WO2023007917A1 - Optical sheet laminate, backlight unit, liquid crystal display device, and information apparatus - Google Patents

Optical sheet laminate, backlight unit, liquid crystal display device, and information apparatus Download PDF

Info

Publication number
WO2023007917A1
WO2023007917A1 PCT/JP2022/020854 JP2022020854W WO2023007917A1 WO 2023007917 A1 WO2023007917 A1 WO 2023007917A1 JP 2022020854 W JP2022020854 W JP 2022020854W WO 2023007917 A1 WO2023007917 A1 WO 2023007917A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light diffusion
sheet
liquid crystal
backlight unit
Prior art date
Application number
PCT/JP2022/020854
Other languages
French (fr)
Japanese (ja)
Inventor
博暉 植野
承亨 蔡
Original Assignee
恵和株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 恵和株式会社 filed Critical 恵和株式会社
Publication of WO2023007917A1 publication Critical patent/WO2023007917A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S2/00Systems of lighting devices, not provided for in main groups F21S4/00 - F21S10/00 or F21S19/00, e.g. of modular construction
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/02Diffusing elements; Afocal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices

Definitions

  • the present disclosure relates to optical sheet laminates, backlight units, liquid crystal display devices, and information equipment.
  • liquid crystal display devices (hereinafter also referred to as liquid crystal displays) have been widely used as display devices for various information devices such as smartphones and tablet terminals.
  • a backlight for a liquid crystal display a direct type in which a light source is arranged on the back surface of a liquid crystal panel or an edge light type in which a light source is arranged in the vicinity of a side surface of the liquid crystal panel is mainly used.
  • light diffusion sheets, prism sheets, etc. are required to diffuse the light from light sources such as LEDs (Light Emitting Diodes) and improve the uniformity of brightness and chromaticity over the entire screen.
  • An optical sheet is used (see, for example, Patent Document 1).
  • the brightness uniformity is improved by stacking multiple light diffusion sheets.
  • Portable information terminals such as laptops and tablets are required to have even lower power consumption.
  • the optical sheet incorporated in the backlight unit is also required to realize a high-brightness screen with low power consumption.
  • An object of the present disclosure is to realize a high-brightness screen even with low power while maintaining brightness uniformity in a backlight unit.
  • an optical sheet laminate according to the present disclosure is provided between a plurality of light sources and a prism sheet in a liquid crystal display device in which a plurality of light sources are dispersed on the back side of a display screen.
  • An optical sheet laminate according to the present disclosure includes a plurality of light diffusion sheets each having a plurality of substantially inverted quadrangular pyramid-shaped concave portions provided on one surface thereof.
  • the plurality of concave portions are arranged on the light exit surface.
  • the plurality of concave portions are arranged on the light incident surface.
  • the content of the diffusing agent in the first light diffusion sheet is 0% by mass or more and 2% by mass or less.
  • the optical sheet laminate according to the present disclosure by using a plurality of light diffusion sheets (hereinafter sometimes referred to as pyramid sheets) having a plurality of substantially inverted quadrangular pyramid-shaped concave portions on one surface, the brightness is uniform. can improve sexuality.
  • the substantially inverted quadrangular pyramid-shaped concave portion is arranged on the light exit surface. It becomes easier to converge in the direction of .
  • the convergence of the emitted light from the first light diffusion sheet is improved, so that the brightness can be increased even with low power. .
  • optical sheet laminate according to the present disclosure in a backlight unit, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
  • the optical sheet laminate according to the present disclosure when the second light diffusion sheet is thicker than the first light diffusion sheet, the following effects are obtained. That is, if the thickness of the second light diffusion sheet in which the substantially inverted quadrangular pyramid-shaped recesses are arranged on the light incident surface is increased, the light is diffused by the recesses on the light incident surface and travels in the second light diffusion sheet in an oblique direction. becomes longer. Therefore, the diffusion distance of light in the direction parallel to the light incident surface is increased, so that the light diffusibility is increased and the brightness uniformity is further improved. Further, by making the first light diffusion sheet thinner than the second light diffusion sheet, the thickness of the entire optical sheet laminate can be suppressed, and the thickness of the backlight unit, that is, the liquid crystal display device can be reduced.
  • a backlight unit according to the present disclosure is a backlight unit that is incorporated in the liquid crystal display device and guides light emitted from the plurality of light sources to the display screen side, wherein the plurality of light sources and the prism sheet The optical sheet laminate according to the present disclosure described above is provided therebetween.
  • the backlight unit according to the present disclosure since it includes the optical sheet laminate according to the present disclosure described above, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
  • the plurality of light sources may be arranged on a reflective sheet provided on the opposite side of the prism sheet when viewed from the optical sheet laminate.
  • the light is further diffused by multiple reflections between the light diffusion sheet and the reflection sheet that constitute the optical sheet laminate, so that the luminance uniformity is further improved.
  • the distance between the plurality of light sources and the optical sheet laminate may be 2 mm or less. By doing so, the thickness of the backlight unit can be reduced.
  • a liquid crystal display device includes the aforementioned backlight unit according to the present disclosure and a liquid crystal display panel.
  • the backlight unit according to the present disclosure described above is provided, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
  • the information equipment according to the present disclosure includes the above-described liquid crystal display device according to the present disclosure.
  • the liquid crystal display device according to the present disclosure since the liquid crystal display device according to the present disclosure is provided, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
  • FIG. 1 is a cross-sectional view of a liquid crystal display device including a backlight unit according to an embodiment
  • FIG. FIG. 4 is a cross-sectional view of a backlight unit incorporating the optical sheet laminate according to the embodiment
  • 4 is a cross-sectional view of a light diffusion sheet included in the optical sheet laminate according to the embodiment
  • FIG. 1 is a perspective view of a light diffusion sheet included in an optical sheet laminate according to an embodiment
  • FIG. 5 is a cross-sectional view of a backlight unit incorporating an optical sheet laminate according to Comparative Example 1.
  • FIG. FIG. 10 is a cross-sectional view of a backlight unit incorporating an optical sheet laminate according to Comparative Example 2
  • FIG. 5 is a diagram showing the results of examining the relationship between luminance and luminance uniformity in optical sheet laminates according to Examples and Comparative Examples.
  • the liquid crystal display device 50 includes a liquid crystal display panel 5, a first polarizing plate 6 attached to the lower surface of the liquid crystal display panel 5, and a second polarizing plate attached to the upper surface of the liquid crystal display panel 5. 7 and a backlight unit 40 provided on the back side of the liquid crystal display panel 5 with the first polarizing plate 6 interposed therebetween.
  • the liquid crystal display panel 5 includes a TFT substrate 1 and a CF substrate 2 facing each other, a liquid crystal layer 3 provided between the TFT substrate 1 and the CF substrate 2, and the TFT substrate 1 and the CF substrate 2.
  • a frame-shaped sealing material (not shown) is provided to seal the liquid crystal layer 3 between them.
  • the shape of the display screen 50a of the liquid crystal display device 50 viewed from the front (upper side in FIG. 1) is, in principle, rectangular or square, but is not limited thereto, and may be a rectangular shape with rounded corners, an elliptical shape, a circular shape, or the like. Any shape such as a trapezoid or an automobile instrument panel (instrument panel) may be used.
  • liquid crystal display device 50 in each sub-pixel corresponding to each pixel electrode, a voltage of a predetermined magnitude is applied to the liquid crystal layer 3 to change the alignment state of the liquid crystal layer 3 . Thereby, the transmittance of the light incident from the backlight unit 40 through the first polarizing plate 6 is adjusted. The light whose transmittance has been adjusted is emitted through the second polarizing plate 7 to display an image.
  • the liquid crystal display device 50 of the present embodiment can be used for various information devices (for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, portable information terminals such as notebook computers and tablets, portable game machines, copiers, ticket vending machines, It is used as a display device incorporated in an automatic teller machine, etc.).
  • information devices for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, portable information terminals such as notebook computers and tablets, portable game machines, copiers, ticket vending machines, It is used as a display device incorporated in an automatic teller machine, etc.).
  • the TFT substrate 1 includes, for example, a plurality of TFTs provided in a matrix on a glass substrate, an interlayer insulating film provided so as to cover each TFT, and a plurality of TFTs provided in a matrix on the interlayer insulating film. and an alignment film provided to cover each pixel electrode.
  • the CF substrate 2 includes, for example, a black matrix provided in a grid pattern on a glass substrate, a color filter including a red layer, a green layer, and a blue layer provided between the grids of the black matrix, and a black matrix and a color filter.
  • a common electrode is provided to cover the filter, and an alignment film is provided to cover the common electrode.
  • the liquid crystal layer 3 is made of a nematic liquid crystal material or the like containing liquid crystal molecules having electro-optical properties.
  • the first polarizing plate 6 and the second polarizing plate 7 each include, for example, a polarizer layer having a unidirectional polarization axis and a pair of protective layers provided to sandwich the polarizer layer.
  • the backlight unit 40 includes a reflective sheet 41, a plurality of light sources 42 two-dimensionally arranged on the reflective sheet 41, and an optical sheet laminate provided above the plurality of light sources 42. 100 and a pair of prism sheets 44 and 45 provided on the upper side of the optical sheet laminate 100 .
  • a blue light source may be used as the light source 42 in this embodiment.
  • a color conversion sheet 46 may be provided between the optical sheet laminate 100 and the prism sheets 44 and 45 .
  • a white light source may be used as the light source 42 .
  • the color conversion sheet 46 may not be provided.
  • the optical sheet laminate 100 may be configured by laminating, for example, three light diffusion sheets 43 each having a plurality of recesses 22 each having a substantially inverted quadrangular pyramid shape.
  • the optical sheet laminate 100 may be configured by laminating two or four or more light diffusion sheets 43 .
  • the pair of prism sheets 44 and 45 may be a lower prism sheet 44 and an upper prism sheet 45 whose prism stretching directions (directions in which prism ridgelines extend) are orthogonal to each other.
  • Each of the light diffusion sheets 43, the prism sheets 44 and 45, and the like that constitute the optical sheet laminate 100 may be film-like or plate-like. These optical sheets may be laminated within the frame (not shown) of the backlight unit 40 by their own weight without using an adhesive.
  • the reflective sheet 41 is composed of, for example, a white film made of polyethylene terephthalate resin, a silver-deposited film, or the like.
  • the type of the light source 42 is not particularly limited, it may be, for example, an LED element, a laser element, or the like, and an LED element may be used from the viewpoint of cost, productivity, and the like.
  • the light source 42 may have a rectangular shape when viewed from above, in which case the length of one side is 10 ⁇ m or more (preferably 50 ⁇ m or more) and 20 mm or less (preferably 10 mm or less, more preferably 5 mm or less). There may be.
  • LED elements are used as the light source 42, a plurality of LED chips of several millimeters square may be arranged on the reflective sheet 41 at regular intervals.
  • a lens may be attached to the LED element in order to adjust the light emission angle characteristics of the LED element serving as the light source 42 .
  • the number of light sources 42 to be arranged is not particularly limited, but when a plurality of light sources 42 are arranged in a distributed manner, it is preferable to arrange them regularly on the reflection sheet 41 .
  • Arranging regularly means arranging with a certain rule, and for example, the case where the light sources 42 are arranged at regular intervals corresponds to this.
  • the center-to-center distance between two adjacent light sources 42 may be 0.5 mm or more (preferably 2 mm or more) and 20 mm or less.
  • the blue light source may emit light with x ⁇ 0.24 and y ⁇ 0.18 in the CIE1931 chromaticity coordinates, for example.
  • the white light source When a white light source is used as the light source 42, the white light source includes an LED element whose peak wavelength is in the blue region, an LED element whose peak wavelength is in the green region, and an LED element whose peak wavelength is in the red region. and 0.24 ⁇ x ⁇ 0.42 and 0.18 ⁇ y ⁇ 0.48 in chromaticity coordinates.
  • the plurality of concave portions 22 are arranged on the light output surface 21a.
  • the plurality of light diffusion sheets 43 other than the first light diffusion sheet 43A in at least one second light diffusion sheet 43B, the plurality of recesses 22 are arranged on the light incident surface 21b.
  • the two light diffusion sheets 43 other than the first light diffusion sheet 43A are both the second light diffusion sheets 43B in which the concave portions 22 are arranged on the light entrance surface 21b.
  • the second light diffusion sheet 43B only one of the light diffusion sheets 43 of the first layer or the second layer from the light source 42 side is the second light diffusion sheet 43B, and the other is provided with the recessed portion 22 on the light exit surface 21a. It is good also as the 1st light-diffusion sheet 43A.
  • the light diffusion sheets 43A and 43B each have a base material layer 21 as shown in FIGS. 3(a) and 3(b).
  • Light diffusion sheets 43A and 43B have a light exit surface 21a and a light entrance surface 21b. That is, the light diffusion sheets 43A and 43B are arranged with the light incident surface 21b facing the light source 42 .
  • the base material layer 21 is not particularly limited as long as it is made of a resin material that allows light to pass through. It may be cellulose acetate, polyimide, or the like.
  • the base material layer 21 may contain a diffusing agent and other additives, or may contain substantially no additives.
  • the content of the diffusing agent may be 0% by mass or more and 2% by mass or less.
  • Additives that can be contained in the base material layer 21 are not particularly limited. It may be organic particles such as polystyrene, polyamide, and the like.
  • the thickness of the light diffusion sheets 43A and 43B is not particularly limited, but may be, for example, 3 mm or less (preferably 2 mm or less, more preferably 1.5 mm or less, still more preferably 1 mm or less) and 0.1 mm or more. .
  • the thickness of the light diffusion sheets 43A and 43B is 3 mm or less, the thickness of the liquid crystal display can be reduced.
  • the thickness of the light diffusion sheets 43A and 43B is 0.1 mm or more, the brightness uniformity is improved.
  • a plurality of concave portions 22 having a substantially inverted quadrangular pyramid shape are formed on the light exit surface 21a of the first light diffusion sheet 43A and the light entrance surface 21b of the second light diffusion sheet 43B.
  • the plurality of recesses 22 are arranged along two directions orthogonal to each other.
  • Adjacent recesses 22 are separated by ridgelines 111 .
  • the ridgeline 111 extends along two directions in which the recesses 22 are arranged.
  • the center 112 of the recess 22 (the apex of the inverted pyramid) is the deepest part of the recess 22 .
  • the recesses 22 may be provided without gaps, or may be provided at predetermined intervals. Moreover, some recesses 22 may be arranged randomly to the extent that the light diffusion effect is not impaired.
  • the apex angle ⁇ of the recesses 22 may be, for example, 90°, the arrangement pitch p of the recesses 22 may be, for example, 100 ⁇ m, and the depth of the recesses 22 may be, for example, 50 ⁇ m.
  • the apex angle ⁇ of the concave portion 22 is a plane (longitudinal section) perpendicular to the surface on which the light diffusion sheet 43 is arranged, and is a pair of angles that pass through the center of the concave portion 22 (apex 112 of the inverted pyramid) and face each other across the center. The angle formed by the cross-sectional lines of the slope in the cross section that appears when the slope is cut perpendicularly across it.
  • the arrangement pitch p of the recesses 22 is the distance between the centers (the apexes 112 of the inverted pyramids) of the adjacent recesses 22 (the distance along the direction parallel to the arrangement surface of the light diffusion sheet 43). .
  • the light entrance surface 21b of the first light diffusion sheet 43A and the light exit surface 21a of the second light diffusion sheet 43B may be matte surfaces, flat surfaces (mirror surfaces), or embossed surfaces, for example. Further, the light exit surface 21a of the second light diffusing sheet 43B may be provided with a plurality of concave portions having, for example, a substantially inverted quadrangular pyramid shape (inverted pyramid shape).
  • the light diffusion sheets 43A and 43B may be configured with a single-layer structure of the base material layer 21 having an uneven shape (recesses 22) on one surface.
  • the light diffusing sheets 43A and 43B may have a two-layer structure of a substrate layer having flat surfaces on both sides and a layer having unevenness on one surface.
