WO2023008159A1 - 3次元測距モジュール及び3次元測距システム - Google Patents

3次元測距モジュール及び3次元測距システム Download PDF

Info

Publication number
WO2023008159A1
WO2023008159A1 PCT/JP2022/027242 JP2022027242W WO2023008159A1 WO 2023008159 A1 WO2023008159 A1 WO 2023008159A1 JP 2022027242 W JP2022027242 W JP 2022027242W WO 2023008159 A1 WO2023008159 A1 WO 2023008159A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
light
optical axis
dimensional
inclined portion
Prior art date
Application number
PCT/JP2022/027242
Other languages
English (en)
French (fr)
Inventor
慎吾 中野
拓也 浅野
茂生 林
Original Assignee
ヌヴォトンテクノロジージャパン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ヌヴォトンテクノロジージャパン株式会社 filed Critical ヌヴォトンテクノロジージャパン株式会社
Priority to JP2023538403A priority Critical patent/JPWO2023008159A1/ja
Priority to CN202280051871.9A priority patent/CN117693689A/zh
Priority to EP22849223.7A priority patent/EP4379416A1/en
Publication of WO2023008159A1 publication Critical patent/WO2023008159A1/ja
Priority to US18/418,055 priority patent/US20240159909A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/481Constructional features, e.g. arrangements of optical elements
    • G01S7/4814Constructional features, e.g. arrangements of optical elements of transmitters alone
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak

Definitions

  • the present disclosure relates to a three-dimensional ranging module and a three-dimensional ranging system.
  • a ranging imaging device that measures the distance to an object by using ToF (Time of Flight) is known.
  • a ToF camera includes a three-dimensional ranging module that has a light source, a lens module, and a lens base that holds the lens module.
  • the lens module receives the light emitted from the light source, and the distance to the object is measured by calculating the distance from the time difference between the irradiation and the light reception.
  • the three-dimensional ranging module may have a lens cover between the object and the lens module to protect the lens module. In this case, an erroneous calculation of the distance may occur.
  • the present disclosure provides a three-dimensional ranging module and the like that suppress the occurrence of erroneous calculation of distance.
  • the three-dimensional ranging module of the present disclosure includes a light source that irradiates a laser beam, a lens that collects light reflected by an object from the irradiated laser beam, and an imaging device that receives the light collected by the lens. and a lens module including a lens barrel that encloses the space between the lens and the imaging element and supports the lens, and a lens module located between the lens module and the object, with respect to the wavelength of the laser light and a transparent lens cover, wherein in a cross-sectional view of the lens barrel cut along a plane including the optical axis of the lens, a first surface of the lens barrel facing the object is located at a distance from the optical axis. It includes a first sloped portion that slopes away from the lens cover as it goes away.
  • the three-dimensional distance measuring module of the present disclosure includes a light source that irradiates laser light, a lens that collects light reflected by an object from the irradiated laser light, and a light that is collected by the lens.
  • a lens cover positioned between the lens and the object and transparent to the wavelength of the laser light; and the lens viewed from the lens cover in the direction of the optical axis of the lens. and a member having an opening so as to enclose the lens, and in a cross-sectional view when the lens is cut along a plane including the optical axis, the outer end of the lens and the outer end of the opening.
  • a distance between the lens cover and the center of the lens is defined as H1
  • a distance between the lens cover and a second surface of the member facing the lens cover is defined as H2
  • the center of the lens is defined as H2. and the relationship of (H1+H2) ⁇ tan ⁇ B is satisfied, where ⁇ is the angle formed between the line connecting the outer ends of the imaging device and the optical axis.
  • the three-dimensional ranging module of the present disclosure includes a light source that irradiates laser light, a lens that collects light reflected by an object from the irradiated laser light, and light that is collected by the lens.
  • a lens module that includes an imaging device and a lens barrel that surrounds the space between the lens and the imaging device and supports the lens; and a transparent lens cover, wherein a third surface of the lens cover facing the lens module has a third sloped portion that slopes away from the lens module as the distance from the optical axis of the lens increases.
  • the three-dimensional ranging system of the present disclosure includes the three-dimensional ranging module described above, and the three-dimensional ranging module measures the distance from the light source to the object based on the travel time of the laser beam. has a calculation unit for calculating
  • the three-dimensional ranging module and the like it is possible to suppress the occurrence of erroneous calculation of the distance.
  • FIG. 1 is a diagram showing a distance image in which an intensity flare region has occurred.
  • FIG. 2 is a block diagram showing a configuration example of a three-dimensional ranging module according to Embodiment 1.
  • FIG. 3A and 3B are a top view and two cross-sectional views of a three-dimensional ranging module according to Embodiment 1.
  • FIG. 4 is an enlarged cross-sectional view of the periphery of the lens barrel according to Embodiment 1.
  • FIG. FIG. 5 is a cross-sectional view showing the behavior of laser light according to the first embodiment.
  • FIG. 6 is a diagram showing the influence on the amount of flare light when the inclination angle of the first inclined portion is changed according to the first embodiment.
  • FIG. 1 is a diagram showing a distance image in which an intensity flare region has occurred.
  • FIG. 2 is a block diagram showing a configuration example of a three-dimensional ranging module according to Embodiment 1.
  • FIG. 3A and 3B are a top view and two
  • FIG. 7 is a diagram showing the relationship between the distance between the three-dimensional ranging module and the object and the distance between the three-dimensional ranging module and another object according to the first embodiment.
  • FIG. 8 is a cross-sectional view showing another behavior of laser light according to the first embodiment.
  • FIG. 9 is another diagram showing the influence on the amount of flare light when the inclination angle of the first inclined portion is changed according to the first embodiment.
  • 10A and 10B are other diagrams showing the influence on the amount of flare light when the inclination angle of the first inclined portion according to Embodiment 1 is changed.
  • 11A and 11B are other diagrams showing the influence on the amount of flare light when the inclination angle of the first inclined portion according to Embodiment 1 is changed.
  • FIG. 12A and 12B are other diagrams showing the influence on the amount of flare light when the inclination angle of the first inclined portion according to Embodiment 1 is changed.
  • 13A and 13B are other diagrams showing the influence on the amount of flare light when the inclination angle of the first inclined portion is changed according to Embodiment 1.
  • FIG. 14A and 14B are diagrams for explaining the effect of the linearity of the first inclined portion according to the first embodiment.
  • FIG. 15 is another diagram for explaining the effect of the first inclined portion being linear according to the first embodiment.
  • FIG. 16 is another diagram for explaining the effect of the linear first inclined portion according to the first embodiment.
  • 17A and 17B are a top view and two cross-sectional views of a three-dimensional ranging module according to Modification 1 of Embodiment 1.
  • FIG. 18 is a top view of a lens barrel and a lens according to Modification 1 of Embodiment 1, and a cross-sectional view of the lens barrel.
  • FIG. 19 is a diagram showing the relationship between ⁇ and ⁇ according to Modification 1 of Embodiment 1.
  • FIG. 20A and 20B are a top view and two cross-sectional views of a three-dimensional ranging module according to Modification 2 of Embodiment 1.
  • FIG. 21 is a cross-sectional view showing the behavior of laser light according to Modification 2 of Embodiment 1.
  • FIG. 22 is a cross-sectional view showing another behavior of laser light according to Modification 2 of Embodiment 1.
  • FIG. 23 is a cross-sectional view of a three-dimensional ranging module according to Modification 3 of Embodiment 1.
  • FIG. 24A and 24B are diagrams showing the effect on the amount of flare light when the inclination angle of the first inclined portion is changed according to Modification 3 of Embodiment 1.
  • FIG. 25A and 25B are other diagrams showing the effect on the amount of flare light when the inclination angle of the first inclined portion is changed according to Modification 3 of Embodiment 1.
  • FIG. 26 is another diagram showing the influence on the amount of flare light when the inclination angle of the first inclined portion is changed according to Modification 3 of Embodiment 1.
  • FIG. 27A and 27B are other diagrams showing the effect on the amount of flare light when the inclination angle of the first inclined portion is changed according to Modification 3 of Embodiment 1.
  • FIG. 24A and 24B are diagrams showing the effect on the amount of flare light when the inclination angle of the first inclined portion is changed according to Modification 3 of Embodiment 1.
  • FIG. 25A and 25B are other diagrams showing the effect on the amount of flare light when the inclination angle of the first inclined portion
  • FIG. 28 is another diagram showing the influence on the amount of flare light when the inclination angle of the first inclined portion is changed according to Modification 3 of Embodiment 1.
  • FIG. 29A and 29B are a top view and a cross-sectional view of a three-dimensional ranging module according to Embodiment 2.
  • FIG. 30 is a diagram showing the influence on the amount of flare light when D, B, H1 and H2 are changed according to the second embodiment.
  • FIG. 31 is another diagram showing the influence on the amount of flare light when D, B, H1 and H2 are changed according to the second embodiment.
  • FIG. 32 is another diagram showing the influence on the amount of flare light when D, B, H1 and H2 are changed according to the second embodiment.
  • FIG. 30 is a diagram showing the influence on the amount of flare light when D, B, H1 and H2 are changed according to the second embodiment.
  • FIG. 33 is another diagram showing the influence on the amount of flare light when D, B, H1 and H2 are changed according to the second embodiment.
  • 34A and 34B are a top view and two cross-sectional views of a three-dimensional ranging module according to Modification 1 of Embodiment 2.
  • FIG. 35 is a top view of a substrate according to Modification 1 of Embodiment 2.
  • FIG. 36 is a cross-sectional view of the three-dimensional ranging module according to the sixth embodiment.
  • 37A and 37B are a top view and a cross-sectional view of a three-dimensional ranging module according to Modification 2 of Embodiment 2.
  • FIG. 38 is a cross-sectional view of a three-dimensional ranging module according to Embodiment 3.
  • FIG. 39A and 39B are diagrams showing the influence on the amount of flare light when the inclination angle of the third inclined portion is changed according to Embodiment 3.
  • FIG. FIG. 40 is another diagram showing the influence on the amount of flare light when the inclination angle of the third inclined portion is changed according to the third embodiment.
  • 41 is a top view and two cross-sectional views of a three-dimensional ranging module according to Modification 1 of Embodiment 3.
  • FIG. 42 is a cross-sectional view showing the behavior of light in the three-dimensional ranging module according to Modification 1 of Embodiment 3.
  • FIG. 43A and 43B are diagrams showing the influence on the amount of flare light when the inclination angle of the third inclined portion is changed according to Modification 1 of Embodiment 3.
  • FIG. 44A and 44B are other diagrams showing the influence on the amount of flare light when the inclination angle of the third inclined portion is changed according to Modification 1 of Embodiment 3.
  • FIG. 45A and 45B are a top view and a cross-sectional view of a three-dimensional ranging module according to Modification 2 of Embodiment 3.
  • FIG. 46 is a diagram showing the relationship between ⁇ and ⁇ according to Modification 2 of Embodiment 3.
  • FIG. 47 is a top view and two cross-sectional views of a three-dimensional ranging module according to Modification 3 of Embodiment 3.
  • FIG. 48 is a cross-sectional view of a three-dimensional ranging module according to Modification 4 of Embodiment 3.
  • FIG. 49A and 49B are a top view and a cross-sectional view of a three-dimensional ranging module according to Embodiment 4.
  • FIG. 50 is a cross-sectional view of a three-dimensional ranging module according to Embodiment 5.
  • the three-dimensional ranging module has the following problems.
  • a three-dimensional ranging module may have a lens cover between the object and the lens module.
  • a lens cover is provided to protect a lens module, which is composed of a lens and a lens barrel that supports the lens, when the range finding and imaging apparatus including the three-dimensional range finding module is used outdoors. Further, in order to eliminate the presence of the three-dimensional distance measuring module itself, a lens cover that is transparent to the wavelength of infrared light emitted from the light source and opaque to visible light, for example, is used.
  • the distance to the target is short, or the target has a highly reflective surface (especially if the target has a concave shape, When the concave shape has a focal point and the focal length matches the distance to the object, the object is observed as a bright spot with high brightness.
  • FIG. 1 is a diagram showing a distance image in which an intensity flare area has occurred. More specifically, (a) of FIG. 1 is a distance image without intense flare light, and (b) of FIG. 1 is a distance image with intense flare light.
  • a darker color indicates a longer distance. Areas in which the distance cannot be calculated because the object is too far away or the reflectance of the object is extremely low and the light returned from the object is too weak are displayed in white.
  • an object having a highly reflective surface object X is arranged at the center of the screen, thereby generating intense flare light.
  • Light emitted from the light source for distance measurement is reflected by a certain object (object X), and the reflected light directly enters the lens of the lens module through the lens cover, and is projected onto the image sensor of the three-dimensional distance measurement module. Focus on one point.
  • the light that does not enter the lens directly but is reflected (scattered) by the surface (upper surface) of the lens barrel that faces the object X faces the lens module of the lens cover. It may be reflected again by the surface (lower surface), enter the lens, and form an image on the imaging device. At this time, the light that has been re-reflected by the lower surface and has entered the lens forms an image at a different point on the imaging device than the light that has entered the lens directly. This state is expressed as intensity flare light being generated. In (b) of FIG. 1, an annular intensity flare region is generated by the intensity flare light.
  • the intensity flare light is imaged, there is light reflected by an object (object Y) different from object X, that is, light that is re-reflected by the lower surface of the lens cover and enters the lens. Light that reaches the imaging device from a direction other than the light that is emitted directly enters the lens and forms an image. Therefore, at the point where the intensity flare light forms an image, the distance is calculated based on the transit time of the light from two different places.
  • the reflectance of the lens barrel and lens cover is generally designed to be low in order to avoid stray light, so the intensity of the intensity flare light is relatively weak.
  • the reflected light intensity decreases in inverse proportion to the square of the distance ratio, when the object Y is distant from the object X, the reflected light intensity from the object Y becomes extremely small. , the intensity of the intensity flare light from the object X is sometimes stronger than the intensity of the reflected light from the object Y.
  • the distance is calculated based on the intensity flare light from the object X, which is stronger light, and an erroneous calculation of the distance occurs (intensity flare region occurs).
  • the present disclosure provides a three-dimensional ranging module that suppresses the occurrence of erroneous calculation of distance.
  • a three-dimensional ranging module includes a light source that emits laser light, a lens that collects light reflected by an object from the emitted laser light, and light that is collected by the lens.
  • a lens module that includes an image pickup device that receives light and a lens barrel that surrounds the space between the lens and the image pickup device and supports the lens; and a lens cover that is transparent with respect to wavelengths, and in a cross-sectional view when the lens barrel is cut along a plane including the optical axis of the lens, a first surface of the lens barrel facing the object, It includes a first inclined portion that inclines away from the lens cover as the distance from the optical axis increases.
  • the laser light reflected by the object corresponding to the bright point is reflected by the first surface (first inclined portion)
  • the light (intensity flare light) reaching the lens and the image sensor is suppressed. be done.
  • the amount of intense flare light reaching the lens and the image pickup device is suppressed, it is possible to realize a three-dimensional ranging module that suppresses the occurrence of erroneous calculation of the distance.
  • the first inclined portion may be formed over the entire first surface.
  • the laser beam is reflected from the first surface (first inclined portion).
  • Light is more likely to be reflected in the direction opposite to the lens and image sensor.
  • the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • the half width of the light scattering angle of the laser light on the first surface may be 45 degrees or more.
  • the laser light reflected by the object corresponding to the bright point is diffusely reflected by the first surface (first inclined portion). Therefore, the light (intensity flare light) reaching the lens and image sensor is further suppressed. In other words, since the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • the angle formed by the first inclined portion and the surface of the lens cover facing the lens module may be 30 degrees or more.
  • the angle formed by the first inclined portion and the surface of the lens cover facing the lens module is sufficiently large, the light (intense flare light) reaching the lens and the image sensor is further suppressed.
  • the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • the first inclined portion may be linear.
  • the outer shape of the lens barrel is similar to the outer shape of the imaging element, and the degree of inclination of the first inclined portion from a plane perpendicular to the optical axis is , may be positively correlated with the distance between the optical axis and the outer end of the lens barrel.
  • the half width of the light scattering angle of the laser light on the first surface may be 7 degrees or less.
  • the laser light reflected by the object corresponding to the bright point is reflected by the first surface (first inclined portion) in a state in which light diffusion is suppressed. Also in this case, the light (intensity flare light) reaching the lens and the image sensor is further suppressed. In other words, since the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • the maximum angle formed by the optical axis and the direction in which the front side of the lens is visible is ⁇ .
  • the angle formed by the inclined portion and the plane perpendicular to the optical axis may be ⁇ /2 or more.
  • the reflection within the three-dimensional distance measuring module causes the lens and There is a possibility that light (intensity flare light) that reaches the image sensor will occur. Since the angle formed by the first inclined portion and the surface of the lens perpendicular to the optical axis is within the above angle range, the laser beam reflected by the object is reflected by a component of the three-dimensional distance measuring module (for example, a light shielding member, etc.). ), making it difficult for the light to reach the lens and image sensor. In other words, since the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • a component of the three-dimensional distance measuring module for example, a light shielding member, etc.
  • a member having an opening so as to enclose the lens when the lens is viewed from the lens cover in the direction of the optical axis of the lens, and a surface including the optical axis of the lens Let B be the distance between the outer end of the lens and the outer end of the opening, and H1 be the distance between the lens cover and the center of the lens.
  • H2 the distance between the lens cover and the center of the lens.
  • the laser light reflected by the object corresponding to the bright point is diffusely reflected by the second surface, the light (intensity flare light) reaching the lens and the imaging device is suppressed.
  • the amount of intense flare light reaching the lens and the image pickup device as a whole is suppressed, it is possible to realize a three-dimensional ranging module in which the occurrence of erroneous calculation of distance is suppressed.
  • the third surface of the lens cover facing the lens module may include a third inclined portion that is inclined away from the lens module as the distance from the optical axis increases.
  • the laser light reflected by the object corresponding to the bright point is reflected by the third surface (third inclined portion)
  • the light (intensity flare light) reaching the lens and the image sensor is suppressed. be done.
  • the amount of intense flare light reaching the lens and the image pickup device is suppressed, it is possible to realize a three-dimensional ranging module that suppresses the occurrence of erroneous calculation of the distance.
  • a three-dimensional ranging module includes a light source that irradiates laser light, a lens that collects light reflected by an object from the irradiated laser light, and light that is collected by the lens. a lens cover positioned between the lens and the object and transparent to the wavelength of the laser light; and the lens extending from the lens cover in the direction of the optical axis of the lens.
  • the lens cover and the center of the lens is assumed to be B
  • the distance between the lens cover and the center of the lens is assumed to be H1
  • the distance between the lens cover and the second surface of the member facing the lens cover is assumed to be H2
  • the angle between the optical axis and the line connecting the center of the lens and the outer edge of the imaging element is ⁇ , the relationship (H1+H2) ⁇ tan ⁇ B is satisfied.
  • the laser light reflected by the object corresponding to the bright point is diffusely reflected by the second surface, the light (intensity flare light) reaching the lens and the imaging device is suppressed.
  • the amount of intense flare light reaching the lens and the image pickup device as a whole is suppressed, it is possible to realize a three-dimensional ranging module in which the occurrence of erroneous calculation of distance is suppressed.
  • the outer shape of the opening when viewed from the direction of the optical axis, may be barrel-shaped.
  • the second surface may include a second inclined portion that inclines away from the lens cover as the distance from the optical axis increases.
  • the laser beam reflected by the object corresponding to the bright point is reflected by the second surface (second inclined portion)
  • the laser beam is reflected from the second surface (second inclined portion).
  • Light is more likely to be reflected in the direction opposite to the lens and image sensor.
  • the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • the three-dimensional ranging module includes a light source that irradiates laser light, a lens that collects light reflected by an object from the irradiated laser light, and light that is collected by the lens.
  • a lens module that includes an imaging device that receives light and a lens barrel that surrounds a space between the lens and the imaging device and supports the lens; a lens cover transparent to the wavelength of light, wherein a third surface of the lens cover facing the lens module is inclined away from the lens module as the distance from the optical axis of the lens increases. 3 ramps included.
  • the laser light reflected by the object corresponding to the bright point is reflected by the third surface (third inclined portion)
  • the light (intensity flare light) reaching the lens and the image sensor is suppressed. be done.
  • the amount of intense flare light reaching the lens and the image pickup device is suppressed, it is possible to realize a three-dimensional ranging module that suppresses the occurrence of erroneous calculation of the distance.
  • the third inclined portion when viewed from the direction of the optical axis, may be formed over the entire region where the third inclined portion and the lens module overlap.
  • the laser light reflected by the target object corresponding to the bright point is reflected by the third surface (third inclined portion)
  • the laser light is reflected from the third surface (third inclined portion).
  • Light is more likely to be reflected in the direction opposite to the lens and image sensor.
  • the amount of intensity flare light reaching the lens and the image sensor is further suppressed, it is possible to realize a three-dimensional distance measurement module in which the occurrence of erroneous calculation of distance is further suppressed.
  • the fourth surface of the lens cover facing the object may be flat.
  • the three-dimensional distance measuring module when a person who is an example of a distance measuring object looks at the three-dimensional distance measuring module, if the fourth surface of the lens cover is provided with unevenness, the person may sometimes feels uncomfortable. Therefore, the discomfort is eliminated by the flatness of the fourth surface.
  • the external shape of the third inclined portion is similar to the external shape of the imaging element, and the inclination of the third inclined portion from a plane perpendicular to the optical axis is The degree may be positively correlated with the distance between the optical axis and the outer edge of the third slope.
  • a cavity is provided in a space sandwiched between the third surface of the lens cover and the fourth surface of the lens cover facing the object, and when the lens cover is cut along a plane including the optical axis, In a cross-sectional view, in the region where the cavity is provided, the thickness from the third surface to the fourth surface in the direction of the optical axis, excluding the cavity, may be constant.
  • the shape of the third surface may include a lens shape, and the optical axis of the lens cover may coincide with the optical axis of the lens.
  • a three-dimensional ranging system includes the three-dimensional ranging module described above, and the three-dimensional ranging module measures distance from the light source to the object based on the travel time of the laser beam. It has a calculation unit for calculating the distance of .
  • the three-dimensional ranging system including such a three-dimensional ranging module can suppress the occurrence of erroneous calculation of the distance.
  • each figure is a schematic diagram and is not necessarily strictly illustrated. Therefore, for example, scales and the like do not necessarily match in each drawing. Moreover, in each figure, the same code
  • the terms “upper” and “lower” in the configuration of the three-dimensional ranging module do not refer to the upward direction (vertically upward) and the downward direction (vertically downward) in absolute spatial recognition. , is used as a term defined by a relative positional relationship based on the stacking order in the stacking structure. Also, the terms “above” and “below” are used only when two components are spaced apart from each other and there is another component between the two components, as well as when two components are spaced apart from each other. It also applies when two components are in contact with each other and are placed in close contact with each other.
  • the x-axis, y-axis and z-axis indicate three axes of a three-dimensional orthogonal coordinate system.
  • the direction parallel to the lens of the three-dimensional distance measuring module is the z-axis direction
  • the plane perpendicular to the z-axis direction is the xy plane.
  • the z-axis positive direction may be described as upward
  • the z-axis negative direction may be described as downward.
  • FIG. 2 is a block diagram showing a configuration example of the three-dimensional ranging module 1 according to this embodiment.
  • an object X is also shown in FIG.
  • the target object X is an example of a target object for distance measurement.
  • the three-dimensional ranging system 100 includes a three-dimensional ranging module 1, and the three-dimensional ranging module 1 includes a light source 10, an imaging device 23, and a control unit 60.
  • the control unit 60 has a drive control section 61 , a frame control section 62 , a calculation section 63 and a distance image generation section 64 .
  • the three-dimensional ranging module 1 (three-dimensional ranging system 100) measures the distance between the three-dimensional ranging module 1 and the object X as follows.
  • the time of flight (ToF) of light emitted from the light source 10 is reflected by the object X and returned to the imaging device 23 as reflected light is calculated from the amount of signal exposed by the imaging device 23. , multiplied by the appropriate factor to derive the distance.
  • ToF time of flight
  • the light source 10 emits pulsed light at the timing of the light emission control pulse included in the light emission control signal from the drive control section 61 of the control unit 60 .
  • the pulsed light is preferably infrared light when people are around, but may be light other than infrared light when people are not around.
  • the imaging device 23 exposes the reflected light from the object irradiated with the pulsed light at the timing of the exposure control pulse, and outputs an exposure signal indicating the signal charge amount generated by the exposure.
  • the imaging device 23 includes a solid-state imaging device called an image sensor.
  • the imaging element 23 takes an image with a resolution of, for example, approximately 20,000 pixels to 2,000,000 pixels.
  • the imaging element 23 may be divided into one for image acquisition and one for distance measurement.
  • the drive control unit 61 outputs a light emission control signal containing a light emission control pulse for instructing the timing of light emission and an exposure control signal containing an exposure control pulse for instructing the timing of exposure.
  • the drive control section 61 generates a light emission control signal based on the timing of the light emission control pulse.
  • the imaging device 23 outputs an exposure signal indicating the amount of signal charge generated by exposure by the exposure control pulse.
  • a calculation unit 63 of the control unit 60 converts the signal charge amount ratio of the exposure signal into a running time and outputs distance information. That is, the calculation unit 63 calculates the distance from the light source 10 to the object based on the travel time of the laser light.
  • the frame control unit 62 outputs frame identification signals related to distance measurement to the drive control unit 61 and the distance image generation unit 64 .
  • the distance image generator 64 generates a distance image based on the obtained frame identification signal and distance information.
  • FIG. 3 is a top view and two cross-sectional views of the three-dimensional ranging module 1 according to this embodiment.
  • FIG. 3(a) is a top view of the three-dimensional distance measuring module 1
  • FIG. 3(b) is the three-dimensional distance measuring module 1 along line IIIb-IIIb of FIG. is a cross-sectional view of
  • FIG. 3(c) is a cross-sectional view of the three-dimensional distance measuring module 1 taken along line IIIc-IIIc of FIG. 3(a).
  • FIG. 3(a) shows a top view without the lens cover 30 for ease of viewing. Moreover, the same applies to subsequent top views.
  • the three-dimensional ranging module 1 includes the light source 10, the imaging element 23, and the control unit 60. More specifically, as shown in FIG. 3, the light source 10, the lens module 20, the lens cover 30, the control unit 60, the substrate 40, the light shielding member 51, the substrate holding portion 52, and the housing side surface. A portion 53 and a housing bottom portion 54 are provided.
  • the light source 10 is a light source that emits laser light and is a semiconductor laser device.
  • the laser light emitted by the light source 10 is light in the infrared region, and the peak wavelength of the laser light is 850 nm or 940 nm, for example.
  • the wavelength half width of the laser light is 3 nm.
  • the light source 10 is a semiconductor laser device that emits surface light, and the size of the light emitting surface is 3.5 mm ⁇ 3.5 mm.
  • the output of the laser light is 1W. Note that the wavelength, wavelength half width, light emitting surface, and output of the laser light emitted by the light source 10 are not limited to those described above.
  • the light source 10 may have a member that diffuses (light scatters) the laser light.
  • the light source 10 has a light diffusing glass member to diffuse the laser light and control its light distribution.
  • the laser light emitted from the light source 10 is reflected by the object X, passes through the lens cover 30, and reaches the lens 21 of the lens module 20. More specifically, part of the laser light emitted from the light source 10 reaches the lens 21 .
  • the lens 21 is an optical member that collects light reflected by the object X from the laser light emitted by the light source 10 .
  • the lens 21 is a plano-convex lens as shown in FIG. 3, it may be a lens of other shape as long as the reflected light can be condensed.
  • the lens 21 has a lens radius of 5 mm and a focal length of 2 mm, but is not limited to this. Further, although the half angle of view of the lens 21 is 70 degrees, it is not limited to this. Note that the half angle of view is a value that is half the angle of view that indicates the range that the imaging element 23 can capture.
  • a center 211 of the lens 21 is defined as a point through which the optical axis A1 of the lens 21 passes on a plane (lower surface) of the lens 21 . The light condensed by such a lens 21 reaches the imaging device 23 .
  • the imaging element 23 of the lens module 20 is an element that receives light condensed by the lens 21 .
  • the image sensor 23 includes ranging pixels and imaging pixels. More specifically, 640 ⁇ 480 or 320 ⁇ 240 pixels for ranging and 640 ⁇ 480 pixels for imaging. or 320 ⁇ 240 pixels.
  • the top view shown in (a) of FIG. 3 is a view when viewed from the direction of the optical axis A1 of the lens 21. In the top view, the outer shape of the imaging element 23 is rectangular, more is.
  • the imaging element 23 has a flat plate shape and is arranged parallel to the xy plane.
  • the lens barrel 22 of the lens module 20 has a bottomless tube shape and a cylindrical shape.
  • a cylindrical cavity is formed inside the lens barrel 22 .
  • the lens barrel 22 surrounds the space between the lens 21 and the imaging element 23 .
  • the space between the lens 21 and the imaging device 23 is arranged inside the lens barrel 22 .
  • the lens barrel 22 has a shape extending along the optical axis A1 of the lens 21, and the optical axis A1 of the lens 21 and the axis of the lens barrel 22 coincide.
  • the lens barrel 22 has a cylindrical shape, and a cross section taken along a plane perpendicular to the optical axis A1 has an annular shape.
  • 3B corresponds to a cross-sectional view of the lens barrel 22 cut along a plane including the optical axis A1 of the lens 21.
  • the lens barrel 22 has an inner diameter D of 5 mm in radius and an outer diameter of 6 mm to 9 mm in radius. be.
  • D and A are the above values, and in the present embodiment, any surface including the optical axis A1 of the lens 21 can be used for the lens barrel 22 are cut, D and A are constant in the sectional view at that time.
  • the material constituting the lens barrel 22 is not particularly limited, it is aluminum here.
  • the surface of the lens barrel 22 should preferably be able to absorb the wavelength of the laser light, and more preferably absorb the wavelength of the laser light and visible light. Black. More specifically, the surface of the lens barrel 22 may be provided with a black layer by black powder coating, or may be subjected to black alumite treatment.
  • FIG. 3 the lens barrel 22 will be described in more detail with reference to FIGS. 3 and 4.
  • FIG. 3 the lens barrel 22 will be described in more detail with reference to FIGS. 3 and 4.
  • FIG. 4 is an enlarged cross-sectional view of the periphery of the lens barrel 22 according to this embodiment. Note that the lens 21 is omitted in FIG. 4 for the sake of simplicity.
  • the surface (upper surface) of the lens barrel 22 facing the object X is defined as a first surface 221 .
  • the first surface 221 has a first inclined portion 222 that inclines away from the lens cover 30 as the distance from the optical axis A1 increases. include.
  • this cross-sectional view means viewing a plane that includes the optical axis A1 and that is perpendicular to the light receiving surface (upper surface) of the imaging device 23 .
  • the first surface 221 includes the first inclined portion 222 that is inclined downward with increasing distance from the optical axis A1. More specifically, the first inclined portion 222 is formed over the entire first surface 221 .
  • the first inclined portion 222 is linear. Note that, in the present embodiment, the first inclined portion 222 is linear in the cross-sectional view at any plane including the optical axis A1 of the lens 21 when the lens barrel 22 is cut. be. Note that the first inclined portion 222 may be formed on a part of the first surface 221 without being limited to this. Moreover, since the first surface 221 includes the first inclined portion 222, it can be said that the first surface 221 is macroscopically inclined. The term "macroscopically inclined" means the extent to which the inclination can be visually observed.
  • the inclination angle which is the angle between the first inclined portion 222 and the plane perpendicular to the optical axis A1 (that is, the xy plane), is ⁇ . It is preferable that ⁇ is large, but if it is too large, the thickness of the tip of the lens barrel 22 will be insufficient and the structure will become weak, so 80 degrees or less is preferable. In the present embodiment, ⁇ is preferably 10 degrees or more and 80 degrees or less, more preferably 30 degrees or more and 70 degrees or less, and even more preferably 45 degrees or more and 60 degrees or less. Further, no matter which plane the lens barrel 22 is cut on as long as it includes the optical axis A1 of the lens 21, the first inclined portion 222 is linear in the sectional view at that time. ⁇ is constant.
  • the first surface 221 is a light diffusion reflection surface that diffuses (light scatters) the laser light.
  • the half width of the light scattering angle of the laser light on the first surface 221 is 45 degrees or more.
  • the half-value width of the light scattering angle means that when light incident from the front direction is diffusely reflected, the intensity of the diffusely reflected light is half that of the light reflected from the front direction. It means the angle between the direction of the front and the front direction. In the lambertian reflection, the half width of the light intensity is 60 degrees.
  • the half width of the light scattering angle of the laser light on the first surface 221 should be 45 degrees or more and 60 degrees or less, and more preferably 50 degrees or more and 60 degrees or less. If the half-value width of the light scattering angle of the laser light of the first surface 221 is within the above range, the first surface 221 can sufficiently diffuse (light scatter) the laser light.
  • the imaging device 23 is surrounded by the inner side surface 223 of the lens barrel 22 .
  • the lens 21 is supported by the lens barrel 22 .
  • the lens 21 may be mounted so that the plane of the lens 21 is in contact with the upper end of the lens barrel 22 (the upper end of the first surface 221), and the lens 21 is housed in a cylindrical cavity inside the lens barrel 22. may be fixed.
  • the lens cover 30 is a plate-like member positioned between the lens module 20 and the object X, and has a thickness of 1 mm.
  • a lens cover 30 is provided to cover the light source 10 and the lens module 20 .
  • the lens cover 30 may be transparent to the wavelength of the laser light (that is, the wavelength in the infrared region).
  • the lens cover 30 preferably has a transmittance of 60% or more, more preferably 80% or more, and even more preferably 90% or more with respect to this wavelength, but is not limited to this. Further, the lens cover 30 preferably has a transmittance of 50% or less, more preferably 30% or less, and even more preferably 10% or less for wavelengths in the visible light region, but the transmittance is not limited thereto.
  • the transmittance of the lens cover 30 for wavelengths in the visible light region is within the above range, the inside of the three-dimensional distance measuring module 1 is not visually recognized by surrounding people when the three-dimensional distance measuring module 1 is used. Therefore, effects such as improvement in the appearance of the three-dimensional distance measuring module 1 and reduction in the stress of being monitored by the person are expected.
  • Such a lens cover 30 is made of PMMA (acrylic resin), for example.
  • the lens cover 30 has a transmittance of 92% for the wavelengths of the laser light (here, 850 nm and 940 nm) and a transmittance of 1% or less for the wavelengths in the visible light region.
  • the lens cover 30 has a third surface 31 that is a lower surface facing the lens module 20 and a fourth surface that is an upper surface facing the object X.
  • the third surface 31 (the lower surface) and the fourth surface A light reflection suppressing film is preferably provided on each of (the upper surface).
  • the front reflectance of the two light reflection suppressing films with respect to the wavelength of the laser light is 1% or less.
  • the material constituting the lens cover 30 is not limited to the above materials, and may be, for example, glass. Further, the half width of the light scattering angle of the laser light on the third surface 31 is 7 degrees or less.
  • the third surface 31 of the lens cover 30 is parallel to the xy plane, so the angle formed by the first inclined portion 222 and the third surface 31 is ⁇ match.
  • the light source 10 and the lens module 20 are arranged inside the housing constituted by the lens cover 30, the housing side surface portion 53, and the housing bottom surface portion 54.
  • the size of the housing configured by the lens cover 30, the housing side surface portion 53, and the housing bottom surface portion 54 is, for example, 84 mm (x-axis direction) x 40 mm (y-axis direction) x 30 mm (z axial direction).
  • the housing bottom surface portion 54 is a substrate on which the lens module 20 is provided. As shown in FIG. 3, the lens module 20 and the control unit 60 are provided above and in contact with the housing bottom portion 54, which is a substrate. In addition, it can be said that the imaging element 23 is stacked above the housing bottom portion 54 .
  • the housing bottom surface portion 54 is a mounting substrate for mounting the lens module 20 thereon.
  • a black resist is provided on the surface of the housing bottom portion 54 on which the lens module 20 is mounted, and the front reflectance of this surface with respect to the wavelength of the laser light is 10% or less.
  • the housing bottom portion 54 is made of a glass epoxy material, but is not limited to this.
  • the housing side surface portion 53 is provided in contact with the upper side of the housing bottom surface portion 54, and is arranged so as to surround the light source 10 and the lens module 20 when viewed from above. That is, the housing side surface portion 53 has a rectangular frame shape when viewed from above.
  • the material forming the housing side surface portion 53 is not particularly limited, it is aluminum here. Further, the surface of the housing side surface portion 53 may be provided with a black layer by black powder coating, or may be subjected to black alumite treatment.
  • the substrate 40 is an example of a member having an opening 41 so as to enclose the lens 21 when the lens 21 is viewed from the lens cover 30 in the direction of the optical axis A1 of the lens 21, that is, when viewed from above. is.
  • the substrate 40 has a second surface 42 which is an upper surface facing the lens cover 30 and a lower surface facing the housing bottom surface 54 .
  • the diameter of the opening 41 may be any size that allows the opening 41 to contain the lens 21 and any size that allows the opening 41 to contain the lens module 20 .
  • the diameter of the opening 41 is preferably 10 mm or less, which is larger than the outer diameter of the lens barrel 22 .
  • the substrate 40 is a substrate member on which the light source 10 is provided. As shown in FIG. 3, the light source 10 is provided above and in contact with the substrate 40 . That is, the substrate 40 is a mounting substrate for mounting the light source 10 thereon. A dark blue resist is provided on the surface of the substrate 40 on which the light source 10 is mounted.
  • the substrate 40 is made of a glass epoxy material, but is not limited to this. Also, the substrate 40 is held by a substrate holding portion 52 .
  • the substrate holding portion 52 is a member that is provided in contact with the upper side of the housing bottom portion 54 and supports the substrate 40 in contact with the lower surface of the substrate 40 .
  • the substrate holding part 52 has a rectangular frame shape when viewed from above, and supports the edge of the substrate 40 .
  • the material forming the substrate holding portion 52 is not particularly limited, it is aluminum here. Further, the surface of the substrate holding portion 52 is provided with a black layer by black powder coating.
  • the light shielding member 51 is a member provided in contact with the upper side of the substrate 40 .
  • a light shielding member 51 is provided between the light source 10 and the lens module 20 .
  • the light shielding member 51 is an elongated rectangular member in the top view shown in FIG. 3(a).
  • the material constituting the light shielding member 51 is not particularly limited, it is aluminum here. Further, the surface of the light shielding member 51 is provided with a black layer by black powder coating.
  • the light shielding member 51 prevents the laser light emitted from the light source 10 from being emitted inside the three-dimensional distance measuring module 1 (that is, inside the housing constituted by the lens cover 30, the housing side surface portion 53, and the housing bottom surface portion 54). It is a member for suppressing reaching the imaging element 23 due to reflection of the light.
  • the interior of the three-dimensional distance measuring module 1 (that is, the interior of the housing) is divided into two spaces by the light blocking member 51, the substrate 40, and the substrate holding portion 52.
