottom view showing a state in which the floating body is moored with mooring cables having expansion devices.
 以下に、本開示に係る実施形態について、図面を参照して説明する。
[第1実施形態]
 以下、本開示の第1実施形態について説明する。
 図1には、第1実施形態に係る発電設備1が示されている。発電設備1は、浮体3と、潮流発電設備5と、波力発電設備7と、太陽光発電装置9とを備えている。
Embodiments according to the present disclosure will be described below with reference to the drawings.
[First embodiment]
A first embodiment of the present disclosure will be described below.
FIG. 1 shows a power generation facility 1 according to the first embodiment. The power generation facility 1 includes a floating body 3 , a tidal power generation facility 5 , a wave power generation facility 7 , and a solar power generation device 9 .
 浮体3は、内部が空洞とされた例えば直方体とされた箱形状とされており、海面WS上に浮いている。浮体3は、係留索11によって、図示しない海中の固定箇所に対して係留されている。 The floating body 3 has a hollow box shape, for example, a rectangular parallelepiped, and floats on the sea surface WS. The floating body 3 is moored to a fixed point in the sea (not shown) by a mooring cable 11 .
 潮流発電設備5は、潮流タービン13を備えている。潮流タービン13は、潮流TSによって回転する。潮流タービン13の回転力は、水平方向に延在する第1軸15から鉛直方向に延在する第2軸17へと伝達される。第1軸15と第2軸17との間には、例えば2つのかさ歯車16が設けられている。潮流タービン13による水平方向の回転力を鉛直方向の回転力に変換できれば、かさ歯車に方式は限定されない。第2軸17は、浮体3を貫通するように設けられている。 The tidal power generation facility 5 includes a tidal turbine 13 . The tidal current turbine 13 is rotated by the tidal current TS. The rotational force of the tidal current turbine 13 is transmitted from the horizontally extending first shaft 15 to the vertically extending second shaft 17 . For example, two bevel gears 16 are provided between the first shaft 15 and the second shaft 17 . The method is not limited to bevel gears as long as the horizontal rotational force generated by the tidal current turbine 13 can be converted into vertical rotational force. The second shaft 17 is provided so as to pass through the floating body 3 .
 第2軸17には、油圧ポンプ19が接続されている。油圧ポンプ19は、浮体3の上方空間、すなわち海面WSより上部に設けられている。これにより、油圧ポンプ19へのアクセスが容易なためメンテナンスが容易となっている。第2軸17から伝達された回転力によって油圧ポンプ19が駆動され、作動流体(作動油)が所定圧力以上の圧力に加圧される。これにより、潮流TSが動力(油圧)に変換される。油圧ポンプ19によって加圧された作動油は、油圧配管21を通り油圧モータ23へ導かれる。 A hydraulic pump 19 is connected to the second shaft 17 . The hydraulic pump 19 is provided above the floating body 3, that is, above the sea surface WS. This facilitates access to the hydraulic pump 19 and facilitates maintenance. The hydraulic pump 19 is driven by the rotational force transmitted from the second shaft 17, and the working fluid (working oil) is pressurized to a pressure equal to or higher than a predetermined pressure. Thereby, the tidal current TS is converted into power (hydraulic pressure). Hydraulic oil pressurized by the hydraulic pump 19 is guided to the hydraulic motor 23 through the hydraulic piping 21 .
 潮流TSは1日に数回流れ方向を反転(転流)する。潮流TSが転流しても油圧モータ23へ導かれる作動油が一方向の流れとなるように、図2に示すように油圧回路25が設けられている。図2において、実線の矢印が潮流タービン13の正回転時における各部の回転、流れ方向、破線の矢印が潮流タービン13の逆回転時における回転、流れ方向を示す。油圧ポンプ19は、ギヤポンプ又はスクリューポンプなどの回転型の容積式ポンプが用いられる。油圧回路25は、ダイヤ形状に組まれた油圧ブリッジ回路25bを備え、油圧ブリッジ回路25bの4辺のそれぞれに逆止弁25aが設けられている。油圧ポンプ19から吐出した作動油を油圧ブリッジ回路25bを通過させることで、潮流タービン13が反転しても往路30aから油圧モータ23を介して復路30bに向かう一方向の流れが形成される。
 潮流タービン13、油圧ポンプ19及び油圧回路25等によって、潮流を油圧に変換する動力変換モジュールM1が構成される。
The tidal current TS reverses (commutates) the flow direction several times a day. A hydraulic circuit 25 is provided as shown in FIG. 2 so that the hydraulic fluid guided to the hydraulic motor 23 flows in one direction even if the tidal current TS is commutated. In FIG. 2 , solid-line arrows indicate the rotation and flow direction of each part when the tidal current turbine 13 rotates forward, and broken-line arrows indicate the rotation and flow direction of the tidal current turbine 13 when the tidal current turbine 13 rotates in the reverse direction. A rotary positive displacement pump such as a gear pump or a screw pump is used as the hydraulic pump 19 . The hydraulic circuit 25 has a diamond-shaped hydraulic bridge circuit 25b, and a check valve 25a is provided on each of the four sides of the hydraulic bridge circuit 25b. By passing the hydraulic oil discharged from the hydraulic pump 19 through the hydraulic bridge circuit 25b, even if the tidal current turbine 13 is reversed, a unidirectional flow is formed from the outward path 30a to the return path 30b via the hydraulic motor 23.
The tidal current turbine 13, the hydraulic pump 19, the hydraulic circuit 25, and the like constitute a power conversion module M1 that converts the tidal current into hydraulic pressure.
 油圧ポンプ19として、ピストンポンプ、プランジャポンプ及びダイヤフラムポンプなどの往復動型の容積式ポンプが用いられる場合は、図3に示す構成となる。第2軸17の回転がクランク機構27に伝達されてシリンダ28内でピストン29を往復動させる。ピストン29を備えた油圧ポンプ19によって吐出された作動油は、往路30a及び復路30bのそれぞれに設けられた逆止弁31によって一方向の流れを形成して油圧モータ23へと導かれる。 When a reciprocating positive displacement pump such as a piston pump, plunger pump, or diaphragm pump is used as the hydraulic pump 19, the configuration shown in FIG. 3 is adopted. Rotation of the second shaft 17 is transmitted to the crank mechanism 27 to reciprocate the piston 29 within the cylinder 28 . Hydraulic oil discharged by a hydraulic pump 19 having a piston 29 is led to a hydraulic motor 23 by forming a unidirectional flow through check valves 31 provided in each of the outward path 30a and the return path 30b.