  • the light diffusion sheets 43A and 43B may have a structure of three or more layers including a layer having unevenness on one surface.
  • a method for manufacturing the light diffusion sheets 43A and 43B is not particularly limited, but for example, an extrusion molding method, an injection molding method, or the like may be used.
  • the procedure for manufacturing a single-layer light diffusion sheet having an uneven surface using an extrusion molding method is as follows. First, pellet-shaped plastic particles to which a diffusing agent has been added (along with pellet-shaped plastic particles to which no diffusing agent has been added may be mixed) are put into a single-screw extruder, heated and melted, knead. After that, the molten resin extruded by the T-die is sandwiched between two metal rolls, cooled, transported using guide rolls, and cut into flat plates by a sheet cutter to produce a light diffusion sheet. .
  • the reverse shape of the roll surface is transferred to the resin. can be shaped into
  • the shape transferred to the resin does not always correspond to the shape of the roll surface that is 100% transferred, the shape of the roll surface may be designed by calculating backward from the degree of transfer.
  • pellet-shaped plastic particles necessary for forming each layer are supplied to each of two single-screw extruders. After charging, the same procedure as described above is performed for each layer, and each sheet thus produced may be laminated.
  • a light diffusion sheet with a two-layer structure having an uneven surface may be produced as follows. First, pellet-like plastic particles necessary for forming each layer are put into each of two single-screw extruders, melted and kneaded while being heated. After that, the molten resin for each layer is put into one T-die, laminated in the T-die, and the laminated molten resin extruded by the T-die is sandwiched between two metal rolls and cooled. After that, the laminated molten resin may be conveyed using guide rolls and cut into flat plates with a sheet cutter to produce a light diffusion sheet having a two-layer structure having an uneven surface.
  • the light diffusion sheet may be manufactured as follows by shape transfer using UV (ultraviolet). First, a roll having an inverted shape of the uneven shape to be transferred is filled with an uncured UV curable resin, and the substrate is pressed against the resin. Next, in a state in which the roll filled with the ultraviolet curable resin and the substrate are integrated, the resin is cured by irradiating ultraviolet rays. Next, the sheet on which the concavo-convex shape has been shape-transferred by the resin is separated from the roll. Finally, the sheet is irradiated with ultraviolet light again to completely harden the resin, thereby producing a light diffusion sheet having an uneven surface.
  • UV ultraviolet
  • the notation “substantially inverted quadrangular pyramid” in consideration of the fact that it is difficult to form a geometrically strict inverted quadrangular pyramid recess by a normal shape transfer technique, the notation “substantially inverted quadrangular pyramid” is used, but “substantially “Inverted square pyramid” shall include shapes that can be considered true or substantially inverted square pyramids. Further, the term “substantially” means that it can be approximated, and the term “substantially inverted quadrangular pyramid” means a shape that can be approximated to an inverted quadrangular pyramid. For example, an "inverted quadrangular truncated pyramid" with a flat top is also included in the “substantially inverted quadrangular pyramid” if the top area is small enough to maintain the effects of the present invention. Further, a shape that is deformed from the "inverted square pyramid” within the range of unavoidable variations in shape due to processing accuracy in industrial production is also included in the "substantially inverted square pyramid".
  • the prism sheets 44 and 45 are made mainly of a transparent (for example, colorless and transparent) synthetic resin because they need to transmit light.
  • the prism sheets 44 and 45 may be integrally formed.
  • the lower prism sheet 44 has a substrate layer 44a and a row of projections composed of a plurality of ridge prism portions 44b laminated on the surface of the substrate layer 44a.
  • the upper prism sheet 45 has a substrate layer 45a and a row of projections composed of a plurality of ridge prism portions 45b laminated on the surface of the substrate layer 45a.
  • the ridge prism portions 44b and 45b are laminated in stripes on the surfaces of the substrate layers 44a and 45a, respectively.
  • the ridge prism portions 44b and 45b are triangular prisms whose back surfaces are in contact with the surfaces of the substrate layers 44a and 45a, respectively.
  • the extension direction of the ridge prism portion 44b and the extension direction of the ridge prism portion 45b are orthogonal to each other.
  • the lower limit of the thickness of the prism sheets 44 and 45 (the height from the back surface of the base material layers 44a and 45a to the vertices of the ridge prism portions 44b and 45b) is, for example, about 50 ⁇ m, more preferably about 100 ⁇ m. good.
  • the upper limit of the thickness of the prism sheets 44 and 45 may be approximately 200 ⁇ m, more preferably approximately 180 ⁇ m.
  • the lower limit of the pitch of the ridge prism portions 44b and 45b on the prism sheets 44 and 45 may be, for example, about 20 ⁇ m, more preferably about 25 ⁇ m.
  • the upper limit of the pitch of the prismatic protrusions 44b and 45b on the prism sheets 44 and 45 may be, for example, approximately 100 ⁇ m, more preferably approximately 60 ⁇ m.
  • the apex angles of the ridge prism portions 44b and 45b may be, for example, 85° or more and 95° or less.
  • the lower limit of the refractive index of the ridge prism portions 44b and 45b may be, for example, 1.5, more preferably 1.55.
  • the upper limit of the refractive index of the ridge prism portions 44b and 45b may be, for example, 1.7.
  • Prism sheets 44 and 45 are formed by providing ridge prism portions 44b and 45b, which are shape-transferred using a UV curable acrylic resin, on substrate layers 44a and 45a made of, for example, PET (polyethylene terephthalate) film.
  • substrate layers 44a and 45a made of, for example, PET (polyethylene terephthalate) film.
  • the ridge prism portions 44b and 45b may be formed integrally with the base layers 44a and 45a.
  • the color conversion sheet 46 is a wavelength conversion sheet that converts light from the light source 42, which is, for example, a blue light source, into light having a peak wavelength of an arbitrary color (for example, green or red).
  • the color conversion sheet 46 converts, for example, blue light with a wavelength of 450 nm into green light with a wavelength of 540 nm and red light with a wavelength of 650 nm.
  • the blue light is partially converted into green light and red light by the color conversion sheet 46, so that the light transmitted through the color conversion sheet 46 becomes white light.
  • a QD (quantum dot) sheet, a fluorescent sheet, or the like may be used.
  • an upper light diffusion sheet may be further provided above the prism sheets 44 and 45 (on the display screen 50a side).
  • the upper light diffusion sheet somewhat diffuses the light rays incident from the upper prism sheet 45 side, and suppresses luminance unevenness caused by the shape of the ridged prism portions 44b and 45b of the prism sheets 44 and 45 and the like.
  • the upper light diffusion sheet may be laminated directly on the surface of the upper prism sheet 45 .
  • the thickness of the top light diffusion sheet is not particularly limited, but may be, for example, 50 ⁇ m or more and 3 mm or less. When the thickness of the top light diffusion sheet exceeds 3 mm, it becomes difficult to achieve thinning of the liquid crystal display. Become.
  • the top light diffusion sheet may be film-like or plate-like.
  • a PET film on at least one surface of which a UV-curing acrylic resin is used to provide an uneven shape may be used.
  • a polarizing sheet may be provided above the prism sheets 44 and 45 (on the display screen 50a side).
  • the polarizing sheet prevents the light emitted from the backlight unit 40 from being absorbed by the first polarizing plate 6 of the liquid crystal display device 50, thereby improving the brightness of the display screen 50a.
  • the optical sheet laminate 100 of the present embodiment is provided between the light source 42 and the prism sheets 44 and 45 in the backlight unit 40 of the liquid crystal display device 50 in which a plurality of light sources 42 are dispersed on the back side of the display screen 50a. incorporated into.
  • the optical sheet laminate 100 of this embodiment includes a plurality of light diffusion sheets 43 each having a plurality of substantially inverted quadrangular pyramid-shaped concave portions 22 provided on one surface thereof. In the first light diffusion sheet 43A that is closest to the prism sheets 44 and 45 among the plurality of light diffusion sheets 43, the plurality of concave portions 22 are arranged on the light exit surface 21a.
  • the plurality of recesses 22 are arranged on the light incident surface 21b.
  • the content of the diffusing agent in the first light diffusion sheet 43A is 0% by mass or more and 2% by mass or less.
  • the optical sheet laminate 100 of the present embodiment by using a plurality of light diffusion sheets (hereinafter also referred to as pyramid sheets) 43 each having a plurality of recesses 22 in the shape of a substantially inverted square pyramid on one surface, the , the luminance uniformity can be improved.
  • the substantially inverted quadrangular pyramid-shaped concave portion 22 is arranged on the light exit surface 21a. In comparison, it becomes easier to converge the emitted light toward the prism sheets 44 and 45 .
  • the convergence of the emitted light of the first light diffusion sheet 43A is improved, so that the brightness can be increased even at low power. can be done.
  • the optical sheet laminate 100 of the present embodiment in the backlight unit 40, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
  • the second light diffusion sheet 43B when the second light diffusion sheet 43B is thicker than the first light diffusion sheet 43A, the following effects are obtained. That is, if the thickness of the second light diffusion sheet 43B, in which the concave portions 22 of approximately inverted quadrangular pyramid shape are arranged on the light incident surface 21b, is increased, the light will be diffused by the concave portions 22 of the light incident surface 21 and will be inside the second light diffusion sheet 43B. The optical path of light traveling obliquely becomes longer. Therefore, the diffusion distance of light in the direction parallel to the light entrance surface 21b is increased, so that the light diffusion property is increased and the brightness uniformity is further improved.
  • the thickness of the optical sheet laminate 100 as a whole is suppressed, and the thickness of the backlight unit 40, that is, the liquid crystal display device 50 is reduced. You can also plan.
  • the backlight unit 40 of this embodiment is incorporated in the liquid crystal display device 50, and guides the light emitted from the light source 42 to the display screen 50a side.
  • the backlight unit 40 of this embodiment includes the optical sheet laminate 100 of this embodiment between the light source 42 and the prism sheets 44 and 45 .
  • the optical sheet laminate 100 of the present embodiment is provided, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
  • the light source 42 may be arranged on the reflection sheet 41 provided on the opposite side of the prism sheets 44 and 45 when viewed from the optical sheet laminate 100 . In this way, the light is further diffused by multiple reflections between the light diffusion sheet 43 and the reflection sheet 41 that constitute the optical sheet laminate 100, thereby improving luminance uniformity.
  • the backlight unit 40 of this embodiment if the distance between the light source 42 and the optical sheet laminate 100 is 2 mm or less, the backlight unit 40 can be miniaturized. Further, in anticipation of future thinning of small- and medium-sized liquid crystal displays, the distance between the light source 42 and the optical sheet laminate 100 may be more preferably 1 mm or less, and ultimately 0 mm.
  • the liquid crystal display device 50 of this embodiment includes the backlight unit 40 of this embodiment and the liquid crystal display panel 5 . Therefore, with the backlight unit 40 of the present embodiment, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity. A similar effect can be obtained with an information device (for example, a portable information terminal such as a notebook computer or a tablet) in which the liquid crystal display device 50 is incorporated.
  • an information device for example, a portable information terminal such as a notebook computer or a tablet
  • the optical sheet laminate 100 of the example was constructed by stacking three light diffusion sheets (pyramid sheets) 43 each having a plurality of recesses 22 each having a substantially inverted quadrangular pyramid shape.
  • the upper layer (the layer closest to the lower prism sheet 44) has a surface (pyramidal surface) on which the concave portions 22 are provided, and a 160- ⁇ m-thick third layer which is the light exit surface 21a.
  • 1 light diffusion sheet 43A is arranged, and two second light diffusion sheets 43B having a thickness of 220 ⁇ m whose pyramid surface is the light entrance surface 21b are arranged in the lower layer and the middle layer to form the optical sheet laminate 100 of the example. Configured.
  • the arrangement pitch and apex angle of the recesses (inverted pyramids) 22 in the first light diffusion sheet 43A are 100 ⁇ m and 90°, respectively, and the arrangement pitch and apex angle of the recesses (inverted pyramids) 22 in the second light diffusion sheet 43B are 180 ⁇ m and 180 ⁇ m, respectively. 80°.
  • the content of the diffusing agent in the first light diffusion sheet 43A was changed stepwise from 0% by mass to 8% by mass (specifically, 0% by mass, 0.0% by mass, 0.00% by mass, and 0.00% by mass). 2% by mass, 0.4% by mass, 0.8% by mass, 2% by mass, 4% by mass, and 8% by mass) were prepared.
  • the content of the diffusing agent is the ratio of the weight of the diffusing agent to the total weight of the first light diffusion sheet 43A. No diffusing agent was added to the two second light diffusion sheets 43B.
  • each of the light diffusion sheets 43A and 43B was formed with a single layer structure in which the inverted pyramid-shaped concave portions 22 were two-dimensionally arranged by extruding the polycarbonate that serves as the base material layer 21 .
  • the light entrance surface 21b of the first light diffusion sheet 43A and the light exit surface 21a of the second light diffusion sheet 43B are processed into matte surfaces. Silicone beads having an average particle diameter of 2 ⁇ m were used as the diffusion agent added to the first light diffusion sheet 43A.
  • the optical sheet laminate 100 of the example described above was incorporated into the backlight unit 40 shown in FIG. 2, and luminance was measured using a 2D spectroradiometer SR-5000HS manufactured by Topcon Technohouse.
  • As the plurality of light sources 42 blue LEDs arranged in an array with a pitch of 2.8 mm were used.
  • optical sheet laminates 100 of Comparative Examples 1 and 2 shown in Table 1 were respectively incorporated into the backlight units 40 shown in FIGS. Specifically, a third light diffusion sheet 43C having a thickness of 220 ⁇ m whose pyramid surface is the light incident surface 21b is arranged as the upper layer, and two light diffusion sheets 43C having a thickness of 190 ⁇ m whose pyramid surface is the light incident surface 21b are arranged as the lower and middle layers.
  • An optical sheet laminate 100 of Comparative Example 1 was constructed by arranging two second light diffusion sheets 43B.
  • the arrangement pitch and apex angle of the concave portions (inverted pyramids) 22 in each of the third light diffusion sheet 43C (Comparative Example 1) and the fourth light diffusion sheet 43D (Comparative Example 2) were set to 100 ⁇ m and 90°, respectively.
  • the content of the diffusing agent in the third light diffusion sheet 43C was set to 0.8% by mass
  • the content of the diffusing agent in the fourth light diffusion sheet 43D was set to 0% by mass. to 8% by mass (specifically, 0% by mass, 0.2% by mass, 0.4% by mass, 0.8% by mass, 2% by mass, 4% by mass, 8% by mass (set) were prepared.
  • the third light diffusion sheet 43C and the fourth light diffusion sheet 43D are each processed by extrusion molding the polycarbonate that serves as the base material layer 21, and the inverted pyramid-shaped concave portions 22 are arranged two-dimensionally. It was formed with a single layer structure. Further, the light incident surfaces 21b of the third light diffusion sheet 43C and the fourth light diffusion sheet 43D are processed into matte surfaces. Silicone beads having an average particle diameter of 2 ⁇ m were used as the diffusion agent added to the third light diffusion sheet 43C and the fourth light diffusion sheet 43D.
  • FIG. 7 is a diagram showing the results of examining the relationship between luminance and luminance uniformity in the optical sheet laminates 100 according to Example and Comparative Examples 1 and 2 described above.
  • the numerical values shown in the figure represent the content of the diffusing agent in the sheet when the weight of the light diffusion sheet in the upper layer is set to 1. Further, the luminance is represented by relative luminance when the luminance of Comparative Example 1 is set to 1.
  • the content of the diffusing agent in the first light diffusion sheet 43A arranged in the upper layer with the light exit surface 21a as the pyramid surface is 0% by mass (0) or more.
  • the luminance could be increased by 3% or more while maintaining the luminance uniformity to the same extent.
  • the content of the diffusing agent in the fourth light diffusion sheet 43D arranged in the upper layer with the light incident surface 21b as the pyramid surface is 0% by mass (0) or more and 2% by mass ( 0.02), compared to Comparative Example 1, the brightness uniformity could be maintained at the same level, but the increase in brightness was less than 3%.
  • the shape of the concave portion 22 provided on one surface of the light diffusion sheets 43A and 43B included in the optical sheet laminate 100 is an inverted quadrangular pyramid.
  • a row of protrusions such as a prism portion may be provided.
  • liquid crystal display panel 1 TFT substrate 2 CF substrate 3 liquid crystal layer 5 liquid crystal display panel 6 first polarizing plate 7 second polarizing plate 21 base material layer 21a light exit surface 21b light entrance surface 22 concave portion 40 backlight unit 41 reflective sheet 42 light source 43 (43A, 43B ) Light diffusion sheet 44 Lower prism sheet 44a Base material layer 44b Ridge prism part 45 Upper prism sheet 45a Base material layer 45b Ridge prism part 46 Color conversion sheet 50 Liquid crystal display device 50a Display screen 100 Optical sheet laminate 111 Ridge line 112 Recess center (inverted pyramid apex)