  • the lens module 20 and the control unit 60 are arranged in one of the two spaces, and the light source 10 is arranged in the other of the two spaces.
  • FIG. 5 is a cross-sectional view showing the behavior of laser light according to this embodiment.
  • the cross-sectional view shown in FIG. 5 is a cross-sectional view corresponding to (b) of FIG.
  • reflected light L light reflected by the object X from the laser light emitted from the light source 10
  • one of the two reflected lights L shown in FIG. 5 overlaps the optical axis A1 shown in FIG. 3, etc., so the optical axis A1 is omitted.
  • the optical axis A1 may be omitted for the same reason.
  • the distance from the center 211 of the lens 21 to the third surface 31, which is the lower surface of the lens cover 30, is H.
  • H is the length in the z-axis direction from the plane of the lens 21 to the third surface 31 .
  • the object X when the object X has a high reflectance surface, the object X is observed by the imaging element 23 as a bright point. be done. That is, the object X corresponds to a bright spot.
  • the object X (bright spot) is located in the optical axis A1 direction (z-axis direction). More specifically, the direction connecting the object X and the imaging device 23 is parallel to the optical axis A1 direction (z-axis direction).
  • the two reflected lights L will be described below.
  • one of the two reflected lights L directly enters the lens 21 of the lens module 20 through the lens cover 30 and forms an image at one point on the imaging device 23 .
  • the other of the two reflected lights L does not enter the lens 21 directly, but is reflected (scattered) by the first surface 221 of the lens barrel 22, and is reflected again by the third surface 31 of the lens cover 30. It enters the lens 21 and forms an image at another point on the imaging device 23 . At this other point, an intensity flare light is generated.
  • the angle between the direction in which the other of the two reflected lights L travels and the direction of the optical axis A1 (z-axis direction) is ⁇ . That is, the angle of incidence of the other light of the two reflected lights L to the imaging element 23 is ⁇ .
  • flare light amount the light amount of this intensity flare light (hereinafter referred to as flare light amount) is calculated by the following method.
  • the object X (bright point) is located in the optical axis A1 direction (z-axis direction).
  • the amount of flare light is calculated by (area of the first surface 221 of the lens barrel 22)/(area of the lens 21 when viewed from the top) ⁇ reflectance of the first surface 221, with one of the two reflected lights L as a reference.
  • is proportional to the reflectance of the third surface 31).
  • the first surface 221 is a light diffusion reflection surface that diffuses (light scatters) laser light.
  • the front reflectance of the first surface 221 is R1
  • the front reflectance of the third surface 31 is R2.
  • R1 of the first surface 221 is, for example, 1%.
  • the other of the two reflected lights L reaches the first surface 221 .
  • the incident angle is ⁇ .
  • Light reaching the first surface 221 is diffusely reflected.
  • the light diffusely reflected at the angle of reflection ⁇ + ⁇ is further reflected by the third surface 31 , passes through the lens 21 , and enters the imaging element 23 .
  • the incident angle of the light reflected by the third surface 31 to the imaging device 23 is ⁇ .
  • Equation (1) the amount of flare light is represented by Equation (1).
  • Formula (1) is based on an empirical approximation formula for diffuse reflection with a half width of 45 degrees when light is obliquely incident at an incident angle ⁇ .
  • the amount of flare light is calculated as described above. Next, the influence on the amount of flare light when the inclination angle ⁇ of the first inclined portion 222 is changed will be examined.
  • FIG. 6 is a diagram showing the influence on the amount of flare light when the inclination angle of the first inclined portion 222 according to the present embodiment is changed.
  • FIG. 6 shows the first, second, third, and fourth examples in which ⁇ is 15, 30, 45, and 60 degrees, respectively, which correspond to the three-dimensional ranging module 1 according to the present embodiment.
  • the amount of flare light is calculated for the three-dimensional ranging module.
  • the three-dimensional ranging module according to the first study example is the same as the three-dimensional ranging module 1 according to the present embodiment, except that ⁇ is 0 degrees, that is, the first surface 221 is parallel to the xy plane. have the same configuration.
  • FIG. 6(a) shows the amount of flare light when the incident angle ⁇ is changed for the three-dimensional distance measuring modules according to the first to fourth embodiments and the first study example.
  • FIG. 6(b) is a diagram showing a distance image when ⁇ is 0 degrees.
  • FIG. 6(b) shows an object X closer to the three-dimensional ranging module 1 and an object Y farther from the three-dimensional ranging module 1.
  • the object X has a high reflectance surface.
  • the amount of flare light exhibits the following behavior.
  • the reflected light L is less likely to be eclipsed by the first surface 221 of the lens barrel 22 as ⁇ increases. is the main factor, and the amount of flare light increases.
  • the reflected light L is not eclipsed by the first surface 221 of the lens barrel 22, but as ⁇ increases, the diffuse reflectance decreases and the amount of flare light decreases.
  • is greater than or equal to 68 degrees and less than 72 degrees, that is, when greater than ⁇ 2 that satisfies Equation (3), the reflected light L is often eclipsed by the first surface 221 of the lens barrel 22. The amount of flare light is reduced.
  • the half angle of view is half the angle of view that indicates the range that the imaging element 23 can capture, and is 70 degrees in the present embodiment.
  • the behavior of the amount of flare light is the same regardless of the value of ⁇ . That is, the amount of flare light increases once as ⁇ increases from 0 degrees, then decreases, and when ⁇ sufficiently increases, the amount of flare light falls below the detection limit.
  • the three-dimensional ranging modules according to the first to fourth embodiments are compared.
  • the three-dimensional distance measuring module according to the first to fourth embodiments in which the first surface 221 includes the first inclined portion 222 is used.
  • the rangefinder module has a reduced amount of flare light.
  • FIG. 7 is a diagram showing the relationship between the distance between the three-dimensional distance measuring module 1 and the object X and the distance between the three-dimensional distance measuring module 1 and the object Y according to the present embodiment.
  • object X and object Y have the same reflectance.
  • the vertical axis represents a value (distance ratio) obtained by dividing the distance between the three-dimensional ranging module 1 and the object Y by the distance between the three-dimensional ranging module 1 and the object X
  • the horizontal axis represents , denote ⁇ , which is the angle of incidence.
  • the larger ⁇ is, the narrower the range in which miscalculations occur.
  • the third module in which the inclination angle ⁇ of the first inclined portion 222 is large.
  • the three-dimensional distance measurement modules according to the first to fourth embodiments can suppress the occurrence of erroneous calculation of distance.
  • the object Y is, for example, the sky (upper sky), and the distance between the three-dimensional distance measuring module 1 and the object Y is infinite. At this time, since the distance between the three-dimensional distance measuring module 1 and the object Y is infinite, an erroneous calculation of the distance occurs when the amount of flare light exceeds the detection limit.
  • FIG. 8 is a cross-sectional view showing another behavior of laser light according to this embodiment.
  • the cross-sectional view shown in FIG. 8 is a cross-sectional view corresponding to (b) of FIG.
  • the direction connecting the object X (bright spot) and the three-dimensional ranging module 1 is arranged at a position forming an angle with the optical axis A1 direction (z-axis direction).
  • the angle formed between the direction connecting the object X and the imaging element 23 and the optical axis A1 direction (z-axis direction) is ⁇ .
  • the two reflected lights L will be described below.
  • one of the two reflected lights L directly enters the lens 21 of the lens module 20 through the lens cover 30 and forms an image at one point on the imaging device 23 .
  • the incident angle is ⁇ .
  • the other of the two reflected lights L reaches the first surface 221 without directly entering the lens 21 .
  • the incident angle is ⁇ - ⁇ .
  • Light reaching the first surface 221 is diffusely reflected.
  • the light diffusely reflected at the angle of reflection ⁇ + ⁇ is further reflected by the third surface 31 , passes through the lens 21 , and enters the imaging device 23 .
  • the incident angle of the light reflected by the third surface 31 to the imaging device 23 is ⁇ .
  • 9 to 12 are other diagrams showing the influence on the amount of flare light when the inclination angle of the first inclined portion 222 according to the present embodiment is changed.
  • the behavior of the amount of flare light is the same regardless of the value of ⁇ . That is, the amount of flare light increases once as ⁇ increases from 0 degrees, then decreases, and when ⁇ sufficiently increases, the amount of flare light falls below the detection limit. As shown in FIGS. 9 to 12, it has been clarified that even if the value of ⁇ changes, the effect on the amount of flare light is small.
  • FIG. 13 is another diagram showing the influence on the amount of flare light when the inclination angle of the first inclined portion 222 according to the present embodiment is changed.
  • FIG. 13 a dashed-dotted line and a dashed-two-dotted line, which respectively indicate the same amount of flare light, are shown across (a) to (c) of FIG.
  • is 30 degrees or more, even if A changes, the effect on the amount of flare light is sufficiently small.
  • the flare light amount is about the same if ⁇ is the same in the range where ⁇ is 0 degrees or more and is equal to or less than the angle indicating the peak value of the flare light amount.
  • the amount of flare light is about the same value regardless of the value of A, and specifically, the amount of flare light is about 7-8.
  • the first inclined portion 222 is linear.
  • the effect of the linearity of the first inclined portion 222 will be described with reference to FIGS. 14 to 16.
  • FIGS. 14 to 16 are diagrams for explaining the effect of the first inclined portion 222 according to the present embodiment being linear. More specifically, FIGS. 14 to 16(a) are cross-sectional views showing enlarged parts of the lens 21 and the lens barrel 22, respectively. 14 to 16B are diagrams showing the effect on the amount of flare light when the inclination angle of the first inclined portion 222 is changed. The same method is used. Also, as in FIG. 6A, the three-dimensional ranging modules according to the first to fourth embodiments and the first study example are used. In each of FIGS. 14 to 16B, the amount of flare light is calculated assuming that the inner diameter D is 5 mm, the thickness A is 2 mm, and the distance H is 2 mm.
  • FIGS. 14 to 16 shows five examples in which the value of ⁇ is changed.
  • FIG. 14 describes the three-dimensional ranging modules according to the first to fourth embodiments and the first study example. That is, FIG. 14 shows a cross-sectional view of a three-dimensional ranging module in which the first inclined portion 222 is straight.
  • FIG. 15 shows a first surface 221, which is the surface (upper surface) facing the object X of the lens barrel 22 in the three-dimensional ranging modules according to the first to fourth embodiments and the first study example.
  • the inclination angle of the first surface 221 increases from the outside of the barrel 22 towards the lens 21 .
  • the first surface 221 has an inclination angle of 0 degrees at the outer end of the lens barrel 22 .
  • the direction connecting the end of the barrel 22 on the lens 21 side (that is, the inner side of the barrel 22) and the outer end of the barrel 22 and the plane perpendicular to the optical axis A1 (that is, The angle of inclination, which is the angle with the xy plane)
  • the inclination angle at a predetermined point on the first surface 221 is proportional to the distance between the predetermined point and the outer end of the lens barrel 22 . Therefore, when ⁇ , which is the first study example, is 0 degrees, the first surface 221 is a straight line.
  • FIG. 16 shows a first surface 221, which is the surface (upper surface) of the lens barrel 22 facing the object X in the three-dimensional distance measuring modules according to the first to fourth embodiments and the first study example.
  • a convex shape a shape that curves and protrudes in the positive direction of the z-axis.
  • the inclination angle of the first surface 221 decreases from the outside of the lens barrel 22 toward the lens 21 .
  • the first surface 221 has an inclination angle of 0 degrees at the inner end of the lens barrel 22 .
  • the direction connecting the end of the barrel 22 on the lens 21 side (that is, the inner side of the barrel 22) and the outer end of the barrel 22 and the plane perpendicular to the optical axis A1 (that is, The angle of inclination, which is the angle with the xy plane)
  • the inclination angle at a predetermined point on the first surface 221 is proportional to the distance between the predetermined point and the inner end of the lens barrel 22 . Therefore, when ⁇ , which is the first study example, is 0 degrees, the first surface 221 is a straight line.
  • the distance module can suppress the amount of flare light compared to the examples shown in FIGS. 15 and 16 .
  • the lens 21 is connected to the barrel 22 .
  • the lens barrel 22 and the lens 21 are installed above the imaging device 23 in the housing bottom portion 54 where the imaging device 23 and the control unit 60 are installed (mounted).
  • the light source 10 is installed (mounted) on the substrate 40 .
  • the position of the opening 41 of the substrate 40 is aligned with the position of the lens barrel 22 and the lens 21, the substrate 40 is installed on the bottom surface of the housing 54 via the substrate holding portion 52, and the wiring is connected. be done.
  • a light shielding member 51 is installed.
  • the lens cover 30 is installed on the housing bottom surface portion 54 via the housing side surface portion 53 .
  • a three-dimensional ranging module 1 has a light source 10 , a lens module 20 and a lens cover 30 .
  • the light source 10 emits laser light.
  • the lens module 20 includes a lens 21 that collects light reflected by an object from the irradiated laser light, an image pickup device 23 that receives the light collected by the lens 21, and a lens between the lens 21 and the image pickup device 23. It includes a lens barrel 22 that encloses a space and supports a lens 21 .
  • the lens cover 30 is located between the lens module 20 and the object and is transparent to the wavelength of the laser light.
  • the first surface 221 of the lens barrel 22 facing the object moves away from the lens cover 30 as the distance from the optical axis A1 increases. It includes a first sloped portion 222 that slopes to .
  • the three-dimensional distance measuring module according to the first to fourth embodiments in which the first surface 221 includes the first inclined portion 222 is used.
  • the rangefinder module has a reduced amount of flare light.
  • the three-dimensional ranging modules according to the first to fourth examples correspond to the three-dimensional ranging module 1 according to this embodiment. In this way, since the amount of intense flare light reaching the lens 21 and the imaging device 23 is suppressed, the three-dimensional distance measuring module 1 in which the occurrence of erroneous calculation of the distance is suppressed can be realized.
  • the first inclined portion 222 is formed over the entire first surface 221 .
  • the laser beam reflected by the object X corresponding to the bright point is reflected by the first surface 221 (first inclined portion 222)
  • the laser beam is reflected by the first surface 221 (first inclined portion 222) are likely to be reflected in the direction opposite to the lens 21 and the image pickup device 23 .
  • the amount of intense flare light reaching the lens 21 and the imaging device 23 is further suppressed, it is possible to realize the three-dimensional distance measurement module 1 in which the occurrence of erroneous calculation of the distance is further suppressed.
  • the half width of the light scattering angle of the laser light on the first surface 221 is 45 degrees or more.
  • the laser light reflected by the object X corresponding to the bright point is diffusely reflected by the first surface 221 (first inclined portion 222). Therefore, the light (intensity flare light) reaching the lens 21 and the image sensor 23 is further suppressed. In other words, since the amount of intense flare light reaching the lens 21 and the imaging device 23 is further suppressed, it is possible to realize the three-dimensional distance measurement module 1 in which the occurrence of erroneous calculation of the distance is further suppressed.
  • the angle formed by the first inclined portion 222 and the surface of the lens cover 30 facing the lens module 20 is 30 degrees or more.
  • the angle formed by the first inclined portion and the surface of the lens cover facing the lens module becomes sufficiently large.
  • the flare light amount decreases as ⁇ increases.
  • is 30 degrees or more, light (intense flare light) reaching the lens 21 and the image sensor 23 is further suppressed.
  • the amount of intense flare light reaching the lens 21 and the imaging device 23 is further suppressed, it is possible to realize the three-dimensional distance measurement module 1 in which the occurrence of erroneous calculation of the distance is further suppressed.
  • the first inclined portion 222 is linear.
  • the three-dimensional ranging system 100 includes the three-dimensional ranging module 1 described above, and the three-dimensional ranging module 1 calculates the distance from the light source 10 to the object based on the travel time of the laser beam. It has a portion 63 .
  • the three-dimensional ranging system 100 including such a three-dimensional ranging module 1 suppresses the occurrence of erroneous calculation of the distance. be able to.
  • Modification 1 of Embodiment 1 differs from Embodiment 1 in the shapes of lens barrel 22a and opening 41a. In the following, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • composition A configuration example of a three-dimensional ranging module 1a according to Modification 1 of Embodiment 1 will be described with reference to FIG.
  • FIG. 17 is a top view and two cross-sectional views of a three-dimensional ranging module 1a according to this modification.
  • FIG. 17 is a top view of the three-dimensional distance measuring module 1a
  • (b) of FIG. 17 is the three-dimensional distance measuring module 1a along line XVIIb-XVIIb of (a) of FIG. 17(c) is a cross-sectional view of the three-dimensional distance measuring module 1a along line XVIIc--XVIIc of FIG. 17(a).
  • the three-dimensional distance measuring module 1a according to the present modification is the same as the three-dimensional distance measuring module 1a according to the first embodiment except that the lens module 20 is replaced with a lens module 20a and the substrate 40 is replaced with a substrate 40a. It has the same configuration as the module 1.
  • the lens module 20a has the same configuration as the lens module 20 except that it has a lens barrel 22a instead of the lens barrel 22.
  • the lens barrel 22a has the same configuration as the lens barrel 22 except for the shape.
  • the lens barrel 22a has a bottomless tubular shape and a rectangular tubular shape.
  • a cylindrical cavity is formed inside the lens barrel 22a.
  • the lens barrel 22a has a shape extending along the optical axis A1 of the lens 21, and the optical axis A1 of the lens 21 coincides with the axis of the lens barrel 22a.
  • the cross section taken along a plane perpendicular to the optical axis A1 has a rectangular outer shape, and a portion corresponding to the cylindrical cavity is circular.
  • the external shape of the lens barrel 22a is rectangular, similar to the external shape of the imaging device 23. be.
  • the surface (upper surface) of the lens barrel 22a facing the object X is referred to as a first surface 221a.
  • the first surface 221a has a first inclined portion 222a that inclines away from the lens cover 30 as the distance from the optical axis A1 increases. include.
  • the first surface 221a includes a first inclined portion 222a that is inclined downward with increasing distance from the optical axis A1. More specifically, the first inclined portion 222a is formed over the entire first surface 221a.
  • the first inclined portion 222a is linear. Note that, in this modification, the first inclined portion 222a is linear in the cross-sectional view at any plane including the optical axis A1 of the lens 21 when the lens barrel 22a is cut. . Note that the first inclined portion 222a may be formed on a part of the first surface 221a without being limited to this.
  • the inclination angle between the first inclined portion 222a and the plane perpendicular to the optical axis A1 is ⁇ .
  • is preferably 10 degrees or more and 80 degrees or less, more preferably 30 degrees or more and 70 degrees or less, and even more preferably 45 degrees or more and 60 degrees or less.
  • the substrate 40a has the same configuration as the substrate 40 except that it has an opening 41a instead of the opening 41.
  • the shape of the opening 41a is rectangular in top view in this modified example. It is sufficient that the opening 41a has a size that allows the lens 21 and the lens barrel 22a to be included in the top view, and that the opening 41a has a size that allows the lens module 20a to be included.
  • FIG. 18 is a top view of a lens barrel 22a and a lens 21 according to this modified example, and a cross-sectional view of the lens barrel 22a.
  • FIG. 18(a) is a top view of the lens barrel 22a and the lens 21, and FIG. 18(b) is a cross-sectional view of the lens barrel 22a along line XVIIIb-XVIIIb of FIG. 18(a).
  • FIG. 18(c) is a cross-sectional view of the lens barrel 22a taken along line XVIIIc-XVIIIc of FIG. 18(a)
  • FIG. 18(d) is a cross-sectional view of lens barrel 22a taken along line XVIIId-XVIIId of FIG. 18(a). is a cross-sectional view of.
  • the outer shape of the lens barrel 22a is rectangular and similar to the outer shape of the imaging element 23.
  • the degree of inclination of the first inclined portion 222a from the plane perpendicular to the optical axis A1 is represented by ⁇ , which is the inclination angle of the first inclined portion 222a.
  • the degree of inclination (that is, ⁇ ) has a positive correlation with the distance between the optical axis A1 and the outer end of the lens barrel 22a.
  • ⁇ of the first inclined portion 222a in the direction connecting the optical axis A1 and a point on the outer end of the lens barrel 22a is the distance between the optical axis A1 and the outer end of the lens barrel 22a
  • be the angle between this reference direction and the XVIIIb-XVIIIb line and the XVIIIc-XVIIIc line.
  • is 0, A, which is the thickness of the lens barrel 22a, is 1 mm, ⁇ is 15 degrees, and the half angle of view is 14 degrees.
  • is greater than 0, A, which is the thickness of the lens barrel 22a, is 4 mm, ⁇ is 30 degrees, and the half angle of view is 30 degrees.
  • FIG. 18(c) A is larger in FIG. 18(c) than in FIG. 18(b), that is, the distance between the optical axis A1 and the outer end of the lens barrel 22a is larger. Therefore, ⁇ is larger in FIG. 18(c) than in FIG. 18(b). Further, in the cross-sectional view shown in FIG. 18(d), the first surface 221a is convexly curved in the positive direction of the z-axis.
  • FIG. 19 is a diagram showing the relationship between ⁇ and ⁇ according to this modified example.
  • A changes as ⁇ changes. That is, the distance between the optical axis A1 and the outer end of the lens barrel 22a is changed. Along with this, the value of ⁇ also changes.
  • FIG. 13 shows that the greater the thickness A of the lens barrel 22, the higher the amount of flare light, and the angle (.theta.) indicating the peak value of the amount of flare changes to the high angle side. Furthermore, as ⁇ increases, the amount of flare light decreases.
  • the external shape of the lens barrel 22a when viewed from above (that is, in a top view), the external shape of the lens barrel 22a is similar to the external shape of the imaging element 23, and the inclination of the first inclined portion 222a from the plane perpendicular to the optical axis A1 is
  • the degree ( ⁇ ) has a positive correlation with the distance between the optical axis A1 and the outer end of the lens barrel 22a. That is, in this modified example, ⁇ increases with A, which is the thickness of the lens barrel 22a.
  • A which is the thickness of the lens barrel 22a.
  • the external shape of the lens barrel 22a is similar to the external shape of the imaging device 23 when viewed from the direction of the optical axis A1.
  • the degree of inclination of the first inclined portion 222a from a plane perpendicular to the optical axis A1 has a positive correlation with the distance between the optical axis A1 and the outer end of the lens barrel 22a.
  • increases with A, which is the thickness of the lens barrel 22a.
  • the angle ( ⁇ ) at which intense flare light is generated can be increased while the peak value of the amount of flare light is kept constant. That is, the angle at which intense flare light is generated can be outside the angle of view. In this way, the amount of intensity flare light reaching the imaging element 23 is more uniformly suppressed within the plane, so that the three-dimensional distance measurement module 1a in which the occurrence of erroneous calculation of the distance is uniformly suppressed with respect to the angle ⁇ . can be realized.
  • Modification 2 of Embodiment 1 is different from Embodiment 1 in that first surface 221b reflects (so-called specular reflection) while light diffusion (light scattering) is suppressed.
  • first surface 221b reflects (so-called specular reflection) while light diffusion (light scattering) is suppressed.
  • differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 20 is a top view and two cross-sectional views of a three-dimensional ranging module 1b according to this modified example.
  • FIG. 20(a) is a top view of the three-dimensional distance measuring module 1b
  • FIG. 20(b) is the three-dimensional distance measuring module 1b along line XXb-XXb of FIG. is a cross-sectional view of.
  • 20(c) is a cross-sectional view of the three-dimensional distance measuring module 1b taken along line XXc--XXc of FIG. 20(a).
  • a three-dimensional distance measuring module 1b according to this modification has the same configuration as the three-dimensional distance measuring module 1 according to Embodiment 1, except that a lens module 20b is provided instead of the lens module 20.
  • the lens module 20b has the same configuration as the lens module 20 except that it has a lens barrel 22b instead of the lens barrel 22.
  • the lens barrel 22b has the same configuration as the lens barrel 22 except that instead of the first surface 221, it has a first surface 221b, which is a surface (upper surface) of the lens barrel 22b facing the object X.
  • the first surface 221 according to Embodiment 1 is a light diffusion reflection surface that diffuses (light scatters) laser light. More specifically, the half width of the light scattering angle of the laser light on the first surface 221b is 7 degrees or less. The half value width of the light scattering angle of the laser light on the first surface 221b is preferably 7 degrees or less, more preferably 5 degrees or less, and even more preferably 3 degrees or less.
  • FIG. 21 the behavior of the laser light emitted from the light source 10 and reflected by the object X will be described with reference to FIGS. 21 and 22.
  • FIG. 21 the behavior of the laser light emitted from the light source 10 and reflected by the object X will be described with reference to FIGS. 21 and 22.
  • 21 and 22 are cross-sectional views showing the behavior of laser light according to this modified example.
  • 21 and 22 are cross-sectional views corresponding to FIG. 20(b).
  • the inclination angle between the first inclined portion 222b and the plane perpendicular to the optical axis A1 is ⁇ .
  • the object X (bright point) is located in the optical axis A1 direction (z-axis direction). More specifically, the direction connecting the object X and the imaging element 23 is parallel to the optical axis A1 direction (z-axis direction).
  • the direction connecting the object X (bright spot) and the three-dimensional ranging module 1b is arranged at a position forming an angle with the optical axis A1 direction (z-axis direction).
  • the angle between the direction connecting the object X and the imaging element 23 and the direction of the optical axis A1 (z-axis direction) is ⁇ .
  • FIG. 21 will be explained.
  • One of the two reflected lights L directly enters the lens 21 through the lens cover 30 and forms an image at one point on the imaging device 23 .
  • the other of the two reflected lights L reaches the first surface 221 b including the first inclined portion 222 b without directly entering the lens 21 .
  • the incident angle is ⁇ .
  • Light reaching the first surface 221b is reflected.
  • the angle of reflection of this reflected light is ⁇ . This reflected light does not reach the lens 21 and does not enter the imaging device 23 .
  • FIG. 22 will be explained. 22, the reflected light L1 and ⁇ 3, which is the incident angle of the reflected light L1 to the imaging device 23, will be used for further explanation.
  • the reflected light L1 is defined as light that is reflected by the object Y from the laser light emitted from the light source 10 . Furthermore, this reflected light L1 is directly incident on the lens 21 through the lens cover 30 and forms an image at one point on the imaging device 23 . Let ⁇ 3 be the angle of incidence of the reflected light L1 on the imaging element 23 .
  • the reflected light L shown in FIG. 22 is light reflected by the object X (bright spot), and reaches the first surface 221b without directly entering the lens 21 .
  • the incident angle is ⁇ - ⁇ .
  • the light reaching the first surface 221b is reflected at a reflection angle of ⁇ - ⁇ .
  • the reflected light enters the third surface 31 at an incident angle of ⁇ -2 ⁇ , is reflected at a reflection angle of ⁇ -2 ⁇ , passes through the lens 21, and enters the imaging element 23.
  • FIG. The point at which this light is incident on the imaging element 23 is the same as the point at which the reflected light L1 is incident on the imaging element 23 (the one point described above). In other words, at this point, an intense flare light is generated.
  • FIG. 22 also shows an auxiliary line 80, which is a dashed-dotted line passing through the upper end of the lens barrel 22b and the point where the optical axis A1 passes through the imaging element 23, which is the center point of the upper surface of the imaging element 23.
  • the angle formed by the auxiliary line 80 and the optical axis A1 corresponds to a half angle of view and is shown as ⁇ 4.
  • the half width of the light scattering angle of the laser light on the first surface 221b is 7 degrees or less.
  • the laser light reflected by the object X corresponding to the bright point is specularly reflected by the first surface 221b (first inclined portion 222b).
  • the light (intensity flare light) reaching the lens 21 and the image sensor 23 is further suppressed.
  • the amount of intense flare light reaching the lens 21 and the imaging element 23 is further suppressed, it is possible to realize the three-dimensional distance measurement module 1b in which the occurrence of erroneous calculation of the distance is further suppressed. That is, when the object X is positioned in the direction of the optical axis A1, no intense flare light is generated.
  • the angle formed by the direction connecting the object X and the imaging element 23 and the direction of the optical axis A1 is ⁇ , intense flare light may occur.
  • Modification 3 of Embodiment 1 differs from Modification 2 of Embodiment 1 in the degree of inclination of first inclined portion 222c formed on first surface 221c. In the following, differences from Modification 2 of Embodiment 1 will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 23 is a cross-sectional view of a three-dimensional ranging module 1c according to this modification.
  • a three-dimensional distance measurement module 1c according to this modification has the same configuration as the three-dimensional distance measurement module 1b according to modification 2 of Embodiment 1, except that a lens module 20c is provided instead of the lens module 20. .
  • the lens module 20c has the same configuration as the lens module 20b, except that it has a lens barrel 22c instead of the lens barrel 22b.
  • the lens barrel 22c has the same configuration as the lens barrel 22b except that it has a first surface 221c instead of the first surface 221b.
  • the first surface 221c includes a first inclined portion 222c inclined away from the lens cover 30. That is, the first surface 221c includes a first inclined portion 222c that is inclined downward with distance from the optical axis A1. More specifically, the first inclined portion 222c is formed over the entire first surface 221c.
  • the inclination angle between the first inclined portion 222c and the plane perpendicular to the optical axis A1 (that is, the xy plane) is ⁇ .
  • the angle between the first inclined portion 222c and the plane perpendicular to the optical axis A1 (that is, the xy plane), that is, the inclination angle ⁇ , is ⁇ /2 or more.
  • this case is the case when the lens 21 is viewed from the upper surface side of the lens cover 30 .
  • the lens 21 is viewed from the positive side of the x-axis and the positive side of the z-axis (that is, the direction in which the reflected light L is incident) shown in FIG. 23 will be described.
  • be the maximum angle between the optical axis A1 and the direction in which the front side of the lens 21 is visible.
  • the front side of the lens 21 can be visually recognized more specifically means that the front side of the lens 21 can be visually recognized without being blocked by components other than the lens 21 provided in the three-dimensional distance measuring module 1c.
  • the front side of the lens 21 is one point on the most positive side of the x-axis of the lens 21 when the lens 21 is viewed as described above. Since the light shielding member 51 is provided between the light source 10 and the lens module 20c, the maximum angle formed by the optical axis A1 and the direction in which the front side of the lens 21 can be visually recognized within the range not blocked by the light shielding member 51 is The angle is ⁇ .
  • the angle between the direction connecting the object X and the imaging element 23 and the optical axis A1 direction (z-axis direction) is ⁇ .
  • An example of ⁇ is shown in FIG.
  • C be the distance between the inner surface 223 of the lens barrel 22c and the light shielding member 51 . Further, the distance between the second surface 42, which is the upper surface of the substrate 40 facing the lens cover 30, and the third surface 31 of the lens cover 30 is H0.
  • FIG. 24 to 28 Considering that the first surface 221c is a specular reflection surface with a scattering half-value width of 3 degrees, D is 5 mm, H0 is 2 mm, and C is infinite, (a) of FIG. 6 is calculated. The amount of flare light was calculated for FIGS. 24 to 28 by the same method as described above. Note that the front reflectance R1 of the first surface 221c is set to 10%.
  • 24 to 28 are diagrams showing the influence on the amount of flare light when the inclination angle of the first inclined portion 222c according to this modified example is changed.
  • the amount of flare light is calculated for the three-dimensional ranging module according to the fifth embodiment in which ⁇ is 45 degrees, which corresponds to the three-dimensional ranging module 1c according to this modified example.
  • the three-dimensional distance measurement modules according to the second to fifth examination examples have the same configuration as the three-dimensional distance measurement module 1c according to this modified example, except for the value of ⁇ .
  • FIGS. 24 to 27 show that peaks in the amount of flare light occur in the three-dimensional ranging modules according to the second to fifth studied examples. That is, intensity flare light is generated.
  • the reflection inside the three-dimensional distance measuring module 1c causes the laser light to reach the lens and the imaging device.
  • Arriving light intensity flare light
  • the laser light reflected by the object X is reflected by the three-dimensional ranging module 1c.
  • the light is reflected by (for example, the light shielding member 51 or the like) and becomes difficult to reach the lens 21 and the imaging device 23 .
  • the three-dimensional distance measuring module 1c can be realized in which the occurrence of erroneous calculation of the distance is further suppressed.
  • Embodiment 2 Next, Embodiment 2 will be described. In the following, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • composition A configuration example of the three-dimensional ranging module 1d according to Embodiment 2 will be described with reference to FIG.
  • FIG. 29 is a top view and cross-sectional view of a three-dimensional distance measuring module 1d according to this embodiment.
  • FIG. 29(a) is a top view of the three-dimensional distance measuring module 1d
  • FIG. 29(b) is the three-dimensional distance measuring module 1d along line XXIXb-XXIXb of FIG. is a cross-sectional view of.
  • a three-dimensional distance measuring module 1d according to the present embodiment has the same configuration as the three-dimensional distance measuring module 1 according to Embodiment 1 except that a substrate 40d is provided instead of the substrate 40.
  • FIG. 1 A three-dimensional distance measuring module 1d according to the present embodiment has the same configuration as the three-dimensional distance measuring module 1 according to Embodiment 1 except that a substrate 40d is provided instead of the substrate 40.
  • the three-dimensional distance measuring module 1 d includes the lens module 20 having the lens barrel 22 , it can be said that the three-dimensional distance measuring module 1 d includes the lens barrel 22 .
  • the three-dimensional ranging module 1 d does not have to have the lens barrel 22 .
  • the first surface 221 of the lens barrel 22 is a light diffusion reflection surface that diffuses the laser light, and includes the first inclined portion 222 .
  • the present invention is not limited to this, and the first surface 221 may not include the first inclined portion 222 .
  • may be 0 degrees in the present embodiment.
  • the substrate 40d has an opening 41d so as to enclose the lens 21 when the lens 21 is viewed from the lens cover 30 in the direction of the optical axis A1 of the lens 21, that is, in the top view shown in FIG. It is a member that has The substrate 40 d has a second surface 42 d which is an upper surface facing the lens cover 30 and a lower surface facing the housing bottom surface 54 .
  • the shape of the opening 41d is circular in top view in the present embodiment, it is not limited to this.
  • the diameter of the opening 41d may be any size that allows the opening 41d to contain the lens 21 and any size that allows the opening 41d to contain the lens module 20 .
  • the substrate 40d is a substrate member on which the light source 10 is provided.
  • a light source 10 is provided above and in contact with the substrate 40d. That is, the substrate 40d is a mounting substrate for mounting the light source 10 thereon. Note that the substrate 40d has the same configuration as the substrate 40 except for the shape.
  • the second surface 42d of the substrate 40d is a light diffusion reflection surface that diffuses (light scatters) the laser light.
  • the half value width of the light scattering angle of the laser light on the second surface 42d may be 30 degrees or more and 60 degrees or less, preferably 40 degrees or more and 60 degrees or less, and 50 degrees or more and 60 degrees or less. Even better.
  • the cross-sectional view shown in (b) of FIG. 29 can also be said to be a view showing a cross-sectional view when the lens 21 is cut along a plane including the optical axis A1 of the lens 21 .
  • the outer edge of the lens 21 and the outer edge of the opening 41d is the distance between the outer edge of the lens 21 and the outer edge of the opening 41d.
  • the outer end of the lens 21 is the end of the lens 21 on the most positive side of the x-axis
  • the outer end of the opening 41d is the edge of the opening 41d.
  • the outer end of the lens 21 and the inner surface 223 of the lens barrel 22 in a cross-sectional view coincide in position on the x-axis.
  • the distance between the outer edge of the lens 21 and the outer edge of the opening 41d can be said to be the distance between the closest points of the lens 21 and the substrate 40d.
  • H1 is the length in the z-axis direction from the plane of the lens 21 that is a plano-convex lens to the third surface 31 .
  • H2 be the distance between the lens cover 30 and the second surface 42d of the substrate 40d, which is an example of a member, facing the lens cover 30.
  • H2 is the length in the z-axis direction from the third surface 31 to the second surface 42d.
  • ⁇ 5 be the angle between the line connecting the center 211 of the lens 21 and the outer edge of the imaging device 23 and the optical axis A1 of the lens 21 .
  • the outer end of the image sensor 23 in a cross-sectional view is, for example, one point on the upper surface of the image sensor 23 that is closest to the x-axis negative side.
  • the line connecting the center 211 of the lens 21 and the outer edge of the imaging device 23 indicates the traveling direction of the light reflected by the second surface 42d and the third surface 31 of the reflected light L, overlapping.
  • B, H1, H2 and ⁇ 5 defined in this way satisfy the following formula (5).
  • the behavior of the reflected light L which is the laser light emitted from the light source 10 and reflected by the object X, will be described.
  • One of the three reflected lights L directly enters the lens 21 of the lens module 20 through the lens cover 30 and forms an image at one point on the imaging device 23 .
  • the other one of the three reflected lights L does not enter the lens 21 directly, reaches the first surface 221, is diffusely reflected, is reflected by the third surface 31, and passes through the lens 21. and enters the imaging device 23 .
  • This light reaches the second surface 42 d without directly entering the lens 21 .
  • the light reaching the second surface 42d is diffusely reflected.
  • the light diffusely reflected at the reflection angle ⁇ 5 is further reflected by the third surface 31 , passes through the lens 21 , and enters the imaging device 23 .
  • the incident angle of the light reflected by the third surface 31 to the imaging device 23 is ⁇ 5.
  • FIGS. 30 to 33 are diagrams showing the influence on the amount of flare light when D, B, H1 and H2 are changed according to the present embodiment.
  • A which is the thickness of the lens barrel 22, is assumed to be 0 mm, that is, the amount of flare light caused only by the light reflected by the second surface 42d is calculated.
  • D is 5 mm in FIGS. 30 to 32
  • D is 10 mm in FIG. H1 and H2 are 1 mm in FIG. 30, 2 mm in FIGS. 31 and 33, and 4 mm in FIG.
  • the imaging device 23 does not generate intense flare light.
  • FIG. 31 that is, D is 5 mm, H1 and H2 are 2 mm), 4 ⁇ B for a half angle of view of 45 degrees, 7 ⁇ B for a half angle of view of 60 degrees, and 11 for a half angle of view of 70 degrees.
  • ⁇ B the amount of flare light is below the lower limit of detection.
  • FIG. 32 that is, D is 5 mm, H1 and H2 are 4 mm), 8 ⁇ B for a half angle of view of 45 degrees, 14 ⁇ B for a half angle of view of 60 degrees, and 22 for a half angle of view of 70 degrees.
  • ⁇ B the amount of flare light is below the lower limit of detection.
  • a generalized expression for these corresponds to expression (5), that is, when expression (5) is satisfied, the amount of flare light is below the detection limit, and the generation of intense flare light is suppressed.
  • A is required to be 1 mm or more for manufacturing the three-dimensional ranging module 1d.
  • the peak value of the amount of flare light due to the lens barrel is was 10. Therefore, if the peak value of the amount of flare light reflected by the second surface 42d is 10 or less, it can be said that the generation of intense flare light can be suppressed more than the three-dimensional ranging module of the first example.
  • the corresponding B graph is not shown in FIGS.
  • a three-dimensional ranging module 1d has a light source 10, a lens 21, an imaging device 23, a lens cover 30, and a member (substrate 40d).
  • the light source 10 emits laser light.
  • the lens 21 collects the light reflected by the object from the irradiated laser light.
  • the imaging device 23 receives light condensed by the lens 21 .
  • the lens cover 30 is located between the lens 21 and the object and is transparent to the wavelength of the laser light.
  • the member (substrate 40d) has an opening 41d so as to enclose the lens 21 when the lens 21 is viewed from the lens cover 30 in the direction of the optical axis A1 of the lens 21 .
  • Let B be the distance between the outer edge of the lens 21 and the outer edge of the opening 41d, and the distance between the lens cover 30 and the center of the lens 21 in a cross-sectional view when the lens 21 is cut along a plane including the optical axis A1.
  • H1 the distance between the outer edge of the lens 21 and the outer edge of the opening 41d
  • the distance between the lens cover 30 and the second surface 42d of the member (substrate 40d) facing the lens cover 30 is H2, and the line connecting the center of the lens 21 and the outer end of the image sensor 23 and the light
  • H2 the distance between the lens cover 30 and the second surface 42d of the member (substrate 40d) facing the lens cover 30
  • the relationship of (H1+H2) ⁇ tan ⁇ B is satisfied, where ⁇ is the angle formed with the axis A1.
  • the second surface 42d is, for example, a surface that diffusely reflects light.
  • the laser light reflected by the object X corresponding to the bright point is diffusely reflected by the second surface 42d, the light (intensity flare light) reaching the lens 21 and the imaging device 23 is suppressed.