 図1に示すように、波力発電設備7は、波力タービン33を備えている。波力タービン33は、空間S1から吐出され、また空間S1に吸引される空気によって回転する。空間S1は、浮体3の側方に設けられた外殻35によって形成されている。外殻35は、上部が浮体3の上部に固定されるとともに、下部が水中に没するように形成されている。外殻35の下方は、海水が進入できるように開放されている。外殻35の上部には開口35aが形成されており、この開口35aから空気が空間S1に対して出入りする。 As shown in FIG. 1, the wave power generation facility 7 includes a wave turbine 33. The wave turbine 33 is rotated by air discharged from the space S1 and sucked into the space S1. The space S<b>1 is formed by an outer shell 35 provided on the side of the floating body 3 . The outer shell 35 is formed such that its upper portion is fixed to the upper portion of the floating body 3 and its lower portion is submerged in water. The lower part of the outer shell 35 is open so that seawater can enter. An opening 35a is formed in the upper portion of the outer shell 35, and air enters and exits the space S1 through the opening 35a.
 波力タービン33の回転力は、水平方向に延在する第3軸37に伝達され、油圧ポンプ38を駆動する。これにより、波力が動力(油圧)に変換される。油圧ポンプ38によって加圧された作動油は、油圧配管39を通り油圧モータ23へ導かれる。 The rotational force of the wave turbine 33 is transmitted to the horizontally extending third shaft 37 to drive the hydraulic pump 38 . This converts the wave force into power (hydraulic pressure). Hydraulic oil pressurized by the hydraulic pump 38 is guided to the hydraulic motor 23 through the hydraulic piping 39 .
 図1に示した本実施形態では、波力タービン33及び油圧ポンプ38は、浮体3の両側にそれぞれ設けられている。それぞれの波力タービン33及び油圧ポンプ38等によって、波力を油圧に変換する動力変換モジュールM1が構成される。 In this embodiment shown in FIG. 1, the wave turbine 33 and the hydraulic pump 38 are provided on both sides of the floating body 3, respectively. The wave power turbine 33, the hydraulic pump 38, and the like constitute a power conversion module M1 that converts wave power into hydraulic pressure.
 波力タービン33の各油圧配管39は、潮流タービン13の油圧配管21と合流し、共通の油圧モータ23へ導かれる。すなわち、複数の動力変換モジュールM1で加圧された作動油は、まとめられて共通の油圧モータ23へ導かれる。 Each hydraulic pipe 39 of the wave turbine 33 merges with the hydraulic pipe 21 of the tidal current turbine 13 and is led to a common hydraulic motor 23. That is, the hydraulic fluid pressurized by the plurality of power conversion modules M1 is collected and led to the common hydraulic motor 23 .
 空間S1内に空気が占める容積は、波の周期によって変動し、これに応じて開口35aから出入りする空気の向きが反転する。そこで、図4に示すような構成とする。図4に示すように、空間S1内で海面WSが上昇するときを実線の矢印で、海面WSが下降するときを破線の矢印で示されている。 The volume occupied by the air in the space S1 fluctuates according to the period of the waves, and accordingly the direction of the air entering and exiting the opening 35a is reversed. Therefore, the configuration as shown in FIG. 4 is adopted. As shown in FIG. 4, a solid-line arrow indicates when the sea surface WS rises in the space S1, and a broken-line arrow indicates when the sea surface WS descends.
 図4において右側の波力タービン33は、海面WSが上昇して空間S1内の空気が吐出するときに回転する。具体的には、開口35aから吐出した空気は、逆止弁40を通り波力タービン33を回転させた後に外部へと放出される。波力タービン33の回転力は、第3軸37を介して油圧ポンプ38へと伝達される。海面WSが下降するときは、逆止弁40によって波力タービン33に空気が流れないことから、逆転することはない。 The wave turbine 33 on the right side in FIG. 4 rotates when the sea surface WS rises and the air in the space S1 is discharged. Specifically, the air discharged from the opening 35a passes through the check valve 40, rotates the wave turbine 33, and is then discharged to the outside. Rotational force of the wave turbine 33 is transmitted to the hydraulic pump 38 via the third shaft 37 . When the sea surface WS descends, the check valve 40 prevents the air from flowing to the wave turbine 33, so that the sea surface WS does not reverse.
 図4において左側の波力タービン33は、海面WSが下降して空間S1内に空気を吸引するときに回転する。具体的には、開口35aから空気が吸引されることによって、外部の空気が逆止弁40を通り波力タービン33へ流れる。これにより波力タービン33が回転し、波力タービン33の回転力は、第3軸37を介して油圧ポンプ38へと伝達される。海面WSが上昇するときは、逆止弁40によって波力タービン33に空気が流れないことから、逆転することはない。
 以上のように、海面WSが上昇および下降するときのそれぞれについて、いずれかの波力タービン33によって油圧が生成されることになる。
The wave turbine 33 on the left side in FIG. 4 rotates when the sea surface WS descends and sucks air into the space S1. Specifically, the outside air flows through the check valve 40 to the wave turbine 33 by sucking air from the opening 35a. This causes the wave turbine 33 to rotate, and the rotational force of the wave turbine 33 is transmitted to the hydraulic pump 38 via the third shaft 37 . When the sea surface WS rises, the check valve 40 prevents air from flowing to the wave turbine 33, so the reverse rotation does not occur.
As described above, hydraulic pressure is generated by one of the wave turbines 33 each time the sea surface WS rises and falls.
 図5に示すように、1つの波力タービン33を用いた構成とすることもできる。複数の逆止弁42を用いて、吐出方向に流れる吐出空気経路44aと、吸引方向に流れる吸引空気経路44bとを設ける。吐出空気経路44aと吸引空気経路44bとは共通空気経路44cをともに用いる。この共通空気経路44cに波力タービン33を配置することで、常に波力タービン33に一方向の空気が流れるようになる。 As shown in FIG. 5, a configuration using one wave turbine 33 is also possible. A plurality of check valves 42 are used to provide a discharge air path 44a flowing in the discharge direction and a suction air path 44b flowing in the suction direction. A common air path 44c is used for both the discharge air path 44a and the suction air path 44b. By arranging the wave turbine 33 in the common air path 44c, the air always flows through the wave turbine 33 in one direction.
 図1に示すように、油圧モータ23には発電機24が接続されている。油圧モータ23は、動力変換モジュールM1から供給される作動油の油圧によって回転駆動され、その回転力によって発電機24が回転駆動されて発電が行われる。油圧モータ23及び発電機24によって発電モジュールM2が構成される。 A generator 24 is connected to the hydraulic motor 23 as shown in FIG. The hydraulic motor 23 is rotationally driven by the hydraulic pressure of hydraulic oil supplied from the power conversion module M1, and the rotational force of the hydraulic motor 23 rotationally drives the generator 24 to generate power. The hydraulic motor 23 and the generator 24 constitute a power generation module M2.
 発電機24によって発電された電力は、送電設備26へ送られ、送電線26aを介して外部へと送電される。送電設備26は、送電モジュールM3を構成する。図1に示した実施形態では、発電モジュールM2と送電モジュールM3が一体とされている。ただし、発電モジュールM2と送電モジュールM3とを分けて設けるようにしても良い。 The power generated by the generator 24 is sent to the power transmission facility 26 and transmitted to the outside via the power transmission line 26a. The power transmission facility 26 constitutes a power transmission module M3. In the embodiment shown in FIG. 1, the power generation module M2 and the power transmission module M3 are integrated. However, the power generation module M2 and the power transmission module M3 may be provided separately.