Abstract

An optical sheet laminate 100 that is to be interposed between a light source 42 and a prism sheet 44 of a backlight unit 40. The optical sheet laminate 100 comprises a plurality of light diffusion sheets 43 that have a plurality of substantially inverted-rectangular-pyramid-shaped recesses 22 at one surface. The recesses 22 of a first light diffusion sheet 43A that is closest to the prism sheet 44 are at a light emission surface 21a. The recesses 22 of at least one second light diffusion sheet 43B of the light diffusion sheets 43 that are not the first light diffusion sheet 43A are at a light incidence surface 21b. The first light diffusion sheet 43A contains 0–2 mass% of a diffusion agent.

Description

光学シート積層体、バックライトユニット、液晶表示装置、及び情報機器Optical sheet laminate, backlight unit, liquid crystal display device, and information equipment
 本開示は、光学シート積層体、バックライトユニット、液晶表示装置、及び情報機器に関するものである。 The present disclosure relates to optical sheet laminates, backlight units, liquid crystal display devices, and information equipment.
 近年、スマートフォンやタブレット端末などの各種情報機器の表示装置として、液晶表示装置(以下、液晶ディスプレイということもある)が広く利用されている。液晶ディスプレイのバックライトとしては、光源が液晶パネルの背面に配置される直下型方式、又は、光源が液晶パネルの側面の近傍に配置されるエッジライト方式が主流となっている。 In recent years, liquid crystal display devices (hereinafter also referred to as liquid crystal displays) have been widely used as display devices for various information devices such as smartphones and tablet terminals. As a backlight for a liquid crystal display, a direct type in which a light source is arranged on the back surface of a liquid crystal panel or an edge light type in which a light source is arranged in the vicinity of a side surface of the liquid crystal panel is mainly used.
 直下型バックライトを採用する場合、LED(Light Emitting Diode)等の光源からの光を拡散させて画面全体に亘って輝度や色度の均一性を上げるために、光拡散シートやプリズムシート等の光学シートが使用される(例えば特許文献1参照)。 When using a direct type backlight, light diffusion sheets, prism sheets, etc. are required to diffuse the light from light sources such as LEDs (Light Emitting Diodes) and improve the uniformity of brightness and chromaticity over the entire screen. An optical sheet is used (see, for example, Patent Document 1).
 ノートパソコンやタブレットなどの薄型ディスプレイの直下型バックライトユニットにおいては、複数枚の光拡散シートを重ねて用いることによって、輝度均一性を向上させている。 In the direct type backlight unit of thin displays such as laptops and tablets, the brightness uniformity is improved by stacking multiple light diffusion sheets.
特開2011-129277号公報JP 2011-129277 A
 ノートパソコンやタブレットなど持ち運びして使用される携帯情報端末では、さらなる低消費電力が求められている。これに伴い、バックライトユニットに組み込まれる光学シートについても、低電力で高輝度な画面を実現できることが求められている。 Portable information terminals such as laptops and tablets are required to have even lower power consumption. Along with this, the optical sheet incorporated in the backlight unit is also required to realize a high-brightness screen with low power consumption.
 ところが、一般的に輝度が向上するバックライト構成では、輝度均一性が低下する傾向がある。言い換えると、輝度と輝度均一性との間にはトレードオフの関係がある。 However, in a backlight configuration that generally improves brightness, brightness uniformity tends to decrease. In other words, there is a trade-off between luminance and luminance uniformity.
 本開示は、バックライトユニットにおいて輝度均一性を維持しながら低電力でも高輝度な画面を実現することを目的とする。 An object of the present disclosure is to realize a high-brightness screen even with low power while maintaining brightness uniformity in a backlight unit.
 前記の目的を達成するために、本開示に係る光学シート積層体は、表示画面の背面側に複数の光源が分散して設けられた液晶表示装置において前記複数の光源とプリズムシートとの間に組み込まれる。本開示に係る光学シート積層体は、一面に略逆四角錐状の複数の凹部が設けられた複数の光拡散シートを備える。前記複数の光拡散シートのうち前記プリズムシートに最も近い第1光拡散シートにおいて、前記複数の凹部は出光面に配置される。前記第1光拡散シートを除く前記複数の光拡散シートのうち少なくとも1つの第2光拡散シートにおいて、前記複数の凹部は入光面に配置される。前記第1光拡散シートにおける拡散剤の含有率は、0質量%以上2質量%以下である。 In order to achieve the above object, an optical sheet laminate according to the present disclosure is provided between a plurality of light sources and a prism sheet in a liquid crystal display device in which a plurality of light sources are dispersed on the back side of a display screen. incorporated. An optical sheet laminate according to the present disclosure includes a plurality of light diffusion sheets each having a plurality of substantially inverted quadrangular pyramid-shaped concave portions provided on one surface thereof. In the first light diffusion sheet closest to the prism sheet among the plurality of light diffusion sheets, the plurality of concave portions are arranged on the light exit surface. In at least one second light diffusion sheet among the plurality of light diffusion sheets other than the first light diffusion sheet, the plurality of concave portions are arranged on the light incident surface. The content of the diffusing agent in the first light diffusion sheet is 0% by mass or more and 2% by mass or less.
 本開示に係る光学シート積層体によると、一面に略逆四角錐状の複数の凹部が設けられた光拡散シート(以下、ピラミッドシートということもある)を複数枚重ねて用いることにより、輝度均一性を向上させることができる。また、プリズムシートに最も近い第1光拡散シートにおいて、略逆四角錐状の凹部が出光面に配置されるため、当該凹部が入光面に配置される場合と比べて、出光光をプリズムシートの方へ収束させやすくなる。さらに、第1光拡散シートにおける拡散剤の含有率を2質量%以下に抑制することによって、第1光拡散シートの出光光の収束性が向上するので、低電力でも輝度を増大させることができる。 According to the optical sheet laminate according to the present disclosure, by using a plurality of light diffusion sheets (hereinafter sometimes referred to as pyramid sheets) having a plurality of substantially inverted quadrangular pyramid-shaped concave portions on one surface, the brightness is uniform. can improve sexuality. In addition, in the first light diffusion sheet closest to the prism sheet, the substantially inverted quadrangular pyramid-shaped concave portion is arranged on the light exit surface. It becomes easier to converge in the direction of . Furthermore, by suppressing the content of the diffusing agent in the first light diffusion sheet to 2% by mass or less, the convergence of the emitted light from the first light diffusion sheet is improved, so that the brightness can be increased even with low power. .
 従って、本開示に係る光学シート積層体をバックライトユニットに用いることによって、輝度均一性を維持しながら低電力でも高輝度な画面を実現することができる。 Therefore, by using the optical sheet laminate according to the present disclosure in a backlight unit, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
 本開示に係る光学シート積層体において、前記第2光拡散シートが、前記第1光拡散シートよりも厚いと、以下のような効果が得られる。すなわち、略逆四角錐状の凹部が入光面に配置された第2光拡散シートの厚さを厚くすると、入光面の凹部で拡散されて第2光拡散シート内を斜め方向に進む光の光路が長くなる。このため、入光面に平行な方向における光の拡散距離が長くなるので、光拡散性が増大して、輝度均一性がより一層向上する。また、第1光拡散シートを第2光拡散シートよりも薄くすることによって、光学シート積層体全体としての厚さを抑制して、バックライトユニットつまり液晶表示装置の薄型化を図ることもできる。 In the optical sheet laminate according to the present disclosure, when the second light diffusion sheet is thicker than the first light diffusion sheet, the following effects are obtained. That is, if the thickness of the second light diffusion sheet in which the substantially inverted quadrangular pyramid-shaped recesses are arranged on the light incident surface is increased, the light is diffused by the recesses on the light incident surface and travels in the second light diffusion sheet in an oblique direction. becomes longer. Therefore, the diffusion distance of light in the direction parallel to the light incident surface is increased, so that the light diffusibility is increased and the brightness uniformity is further improved. Further, by making the first light diffusion sheet thinner than the second light diffusion sheet, the thickness of the entire optical sheet laminate can be suppressed, and the thickness of the backlight unit, that is, the liquid crystal display device can be reduced.
 本開示に係るバックライトユニットは、前記液晶表示装置に組み込まれ、前記複数の光源から発せられた光を前記表示画面側に導くバックライトユニットであって、前記複数の光源と前記プリズムシートとの間に、前述の本開示に係る光学シート積層体を備える。 A backlight unit according to the present disclosure is a backlight unit that is incorporated in the liquid crystal display device and guides light emitted from the plurality of light sources to the display screen side, wherein the plurality of light sources and the prism sheet The optical sheet laminate according to the present disclosure described above is provided therebetween.
 本開示に係るバックライトユニットによると、前述の本開示に係る光学シート積層体を備えるため、輝度均一性を維持しながら低電力でも高輝度な画面を実現できる。 According to the backlight unit according to the present disclosure, since it includes the optical sheet laminate according to the present disclosure described above, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
 本開示に係るバックライトユニットにおいて、前記複数の光源は、前記光学シート積層体から見て前記プリズムシートの反対側に設けられた反射シートの上に配置されてもよい。このようにすると、光学シート積層体を構成する光拡散シートと反射シートとの間での多重反射によって光がさらに拡散されるので、輝度均一性がより一層向上する。 In the backlight unit according to the present disclosure, the plurality of light sources may be arranged on a reflective sheet provided on the opposite side of the prism sheet when viewed from the optical sheet laminate. With this arrangement, the light is further diffused by multiple reflections between the light diffusion sheet and the reflection sheet that constitute the optical sheet laminate, so that the luminance uniformity is further improved.
 本開示に係るバックライトユニットにおいて、前記複数の光源と前記光学シート積層体との間の距離は、2mm以下であってもよい。このようにすると、バックライトユニットを薄型化することができる。 In the backlight unit according to the present disclosure, the distance between the plurality of light sources and the optical sheet laminate may be 2 mm or less. By doing so, the thickness of the backlight unit can be reduced.
 本開示に係る液晶表示装置は、前述の本開示に係るバックライトユニットと、液晶表示パネルとを備える。 A liquid crystal display device according to the present disclosure includes the aforementioned backlight unit according to the present disclosure and a liquid crystal display panel.
 本開示に係る液晶表示装置によると、前述の本開示に係るバックライトユニットを備えるため、輝度均一性を維持しながら低電力でも高輝度な画面を実現できる。 According to the liquid crystal display device according to the present disclosure, since the backlight unit according to the present disclosure described above is provided, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
 本開示に係る情報機器は、前述の本開示に係る液晶表示装置を備える。 The information equipment according to the present disclosure includes the above-described liquid crystal display device according to the present disclosure.
 本開示に係る情報機器によると、前述の本開示に係る液晶表示装置を備えるため、輝度均一性を維持しながら低電力でも高輝度な画面を実現できる。 According to the information equipment according to the present disclosure, since the liquid crystal display device according to the present disclosure is provided, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
 本開示によると、バックライトユニットにおいて輝度均一性を維持しながら低電力でも高輝度な画面を実現することができる。 According to the present disclosure, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity in the backlight unit.
実施形態に係るバックライトユニットを備える液晶表示装置の断面図である。1 is a cross-sectional view of a liquid crystal display device including a backlight unit according to an embodiment; FIG. 実施形態に係る光学シート積層体が組み込まれたバックライトユニットの断面図である。FIG. 4 is a cross-sectional view of a backlight unit incorporating the optical sheet laminate according to the embodiment; 実施形態に係る光学シート積層体に含まれる光拡散シートの断面図である。4 is a cross-sectional view of a light diffusion sheet included in the optical sheet laminate according to the embodiment; FIG. 実施形態に係る光学シート積層体に含まれる光拡散シートの斜視図である。1 is a perspective view of a light diffusion sheet included in an optical sheet laminate according to an embodiment; FIG. 比較例1に係る光学シート積層体が組み込まれたバックライトユニットの断面図である。5 is a cross-sectional view of a backlight unit incorporating an optical sheet laminate according to Comparative Example 1. FIG. 比較例2に係る光学シート積層体が組み込まれたバックライトユニットの断面図である。FIG. 10 is a cross-sectional view of a backlight unit incorporating an optical sheet laminate according to Comparative Example 2; 実施例及び各比較例に係る光学シート積層体における輝度と輝度均一性との関係を調べた結果を示す図である。FIG. 5 is a diagram showing the results of examining the relationship between luminance and luminance uniformity in optical sheet laminates according to Examples and Comparative Examples.
 (実施形態)
 以下、実施形態に係る光学シート積層体、バックライトユニット、液晶表示装置、及び情報機器について、図面を参照しながら説明する。尚、本開示の範囲は、以下の実施の形態に限定されず、本開示の技術的思想の範囲内で任意に変更可能である。
(embodiment)
An optical sheet laminate, a backlight unit, a liquid crystal display device, and an information device according to embodiments will be described below with reference to the drawings. Note that the scope of the present disclosure is not limited to the following embodiments, and can be arbitrarily changed within the scope of the technical ideas of the present disclosure.
 <液晶表示装置の構成>
 図1に示すように、液晶表示装置50は、液晶表示パネル5と、液晶表示パネル5の下面に貼付された第1偏光板6と、液晶表示パネル5の上面に貼付された第2偏光板7と、液晶表示パネル5の背面側に第1偏光板6を介して設けられたバックライトユニット40とを備えている。
<Structure of liquid crystal display device>
As shown in FIG. 1, the liquid crystal display device 50 includes a liquid crystal display panel 5, a first polarizing plate 6 attached to the lower surface of the liquid crystal display panel 5, and a second polarizing plate attached to the upper surface of the liquid crystal display panel 5. 7 and a backlight unit 40 provided on the back side of the liquid crystal display panel 5 with the first polarizing plate 6 interposed therebetween.
 液晶表示パネル5は、互いに対向するように設けられたTFT基板1及びCF基板2と、TFT基板1とCF基板2との間に設けられた液晶層3と、TFT基板1とCF基板2との間に液晶層3を封入するために枠状に設けられたシール材(図示省略)とを備える。 The liquid crystal display panel 5 includes a TFT substrate 1 and a CF substrate 2 facing each other, a liquid crystal layer 3 provided between the TFT substrate 1 and the CF substrate 2, and the TFT substrate 1 and the CF substrate 2. A frame-shaped sealing material (not shown) is provided to seal the liquid crystal layer 3 between them.
 液晶表示装置50の表示画面50aを正面(図1の上方)から見た形状は、原則、長方形又は正方形であるが、これに限らず、長方形の角が丸くなった形状、楕円形、円形、台形、又は、自動車のインストルメントパネル(インパネ)などの任意の形状であってもよい。 The shape of the display screen 50a of the liquid crystal display device 50 viewed from the front (upper side in FIG. 1) is, in principle, rectangular or square, but is not limited thereto, and may be a rectangular shape with rounded corners, an elliptical shape, a circular shape, or the like. Any shape such as a trapezoid or an automobile instrument panel (instrument panel) may be used.
 液晶表示装置50では、各画素電極に対応する各サブ画素において、液晶層3に所定の大きさの電圧を印加して液晶層3の配向状態を変える。これにより、バックライトユニット40から第1偏光板6を介して入射した光の透過率が調整される。透過率が調整された光は第2偏光板7を介して出射されて画像が表示される。 In the liquid crystal display device 50 , in each sub-pixel corresponding to each pixel electrode, a voltage of a predetermined magnitude is applied to the liquid crystal layer 3 to change the alignment state of the liquid crystal layer 3 . Thereby, the transmittance of the light incident from the backlight unit 40 through the first polarizing plate 6 is adjusted. The light whose transmittance has been adjusted is emitted through the second polarizing plate 7 to display an image.
 本実施形態の液晶表示装置50は、種々の情報機器(例えばカーナビゲーション等の車載装置、パーソナルコンピュータ、携帯電話、ノートパソコンやタブレット等の携帯情報端末、携帯型ゲーム機、コピー機、券売機、現金自動預け払い機など)に組み込まれる表示装置として用いられる。 The liquid crystal display device 50 of the present embodiment can be used for various information devices (for example, in-vehicle devices such as car navigation systems, personal computers, mobile phones, portable information terminals such as notebook computers and tablets, portable game machines, copiers, ticket vending machines, It is used as a display device incorporated in an automatic teller machine, etc.).