  • the peak value of the amount of flare light from the lens barrel is 10, but this embodiment 30 to 33, it is possible to realize a three-dimensional distance measurement module 1d that achieves a flare light quantity peak value of 10 or less due to reflection on the second surface 42d.
  • the flare light caused by the second surface 42d can be made smaller than the flare light caused by the lens barrel 22, it is possible to suppress the increase in the occurrence of the intensity flare light as a whole, and the increase in the occurrence of erroneous calculation of the distance.
  • a suppressed three-dimensional ranging module 1d can be realized.
  • the three-dimensional distance measurement module 1d includes a light source 10, a lens module 20 including a lens 21, an image sensor 23, and a lens barrel 22 that surrounds the space between the lens 21 and the image sensor 23 and supports the lens 21, It has a lens cover 30 and a member (substrate 40d).
  • the first surface 221 of the lens barrel 22 facing the object moves away from the lens cover 30 as the distance from the optical axis A1 increases. It includes a first sloped portion 222 that slopes to .
  • the relationship of (H1+H2) ⁇ tan ⁇ B is satisfied.
  • the laser light reflected by the object X corresponding to the bright point is reflected by the first surface 221 (first inclined portion 222), the light reaching the lens 21 and the image sensor 23 (strong flare light) ) is suppressed. Furthermore, when the laser light reflected by the object X corresponding to the bright point is diffusely reflected by the second surface 42d, the light (intensity flare light) reaching the lens 21 and the imaging device 23 is also suppressed. That is, since the amount of intense flare light reaching the lens 21 and the image sensor 23 is suppressed as a whole, it is possible to realize the three-dimensional distance measurement module 1d in which the occurrence of erroneous calculation of the distance is suppressed.
  • Modification 1 of Embodiment 2 Next, Modification 1 of Embodiment 2 will be described.
  • the first modification of the second embodiment differs from the second embodiment in the shape of the opening 41f. In the following, differences from the second embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 34 is a top view and two cross-sectional views of a three-dimensional ranging module 1f according to this modified example.
  • FIG. 34(a) is a top view of the three-dimensional distance measuring module 1f
  • FIG. 34(b) is the three-dimensional distance measuring module 1f along line XXXIVb-XXXIVb of FIG. is a cross-sectional view of
  • FIG. 34(c) is a cross-sectional view of the three-dimensional distance measuring module 1f along line XXXIVc-XXXIVc of FIG. 34(a).
  • a three-dimensional distance measuring module 1f according to this modification has the same configuration as the three-dimensional distance measuring module 1d according to Embodiment 2, except that a substrate 40f is provided instead of the substrate 40d.
  • the substrate 40f has the same configuration as the substrate 40d except that it has an opening 41f instead of the opening 41d.
  • the shape of the opening 41f is rectangular in top view in this modified example. It is sufficient that the opening 41f has a size that allows the lens 21 and the lens barrel 22 to be included in the top view, and that the opening 41f has a size that allows the lens module 20 to be included.
  • B, H1, H2 and ⁇ 5 satisfy the relationship of the above equation (5) also in the three-dimensional ranging module 1f according to this modification, as in the second embodiment.
  • the three-dimensional distance measuring module 1f may include a substrate 40ff instead of such a substrate 40f.
  • the substrate 40ff will be described with reference to FIG.
  • FIG. 35 is a top view of a substrate 40ff according to this modified example.
  • FIG. 35(a) is a top view of the substrate 40ff
  • FIG. 35(b) is a top view of the opening 41ff.
  • the substrate 40ff has the same configuration as the substrate 40f except that it has an opening 41ff instead of the opening 41f.
  • B, H1, H2 and ⁇ 5 also satisfy the relationship of the above formula (5) for the three-dimensional distance measurement module 1f including the substrate 40ff.
  • the shape of the lens 21 is circular, and the shape of the imaging device 23 is rectangular (more specifically, rectangular).
  • B, H1, H2, and ⁇ 5 satisfy the following formula (6) regardless of the angle in the rotation direction, when viewed from the direction of the optical axis A1, that is, in the top view
  • the shape of the opening 41ff is barrel-shaped.
  • the shape of the opening 41ff in the top view is barrel-shaped. shape.
  • a rectangle 231 having a shape similar to that of the imaging element 23 is indicated by a broken line, and an opening 41ff is formed so as to be inscribed in the outer side or vertex of the rectangle 231 contacting the lens 21. It is shown that there are With such a shape, the probability of flare light generation is the same regardless of the angle in the direction of rotation.
  • FIG. 36 is a cross-sectional view of the three-dimensional distance measuring module 1x according to the sixth embodiment.
  • a three-dimensional distance measuring module 1x according to the sixth embodiment has the same configuration as the three-dimensional distance measuring module 1d according to Embodiment 2, except that a substrate 40x is provided instead of the substrate 40d.
  • the substrate 40x has the same configuration as the substrate 40d except that it has an opening 41x instead of the opening 41d.
  • the shape of the opening 41x is larger than the opening 41d in top view. That is, in the sixth embodiment, B is larger than in the second embodiment. Therefore, as shown in FIG. 36 , the reflected light L is incident on the upper surface of the housing bottom portion 54 , is reflected, is further reflected by the lens cover 30 , and reaches the imaging device of the lens module 20 . However, most of such light is reflected by the outer surface of the barrel of lens module 20 . In other words, it is kicked by the outer surface of the barrel. Therefore, the generation of intensity flare light is suppressed.
  • the outer shape of the opening 41ff is barrel-shaped when viewed from the direction of the optical axis A1.
  • the angle in the rotation direction , B satisfies equation (6).
  • the outer shape of the opening 41ff and the lens 21 can be sufficiently and evenly spaced apart, it is possible to most efficiently suppress the generation of intense flare light due to reflection from the second surface 42d of the substrate 40ff. . Therefore, the amount of intense flare light reaching the lens 21 and the image sensor 23 is further suppressed, so that the three-dimensional distance measuring module 1f in which the occurrence of erroneous calculation of the distance is further suppressed can be realized.
  • Modification 2 of Embodiment 2 differs from Embodiment 2 in that the second surface 42g of the substrate 40g includes a second inclined portion 422g.
  • differences from the second embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • compositions 37A and 37B are a top view and a cross-sectional view of a three-dimensional ranging module 1g according to this modification.
  • FIG. 37(a) is a top view of the three-dimensional ranging module 1g
  • FIG. 37(b) is the three-dimensional ranging module 1g along line XXXVIIb-XXXVIIb of FIG. 37(a). is a cross-sectional view of.
  • a three-dimensional distance measuring module 1g according to this modification has the same configuration as the three-dimensional distance measuring module 1d according to Embodiment 2, except that a substrate 40g is provided instead of the substrate 40d.
  • the substrate 40g has a second surface 42g, which is an upper surface facing the lens cover 30.
  • the second surface 42g includes a second inclined portion 422g that is inclined downward with increasing distance from the optical axis A1. More specifically, the second inclined portion 422g is formed over the entire second surface 42g around the opening 41g.
  • the second inclined portion 422g is linear. Note that, in this modification, the second inclined portion 422g is linear in the cross-sectional view of the lens 21 cut along any plane that includes the optical axis A1 of the lens 21 .
  • the inclination angle between the second inclined portion 422g and the plane perpendicular to the optical axis A1 is ⁇ .
  • is preferably 1 degree or more and 60 degrees or less, more preferably 15 degrees or more and 60 degrees or less, and even more preferably tan ⁇ 1 ((H1+H2)/(D+A)) or more and 60 degrees or less.
  • the second inclined portion 422g is linear in the cross-sectional view at that time. is constant.
  • H2 is the distance between the lens cover 30 and the uppermost end of the second surface 42g (second inclined portion 422g).
  • the second surface 42g includes a second inclined portion 422g that inclines away from the lens cover 30 as the distance from the optical axis A1 increases.
  • the laser beam reflected by the object X corresponding to the bright point is reflected by the second surface 42g (second inclined portion 422g)
  • the laser beam is reflected by the second surface 42g (second inclined portion 422g). 422g)
  • the light is likely to be reflected in the direction opposite to the lens 21 and the image sensor 23.
  • FIG. since the amount of intense flare light reaching the lens 21 and the image pickup device 23 is further suppressed, the three-dimensional distance measurement module 1g in which erroneous calculation of the distance is further suppressed can be realized.
  • the tilt angle is tan ⁇ 1 ((H1+H2)/(D+A)) or more, the flare caused by the above can be eliminated, which is very effective.
  • Embodiment 3 is mainly different from Embodiment 1 in that the third surface 31h of the lens cover 30h includes a third inclined portion 311h.
  • the third surface 31h of the lens cover 30h includes a third inclined portion 311h.
  • composition A configuration example of a three-dimensional ranging module 1h according to Embodiment 3 will be described with reference to FIG.
  • FIG. 38 is a cross-sectional view of a three-dimensional ranging module 1h according to this embodiment.
  • a three-dimensional distance measuring module 1h according to the present embodiment is similar to that of the third embodiment according to Embodiment 1 except that a lens module 20h is provided instead of the lens module 20 and a lens cover 30h is provided instead of the lens cover 30. It has the same configuration as the dimensional ranging module 1 .
  • the three-dimensional ranging module 1h according to the present embodiment includes the substrate 40, the present invention is not limited to this, and the substrate 40 may not be provided.
  • the lens module 20h has the same configuration as the lens module 20 except that it has a lens barrel 22h instead of the lens barrel 22.
  • the lens barrel 22h has the same configuration as the lens barrel 22 except for its shape.
  • the lens barrel 22h has a bottomless tubular shape and is cylindrical. A cylindrical cavity is formed inside the lens barrel 22h.
  • the lens barrel 22h has a shape extending along the optical axis A1 of the lens 21, and the optical axis A1 of the lens 21 coincides with the axis of the lens barrel 22h.
  • the lens barrel 22h has a cylindrical shape, and therefore has an annular outer shape in a cross section taken along a plane perpendicular to the optical axis A1.
  • the surface (upper surface) of the lens barrel 22h facing the object X is referred to as a first surface 221h.
  • the first surface 221h is parallel to the xy plane and does not include an inclined portion.
  • the first surface 221h is a light diffusion reflection surface that diffuses (light scatters) laser light.
  • the lens cover 30h has the same configuration as the lens cover 30 except for the shape.
  • the lens cover 30h has a third surface 31h which is a lower surface facing the lens module 20h and a fourth surface 32h which is an upper surface facing the object X.
  • the third surface 31h includes a third inclined portion 311h that inclines away from the lens module 20h as the distance from the optical axis A1 of the lens 21 increases. That is, the third surface 31h includes a third inclined portion 311h that is inclined upward with distance from the optical axis A1.
  • the third inclined portion 311h is formed over the entire third surface 31h above the lens module 20h, more specifically above the opening 41. As shown in FIG. More specifically, when viewed from the direction of the optical axis A1, for example, in a top view, the third inclined portion 311h is formed over the entire region where the third inclined portion 311h and the lens module 20h overlap. .
  • the third inclined portion 311h is linear. Note that, in the present embodiment, the third inclined portion 311h is linear in the cross-sectional view of the lens cover 30h cut along any surface that includes the optical axis A1 of the lens 21. be.
  • the inclination angle between the third inclined portion 311h and the plane perpendicular to the optical axis A1 is ⁇ .
  • is preferably 5 degrees or more and 45 degrees or less, more preferably 10 degrees or more and 45 degrees or less, and even more preferably 20 degrees or more and 45 degrees or less.
  • the lens cover 30h is cut on any plane that includes the optical axis A1 of the lens 21, the third inclined portion 311h is linear in the cross-sectional view at that time. ⁇ is constant.
  • the point where the third inclined portion 311h overlaps with the optical axis A1 is the point located most downward in the z-axis, and is the lowest end of the third surface 31h.
  • the distance from this lowermost end to the center 211 of the lens 21 is assumed to be H3.
  • ⁇ H be the distance in the z-axis direction between a plane passing through the lowermost end and perpendicular to the optical axis A1 (that is, a plane parallel to the xy plane) and the third inclined portion 311h.
  • the fourth surface 32h of the lens cover 30h includes a fourth inclined portion 321h that is inclined upward with distance from the optical axis A1 in the region where the third inclined portion 311h is provided. .
  • the fourth inclined portion 321h is linear like the third inclined portion 311h.
  • the degree of inclination of the third inclined portion 311h and the fourth inclined portion 321h that is, the degree of inclination between the third inclined portion 311h and the fourth inclined portion 321h and the plane perpendicular to the optical axis A1 (that is, the xy plane)
  • the tilt angle which is an angle, is the same.
  • the reflected light L1 is light that is reflected by the object Y from the laser light emitted from the light source 10 .
  • the angle between the reflected light L1 and the optical axis A1 is ⁇ 6, that is, the angle of incidence of the reflected light L1 on the imaging device 23 is ⁇ 6.
  • This reflected light L1 forms an image at one point on the imaging device 23 .
  • the reflected light L shown in FIG. 38 does not enter the lens 21 directly, but passes through the fourth inclined portion 321h and the third inclined portion 311h of the lens cover 30h to reach the first surface 221h.
  • refraction occurs when the reflected light L is transmitted through the third inclined portion 311h and the fourth inclined portion 321h.
  • part of the light that reaches the first surface 221h is reflected at a reflection angle of ⁇ 6+2 ⁇ . Further, the reflected light reaches the third surface 31 h (more specifically, the third inclined portion 311 h), is reflected, passes through the lens 21 , and enters the imaging element 23 .
  • the point at which a part of this light enters the image sensor 23 is the same as the point at which the reflected light L1 enters the image sensor 23 (the one point described above). In other words, at this point, an intense flare light is generated.
  • flare light amount is calculated by the following method.
  • the object X (bright spot) is located in the optical axis A1 direction (z-axis direction).
  • the inclination angle of the third inclined portion 311h is ⁇ .
  • the front reflectance of the first surface 221h is R1
  • the front reflectance of the third surface 31h is R2.
  • the amount of reflected light L1 which is the light reflected by the object Y, is expressed by Equation (7).
  • Equation (8) The loss at the lens cover 30 and the lens 21 is ignored in equation (7). Furthermore, the amount of flare light is represented by Equation (8).
  • the amount of flare light is calculated as described above. Next, the influence on the amount of flare light when ⁇ , which is the inclination angle of the third inclined portion 311h, is changed will be examined.
  • 39 and 40 are diagrams showing the influence on the amount of flare light when the inclination angle of the third inclined portion 311h is changed according to the present embodiment.
  • the amount of flare light is calculated for the three-dimensional ranging module without the substrate 40, and in FIG. 40, for the three-dimensional ranging module including the substrate 40.
  • D is 5 mm
  • H3 is 2 mm
  • A is 2 mm
  • B is 3 mm in FIG.
  • FIG. 39 shows the three-dimensional measurement modules according to the seventh, eighth, ninth and tenth embodiments with ⁇ of 5, 10, 15 and 20 degrees, respectively, which correspond to the three-dimensional distance measurement module 1h without the substrate 40 .
  • the amount of flare light is calculated for the distance module.
  • the three-dimensional ranging module with ⁇ shown in FIG. 39 is the three-dimensional ranging module according to the sixth study example, and does not correspond to the three-dimensional ranging module 1h according to the present embodiment.
  • the three-dimensional distance measurement module according to the sixth study example is the same as the three-dimensional distance measurement module 1h without the substrate 40, except that ⁇ is 0 degrees, that is, the third surface 31h is parallel to the xy plane. have a configuration.
  • the eleventh, .zeta., and .zeta The amount of flare light is calculated for the three-dimensional ranging modules according to the 12th, 13th and 14th embodiments.
  • the three-dimensional ranging module with ⁇ of 0 degrees shown in FIG. 40 is the three-dimensional ranging module according to the seventh study example, and does not correspond to the three-dimensional ranging module 1h according to the present embodiment.
  • the three-dimensional distance measuring module according to the seventh study example has the same configuration as the three-dimensional distance measuring module 1h provided with the substrate 40, except that ⁇ is 0 degrees, that is, the third surface 31h is parallel to the xy plane. have
  • the third surface 31h does not include the third inclined portion 311h (that is, ⁇ is 0 degrees), and the three-dimensional ranging modules according to the sixth and seventh examined examples, and the third surface 31h including the third inclined portion 311h
  • the three-dimensional ranging modules according to the seventh to fourteenth embodiments including (that is, ⁇ is 5 degrees or more) are compared.
  • the three-dimensional distance measurement modules according to the seventh to fourteenth embodiments in which the third surface 31h includes the third inclined portion 311h have a reduced amount of flare light. ing.
  • a three-dimensional ranging module 1h has a light source 10, a lens module 20h, and a lens cover 30h.
  • the light source 10 emits laser light.
  • the lens module 20h includes a lens 21 that collects light reflected by an object from the irradiated laser light, an image pickup device 23 that receives the light collected by the lens 21, and a lens between the lens 21 and the image pickup device 23.
  • a lens barrel 22h that surrounds a space and supports the lens 21 is included.
  • the lens cover 30h is located between the lens module 20h and the object, and is transparent to the wavelength of the laser light.
  • a third surface 31h of the lens cover 30h facing the lens module 20h includes a third inclined portion 311h that inclines away from the lens module 20h as the distance from the optical axis A1 of the lens 21 increases.
  • the third surface 31h includes the third inclined portion 311h in the seventh to fourteenth embodiments.
  • Such a three-dimensional ranging module has a reduced amount of flare light.
  • the three-dimensional ranging module 1h since the amount of intense flare light reaching the lens 21 and the imaging device 23 is suppressed, it is possible to realize the three-dimensional ranging module 1h in which the occurrence of erroneous calculation of the distance is suppressed.
  • a three-dimensional distance measuring module having an inclination .zeta. of too large an angle is not preferable because the picked-up image is greatly distorted near the center.
  • the third inclined portion 311h when viewed from the direction of the optical axis A1, is formed over the entire region where the third inclined portion 311h and the lens module 20h overlap. It is
  • the laser beam reflected by the object X corresponding to the bright point is reflected by the third surface 31h (third inclined portion 311h)
  • the laser beam is reflected by the third surface 31h (third inclined portion 311h). 311h)
  • the light is likely to be reflected in the direction opposite to the lens 21 and the image sensor 23 .
  • the three-dimensional distance measurement module 1h can be realized in which the occurrence of erroneous calculation of the distance is further suppressed.
  • Modification 1 of Embodiment 3 Next, Modification 1 of Embodiment 3 will be described. Modification 1 of Embodiment 3 is different from Embodiment 3 in that the fourth surface 32j does not include a fourth inclined portion. In the following, differences from the third embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 41 is a top view and two cross-sectional views of a three-dimensional ranging module 1j according to this modified example.
  • FIG. 41(a) is a top view of the three-dimensional distance measuring module 1j
  • FIG. 41(b) is the three-dimensional distance measuring module 1j along line XLIb-XLIb of FIG. is a cross-sectional view of.
  • (c) of FIG. 41 is a cross-sectional view of the three-dimensional distance measuring module 1j along line XLIc-XLIc of (a) of FIG.
  • FIG. 42 is a cross-sectional view showing the behavior of light in the three-dimensional ranging module 1j according to this modified example.
  • a three-dimensional distance measuring module 1j according to this modified example has the same configuration as the three-dimensional distance measuring module 1h according to Embodiment 3, except that a lens cover 30j is provided instead of the lens cover 30h.
  • the three-dimensional ranging module 1j according to this modification includes the substrate 40, the present invention is not limited to this, and the substrate 40 may not be provided.
  • the lens cover 30j has a third surface 31j, which is a lower surface facing the lens module 20h, and a fourth surface 32j, which is an upper surface facing the object X.
  • the third surface 31j has the same configuration as the third surface 31h according to the third embodiment, and the third inclined portion 311j included in the third surface 31j also has the same configuration as the third inclined portion 311h according to the third embodiment. is.
  • the fourth surface 32j is flat, ie flat, and does not have a fourth inclined portion.
  • the fourth surface 32j is a surface parallel to the xy plane.
  • the reflected light L1 exhibits the same behavior as in Embodiment 3, and this reflected light L1 forms an image on one point on the image pickup device 23 .
  • the reflected light L shown in FIG. 42 does not enter the lens 21 directly, but enters the third inclined portion 311j of the lens cover 30j and is transmitted therethrough. At this time, the incident angle to the third inclined portion 311j is ⁇ , and the outgoing angle from the third inclined portion 311j is ⁇ . Light transmitted through the third inclined portion 311j reaches the first surface 221h.
  • part of the light that reaches the first surface 221h is reflected at a reflection angle of ⁇ 6+2 ⁇ . Furthermore, the reflected light reaches the third surface 31 j (more specifically, the third inclined portion 311 j ), is reflected, passes through the lens 21 , and enters the imaging device 23 .
  • the point at which a part of this light enters the image sensor 23 is the same as the point at which the reflected light L1 enters the image sensor 23 (the one point described above). In other words, at this point, an intense flare light is generated.
  • flare light amount is calculated by the following method.
  • the object X (bright spot) is located in the optical axis A1 direction (z-axis direction).
  • the inclination angle of the third inclined portion 311j is ⁇ .
  • the front reflectance of the first surface 221h is R1
  • the front reflectance of the third surface 31j is R2.
  • the light amount of the reflected light L1 which is the light reflected by the object Y, is expressed by the above equation (7).
  • the light scattering on the upper surface (first surface 221h) of the lens barrel 22 is Lambertian reflection
  • the light scattering on the upper surface (first surface 221h) of the lens barrel 22 does not depend on the incident angle ⁇ to the uniform diffuse reflection surface. It depends only on the angle between the vertical line and the scattering direction, so the amount of flare light is given by equation (11).
  • the lens cover 30j is made of glass with a refractive index of 1.5 as an example, ⁇ and ⁇ satisfy Expression (12).
  • n1 is the refractive index of the lens cover 30 (eg, 1.5), and n2 is the refractive index of air (1.0). Furthermore, when ⁇ is 10 degrees, ⁇ , which is the output angle, is calculated by Equation (13) and is approximately 15 degrees.
  • the amount of flare light is calculated as described above. Next, the influence on the amount of flare light when ⁇ , which is the inclination angle of the third inclined portion 311j, is changed will be examined.
  • 43 and 44 are diagrams showing the influence on the amount of flare light when the inclination angle of the third inclined portion 311j according to this modified example is changed.
  • the amount of flare light is calculated for the three-dimensional ranging module without the substrate 40, and in FIG. 44, for the three-dimensional ranging module with the substrate 40. 43 and 44, D is 5 mm, H3 is 2 mm, A is 2 mm, and B is 3 mm in FIG.
  • FIG. 43 shows the three-dimensional measuring modules according to the fifteenth, sixteenth, seventeenth and eighteenth embodiments with ⁇ of 5, 10, 15 and 20 degrees, respectively, which correspond to the three-dimensional ranging module 1j without the substrate 40 .
  • the amount of flare light is calculated for the distance module.
  • the three-dimensional ranging module with ⁇ shown in FIG. 43 is the three-dimensional ranging module according to the eighth study example, and does not correspond to the three-dimensional ranging module 1j according to this modified example.
  • the three-dimensional distance measuring module according to the eighth study example is the same as the three-dimensional distance measuring module 1j without the substrate 40 except that ⁇ is 0 degrees, that is, the third surface 31j is parallel to the xy plane. have a configuration.
  • the 19th, .zeta., and .zeta. The amount of flare light is calculated for the three-dimensional ranging modules according to the 20th, 21st and 22nd embodiments.
  • the three-dimensional ranging module with ⁇ shown in FIG. 44 is the three-dimensional ranging module according to the ninth study example, and does not correspond to the three-dimensional ranging module 1j according to this modified example.
  • the three-dimensional distance measurement module according to the ninth study example has the same configuration as the three-dimensional distance measurement module 1j including the substrate 40, except that ⁇ is 0 degrees, that is, the third surface 31j is parallel to the xy plane. have
  • 43 and 44 show the amount of flare light when the incident angle ⁇ 6 is changed. In both FIGS. 43 and 44, it is clear that the amount of flare light is suppressed as ⁇ increases. 43 and 44, when the three-dimensional distance measuring module 1j does not include the substrate 40, the amount of flare light can be effectively suppressed in the range of ⁇ 6 from 30 degrees to 70 degrees. It is shown.
  • the fourth surface 32j of the lens cover 30 facing the object is flat.
  • the fourth surface 32j of the lens cover 30j is provided with unevenness. , the person may feel uncomfortable. Therefore, since the fourth surface 32j is flat, the feeling of discomfort is eliminated, and at the same time, the same effects as in the third embodiment can be obtained.
  • a three-dimensional distance measuring module having an inclination ⁇ with an excessively large angle not only greatly distorts the captured image near the center, but also has the effect of enlarging the image compared to the third embodiment, which is not preferable. Practically, the level was acceptable when ⁇ was 40 degrees or less.
  • Modification 2 of Embodiment 3 differs from Embodiment 3 in that the fourth surface 32k does not include the fourth inclined portion and the shape of the third inclined portion 311k in the top view.
  • the fourth surface 32k does not include the fourth inclined portion and the shape of the third inclined portion 311k in the top view.
  • differences from the third embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • composition A configuration example of a three-dimensional ranging module 1k according to Modification 2 of Embodiment 3 will be described with reference to FIG.
  • FIG. 45 is a top view and cross-sectional view of a three-dimensional ranging module 1k according to this modified example.
  • FIG. 45(a) is a top view of the three-dimensional distance measuring module 1k
  • FIG. 45(b) is the three-dimensional distance measuring module 1k along line XLVb-XLVb of FIG. is a cross-sectional view of.
  • (c) of FIG. 45 is a cross-sectional view of the three-dimensional ranging module 1k taken along line XLVc-XLVc of (a) of FIG. 45
  • (d) of FIG. 45 is taken along line XLVd-XLVd of (a) of FIG.
  • FIG. 4 is a cross-sectional view of the three-dimensional ranging module 1k;
  • a three-dimensional distance measuring module 1k according to this modification has the same configuration as the three-dimensional distance measuring module 1h according to Embodiment 3, except that a lens cover 30k is provided instead of the lens cover 30h.
  • the lens cover 30k has a third surface 31k that is a lower surface facing the lens module 20h and a fourth surface 32k that is an upper surface facing the object X.
  • the fourth surface 32k has the same configuration as the fourth surface 32j according to the first modification of the third embodiment.
  • the third surface 31k includes a third inclined portion 311k that inclines away from the lens module 20h as the distance from the optical axis A1 of the lens 21 increases. That is, the third surface 31k includes a third inclined portion 311k that is inclined upward with distance from the optical axis A1. When viewed from the direction of the optical axis A1, for example, in a top view, the third inclined portion 311k is formed over the entire region where the third inclined portion 311k and the lens module 20h overlap. In the cross-sectional view of the lens cover 30k cut along the plane including the optical axis A1 of the lens 21 shown in FIG. 45, the third inclined portion 311k is linear. Note that, in this modified example, the third inclined portion 311k is linear in the cross-sectional view of the lens cover 30k cut on any surface that includes the optical axis A1 of the lens 21. .
  • the inclination angle between the third inclined portion 311k and the plane perpendicular to the optical axis A1 is ⁇ .
  • is preferably 5 degrees or more and 40 degrees or less, more preferably 10 degrees or more and 40 degrees or less, and even more preferably 20 degrees or more and 40 degrees or less.
  • the external shape of the third inclined portion 311k is similar to the external shape of the imaging element 23.
  • the outer shape of the imaging element 23 is rectangular when viewed from the direction of the optical axis A1.
  • the outer shape of the third inclined portion 311k which is similar to the outer shape (rectangular) of the imaging device 23, is indicated by a broken rectangular line.
  • the degree of inclination of the third inclined portion 311k from the plane perpendicular to the optical axis A1 is represented by ⁇ , which is the inclination angle of the third inclined portion 311k.
  • the degree of inclination (that is, ⁇ ) has a positive correlation with the distance between the optical axis A1 and the outer end of the third inclined portion 311k.
  • the outer end of the third inclined portion 311k matches the outer shape (broken rectangular line) of the third inclined portion 311k shown in FIG. 45(a).
  • ⁇ of the third inclined portion 311k in the direction connecting the optical axis A1 and a point on the outer end of the third inclined portion 311k is the distance between the optical axis A1 and the outer end of the third inclined portion 311k.
  • the tangent of ⁇ of the third inclined portion 311k in the direction connecting the optical axis A1 and a point on the outer end of the third inclined portion 311k is the distance between the optical axis A1 and the outer end of the third inclined portion 311k.
  • be the angle between this reference direction and the XLVb-XLVb line and the XLVc-XLVc line.
  • is 0, A, which is the thickness of the lens barrel 22h, is 1 mm, ⁇ is 10 degrees, and the half angle of view is 14 degrees.
  • is greater than 0 degrees, ⁇ is 20 degrees, and the half angle of view is the maximum value greater than 14 degrees.
  • the third surface 31k is convexly curved in the z-axis negative direction.
  • FIG. 46 is a diagram showing the relationship between ⁇ and ⁇ according to this modified example.
  • changes, the distance between the optical axis A1 and the outer end of the third inclined portion 311k changes.
  • the value of ⁇ also changes.
  • the intensity flare light due to the reflection from the second surface 42 of the substrate 40 becomes larger.
  • the probability of flare light generation is the same regardless of the angle in the direction of rotation. Therefore, in FIG. 45C where the half angle of view is larger, by increasing ⁇ , it is possible to uniformly reduce the light amount of the intensity flare light in the direction of the angle ⁇ .
  • the external shape of the third inclined portion 311k is similar to the external shape of the imaging device 23 when viewed from the direction of the optical axis A1.
  • the degree of inclination of the third inclined portion 311k from a plane perpendicular to the optical axis A1 has a positive correlation with the distance between the optical axis A1 and the outer edge of the third inclined portion 311k.
  • the light amount of the intensity flare light can be uniformly reduced in the angle ⁇ direction by increasing ⁇ . Therefore, the light amount of the intensity flare light reaching the lens 21 and the image sensor 23 is more evenly suppressed, so that the three-dimensional distance measurement module 1k in which the occurrence of erroneous calculation of the distance is further suppressed can be realized.
  • the three-dimensional distance measurement module 1k in which the occurrence of erroneous calculation of the distance is further suppressed can be realized.
  • a three-dimensional distance measuring module having a too large angle of inclination ⁇ not only is the captured image greatly distorted near the center, but also the effect that the amount of enlargement of the image differs depending on the direction is added compared to the third embodiment. This is not preferable, and practically it is at an allowable level when ⁇ is 40 degrees or less.
  • Modification 3 of Embodiment 3 differs from Modification 1 of Embodiment 3 in that the lens cover 30m has an outer lens cover 33m and an inner lens cover 34m.
  • differences from Modification 1 of Embodiment 3 will be mainly described, and descriptions of common points will be omitted or simplified.
  • composition A configuration example of a three-dimensional ranging module 1m according to Modification 3 of Embodiment 3 will be described with reference to FIG.
  • FIG. 47 is a top view and two cross-sectional views of a three-dimensional ranging module 1m according to this modified example.
  • FIG. 47(a) is a top view of the three-dimensional ranging module 1m
  • FIG. 47(b) is the three-dimensional ranging module 1m along line XLVIIb-XLVIIb of FIG. is a cross-sectional view of
  • FIG. 47(c) is a cross-sectional view of the three-dimensional distance measuring module 1m taken along line XLVIIc-XLVIIc of FIG. 47(a).
  • a three-dimensional ranging module 1m according to this modified example has the same configuration as the three-dimensional ranging module 1j according to Modified Example 1 of Embodiment 3, except that a lens cover 30m is provided instead of the lens cover 30j. .
  • the lens cover 30m has a third surface 31m, which is a lower surface facing the lens module 20h, and a fourth surface 32m, which is an upper surface facing the object X.
  • the lens cover 30m has an outer lens cover 33m and an inner lens cover 34m. That is, the lens cover 30m is composed of two members, an outer lens cover 33m and an inner lens cover 34m.
  • the upper surface of the outer lens cover 33m corresponds to the fourth surface 32m.
  • the outer lens cover 33m is a plate-shaped member positioned between the lens module 20h and the object X. As shown in FIG. It can also be said that the outer lens cover 33m is the same member as the lens cover 30 according to the first embodiment.
  • the inner lens cover 34m is a thin plate member provided between the outer lens cover 33m and the lens module 20h.
  • the inner lens cover 34m is connected to the lower surface of the outer lens cover 33m.
  • a third surface 31m which is the lower surface of the lens cover 30m, is a surface obtained by combining a portion of the lower surface of the outer lens cover 33m and the lower surface of the inner lens cover 34m.
  • the inner lens cover 34m is a member curved to have a convex shape toward the lens module 20h (that is, in the z-axis negative direction). Therefore, the third inclined portion 311m of the third surface 31m is provided on the lower surface of the inner lens cover 34m.
  • a cavity 35 is provided in a space sandwiched between the third surface 31m of the lens cover 30m and the fourth surface 32m facing the object X of the lens cover 30m. That is, the space between the outer lens cover 33m and the inner lens cover 34m corresponds to the cavity 35. As shown in FIG.
  • the thickness of the lens cover 30m in a cross-sectional view when the lens cover 30m is cut along a plane including the optical axis A1, that is, in the cross-sectional view shown in FIG. 47(b) will be described.
  • the thickness from the third surface 31m to the fourth surface 32m in the direction of the optical axis A1 excluding the cavity 35 is constant.
  • T1 be the thickness of the outer lens cover 33m and T2 be the thickness of the inner lens cover 34m at a predetermined imaginary line along the optical axis A1, that is, the z-axis direction.
  • the total value of T1 and T2 is constant.
  • the thickness T1 is constant at any position of the outer lens cover 33m, so the value of T2 is also constant.
  • a cavity 35 is provided in a space sandwiched between the third surface 31m of the lens cover 30m and the fourth surface 32m of the lens cover 30m facing the object. Thickness from the third surface 31m to the fourth surface 32m in the direction of the optical axis A1 excluding the cavity 35 in the area where the cavity 35 is provided in a cross-sectional view when the lens cover 30m is cut along a plane including the optical axis A1 is constant.
  • the three-dimensional ranging module 1m can reduce the amount of intensity flare light and suppress image distortion in the obtained distance image.
  • Modification 4 of Embodiment 3 is different from Modification 1 of Embodiment 3 in that the lens cover 30n has a lens shape.
  • the lens shape includes a distorted lens that does not focus at one point even if the surface has a convex shape.
  • differences from Modification 1 of Embodiment 3 will be mainly described, and descriptions of common points will be omitted or simplified.
  • composition A configuration example of a three-dimensional ranging module 1n according to Modification 4 of Embodiment 3 will be described with reference to FIG.
  • FIG. 48 is a cross-sectional view of a three-dimensional ranging module 1n according to this modified example.
  • the three-dimensional distance measuring module 1n according to this modification has the same configuration as the three-dimensional distance measuring module 1j according to Modification 1 of Embodiment 3, except that a lens cover 30n is provided instead of the lens cover 30j. .
  • the lens cover 30n has a third surface 31n, which is a lower surface facing the lens module 20h, and a fourth surface 32n, which is an upper surface facing the object X.
  • the fourth surface 32n is flat, that is, flat and does not have a fourth inclined portion.
  • the fourth surface 32n is a surface parallel to the xy plane.
  • the lens shape is a plano-convex lens that is convex toward the lens module 20h, that is, toward the z-axis negative direction.
  • the lens-shaped convex surface is included in the third surface 31n and corresponds to the third inclined portion 311n. That is, the third surface 31n includes a third inclined portion 311n inclined away from the lens module 20h as the distance from the optical axis A1 of the lens 21 increases.
  • optical axis A2 of the lens cover that is, the optical axis A2 of the lens shape coincides with the optical axis A1 of the lens of the lens module 20h.
  • the shape of the third surface 31n includes the lens shape, and the optical axis A1 of the lens cover 30n coincides with the optical axis A2 of the lens of the third surface 31n.
  • the three-dimensional ranging module 1n can reduce the amount of intensity flare light and suppress image distortion in the obtained distance image.
  • the lens shape is a shape that focuses at one point, it is possible to further suppress image distortion in the distance image.
  • Embodiment 4 differs from the first embodiment mainly in that a plurality of light sources 10 are provided. In the following, differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 49 is a top view and cross-sectional view of the three-dimensional distance measuring module 1p according to this embodiment.
  • FIG. 49 is a top view of the three-dimensional distance measuring module 1p
  • (b) of FIG. 49 is the three-dimensional distance measuring module 1p along line XLIXb-XLIXb of (a) of FIG. is a cross-sectional view of.
  • the three-dimensional distance measurement module 1p has a three-dimensional distance measuring module 1p according to the first embodiment, except that it includes a plurality of light sources 10 and that it includes a light shielding member 51p instead of the light shielding member 51. It has the same configuration as the ranging module 1 .
  • the three-dimensional ranging module 1p is equipped with four light sources 10.
  • the distances between each of the four light sources 10 and the optical axis A1 are equal to each other. That is, the distance between one light source 10 and the optical axis A1 is equal to the distance between each of the other three light sources 10 and the optical axis A1.
  • the four light sources 10 are located on the positive x-axis and positive y-axis sides, on the positive x-axis and negative y-axis sides, and It is positioned on the negative side of the x-axis and the positive side of the y-axis, and on the negative side of the x-axis and the negative side of the y-axis.
  • the light shielding member 51p is a member provided in contact with the upper side of the substrate 40 .
  • the light blocking member 51p is provided between the four light sources 10 and the lens module 20.
  • the light shielding member 51p is a rectangular frame-shaped member surrounding the lens module 20 in the top view shown in FIG. 49(a).
  • the light shielding member 51p has the same configuration as the light shielding member 51 except for the shape.
  • Embodiment 5 differs from the first embodiment in that a lens cover 30h is provided instead of the lens cover 30.
  • FIG. differences from the first embodiment will be mainly described, and descriptions of common points will be omitted or simplified.
  • FIG. 50 is a cross-sectional view of the three-dimensional ranging module 1q according to this embodiment.
  • a three-dimensional ranging module 1q according to the present embodiment has the same configuration as the three-dimensional ranging module 1 according to Embodiment 1, except that a lens cover 30h is provided instead of the lens cover 30.
  • FIG. 1 A three-dimensional ranging module 1q according to the present embodiment has the same configuration as the three-dimensional ranging module 1 according to Embodiment 1, except that a lens cover 30h is provided instead of the lens cover 30.
  • the three-dimensional ranging module 1q has the light source 10, the lens module 20, and the lens cover 30h.
  • the light source 10 emits laser light.
  • the lens module 20 includes a lens 21 that collects light reflected by an object from the irradiated laser light, an image pickup device 23 that receives the light collected by the lens 21, and a lens between the lens 21 and the image pickup device 23. It includes a lens barrel 22 that encloses a space and supports a lens 21 .
  • the lens cover 30h is located between the lens module 20 and the object and is transparent to the wavelength of the laser light.
  • the first surface 221 of the lens barrel 22 facing the object moves away from the lens cover 30h as the distance from the optical axis A1 increases. It includes a first sloped portion 222 that slopes to .
  • a third surface 31h of the lens cover 30h facing the lens module 20 includes a third inclined portion 311h that inclines away from the lens module 20 as the distance from the optical axis A1 of the lens 21 increases.
  • the first inclined portion 222 and the surface of the lens cover 30h facing the lens module 20 are The angle formed is 30 degrees or more. More specifically, the angle formed by the first inclined portion 222 and the third inclined portion 311h of the third surface 31h is 30 degrees or more. That is, ⁇ + ⁇ should be 30 degrees or more.
  • the light (intensity flare light) reaching the lens 21 and the image sensor 23 is further suppressed. In other words, since the amount of intense flare light reaching the lens 21 and the image sensor 23 is further suppressed, it is possible to realize the three-dimensional distance measurement module 1q in which the occurrence of erroneous calculation of the distance is further suppressed.
  • the present disclosure is suitable for ranging imaging devices, such as video cameras, digital cameras, or ranging systems.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Electromagnetism (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