 動力変換モジュールM1、発電モジュールM2及び送電モジュールM3は、図示しない制御部によって監視・制御される。制御部は、例えば、CPU(Central Processing Unit)、RAM(Random Access Memory)、ROM(Read Only Memory)、及びコンピュータ読み取り可能な記憶媒体、及び有線もしくは無線通信機器等から構成されている。そして、各種機能を実現するための一連の処理は、一例として、プログラムの形式で記憶媒体等に記憶されており、このプログラムをCPUがRAM等に読み出して、情報の加工・演算処理を実行することにより、各種機能が実現される。プログラムは、ROMやその他の記憶媒体に予めインストールしておく形態や、コンピュータ読み取り可能な記憶媒体に記憶された状態で提供される形態、有線又は無線による通信手段を介して配信される形態等が適用されてもよい。コンピュータ読み取り可能な記憶媒体とは、磁気ディスク、光磁気ディスク、CD-ROM、DVD-ROM、半導体メモリ等である。 The power conversion module M1, power generation module M2, and power transmission module M3 are monitored and controlled by a control unit (not shown). The control unit is composed of, for example, a CPU (Central Processing Unit), a RAM (Random Access Memory), a ROM (Read Only Memory), a computer-readable storage medium, and a wired or wireless communication device. A series of processes for realizing various functions is stored in a storage medium or the like in the form of a program, for example, and the CPU reads out this program to a RAM or the like, and executes information processing and arithmetic processing. As a result, various functions are realized. The program may be pre-installed in a ROM or other storage medium, provided in a state stored in a computer-readable storage medium, or delivered via wired or wireless communication means. may be applied. Computer-readable storage media include magnetic disks, magneto-optical disks, CD-ROMs, DVD-ROMs, semiconductor memories, and the like.
 図6には、複数の浮体3が並べられた状態が示されている。各浮体3は、平面視して、縦方向及び横方向に複数並べられている。1つの浮体3には発電モジュールM2及び送電モジュールM3が設けられている(発電用浮体3A)。その他の複数の浮体3には動力変換モジュールM1が設けられている(動力変換用浮体3B)。発電用浮体3Aには、動力変換モジュールM1が設けられていない。動力変換用浮体3Bには、発電モジュールM2及び送電モジュールM3が設けられていない。
 したがって、図6に示した構成では、複数の動力変換用浮体3Bに対して、共通の発電モジュールM2及び送電モジュールM3を搭載した発電用浮体3Aが設けられている。
FIG. 6 shows a state in which a plurality of floating bodies 3 are arranged. A plurality of floating bodies 3 are arranged vertically and horizontally in plan view. One floating body 3 is provided with a power generation module M2 and a power transmission module M3 (power generation floating body 3A). A plurality of other floating bodies 3 are provided with power conversion modules M1 (power conversion floating bodies 3B). The power conversion module M1 is not provided in the power generation floating body 3A. The power conversion floating body 3B is not provided with the power generation module M2 and the power transmission module M3.
Therefore, in the configuration shown in FIG. 6, a power generation floating body 3A having common power generation modules M2 and power transmission modules M3 mounted thereon is provided for a plurality of power conversion floating bodies 3B.
 各浮体3は、互いに解列可能に接続されている。これにより、各浮体3が他の浮体3から離脱できるようになっている。 Each floating body 3 is connected to each other so that it can be disconnected. Thereby, each floating body 3 can be separated from the other floating bodies 3 .
 図1に示すように、浮体3の上部には太陽光発電装置9が設けられている。太陽光発電装置9は太陽電池パネル9aを備えており、太陽電池パネル9aと浮体3との間に油圧ポンプ19,38等が設置される空間が形成されている。太陽光発電装置9で発電した電力は、送電設備26へと送られる。太陽光発電装置9の発電出力等は図示しない制御部によって制御される。 As shown in FIG. 1, a solar power generation device 9 is provided on the upper portion of the floating body 3. The solar power generation device 9 has a solar cell panel 9a, and a space for installing hydraulic pumps 19, 38 and the like is formed between the solar cell panel 9a and the floating body 3. As shown in FIG. Electric power generated by the photovoltaic power generation device 9 is sent to the power transmission facility 26 . The power output and the like of the photovoltaic power generation device 9 are controlled by a control unit (not shown).
 以上説明した本実施形態の作用効果は以下の通りである。
 動力変換、発電および送電といった各機能をモジュールM1,M2,M3ごとに分けているので、動力変換モジュールM1と発電モジュールM2と送電モジュールM3をそれぞれ分けて配置することができる。これにより、各モジュールM1,M2,M3の組み合わせの自由度が大きくなり、浮体3を増やして発電設備1を大規模化する場合などに、設置状況に応じて各モジュールM1,M2,M3を配置することができる。
 複数の動力変換モジュールM1で発生した動力を共通の発電モジュールM2に導くこととしたので、各動力変換モジュールM1に1対1で対応する発電モジュールM2を設けて発電する場合に比べて、油圧モータ23及び発電機24を大容量化できることから、電力変換時の損失が少なくなり、発電効率を大きくすることができる。発電モジュールM2の設置数が減り、導入及び保守に掛かるコストを低減できる。ただし、発電モジュールM2及び送電モジュールM3の保守時の設備運転を考慮し、発電モジュールM2及び送電モジュールM3は複数設置することもできる。
 浮体3は、専有空間が大きく、且つ、設置コストが嵩む風力発電装置を備えていないので、設置空間の利用効率(単位空間当たりの発電量)が高く、設置コストを低減することができる。
The effects of the present embodiment described above are as follows.
Since the functions of power conversion, power generation and power transmission are divided into the modules M1, M2 and M3, the power conversion module M1, the power generation module M2 and the power transmission module M3 can be arranged separately. This increases the degree of freedom in combining the modules M1, M2, and M3, and the modules M1, M2, and M3 are arranged according to the installation situation when the power generation facility 1 is enlarged by increasing the number of floating bodies 3. can do.
Since the power generated by the plurality of power conversion modules M1 is led to the common power generation module M2, compared to the case where the power conversion modules M1 are provided with the power generation modules M2 corresponding to each power conversion module M1 one-to-one to generate power, the hydraulic motor 23 and the generator 24 can be increased in capacity, the loss at the time of power conversion can be reduced, and the power generation efficiency can be increased. The number of installed power generation modules M2 can be reduced, and the cost for introduction and maintenance can be reduced. However, considering facility operation during maintenance of the power generation module M2 and the power transmission module M3, a plurality of power generation modules M2 and power transmission modules M3 can be installed.