 TFT基板1は、例えば、ガラス基板上にマトリクス状に設けられた複数のTFTと、各TFTを覆うように設けられた層間絶縁膜と、層間絶縁膜上にマトリクス状に設けられ且つ複数のTFTにそれぞれ接続された複数の画素電極と、各画素電極を覆うように設けられた配向膜とを備える。CF基板2は、例えば、ガラス基板上に格子状に設けられたブラックマトリクスと、ブラックマトリクスの各格子間にそれぞれ設けられた赤色層、緑色層及び青色層を含むカラーフィルターと、ブラックマトリクス及びカラーフィルターを覆うように設けられた共通電極と、共通電極を覆うように設けられた配向膜とを備える。液晶層3は、電気光学特性を有する液晶分子を含むネマチック液晶材料等により構成される。第1偏光板6及び第2偏光板7は、例えば、一方向の偏光軸を有する偏光子層と、その偏光子層を挟持するように設けられた一対の保護層とを備える。 The TFT substrate 1 includes, for example, a plurality of TFTs provided in a matrix on a glass substrate, an interlayer insulating film provided so as to cover each TFT, and a plurality of TFTs provided in a matrix on the interlayer insulating film. and an alignment film provided to cover each pixel electrode. The CF substrate 2 includes, for example, a black matrix provided in a grid pattern on a glass substrate, a color filter including a red layer, a green layer, and a blue layer provided between the grids of the black matrix, and a black matrix and a color filter. A common electrode is provided to cover the filter, and an alignment film is provided to cover the common electrode. The liquid crystal layer 3 is made of a nematic liquid crystal material or the like containing liquid crystal molecules having electro-optical properties. The first polarizing plate 6 and the second polarizing plate 7 each include, for example, a polarizer layer having a unidirectional polarization axis and a pair of protective layers provided to sandwich the polarizer layer.
 <バックライトユニット及び光学シート積層体の構成>
 図2に示すように、バックライトユニット40は、反射シート41と、反射シート41上に2次元状に配置された複数の光源42と、複数の光源42の上側に設けられた光学シート積層体100と、光学シート積層体100の上側に設けられた一対のプリズムシート44及び45とを有する。
<Structure of Backlight Unit and Optical Sheet Laminate>
As shown in FIG. 2, the backlight unit 40 includes a reflective sheet 41, a plurality of light sources 42 two-dimensionally arranged on the reflective sheet 41, and an optical sheet laminate provided above the plurality of light sources 42. 100 and a pair of prism sheets 44 and 45 provided on the upper side of the optical sheet laminate 100 .
 本実施形態では、光源42として、例えば青色光源を用いてもよい。この場合、図2に示すように、光学シート積層体100とプリズムシート44及び45との間に色変換シート46を設けてもよい。或いは、光源42として、例えば白色光源を用いてもよい。この場合、色変換シート46は設けなくてもよい。光学シート積層体100は、一面に略逆四角錐状の複数の凹部22が設けられた光拡散シート43を例えば3枚積層して構成されてもよい。或いは、光拡散シート43を2枚又は4枚以上積層して光学シート積層体100を構成してもよい。一対のプリズムシート44及び45は、プリズム延伸方向(プリズム稜線の延びる方向)が互いに直交する下側プリズムシート44及び上側プリズムシート45であってもよい。光学シート積層体100を構成する各光拡散シート43や、プリズムシート44及び45等は、フィルム状であってもよいし、或いは、プレート(板)状であってもよい。これらの光学シートは、バックライトユニット40の枠体(図示省略)内に、接着剤を使わずに自重によって積層されてもよい。 For example, a blue light source may be used as the light source 42 in this embodiment. In this case, as shown in FIG. 2, a color conversion sheet 46 may be provided between the optical sheet laminate 100 and the prism sheets 44 and 45 . Alternatively, for example, a white light source may be used as the light source 42 . In this case, the color conversion sheet 46 may not be provided. The optical sheet laminate 100 may be configured by laminating, for example, three light diffusion sheets 43 each having a plurality of recesses 22 each having a substantially inverted quadrangular pyramid shape. Alternatively, the optical sheet laminate 100 may be configured by laminating two or four or more light diffusion sheets 43 . The pair of prism sheets 44 and 45 may be a lower prism sheet 44 and an upper prism sheet 45 whose prism stretching directions (directions in which prism ridgelines extend) are orthogonal to each other. Each of the light diffusion sheets 43, the prism sheets 44 and 45, and the like that constitute the optical sheet laminate 100 may be film-like or plate-like. These optical sheets may be laminated within the frame (not shown) of the backlight unit 40 by their own weight without using an adhesive.
 反射シート41は、例えば、白色のポリエチレンテレフタレート樹脂製のフィルム、銀蒸着フィルム等により構成される。 The reflective sheet 41 is composed of, for example, a white film made of polyethylene terephthalate resin, a silver-deposited film, or the like.
 光源42の種類は特に限定されないが、例えばLED素子やレーザー素子等であってもよく、コスト、生産性等の観点からLED素子を用いてもよい。光源42は、平面視した場合に長方形状を有していてもよく、その場合、一辺の長さは10μm以上(好ましくは50μm以上)20mm以下(好ましくは10mm以下、より好ましくは5mm以下)であってもよい。光源42としてLED素子を用いる場合、複数の数mm角のLEDチップを一定の間隔をもって反射シート41上に配置してもよい。光源42となるLED素子の出光角度特性を調節するために、LED素子にレンズを装着してもよい。光源42の配置数も特に限定されないが、複数の光源42を分散配置する場合は、反射シート41上に規則的に配置することが好ましい。規則的に配置するとは、一定の法則性をもって配置することを意味し、例えば、光源42を等間隔で配置する場合が該当する。等間隔で光源42を配置する場合、隣り合う2つの光源42の中心間距離は、0.5mm以上(好ましくは2mm以上)20mm以下であってもよい。光源42として、青色光源を用いる場合、当該青色光源は、例えばCIE1931の色度座標においてx<0.24、y<0.18の光を発してもよい。光源42として、白色光源を用いる場合、当該白色光源は、ピーク波長が青色領域のLED素子と、ピーク波長が緑色領域のLED素子と、ピーク波長が赤色領域のLED素子とから構成され、例えばCIE1931の色度座標において0.24<x<0.42、0.18<y<0.48の光を発してもよい。 Although the type of the light source 42 is not particularly limited, it may be, for example, an LED element, a laser element, or the like, and an LED element may be used from the viewpoint of cost, productivity, and the like. The light source 42 may have a rectangular shape when viewed from above, in which case the length of one side is 10 μm or more (preferably 50 μm or more) and 20 mm or less (preferably 10 mm or less, more preferably 5 mm or less). There may be. When LED elements are used as the light source 42, a plurality of LED chips of several millimeters square may be arranged on the reflective sheet 41 at regular intervals. A lens may be attached to the LED element in order to adjust the light emission angle characteristics of the LED element serving as the light source 42 . The number of light sources 42 to be arranged is not particularly limited, but when a plurality of light sources 42 are arranged in a distributed manner, it is preferable to arrange them regularly on the reflection sheet 41 . Arranging regularly means arranging with a certain rule, and for example, the case where the light sources 42 are arranged at regular intervals corresponds to this. When the light sources 42 are arranged at regular intervals, the center-to-center distance between two adjacent light sources 42 may be 0.5 mm or more (preferably 2 mm or more) and 20 mm or less. When a blue light source is used as the light source 42, the blue light source may emit light with x<0.24 and y<0.18 in the CIE1931 chromaticity coordinates, for example. When a white light source is used as the light source 42, the white light source includes an LED element whose peak wavelength is in the blue region, an LED element whose peak wavelength is in the green region, and an LED element whose peak wavelength is in the red region. and 0.24<x<0.42 and 0.18<y<0.48 in chromaticity coordinates.
 光学シート積層体100を構成する複数の光拡散シート43のうち、下側プリズムシート44に最も近い第1光拡散シート43Aにおいては、複数の凹部22は出光面21aに配置される。第1光拡散シート43Aを除く複数の光拡散シート43のうち、少なくとも1つの第2光拡散シート43Bにおいて、複数の凹部22は入光面21bに配置される。本実施形態では、第1光拡散シート43A以外の2枚の光拡散シート43はいずれも、入光面21bに凹部22が配置された第2光拡散シート43Bとした。しかし、これに代えて、光源42側から1層目又は2層目の光拡散シート43のいずれか一方のみを第2光拡散シート43Bとし、他方を、出光面21aに凹部22が配置された第1光拡散シート43Aとしてもよい。 Of the plurality of light diffusion sheets 43 forming the optical sheet laminate 100, in the first light diffusion sheet 43A closest to the lower prism sheet 44, the plurality of concave portions 22 are arranged on the light output surface 21a. Among the plurality of light diffusion sheets 43 other than the first light diffusion sheet 43A, in at least one second light diffusion sheet 43B, the plurality of recesses 22 are arranged on the light incident surface 21b. In this embodiment, the two light diffusion sheets 43 other than the first light diffusion sheet 43A are both the second light diffusion sheets 43B in which the concave portions 22 are arranged on the light entrance surface 21b. However, instead of this, only one of the light diffusion sheets 43 of the first layer or the second layer from the light source 42 side is the second light diffusion sheet 43B, and the other is provided with the recessed portion 22 on the light exit surface 21a. It is good also as the 1st light-diffusion sheet 43A.
 光拡散シート43A、43Bはそれぞれ、図3(a)、(b)に示すように、基材層21を有する。光拡散シート43A、43Bは、光出射面21aと、光入射面21bとを有する。すなわち、光拡散シート43A、43Bは、光入射面21bを光源42の方に向けて配置される。基材層21は、光を透過させる樹脂材料で構成されていれば、特に限定されないが、例えば、アクリル、ポリスチレン、ポリカーボネート、MS(メチルメタクリレート・スチレン共重合)樹脂、ポリエチレンテレフタレート、ポリエチレンナフタレート、セルロールアセテート、ポリイミド等であってもよい。基材層21は、拡散剤その他の添加剤を含んでいてもよいし、或いは、実質的に添加剤を含有しなくてもよい。第1光拡散シート43Aの基材層21に拡散剤を添加する場合、拡散剤の含有率は、0質量%以上2質量%以下としてもよい。基材層21に含有可能な添加剤は、特に限定されないが、例えば、シリカ、酸化チタン、水酸化アルミニウム、硫酸バリウム等の無機粒子であってもよいし、例えば、アクリル、アクリルニトリル、シリコーン、ポリスチレン、ポリアミド等の有機粒子であってよい。 The light diffusion sheets 43A and 43B each have a base material layer 21 as shown in FIGS. 3(a) and 3(b). Light diffusion sheets 43A and 43B have a light exit surface 21a and a light entrance surface 21b. That is, the light diffusion sheets 43A and 43B are arranged with the light incident surface 21b facing the light source 42 . The base material layer 21 is not particularly limited as long as it is made of a resin material that allows light to pass through. It may be cellulose acetate, polyimide, or the like. The base material layer 21 may contain a diffusing agent and other additives, or may contain substantially no additives. When a diffusing agent is added to the base material layer 21 of the first light diffusion sheet 43A, the content of the diffusing agent may be 0% by mass or more and 2% by mass or less. Additives that can be contained in the base material layer 21 are not particularly limited. It may be organic particles such as polystyrene, polyamide, and the like.
 光拡散シート43A、43Bの厚さは、特に限定されないが、例えば、3mm以下(好ましくは2mm以下、より好ましくは1.5mm以下、更に好ましくは1mm以下)で0.1mm以上であってもよい。光拡散シート43A、43Bの厚さが3mm以下であると、液晶ディスプレイを薄型化できる。光拡散シート43A、43Bの厚さが0.1mm以上であると、輝度均一性が向上する。 The thickness of the light diffusion sheets 43A and 43B is not particularly limited, but may be, for example, 3 mm or less (preferably 2 mm or less, more preferably 1.5 mm or less, still more preferably 1 mm or less) and 0.1 mm or more. . When the thickness of the light diffusion sheets 43A and 43B is 3 mm or less, the thickness of the liquid crystal display can be reduced. When the thickness of the light diffusion sheets 43A and 43B is 0.1 mm or more, the brightness uniformity is improved.
 第1光拡散シート43Aの出光面21a、及び第2光拡散シート43Bの入光面21bには、図4に示すように、略逆四角錐状(逆ピラミッド状)の複数の凹部22が二次元マトリクス状に配列される。言い換えると、複数の凹部22は、互いに直交する2方向に沿って配列される。隣り合う凹部22同士は、稜線111によって区画される。稜線111は、凹部22が配列される2方向に沿って延びる。凹部22の中心(逆ピラミッドの頂点)112は、凹部22の最深部である。図4では、簡単のため、凹部22が5×5のマトリクス状に配置された様子を例示しているが、凹部22の実際の配列数ははるかに多い。複数の凹部22の2次元配列において、各凹部22は隙間無く設けられてもよいし、所定の間隔をあけて設けられてもよい。また、光拡散効果が損なわれない程度に、一部の凹部22がランダムに配列されてもよい。 As shown in FIG. 4, a plurality of concave portions 22 having a substantially inverted quadrangular pyramid shape (inverted pyramid shape) are formed on the light exit surface 21a of the first light diffusion sheet 43A and the light entrance surface 21b of the second light diffusion sheet 43B. Arranged in a dimensional matrix. In other words, the plurality of recesses 22 are arranged along two directions orthogonal to each other. Adjacent recesses 22 are separated by ridgelines 111 . The ridgeline 111 extends along two directions in which the recesses 22 are arranged. The center 112 of the recess 22 (the apex of the inverted pyramid) is the deepest part of the recess 22 . For simplicity, FIG. 4 illustrates a state in which the recesses 22 are arranged in a matrix of 5×5, but the actual number of recesses 22 is much larger. In the two-dimensional arrangement of the plurality of recesses 22, the recesses 22 may be provided without gaps, or may be provided at predetermined intervals. Moreover, some recesses 22 may be arranged randomly to the extent that the light diffusion effect is not impaired.
 凹部22の頂角θは例えば90°であり、凹部22の配列ピッチpは例えば100μmであり、凹部22の深さは例えば50μmであってもよい。凹部22の頂角θとは、光拡散シート43の配置面に対して垂直な面(縦断面)で、凹部22の中心(逆ピラミッドの頂点112)を通り且つ当該中心を挟んで向き合う一対の斜面を垂直に横切るように切断したときに現れる断面において、斜面の断面線同士がなす角のことである。また、凹部22の配列ピッチpとは、隣り合う凹部22の中心(逆ピラミッドの頂点112)同士の間の距離(光拡散シート43の配置面に平行な方向に沿った距離)のことである。 The apex angle θ of the recesses 22 may be, for example, 90°, the arrangement pitch p of the recesses 22 may be, for example, 100 μm, and the depth of the recesses 22 may be, for example, 50 μm. The apex angle θ of the concave portion 22 is a plane (longitudinal section) perpendicular to the surface on which the light diffusion sheet 43 is arranged, and is a pair of angles that pass through the center of the concave portion 22 (apex 112 of the inverted pyramid) and face each other across the center. The angle formed by the cross-sectional lines of the slope in the cross section that appears when the slope is cut perpendicularly across it. The arrangement pitch p of the recesses 22 is the distance between the centers (the apexes 112 of the inverted pyramids) of the adjacent recesses 22 (the distance along the direction parallel to the arrangement surface of the light diffusion sheet 43). .
 第1光拡散シート43Aの入光面21b、及び第2光拡散シート43Bの出光面21aは、例えばマット面、平坦面(鏡面)又はエンボス加工面であってもよい。また、第2光拡散シート43Bの出光面21aには、例えば略逆四角錐状(逆ピラミッド状)等の複数の凹部が設けられてもよい。光拡散シート43A、43Bは、一面に凹凸形状(凹部22)を持つ基材層21の1層構造で構成してもよい。光拡散シート43A、43Bは、両面が平坦な基材層と、一面に凹凸形状を持つ層との2層構造で構成してもよい。光拡散シート43A、43Bは、一面に凹凸形状を持つ層を含む3層以上の構造で構成してもよい。光拡散シート43A、43Bの製造方法は、特に限定されないが、例えば、押し出し成型法、射出成型法などを用いてもよい。 The light entrance surface 21b of the first light diffusion sheet 43A and the light exit surface 21a of the second light diffusion sheet 43B may be matte surfaces, flat surfaces (mirror surfaces), or embossed surfaces, for example. Further, the light exit surface 21a of the second light diffusing sheet 43B may be provided with a plurality of concave portions having, for example, a substantially inverted quadrangular pyramid shape (inverted pyramid shape). The light diffusion sheets 43A and 43B may be configured with a single-layer structure of the base material layer 21 having an uneven shape (recesses 22) on one surface. The light diffusing sheets 43A and 43B may have a two-layer structure of a substrate layer having flat surfaces on both sides and a layer having unevenness on one surface. The light diffusion sheets 43A and 43B may have a structure of three or more layers including a layer having unevenness on one surface. A method for manufacturing the light diffusion sheets 43A and 43B is not particularly limited, but for example, an extrusion molding method, an injection molding method, or the like may be used.
 押し出し成型法を用いて、凹凸形状を表面に持つ単層の光拡散シートを製造する手順は次の通りである。まず、拡散剤が添加されたペレット状のプラスチック粒子(併せて、拡散剤が添加されていないペレット状のプラスチック粒子を混合してもよい)を単軸押し出し機に投入し、加熱しながら溶融、混錬する。その後、T-ダイスにより押し出された溶融樹脂を2本の金属ロールで挟んで冷却した後、ガイドロールを用いて搬送し、シートカッター機により枚葉平板に切り落とすことによって、光拡散シートを作製する。ここで、所望の凹凸形状を反転した形状を表面に持つ金属ロールを使用して溶融樹脂を挟むことにより、ロール表面の反転形状が樹脂に転写されるので、所望の凹凸形状を光拡散シート表面に賦形することができる。また、樹脂に転写された形状は、必ずしもロール表面の形状が100%転写されたものとはならないので、転写度合いから逆算して、ロール表面の形状を設計してもよい。 The procedure for manufacturing a single-layer light diffusion sheet having an uneven surface using an extrusion molding method is as follows. First, pellet-shaped plastic particles to which a diffusing agent has been added (along with pellet-shaped plastic particles to which no diffusing agent has been added may be mixed) are put into a single-screw extruder, heated and melted, knead. After that, the molten resin extruded by the T-die is sandwiched between two metal rolls, cooled, transported using guide rolls, and cut into flat plates by a sheet cutter to produce a light diffusion sheet. . Here, by sandwiching the molten resin using metal rolls having a surface that is the reverse of the desired uneven shape, the reverse shape of the roll surface is transferred to the resin. can be shaped into In addition, since the shape transferred to the resin does not always correspond to the shape of the roll surface that is 100% transferred, the shape of the roll surface may be designed by calculating backward from the degree of transfer.