3次元測距モジュール(1)は、レーザ光を照射する光源(10)と、照射されたレーザ光が対象物により反射した光を集光するレンズ(21)、レンズ(21)によって集光された光を受光する撮像素子(23)、並びに、レンズ(21)及び撮像素子(23)の間の空間を囲いレンズ(21)を支持する鏡筒(22)を含むレンズモジュール(20)と、レンズモジュール(20)と対象物との間に位置し、レーザ光の波長に対して透明なレンズカバー(30)と、を有し、レンズ(21)の光軸(A1)を含む面で鏡筒(22)を切断したときの断面視で、鏡筒(22)の対象物に対向する第1面(221)は、光軸(A1)から離れるに従って、レンズカバー(30)から離れるように傾斜する第1傾斜部を含む。

Description

3次元測距モジュール及び3次元測距システム
 本開示は、3次元測距モジュール及び3次元測距システムに関する。
 ToF(Time of Flight)を用いることで、対象物までの距離を測定する測距撮像装置(ToFカメラ)などが知られている。
 例えば、特許文献1においては、ToFカメラは、光源、レンズモジュール及びレンズモジュールを保持するレンズベースを有する3次元測距モジュールを備える。このToFカメラにおいて、光源から照射された光をレンズモジュールが受光し、照射から受光までの時間差から距離を算出することで、対象物までの距離が測定される。
特開2019-191173号公報
 ところで、3次元測距モジュールは、レンズモジュールの保護のために、対象物とレンズモジュールとの間に、レンズカバーを有する場合がある。この場合、距離の誤算出が発生するときがある。
 そこで、本開示は、距離の誤算出の発生が抑制された3次元測距モジュールなどを提供する。
 本開示の3次元測距モジュールは、レーザ光を照射する光源と、照射された前記レーザ光が対象物により反射した光を集光するレンズ、前記レンズによって集光された光を受光する撮像素子、並びに、前記レンズ及び前記撮像素子の間の空間を囲い前記レンズを支持する鏡筒を含むレンズモジュールと、前記レンズモジュールと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、を有し、前記レンズの光軸を含む面で前記鏡筒を切断したときの断面視で、前記鏡筒の前記対象物に対向する第1面は、前記光軸から離れるに従って、前記レンズカバーから離れるように傾斜する第1傾斜部を含む。
 また、本開示の3次元測距モジュールは、レーザ光を照射する光源と、照射された前記レーザ光が対象物により反射した光を集光するレンズと、前記レンズによって集光された光を受光する撮像素子と、前記レンズと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、前記レンズカバーから前記レンズの光軸の方向に前記レンズを見た場合に、前記レンズを内包するように開口を有する部材と、を有し、前記光軸を含む面で前記レンズを切断したときの断面視で、前記レンズの外端と前記開口の外端との間の距離をBとし、前記レンズカバーと前記レンズの中心との距離をH1とし、前記レンズカバーと前記部材の前記レンズカバーに対向する第2面との距離をH2とし、前記レンズの前記中心及び前記撮像素子の外端を結ぶ線と、前記光軸とのなす角度をθとしたとき、(H1+H2)・tanθ≦Bの関係を満たす。
 また、本開示の3次元測距モジュールは、レーザ光を照射する光源と、照射された前記レーザ光が対象物により反射した光を集光するレンズ、前記レンズによって集光された光を受光する撮像素子、並びに、前記レンズ及び前記撮像素子の間の空間を囲い前記レンズを支持する鏡筒を含むレンズモジュールと、前記レンズモジュールと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、を有し、前記レンズカバーの前記レンズモジュールに対向する第3面は、前記レンズの光軸から離れるに従って、前記レンズモジュールから離れるように傾斜する第3傾斜部を含む。
 また、本開示の3次元測距システムは、上記記載の3次元測距モジュールを備え、前記3次元測距モジュールは、前記レーザ光の走行時間を基に、前記光源から前記対象物までの距離を算出する演算部を有する。
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 本開示の一態様に係る3次元測距モジュールなどによれば、距離の誤算出の発生を抑制することができる。
図1は、強度フレア領域が発生した距離画像を示す図である。 図2は、実施の形態1に係る3次元測距モジュールの構成例を示すブロック図である。 図3は、実施の形態1に係る3次元測距モジュールの上面図及び2つの断面図である。 図4は、実施の形態1に係る鏡筒の周辺の拡大断面図である。 図5は、実施の形態1に係るレーザ光の挙動を示す断面図である。 図6は、実施の形態1に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された図である。 図7は、実施の形態1に係る3次元測距モジュールと対象物との距離及び3次元測距モジュールと他の対象物との距離の関係を示す図である。 図8は、実施の形態1に係るレーザ光の他の挙動を示す断面図である。 図9は、実施の形態1に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図10は、実施の形態1に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図11は、実施の形態1に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図12は、実施の形態1に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図13は、実施の形態1に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図14は、実施の形態1に係る第1傾斜部が直線的であることの効果を説明するための図である。 図15は、実施の形態1に係る第1傾斜部が直線的であることの効果を説明するための他の図である。 図16は、実施の形態1に係る第1傾斜部が直線的であることの効果を説明するための他の図である。 図17は、実施の形態1の変形例1に係る3次元測距モジュールの上面図及び2つの断面図である。 図18は、実施の形態1の変形例1に係る鏡筒及びレンズの上面図並びに鏡筒の断面図である。 図19は、実施の形態1の変形例1に係るδとβとの関係を示す図である。 図20は、実施の形態1の変形例2に係る3次元測距モジュールの上面図及び2つの断面図である。 図21は、実施の形態1の変形例2に係るレーザ光の挙動を示す断面図である。 図22は、実施の形態1の変形例2に係るレーザ光の他の挙動を示す断面図である。 図23は、実施の形態1の変形例3に係る3次元測距モジュールの断面図である。 図24は、実施の形態1の変形例3に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された図である。 図25は、実施の形態1の変形例3に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図26は、実施の形態1の変形例3に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図27は、実施の形態1の変形例3に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図28は、実施の形態1の変形例3に係る第1傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図29は、実施の形態2に係る3次元測距モジュールの上面図及び断面図である。 図30は、実施の形態2に係るD、B、H1及びH2が変更された場合のフレア光量への影響が示された図である。 図31は、実施の形態2に係るD、B、H1及びH2が変更された場合のフレア光量への影響が示された他の図である。 図32は、実施の形態2に係るD、B、H1及びH2が変更された場合のフレア光量への影響が示された他の図である。 図33は、実施の形態2に係るD、B、H1及びH2が変更された場合のフレア光量への影響が示された他の図である。 図34は、実施の形態2の変形例1に係る3次元測距モジュールの上面図及び2つの断面図である。 図35は、実施の形態2の変形例1に係る基板の上面図である。 図36は、第6実施例に係る3次元測距モジュールの断面図である。 図37は、実施の形態2の変形例2に係る3次元測距モジュールの上面図及び断面図である。 図38は、実施の形態3に係る3次元測距モジュールの断面図である。 図39は、実施の形態3に係る第3傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された図である。 図40は、実施の形態3に係る第3傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図41は、実施の形態3の変形例1に係る3次元測距モジュールの上面図及び2つの断面図である。 図42は、実施の形態3の変形例1に係る3次元測距モジュールにおける光の挙動を示す断面図である。 図43は、実施の形態3の変形例1に係る第3傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された図である。 図44は、実施の形態3の変形例1に係る第3傾斜部の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。 図45は、実施の形態3の変形例2に係る3次元測距モジュールの上面図及び断面図である。 図46は、実施の形態3の変形例2に係るδとζとの関係を示す図である。 図47は、実施の形態3の変形例3に係る3次元測距モジュールの上面図及び2つの断面図である。 図48は、実施の形態3の変形例4に係る3次元測距モジュールの断面図である。 図49は、実施の形態4に係る3次元測距モジュールの上面図及び断面図である。 図50は、実施の形態5に係る3次元測距モジュールの断面図である。
 (本開示の一態様を得るに至った知見)
 本発明者らは、3次元測距モジュールについて、以下の問題が生じることを見出した。
 3次元測距モジュールは、対象物とレンズモジュールとの間に、レンズカバーを有することがある。3次元測距モジュールを備える測距撮像装置が屋外で用いられる場合に、レンズとレンズを支持する鏡筒とによって構成されるレンズモジュールを保護するために、レンズカバーが設けられる。また、3次元測距モジュール自体の存在感を消す場合に、光源が照射する例えば赤外光の波長に対して透明かつ可視光には不透明なレンズカバーが用いられる。
 測距するために照射した光が対象物に反射して戻ってきた場合に、対象物との距離が近かったり、対象物が高反射率面を有する場合(特に対象物が凹形状であり、その凹形状が焦点を有し、その焦点距離と対象物との距離が一致するような場合)に、対象物は輝度の高い輝点として観測される。
 より具体的に図1を用いて説明する。
 図1は、強度フレア領域が発生した距離画像を示す図である。より具体的には、図1の(a)は強度フレア光が発生していない距離画像であり、図1の(b)は強度フレア光が発生した距離画像である。ここで、距離画像は、色が濃い方が遠い距離にあることを示している。なお、対象物が遠いまたは対象物の反射率が極めて低いことにより対象物から戻ってきた光が弱すぎて距離を算出できない領域は白色で表示されている。図1の(b)が示すように画面中心に高反射面を有する対象物(対象物X)が配置されることで、強度フレア光が発生する。
 測距用光源から出射した光は、ある対象物(対象物X)で反射され、その反射光はレンズカバーを通してレンズモジュールのレンズに直接入射して、3次元測距モジュールが有する撮像素子上の一点に結像する。
 また、対象物Xからの反射光のうち、レンズに直接入射せずに、鏡筒の対象物Xに対向する面(上面)で反射(散乱)した光は、レンズカバーのレンズモジュールに対向する面(下面)で再反射されて、レンズに入射し、撮像素子上で結像することがある。このとき、当該下面によって再反射されてレンズに入射した光は、レンズに直接入射した光とは、撮像素子上の他の一点に結像する。この状態を強度フレア光が発生していると表現する。図1の(b)においては、強度フレア光により、環状の強度フレア領域が発生している。
 一方、その強度フレア光が結像した点には、対象物Xとは別の対象物(対象物Y)によって反射された光、つまりは、レンズカバーの当該下面で再反射されてレンズに入射した光とは別の方向から撮像素子に到達した光もレンズに直接入射して結像する。よって強度フレア光が結像する点では、異なる2か所からの光の走行時間を元に距離が計算されることになる。
 3次元測距モジュールにおいては、迷光を避けるために、鏡筒及びレンズカバーの反射率は一般的に低く設計されるので、強度フレア光の強度は比較的弱いものとなっている。しかし、反射光強度は距離比の2乗に反比例して小さくなる関係にあるため、対象物Yが対象物Xに対して離れている場合、対象物Yからの反射光強度は著しく小さくなるので、対象物Xからの強度フレア光の強度が対象物Yからの反射光の強度より強くなるときがある。
 このとき、対象物Yが位置する方向に対しては、より強い光である対象物Xからの強度フレア光に基づき距離を算出してしまうこととなり、距離の誤算出が発生する(強度フレア領域が発生する)という問題がある。
 そこで、本開示は、距離の誤算出の発生が抑制された3次元測距モジュールを提供する。
 本開示の一態様に係る3次元測距モジュールは、レーザ光を照射する光源と、照射された前記レーザ光が対象物により反射した光を集光するレンズ、前記レンズによって集光された光を受光する撮像素子、並びに、前記レンズ及び前記撮像素子の間の空間を囲い前記レンズを支持する鏡筒を含むレンズモジュールと、前記レンズモジュールと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、を有し、前記レンズの光軸を含む面で前記鏡筒を切断したときの断面視で、前記鏡筒の前記対象物に対向する第1面は、前記光軸から離れるに従って、前記レンズカバーから離れるように傾斜する第1傾斜部を含む。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第1面(第1傾斜部)で反射された場合に、レンズ及び撮像素子へ到達する光(強度フレア光)が抑制される。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュールを実現することができる。
 例えば、前記第1傾斜部は、前記第1面の全体にわたって形成されているとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第1面(第1傾斜部)で反射される場合に、当該レーザ光は、第1面(第1傾斜部)からレンズ及び撮像素子とは反対方向に向かって反射されやすくなる。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記第1面の前記レーザ光の光散乱角の半値幅は、45度以上であるとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第1面(第1傾斜部)で、拡散反射される。従って、レンズ及び撮像素子へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記断面視で、前記第1傾斜部と、前記レンズカバーの前記レンズモジュールに対向する面とがなす角度は、30度以上であるとしてもよい。
 これによれば、第1傾斜部とレンズカバーのレンズモジュールに対向する面とがなす角度が十分に大きいため、レンズ及び撮像素子へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記断面視で、前記第1傾斜部は、直線的であるとしてもよい。
 これによれば、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記光軸の方向から見た場合に、前記鏡筒の外形は、前記撮像素子の外形と相似形状であり、前記第1傾斜部の前記光軸に垂直な面からの傾斜の程度は、前記光軸と前記鏡筒の外端との間の距離と、正の相関関係があるとしてもよい。
 これによれば、撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記第1面の前記レーザ光の光散乱角の半値幅は、7度以下であるとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第1面(第1傾斜部)で、光拡散の抑制された状態で反射する。この場合においても、レンズ及び撮像素子へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記レンズカバーの前記対象物側から前記レンズを見た場合に、前記光軸と、前記レンズの手前側が視認できる方向とがなす角度のうち最大の角度をεとしたとき、前記第1傾斜部と、前記光軸に垂直な面とがなす角度は、ε/2以上であるとしてもよい。
 輝点に相当する対象物によって反射されたレーザ光が第1面(第1傾斜部)で光拡散の抑制された状態で反射する場合においては、3次元測距モジュール内の反射により、レンズ及び撮像素子へ到達する光(強度フレア光)が発生する可能性がある。第1傾斜部とレンズの光軸に垂直な面とがなす角度が上記角度範囲であることで、対象物によって反射されたレーザ光は、3次元測距モジュールが備える構成要素(例えば遮光部材など)により反射されて、レンズ及び撮像素子へ到達し難くなる。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記レンズカバーから前記レンズの前記光軸の方向に前記レンズを見た場合に、前記レンズを内包するように開口を有する部材と、を有し、前記レンズの前記光軸を含む面で前記鏡筒を切断したときの前記断面視で、前記レンズの外端と前記開口の外端との間の距離をBとし、前記レンズカバーと前記レンズの中心との距離をH1とし、前記レンズカバーと前記部材の前記レンズカバーに対向する第2面との距離をH2とし、前記レンズの前記中心及び前記撮像素子の外端を結ぶ線と、前記光軸とのなす角度をθとしたとき、(H1+H2)・tanθ≦Bの関係を満たすとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第2面で拡散反射された場合に、レンズ及び撮像素子へ到達する光(強度フレア光)が抑制される。つまりは、全体としてレンズ及び撮像素子に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュールを実現することができる。
 例えば、前記レンズカバーの前記レンズモジュールに対向する第3面は、前記光軸から離れるに従って、前記レンズモジュールから離れるように傾斜する第3傾斜部を含むとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第3面(第3傾斜部)で反射された場合に、レンズ及び撮像素子へ到達する光(強度フレア光)が抑制される。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュールを実現することができる。
 また、本開示の一態様に係る3次元測距モジュールは、レーザ光を照射する光源と、照射された前記レーザ光が対象物により反射した光を集光するレンズと、前記レンズによって集光された光を受光する撮像素子と、前記レンズと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、前記レンズカバーから前記レンズの光軸の方向に前記レンズを見た場合に、前記レンズを内包するように開口を有する部材と、を有し、前記光軸を含む面で前記レンズを切断したときの断面視で、前記レンズの外端と前記開口の外端との間の距離をBとし、前記レンズカバーと前記レンズの中心との距離をH1とし、前記レンズカバーと前記部材の前記レンズカバーに対向する第2面との距離をH2とし、前記レンズの前記中心及び前記撮像素子の外端を結ぶ線と、前記光軸とのなす角度をθとしたとき、(H1+H2)・tanθ≦Bの関係を満たす。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第2面で拡散反射された場合に、レンズ及び撮像素子へ到達する光(強度フレア光)が抑制される。つまりは、全体としてレンズ及び撮像素子に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュールを実現することができる。
 例えば、前記光軸の方向から見た場合に、前記開口の外形は、樽型であるとしてもよい。
 これによれば、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記断面視で、前記第2面は、前記光軸から離れるに従って、前記レンズカバーから離れるように傾斜する第2傾斜部を含むとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第2面(第2傾斜部)で反射される場合に、当該レーザ光は、第2面(第2傾斜部)からレンズ及び撮像素子とは反対方向に向かって反射されやすくなる。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 また、本開示の一態様に係る3次元測距モジュールは、レーザ光を照射する光源と、照射された前記レーザ光が対象物により反射した光を集光するレンズ、前記レンズによって集光された光を受光する撮像素子、並びに、前記レンズ及び前記撮像素子の間の空間を囲い前記レンズを支持する鏡筒を含むレンズモジュールと、前記レンズモジュールと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、を有し、前記レンズカバーの前記レンズモジュールに対向する第3面は、前記レンズの光軸から離れるに従って、前記レンズモジュールから離れるように傾斜する第3傾斜部を含む。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第3面(第3傾斜部)で反射された場合に、レンズ及び撮像素子へ到達する光(強度フレア光)が抑制される。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュールを実現することができる。
 例えば、前記光軸の方向から見た場合に、前記第3傾斜部は、前記第3傾斜部と前記レンズモジュールとが重なる領域の全体にわたって形成されているとしてもよい。
 これによれば、輝点に相当する対象物によって反射されたレーザ光が第3面(第3傾斜部)で反射される場合に、当該レーザ光は、第3面(第3傾斜部)からレンズ及び撮像素子とは反対方向に向かって反射されやすくなる。つまりは、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記レンズカバーの前記対象物に対向する第4面は、平らであるとしてもよい。
 3次元測距モジュールが使用される環境において、測距対象の一例である人が当該3次元測距モジュールを見た場合に、レンズカバーの第4面に凹凸が設けられていると、当該人が違和感を覚えることがある。このため、第4面が平らであることで、当該違和感が解消される。
 例えば、前記光軸の方向から見た場合に、前記第3傾斜部の外形は、前記撮像素子の外形と相似形状であり、前記第3傾斜部の前記光軸に垂直な面からの傾斜の程度は、前記光軸と前記第3傾斜部の外端との間の距離と、正の相関関係があるとしてもよい。
 これによれば、レンズ及び撮像素子に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュールを実現することができる。
 例えば、前記レンズカバーの前記第3面と前記レンズカバーの前記対象物に対向する第4面とではさまれる空間に空洞が設けられ、前記光軸を含む面で前記レンズカバーを切断したときの断面視で、前記空洞が設けられた領域において、前記空洞を除く前記光軸の方向の前記第3面から前記第4面までの厚みは、一定であるとしてもよい。
 これによれば、3次元測距モジュールにより得られる距離画像における画像歪みを抑制することができる。
 例えば、前記第3面の形状は、レンズ形状を含み、前記レンズカバーの光軸は、前記レンズの前記光軸と一致するとしてもよい。
 これによれば、3次元測距モジュールにより得られる距離画像における画像歪みを抑制することができる。
 本開示の一態様に係る3次元測距システムは、上記記載の3次元測距モジュールを備え、前記3次元測距モジュールは、前記レーザ光の走行時間を基に、前記光源から前記対象物までの距離を算出する演算部を有する。
 上記3次元測距モジュールは距離の誤算出の発生を抑制することができるため、このような3次元測距モジュールを備える3次元測距システムは、距離の誤算出の発生を抑制することができる。
 以下では、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも包括的又は具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、製造工程、製造工程の順序などは、一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 また、各図は、模式図であり、必ずしも厳密に図示されたものではない。したがって、例えば、各図において縮尺などは必ずしも一致しない。また、各図において、実質的に同一の構成については同一の符号を付しており、重複する説明は省略又は簡略化する。
 また、本明細書において、平行又は垂直などの要素間の関係性を示す用語、及び、長方形又は円形などの要素の形状を示す用語、並びに、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する表現である。
 また、本明細書において、3次元測距モジュールの構成における「上」及び「下」という用語は、絶対的な空間認識における上方向(鉛直上方)及び下方向(鉛直下方)を指すものではなく、積層構成における積層順を基に相対的な位置関係により規定される用語として用いる。また、「上方」及び「下方」という用語は、2つの構成要素が互いに間隔を空けて配置されて2つの構成要素の間に別の構成要素が存在する場合のみならず、2つの構成要素が互いに密着して配置されて2つの構成要素が接する場合にも適用される。
 また、本明細書及び図面において、x軸、y軸及びz軸は、三次元直交座標系の三軸を示している。各実施形態では、3次元測距モジュールのレンズと平行な方向をz軸方向とし、z軸方向と垂直な平面がxy平面としている。また、以下で説明する各実施形態において、z軸正方向を上方と記載し、z軸負方向を下方と記載する場合がある。
 (実施の形態1)
 [構成]
 まず、本実施の形態に係る3次元測距システム100が備える3次元測距モジュール1の構成例について図2を用いて説明する。
 図2は、本実施の形態に係る3次元測距モジュール1の構成例を示すブロック図である。図2には、3次元測距モジュール1の他に対象物Xも図示されている。対象物Xは、距離測定の対象物体の一例である。
 図2が示すように、3次元測距システム100は3次元測距モジュール1を備え、3次元測距モジュール1は光源10と、撮像素子23と、制御ユニット60と備える。制御ユニット60は、駆動制御部61と、フレーム制御部62と、演算部63と、距離画像生成部64とを有する。
 3次元測距モジュール1(3次元測距システム100)は、以下のように、3次元測距モジュール1と対象物Xとの距離を測定する。光源10より射出された照射光が、対象物Xで反射し、反射光として撮像素子23に戻ってくるまでの光の飛行時間(ToF)を、撮像素子23で露光された信号量から計算し、適切な係数を乗算して、当該距離を導出する。
 光源10は、制御ユニット60が有する駆動制御部61からの発光制御信号に含まれる発光制御パルスのタイミングでパルス光の照射を行う。パルス光は、人間が周囲に存在する場合は赤外光がよいが、人間が周囲に存在しない場合は赤外光以外でもよい。
 撮像素子23は、パルス光が照射された対象物からの反射光を、露光制御パルスのタイミングで露光し、露光で生じた信号電荷量を示す露光信号を出力する。撮像素子23は、イメージセンサと呼ばれる固体撮像素子を含む。撮像素子23は、例えば、2万画素~200万画素程度の解像度で撮像する。撮像素子23は、画像取得用と測距用とに分かれていても構わない。
 駆動制御部61は、発光のタイミングを指示する発光制御パルスを含む発光制御信号と、露光のタイミングを指示する露光制御パルスを含む露光制御信号とを出力する。駆動制御部61は、発光制御パルスのタイミングを基準とする発光制御信号を生成する。撮像素子23は、露光制御パルスによる露光で生じた信号電荷量を示す露光信号を出力する。制御ユニット60が有する演算部63は、露光信号の信号電荷量の比率等に基づいて走行時間に換算し距離情報を出力する。つまり、演算部63は、レーザ光の走行時間を基に光源10から対象物までの距離を算出する。フレーム制御部62は、駆動制御部61及び距離画像生成部64に、測距に係るフレーム識別信号を出力している。距離画像生成部64は、取得したフレーム識別信号と距離情報とに基づいて、距離画像を生成する。
 さらに、3次元測距モジュール1について、図3を用いて説明する。
 図3は、本実施の形態に係る3次元測距モジュール1の上面図及び2つの断面図である。
 より具体的には、図3の(a)は3次元測距モジュール1の上面図であり、図3の(b)は図3の(a)のIIIb-IIIb線における3次元測距モジュール1の断面図である。図3の(c)は、図3の(a)のIIIc-IIIc線における3次元測距モジュール1の断面図である。
 なお、図3の(a)では、見やすさのため、レンズカバー30を除いた上面図が示されている。また、以降の上面図についても同様である。
 上記のように、3次元測距モジュール1は、光源10と、撮像素子23と、制御ユニット60と備える。より具体的には、図3が示すように、光源10と、レンズモジュール20と、レンズカバー30と、制御ユニット60と、基板40と、遮光部材51と、基板保持部52と、筐体側面部53と、筐体底面部54とを備える。
 光源10は、レーザ光を照射する光源であり、半導体レーザデバイスである。
 光源10が照射するレーザ光は赤外領域の光であり、例えば、レーザ光のピーク波長は850nm又は940nmである。レーザ光の波長半値幅は、3nmである。光源10は、面発光する半導体レーザデバイスであり、発光面の大きさは3.5mm×3.5mmである。レーザ光の出力は、1Wである。なお、光源10が照射するレーザ光の、波長、波長半値幅、発光面及び出力は、上記に限られない。
 光源10は、レーザ光を光拡散(光散乱)させる部材を有していてもよい。例えば、光源10は光拡散ガラス部材を有しており、レーザ光が光拡散され、その配光が制御される。
 光源10から照射されたレーザ光は、対象物Xによって反射され、レンズカバー30を透過して、レンズモジュール20が有するレンズ21に到達する。より具体的には、光源10から照射されたレーザ光の一部がレンズ21に到達する。
 レンズ21は、光源10によって照射されたレーザ光が対象物Xにより反射した光を集光する光学部材である。レンズ21は、図3が示すように、平凸レンズであるが、上記の反射した光を集光することができれば、他の形状のレンズでもよい。
 レンズ21は、レンズ半径が5mm、焦点距離が2mmであるが、これに限られない。また、レンズ21の半画角は70度であるが、これに限らない。なお半画角は、撮像素子23が撮像することができる範囲を示した画角の半分の値である。また、レンズ21が有する平面(下面)においてレンズ21の光軸A1が通過する点を、レンズ21の中心211とする。このようなレンズ21によって集光された光は、撮像素子23に到達する。
 レンズモジュール20が有する撮像素子23は、レンズ21によって集光された光を受光する素子である。撮像素子23は、測距用の画素と、画像用の画素とを含み、より具体的には、測距のために640×480または320×240個の画素と、画像のために640×480または320×240個の画素とを含む。図3の(a)が示す上面図は、レンズ21の光軸A1方向から見た場合の図であり、上面図において、撮像素子23の外形は、矩形であり、より具体的には、長方形である。また、撮像素子23の形状は、平板形状であり、xy平面と平行に配置されている。
 続いて、レンズモジュール20が有する鏡筒22について説明する。鏡筒22は、図3に示すように、無底筒形状を有しており、円筒形状である。鏡筒22の内部に円柱形状の空洞が形成されている。また、鏡筒22は、レンズ21及び撮像素子23の間の空間を囲む。つまりは、鏡筒22の内部に、レンズ21及び撮像素子23の間の空間が配置されている。鏡筒22はレンズ21の光軸A1に沿って延びる形状であり、レンズ21の光軸A1と鏡筒22の軸とは一致する。上記の通り、鏡筒22は円筒形状であり、光軸A1と垂直な面で切断した断面は円環状である。なお、図3の(b)は、レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面図に相当する。
 鏡筒22は、一例として内径であるDが半径5mm、外径が半径6mm以上9mm以下であり、つまりは光軸A1と直交する方向の厚み(肉厚)であるAが1mm以上4mm以下である。なお、図3の(b)が示す断面図で、D及びAは上記の値であり、さらに本実施の形態においては、レンズ21の光軸A1を含む面であればどの面で鏡筒22を切断しても、そのときの断面図で、D及びAはそれぞれ一定である。
 鏡筒22を構成する材料は、特に限定されないが、ここではアルミニウムである。また、鏡筒22の表面は、迷光を抑制するために、レーザ光の波長を吸収することができるとよく、またレーザ光の波長及び可視光を吸収することができるとよりよく、ここでは、黒色である。より具体的には、鏡筒22の表面は、黒色粉体塗装による黒色層が設けられてもよく、黒色アルマイト処理がなされてもよい。
 さらに、図3及び図4を用いて鏡筒22についてより詳細に説明する。
 図4は、本実施の形態に係る鏡筒22の周辺の拡大断面図である。なお、簡単のため、図4ではレンズ21は省略されている。
 ここで、鏡筒22の対象物Xに対向する面(上面)を、第1面221とする。レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面視で、第1面221は、光軸A1から離れるに従って、レンズカバー30から離れるように傾斜する第1傾斜部222を含む。なお、この断面視とは、光軸A1を含み、かつ、撮像素子23の受光面(上面)に直交する面を見ることを意味する。このように、第1面221は、光軸A1から離れるにしたがって、下方へ向かうように傾斜している第1傾斜部222を含んでいる。より具体的には、第1傾斜部222は、第1面221の全体にわたって形成されている。図3の(b)が示す、レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面図で、第1傾斜部222は、直線的である。なお、本実施の形態においては、レンズ21の光軸A1を含む面であればどの面で鏡筒22を切断しても、そのときの断面図で、第1傾斜部222は、直線的である。なお、これに限られず、第1面221の一部に第1傾斜部222が形成されていてもよい。また、第1面221が第1傾斜部222を含むため、第1面221は巨視的に傾斜しているとも言える。巨視的に傾斜しているとは、目視で傾斜していることが見える程度を意味する。
 図4が示すように、第1傾斜部222と、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、βである。βは大きい方が良いが、大きすぎると鏡筒22の先端の厚さが不足し構造的に弱くなるので、80度以下が好ましい。本実施の形態においては、βは10度以上80度以下であるとよく、30度以上70度以下であるとよりよく、45度以上60度以下であるとさらによい。また、レンズ21の光軸A1を含む面であればどの面で鏡筒22を切断しても、そのときの断面図で第1傾斜部222は直線的であり、どの断面図であってもβは一定である。
 また、第1面221は、レーザ光を光拡散(光散乱)させる光拡散反射面である。例えば、第1面221のレーザ光の光散乱角の半値幅は、45度以上である。なお、光散乱角の半値幅とは、正面方向から入射した光が拡散反射された場合に、その拡散反射光のうち、正面方向に反射した光に比べて強度が半分となる光が反射される方向と、当該正面方向とのなす角度を意味する。均等拡散反射において、光の強度の半値幅は60度となる。
 第1面221のレーザ光の光散乱角の半値幅は、45度以上60度以下であればよく、50度以上60度以下であればよりよい。第1面221のレーザ光の光散乱角の半値幅が、上記範囲であれば、第1面221は、レーザ光を十分に光拡散(光散乱)させることができる。
 さらに、図4が示すように、鏡筒22の内側面223によって、撮像素子23が囲まれている。
 また、図3が示すように、レンズ21は、鏡筒22によって支持されている。例えば、鏡筒22の上端(第1面221の上端)にレンズ21の平面が接するようにレンズ21が載置されていてもよく、鏡筒22の内部の円柱形状の空洞にレンズ21が収容され固定されていてもよい。
 次に、レンズカバー30について説明する。レンズカバー30は、レンズモジュール20と対象物Xとの間に位置している、板状の部材であり、その厚みは1mmである。レンズカバー30は、光源10及びレンズモジュール20を覆うように設けられている。レンズカバー30は、レーザ光の波長(つまりは赤外領域の波長)に対して透明であればよい。
 レンズカバー30は、この波長に対して透過率が、60%以上であるとよく、80%以上であるとよりよく、90%以上であるとさらによいがこれに限られない。さらに、レンズカバー30は、可視光領域の波長に対して透過率が50%以下であるとよく、30%以下であるとよりよく、10%以下であるとさらによいがこれに限られない。レンズカバー30の可視光領域の波長の透過率が上記範囲であることで、3次元測距モジュール1が使用される際に、周囲の人によって3次元測距モジュール1の内部が視認されない。このため、3次元測距モジュール1の見栄えがよくなる、当該人に監視されているストレスを与えないなどの効果が期待される。
 このようなレンズカバー30は、例えば、PMMA(アクリル樹脂)によって構成されている。この場合、レンズカバー30の、レーザ光の波長(ここでは850nm及び940nm)に対して透過率が92%となり、可視光領域の波長に対して透過率が1%以下となる。また、レンズカバー30は、レンズモジュール20に対向する下面である第3面31と対象物Xに対向する上面である第4面とを有し、第3面31(当該下面)及び第4面(当該上面)のそれぞれに光反射抑制膜が設けられているとよい。例えば、2つの光反射抑制膜のレーザ光の波長に対する正面反射率が1%以下である。なお、レンズカバー30を構成する材料は、上記に限られず、例えば、ガラスなどであってもよい。また、第3面31のレーザ光の光散乱角の半値幅は、7度以下である。
 また、本実施の形態においては、レンズカバー30の第3面31は、xy平面と平行な面であるため、第1傾斜部222と、第3面31とがなす角度は、上記のβと一致する。
 このようなレンズカバー30と、筐体側面部53と、筐体底面部54とによって構成される筐体の内側に、光源10及びレンズモジュール20が配置されている。なお、レンズカバー30と、筐体側面部53と、筐体底面部54とによって構成される筐体の大きさは、一例として84mm(x軸方向)×40mm(y軸方向)×30mm(z軸方向)である。
 筐体底面部54は、レンズモジュール20が設けられる基板である。図3が示すように、基板である筐体底面部54の上方に接して、レンズモジュール20及び制御ユニット60が設けられている。また、筐体底面部54の上方に撮像素子23が積層されているとも言える。このように、筐体底面部54は、レンズモジュール20を実装するための実装基板である。筐体底面部54のレンズモジュール20が実装される面には、黒色レジストが設けられており、当該面のレーザ光の波長に対する正面反射率は、10%以下である。筐体底面部54は、ガラスエポキシ材料によって構成されているが、これに限られない。
 筐体側面部53は、筐体底面部54の上方に接して設けられ、上面視では、光源10及びレンズモジュール20を囲うように配置されている。つまり、筐体側面部53は、上面視では、矩形の枠形状を有している。筐体側面部53を構成する材料は、特に限定されないが、ここではアルミニウムである。また、筐体側面部53の表面は、黒色粉体塗装による黒色層が設けられてもよく、黒色アルマイト処理がなされてもよい。
 基板40は、レンズカバー30からレンズ21の光軸A1の方向にレンズ21を見た場合に、つまりは、上面視で見た場合に、レンズ21を内包するように開口41を有する部材の一例である。基板40は、レンズカバー30に対向する上面である第2面42と筐体底面部54に対向する下面とを有している。
 開口41の形状は、本実施の形態においては、上面視で円形であるがこれに限られない。開口41の直径は、開口41がレンズ21を内包できる大きさであればよく、開口41がレンズモジュール20を内包できる大きさであればよい。例えば、開口41の直径は、鏡筒22の外径よりも大きい10mm以下であるとよい。
 基板40は、光源10が設けられる基板部材である。図3が示すように、基板40の上方に接して、光源10が設けられている。つまり、基板40は、光源10を実装するための実装基板である。基板40の光源10が実装される面には、紺色レジストが設けられている。基板40は、ガラスエポキシ材料によって構成されているが、これに限られない。また、基板40は、基板保持部52によって保持されている。
 基板保持部52は、筐体底面部54の上方に接して設けられ、基板40の下面に接して基板40を支持する部材である。
 基板保持部52は、上面視では、矩形の枠形状を有しており、基板40の端部を支持している。基板保持部52を構成する材料は、特に限定されないが、ここではアルミニウムである。また、基板保持部52の表面は、黒色粉体塗装による黒色層が設けられている。
 遮光部材51は、基板40の上方に接して設けられている部材である。遮光部材51は、光源10とレンズモジュール20との間に設けられている。遮光部材51は、図3の(a)が示す上面図では、長細い矩形状の部材である。遮光部材51を構成する材料は、特に限定されないが、ここではアルミニウムである。また、遮光部材51の表面は、黒色粉体塗装による黒色層が設けられている。
 遮光部材51は、光源10から照射されたレーザ光が3次元測距モジュール1の内部(つまりはレンズカバー30、筐体側面部53及び筐体底面部54によって構成される筐体の内部)での反射によって撮像素子23に到達することを抑制するための部材である。図3が示すように、3次元測距モジュール1の内部(つまりは筐体の内部)は、遮光部材51、基板40及び基板保持部52によって、2つの空間に分離されている。2つの空間のうち一方の空間には、レンズモジュール20及び制御ユニット60が配置され、2つの空間のうち他方の空間には、光源10が配置されている。
 さらに、図5を用いて、光源10から照射されたレーザ光が対象物Xによって反射された場合のレーザ光の挙動について説明する。
 図5は、本実施の形態に係るレーザ光の挙動を示す断面図である。なお、図5が示す断面図は、図3の(b)に相当する断面図である。
 また、光源10から照射されたレーザ光が対象物Xによって反射された光を、反射光Lとして説明する。図5では、図5で示される2つの反射光Lのうち一方と、図3などで示した光軸A1とが重なるため、光軸A1が省略されている。また以降の図面においても、同様の理由で光軸A1が省略される場合がある。
 図5が示すように、また、レンズ21の中心211からレンズカバー30の下面である第3面31までの距離をHとする。換言すると、Hは、レンズ21の平面から第3面31までのz軸方向の長さである。
 上記の(本開示の一態様を得るに至った知見)にて説明されたように、対象物Xが高反射率面を有する場合などに、対象物Xは、輝点として撮像素子23によって観測される。つまり、対象物Xは輝点に相当する。図5では、対象物X(輝点)が光軸A1方向(z軸方向)に位置している。より具体的には、対象物X及び撮像素子23を結ぶ方向と光軸A1方向(z軸方向)とは、平行である。
 以下2つの反射光Lについて説明する。
 まず、2つの反射光Lのうち一方は、レンズカバー30を通してレンズモジュール20のレンズ21に直接入射して、撮像素子23上の一点に結像する。
 また、2つの反射光Lのうち他方は、レンズ21に直接入射せずに、鏡筒22の第1面221で反射(散乱)し、レンズカバー30の第3面31で再反射されて、レンズ21に入射し、撮像素子23上で他の一点で結像する。この当該他の一点で、強度フレア光が発生する。この2つの反射光Lのうち他方の光の進む方向と、光軸A1方向(z軸方向)とのなす角度が、θである。つまり、2つの反射光Lのうち他方の光の撮像素子23への入射角は、θである。
 さらにこの強度フレア光の光量(以下フレア光量)が、以下の手法によって算出される。
 上記のように、対象物X(輝点)は、光軸A1方向(z軸方向)に位置している。フレア光量は、上記の2つの反射光Lのうち一方の光を基準として、(鏡筒22の第1面221の面積)/(レンズ21の上面視での面積×第1面221の反射率×第3面31の反射率)に比例する。
 上記の通り第1傾斜部222の傾斜角度は、βである。また、第1面221は、レーザ光を光拡散(光散乱)させる光拡散反射面である。
 また、第1面221の正面反射率をR1とし、第3面31の正面反射率をR2とする。第1面221のR1は、一例として、1%である。
 図5が示すように、2つの反射光Lのうち他方の光は、第1面221に到達する。このとき入射角は、βである。第1面221に到達した光は、拡散反射される。さらに、反射角がθ+βで拡散反射された光は、さらに、第3面31によって反射され、レンズ21を透過して、撮像素子23に入射する。上記の通り、第3面31によって反射された光の、撮像素子23への入射角は、θである。
 ここで、フレア光量は、式(1)によって表される。
Figure JPOXMLDOC01-appb-M000001
 式(1)は、光が入射角βで斜め入射した場合の、半値幅が45度の拡散反射における経験的近似式に基づく式である。
 なお、θが小さい場合に、第3面31で反射された光は、第1面221(より具体的には、図5が示すx軸正側の第1面221)によって再度反射され、レンズ21に到達しないときがある。いわゆる、鏡筒22の第1面221によって光がけられる、という状態である。式(1)におけるθが式(2)を満たすθ1より小さい場合に相当するフレア光量が、式(1)で算出されたフレア光量から差し引かれる。
Figure JPOXMLDOC01-appb-M000002
 また、θが大きい場合にも、第3面31で反射された光は、第1面221(より具体的には、図5が示すx軸負側の第1面221)によって再度反射され、レンズ21に到達しないときがある。こちらも、いわゆる、鏡筒22の第1面221によって光がけられる、という状態である。式(1)におけるθが式(3)を満たすθ2より大きい場合に相当するフレア光量が、式(1)で算出されたフレア光量から差し引かれる。
Figure JPOXMLDOC01-appb-M000003
 以上のように、フレア光量が計算される。続いて、第1傾斜部222の傾斜角度であるβが変更されたときのフレア光量への影響について検討する。