Since the floating body 3 has a large occupied space and is not equipped with a wind power generator that increases the installation cost, the utilization efficiency of the installation space (the amount of power generated per unit space) is high, and the installation cost can be reduced.
 浮体3に対して太陽光発電装置9を設けることとした。これにより、潮流や波力に加えて太陽光によって発電することができ、発電設備1の能力を増大することができる。昼夜、天候、季節に関わらず、いずれかの自然エネルギーによる発電が見込めるため、設備利用率を高く維持することができる。特に、潮流は長期的に高い精度で予測できるため、発電量の予測、保守計画立案を容易にする。 A solar power generation device 9 is provided for the floating body 3. As a result, power can be generated by sunlight in addition to tidal currents and wave power, and the capacity of the power generation equipment 1 can be increased. It is possible to maintain a high facility utilization rate because power generation can be expected from either natural energy regardless of day or night, weather, or season. In particular, tidal currents can be predicted with high accuracy over the long term, making it easier to predict power generation and formulate maintenance plans.
 動力変換モジュールM1のみを浮体3に設けた動力変換用浮体3Bを複数設け、各動力変換用浮体3Bから共通の発電モジュールM2を設けた発電用浮体3Aに動力を供給して発電することとした。これにより、動力変換用浮体3Bを増台させて発電設備1のスケールアップに対して容易に対応することができる。共通の発電用浮体3Aも複数設けることができ、設備規模、信頼性、保守計画を考慮し構成される。 A plurality of power conversion floating bodies 3B each having only the power conversion module M1 provided on the floating body 3 are provided, and power is supplied from each power conversion floating body 3B to the power generation floating body 3A provided with the common power generation module M2 to generate power. . As a result, it is possible to easily cope with the scale-up of the power generation equipment 1 by increasing the power conversion floating bodies 3B. A plurality of common power generation floating bodies 3A can also be provided, and are configured in consideration of the facility scale, reliability, and maintenance plan.
 各浮体3を他の浮体3から解列可能とした。これにより、メンテナンス時などに特定の浮体3のみを解列させた上で、発電設備1としての発電を継続することができる。 Each floating body 3 can be disconnected from another floating body 3. As a result, power generation as the power generation equipment 1 can be continued after only the specific floating body 3 is disconnected during maintenance or the like.
[第2実施形態]
 次に、本開示の第2実施形態について説明する。本実施形態は、浮体3の構造が第1実施形態と異なり、その他の構成は同様である。したがって、以下の説明では相違点を中心に説明し、共通する構成については同一符号を付しその説明を省略する。
[Second embodiment]
Next, a second embodiment of the present disclosure will be described. This embodiment differs from the first embodiment in the structure of the floating body 3, but the rest of the configuration is the same. Therefore, in the following description, the differences will be mainly described, and the same reference numerals will be given to the common configurations, and the description thereof will be omitted.
 図7には、浮体3’が平面視して示されている。浮体3’は、両側に浮体部50を備えている。すなわち、浮体3’は、双胴式とされている。 FIG. 7 shows the floating body 3' in plan view. The floating body 3' has floating body parts 50 on both sides. That is, the floating body 3' is of a catamaran type.
 各浮体部50は、内部に空間を有する箱形状とされており、長手方向に沿って設けられている。同図において左右の浮体部50の間には複数の隔壁52が設けられている。各隔壁52は、板状体とされており、左右の浮体部50間を接続するように延在している。各隔壁52は、長手方向に所定の間隔をおいて略一定間隔で設けられている。 Each floating body part 50 has a box shape with a space inside, and is provided along the longitudinal direction. A plurality of partition walls 52 are provided between the left and right floating body portions 50 in the figure. Each partition 52 is a plate-like body and extends so as to connect the left and right floating body portions 50 . Each partition wall 52 is provided at substantially constant intervals in the longitudinal direction at predetermined intervals.
 左右の浮体部50と、長手方向に隣り合う隔壁52とによって空間S1が形成される。空間S1は、第1実施形態で説明したように、波力タービン33を駆動するために用いられる。したがって、各空間S1のそれぞれに波力タービン33を設けることができる。図7では、2つの空間S1に対してのみ波力タービン33が示されているが、すべての空間S1に対して波力タービン33を設けても良い。 A space S1 is formed by the left and right floating body parts 50 and the partition walls 52 adjacent in the longitudinal direction. The space S1 is used to drive the wave turbine 33 as described in the first embodiment. Therefore, a wave turbine 33 can be provided in each space S1. Although the wave turbines 33 are shown only for two spaces S1 in FIG. 7, the wave turbines 33 may be provided for all the spaces S1.
 図8に示すように、波力タービン33は、空間S1内に設けられている。空間S1内の空気は、開口35aを介して外部との間で出入りする。 As shown in FIG. 8, the wave turbine 33 is provided within the space S1. The air in the space S1 enters and leaves the outside through the opening 35a.
 潮流タービン13は、第2軸17が浮体部50を貫通するように、各浮体部50に対して複数設けられている。潮流タービン13の数は、任意であり、要求される発電量に応じて適宜設定される。 A plurality of tidal current turbines 13 are provided for each floating body portion 50 so that the second shaft 17 penetrates through the floating body portion 50 . The number of tidal current turbines 13 is arbitrary and is appropriately set according to the amount of power generation required.
 図9に示すように、図7に示した浮体3’は、複数接続して並べることができる。図9のように横方向(幅方向)に浮体3’を並べても良いし、縦方向(長手方向)又は縦横方向に浮体を並べても良い。 As shown in FIG. 9, a plurality of floating bodies 3' shown in FIG. 7 can be connected and arranged. As shown in FIG. 9, the floating bodies 3' may be arranged in the horizontal direction (width direction), or the floating bodies may be arranged in the vertical direction (longitudinal direction) or the vertical and horizontal directions.