 押し出し成型法を用いて、凹凸形状を表面に持つ2層構造の光拡散シートを製造する場合は、例えば、2つの単軸押し出し機のそれぞれに、各層の形成に必要なペレット状のプラスチック粒子を投入した後、各層毎に前述と同様の手順を実施し、作製された各シートを積層すればよい。 When manufacturing a light diffusion sheet with a two-layer structure having an uneven surface using an extrusion molding method, for example, pellet-shaped plastic particles necessary for forming each layer are supplied to each of two single-screw extruders. After charging, the same procedure as described above is performed for each layer, and each sheet thus produced may be laminated.
 或いは、以下のように、凹凸形状を表面に持つ2層構造の光拡散シートを作製してもよい。まず、2つの単軸押し出し機のそれぞれに、各層の形成に必要なペレット状のプラスチック粒子を投入し、加熱しながら溶融、混錬する。その後、各層となる溶融樹脂を1つのT-ダイスに投入し、当該T-ダイス内で積層し、当該T-ダイスにより押し出された積層溶融樹脂を2本の金属ロールで挟んで冷却する。その後、ガイドロールを用いて積層溶融樹脂を搬送し、シートカッター機により枚葉平板に切り落とすことによって、凹凸形状を表面に持つ2層構造の光拡散シートを作製してもよい。 Alternatively, a light diffusion sheet with a two-layer structure having an uneven surface may be produced as follows. First, pellet-like plastic particles necessary for forming each layer are put into each of two single-screw extruders, melted and kneaded while being heated. After that, the molten resin for each layer is put into one T-die, laminated in the T-die, and the laminated molten resin extruded by the T-die is sandwiched between two metal rolls and cooled. After that, the laminated molten resin may be conveyed using guide rolls and cut into flat plates with a sheet cutter to produce a light diffusion sheet having a two-layer structure having an uneven surface.
 また、UV(紫外線)を用いた賦形転写によって、以下のように光拡散シートを製造してもよい。まず、転写したい凹凸形状の反転形状を有するロールに未硬化の紫外線硬化樹脂を充填し、当該樹脂に基材を押し当てる。次に、紫外線硬化樹脂が充填されたロールと基材とが一体になっている状態で、紫外線を照射して樹脂を硬化させる。次に、樹脂によって凹凸形状が賦形転写されたシートをロールからはく離させる。最後に、再度シートに紫外線照射を行って樹脂を完全硬化させることによって、凹凸形状を表面に持つ光拡散シートを作製する。 Alternatively, the light diffusion sheet may be manufactured as follows by shape transfer using UV (ultraviolet). First, a roll having an inverted shape of the uneven shape to be transferred is filled with an uncured UV curable resin, and the substrate is pressed against the resin. Next, in a state in which the roll filled with the ultraviolet curable resin and the substrate are integrated, the resin is cured by irradiating ultraviolet rays. Next, the sheet on which the concavo-convex shape has been shape-transferred by the resin is separated from the roll. Finally, the sheet is irradiated with ultraviolet light again to completely harden the resin, thereby producing a light diffusion sheet having an uneven surface.
 尚、本開示では、通常の形状転写技術により幾何学的に厳密な逆四角錐の凹部を形成することが難しいことを考慮して、「略逆四角錐」との表記を用いるが、「略逆四角錐」は、真正の又は実質的に逆四角錐とみなせる形状を含むものとする。また、「略」とは、近似可能であることを意味し、「略逆四角錐」とは、逆四角錐に近似可能な形状をいう。例えば、頂部が平坦な「逆四角錐台形」についても、本発明の作用効果が失われない程度に頂部面積が小さいものは、「略逆四角錐」に包含されるものとする。また、工業生産上の加工精度に起因する不可避的な形状のばらつきの範囲内で「逆四角錐」から変形した形状も、「略逆四角錐」に包含される。 In the present disclosure, in consideration of the fact that it is difficult to form a geometrically strict inverted quadrangular pyramid recess by a normal shape transfer technique, the notation “substantially inverted quadrangular pyramid” is used, but “substantially "Inverted square pyramid" shall include shapes that can be considered true or substantially inverted square pyramids. Further, the term "substantially" means that it can be approximated, and the term "substantially inverted quadrangular pyramid" means a shape that can be approximated to an inverted quadrangular pyramid. For example, an "inverted quadrangular truncated pyramid" with a flat top is also included in the "substantially inverted quadrangular pyramid" if the top area is small enough to maintain the effects of the present invention. Further, a shape that is deformed from the "inverted square pyramid" within the range of unavoidable variations in shape due to processing accuracy in industrial production is also included in the "substantially inverted square pyramid".
 プリズムシート44及び45は、光線を透過させる必要があるので、透明(例えば無色透明)の合成樹脂を主成分として形成される。プリズムシート44及び45は、一体に形成されてもよい。下側プリズムシート44は、基材層44aと、基材層44aの表面に積層される複数の突条プリズム部44bからなる突起列とを有する。同様に、上側プリズムシート45は、基材層45aと、基材層45aの表面に積層される複数の突条プリズム部45bからなる突起列とを有する。突条プリズム部44b及び45bはそれぞれ、基材層44a及び45aの表面にストライプ状に積層される。突条プリズム部44b及び45bはそれぞれ、裏面が基材層44a及び45aの表面に接する三角柱状体である。突条プリズム部44bの延伸方向と突条プリズム部45bの延伸方向とは、互いに直交する。これにより、第1光拡散シート43Aから入射される光線を下側プリズムシート44によって法線方向側に屈折させ、さらに下側プリズムシート44から出射される光線を上側プリズムシート45によって表示画面50aに対して略垂直に進むように屈折させることができる。 The prism sheets 44 and 45 are made mainly of a transparent (for example, colorless and transparent) synthetic resin because they need to transmit light. The prism sheets 44 and 45 may be integrally formed. The lower prism sheet 44 has a substrate layer 44a and a row of projections composed of a plurality of ridge prism portions 44b laminated on the surface of the substrate layer 44a. Similarly, the upper prism sheet 45 has a substrate layer 45a and a row of projections composed of a plurality of ridge prism portions 45b laminated on the surface of the substrate layer 45a. The ridge prism portions 44b and 45b are laminated in stripes on the surfaces of the substrate layers 44a and 45a, respectively. The ridge prism portions 44b and 45b are triangular prisms whose back surfaces are in contact with the surfaces of the substrate layers 44a and 45a, respectively. The extension direction of the ridge prism portion 44b and the extension direction of the ridge prism portion 45b are orthogonal to each other. As a result, the light rays incident from the first light diffusion sheet 43A are refracted by the lower prism sheet 44 in the normal direction, and the light rays emitted from the lower prism sheet 44 are directed to the display screen 50a by the upper prism sheet 45. It can be refracted so as to proceed substantially perpendicular to it.
 プリズムシート44及び45の厚さ(基材層44a及び45aの裏面から突条プリズム部44b及び45bの頂点までの高さ)の下限は、例えば、50μm程度、より好ましくは100μm程度であってもよい。プリズムシート44及び45の厚さの上限は、200μm程度、より好ましくは180μm程度であってもよい。プリズムシート44及び45における突条プリズム部44b及び45bのピッチの下限は、例えば、20μm程度、より好ましくは25μm程度であってもよい。プリズムシート44及び45における突条プリズム部44b及び45bのピッチの上限は、例えば、100μm程度、より好ましくは60μm程度であってもよい。突条プリズム部44b及び45bの頂角は、例えば、85°以上95°以下であってもよい。突条プリズム部44b及び45bの屈折率の下限は、例えば、1.5、より好ましくは1.55であってもよい。突条プリズム部44b及び45bの屈折率の上限は、例えば、1.7であってもよい。 The lower limit of the thickness of the prism sheets 44 and 45 (the height from the back surface of the base material layers 44a and 45a to the vertices of the ridge prism portions 44b and 45b) is, for example, about 50 μm, more preferably about 100 μm. good. The upper limit of the thickness of the prism sheets 44 and 45 may be approximately 200 μm, more preferably approximately 180 μm. The lower limit of the pitch of the ridge prism portions 44b and 45b on the prism sheets 44 and 45 may be, for example, about 20 μm, more preferably about 25 μm. The upper limit of the pitch of the prismatic protrusions 44b and 45b on the prism sheets 44 and 45 may be, for example, approximately 100 μm, more preferably approximately 60 μm. The apex angles of the ridge prism portions 44b and 45b may be, for example, 85° or more and 95° or less. The lower limit of the refractive index of the ridge prism portions 44b and 45b may be, for example, 1.5, more preferably 1.55. The upper limit of the refractive index of the ridge prism portions 44b and 45b may be, for example, 1.7.
 プリズムシート44及び45は、例えばPET(polyethylene terephthalate)フィルムからなる基材層44a及び45aに、UV硬化型アクリル系樹脂を用いて形状転写された突条プリズム部44b及び45bを設けたものであってもよいし、或いは、突条プリズム部44b及び45bが基材層44a及び45aと一体成形されたものであってもよい。 Prism sheets 44 and 45 are formed by providing ridge prism portions 44b and 45b, which are shape-transferred using a UV curable acrylic resin, on substrate layers 44a and 45a made of, for example, PET (polyethylene terephthalate) film. Alternatively, the ridge prism portions 44b and 45b may be formed integrally with the base layers 44a and 45a.
 色変換シート46は、例えば青色光源である光源42からの光を、任意の色(例えば緑色や赤色)の波長をピーク波長とする光に変換する波長変換シートである。色変換シート46は、例えば、波長450nmの青色光を、波長540nmの緑色光と波長650nmの赤色光に変換する。この場合、波長450nmの青色光を発する光源42を用いると、色変換シート46によって青色光が部分的に緑色光と赤色光に変換されるので、色変換シート46を透過した光は白色光になる。色変換シート46としては、例えば、QD(量子ドット)シートや蛍光シート等を用いてもよい。 The color conversion sheet 46 is a wavelength conversion sheet that converts light from the light source 42, which is, for example, a blue light source, into light having a peak wavelength of an arbitrary color (for example, green or red). The color conversion sheet 46 converts, for example, blue light with a wavelength of 450 nm into green light with a wavelength of 540 nm and red light with a wavelength of 650 nm. In this case, if the light source 42 that emits blue light with a wavelength of 450 nm is used, the blue light is partially converted into green light and red light by the color conversion sheet 46, so that the light transmitted through the color conversion sheet 46 becomes white light. Become. As the color conversion sheet 46, for example, a QD (quantum dot) sheet, a fluorescent sheet, or the like may be used.
 図示は省略しているが、プリズムシート44及び45の上側(表示画面50aの側)に上用光拡散シートをさらに設けてもよい。上用光拡散シートは、上側プリズムシート45側から入射される光線を若干程度拡散させてプリズムシート44及び45における突条プリズム部44b及び45bの形状等に起因する輝度ムラを抑制する。上用光拡散シートは、上側プリズムシート45の表面に直接積層されてもよい。上用光拡散シートの厚さは、特に限定されないが、例えば、50μm以上3mm以下であってもよい。上用光拡散シートの厚さが3mmを超えると、液晶ディスプレイの薄型化の達成が難しくなる一方、上用光拡散シートの厚さが50μmを下回ると、十分な光拡散効果を得ることが難しくなる。上用光拡散シートは、フィルム状であってもよいし、プレート(板)状であってもよい。上用光拡散シートとしては、例えば、PETフィルムの少なくとも一面にUV硬化型アクリル系樹脂を用いて凹凸形状をつけたものを用いてもよい。 Although not shown, an upper light diffusion sheet may be further provided above the prism sheets 44 and 45 (on the display screen 50a side). The upper light diffusion sheet somewhat diffuses the light rays incident from the upper prism sheet 45 side, and suppresses luminance unevenness caused by the shape of the ridged prism portions 44b and 45b of the prism sheets 44 and 45 and the like. The upper light diffusion sheet may be laminated directly on the surface of the upper prism sheet 45 . The thickness of the top light diffusion sheet is not particularly limited, but may be, for example, 50 μm or more and 3 mm or less. When the thickness of the top light diffusion sheet exceeds 3 mm, it becomes difficult to achieve thinning of the liquid crystal display. Become. The top light diffusion sheet may be film-like or plate-like. As the light diffusing sheet for top use, for example, a PET film on at least one surface of which a UV-curing acrylic resin is used to provide an uneven shape may be used.
 また、図示は省略しているが、プリズムシート44及び45の上側(表示画面50aの側)に偏光シートを設けてもよい。偏光シートは、バックライトユニット40から出射された光が液晶表示装置50の第1偏光板6に吸収されることを防止することによって、表示画面50aの輝度を向上させる。 Although not shown, a polarizing sheet may be provided above the prism sheets 44 and 45 (on the display screen 50a side). The polarizing sheet prevents the light emitted from the backlight unit 40 from being absorbed by the first polarizing plate 6 of the liquid crystal display device 50, thereby improving the brightness of the display screen 50a.
 <実施形態の特徴>
 本実施形態の光学シート積層体100は、表示画面50aの背面側に複数の光源42が分散して設けられた液晶表示装置50のバックライトユニット40において光源42とプリズムシート44及び45との間に組み込まれる。本実施形態の光学シート積層体100は、一面に略逆四角錐状の複数の凹部22が設けられた複数の光拡散シート43を備える。複数の光拡散シート43のうちプリズムシート44及び45に最も近い第1光拡散シート43Aにおいて、複数の凹部22は出光面21aに配置される。第1光拡散シート43Aを除く複数の光拡散シート43のうち少なくとも1つの第2光拡散シート43Bにおいて、複数の凹部22は入光面21bに配置される。第1光拡散シート43Aにおける拡散剤の含有率は、0質量%以上2質量%以下である。
<Features of Embodiment>
The optical sheet laminate 100 of the present embodiment is provided between the light source 42 and the prism sheets 44 and 45 in the backlight unit 40 of the liquid crystal display device 50 in which a plurality of light sources 42 are dispersed on the back side of the display screen 50a. incorporated into. The optical sheet laminate 100 of this embodiment includes a plurality of light diffusion sheets 43 each having a plurality of substantially inverted quadrangular pyramid-shaped concave portions 22 provided on one surface thereof. In the first light diffusion sheet 43A that is closest to the prism sheets 44 and 45 among the plurality of light diffusion sheets 43, the plurality of concave portions 22 are arranged on the light exit surface 21a. In at least one second light diffusion sheet 43B among the plurality of light diffusion sheets 43 other than the first light diffusion sheet 43A, the plurality of recesses 22 are arranged on the light incident surface 21b. The content of the diffusing agent in the first light diffusion sheet 43A is 0% by mass or more and 2% by mass or less.
 本実施形態の光学シート積層体100によると、一面に略逆四角錐状の複数の凹部22が設けられた光拡散シート(以下、ピラミッドシートということもある)43を複数枚重ねて用いることにより、輝度均一性を向上させることができる。また、プリズムシート44及び45に最も近い第1光拡散シート43Aにおいて、略逆四角錐状の凹部22が出光面21aに配置されるため、当該凹部22が入光面21bに配置される場合と比べて、出光光をプリズムシート44及び45の方へ収束させやすくなる。さらに、第1光拡散シート43Aにおける拡散剤の含有率を2質量%以下に抑制することにより、第1光拡散シート43Aの出光光の収束性が向上するので、低電力でも輝度を増大させることができる。 According to the optical sheet laminate 100 of the present embodiment, by using a plurality of light diffusion sheets (hereinafter also referred to as pyramid sheets) 43 each having a plurality of recesses 22 in the shape of a substantially inverted square pyramid on one surface, the , the luminance uniformity can be improved. In addition, in the first light diffusion sheet 43A closest to the prism sheets 44 and 45, the substantially inverted quadrangular pyramid-shaped concave portion 22 is arranged on the light exit surface 21a. In comparison, it becomes easier to converge the emitted light toward the prism sheets 44 and 45 . Furthermore, by suppressing the content of the diffusing agent in the first light diffusion sheet 43A to 2% by mass or less, the convergence of the emitted light of the first light diffusion sheet 43A is improved, so that the brightness can be increased even at low power. can be done.
 従って、本実施形態の光学シート積層体100をバックライトユニット40に用いることにより、輝度均一性を維持しながら低電力でも高輝度な画面を実現することができる。 Therefore, by using the optical sheet laminate 100 of the present embodiment in the backlight unit 40, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