 図6は、本実施の形態に係る第1傾斜部222の傾斜角度が変更された場合のフレア光量への影響が示された図である。
 なお、図6では、本実施の形態に係る3次元測距モジュール1に相当する、それぞれβが15、30、45及び60度である第1、第2、第3及び第4実施例に係る3次元測距モジュールについて、フレア光量が算出されている。また、図6に示されるβが0度である3次元測距モジュールは、第1検討例に係る3次元測距モジュールであり、本実施の形態に係る3次元測距モジュール1に相当しない。第1検討例に係る3次元測距モジュールは、βが0度、つまりは、第1面221がxy平面と平行である点を除いて、本実施の形態に係る3次元測距モジュール1と同じ構成を有する。
 また、図6の(a)は、第1~第4実施例と第1検討例とに係る3次元測距モジュールについて、入射角であるθが変更されたときのフレア光量が示されている。図6の(b)は、βが0度のときの距離画像を示す図である。また、図6の(b)には、3次元測距モジュール1との距離がより近い対象物Xと、3次元測距モジュール1との距離がより遠い対象物Yと、が示されている。なお、(本開示の一態様を得るに至った知見)で説明の通り、対象物Xは、高反射率面を有する。
 βが0度のとき、つまり、第1検討例に係る3次元測距モジュールにおいては、フレア光量は以下の挙動を示す。
 θが0度以上27度未満のとき、つまりは、式(2)を満たすθ1より小さいときには、θが大きくなるに従って反射光Lが鏡筒22の第1面221でけられることが少なくなるのが主要因で、フレア光量が増加する。
 θが27度以上68度未満のとき、反射光Lが鏡筒22の第1面221でけられることはないが、θが大きくなるに従って拡散反射率が減り、フレア光量が減少する。
 θが68度以上72度未満のとき、つまりは、式(3)を満たすθ2より大きいときには、反射光Lが鏡筒22の第1面221でけられることが多くなるのが主要因で、フレア光量が減少する。
 さらに、θがレンズ21の半画角以上の角度では、反射光Lが撮像素子23に結像しないのでフレア光量は検出下限以下となる。なお半画角は、上記の通り、撮像素子23が撮像することができる範囲を示した画角の半分の値であり、本実施の形態では70度である。
 さらに、βの値によらず、フレア光量の挙動は同様である。つまり、フレア光量は、θが0度から大きくなるに従い、一旦増加し、その後減少して、十分にθが大きくなるとフレア光量は検出下限以下となる。
 また、第1面221が第1傾斜部222を含まない(つまりはβが0度である)第1検討例に係る3次元測距モジュールと、第1面221が第1傾斜部222を含む(つまりβが15度以上である)第1~第4実施例に係る3次元測距モジュールとを比較する。第1面221が第1傾斜部222を含まない第1検討例に係る3次元測距モジュールに比べ、第1面221が第1傾斜部222を含む第1~第4実施例に係る3次元測距モジュールは、フレア光量が低下している。
 また、βが大きいほど、フレア光量が減少していることが示されている。図6の(b)が示す距離画像では、環状の強度フレア領域が生じていたが、図6の(a)が示すように、βが大きくなることで、強度フレア領域の発生も抑制された距離画像が得られる。また、βが大きいほど、フレア光量のピーク値を示す角度は小さくなる。
 さらに、強度フレア光が発生する場合の3次元測距モジュール1と対象物Xとの距離及び3次元測距モジュール1と対象物Yとの距離について図7を用いて説明する。
 図7は、本実施の形態に係る3次元測距モジュール1と対象物Xとの距離及び3次元測距モジュール1と対象物Yとの距離の関係を示す図である。ここでは、計算のために、対象物X及び対象物Yの反射率が同じとする。
 図7においては、縦軸は、3次元測距モジュール1と対象物Yとの距離を、3次元測距モジュール1と対象物Xとの距離で割った値(距離比)とし、横軸は、入射角であるθを示す。
 このとき、図7が示すβの値に対応する曲線よりも、縦軸の値が大きい場合とは、対象物Yによってレーザ光が反射され直接レンズ21及び撮像素子23に入射した光の光量よりも、対象物Xによる反射光Lに基づくフレア光量が大きい場合である。つまり、図7が示すβの値に対応する曲線よりも、縦軸の値が大きい場合とは、距離の誤算出が発生する場合である。
 図7が示すように、βが大きいほど、誤算出が発生する範囲が狭くなっている。つまり、第1傾斜部222の傾斜角度であるβが0度である第1検討例に係る3次元測距モジュールに比べて、続いて、第1傾斜部222の傾斜角度であるβが大きい第1実施例~第4実施例に係る3次元測距モジュールは、距離の誤算出の発生を抑制することができる。
 また、対象物Yを例えば空(上空)とし、3次元測距モジュール1と対象物Yとの距離を無限大とする。このときには、3次元測距モジュール1と対象物Yとの距離が無限大であることから、フレア光量が検出限界以上の場合には、距離の誤算出が発生する。
 なお、上記では、対象物X(輝点)が光軸A1方向(z軸方向)に位置している場合について説明した。さらにここでは、対象物X(輝点)と3次元測距モジュール1とを結ぶ方向が、光軸A1方向(z軸方向)と角度をなす位置に配置されている場合について図8を用いて説明する。
 図8は、本実施の形態に係るレーザ光の他の挙動を示す断面図である。なお、図8が示す断面図は、図3の(b)に相当する断面図である。
 ここでは、対象物X(輝点)と3次元測距モジュール1とを結ぶ方向が、光軸A1方向(z軸方向)と角度をなす位置に配置されており、より具体的には、対象物X及び撮像素子23を結ぶ方向と光軸A1方向(z軸方向)とがなす角度は、αである。
 以下2つの反射光Lについて説明する。
 まず、2つの反射光Lのうち一方は、レンズカバー30を通してレンズモジュール20のレンズ21に直接入射して、撮像素子23上の一点に結像する。このとき、入射角は、αである。
 また、2つの反射光Lのうち他方は、レンズ21に直接入射せずに、第1面221に到達する。このとき入射角は、β-αである。第1面221に到達した光は、拡散反射される。さらに、反射角がθ+βで拡散反射された光は、さらに、第3面31によって反射され、レンズ21を透過して、撮像素子23に入射する。第3面31によって反射された光の、撮像素子23への入射角は、θである。
 ここで、図6の(a)が算出された方法と同じ方法で、α及びβの値が変化したときのフレア光量への影響について、図9~図12を用いて検討する。
 図9~図12はそれぞれ、本実施の形態に係る第1傾斜部222の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。
 ここでは、図6の(a)と同じく、第1実施例~第4実施例及び第1検討例に係る3次元測距モジュールが用いられる。図9ではαが0度、図10ではαが15度、図11ではαが30度、図12ではαが45度である。なお、図9は、図6の(a)と同じ図である。
 図9~図12のいずれにおいても、βの値によらず、フレア光量の挙動は同様である。つまり、フレア光量は、θが0度から大きくなるに従い、一旦増加し、その後減少して、十分にθが大きくなるとフレア光量は検出下限以下となる。図9~図12が示すように、αの値が変化しても、フレア光量への影響は小さいことが明らかになった。
 続いて、鏡筒22の厚みであるAが変化したときのフレア光量への影響について、図13を用いて検討する。
 図13は、本実施の形態に係る第1傾斜部222の傾斜角度が変更された場合のフレア光量への影響が示された他の図である。
 ここでは、図6の(a)が算出された方法と同じ方法で、A及びβの値が変化したときのフレア光量への影響について検討する。また、図6の(a)と同じく、第1実施例~第4実施例及び第1検討例に係る3次元測距モジュールが用いられる。図13の(a)ではAが1mmであり、図13の(b)ではAが2mmであり、図13の(c)ではAが4mmである。
 また、図13においては、それぞれが同程度のフレア光量を示す一点鎖線及び二点鎖線が、図13の(a)~(c)に跨って示されている。
 鏡筒22の厚みであるAが大きいほど、フレア光量のピーク値を示す角度(θ)が大きい。つまりは、鏡筒22の厚みであるAが大きいほど、光軸A1から離れた位置に強度フレア光が発生する。
 図13が示すように、βが大きいほど、鏡筒22の厚みであるAが変化しても、フレア光量へ与える影響は小さくなる。βが30度以上では、Aが変化してもフレア光量へ与える影響は十分に小さく、βが45度以上では、Aが変化してもフレア光量へ与える影響はほとんどない。
 また、同一の3次元測距モジュールで比較すると、θが0度以上、かつ、フレア光量のピーク値を示す角度以下の範囲では、同じθであればフレア光量は同程度である。例えば、βが15度である第1実施例に係る3次元測距モジュールでは、Aの値によらずフレア光量は同程度の値となり、具体的にはフレア光量は7~8程度となる。
 また、上記の通り、レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面図で、第1傾斜部222は、直線的である。第1傾斜部222が直線的であることの効果について、図14~図16を用いて説明する。
 図14~図16はそれぞれ、本実施の形態に係る第1傾斜部222が直線的であることの効果を説明するための図である。より具体的には、図14~図16の(a)はそれぞれレンズ21及び鏡筒22の一部が拡大して示された断面図である。図14~図16の(b)はそれぞれ第1傾斜部222の傾斜角度が変更された場合のフレア光量への影響が示された図であり、図6の(a)が算出された方法と同じ方法が用いられている。また、図6の(a)と同じく、第1実施例~第4実施例及び第1検討例に係る3次元測距モジュールが用いられる。なお、図14~図16の(b)ではいずれも、内径であるDは5mm、厚みであるAは2mm、距離であるHは2mmとしてフレア光量が算出されている。
 図14~図16のそれぞれには、βの値が変更された5つの例が示されている。
 図14は、第1~第4実施例及び第1検討例に係る3次元測距モジュールについて記載されている。つまり、図14では、断面図で、第1傾斜部222が直線的である3次元測距モジュールが示されている。
 図15には、第1実施例~第4実施例及び第1検討例のそれぞれに係る3次元測距モジュールにおいて、鏡筒22の対象物Xに対向する面(上面)である第1面221が凹形状(z軸負方向に湾曲して凹んでいる形状)である5つの例が示されている。
 図15では、鏡筒22の外側から、レンズ21に向かうに従って、第1面221の傾斜角度が大きくなる。第1面221において、鏡筒22の外側の端部では、傾斜角度が0度である。また、第1面221において、鏡筒22のレンズ21側(つまり鏡筒22の内側)の端部及び鏡筒22の外側の端部を結ぶ方向と、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度を、βとする。また、第1面221に所定の点における傾斜角度は、当該所定の点と鏡筒22の外側の端部との距離に比例する。よって、第1検討例であるβが0度のときは第1面221は直線となっている。
 図16には、第1実施例~第4実施例及び第1検討例のそれぞれに係る3次元測距モジュールにおいて、鏡筒22の対象物Xに対向する面(上面)である第1面221が凸形状(z軸正方向に湾曲して突出している形状)である5つの例が示されている。
 図16では、鏡筒22の外側から、レンズ21に向かうに従って、第1面221の傾斜角度が小さくなる。第1面221において、鏡筒22の内側の端部では、傾斜角度が0度である。また、第1面221において、鏡筒22のレンズ21側(つまり鏡筒22の内側)の端部及び鏡筒22の外側の端部を結ぶ方向と、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度を、βとする。また、第1面221に所定の点における傾斜角度は、当該所定の点と鏡筒22の内側の端部との距離に比例する。よって、第1検討例であるβが0度のときは第1面221は直線となっている。
 図14~図16の(b)が示すように、βが15度以上60度以下の範囲においては、図14が示す例である断面図で第1傾斜部222が直線的である3次元測距モジュールは、図15及び図16が示す例に比べて、フレア光量を抑制することができる。
 [製法]
 ここで、本実施の形態に係る3次元測距モジュール1の製造方法について簡単に記載する。
 まず、鏡筒22にレンズ21が接続される。撮像素子23及び制御ユニット60が設置されている(実装されている)筐体底面部54において、撮像素子23が設置されている上方に鏡筒22及びレンズ21が設置される。
 さらに、光源10が基板40に設置される(実装される)。基板40の開口41の位置と、鏡筒22及びレンズ21の位置とが重なるように、位置合わせされて、基板40が基板保持部52を介して筐体底面部54に設置され、配線が接続される。さらに、遮光部材51が設置される。最後にレンズカバー30が筐体側面部53を介して、筐体底面部54に設置される。
 [効果など]
 本実施の形態に係る3次元測距モジュール1は、光源10と、レンズモジュール20と、レンズカバー30と、を有する。光源10は、レーザ光を照射する。レンズモジュール20は、照射されたレーザ光が対象物により反射した光を集光するレンズ21、レンズ21によって集光された光を受光する撮像素子23、並びに、レンズ21及び撮像素子23の間の空間を囲いレンズ21を支持する鏡筒22を含む。レンズカバー30は、レンズモジュール20と対象物との間に位置し、レーザ光の波長に対して透明である。レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面視で、鏡筒22の対象物に対向する第1面221は、光軸A1から離れるに従って、レンズカバー30から離れるように傾斜する第1傾斜部222を含む。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第1面221(第1傾斜部222)で反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)が抑制される。例えば、図6の(a)で説明したように、第1面221が第1傾斜部222を含まない(つまりはβが0度である)第1検討例に係る3次元測距モジュールと、第1面221が第1傾斜部222を含む(つまりβが15度以上である)第1~第4実施例に係る3次元測距モジュールとを比較する。第1面221が第1傾斜部222を含まない第1検討例に係る3次元測距モジュールに比べ、第1面221が第1傾斜部222を含む第1~第4実施例に係る3次元測距モジュールは、フレア光量が低下している。第1~第4実施例に係る3次元測距モジュールは、本実施の形態に係る3次元測距モジュール1に相当する。このように、レンズ21及び撮像素子23に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュール1を実現することができる。
 また、第1傾斜部222は、第1面221の全体にわたって形成されている。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第1面221(第1傾斜部222)で反射される場合に、当該レーザ光は、第1面221(第1傾斜部222)からレンズ21及び撮像素子23とは反対方向に向かって反射されやすくなる。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1を実現することができる。
 また、第1面221のレーザ光の光散乱角の半値幅は、45度以上である。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第1面221(第1傾斜部222)で、拡散反射される。従って、レンズ21及び撮像素子23へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1を実現することができる。
 また、上記の断面視で、第1傾斜部222と、レンズカバー30のレンズモジュール20に対向する面とがなす角度は、30度以上である。
 これにより、第1傾斜部とレンズカバーのレンズモジュールに対向する面とがなす角度が十分に大きくなる。例えば、図6の(a)で説明したように、βが大きいほど、フレア光量が減少する。βが30度以上であることで、レンズ21及び撮像素子23へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1を実現することができる。
 また、図13で説明したように、βが30度以上では、Aが変化してもフレア光量へ与える影響は十分に小さく、βが45度以上では、Aが変化してもフレア光量へ与える影響はほとんどない。これにより、鏡筒22の形状の設計の自由度が向上する。
 また、上記の断面視で、第1傾斜部222は、直線的である。
 これにより、図14~図16で示したように、第1傾斜部222が湾曲している場合に比べ、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1を実現することができる。
 また、3次元測距システム100は、上記記載の3次元測距モジュール1を備え、3次元測距モジュール1は、レーザ光の走行時間を基に光源10から対象物までの距離を算出する演算部63を有する。
 上記3次元測距モジュール1は距離の誤算出の発生を抑制することができるため、このような3次元測距モジュール1を備える3次元測距システム100は、距離の誤算出の発生を抑制することができる。
 (実施の形態1の変形例1)
 次に、実施の形態1の変形例1について説明する。実施の形態1の変形例1では、鏡筒22a及び開口41aの形状が、実施の形態1と相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態1の変形例1に係る3次元測距モジュール1aの構成例について図17を用いて説明する。
 図17は、本変形例に係る3次元測距モジュール1aの上面図及び2つの断面図である。
 より具体的には、図17の(a)は3次元測距モジュール1aの上面図であり、図17の(b)は図17の(a)のXVIIb-XVIIb線における3次元測距モジュール1aの断面図であり、図17の(c)は図17の(a)のXVIIc-XVIIc線における3次元測距モジュール1aの断面図である。
 本変形例に係る3次元測距モジュール1aは、レンズモジュール20にかえてレンズモジュール20aを備える点、基板40にかえて基板40aを備える点を除いて、実施の形態1に係る3次元測距モジュール1と同じ構成を有する。
 レンズモジュール20aは、鏡筒22にかえて鏡筒22aを有する点を除いて、レンズモジュール20と同じ構成を有する。
 鏡筒22aは、形状を除いて鏡筒22と同じ構成を有する。
 鏡筒22aは、無底筒形状を有しており、角筒形状である。鏡筒22aの内部に円柱形状の空洞が形成されている。鏡筒22aはレンズ21の光軸A1に沿って延びる形状であり、レンズ21の光軸A1と鏡筒22aの軸とは一致する。上記の通り、鏡筒22aは角筒形状であるため、光軸A1と垂直な面で切断した断面において、外形は矩形であり、上記の円柱形状の空洞に相当する箇所は円形である。また、換言すると、図17の(a)が示す上面図で、つまりは光軸A1の方向から見た場合に、鏡筒22aの外形は、矩形であり、撮像素子23の外形と相似形状である。
 ここで、鏡筒22aの対象物Xに対向する面(上面)を、第1面221aとする。レンズ21の光軸A1を含む面で鏡筒22aを切断したときの断面視で、第1面221aは、光軸A1から離れるに従って、レンズカバー30から離れるように傾斜する第1傾斜部222aを含む。つまり、第1面221aは、光軸A1から離れるにしたがって、下方へ向かうように傾斜している第1傾斜部222aを含んでいる。より具体的には、第1傾斜部222aは、第1面221aの全体にわたって形成されている。図17の(b)が示す、レンズ21の光軸A1を含む面で鏡筒22aを切断したときの断面図で、第1傾斜部222aは、直線的である。なお、本変形例においては、レンズ21の光軸A1を含む面であればどの面で鏡筒22aを切断しても、そのときの断面図で、第1傾斜部222aは、直線的である。なお、これに限られず、第1面221aの一部に第1傾斜部222aが形成されていてもよい。
 図4が示すように、第1傾斜部222aと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、βである。本変形例においては、βは10度以上80度以下であるとよく、30度以上70度以下であるとよりよく、45度以上60度以下であるとさらによい。
 基板40aは、開口41にかえて開口41aを有する点を除いて基板40と同じ構成を有する。
 開口41aの形状は、本変形例においては、上面視で矩形である。上面視で、開口41aがレンズ21及び鏡筒22aを内包できる大きさであればよく、開口41aがレンズモジュール20aを内包できる大きさであればよい。
 さらに、図18を用いて、第1面221aが有する第1傾斜部222aの傾斜角度について説明する。
 図18は、本変形例に係る鏡筒22a及びレンズ21の上面図並びに鏡筒22aの断面図である。
 より具体的には、図18の(a)は鏡筒22a及びレンズ21の上面図であり、図18の(b)は図18の(a)のXVIIIb-XVIIIb線における鏡筒22aの断面図である。図18の(c)は図18の(a)のXVIIIc-XVIIIc線における鏡筒22aの断面図であり、図18の(d)は図18の(a)のXVIIId-XVIIId線における鏡筒22aの断面図である。
 上記の通り、光軸A1の方向から見た場合に、鏡筒22aの外形は、矩形であり、撮像素子23の外形と相似形状である。このとき、第1傾斜部222aの光軸A1に垂直な面からの傾斜の程度は、第1傾斜部222aの傾斜角度であるβで表される。当該傾斜の程度(つまりはβ)は、光軸A1と鏡筒22aの外端との間の距離と、正の相関関係がある。換言すると、上面視で、光軸A1と鏡筒22aの外端の一点とを結ぶ方向における第1傾斜部222aのβは、光軸A1と鏡筒22aの外端との間の距離と、正の相関関係がある。
 ここで、y軸正方向を基準方向とする。この基準方向と、XVIIIb-XVIIIb線及びXVIIIc-XVIIIc線のそれぞれとのなす角度をδとする。
 例えば、図18の(b)においては、δは0であり、鏡筒22aの厚みであるAは1mmであり、βは15度であり、半画角は14度である。
 また例えば、図18の(c)においては、δは0より大きく、鏡筒22aの厚みであるAは4mmであり、βは30度であり、半画角は30度である。
 このように、図18の(b)に比べて図18の(c)では、Aが大きく、つまりは、光軸A1と鏡筒22aの外端との間の距離が大きい。このため、図18の(b)に比べて図18の(c)では、βが大きくなる。また、図18の(d)が示す断面図においては、第1面221aはz軸正方向に凸状に湾曲している。
 図19は、本変形例に係るδとβとの関係を示す図である。δが変化することに伴いAが変化している。つまりは、光軸A1と鏡筒22aの外端との間の距離が変化している。これに伴い、βの値も変化している。
 ここで、再度、実施の形態1の図13の(a)及び(c)を用いて説明する。図13では、鏡筒22の厚さであるAが厚い方がフレア光量は高く、フレア光量のピーク値を示す角度(θ)が高角度側に変化することが示されている。さらに、βが大きくなると、フレア光量は低下する。
 本変形例では、上面視で(つまりは上面図では)、鏡筒22aの外形は撮像素子23の外形と相似形状であり、第1傾斜部222aの光軸A1に垂直な面からの傾斜の程度(β)は、光軸A1と鏡筒22aの外端との間の距離と、正の相関関係がある。つまり、本変形例においては、鏡筒22aの厚さであるAに従ってβが大きくなっている。図13で示したA及びβの関係を考慮したうえで、Aに従ってβが大きくなると、フレア光量のピーク値が一定に保たれたままで、強度フレア光が発生する角度(θ)を大きくすることができる。すなわち強度フレア光が発生する角度を画角外にすることができる。これにより、フレア光量が面内で均等に抑制され、距離の誤算出の発生を抑制される。
 [効果など]
 本変形例に係る3次元測距モジュール1aにおいては、光軸A1の方向から見た場合に、鏡筒22aの外形は、撮像素子23の外形と相似形状である。第1傾斜部222aの光軸A1に垂直な面からの傾斜の程度は、光軸A1と鏡筒22aの外端との間の距離と、正の相関関係がある。
 図13が示すように、鏡筒22の厚さであるAが厚い方がフレア光量は高く、フレア光量のピーク値を示す角度(θ)が高角度側に変化する。ここでは、鏡筒22aの厚さであるAに従ってβが大きくなる。これにより、フレア光量のピーク値が一定に保たれたままで、強度フレア光が発生する角度(θ)を大きくすることができる。すなわち強度フレア光が発生する角度を画角外にすることができる。このように、撮像素子23に到達する強度フレア光の光量がより面内で均等に抑制されるため、距離の誤算出の発生が角度δに対して均等に抑制された3次元測距モジュール1aを実現することができる。
 (実施の形態1の変形例2)
 次に、実施の形態1の変形例2について説明する。実施の形態1の変形例2では、第1面221bが光拡散(光散乱)の発生が抑制された状態で反射(いわゆる鏡面反射)する点が、実施の形態1と相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 実施の形態1の変形例2に係る3次元測距モジュール1bの構成例について図20を用いて説明する。
 図20は、本変形例に係る3次元測距モジュール1bの上面図及び2つの断面図である。
 より具体的には、図20の(a)は3次元測距モジュール1bの上面図であり、図20の(b)は図20の(a)のXXb-XXb線における3次元測距モジュール1bの断面図である。また、図20の(c)は図20の(a)のXXc-XXc線における3次元測距モジュール1bの断面図である。
 本変形例に係る3次元測距モジュール1bは、レンズモジュール20にかえてレンズモジュール20bを備える点を除いて、実施の形態1に係る3次元測距モジュール1と同じ構成を有する。
 レンズモジュール20bは、鏡筒22にかえて鏡筒22bを有する点を除いて、レンズモジュール20と同じ構成を有する。
 鏡筒22bは、第1面221にかえて、鏡筒22bの対象物Xに対向する面(上面)である第1面221bを有する点を除いて、鏡筒22と同じ構成を有する。
 上記の通り、実施の形態1に係る第1面221は、レーザ光を光拡散(光散乱)させる光拡散反射面であったが、第1面221bは、レーザ光の光拡散(光散乱)の発生が抑制された反射面であり、より具体的には、第1面221bのレーザ光の光散乱角の半値幅は、7度以下である。なお、第1面221bのレーザ光の光散乱角の半値幅は、7度以下であればよく、5度以下であればよりよく、3度以下であればさらによい。
 さらに、図21及び図22を用いて、光源10から照射されたレーザ光が対象物Xによって反射された場合のレーザ光の挙動について説明する。
 図21及び図22のそれぞれは、本変形例に係るレーザ光の挙動を示す断面図である。なお、図21及び図22が示す断面図は、図20の(b)に相当する断面図である。なお、実施の形態1と同じく、第1傾斜部222bと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、βである。
 また、図21では、対象物X(輝点)が光軸A1方向(z軸方向)に位置している。より具体的には、対象物Xと撮像素子23とを結ぶ方向と光軸A1方向(z軸方向)とは、平行である。
 また、図22では、対象物X(輝点)と3次元測距モジュール1bとを結ぶ方向が、光軸A1方向(z軸方向)と角度をなす位置に配置されており、より具体的には、対象物X及び撮像素子23を結ぶ方向と光軸A1方向(z軸方向)とがなす角度は、αである。
 まず、図21について説明する。
 2つの反射光Lのうち一方は、レンズカバー30を通してレンズ21に直接入射して、撮像素子23上の一点に結像する。
 また、2つの反射光Lのうち他方は、レンズ21に直接入射せずに、第1傾斜部222bを含む第1面221bに到達する。このとき入射角は、βである。第1面221bに到達した光は、反射される。この反射された光の反射角は、βである。この反射された光は、レンズ21に到達することはなく、さらに撮像素子23へは入射しない。
 このように、対象物X(輝点)が光軸A1方向(z軸方向)に位置している場合には、強度フレア光は、発生しない。
 続いて、図22について説明する。なお、図22では、さらに反射光L1と、反射光L1の撮像素子23への入射角であるθ3とを用いて説明する。
 反射光L1は、光源10から照射されたレーザ光が対象物Yによって反射された光と定義する。さらに、この反射光L1は、レンズカバー30を通してレンズ21に直接入射して、撮像素子23上の一点に結像する。この反射光L1の撮像素子23への入射角をθ3とする。
 また、図22が示す反射光Lは、対象物X(輝点)で反射された光で、レンズ21に直接入射せずに、第1面221bに到達する。このとき入射角は、α-βである。第1面221bに到達した光は、反射角がα-βで反射される。さらに、反射された光は、第3面31に入射角がα-2βで入射し、反射角がα-2βで反射され、レンズ21を透過して、撮像素子23に入射する。この光が撮像素子23に入射する点は、上記の反射光L1が撮像素子23に入射した点(上記の一点)と同じである。つまりこのとき当該一点にて、強度フレア光が発生する。
 また、図22には、撮像素子23の上面の中心点であって光軸A1が撮像素子23を通る点と、鏡筒22bの上端とを通る一点鎖線である補助線80が示されている。この補助線80と光軸A1とがなす角度が半画角に相当し、θ4として図示されている。
 図22が示すように、αが半画角(θ4)よりも大きいときに、当該一点にて強度フレア光が発生する。
 図21が示すように、本変形例に係る3次元測距モジュール1bにおいては、第1面221bのレーザ光の光散乱角の半値幅は、7度以下である。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第1面221b(第1傾斜部222b)で、鏡面反射する。この場合においても、レンズ21及び撮像素子23へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1bを実現することができる。つまり、対象物Xが光軸A1方向に位置している場合には、強度フレア光が発生しない。しかし、図22が示すように、対象物X及び撮像素子23を結ぶ方向と光軸A1方向とがなす角度がαである場合には、強度フレア光が発生する場合がある。
 そこで発明者らは、さらに検討し、下記の実施の形態1の変形例3に至った。
 (実施の形態1の変形例3)
 次に、実施の形態1の変形例3について説明する。実施の形態1の変形例3では、第1面221cに形成された第1傾斜部222cの傾斜の程度が、実施の形態1の変形例2と相違する。以下では、実施の形態1の変形例2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 図23は、本変形例に係る3次元測距モジュール1cの断面図である。
 本変形例に係る3次元測距モジュール1cは、レンズモジュール20にかえてレンズモジュール20cを備える点を除いて、実施の形態1の変形例2に係る3次元測距モジュール1bと同じ構成を有する。
 レンズモジュール20cは、鏡筒22bにかえて鏡筒22cを有する点を除いて、レンズモジュール20bと同じ構成を有する。
 鏡筒22cは、第1面221bにかえて第1面221cを有する点を除いて、鏡筒22bと同じ構成を有する。
 第1面221cは、レンズカバー30から離れるように傾斜する第1傾斜部222cを含む。つまり、第1面221cは、光軸A1から離れるにしたがって、下方へ向かうように傾斜している第1傾斜部222cを含んでいる。より具体的には、第1傾斜部222cは、第1面221cの全体にわたって形成されている。第1傾斜部222cと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、βである。
 本変形例においては、第1傾斜部222cと、光軸A1に垂直な面(つまりはxy平面)とがなす角度、つまりは、傾斜角度であるβは、ε/2以上である。
 ここで、εについて説明する。
 まずは、レンズカバー30の対象物X側からレンズ21を見た場合について考える。つまり、この場合とは、レンズカバー30の上面側からレンズ21を見た場合である。一例として、図23が示すx軸正側かつz軸正側(つまり反射光Lが入射する方向)からレンズ21を見た場合について説明する。
 この場合に、光軸A1とレンズ21の手前側が視認できる方向とがなす角度のうち最大の角度をεとする。「レンズ21の手前側が視認できる」とは、より具体的には、3次元測距モジュール1cが備えるレンズ21以外の構成要素によって遮られずにレンズ21の手前側が視認できる、の意味である。レンズ21の手前側とは、上記の通りにレンズ21を見た場合には、レンズ21の最もx軸正側の一点である。遮光部材51が光源10とレンズモジュール20cとの間に設けられているため、遮光部材51に遮られない範囲で、光軸A1とレンズ21の手前側が視認できる方向とがなす角度のうち最大の角度がεである。実施の形態1の変形例2と同様に、本変形例でも、対象物X及び撮像素子23を結ぶ方向と光軸A1方向(z軸方向)とがなす角度はαであり、一例としてαがεである例が図23に示されている。
 ここで、鏡筒22cの内側面223と遮光部材51との距離をCとする。さらに、基板40のレンズカバー30に対向する上面である第2面42とレンズカバー30の第3面31との距離をH0とする。
 ここで、α及びβの値が変化したときのフレア光量への影響について、図24~図28を用いて検討する。なお、第1面221cは散乱半値幅が3度の鏡面反射する面である点、Dが5mm、H0が2mm、Cが無限大である点を考慮して、図6の(a)が算出された方法と同じ方法で、図24~図28についてフレア光量が算出された。なお、第1面221cの正面反射率であるR1は、10%としている。
 図24~図28はそれぞれ、本変形例に係る第1傾斜部222cの傾斜角度が変更された場合のフレア光量への影響が示された図である。
 なお、図28では、本変形例に係る3次元測距モジュール1cに相当する、βが45度である第5実施例に係る3次元測距モジュールについて、フレア光量が算出されている。図24~図27のそれぞれに示されるβが0度、15度、30度及び44度である3次元測距モジュールは第2、第3、第4及び第5検討例に係る3次元測距モジュールであり、本変形例に係る3次元測距モジュール1cに相当しない。第2検討例~第5検討例に係る3次元測距モジュールは、βの値を除いて、本変形例に係る3次元測距モジュール1cと同じ構成を有する。
 図24~図27では、第2検討例~第5検討例に係る3次元測距モジュールにおいて、フレア光量のピークが発生することが示されている。つまり、強度フレア光が発生する。
 しかし、図28が示すように、第5実施例に係る3次元測距モジュールにおいて、フレア光量のピークが発生しないことが示されている。つまり、強度フレア光が抑制され、より具体的には、強度フレア光は発生しない。
 つまり、Dが5mm、H0が2mm、Cが無限大である条件においては、εは90度となり、βがε/2以上の値であることで、強度フレア光が抑制される。また、βは式(4)を満たす値である。
Figure JPOXMLDOC01-appb-M000004
 [効果など]
 本変形例に係る3次元測距モジュール1cにおいては、レンズカバー30の対象物側からレンズ21を見た場合に、光軸A1と、レンズ21の手前側が視認できる方向とがなす角度のうち最大の角度をεとする。このとき、第1傾斜部222cと、光軸A1に垂直な面とがなす角度は、ε/2以上である。
 輝点に相当する対象物Xによって反射されたレーザ光が第1面221c(第1傾斜部222c)で鏡面反射する場合においては、3次元測距モジュール1c内の反射により、レンズ及び撮像素子へ到達する光(強度フレア光)が発生する可能性がある。第1傾斜部222cとレンズ21の光軸A1に垂直な面とがなす角度が上記角度範囲であることで、対象物Xによって反射されたレーザ光は、3次元測距モジュール1cが備える構成要素(例えば遮光部材51など)により反射されて、レンズ21及び撮像素子23へ到達し難くなる。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1cを実現することができる。
 (実施の形態2)
 次に、実施の形態2について説明する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態2に係る3次元測距モジュール1dの構成例について図29を用いて説明する。
 図29は、本実施の形態に係る3次元測距モジュール1dの上面図及び断面図である。
 より具体的には、図29の(a)は3次元測距モジュール1dの上面図であり、図29の(b)は図29の(a)のXXIXb-XXIXb線における3次元測距モジュール1dの断面図である。
 本実施の形態に係る3次元測距モジュール1dは、基板40にかえて基板40dを備える点を除いて、実施の形態1に係る3次元測距モジュール1と同じ構成を有する。
 なお、3次元測距モジュール1dは鏡筒22を有するレンズモジュール20を備えるため、3次元測距モジュール1dは鏡筒22を備えるともいえる。しかし、3次元測距モジュール1dは、鏡筒22を備えていなくてもよい。また、本実施の形態においては、鏡筒22の第1面221は、レーザ光を光拡散させる光拡散反射面であり、第1傾斜部222を含んでいる。しかし、これに限られず、第1面221は第1傾斜部222を含まなくてもよい。例えば、本実施の形態においては、βが0度であってもよい。
 基板40dは、レンズカバー30からレンズ21の光軸A1の方向にレンズ21を見た場合に、つまりは、図29の(a)が示す上面図において、レンズ21を内包するように開口41dを有する部材である。基板40dは、レンズカバー30に対向する上面である第2面42dと筐体底面部54に対向する下面とを有している。
 開口41dの形状は、本実施の形態においては、上面視で円形であるがこれに限られない。開口41dの直径は、開口41dがレンズ21を内包できる大きさであればよく、開口41dがレンズモジュール20を内包できる大きさであればよい。
 基板40dは、光源10が設けられる基板部材である。基板40dの上方に接して、光源10が設けられている。つまり、基板40dは、光源10を実装するための実装基板である。なお基板40dは、形状以外は、基板40と同じ構成を有する。
 また、基板40dが有する第2面42dは、レーザ光を光拡散(光散乱)させる光拡散反射面である。例えば、第2面42dのレーザ光の光散乱角の半値幅は、30度以上60度以下であればよく、40度以上60度以下であればよりよく、50度以上60度以下であればさらによい。
 ここでさらに、本実施の形態に係る3次元測距モジュール1dの構成要素の位置関係についてより詳細に説明する。
 図29の(b)が示す断面図は、レンズ21の光軸A1を含む面でレンズ21を切断したときの断面視を示す図であるとも言える。
 この断面視において、以下のB、H1、H2及びθ5を定義する。
 まず、レンズ21の外端と開口41dの外端との間の距離をBとする。例えば、図29の(b)が示すように、レンズ21の外端とは、レンズ21の最もx軸正側の端部であり、開口41dの外端とは、開口41dの縁部である。また、断面視におけるレンズ21の外端と鏡筒22の内側面223とはx軸上での位置が一致する。また、レンズ21の外端と開口41dの外端との間の距離とは、レンズ21及び基板40dのそれぞれの互いに最も近い点の間の距離であるとも言える。
 また、レンズカバー30とレンズ21の中心211との距離をH1とする。換言すると、H1は、平凸レンズであるレンズ21の平面から第3面31までのz軸方向の長さである。
 さらに、レンズカバー30と部材の一例である基板40dのレンズカバー30に対向する第2面42dとの距離をH2とする。換言すると、H2は、第3面31から第2面42dまでのz軸方向の長さである。
 続いて、レンズ21の中心211及び撮像素子23の外端を結ぶ線と、レンズ21の光軸A1とのなす角度をθ5とする。ここで、断面視における撮像素子23の外端とは、一例として、撮像素子23の上面の最もx軸負側の一点である。図29の(b)においては、レンズ21の中心211及び撮像素子23の外端を結ぶ線は、反射光Lのうち第2面42d及び第3面31で反射された光の進行方向と、重なっている。
 本実施の形態においては、このように定義されたB、H1、H2及びθ5は、以下の式(5)を満たす。
 (H1+H2)×tanθ5≦B 式(5)
 ここで、光源10から照射されたレーザ光が対象物Xによって反射された光である反射光Lの挙動について説明する。
 図29の(b)には3つの反射光Lが示されている。
 3つの反射光Lのうち1つは、レンズカバー30を通してレンズモジュール20のレンズ21に直接入射して、撮像素子23上の一点に結像する。
 また、3つの反射光Lのうち他の1つは、レンズ21に直接入射せずに、第1面221に到達して拡散反射され、さらに第3面31によって反射され、レンズ21を透過して、撮像素子23に入射する。
 また、3つの反射光Lのうちさらに他の1つは、以下のような挙動を示す。
 この光は、レンズ21に直接入射せずに、第2面42dに到達する。第2面42dに到達した光は、拡散反射される。さらに、反射角がθ5で拡散反射された光は、さらに、第3面31によって反射され、レンズ21を透過して、撮像素子23に入射する。第3面31によって反射された光の、撮像素子23への入射角は、θ5である。
 ここで、図6の(a)が算出された方法と同じ方法で、D、B、H1及びH2の値が変化したときのフレア光量への影響について、図30~図33を用いて検討する。
 図30~図33はそれぞれ、本実施の形態に係るD、B、H1及びH2が変更された場合のフレア光量への影響が示された図である。なお、計算のため、鏡筒22の厚みであるAは0mmとし、つまりは、第2面42dでの反射による光のみに起因するフレア光量が算出されている。
 ここでは、図30~図32ではDが5mm、図33ではDが10mmである。H1及びH2は、図30では1mm、図31及び図33では2mm、図32では4mmである。
 図30~図33では、半画角未満のθ5において、フレア光量の値が検出下限以下であれば、撮像素子23において強度フレア光が発生しないことを意味する。
 図30(つまりはDが5mm、H1及びH2が1mm)では、半画角45度に対して2<B、半画角60度に対して3.5<B、半画角70度に対して5.5<Bにおいて、フレア光量が検出下限以下である。
 図31(つまりはDが5mm、H1及びH2が2mm)では、半画角45度に対して4<B、半画角60度に対して7<B、半画角70度に対して11<Bにおいて、フレア光量が検出下限以下である。
 図32(つまりはDが5mm、H1及びH2が4mm)では、半画角45度に対して8<B、半画角60度に対して14<B、半画角70度に対して22<Bにおいて、フレア光量が検出下限以下である。
 これらについて一般化された式が式(5)に相当し、つまり、式(5)が満たされる場合には、フレア光量が検出下限以下となり、強度フレア光の発生が抑制される。
 さらに、図31及び図33を比較する。この比較により、Dのみが異なる値である場合においては、フレア光量の変化は少ないことが明らかとなった。
 また、3次元測距モジュール1dの製造上、Aは1mm以上であることが求められる。図13(a)に示すように、Dが5mm、Aが1mm、H1及びH2が2mm、βが0度の第1検討例の3次元測距モジュールにおいて、鏡筒によるフレア光量のピーク値が10であった。このため、第2面42dでの反射によるフレア光量のピーク値が10以下であれば、第1検討例の3次元測距モジュールよりも、強度フレア光の発生を抑制できているといえる。例えば、図30~33では対応するBのグラフは記載していないが、半画角45度に対してはB<2.8、半画角60度に対してはB<5又は半画角70度に対してはB<8とすることで、鏡筒22に起因するフレア光よりも第2面42dに起因するフレア光が小さくなり、全体としての強度フレア光の発生の増加が抑制されていた。
 [効果など]
 本実施の形態に係る3次元測距モジュール1dは、光源10と、レンズ21と、撮像素子23と、レンズカバー30と、部材(基板40d)とを有する。
 光源10は、レーザ光を照射する。
 レンズ21は、照射されたレーザ光が対象物により反射した光を集光する。
 撮像素子23は、レンズ21によって集光された光を受光する。
 レンズカバー30は、レンズ21と対象物との間に位置し、レーザ光の波長に対して透明である。部材(基板40d)は、レンズカバー30からレンズ21の光軸A1の方向にレンズ21を見た場合に、レンズ21を内包するように開口41dを有する。光軸A1を含む面でレンズ21を切断したときの断面視で、レンズ21の外端と開口41dの外端との間の距離をBとし、レンズカバー30とレンズ21の中心との距離をH1とする。さらに上記断面視で、レンズカバー30と部材(基板40d)のレンズカバー30に対向する第2面42dとの距離をH2とし、レンズ21の中心及び撮像素子23の外端を結ぶ線と、光軸A1とのなす角度をθとしたとき、(H1+H2)・tanθ≦Bの関係を満たす。なお、第2面42dは、例えば光を拡散反射させる面である。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第2面42dで拡散反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)が抑制される。例えば上記のように、Dが5mm、Aが1mm、H1及びH2が2mm、βが0度の3次元測距モジュールにおいて、鏡筒によるフレア光量のピーク値が10であるが、本実施の形態においては、図30~図33が示すように、第2面42dでの反射によるフレア光量のピーク値が10以下を達成する3次元測距モジュール1dが実現できる。つまりは、鏡筒22に起因するフレア光よりも第2面42dに起因するフレア光を小さくできるので、全体としての強度フレア光の発生の増加が抑制でき、距離の誤算出の発生の増加が抑制された3次元測距モジュール1dを実現することができる。
 また、3次元測距モジュール1dは、光源10と、レンズ21、撮像素子23、並びに、レンズ21及び撮像素子23の間の空間を囲いレンズ21を支持する鏡筒22を含むレンズモジュール20と、レンズカバー30と、部材(基板40d)と、を有する。レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面視で、鏡筒22の対象物に対向する第1面221は、光軸A1から離れるに従って、レンズカバー30から離れるように傾斜する第1傾斜部222を含む。また、(H1+H2)・tanθ≦Bの関係を満たす。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第1面221(第1傾斜部222)で反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)が抑制される。さらに、輝点に相当する対象物Xによって反射されたレーザ光が第2面42dで拡散反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)も抑制される。つまりは、全体としてレンズ21及び撮像素子23に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュール1dを実現することができる。
 (実施の形態2の変形例1)