 図10A及び図10Bに示すように、各浮体部50の底部には、下方に突出するようにキール(舵)54を設けても良い。図10A及び10Bでは、潮流タービン13及び波力タービン33を省略している。キール54によって、潮流TSの向きに対して潮流タービン13が正対するよう浮体3’の姿勢を調整することができる。 As shown in FIGS. 10A and 10B, a keel (rudder) 54 may be provided at the bottom of each floating body section 50 so as to protrude downward. The tidal current turbine 13 and the wave turbine 33 are omitted in FIGS. 10A and 10B. The keel 54 allows the attitude of the floating body 3' to be adjusted so that the tidal current turbine 13 faces the direction of the tidal current TS.
 図11に示すように、平面視した浮体3’の各角部の4点を係留索11で支持し、浮体3’上の各係留箇所に設けたリール(伸縮装置)56によって係留索11を伸縮させても良い。各リール56を制御部によって制御することで、浮体3’の姿勢を潮流TSの向きに応じて適宜設定することができる。この場合、キール54を用いる場合に比べ、浮体3’の移動を狭い範囲に留めることができる。 As shown in FIG. 11, the mooring ropes 11 are used to support the four corners of the floating body 3′ in plan view, and the mooring ropes 11 are supported by reels (expansion devices) 56 provided at the respective mooring points on the floating body 3′. You can stretch it. By controlling each reel 56 by the control unit, the posture of the floating body 3' can be appropriately set according to the direction of the tidal current TS. In this case, compared with the case of using the keel 54, the movement of the floating body 3' can be kept within a narrow range.
 以上説明した本実施形態の作用効果は以下の通りである。
 浮体3’両側のそれぞれに長手方向に沿って浮体部50を設けることによって双胴式の浮体とする。そして、浮体部50の間に延在する隔壁52を、長手方向に複数設けることとした。両側の浮体部50と各隔壁52で囲まれた領域には、波の変化に応じて気相の体積が変化する複数の空間S1が形成される。複数の空間S1を用いて波力から動力を得ることができるので、より大きなエネルギーを波力から回収することができる。
The effects of the present embodiment described above are as follows.
A catamaran type floating body is formed by providing floating body portions 50 along the longitudinal direction on both sides of the floating body 3'. A plurality of partition walls 52 extending between the floating body portions 50 are provided in the longitudinal direction. A plurality of spaces S1 in which the volume of the gas phase changes according to changes in waves are formed in the area surrounded by the floating body portion 50 and the partition walls 52 on both sides. Since power can be obtained from wave power using a plurality of spaces S1, greater energy can be recovered from wave power.
 浮体3’にキール54を設けることとしたので、潮流TSの向きに応じて浮体3’の姿勢を適切に制御することができる。 Since the floating body 3' is provided with the keel 54, the attitude of the floating body 3' can be appropriately controlled according to the direction of the tidal current TS.
 潮流TSに応じて係留索11をリール56によって伸縮させることにより、潮流TSの向きに対して適した姿勢を狭い範囲で浮体3’に与えることができる。 By extending and contracting the mooring cable 11 with the reel 56 according to the tidal current TS, it is possible to give the floating body 3' a posture suitable for the direction of the tidal current TS within a narrow range.
 上述した各実施形態では、潮力及び波力によって変換される動力として油圧を一例として説明したが、油圧に限定されるものではなく、変換される他の動力として例えば空気圧等としても良い。 In each of the above-described embodiments, hydraulic pressure has been described as an example of power converted by tidal power and wave power, but the power to be converted is not limited to hydraulic pressure, and other power to be converted, such as air pressure, may be used.
 以上説明した各実施形態に記載の発電設備は、例えば以下のように把握される。 The power generation facilities described in each embodiment described above are understood, for example, as follows.
 本開示の一態様に係る発電設備は、係留されて水面上に浮かぶ浮体と、前記浮体に設けられ、潮流及び/又は波力を動力に変換する複数の動力変換モジュールと、各前記動力変換モジュールから導かれた動力を電力に変換する共通の発電モジュールと、前記発電モジュールで発電した電力を外部へ送電する送電モジュールと、を備えている。 A power generation facility according to an aspect of the present disclosure includes a floating body that is moored and floats on a water surface, a plurality of power conversion modules that are provided on the floating body and convert tidal currents and/or wave power into power, and each of the power conversion modules a common power generation module that converts the motive power led from the power generation module into power; and a power transmission module that transmits the power generated by the power generation module to the outside.
 動力変換、発電および送電といった各機能をモジュールごとに分けたので、動力変換モジュールと発電モジュールと送電モジュールをそれぞれ分けて配置することができる。これにより、各モジュールの組み合わせの自由度が大きくなり、例えば浮体を増やして発電設備を大規模化する場合などに、設置状況に応じて各モジュールを配置することができる。
 複数の動力変換モジュールで発生した動力を共通の発電モジュールに導くこととしたので、各動力変換モジュールに1対1で対応する発電モジュールを設けて発電する場合に比べて、電力変換時の損失が少なくなり、発電効率を大きくすることができる。発電モジュールの設置数が減り、導入及び保守に掛かるコストを低減できる。
 動力変換モジュールは、例えば、潮流または波力で得られた動力を油圧に変換する機能を有している。
 浮体は、設置コストが嵩む風力発電装置は備えていないことが好ましい。
Since each function such as power conversion, power generation and power transmission is separated for each module, the power conversion module, power generation module and power transmission module can be arranged separately. As a result, the degree of freedom in combination of each module increases, and each module can be arranged according to the installation situation, for example, when increasing the number of floating bodies to increase the scale of the power generation facility.
Since the motive power generated by a plurality of power conversion modules is led to a common power generation module, compared to the case where each power conversion module is provided with a power generation module corresponding one-to-one to generate power, the loss during power conversion is reduced. less, and the power generation efficiency can be increased. The number of installed power generation modules can be reduced, and the cost for introduction and maintenance can be reduced.
The power conversion module has a function of converting power obtained from, for example, tidal currents or wave power into hydraulic pressure.
It is preferable that the floating body is not equipped with a wind power generator that increases the installation cost.
 本開示の一態様に係る発電設備では、前記浮体は、太陽光発電装置を備えている。 In the power generation facility according to one aspect of the present disclosure, the floating body includes a photovoltaic power generation device.
 浮体に対して太陽光発電装置を設けることとした。これにより、潮流や波力に加えて太陽光によって発電することができ、発電設備の能力を増大することができる。 We decided to install a solar power generation device on the floating body. As a result, power can be generated by sunlight in addition to tidal currents and wave power, and the capacity of power generation facilities can be increased.
 本開示の一態様に係る発電設備では、前記動力変換モジュールが前記浮体に設けられた複数の動力変換用浮体と、前記動力変換モジュールで発生した動力が各前記動力変換用浮体から導かれ、前記発電モジュールが前記浮体に設けられた発電用浮体と、を備えている。 In a power generation facility according to an aspect of the present disclosure, a plurality of power conversion floating bodies in which the power conversion modules are provided in the floating bodies, power generated by the power conversion modules is guided from each of the power conversion floating bodies, and the and a power generation floating body in which a power generation module is provided on the floating body.
 動力変換用浮体を複数設け、各動力変換用浮体から共通の発電用浮体に動力を供給して発電することとした。これにより、動力変換用浮体を増台させて発電設備のスケールアップに対して容易に対応することができる。
 発電用浮体を複数としても良い。発電用浮体に送電モジュールを設けて発電送電用浮体としても良い。
A plurality of power conversion floating bodies are provided, and power is supplied from each power conversion floating body to a common power generation floating body to generate power. As a result, it is possible to easily cope with the scale-up of power generation facilities by increasing the number of power conversion floating bodies.
A plurality of power generation floating bodies may be provided. The power generation floating body may be used as a power generation and transmission floating body by providing a power transmission module.
 本開示の一態様に係る発電設備では、前記動力変換用浮体及び前記発電用浮体は、他の前記浮体から解列可能に接続されている。 In the power generation facility according to one aspect of the present disclosure, the power conversion floating body and the power generation floating body are connected so as to be able to be disconnected from the other floating body.
 他の浮体から解列可能とすることにより、メンテナンス時などに特定の浮体のみを解列させた上で、発電設備としての発電を継続することができる。 By making it possible to disconnect from other floating bodies, it is possible to continue power generation as a power generation facility after disconnecting only a specific floating body during maintenance.
 本開示の一態様に係る発電設備では、前記浮体は、両側のそれぞれに長手方向に沿って設けられた浮体部と、これら浮体部の間に延在し、前記長手方向に複数設けられた隔壁とを備え、各前記浮体部と各前記隔壁で囲まれた複数の空間を用いて波力から動力を得る。 In the power generation facility according to an aspect of the present disclosure, the floating body includes floating body portions provided along the longitudinal direction on both sides, and a plurality of partition walls extending between the floating body portions and provided in the longitudinal direction. and obtaining power from wave force using a plurality of spaces surrounded by each of the floating body portions and each of the bulkheads.
 両側のそれぞれに長手方向に沿って浮体部を設けることによって双胴式の浮体とする。そして、浮体部の間に延在する隔壁を、長手方向に複数設けることとした。両側の浮体部と各隔壁で囲まれた領域には、波の変化に応じて体積が変化する複数の空間が形成される。複数の空間を用いて波力から動力を得ることができるので、より大きなエネルギーを波力から回収することができる。 A catamaran type floating body is formed by providing a floating body part along the longitudinal direction on each side. A plurality of partition walls extending between the floating body portions are provided in the longitudinal direction. A plurality of spaces whose volumes change according to changes in waves are formed in the areas surrounded by the floating bodies on both sides and the partition walls. Because multiple spaces can be used to derive power from the wave force, more energy can be recovered from the wave force.
 本開示の一態様に係る発電設備では、前記浮体は、キールを備えている。 In the power generation facility according to one aspect of the present disclosure, the floating body includes a keel.
 浮体にキールを設けることとした。これにより、潮流の向きに応じて浮体の姿勢を適切に制御することができる。 We decided to install a keel on the floating body. Thereby, the posture of the floating body can be appropriately controlled according to the direction of the tide.
 本開示の一態様に係る発電設備では、前記浮体を係留する係留索と、前記係留索を伸縮させる伸縮装置と、潮流に応じて前記伸縮装置を制御する制御部と、を備えている。 A power generation facility according to an aspect of the present disclosure includes a mooring cable for mooring the floating body, an expansion/contraction device for expanding and contracting the mooring cable, and a control unit for controlling the expansion/contraction device in accordance with tidal currents.
 潮流に応じて係留索を伸縮させることにより、潮流に対して狭い範囲で適した姿勢を浮体に与えることができる。 By expanding and contracting the mooring cable according to the tidal current, it is possible to give the floating body a suitable posture within a narrow range against the tidal current.
 本開示の一態様に係る発電方法は、係留されて水面上に浮かぶ浮体に設けられた複数の動力変換モジュールによって潮流及び/又は波力を動力に変換する工程と、共通の発電モジュールによって各前記動力変換モジュールから導かれた動力を電力に変換する工程と、送電モジュールによって前記発電モジュールで発電した電力を外部へ送電する工程と、を有する。 A power generation method according to an aspect of the present disclosure includes a step of converting tidal currents and/or wave power into power by a plurality of power conversion modules provided on a floating body that is moored and floating on the water surface; It has a step of converting the motive power led from the power conversion module into electric power, and a step of transmitting the electric power generated by the power generation module to the outside by a power transmission module.
1 発電設備
3,3’ 浮体
3A 発電用浮体
3B 動力変換用浮体
5 潮流発電設備
7 波力発電設備
9 太陽光発電装置
9a 太陽電池パネル
11 係留索
13 潮流タービン
15 第1軸
16 かさ歯車
17 第2軸
19 油圧ポンプ
21 油圧配管
23 油圧モータ
24 発電機
25 油圧回路
25a 逆止弁
25b 油圧ブリッジ回路
26 送電設備
27 クランク機構
28 シリンダ
29 ピストン
30a 往路
30b 復路
31 逆止弁
33 波力タービン
35 外殻
35a 開口
37 第3軸
38 油圧ポンプ
39 油圧配管
40 逆止弁
42 逆止弁
44a 吐出空気経路
44b 吸引空気経路
44c 共通空気経路
50 浮体部
52 隔壁
54 キール(舵)
56 リール(伸縮装置)
M1 動力変換モジュール
M2 発電モジュール
M3 送電モジュール
S1 空間
TS 潮流
WS 海面
 
1 power generation equipment 3, 3' floating body 3A power generation floating body 3B power conversion floating body 5 tidal power generation equipment 7 wave power generation equipment 9 photovoltaic power generation device 9a solar cell panel 11 mooring rope 13 tidal current turbine 15 first shaft 16 bevel gear 17 2 shafts 19 Hydraulic pump 21 Hydraulic piping 23 Hydraulic motor 24 Generator 25 Hydraulic circuit 25a Check valve 25b Hydraulic bridge circuit 26 Power transmission equipment 27 Crank mechanism 28 Cylinder 29 Piston 30a Forward path 30b Return path 31 Check valve 33 Wave turbine 35 Hull 35a opening 37 third shaft 38 hydraulic pump 39 hydraulic piping 40 check valve 42 check valve 44a discharge air path 44b suction air path 44c common air path 50 floating body portion 52 partition wall 54 keel (rudder)
56 reel (extension device)
M1 power conversion module M2 power generation module M3 power transmission module S1 space TS tidal current WS sea surface

Claims (8)

  1.  係留されて水面上に浮かぶ浮体と、
     前記浮体に設けられ、潮流及び/又は波力を動力に変換する複数の動力変換モジュールと、
     各前記動力変換モジュールから導かれた動力を電力に変換する共通の発電モジュールと、
     前記発電モジュールで発電した電力を外部へ送電する送電モジュールと、
    を備えている発電設備。
    a floating body that is moored and floats on the surface of the water;
    a plurality of power conversion modules provided on the floating body for converting tidal currents and/or wave power into power;
    a common power generation module that converts power guided from each of the power conversion modules into electric power;
    a power transmission module that transmits power generated by the power generation module to the outside;
    A power generation facility equipped with
  2.  前記浮体は、太陽光発電装置を備えている請求項1に記載の発電設備。 The power generation facility according to claim 1, wherein the floating body is equipped with a solar power generation device.
  3.  前記動力変換モジュールが前記浮体に設けられた複数の動力変換用浮体と、
     前記動力変換モジュールで発生した動力が各前記動力変換用浮体から導かれ、前記発電モジュールが前記浮体に設けられた発電用浮体と、
    を備えている請求項1又は2に記載の発電設備。
    a plurality of power conversion floating bodies each having the power conversion module provided on the floating body;
    a power generation floating body in which power generated by the power conversion module is guided from each of the power conversion floating bodies, and the power generation module is provided on the floating body;
    The power generation facility according to claim 1 or 2, comprising:
  4.  前記動力変換用浮体及び前記発電用浮体は、他の前記浮体から解列可能に接続されている請求項3に記載の発電設備。 The power generation facility according to claim 3, wherein the power conversion floating body and the power generation floating body are connected so as to be able to be disconnected from the other floating body.
  5.  前記浮体は、両側のそれぞれに長手方向に沿って設けられた浮体部と、これら浮体部の間に延在し、前記長手方向に複数設けられた隔壁とを備え、
     各前記浮体部と各前記隔壁で囲まれた複数の空間を用いて波力から動力を得る請求項1から4のいずれかに記載の発電設備。
    The floating body includes floating body sections provided along the longitudinal direction on both sides, and a plurality of partition walls extending between the floating body sections and provided in the longitudinal direction,
    The power generation facility according to any one of claims 1 to 4, wherein power is obtained from wave force using a plurality of spaces surrounded by each of the floating body portions and each of the partition walls.
  6.  前記浮体は、キールを備えている請求項1から5のいずれかに記載の発電設備。 The power generation facility according to any one of claims 1 to 5, wherein the floating body has a keel.
  7.  前記浮体を係留する係留索と、
     前記係留索を伸縮させる伸縮装置と、
     潮流に応じて前記伸縮装置を制御する制御部と、
    を備えている請求項1から6のいずれかに記載の発電設備。
    a mooring cable for mooring the floating body;
    An expansion device for expanding and contracting the mooring cable;
    a control unit that controls the expansion and contraction device according to the tide;
    The power generation facility according to any one of claims 1 to 6, comprising:
  8.  係留されて水面上に浮かぶ浮体に設けられた複数の動力変換モジュールによって潮流及び/又は波力を動力に変換する工程と、
     共通の発電モジュールによって各前記動力変換モジュールから導かれた動力を電力に変換する工程と、
     送電モジュールによって前記発電モジュールで発電した電力を外部へ送電する工程と、
    を有する発電方法。
     