 本実施形態の光学シート積層体100において、第2光拡散シート43Bが、第1光拡散シート43Aよりも厚いと、以下のような効果が得られる。すなわち、略逆四角錐状の凹部22が入光面21bに配置された第2光拡散シート43Bの厚さを厚くすると、入光面21の凹部22で拡散されて第2光拡散シート43B内を斜め方向に進む光の光路が長くなる。このため、入光面21bに平行な方向における光の拡散距離が長くなるので、光拡散性が増大して、輝度均一性がより一層向上する。また、第1光拡散シート43Aを第2光拡散シート43Bよりも薄くすることによって、光学シート積層体100全体としての厚さを抑制して、バックライトユニット40つまり液晶表示装置50の薄型化を図ることもできる。 In the optical sheet laminate 100 of this embodiment, when the second light diffusion sheet 43B is thicker than the first light diffusion sheet 43A, the following effects are obtained. That is, if the thickness of the second light diffusion sheet 43B, in which the concave portions 22 of approximately inverted quadrangular pyramid shape are arranged on the light incident surface 21b, is increased, the light will be diffused by the concave portions 22 of the light incident surface 21 and will be inside the second light diffusion sheet 43B. The optical path of light traveling obliquely becomes longer. Therefore, the diffusion distance of light in the direction parallel to the light entrance surface 21b is increased, so that the light diffusion property is increased and the brightness uniformity is further improved. In addition, by making the first light diffusion sheet 43A thinner than the second light diffusion sheet 43B, the thickness of the optical sheet laminate 100 as a whole is suppressed, and the thickness of the backlight unit 40, that is, the liquid crystal display device 50 is reduced. You can also plan.
 本実施形態のバックライトユニット40は、液晶表示装置50に組み込まれ、光源42から発せられた光を表示画面50a側に導く。本実施形態のバックライトユニット40は、光源42とプリズムシート44及び45との間に、本実施形態の光学シート積層体100を備える。 The backlight unit 40 of this embodiment is incorporated in the liquid crystal display device 50, and guides the light emitted from the light source 42 to the display screen 50a side. The backlight unit 40 of this embodiment includes the optical sheet laminate 100 of this embodiment between the light source 42 and the prism sheets 44 and 45 .
 本実施形態のバックライトユニット40によると、本実施形態の光学シート積層体100を備えるため、輝度均一性を維持しながら低電力でも高輝度な画面を実現することができる。 According to the backlight unit 40 of the present embodiment, since the optical sheet laminate 100 of the present embodiment is provided, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity.
 本実施形態のバックライトユニット40において、光源42は、光学シート積層体100から見てプリズムシート44及び45の反対側に設けられた反射シート41の上に配置されてもよい。このようにすると、光学シート積層体100を構成する光拡散シート43と反射シート41との間での多重反射によって光がさらに拡散されるので、輝度均一性が向上する。 In the backlight unit 40 of this embodiment, the light source 42 may be arranged on the reflection sheet 41 provided on the opposite side of the prism sheets 44 and 45 when viewed from the optical sheet laminate 100 . In this way, the light is further diffused by multiple reflections between the light diffusion sheet 43 and the reflection sheet 41 that constitute the optical sheet laminate 100, thereby improving luminance uniformity.
 本実施形態のバックライトユニット40において、光源42と光学シート積層体100との間の距離が2mm以下であると、バックライトユニット40を小型化することができる。また、今後の中小型液晶ディスプレイの薄型化をにらみ、光源42と光学シート積層体100との距離を、より好ましくは1mm以下、究極的には0mmとしてもよい。 In the backlight unit 40 of this embodiment, if the distance between the light source 42 and the optical sheet laminate 100 is 2 mm or less, the backlight unit 40 can be miniaturized. Further, in anticipation of future thinning of small- and medium-sized liquid crystal displays, the distance between the light source 42 and the optical sheet laminate 100 may be more preferably 1 mm or less, and ultimately 0 mm.
 本実施形態の液晶表示装置50は、本実施形態のバックライトユニット40と、液晶表示パネル5とを備える。このため、本実施形態のバックライトユニット40によって、輝度均一性を維持しながら低電力でも高輝度な画面を実現することができる。液晶表示装置50が組み込まれた情報機器(例えばノートパソコンやタブレットなどの携帯情報端末)でも同様の効果を得ることができる。 The liquid crystal display device 50 of this embodiment includes the backlight unit 40 of this embodiment and the liquid crystal display panel 5 . Therefore, with the backlight unit 40 of the present embodiment, it is possible to realize a high-brightness screen even with low power while maintaining brightness uniformity. A similar effect can be obtained with an information device (for example, a portable information terminal such as a notebook computer or a tablet) in which the liquid crystal display device 50 is incorporated.
 (実施例)
 以下、実施例について説明する。
(Example)
Examples are described below.
 実施例の光学シート積層体100は、一面に略逆四角錐状の複数の凹部22が設けられた光拡散シート(ピラミッドシート)43を3枚重ねて構成した。具体的には、下記の表1に示すように、上層(下側プリズムシート44に最も近い層)に、凹部22が設けられた面(ピラミッド面)が出光面21aである厚さ160μmの第1光拡散シート43Aを配置し、下層及び中層に、ピラミッド面が入光面21bである厚さ220μmの2枚の第2光拡散シート43Bを配置して、実施例の光学シート積層体100を構成した。第1光拡散シート43Aにおける凹部(逆ピラミッド)22の配列ピッチ及び頂角はそれぞれ100μm及び90°とし、第2光拡散シート43Bにおける凹部(逆ピラミッド)22の配列ピッチ及び頂角はそれぞれ180μm及び80°とした。また、実施例の光学シート積層体100として、第1光拡散シート43Aにおける拡散剤の含有率を0質量%から8質量%まで段階的に変化させた(具体的には0質量%、0.2質量%、0.4質量%、0.8質量%、2質量%、4質量%、8質量%に設定した)複数種類のサンプルを用意した。ここで、拡散剤の含有率とは、第1光拡散シート43Aの全体重量に対する拡散剤の重量の比率である。尚、2枚の第2光拡散シート43Bには拡散剤を添加しなかった。 The optical sheet laminate 100 of the example was constructed by stacking three light diffusion sheets (pyramid sheets) 43 each having a plurality of recesses 22 each having a substantially inverted quadrangular pyramid shape. Specifically, as shown in Table 1 below, the upper layer (the layer closest to the lower prism sheet 44) has a surface (pyramidal surface) on which the concave portions 22 are provided, and a 160-μm-thick third layer which is the light exit surface 21a. 1 light diffusion sheet 43A is arranged, and two second light diffusion sheets 43B having a thickness of 220 μm whose pyramid surface is the light entrance surface 21b are arranged in the lower layer and the middle layer to form the optical sheet laminate 100 of the example. Configured. The arrangement pitch and apex angle of the recesses (inverted pyramids) 22 in the first light diffusion sheet 43A are 100 μm and 90°, respectively, and the arrangement pitch and apex angle of the recesses (inverted pyramids) 22 in the second light diffusion sheet 43B are 180 μm and 180 μm, respectively. 80°. Further, as the optical sheet laminate 100 of the example, the content of the diffusing agent in the first light diffusion sheet 43A was changed stepwise from 0% by mass to 8% by mass (specifically, 0% by mass, 0.0% by mass, 0.00% by mass, and 0.00% by mass). 2% by mass, 0.4% by mass, 0.8% by mass, 2% by mass, 4% by mass, and 8% by mass) were prepared. Here, the content of the diffusing agent is the ratio of the weight of the diffusing agent to the total weight of the first light diffusion sheet 43A. No diffusing agent was added to the two second light diffusion sheets 43B.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例において、光拡散シート43A及び43Bはそれぞれ、基材層21となるポリカーボネートを押し出し成型により加工して、逆ピラミッド形状の凹部22が2次元配列された単層構造で形成した。また、第1光拡散シート43Aの入光面21b、及び第2光拡散シート43Bの出光面21aはそれぞれマット面に加工した。また、第1光拡散シート43Aに添加する拡散剤としては、平均粒径2μmのシリコーンビーズを用いた。 In the example, each of the light diffusion sheets 43A and 43B was formed with a single layer structure in which the inverted pyramid-shaped concave portions 22 were two-dimensionally arranged by extruding the polycarbonate that serves as the base material layer 21 . In addition, the light entrance surface 21b of the first light diffusion sheet 43A and the light exit surface 21a of the second light diffusion sheet 43B are processed into matte surfaces. Silicone beads having an average particle diameter of 2 μm were used as the diffusion agent added to the first light diffusion sheet 43A.
 以上に説明した実施例の光学シート積層体100を、図2に示すバックライトユニット40に組み込み、トプコンテクノハウス社の2D分光放射計SR-5000HSを使用して輝度測定を行った。複数の光源42としては、2.8mmピッチで青色LEDをアレイ状に配列したものを用いた。輝度測定においては、輝度ムラ測定器で40mm角の範囲の2次元輝度分布を取得し、全体の輝度バランスの補正を行った上で、輝度の平均値及び標準偏差を算出し、「輝度=平均値」、「輝度均一性=平均値/標準偏差」と定義し、輝度及び輝度均一性を算出した。 The optical sheet laminate 100 of the example described above was incorporated into the backlight unit 40 shown in FIG. 2, and luminance was measured using a 2D spectroradiometer SR-5000HS manufactured by Topcon Technohouse. As the plurality of light sources 42, blue LEDs arranged in an array with a pitch of 2.8 mm were used. In the luminance measurement, a two-dimensional luminance distribution in a range of 40 mm square is obtained with a luminance unevenness measuring instrument, and after correcting the overall luminance balance, the luminance average value and standard deviation are calculated, and "luminance = average value” and “luminance uniformity=mean value/standard deviation”, and the luminance and luminance uniformity were calculated.
 また、表1に示す比較例1、2の光学シート積層体100をそれぞれ、図5、図6に示すバックライトユニット40に組み込み、実施例と同様の輝度測定を行った。具体的には、上層に、ピラミッド面が入光面21bである厚さ220μmの第3光拡散シート43Cを配置し、下層及び中層に、ピラミッド面が入光面21bである厚さ190μmの2枚の第2光拡散シート43Bを配置して、比較例1の光学シート積層体100を構成した。また、上層に、ピラミッド面が入光面21bである厚さ160μmの第4光拡散シート43Dを配置し、下層及び中層に、ピラミッド面が入光面21bである厚さ210μmの2枚の第2光拡散シート43Bを配置して、比較例2の光学シート積層体100を構成した。 Also, the optical sheet laminates 100 of Comparative Examples 1 and 2 shown in Table 1 were respectively incorporated into the backlight units 40 shown in FIGS. Specifically, a third light diffusion sheet 43C having a thickness of 220 μm whose pyramid surface is the light incident surface 21b is arranged as the upper layer, and two light diffusion sheets 43C having a thickness of 190 μm whose pyramid surface is the light incident surface 21b are arranged as the lower and middle layers. An optical sheet laminate 100 of Comparative Example 1 was constructed by arranging two second light diffusion sheets 43B. In addition, a fourth light diffusion sheet 43D having a thickness of 160 μm whose pyramid surface is the light entrance surface 21b is arranged as the upper layer, and two 210 μm thick light diffusion sheets 43D whose pyramid surface is the light entrance surface 21b are arranged as the lower and middle layers. An optical sheet laminate 100 of Comparative Example 2 was constructed by arranging two light diffusion sheets 43B.
 尚、第3光拡散シート43C(比較例1)及び第4光拡散シート43D(比較例2)のそれぞれにおける凹部(逆ピラミッド)22の配列ピッチ及び頂角はそれぞれ100μm及び90°とした。また、比較例1については第3光拡散シート43Cにおける拡散剤の含有率を0.8質量%とした一方、比較例2については第4光拡散シート43Dにおける拡散剤の含有率を0質量%から8質量%まで段階的に変化させた(具体的には0質量%、0.2質量%、0.4質量%、0.8質量%、2質量%、4質量%、8質量%に設定した)複数種類のサンプルを用意した。 The arrangement pitch and apex angle of the concave portions (inverted pyramids) 22 in each of the third light diffusion sheet 43C (Comparative Example 1) and the fourth light diffusion sheet 43D (Comparative Example 2) were set to 100 μm and 90°, respectively. In Comparative Example 1, the content of the diffusing agent in the third light diffusion sheet 43C was set to 0.8% by mass, while in Comparative Example 2, the content of the diffusing agent in the fourth light diffusion sheet 43D was set to 0% by mass. to 8% by mass (specifically, 0% by mass, 0.2% by mass, 0.4% by mass, 0.8% by mass, 2% by mass, 4% by mass, 8% by mass (set) were prepared.
 また、比較例1、2において、第3光拡散シート43C及び第4光拡散シート43Dはそれぞれ、基材層21となるポリカーボネートを押し出し成型により加工して、逆ピラミッド形状の凹部22が2次元配列された単層構造で形成した。また、第3光拡散シート43C及び第4光拡散シート43Dのそれぞれの入光面21bはマット面に加工した。また、第3光拡散シート43C及び第4光拡散シート43Dに添加する拡散剤としては、平均粒径2μmのシリコーンビーズを用いた。 Further, in Comparative Examples 1 and 2, the third light diffusion sheet 43C and the fourth light diffusion sheet 43D are each processed by extrusion molding the polycarbonate that serves as the base material layer 21, and the inverted pyramid-shaped concave portions 22 are arranged two-dimensionally. It was formed with a single layer structure. Further, the light incident surfaces 21b of the third light diffusion sheet 43C and the fourth light diffusion sheet 43D are processed into matte surfaces. Silicone beads having an average particle diameter of 2 μm were used as the diffusion agent added to the third light diffusion sheet 43C and the fourth light diffusion sheet 43D.
 図7は、以上に説明した実施例及び比較例1、2に係る光学シート積層体100における輝度と輝度均一性との関係を調べた結果を示す図である。尚、図中に示す数値は、上層の光拡散シートの重量を1とした場合における当該シート中の拡散剤の含有率を表している。また、輝度は、比較例1の輝度を1としたときの相対輝度で表している。 FIG. 7 is a diagram showing the results of examining the relationship between luminance and luminance uniformity in the optical sheet laminates 100 according to Example and Comparative Examples 1 and 2 described above. The numerical values shown in the figure represent the content of the diffusing agent in the sheet when the weight of the light diffusion sheet in the upper layer is set to 1. Further, the luminance is represented by relative luminance when the luminance of Comparative Example 1 is set to 1.
 図7に示すように、実施例の光学シート積層体100では、出光面21aをピラミッド面として上層に配置された第1光拡散シート43Aにおける拡散剤の含有率が0質量%(0)以上2質量%(0.02)以下の範囲において、比較例1と比べて、輝度均一性を同程度に維持しながら、輝度を3%以上増大させることができた。 As shown in FIG. 7, in the optical sheet laminate 100 of the example, the content of the diffusing agent in the first light diffusion sheet 43A arranged in the upper layer with the light exit surface 21a as the pyramid surface is 0% by mass (0) or more. In the range of mass % (0.02) or less, compared with Comparative Example 1, the luminance could be increased by 3% or more while maintaining the luminance uniformity to the same extent.
 一方、比較例2の光学シート積層体100では、入光面21bをピラミッド面として上層に配置された第4光拡散シート43Dにおける拡散剤の含有率が0質量%(0)以上2質量%(0.02)以下の範囲において、比較例1と比べて、輝度均一性を同程度に維持できる一方、輝度の増大は3%未満であった。 On the other hand, in the optical sheet laminate 100 of Comparative Example 2, the content of the diffusing agent in the fourth light diffusion sheet 43D arranged in the upper layer with the light incident surface 21b as the pyramid surface is 0% by mass (0) or more and 2% by mass ( 0.02), compared to Comparative Example 1, the brightness uniformity could be maintained at the same level, but the increase in brightness was less than 3%.
 (その他の実施形態)
 前記実施形態(実施例を含む。以下同じ。)では、光学シート積層体100に含まれる光拡散シート43A、43Bの一面に設ける凹部22の形状を逆四角錐としたが、これに代えて、二次元配置可能な他の逆多角錐形状、例えば逆三角錐や逆六角錐としてもよい。また、二次元配置可能な凹部22に代えて、突条プリズム部等の突起列を設けてもよい。
(Other embodiments)
In the above-described embodiments (including examples; the same shall apply hereinafter), the shape of the concave portion 22 provided on one surface of the light diffusion sheets 43A and 43B included in the optical sheet laminate 100 is an inverted quadrangular pyramid. Other inverted polygonal pyramid shapes that can be arranged two-dimensionally, such as inverted triangular pyramids and inverted hexagonal pyramids, may also be used. Also, instead of the concave portions 22 that can be arranged two-dimensionally, a row of protrusions such as a prism portion may be provided.
 以上、本開示についての実施形態を説明したが、本開示は前述の実施形態のみに限定されず、開示の範囲内で種々の変更が可能である。すなわち、前述の実施形態の説明は、本質的に例示に過ぎず、本開示、その適用物或いはその用途を制限することを意図するものではない。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above-described embodiments, and various modifications are possible within the scope of the disclosure. That is, the foregoing description of the embodiments is merely illustrative in nature and is not intended to limit the present disclosure, its applications or uses.
   1  TFT基板
   2  CF基板
   3  液晶層
   5  液晶表示パネル
   6  第1偏光板
   7  第2偏光板
  21  基材層
  21a  出光面
  21b  入光面
  22  凹部
  40  バックライトユニット
  41  反射シート
  42  光源
  43(43A、43B)  光拡散シート
  44  下側プリズムシート
  44a  基材層
  44b  突条プリズム部
  45  上側プリズムシート
  45a  基材層
  45b  突条プリズム部
  46  色変換シート
  50  液晶表示装置
  50a  表示画面
 100  光学シート積層体
 111  稜線
 112  凹部中心(逆ピラミッド頂点)
1 TFT substrate 2 CF substrate 3 liquid crystal layer 5 liquid crystal display panel 6 first polarizing plate 7 second polarizing plate 21 base material layer 21a light exit surface 21b light entrance surface 22 concave portion 40 backlight unit 41 reflective sheet 42 light source 43 (43A, 43B ) Light diffusion sheet 44 Lower prism sheet 44a Base material layer 44b Ridge prism part 45 Upper prism sheet 45a Base material layer 45b Ridge prism part 46 Color conversion sheet 50 Liquid crystal display device 50a Display screen 100 Optical sheet laminate 111 Ridge line 112 Recess center (inverted pyramid apex)