 次に、実施の形態2の変形例1について説明する。実施の形態2の変形例1では、開口41fの形状が、実施の形態2と相違する。以下では、実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態2の変形例1に係る3次元測距モジュール1fの構成例について図34を用いて説明する。
 図34は、本変形例に係る3次元測距モジュール1fの上面図及び2つの断面図である。
 より具体的には、図34の(a)は3次元測距モジュール1fの上面図であり、図34の(b)は図34の(a)のXXXIVb-XXXIVb線における3次元測距モジュール1fの断面図である。図34の(c)は図34の(a)のXXXIVc-XXXIVc線における3次元測距モジュール1fの断面図である。
 本変形例に係る3次元測距モジュール1fは、基板40dにかえて基板40fを備える点を除いて、実施の形態2に係る3次元測距モジュール1dと同じ構成を有する。
 基板40fは、開口41dにかえて開口41fを有する点を除いて基板40dと同じ構成を有する。
 開口41fの形状は、本変形例においては、上面視で矩形である。上面視で、開口41fがレンズ21及び鏡筒22を内包できる大きさであればよく、開口41fがレンズモジュール20を内包できる大きさであればよい。
 なお、実施の形態2と同じく本変形例に係る3次元測距モジュール1fにおいても、B、H1、H2及びθ5は、上記の式(5)の関係を満たす。
 また、3次元測距モジュール1fは、このような基板40fにかえて基板40ffを備えてもよい。基板40ffについて、図35を用いて説明する。
 図35は、本変形例に係る基板40ffの上面図である。
 より具体的には、図35の(a)は、基板40ffの上面図であり、図35の(b)は、開口41ffの上面図である。基板40ffは、開口41fにかえて開口41ffを有する点を除いて基板40fと同じ構成を有する。
 さらに、基板40ffを備える3次元測距モジュール1fについても、B、H1、H2及びθ5は、上記の式(5)の関係を満たす。
 なお、上面図においては、レンズ21の形状は円形状、撮像素子23の形状は矩形状(より具体的には、長方形状)である。この場合、回転方向の角度によらずに、B、H1、H2及びθ5が、以下の式(6)の関係を満たすと、光軸A1の方向から見た場合に、つまりは、上面図における開口41ffの形状は、樽型となる。
 (H1+H2)×tanθ5=B 式(6)
 上記の通り、上面図における開口41ffの形状は樽型であり、換言すると、開口41ffの形状は、レンズ21の形状である円形状と、撮像素子23の形状である矩形状との中間的な形状となる。また、図35の(b)では、撮像素子23と相似形状の矩形231が破線で示されており、レンズ21に接する矩形231の外側の辺あるいは頂点に内接するように開口41ffが形成されていることが示されている。このような形状では、回転方向の角度によらずに、フレア光の発生する確率は同じになる。
 図31及び図33で示したように、Dが異なる場合でも、他の条件が同じであればフレア光量のBの値依存性はほとんど変化しない。例えば、上記のBが式(6)を満たすように、つまりは、開口41ffの外形とレンズ21との距離が十分に離れれば、基板40ffの第2面42dの反射に起因する強度フレア光の発生を抑制することができる。
 さらに、第6実施例に係る3次元測距モジュール1xについて図36を用いて説明する。
 図36は、第6実施例に係る3次元測距モジュール1xの断面図である。
 第6実施例に係る3次元測距モジュール1xは、基板40dにかえて基板40xを備える点を除いて、実施の形態2に係る3次元測距モジュール1dと同じ構成を有する。
 基板40xは、開口41dにかえて開口41xを有する点を除いて基板40dと同じ構成を有する。
 開口41xの形状は、上面視で開口41dよりも大きい。つまり、第6実施例においては、Bが実施の形態2に比べて大きい。このため、図36が示すように、反射光Lが筐体底面部54の上面に入射し反射され、さらにレンズカバー30によって反射され、レンズモジュール20の撮像素子に到達する。ただし、このような光の大部分は、レンズモジュール20の鏡筒の外側面によって反射される。言い換えると、鏡筒の外側面によってけられる。このため、強度フレア光の発生が抑制される。
 [効果など]
 本変形例に係る3次元測距モジュール1fにおいては、光軸A1の方向から見た場合に、開口41ffの外形は、樽型である。
 上記の通り、光軸A1を含む面でレンズ21を切断したときの断面視で、レンズ21の外端と開口41ffの外端との間の距離をBとしたとき、回転方向の角度によらずに、Bが式(6)を満たす。つまりは、開口41ffの外形とレンズ21との距離が均等に十分に離れることができるため、最も効率よく基板40ffの第2面42dの反射に起因する強度フレア光の発生を抑制することができる。よって、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1fを実現することができる。
 (実施の形態2の変形例2)
 次に、実施の形態2の変形例2について説明する。実施の形態2の変形例2では、基板40gの第2面42gが第2傾斜部422gを含む点が、実施の形態2と相違する。以下では、実施の形態2との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 図37は、本変形例に係る3次元測距モジュール1gの上面図及び断面図である。
 より具体的には、図37の(a)は3次元測距モジュール1gの上面図であり、図37の(b)は図37の(a)のXXXVIIb-XXXVIIb線における3次元測距モジュール1gの断面図である。
 本変形例に係る3次元測距モジュール1gは、基板40dにかえて基板40gを備える点を除いて、実施の形態2に係る3次元測距モジュール1dと同じ構成を有する。
 基板40gは、レンズカバー30に対向する上面である第2面42gを有している。
 光軸A1を含む面でレンズ21を切断したときの断面視で、つまりは、図37の(b)が示す断面図で、第2面42gは、光軸A1から離れるに従って、レンズカバー30から離れるように傾斜する第2傾斜部422gを含む。つまり、第2面42gは、光軸A1から離れるにしたがって、下方へ向かうように傾斜している第2傾斜部422gを含んでいる。より具体的には、第2傾斜部422gは、開口41gの周りの第2面42gの全体にわたって形成されている。図37の(b)が示す、レンズ21の光軸A1を含む面でレンズ21を切断したときの断面図で、第2傾斜部422gは、直線的である。なお、本変形例においては、レンズ21の光軸A1を含む面であればどの面でレンズ21を切断しても、そのときの断面図で、第2傾斜部422gは、直線的である。
 図37の(b)が示すように、第2傾斜部422gと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、ηである。本変形例においては、ηは大きい方が良いが、大きすぎると上面とは言えずに側面の性質を帯びるので、60度程度以下が現実的な上面である。すなわち、ηは1度以上60度以下であるとよく、15度以上60度以下であるとよりよく、tan-1((H1+H2)/(D+A))以上60度以下であるとさらによい。また、レンズ21の光軸A1を含む面であればどの面でレンズ21を切断しても、そのときの断面図で第2傾斜部422gは直線的であり、どの断面図であってもηは一定である。
 なお、本変形例に係る3次元測距モジュール1gについても、B、H1、H2及びθ5は、上記の式(5)の関係を満たす。ここでは、レンズカバー30と第2面42g(第2傾斜部422g)の最上端部との距離をH2とする。
 [効果など]
 本変形例に係る3次元測距モジュール1gにおいては、上記の断面視で、第2面42gは、光軸A1から離れるに従って、レンズカバー30から離れるように傾斜する第2傾斜部422gを含む。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第2面42g(第2傾斜部422g)で反射される場合に、当該レーザ光は、第2面42g(第2傾斜部422g)からレンズ21及び撮像素子23とは反対方向に向かって反射されやすくなる。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1gを実現することができる。特に、傾斜角度がtan-1((H1+H2)/(D+A))以上の場合は、上記起因のフレアをなくすことができるので、その効果は大きい。
 (実施の形態3)
 次に、実施の形態3について説明する。実施の形態3では、レンズカバー30hの第3面31hが第3傾斜部311hを含む点が、実施の形態1とは主に相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態3に係る3次元測距モジュール1hの構成例について図38を用いて説明する。
 図38は、本実施の形態に係る3次元測距モジュール1hの断面図である。
 本実施の形態に係る3次元測距モジュール1hは、レンズモジュール20にかえてレンズモジュール20hを備える点、レンズカバー30にかえてレンズカバー30hを備える点を除いて、実施の形態1に係る3次元測距モジュール1と同じ構成を有する。なお、本実施の形態に係る3次元測距モジュール1hは、基板40を備えるが、これに限られず、基板40を備えていなくてもよい。
 レンズモジュール20hは、鏡筒22にかえて鏡筒22hを有する点を除いて、レンズモジュール20と同じ構成を有する。
 鏡筒22hは、形状を除いて鏡筒22と同じ構成を有する。
 鏡筒22hは、無底筒形状を有しており、円筒形状である。鏡筒22hの内部に円柱形状の空洞が形成されている。鏡筒22hはレンズ21の光軸A1に沿って延びる形状であり、レンズ21の光軸A1と鏡筒22hの軸とは一致する。上記の通り、鏡筒22hは円筒形状であるため、光軸A1と垂直な面で切断した断面において、外形は円環状である。
 ここで、鏡筒22hの対象物Xに対向する面(上面)を、第1面221hとする。実施の形態1とは異なり、第1面221hは、xy平面と平行であり、傾斜部を含まない。また、第1面221hは、レーザ光を光拡散(光散乱)させる光拡散反射面である。
 レンズカバー30hは、形状を除いてレンズカバー30と同じ構成を有する。
 また、レンズカバー30hは、レンズモジュール20hに対向する下面である第3面31hと対象物Xに対向する上面である第4面32hとを有する。
 第3面31hは、レンズ21の光軸A1から離れるに従って、レンズモジュール20hから離れるように傾斜する第3傾斜部311hを含む。つまり、第3面31hは、光軸A1から離れるにしたがって、上方へ向かうように傾斜している第3傾斜部311hを含んでいる。本実施の形態においては、第3傾斜部311hは、レンズモジュール20hの上方の、より具体的には開口41の上方の、第3面31hの全体にわたって形成されている。より具体的には、光軸A1の方向から見た場合に、例えば上面図においては、第3傾斜部311hは、第3傾斜部311hとレンズモジュール20hとが重なる領域の全体にわたって形成されている。図38が示す、レンズ21の光軸A1を含む面でレンズカバー30hを切断したときの断面図で、第3傾斜部311hは、直線的である。なお、本実施の形態においては、レンズ21の光軸A1を含む面であればどの面でレンズカバー30hを切断しても、そのときの断面図で、第3傾斜部311hは、直線的である。
 図38が示すように、第3傾斜部311hと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、ζである。本実施の形態においては、ζは5度以上45度以下であるとよく、10度以上45度以下であるとよりよく、20度以上45度以下であるとさらによい。また、レンズ21の光軸A1を含む面であればどの面でレンズカバー30hを切断しても、そのときの断面図で第3傾斜部311hは直線的であり、どの断面図であってもζは一定である。
 また、第3面31hにおいては、第3傾斜部311hの光軸A1と重なる点が最もz軸下方に位置する点であり、第3面31hの最下端部である。ここでは、この最下端部からレンズ21の中心211までの距離をH3とする。さらにこの最下端部を通り光軸A1に垂直な面(つまりはxy平面と平行な面)と、第3傾斜部311hとのz軸方向の距離を、ΔHとする。
 また、レンズカバー30hの第4面32hは、第3傾斜部311hが設けられている領域において、光軸A1から離れるにしたがって上方へ向かうように傾斜している第4傾斜部321hを含んでいる。第4傾斜部321hは、第3傾斜部311hと同じく直線的である。第3傾斜部311h及び第4傾斜部321hの傾斜の程度、つまりは、第3傾斜部311h及び第4傾斜部321hのそれぞれと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、同じである。
 続いて、本実施の形態に係る光の挙動について説明する。
 反射光L1は、光源10から照射されたレーザ光が対象物Yによって反射された光である。この反射光L1と光軸A1とのなす角度がθ6であり、つまりは反射光L1の撮像素子23への入射角がθ6である。この反射光L1は、撮像素子23上の一点に結像する。
 また、図38が示す反射光Lは、レンズ21に直接入射せずに、レンズカバー30hにおける第4傾斜部321h及び第3傾斜部311hを透過して、第1面221hに到達する。なお、反射光Lが第3傾斜部311h及び第4傾斜部321hを透過するときに、屈折が起こる。
 さらに、第1面221hに到達した光の一部は、反射角がθ6+2ζで反射される。さらに、反射された光は、第3面31h(より具体的には、第3傾斜部311h)に到達して、反射され、レンズ21を透過して、撮像素子23に入射する。この光のうち一部が撮像素子23に入射する点は、上記の反射光L1が撮像素子23に入射した点(上記の一点)と同じである。つまりこのとき当該一点にて、強度フレア光が発生する。
 さらにこの強度フレア光の量(以下フレア光量)が、以下の手法によって算出される。
 実施の形態1と同じように、対象物X(輝点)は、光軸A1方向(z軸方向)に位置している。上記の通り第3傾斜部311hの傾斜角度は、ζである。第1面221hの正面反射率をR1とし、第3面31hの正面反射率をR2とする。
 ここで、対象物Yによって反射された光である反射光L1の光量は、式(7)によって表される。
Figure JPOXMLDOC01-appb-M000005
 式(7)においては、レンズカバー30及びレンズ21での損失が無視されている。さらに、フレア光量は、式(8)によって表される。
Figure JPOXMLDOC01-appb-M000006
 なお、θ6が小さい場合に、第3面31hで反射された光は、第1面221h(より具体的には、図38が示すx軸正側の第1面221h)によって再度反射され、レンズ21に到達しないときがある。いわゆる、鏡筒22hの第1面221hによって光がけられる、という状態である。式(8)におけるθ6が式(9)を満たすθ7より小さい場合に相当するフレア光量が、式(8)で算出されたフレア光量から差し引かれる。
 (H3-ΔH)tanθ7+(H3-ΔH)tan(θ7+2ζ)=A 式(9)
 また、θ6が大きい場合にも、第3面31hで反射された光は、第1面221h(より具体的には、図38が示すx軸負側の第1面221h)によって再度反射され、レンズ21に到達しないときがある。こちらも、いわゆる、鏡筒22hの第1面221hによって光がけられる、という状態である。式(8)におけるθ6が式(10)を満たすθ8より大きい場合に相当するフレア光量が、式(8)で算出されたフレア光量から差し引かれる。
 (H3-ΔH)tanθ8+(H3-ΔH)tan(θ8+2ζ)=2D+A 式(10)
 以上のように、フレア光量が計算される。続いて、第3傾斜部311hの傾斜角度であるζが変更されたときのフレア光量への影響について検討する。
 図39及び図40は、本実施の形態に係る第3傾斜部311hの傾斜角度が変更された場合のフレア光量への影響が示された図である。
 図39では、基板40を備えない3次元測距モジュールについて、図40では、基板40を備える3次元測距モジュールについてフレア光量が算出されている。また、図39及び図40ではDが5mm、H3が2mm、Aが2mmであり、図40ではBが3mmである。
 図39では、基板40を備えない3次元測距モジュール1hに相当する、それぞれζが5、10、15及び20度である第7、第8、第9及び第10実施例に係る3次元測距モジュールについて、フレア光量が算出されている。また、図39に示されるζが0度である3次元測距モジュールは、第6検討例に係る3次元測距モジュールであり、本実施の形態に係る3次元測距モジュール1hに相当しない。第6検討例に係る3次元測距モジュールは、ζが0度、つまりは、第3面31hがxy平面と平行である点を除いて、基板40を備えない3次元測距モジュール1hと同じ構成を有する。
 図40では、基板40を備える3次元測距モジュール1h(つまりは、図38に示される3次元測距モジュール1h)に相当する、それぞれζが5、10、15及び20度である第11、第12、第13及び第14実施例に係る3次元測距モジュールについて、フレア光量が算出されている。また、図40に示されるζが0度である3次元測距モジュールは、第7検討例に係る3次元測距モジュールであり、本実施の形態に係る3次元測距モジュール1hに相当しない。第7検討例に係る3次元測距モジュールは、ζが0度、つまりは、第3面31hがxy平面と平行である点を除いて、基板40を備える3次元測距モジュール1hと同じ構成を有する。
 図39及び図40では、入射角であるθ6が変更されたときのフレア光量が示されている。
 第3面31hが第3傾斜部311hを含まない(つまりはζが0度である)第6及び第7検討例に係る3次元測距モジュールと、第3面31hが第3傾斜部311hを含む(つまりζが5度以上である)第7~第14実施例に係る3次元測距モジュールとを比較する。第6及び第7検討例に係る3次元測距モジュールに比べ、第3面31hが第3傾斜部311hを含む第7~第14実施例に係る3次元測距モジュールは、フレア光量が低下している。
 さらに、図39及び図40のいずれにおいても、ζが大きくなるほどフレア光量が抑制されていることが明らかである。また、図39及び図40を比較すると、3次元測距モジュール1hが基板40を備えない場合には、θ6が30度~70度の範囲において、フレア光量を効果的に抑制出来ていることが示されている。
 [効果など]
 本実施の形態に係る3次元測距モジュール1hは、光源10と、レンズモジュール20hと、レンズカバー30hと、を有する。
 光源10は、レーザ光を照射する。
 レンズモジュール20hは、照射されたレーザ光が対象物により反射した光を集光するレンズ21、レンズ21によって集光された光を受光する撮像素子23、並びに、レンズ21及び撮像素子23の間の空間を囲いレンズ21を支持する鏡筒22hを含む。
 レンズカバー30hは、レンズモジュール20hと対象物との間に位置し、レーザ光の波長に対して透明である。レンズカバー30hのレンズモジュール20hに対向する第3面31hは、レンズ21の光軸A1から離れるに従って、レンズモジュール20hから離れるように傾斜する第3傾斜部311hを含む。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第3面31h(第3傾斜部311h)で反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)が抑制される。例えば、図39及び図40で説明したように、第6及び第7検討例に係る3次元測距モジュールに比べ、第3面31hが第3傾斜部311hを含む第7~第14実施例に係る3次元測距モジュールは、フレア光量が低下している。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュール1hを実現することができる。ただし、傾斜ζがあまり大きな角度を有する3次元測距モジュールは、撮像した画像が中心部付近で大きく歪むので好ましくなく、実用上はζが45度以下の場合に許容できるレベルであった。
 本実施の形態に係る3次元測距モジュール1hにおいては、光軸A1の方向から見た場合に、第3傾斜部311hは、第3傾斜部311hとレンズモジュール20hとが重なる領域の全体にわたって形成されている。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第3面31h(第3傾斜部311h)で反射される場合に、当該レーザ光は、第3面31h(第3傾斜部311h)からレンズ21及び撮像素子23とは反対方向に向かって反射されやすくなる。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1hを実現することができる。
 (実施の形態3の変形例1)
 次に、実施の形態3の変形例1について説明する。実施の形態3の変形例1では、第4面32jが第4傾斜部を含まない点が、実施の形態3と相違する。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態3の変形例1に係る3次元測距モジュール1jの構成例について図41及び図42を用いて説明する。
 図41は、本変形例に係る3次元測距モジュール1jの上面図及び2つの断面図である。
 より具体的には、図41の(a)は3次元測距モジュール1jの上面図であり、図41の(b)は図41の(a)のXLIb-XLIb線における3次元測距モジュール1jの断面図である。図41の(c)は図41の(a)のXLIc-XLIc線における3次元測距モジュール1jの断面図である。
 図42は、本変形例に係る3次元測距モジュール1jにおける光の挙動を示す断面図である。
 本変形例に係る3次元測距モジュール1jは、レンズカバー30hにかえてレンズカバー30jを備える点を除いて、実施の形態3に係る3次元測距モジュール1hと同じ構成を有する。なお、本変形例に係る3次元測距モジュール1jは、基板40を備えるが、これに限られず、基板40を備えていなくてもよい。
 レンズカバー30jは、レンズモジュール20hに対向する下面である第3面31jと対象物Xに対向する上面である第4面32jとを有する。
 なお、第3面31jは、実施の形態3に係る第3面31hと同じ構成であり、第3面31jが含む第3傾斜部311jも実施の形態3に係る第3傾斜部311hと同じ構成である。
 第4面32jは、平らであり、つまりは平面であって第4傾斜部を有さない。第4面32jは、xy平面と平行な面である。
 続いて、本変形例に係る光の挙動について説明する。
 反射光L1は、実施の形態3と同じ挙動を示し、この反射光L1は撮像素子23上の一点に結像する。
 また、図42が示す反射光Lは、レンズ21に直接入射せずに、レンズカバー30jにおける第3傾斜部311jに入射して透過する。このとき、第3傾斜部311jへの入射角は、ζであり、第3傾斜部311jからの出射角は、γである。第3傾斜部311jを透過した光は、第1面221hに到達する。
 さらに、第1面221hに到達した光の一部は、反射角がθ6+2ζで反射される。さらに、反射された光は、第3面31j(より具体的には、第3傾斜部311j)に到達して、反射され、レンズ21を透過して、撮像素子23に入射する。この光のうち一部が撮像素子23に入射する点は、上記の反射光L1が撮像素子23に入射した点(上記の一点)と同じである。つまりこのとき当該一点にて、強度フレア光が発生する。
 さらにこの強度フレア光の量(以下フレア光量)が、以下の手法によって算出される。
 実施の形態3と同じように、対象物X(輝点)は、光軸A1方向(z軸方向)に位置している。上記の通り第3傾斜部311jの傾斜角度は、ζである。第1面221hの正面反射率をR1とし、第3面31jの正面反射率をR2とする。
 ここで、対象物Yによって反射された光である反射光L1の光量は、上記の式(7)によって表される。
 さらに、鏡筒22の上面(第1面221h)での光散乱は均等拡散反射であるので、均等拡散反射面への入射角γに寄らず、鏡筒22の上面(第1面221h)の鉛直線と散乱方向の間の角度にのみ依存し、その結果、フレア光量は、式(11)によって表される。
Figure JPOXMLDOC01-appb-M000007
 ここで、レンズカバー30jが一例として屈折率が1.5であるガラスによって構成されている場合に、ζ及びγは式(12)を満たす。
 sinγ=sinζ×(n1/n2) 式(12)
 なお、n1はレンズカバー30の屈折率(例えば1.5)であり、n2は空気の屈折率(1.0)である。さらに、ζが10度の場合、出射角であるγは、式(13)により算出され、約15度である。
 Asin(sin(10)×1.0/1.5) 式(13)
 さらに、θ6が小さい場合に、第3面31jで反射された光は、第1面221h(より具体的には、図42が示すx軸正側の第1面221h)によって再度反射され、レンズ21に到達しないときがある。いわゆる、鏡筒22hの第1面221hによって光がけられる、という状態である。式(11)におけるθ6が式(14)を満たすθ9より小さい場合に相当するフレア光量が、式(11)で算出されたフレア光量から差し引かれる。
 (H3-ΔH)tanθ9+(H3-ΔH)tan(θ9+2ζ)≒A 式(14)
 また、θ6が大きい場合にも、第3面31jで反射された光は、第1面221h(より具体的には、図42が示すx軸負側の第1面221h)によって再度反射され、レンズ21に到達しないときがある。こちらも、いわゆる、鏡筒22hの第1面221hによって光がけられる、という状態である。式(11)におけるθ6が式(15)を満たすθ10より大きい場合に相当するフレア光量が、式(11)で算出されたフレア光量から差し引かれる。
 (H3-ΔH)tanθ10+(H3-ΔH)tan(θ10+2ζ)≒2D+A 式(15)
 以上のように、フレア光量が計算される。続いて、第3傾斜部311jの傾斜角度であるζが変更されたときのフレア光量への影響について検討する。
 図43及び図44は、本変形例に係る第3傾斜部311jの傾斜角度が変更された場合のフレア光量への影響が示された図である。
 図43では、基板40を備えない3次元測距モジュールについて、図44では、基板40を備える3次元測距モジュールについてフレア光量が算出されている。また、図43及び図44ではDが5mm、H3が2mm、Aが2mmであり、図44ではBが3mmである。
 図43では、基板40を備えない3次元測距モジュール1jに相当する、それぞれζが5、10、15及び20度である第15、第16、第17及び第18実施例に係る3次元測距モジュールについて、フレア光量が算出されている。また、図43に示されるζが0度である3次元測距モジュールは、第8検討例に係る3次元測距モジュールであり、本変形例に係る3次元測距モジュール1jに相当しない。第8検討例に係る3次元測距モジュールは、ζが0度、つまりは、第3面31jがxy平面と平行である点を除いて、基板40を備えない3次元測距モジュール1jと同じ構成を有する。
 図44では、基板40を備える3次元測距モジュール1j(つまりは、図42に示される3次元測距モジュール1j)に相当する、それぞれζが5、10、15及び20度である第19、第20、第21及び第22実施例に係る3次元測距モジュールについて、フレア光量が算出されている。また、図44に示されるζが0度である3次元測距モジュールは、第9検討例に係る3次元測距モジュールであり、本変形例に係る3次元測距モジュール1jに相当しない。第9検討例に係る3次元測距モジュールは、ζが0度、つまりは、第3面31jがxy平面と平行である点を除いて、基板40を備える3次元測距モジュール1jと同じ構成を有する。
 図43及び図44では、入射角であるθ6が変更されたときのフレア光量が示されている。図43及び図44のいずれにおいても、ζが大きくなるほどフレア光量が抑制されていることが明らかである。また、図43及び図44を比較すると、3次元測距モジュール1jが基板40を備えない場合には、θ6が30度~70度の範囲において、フレア光量を効果的に抑制出来ていることが示されている。
 [効果など]
 本変形例に係る3次元測距モジュール1jにおいては、レンズカバー30の対象物に対向する第4面32jは、平らである。
 3次元測距モジュール1jが使用される環境において、測距対象の一例である人が当該3次元測距モジュール1jを見た場合に、レンズカバー30jの第4面32jに凹凸が設けられていると、当該人が違和感を覚えることがある。このため、第4面32jが平らであることで、当該違和感が解消されると同時に、実施の形態3と同様の効果が得られる。ただし、傾斜ζがあまり大きな角度を有する3次元測距モジュールは、撮像した画像が中心部付近で大きく歪むだけでなく、実施の形態3に比べて画像が拡大される効果も加わるので好ましくなく、実用上はζが40度以下の場合に許容できるレベルであった。
 (実施の形態3の変形例2)
 次に、実施の形態3の変形例2について説明する。実施の形態3の変形例2では、第4面32kが第4傾斜部を含まない点及び上面図での第3傾斜部311kの形状が、実施の形態3と相違する。以下では、実施の形態3との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態3の変形例2に係る3次元測距モジュール1kの構成例について図45を用いて説明する。
 図45は、本変形例に係る3次元測距モジュール1kの上面図及び断面図である。
 より具体的には、図45の(a)は3次元測距モジュール1kの上面図であり、図45の(b)は図45の(a)のXLVb-XLVb線における3次元測距モジュール1kの断面図である。図45の(c)は図45の(a)のXLVc-XLVc線における3次元測距モジュール1kの断面図であり、図45の(d)は図45の(a)のXLVd-XLVd線における3次元測距モジュール1kの断面図である。
 本変形例に係る3次元測距モジュール1kは、レンズカバー30hにかえてレンズカバー30kを備える点を除いて、実施の形態3に係る3次元測距モジュール1hと同じ構成を有する。
 また、レンズカバー30kは、レンズモジュール20hに対向する下面である第3面31kと対象物Xに対向する上面である第4面32kとを有する。
 なお、第4面32kは、実施の形態3の変形例1に係る第4面32jと同じ構成である。
 第3面31kは、レンズ21の光軸A1から離れるに従って、レンズモジュール20hから離れるように傾斜する第3傾斜部311kを含む。つまり、第3面31kは、光軸A1から離れるにしたがって、上方へ向かうように傾斜している第3傾斜部311kを含んでいる。光軸A1の方向から見た場合に、例えば上面図においては、第3傾斜部311kは、第3傾斜部311kとレンズモジュール20hとが重なる領域の全体にわたって形成されている。図45が示す、レンズ21の光軸A1を含む面でレンズカバー30kを切断したときの断面図で、第3傾斜部311kは、直線的である。なお、本変形例においては、レンズ21の光軸A1を含む面であればどの面でレンズカバー30kを切断しても、そのときの断面図で、第3傾斜部311kは、直線的である。
 図45の(b)及び(c)が示すように、第3傾斜部311kと、光軸A1に垂直な面(つまりはxy平面)とのなす角度である傾斜角度は、ζである。本変形例においては、ζは5度以上40度以下であるとよく、10度以上40度以下であるとよりよく、20度以上40度以下であるとさらによい。
 光軸A1の方向から見た場合に、つまりは、上面図で、第3傾斜部311kの外形は、撮像素子23の外形と相似形状である。上記の通り、光軸A1の方向から見た場合に、撮像素子23の外形は矩形である。また、図45の(a)では、撮像素子23の外形(矩形)と相似形状である第3傾斜部311kの外形が矩形の破線で示されている。
 第3傾斜部311kの光軸A1に垂直な面(つまりはxy平面)からの傾斜の程度は、第3傾斜部311kの傾斜角度であるζで表される。当該傾斜の程度(つまりはζ)は、光軸A1と第3傾斜部311kの外端との間の距離と、正の相関関係がある。第3傾斜部311kの外端は、図45の(a)が示す第3傾斜部311kの外形(矩形の破線)と一致する。つまりは、上面図で、光軸A1と第3傾斜部311kの外端の一点とを結ぶ方向における第3傾斜部311kのζは、光軸A1と第3傾斜部311kの外端との間の距離と、正の相関関係がある。また、光軸A1と第3傾斜部311kの外端の一点とを結ぶ方向における第3傾斜部311kのζの正接が、光軸A1と第3傾斜部311kの外端との間の距離に比例するとよい。
 ここで、y軸正方向を基準方向とする。この基準方向と、XLVb-XLVb線及びXLVc-XLVc線のそれぞれとのなす角度をδとする。
 例えば、図45の(b)においては、δは0であり、鏡筒22hの厚みであるAは1mmであり、ζは10度であり、半画角は14度である。
 また例えば、図45の(c)においては、δは0度より大きく、ζは20度であり、半画角は14度よりも大きく最大の値となる。また、図45の(d)が示す断面図においては、第3面31kはz軸負方向に凸状に湾曲している。
 図46は、本変形例に係るδとζとの関係を示す図である。δが変化することに伴い、光軸A1と第3傾斜部311kの外端との間の距離が変化する。これに伴い、ζの値も変化する。例えば、図45の(b)に比べて、半画角がより大きい図45の(c)の場合においては、基板40の第2面42の反射による強度フレア光がより大きくなる。このような形状では、回転方向の角度によらずに、フレア光の発生する確率は同じになる。このため、半画角がより大きい図45の(c)において、ζを大きくすることにより、角度δ方向に対して均等に強度フレア光の光量を小さくすることができる。
 [効果など]
 本変形例に係る3次元測距モジュール1kにおいては、光軸A1の方向から見た場合に、第3傾斜部311kの外形は、撮像素子23の外形と相似形状である。第3傾斜部311kの光軸A1に垂直な面からの傾斜の程度は、光軸A1と第3傾斜部311kの外端との間の距離と、正の相関関係がある。
 上記の通り、半画角がより大きい場合(例えば図45の(c))において、ζを大きくすることにより、角度δ方向に対して均等に強度フレア光の光量を小さくすることができる。よって、レンズ21及び撮像素子23に到達する強度フレア光の光量がより均等に抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1kを実現することができる。ただし、傾斜ζがあまり大きな角度を有する3次元測距モジュールは、撮像した画像が中心部付近で大きく歪むだけでなく、実施の形態3に比べて画像が方位によって拡大量が異なる効果も加わるので好ましくなく、実用上はζが40度以下の場合に許容できるレベルであった。
 (実施の形態3の変形例3)
 次に、実施の形態3の変形例3について説明する。実施の形態3の変形例3では、レンズカバー30mが外側レンズカバー33m及び内側レンズカバー34mを有している点が、実施の形態3の変形例1と相違する。以下では、実施の形態3の変形例1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態3の変形例3に係る3次元測距モジュール1mの構成例について図47を用いて説明する。
 図47は、本変形例に係る3次元測距モジュール1mの上面図及び2つの断面図である。
 より具体的には、図47の(a)は3次元測距モジュール1mの上面図であり、図47の(b)は図47の(a)のXLVIIb-XLVIIb線における3次元測距モジュール1mの断面図である。図47の(c)は図47の(a)のXLVIIc-XLVIIc線における3次元測距モジュール1mの断面図である。
 本変形例に係る3次元測距モジュール1mは、レンズカバー30jにかえてレンズカバー30mを備える点を除いて、実施の形態3の変形例1に係る3次元測距モジュール1jと同じ構成を有する。
 レンズカバー30mは、レンズモジュール20hに対向する下面である第3面31mと対象物Xに対向する上面である第4面32mとを有する。
 また、レンズカバー30mは、外側レンズカバー33m及び内側レンズカバー34mを有している。つまり、レンズカバー30mは、外側レンズカバー33m及び内側レンズカバー34mの2つの部材によって構成されている。
 外側レンズカバー33mの上面が第4面32mに相当する。外側レンズカバー33mは、レンズモジュール20hと対象物Xとの間に位置している、板状の部材である。外側レンズカバー33mは、実施の形態1に係るレンズカバー30と同じ部材であるとも言える。
 内側レンズカバー34mは、外側レンズカバー33mとレンズモジュール20hとの間に設けられた薄板状の部材である。内側レンズカバー34mは、外側レンズカバー33mの下面に接続して設けられている。また、レンズカバー30mの下面である第3面31mは、外側レンズカバー33mの下面の一部と、内側レンズカバー34mの下面とを合わせた面である。
 内側レンズカバー34mは、レンズモジュール20hに向かって(つまりはz軸負方向)に凸形状となるように湾曲した部材である。このため、第3面31mが有する第3傾斜部311mは、内側レンズカバー34mの下面に設けられている。
 このように構成されたレンズカバー30mにおいては、レンズカバー30mの第3面31mとレンズカバー30mの対象物Xに対向する第4面32mとではさまれる空間に空洞35が設けられている。つまり、外側レンズカバー33mと内側レンズカバー34mとの間の空間が、空洞35に相当する。
 また、光軸A1を含む面でレンズカバー30mを切断したときの断面視で、つまりは、図47の(b)が示す断面図での、レンズカバー30mの厚みについて説明する。この断面図では、空洞35が設けられた領域において、空洞35を除く光軸A1の方向の第3面31mから第4面32mまでの厚みは、一定である。
 図47の(b)が示すように、光軸A1つまりはz軸方向に沿った所定の仮想線での外側レンズカバー33mの厚みをT1、内側レンズカバー34mの厚みをT2とする。このT1とT2との合計値は、一定である。なお、本変形例においては、外側レンズカバー33mのどの位置においてもその厚みであるT1は一定であるため、T2の値も一定である。
 [効果など]
 本変形例に係る3次元測距モジュール1mにおいては、レンズカバー30mの第3面31mとレンズカバー30mの対象物に対向する第4面32mとではさまれる空間に空洞35が設けられている。光軸A1を含む面でレンズカバー30mを切断したときの断面視で、空洞35が設けられた領域において、空洞35を除く光軸A1の方向の第3面31mから第4面32mまでの厚みは、一定である。
 これによれば、3次元測距モジュール1mにより、強度フレア光の光量を小さくすることができるとともに、得られる距離画像における画像歪みを抑制することができる。
 (実施の形態3の変形例4)
 次に、実施の形態3の変形例4について説明する。実施の形態3の変形例4では、レンズカバー30nがレンズ形状を有している点が、実施の形態3の変形例1と相違する。ここで、レンズ形状とは表面が凸形状でも一点で焦点を結ばないような歪んだレンズを含む。以下では、実施の形態3の変形例1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 [構成]
 実施の形態3の変形例4に係る3次元測距モジュール1nの構成例について図48を用いて説明する。
 図48は、本変形例に係る3次元測距モジュール1nの断面図である。
 本変形例に係る3次元測距モジュール1nは、レンズカバー30jにかえてレンズカバー30nを備える点を除いて、実施の形態3の変形例1に係る3次元測距モジュール1jと同じ構成を有する。
 レンズカバー30nは、レンズモジュール20hに対向する下面である第3面31nと対象物Xに対向する上面である第4面32nとを有する。
 第4面32nは、平らであり、つまりは平面であって第4傾斜部を有さない。第4面32n、xy平面と平行な面である。
 当該レンズ形状は、平凸形状のレンズであり、レンズモジュール20hに向かって、つまりは、z軸負方向に向かって凸形状のレンズである。当該レンズ形状の凸面が、第3面31nに含まれており、第3傾斜部311nに相当する。つまり、第3面31nは、レンズ21の光軸A1から離れるに従って、レンズモジュール20hから離れるように傾斜する第3傾斜部311nを含む。
 さらに、レンズカバーの光軸A2、つまりは、当該レンズ形状の光軸A2は、レンズモジュール20hのレンズの光軸A1と一致する。
 [効果など]
 本変形例に係る3次元測距モジュール1nにおいては、第3面31nの形状はレンズ形状を含み、レンズカバー30nの光軸A1は、第3面31nのレンズの光軸A2と一致する。
 これによれば、3次元測距モジュール1nにより、強度フレア光の光量を小さくすることができるとともに、得られる距離画像における画像歪みを抑制することができる。特に、レンズ形状が1点で焦点を結ぶ形状であると、距離画像における画像歪みをさらに抑制することができる。
 (実施の形態4)
 次に、実施の形態4について説明する。実施の形態4では、主に複数の光源10が設けられている点が、実施の形態1と相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 実施の形態4に係る3次元測距モジュール1pの構成例について図49を用いて説明する。
 図49は、本実施の形態に係る3次元測距モジュール1pの上面図及び断面図である。
 より具体的には、図49の(a)は3次元測距モジュール1pの上面図であり、図49の(b)は図49の(a)のXLIXb-XLIXb線における3次元測距モジュール1pの断面図である。
 本実施の形態に係る3次元測距モジュール1pは、複数の光源10を備えている点、及び、遮光部材51にかえて遮光部材51pを備える点を除いて、実施の形態1に係る3次元測距モジュール1と同じ構成を有する。
 3次元測距モジュール1pは、4個の光源10を備えている。4個の光源10のそれぞれと、光軸A1との間の距離は、互いに等しい。つまり、1個の光源10と光軸A1との間の距離は、他の3個の光源10のそれぞれと光軸A1との間の距離に等しい。
 図49の(a)の上面図が示すように、4個の光源10はそれぞれ、レンズモジュール20よりも、x軸正側かつy軸正側に、x軸正側かつy軸負側に、x軸負側かつy軸正側に、x軸負側かつy軸負側に、位置している。
 遮光部材51pは、基板40の上方に接して設けられている部材である。遮光部材51pは、4個の光源10とレンズモジュール20との間に設けられている。遮光部材51pは、図49の(a)が示す上面図では、レンズモジュール20を囲う矩形の枠形状の部材である。遮光部材51pは形状を除いて、遮光部材51を同じ構成を有する。
 (実施の形態5)
 次に、実施の形態5について説明する。実施の形態5では、レンズカバー30のかわりにレンズカバー30hを備える点が、実施の形態1と相違する。以下では、実施の形態1との相違点を中心に説明し、共通点の説明を省略又は簡略化する。
 実施の形態5に係る3次元測距モジュール1qの構成例について図50を用いて説明する。
 図50は、本実施の形態に係る3次元測距モジュール1qの断面図である。
 本実施の形態に係る3次元測距モジュール1qは、レンズカバー30のかわりにレンズカバー30hを備える点を除いて、実施の形態1に係る3次元測距モジュール1と同じ構成を有する。
 このように、3次元測距モジュール1qは、光源10と、レンズモジュール20と、レンズカバー30hとを有する。光源10は、レーザ光を照射する。レンズモジュール20は、照射されたレーザ光が対象物により反射した光を集光するレンズ21、レンズ21によって集光された光を受光する撮像素子23、並びに、レンズ21及び撮像素子23の間の空間を囲いレンズ21を支持する鏡筒22を含む。レンズカバー30hは、レンズモジュール20と対象物との間に位置し、レーザ光の波長に対して透明である。レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面視で、鏡筒22の対象物に対向する第1面221は、光軸A1から離れるに従って、レンズカバー30hから離れるように傾斜する第1傾斜部222を含む。レンズカバー30hのレンズモジュール20に対向する第3面31hは、レンズ21の光軸A1から離れるに従って、レンズモジュール20から離れるように傾斜する第3傾斜部311hを含む。
 これにより、輝点に相当する対象物Xによって反射されたレーザ光が第1面221(第1傾斜部222)で反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)が抑制される。さらに、輝点に相当する対象物Xによって反射されたレーザ光が第3面31h(第3傾斜部311h)で反射された場合に、レンズ21及び撮像素子23へ到達する光(強度フレア光)が抑制される。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量が抑制されるため、距離の誤算出の発生が抑制された3次元測距モジュール1qを実現することができる。
 また、レンズ21の光軸A1を含む面で鏡筒22を切断したときの断面視で、第1傾斜部222と、レンズカバー30hのレンズモジュール20に対向する面(第3面31h)とがなす角度は、30度以上である。より具体的には、第1傾斜部222と第3面31hのうち第3傾斜部311hとがなす角度が、30度以上である。つまり、β+ζが30度以上であるとよい。この場合、レンズ21及び撮像素子23へ到達する光(強度フレア光)がより抑制される。つまりは、レンズ21及び撮像素子23に到達する強度フレア光の光量がより抑制されるため、距離の誤算出の発生がより抑制された3次元測距モジュール1qを実現することができる。
 (その他の実施の形態)
 以上、本開示の一つまたは複数の態様に係る3次元測距モジュールについて、実施の形態及び変形例に基づいて説明したが、本開示は、実施の形態及び変形例に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を各実施の形態及び変形例に施したものや、異なる実施の形態及び変形例における構成要素を組み合わせて構築される形態も、本開示の一つまたは複数の態様の範囲内に含まれてもよい。
 また、上記の実施の形態及び変形例は、請求の範囲又はその均等の範囲において種々の変更、置き換え、付加、省略などを行うことができる。
 本開示は、測距撮像装置に好適であり、例えばビデオカメラ、デジタルカメラ、または、測距システムなどに好適である。
 1、1a、1b、1c、1d、1f、1g、1h、1j、1k、1m、1n、1p、1q、1x 3次元測距モジュール
 L、L1 反射光
 X、Y 対象物
 10 光源
 20、20a、20b、20c、20h レンズモジュール
 21 レンズ
 22、22a、22b、22c、22h 鏡筒
 23 撮像素子
 30、30h、30j、30k、30m、30n レンズカバー
 31、31h、31j、31k、31m、31n 第3面
 32h、32j、32k、32n 第4面
 33m 外側レンズカバー
 34m 内側レンズカバー
 35 空洞
 40、40a、40d、40f、40ff、40g、40x 基板
 41、41a、41d、41f、41ff、41g、41x 開口
 42、42d、42g 第2面
 51、51p 遮光部材
 52 基板保持部
 53 筐体側面部
 54 筐体底面部
 60 制御ユニット
 61 駆動制御部
 62 フレーム制御部
 63 演算部
 64 距離画像生成部
 80 補助線
 A1、A2 光軸
 100 3次元測距システム
 211 中心
 221、221a、221b、221c、221h 第1面
 222、222a、222b、222c 第1傾斜部
 223 内側面
 231 矩形
 311h、311j、311k、311m、311n 第3傾斜部
 321h 第4傾斜部
 422g 第2傾斜部

Claims (20)

  1.  レーザ光を照射する光源と、
     照射された前記レーザ光が対象物により反射した光を集光するレンズ、前記レンズによって集光された光を受光する撮像素子、並びに、前記レンズ及び前記撮像素子の間の空間を囲い前記レンズを支持する鏡筒を含むレンズモジュールと、
     前記レンズモジュールと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、を有し、
     前記レンズの光軸を含む面で前記鏡筒を切断したときの断面視で、
     前記鏡筒の前記対象物に対向する第1面は、前記光軸から離れるに従って、前記レンズカバーから離れるように傾斜する第1傾斜部を含む
     3次元測距モジュール。
  2.  前記第1傾斜部は、前記第1面の全体にわたって形成されている
     請求項1に記載の3次元測距モジュール。
  3.  前記第1面の前記レーザ光の光散乱角の半値幅は、45度以上である
     請求項1又は2のいずれか1項に記載の3次元測距モジュール。
  4.  前記断面視で、
     前記第1傾斜部と、前記レンズカバーの前記レンズモジュールに対向する面とがなす角度は、30度以上である
     請求項3に記載の3次元測距モジュール。
  5.  前記断面視で、
     前記第1傾斜部は、直線的である
     請求項1~4のいずれか1項に記載の3次元測距モジュール。
  6.  前記光軸の方向から見た場合に、
     前記鏡筒の外形は、前記撮像素子の外形と相似形状であり、
     前記第1傾斜部の前記光軸に垂直な面からの傾斜の程度は、前記光軸と前記鏡筒の外端との間の距離と、正の相関関係がある
     請求項1~5のいずれか1項に記載の3次元測距モジュール。
  7.  前記第1面の前記レーザ光の光散乱角の半値幅は、7度以下である
     請求項1又は2に記載の3次元測距モジュール。
  8.  前記レンズカバーの前記対象物側から前記レンズを見た場合に、
     前記光軸と、前記レンズの手前側が視認できる方向とがなす角度のうち最大の角度をεとしたとき、
     前記第1傾斜部と、前記光軸に垂直な面とがなす角度は、ε/2以上である
     請求項7に記載の3次元測距モジュール。
  9.  前記レンズカバーから前記レンズの前記光軸の方向に前記レンズを見た場合に、前記レンズを内包するように開口を有する部材と、を有し、
     前記レンズの前記光軸を含む面で前記鏡筒を切断したときの前記断面視で、
      前記レンズの外端と前記開口の外端との間の距離をBとし、
      前記レンズカバーと前記レンズの中心との距離をH1とし、
      前記レンズカバーと前記部材の前記レンズカバーに対向する第2面との距離をH2とし、
      前記レンズの前記中心及び前記撮像素子の外端を結ぶ線と、前記光軸とのなす角度をθとしたとき、
     (H1+H2)・tanθ≦Bの関係を満たす
     請求項1~8のいずれか1項に記載の3次元測距モジュール。
  10.  前記レンズカバーの前記レンズモジュールに対向する第3面は、前記光軸から離れるに従って、前記レンズモジュールから離れるように傾斜する第3傾斜部を含む
     請求項1~9のいずれか1項に記載の3次元測距モジュール。
  11.  レーザ光を照射する光源と、
     照射された前記レーザ光が対象物により反射した光を集光するレンズと、
     前記レンズによって集光された光を受光する撮像素子と、
     前記レンズと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、
     前記レンズカバーから前記レンズの光軸の方向に前記レンズを見た場合に、前記レンズを内包するように開口を有する部材と、を有し、
     前記光軸を含む面で前記レンズを切断したときの断面視で、
      前記レンズの外端と前記開口の外端との間の距離をBとし、
      前記レンズカバーと前記レンズの中心との距離をH1とし、
      前記レンズカバーと前記部材の前記レンズカバーに対向する第2面との距離をH2とし、
      前記レンズの前記中心及び前記撮像素子の外端を結ぶ線と、前記光軸とのなす角度をθとしたとき、
     (H1+H2)・tanθ≦Bの関係を満たす
     3次元測距モジュール。
  12.  前記光軸の方向から見た場合に、
     前記開口の外形は、樽型である
     請求項11に記載の3次元測距モジュール。
  13.  前記断面視で、
     前記第2面は、前記光軸から離れるに従って、前記レンズカバーから離れるように傾斜する第2傾斜部を含む
     請求項11又は12に記載の3次元測距モジュール。
  14.  レーザ光を照射する光源と、
     照射された前記レーザ光が対象物により反射した光を集光するレンズ、前記レンズによって集光された光を受光する撮像素子、並びに、前記レンズ及び前記撮像素子の間の空間を囲い前記レンズを支持する鏡筒を含むレンズモジュールと、
     前記レンズモジュールと前記対象物との間に位置し、前記レーザ光の波長に対して透明なレンズカバーと、を有し、
     前記レンズカバーの前記レンズモジュールに対向する第3面は、前記レンズの光軸から離れるに従って、前記レンズモジュールから離れるように傾斜する第3傾斜部を含む
     3次元測距モジュール。
  15.  前記光軸の方向から見た場合に、
     前記第3傾斜部は、前記第3傾斜部と前記レンズモジュールとが重なる領域の全体にわたって形成されている
     請求項14に記載の3次元測距モジュール。
  16.  前記レンズカバーの前記対象物に対向する第4面は、平らである
     請求項14又は15に記載の3次元測距モジュール。
  17.  前記光軸の方向から見た場合に、
     前記第3傾斜部の外形は、前記撮像素子の外形と相似形状であり、
     前記第3傾斜部の前記光軸に垂直な面からの傾斜の程度は、前記光軸と前記第3傾斜部の外端との間の距離と、正の相関関係がある
     請求項14~16のいずれか1項に記載の3次元測距モジュール。
  18.  前記レンズカバーの前記第3面と前記レンズカバーの前記対象物に対向する第4面とではさまれる空間に空洞が設けられ、
     前記光軸を含む面で前記レンズカバーを切断したときの断面視で、前記空洞が設けられた領域において、前記空洞を除く前記光軸の方向の前記第3面から前記第4面までの厚みは、一定である
     請求項14~17のいずれか1項に記載の3次元測距モジュール。
  19.  前記第3面の形状は、レンズ形状を含み、
     前記レンズカバーの光軸は、前記レンズの前記光軸と一致する
     請求項14~18のいずれか1項に記載の3次元測距モジュール。
  20.  請求項1~19のいずれか1項に記載の3次元測距モジュールを備え、
     前記3次元測距モジュールは、前記レーザ光の走行時間を基に、前記光源から前記対象物までの距離を算出する演算部を有する
     3次元測距システム。
PCT/JP2022/027242 2021-07-29 2022-07-11 3次元測距モジュール及び3次元測距システム WO2023008159A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2023538403A JPWO2023008159A1 (ja) 2021-07-29 2022-07-11
CN202280051871.9A CN117693689A (zh) 2021-07-29 2022-07-11 三维测距模块以及三维测距系统
EP22849223.7A EP4379416A1 (en) 2021-07-29 2022-07-11 Three-dimensional ranging module and three-dimensional ranging system
US18/418,055 US20240159909A1 (en) 2021-07-29 2024-01-19 Three-dimensional ranging module and three-dimensional ranging system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US202163227142P 2021-07-29 2021-07-29
US63/227,142 2021-07-29

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/418,055 Continuation US20240159909A1 (en) 2021-07-29 2024-01-19 Three-dimensional ranging module and three-dimensional ranging system

Publications (1)

Publication Number Publication Date
WO2023008159A1 true WO2023008159A1 (ja) 2023-02-02

Family

ID=85086731

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027242 WO2023008159A1 (ja) 2021-07-29 2022-07-11 3次元測距モジュール及び3次元測距システム

Country Status (5)

Country Link
US (1) US20240159909A1 (ja)
EP (1) EP4379416A1 (ja)
JP (1) JPWO2023008159A1 (ja)
CN (1) CN117693689A (ja)
WO (1) WO2023008159A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256040A (ja) * 2011-02-10 2012-12-27 Sharp Corp カメラモジュールの製造方法、カメラモジュール、及び電子機器
JP2013130422A (ja) * 2011-12-20 2013-07-04 Sanyo Electric Co Ltd レーザレーダ
CN206161862U (zh) * 2016-10-14 2017-05-10 海伯森技术(深圳)有限公司 一种基于tof的测距系统
JP2018158125A (ja) * 2018-05-29 2018-10-11 パイオニア株式会社 レーザードップラーセンサ
CN109031252A (zh) * 2018-08-22 2018-12-18 Oppo广东移动通信有限公司 标定方法、标定控制器及标定系统
CN208723309U (zh) * 2018-08-08 2019-04-09 光宝光电(常州)有限公司 光源装置
JP2019191173A (ja) 2018-04-19 2019-10-31 メーレカンパニー インコーポレイテッド カメラ

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012256040A (ja) * 2011-02-10 2012-12-27 Sharp Corp カメラモジュールの製造方法、カメラモジュール、及び電子機器
JP2013130422A (ja) * 2011-12-20 2013-07-04 Sanyo Electric Co Ltd レーザレーダ
CN206161862U (zh) * 2016-10-14 2017-05-10 海伯森技术(深圳)有限公司 一种基于tof的测距系统
JP2019191173A (ja) 2018-04-19 2019-10-31 メーレカンパニー インコーポレイテッド カメラ
JP2018158125A (ja) * 2018-05-29 2018-10-11 パイオニア株式会社 レーザードップラーセンサ
CN208723309U (zh) * 2018-08-08 2019-04-09 光宝光电(常州)有限公司 光源装置
CN109031252A (zh) * 2018-08-22 2018-12-18 Oppo广东移动通信有限公司 标定方法、标定控制器及标定系统

Also Published As

Publication number Publication date
US20240159909A1 (en) 2024-05-16
CN117693689A (zh) 2024-03-12
EP4379416A1 (en) 2024-06-05
JPWO2023008159A1 (ja) 2023-02-02

Similar Documents

Publication Publication Date Title
CN1178154C (zh) 用于在光学图像捕获系统中减少梯形失真并提高图像清晰度的方法和装置
JP2001153630A (ja) 凹凸パターン検出装置
US8148671B2 (en) Proximity-type imaging device and imaging filter
WO2009130062A1 (en) A method and a device for optical viewing of objects
US8204282B2 (en) Image input device and personal authentication device
US11625944B2 (en) Fingerprint recognition module, screen assembly, and electronic device
WO2014129152A1 (ja) 導光体及び画像読取装置
JP5015086B2 (ja) 画像読取装置、および画像読取用アタッチメント
US20200359915A1 (en) Biological information obtaining device, biological information obtaining method, and wearable device
WO2023008159A1 (ja) 3次元測距モジュール及び3次元測距システム
JP2013200367A (ja) フレネルレンズおよび光学検出器
JP4656393B2 (ja) 光源装置
CN109506570B (zh) 位移传感器
EP2538173A1 (en) Method for arranging photoreceiving lens, and optical displacement sensor
TWI817427B (zh) 瞳孔模組以及檢查裝置
US20180246228A1 (en) Radiation detector and radiation detection apparatus
CN111868600A (zh) 成像光学系统及成像设备
EP2490153A1 (en) Vein authentication module
CN114764157A (zh) 成像镜头、取像装置及电子装置
US11287621B2 (en) Beam generation optical system and image capturing apparatus provided with the same
JP5767908B2 (ja) 正立等倍レンズアレイユニットおよび画像読取装置
TWI530151B (zh) 掃描裝置
EP3226309A1 (en) Apparatus for photodetection and manufacturing method thereof
JP2022189305A (ja) 撮影装置及び撮影方法
US20220328540A1 (en) Image reading device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22849223

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538403

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280051871.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022849223

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022849223

Country of ref document: EP

Effective date: 20240229