    a step of converting tidal currents and/or wave power into power by a plurality of power conversion modules provided on a floating body that is moored and floats on the water surface;
    converting power derived from each power conversion module into electric power by a common power generation module;
    a step of transmitting the power generated by the power generation module to the outside by a power transmission module;
    A power generation method comprising:
PCT/JP2022/028082 2021-07-29 2022-07-19 Power generation facility and power generation method WO2023008261A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
GB2401022.5A GB2623913A (en) 2021-07-29 2022-07-19 Power generation facility and power generation method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021124143A JP2023019429A (en) 2021-07-29 2021-07-29 Electric power generation facility and electric power generation method
JP2021-124143 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023008261A1 true WO2023008261A1 (en) 2023-02-02

Family

ID=85087611

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/028082 WO2023008261A1 (en) 2021-07-29 2022-07-19 Power generation facility and power generation method

Country Status (3)

Country Link
JP (1) JP2023019429A (en)
GB (1) GB2623913A (en)
WO (1) WO2023008261A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835479A (en) * 1994-07-26 1996-02-06 Norimi Sumizaki Wave and tidal force power generation combined with buoyancy breakwater
JP2011021559A (en) * 2009-07-16 2011-02-03 Yamato Dengyosha:Kk Energy conversion device and power generating device using the same
JP3169982U (en) * 2011-06-16 2011-08-25 琢 横山 Power ship
JP2014202175A (en) * 2013-04-09 2014-10-27 東陽設計工業株式会社 Turbine for wave power generation, and assembly method and operation method of the same
JP2016205360A (en) * 2015-04-21 2016-12-08 株式会社サンエイ Device for feeding oxygen to sea-bottom water area

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0835479A (en) * 1994-07-26 1996-02-06 Norimi Sumizaki Wave and tidal force power generation combined with buoyancy breakwater
JP2011021559A (en) * 2009-07-16 2011-02-03 Yamato Dengyosha:Kk Energy conversion device and power generating device using the same
JP3169982U (en) * 2011-06-16 2011-08-25 琢 横山 Power ship
JP2014202175A (en) * 2013-04-09 2014-10-27 東陽設計工業株式会社 Turbine for wave power generation, and assembly method and operation method of the same
JP2016205360A (en) * 2015-04-21 2016-12-08 株式会社サンエイ Device for feeding oxygen to sea-bottom water area

Also Published As

Publication number Publication date
GB2623913A (en) 2024-05-01
GB202401022D0 (en) 2024-03-13
JP2023019429A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
EP3256716B1 (en) Hydro-pneumatic energy storage system
CN111042978B (en) Floating type wind energy-wave energy combined power generation device and control method thereof
EP1915528B1 (en) Free floating wave energy converter
US8511078B2 (en) Hybrid wave energy plant for electricity generation
US20120032444A1 (en) Wave Catcher
EP2064441B1 (en) Apparatus for converting energy from wave or current flows using pipes acting as venturi pumps
KR101386699B1 (en) Solar-wave-wind combined mooring power generation unit and system
US20050029817A1 (en) Gimbal-mounted hydroelectric turbine
WO2011025156A2 (en) Wave power generator
JP2020045904A (en) Wave energy conversion device
US20090261593A1 (en) Tidal pump generator
US20100066090A1 (en) Free renewable energy designs
JP2009533600A (en) Multiple use and complementary conversion of sea wave energy
CA2612658C (en) Modular near-shore wave-powered energy collection system
US20110254270A1 (en) Wave gear drive -WGD
WO2023008261A1 (en) Power generation facility and power generation method
JP2006189018A (en) Wave energy converting apparatus
WO2024051028A1 (en) Wave energy inertia hydraulic difference power generation device
US20130277979A1 (en) Wave energy conversion systems and methods
KR20180027282A (en) Subsea floating tidal generator
JP3243383U (en) Apparatus for producing electrical energy from sea wave energy and offshore energy islands
KR101879512B1 (en) Wave power generation system having mechanical energy saving device
KR101763802B1 (en) Hybrid wind wave power plant
Aubry et al. Wave energy converters
CA3188714A1 (en) An improved apparatus and method for extracting energy from a fluid

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 202401022

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20220719

NENP Non-entry into the national phase

Ref country code: DE