Claims (7)

  1.  表示画面の背面側に複数の光源が分散して設けられた液晶表示装置において前記複数の光源とプリズムシートとの間に組み込まれる光学シート積層体であって、
     一面に略逆四角錐状の複数の凹部が設けられた複数の光拡散シートを備え、
     前記複数の光拡散シートのうち前記プリズムシートに最も近い第1光拡散シートにおいて、前記複数の凹部は出光面に配置され、
     前記第1光拡散シートを除く前記複数の光拡散シートのうち少なくとも1つの第2光拡散シートにおいて、前記複数の凹部は入光面に配置され、
     前記第1光拡散シートにおける拡散剤の含有率は、0質量%以上2質量%以下である
    光学シート積層体。
    An optical sheet laminate to be incorporated between the plurality of light sources and a prism sheet in a liquid crystal display device in which a plurality of light sources are dispersed on the back side of the display screen,
    Equipped with a plurality of light diffusion sheets having a plurality of substantially inverted square pyramid-shaped recesses on one surface,
    In the first light diffusion sheet closest to the prism sheet among the plurality of light diffusion sheets, the plurality of concave portions are arranged on a light exit surface,
    In at least one second light diffusion sheet among the plurality of light diffusion sheets excluding the first light diffusion sheet, the plurality of recesses are arranged on a light incident surface,
    The optical sheet laminate, wherein the content of the diffusing agent in the first light diffusion sheet is 0% by mass or more and 2% by mass or less.
  2.  前記第2光拡散シートは、前記第1光拡散シートよりも厚い
    請求項1に記載の光学シート積層体。
    The optical sheet laminate according to claim 1, wherein the second light diffusion sheet is thicker than the first light diffusion sheet.
  3.  前記液晶表示装置に組み込まれ、前記複数の光源から発せられた光を前記表示画面側に導くバックライトユニットであって、
     前記複数の光源と前記プリズムシートとの間に、請求項1又は2に記載の光学シート積層体を備える
    バックライトユニット。
    A backlight unit incorporated in the liquid crystal display device and guiding light emitted from the plurality of light sources toward the display screen,
    A backlight unit comprising the optical sheet laminate according to claim 1 or 2 between the plurality of light sources and the prism sheet.
  4.  前記複数の光源は、前記光学シート積層体から見て前記プリズムシートの反対側に設けられた反射シートの上に配置される
    請求項3に記載のバックライトユニット。
    4. The backlight unit according to claim 3, wherein the plurality of light sources are arranged on a reflective sheet provided on the opposite side of the prism sheet when viewed from the optical sheet laminate.
  5.  前記複数の光源と前記光学シート積層体との間の距離は、2mm以下である
    請求項3に記載のバックライトユニット。
    4. The backlight unit according to claim 3, wherein the distance between the plurality of light sources and the optical sheet laminate is 2 mm or less.
  6.  請求項3~5のいずれか1項に記載のバックライトユニットと、
     液晶表示パネルとを備える
    液晶表示装置。
    a backlight unit according to any one of claims 3 to 5;
    A liquid crystal display device comprising a liquid crystal display panel.
  7.  請求項6に記載の液晶表示装置を備える情報機器。 An information device comprising the liquid crystal display device according to claim 6.
PCT/JP2022/020854 2021-07-26 2022-05-19 Optical sheet laminate, backlight unit, liquid crystal display device, and information apparatus WO2023007917A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-121698 2021-07-26
JP2021121698A JP2023017428A (en) 2021-07-26 2021-07-26 Optical sheet laminate, backlight unit, liquid crystal display device, and information equipment

Publications (1)

Publication Number Publication Date
WO2023007917A1 true WO2023007917A1 (en) 2023-02-02

Family

ID=85086484

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020854 WO2023007917A1 (en) 2021-07-26 2022-05-19 Optical sheet laminate, backlight unit, liquid crystal display device, and information apparatus

Country Status (3)

Country Link
JP (1) JP2023017428A (en)
TW (1) TW202307532A (en)
WO (1) WO2023007917A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430622A (en) * 2023-04-26 2023-07-14 富盛光电(吴江)有限公司 Light diffusion plate and direct type backlight module

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117662U (en) * 2005-10-14 2006-01-12 日本エイアンドエル株式会社 Light guide plate and backlight unit having the same
WO2008026540A1 (en) * 2006-08-29 2008-03-06 Takiron Co., Ltd. Light diffusing sheet and backlight unit
JP2020086432A (en) * 2018-11-16 2020-06-04 恵和株式会社 Optical sheet, backlight unit, liquid crystal display apparatus, and information device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3117662U (en) * 2005-10-14 2006-01-12 日本エイアンドエル株式会社 Light guide plate and backlight unit having the same
WO2008026540A1 (en) * 2006-08-29 2008-03-06 Takiron Co., Ltd. Light diffusing sheet and backlight unit
JP2020086432A (en) * 2018-11-16 2020-06-04 恵和株式会社 Optical sheet, backlight unit, liquid crystal display apparatus, and information device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116430622A (en) * 2023-04-26 2023-07-14 富盛光电(吴江)有限公司 Light diffusion plate and direct type backlight module

Also Published As

Publication number Publication date
JP2023017428A (en) 2023-02-07
TW202307532A (en) 2023-02-16

Similar Documents

Publication Publication Date Title
JP2023143938A (en) Diffusion sheet, backlight unit, liquid crystal display device, and information device
WO2023007917A1 (en) Optical sheet laminate, backlight unit, liquid crystal display device, and information apparatus
JP2021162840A (en) Optical sheet, backlight unit, liquid crystal display device, and information device
JP7289001B2 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and method for manufacturing backlight unit
WO2023282055A1 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
JP7275341B1 (en) Light diffusion sheet, backlight unit, liquid crystal display device, information equipment, and method for manufacturing backlight unit
WO2023037651A1 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
WO2023145199A1 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
WO2023282054A1 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for backlight unit
JP7436560B2 (en) Light diffusion sheets, backlight units, liquid crystal display devices and information equipment
WO2022196162A1 (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information equipment
WO2023090189A1 (en) Optical sheet laminate, backlight unit, liquid crystal display device, information equipment, and production method for optical sheet laminate
WO2022250006A1 (en) Light diffusion sheet, backlight unit, liquid crystal display device and information device
WO2023228684A1 (en) Light-diffusing sheet, backlight unit, liquid crystal display device, and information apparatus
JP2022144447A (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information device
JP2023113017A (en) Light diffusion sheet, backlight unit, liquid crystal display, and information instrument
JP2023174543A (en) Light diffusion sheet, backlight unit, liquid crystal display device, and information apparatus
CN116324531A (en) Light diffusion sheet, backlight unit, liquid crystal display device, information apparatus, and method for manufacturing backlight unit
JP2024056804A (en) Light diffusion sheet
TW202336513A (en) Combined light diffusion sheet, backlight unit, liquid crystal display device, and information equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848996

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE