WO2023007909A1 - Unmanned aircraft - Google Patents

Unmanned aircraft Download PDF

Info

Publication number
WO2023007909A1
WO2023007909A1 PCT/JP2022/020516 JP2022020516W WO2023007909A1 WO 2023007909 A1 WO2023007909 A1 WO 2023007909A1 JP 2022020516 W JP2022020516 W JP 2022020516W WO 2023007909 A1 WO2023007909 A1 WO 2023007909A1
Authority
WO
WIPO (PCT)
Prior art keywords
unmanned aerial
aerial vehicle
flight
landing
state
Prior art date
Application number
PCT/JP2022/020516
Other languages
French (fr)
Japanese (ja)
Inventor
繁 福留
慎祐 小椋
Original Assignee
株式会社Acsl
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Acsl filed Critical 株式会社Acsl
Publication of WO2023007909A1 publication Critical patent/WO2023007909A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C25/00Alighting gear
    • B64C25/02Undercarriages
    • B64C25/08Undercarriages non-fixed, e.g. jettisonable
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C27/00Rotorcraft; Rotors peculiar thereto
    • B64C27/04Helicopters
    • B64C27/08Helicopters with two or more rotors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use

Definitions

  • the present invention relates to unmanned aerial vehicles.
  • Such unmanned aerial vehicles can fly vertically and horizontally by grounding with landing legs during takeoff and landing, and controlling the drive of each propeller during flight.
  • the landing legs as described above are used only during takeoff and landing of the unmanned aerial vehicle, and they act as a load and increase power consumption. In particular, during level flight, the landing gear causes air resistance, which increases power consumption.
  • the present invention has been made in view of the above problems, and aims to provide an unmanned aerial vehicle capable of suppressing an increase in power consumption due to landing legs.
  • One aspect of the present invention includes an aircraft body, a plurality of upward-facing rotor blades, and left and right legs connected to the aircraft body, wherein the legs include a grounding portion provided at the tip and a wing body. and at least a portion of the leg is transitionable between a first downwardly extending state and a second laterally extending state, and upon landing, the leg is An unmanned aerial vehicle is provided in a first state, wherein the ground contact portion is grounded to at least partially support the dead weight of the aircraft body.
  • the rotor blade is arranged so as not to overlap the blade body in plan view in the second state.
  • the number of rotors includes a forward pair of rotors and an aft pair of rotors, wherein the aft pair of rotors is greater than the forward pair of rotors. is also located above.
  • the leg section is provided so that the wing body section is inclined upward with respect to the longitudinal direction of the aircraft body in the second state.
  • the aircraft further comprises an actuator for rotating at least part of the leg with respect to the aircraft body, a plurality of rotor blades, and a flight control section for controlling driving of the actuator,
  • the flight control unit controls the actuator so that at least part of the leg is in the second state, and in a takeoff mode in which the unmanned aerial vehicle takes off and/or the unmanned aerial vehicle
  • the actuator is controlled such that at least a portion of the leg is in the first state.
  • An aspect of the present invention further comprises a positioning device for identifying the position of the unmanned aerial vehicle, and an altimeter for measuring the height of the unmanned aerial vehicle, wherein the flight control unit controls the position measured by the positioning device and/or Alternatively, it switches between level flight mode and takeoff or landing mode based on the height measured by the altimeter.
  • an unmanned aerial vehicle capable of suppressing an increase in power consumption due to landing legs.
  • FIG. 1 is a plan view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend downward from the aircraft body;
  • FIG. . 1 is a front view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend downward from the aircraft body;
  • FIG. . 1 is a side view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend downward from the aircraft body;
  • FIG. . 1 is a plan view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend
  • FIG. 2 is a plan view showing a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, the unmanned aerial vehicle being in a second deployed state in which the landing legs extend laterally from the aircraft body; be.
  • 1 is a front view showing an unmanned aerial vehicle (multicopter) as an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, the unmanned aerial vehicle being in a second deployed state in which the landing legs extend laterally from the aircraft body; FIG. be.
  • FIG. 2 is a side view showing a multicopter as an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, the unmanned aerial vehicle being in a second deployed state in which the landing legs extend laterally from the aircraft body; be.
  • 2 is a diagram illustrating a flight control system for the unmanned aerial vehicle shown in FIG. 1;
  • FIG. 2 is a diagram showing a hardware configuration of an information processing unit of the unmanned aerial vehicle shown in FIG. 1;
  • FIG. 4 is a flow chart showing a flow of autonomous flight to a predetermined destination by an unmanned aerial vehicle.
  • 1 is a side view of an unmanned aerial vehicle in level flight;
  • the system configuration of the unmanned aerial vehicle is not limited to that shown in the drawings, and any configuration can be adopted as long as similar operations are possible.
  • the function of the communication circuit may be integrated into the flight control unit, and the operation performed by multiple components may be executed by a single component, or the function of the main processing unit may be distributed to multiple processing units. , operations performed by a single component may be performed by multiple components.
  • the various data stored in the memory of the unmanned aerial vehicle 100 may be stored in a different location, and the information recorded in the various memories may be divided into a plurality of types by distributing one type of information. Alternatively, a plurality of types of information may be collectively stored as one type.
  • FIGS. 1 to 6 show a multicopter which is an example of an unmanned aerial vehicle (multicopter) according to one embodiment of the present invention.
  • 1-3 show a first droop condition with the landing legs extending downward from the aircraft body
  • FIGS. 4-6 show a first droop condition with the landing legs extending laterally from the aircraft body.
  • 1 and 4 are plan views of the unmanned aerial vehicle
  • FIGS. 2 and 5 are front views of the unmanned aerial vehicle
  • FIGS. 3 and 6 are side views of the unmanned aerial vehicle.
  • 1 and 4 is the front of the unmanned aerial vehicle
  • the top is the rear of the unmanned aerial vehicle. The left side in FIGS.
  • 3 and 6 is the front of the unmanned aerial vehicle, and the right side is the rear of the unmanned aerial vehicle. 1, 2, 4, and 5, the rotation range of the rotor is indicated by broken lines. Note that the vertical direction of the unmanned aerial vehicle in the following description is based on the direction of the rotation axis of the rotor.
  • an unmanned aerial vehicle 100 includes an aircraft body 101, four arms 102A and 102B extending in four directions from the aircraft body 101, and the ends of the arms 102A and 102B connected to control flight control.
  • Four motors 103 driven by control signals from the unit, four rotors (rotary blades) 104A and 104B that rotate to generate lift by driving the respective motors 103, and a pair of landing gears that support the unmanned aircraft during landing.
  • legs 105 The number of motors 103, rotors 104A, 104B, and arms 102A, 102B, respectively, can also be three or more, such as three, four, and so on.
  • Control signals from the flight control unit cause the four motors 103 to rotate, thereby controlling the number of rotations of each of the four rotors 104A and 104B. Flight of aircraft 100 is controlled.
  • the aircraft body 101 is a housing that holds an information processing unit, a positioning device, an altitude sensor, a battery, an antenna, etc., which will be described later.
  • the arms 102A, 102B include a pair of front arms 102A extending forward and left and right, and a pair of rear arms 102B extending rearward and left and right.
  • the front arm 102A extends forward with a downward inclination
  • the rear arm 102B extends rearward with an upward inclination.
  • the rear paired rotor 104B provided at the tip of the rear arm 102B is positioned above the front paired rotors 104A and 104B provided at the tip of the front arm 102A.
  • Rotors 104A and 104B are provided so as to face upward (rotation shafts extending in the vertical direction).
  • the term “upward” also includes a state in which the rotors 104A and 104B are slanted forward, backward, leftward, and rightward and face obliquely upward. Further, the rotors 104A, 104B and the motor 103 may be attached to the arms 102A, 102B so that the rotating shafts of the rotors 104A, 104B can be tilted in the front, rear, left, and right directions.
  • Landing leg 105 is positioned between a first, downwardly extending, draped state, as shown in FIGS. 1-3, and a second, laterally extending, deployed state, as shown in FIGS. 4-6. is attached to the aircraft body 101 so as to be rotatable with the The landing leg 105 can transition between a first drooped state and a second deployed state by actuating an actuator 220 provided within the aircraft body 101 .
  • the landing leg part 105 has a wing body part 105B, and a grounding part 105A is formed at the tip.
  • the wing body portion 105B has a wing-shaped vertical cross-sectional shape in the front-rear direction when the landing leg portion 105 is horizontal.
  • airfoil refers to a shape in which lift is generated by the air when the aircraft body 101 moves forward.
  • a grounding portion 105A at the tip of the landing leg portion 105 extends horizontally in the front-rear direction in the first hanging state, and has a curved lower edge.
  • the wing body portion 105B has a wing shape in this embodiment, it is not limited to this, and may have a flat shape, for example, as long as it can glide in the air.
  • the pair of landing legs 105 extend downward.
  • the term "downward” as used herein is not limited to the vertical downward direction, but also includes the case where the pair of landing legs 105 are tilted so as to widen in the lateral direction downward.
  • the pair of landing legs 105 are connected to the aircraft body 101 so that the distance between them narrows toward the rear. Also, the pair of landing legs 105 are provided so that the center of gravity of the unmanned aerial vehicle 100 is located near the center of the landing legs 105 in the front-rear direction in the first hanging state.
  • the pair of landing legs 105 extend laterally.
  • the term "horizontal direction” as used herein also includes the case where the landing leg 105 extends in the horizontal direction while being inclined in the vertical direction or the front-rear direction.
  • the pair of landing legs 105 are connected to the aircraft body 101 so that the front side is positioned upward in the longitudinal direction of the unmanned aerial vehicle 100 when the unmanned aerial vehicle 100 is horizontal. .
  • the landing legs 105 are connected to both sides of the longitudinally intermediate portion of the aircraft body 101 . As shown in FIG. 4, the landing leg 105 is arranged so as not to overlap the rotors 104A and 104B in plan view in the second deployed state.
  • "does not overlap with rotors 104A, 104B" means that the trajectory of each blade of rotors 104A, 104B (area surrounded by broken lines) and landing leg 105 do not overlap vertically.
  • the rotation shaft of the landing leg 105 is provided inside the aircraft body 101 so as to extend in the longitudinal direction.
  • FIG. 7 is a diagram showing a flight control system of the unmanned aerial vehicle shown in FIG. 1.
  • the flight control system 200 of the unmanned aerial vehicle 100 includes a control unit 201 , a motor 103 electrically connected to the control unit 201 , rotors 104 A, 104 B mechanically connected to the motor 103 , and electrically connected to the control unit 201 . It has a pair of actuators 220 , a positioning device 221 , an altitude sensor 222 , a compass 223 and an IMU 224 .
  • the control unit 201 is a configuration for performing information processing for performing flight control of the unmanned aerial vehicle 100 and controlling electric signals for that purpose, and typically various electronic components are arranged and wired on a substrate. Therefore, it is a unit that constitutes a circuit necessary for realizing such a function.
  • the control unit 201 further comprises an information processing unit 230 , a communication circuit 231 , a control signal generator 232 , a speed controller 233 and an interface 234 .
  • the positioning device 221 is a sensor for navigation that senses the coordinates of the flight position of the unmanned aerial vehicle 100, such as a GPS (Global Positioning System) sensor. Positioning device 221 preferably senses coordinates in three dimensions. The coordinates acquired by the positioning device 221 consist of latitude, longitude and altitude.
  • GPS Global Positioning System
  • the altitude sensor 222 is, for example, a barometer or the like, and estimates the altitude of the unmanned aerial vehicle based on the atmospheric pressure.
  • the compass 223 is a so-called compass and detects the angle ahead of the unmanned aerial vehicle 100 relative to north.
  • the IMU 224 is an inertial measurement unit that detects translational motion with an acceleration sensor and rotational motion with an angular velocity sensor (gyro). Furthermore, the IMU 224 can calculate the velocity by integrating the translational motion (acceleration) detected by the acceleration sensor, and can calculate the moving distance (position) by integrating the velocity. Similarly, the angle (orientation) can be calculated by integrating the rotational motion (angular velocity) detected by the angular velocity sensor.
  • the communication circuit 231 is connected to, for example, an antenna.
  • the antenna receives radio signals including information and various data for operating and controlling the unmanned aerial vehicle 100 and transmits radio signals including telemetry signals from the unmanned aerial vehicle 100 .
  • the communication circuit 231 demodulates operation signals, control signals, various data, etc. for the unmanned aerial vehicle 100 from radio signals received through the antenna, and inputs them to the information processing unit 230, or telemetry signals output from the unmanned aerial vehicle 100.
  • An electronic circuit typically a radio signal processing IC, for generating radio signals that carry, for example.
  • the communication of the steering signal and the communication of the control signal and various data may be performed by communication circuits in different frequency bands. For example, to communicate with the transmitter of the controller (propo) for manual operation at a frequency of 950 MHz band, and to communicate data communication at a frequency of 2 GHz band / 1.7 GHz band / 1.5 GHz band / 800 MHz band It is also possible to adopt a configuration
  • the control signal generator 232 is configured to convert the control command value data obtained by calculation by the information processing unit 230 into a pulse signal (PWM signal or the like) representing voltage, and typically includes an oscillation circuit and a switching circuit. is an IC containing
  • the speed controller 233 is configured to convert the pulse signal from the control signal generator 232 into a driving voltage for driving the motor 103, and is typically a smoothing circuit and an analog amplifier.
  • the unmanned aerial vehicle 100 includes a battery device such as a lithium polymer battery or a lithium ion battery, and a power supply system including a power distribution system for each element.
  • the interface 234 electrically connects the information processing unit 230 and functional elements such as the positioning device 221, the altitude sensor 222, and the compass 223 by converting the form of signals so that they can be transmitted and received.
  • the interface is shown as one configuration in the drawings, but usually different interfaces are used depending on the types of functional elements to be connected.
  • the interface 234 may not be necessary depending on the type of signal input/output by the functional element to be connected. Further, in FIG. 7, even the information processing unit 230 connected without the interface 234 intervening may require an interface depending on the types of signals input/output by the functional elements to be connected.
  • the information processing unit 230 and the control signal generator 232 constitute a flight controller that controls the flight of the unmanned aerial vehicle 100 .
  • the flight control unit stores flight plan route data, and based on this, controls driving of the motor 103 and the actuator 220 so that the unmanned aerial vehicle 100 flies along a predetermined flight route.
  • the flight-planned route data is data representing the flight-planned route of the unmanned aerial vehicle 100, and is typically a set of a series of multiple waypoints existing on the flight-planned route.
  • a flight plan path is typically a set of straight lines connecting the plurality of waypoints in order, but it can also be a curve with a predetermined curvature within a predetermined range of waypoints.
  • the flight plan route data may include data defining flight speeds at multiple waypoints.
  • Flight-planned path data is typically used to define flight-planned paths in autonomous flight, but can also be used in non-autonomous flight for guidance during flight. Flight plan path data is typically input and stored in unmanned aerial vehicle 100 prior to flight.
  • the flight control unit controls the flight of the unmanned aerial vehicle to follow the flight plan route of the flight plan route data based on the self-position and attitude measured by the positioning device 221, altitude sensor 222, compass 223, and IMU 224.
  • the self-position, heading, attitude, speed, etc. of the unmanned aerial vehicle 100 are determined by various sensors, the current flight position and heading of the unmanned aerial vehicle 100 are determined based on the control signals, the flight plan route ( target), speed limit, altitude limit, etc. to calculate control command values for the rotors 104A and 104B, and output data indicating the control command values to the control signal generator 132.
  • the control signal generator 132 converts the control command value into a pulse signal representing voltage and transmits the pulse signal to each speed controller 233 .
  • Each speed controller 233 converts the pulse signal into a drive voltage and applies it to each motor 103, thereby controlling the drive of each motor 103 to control the rotation speed of each rotor 104A, 104B, thereby controlling the unmanned aerial vehicle. 100 flights are controlled.
  • the flight control unit includes a takeoff mode and a landing mode when the unmanned aerial vehicle 100 mainly moves vertically during takeoff and landing, and a mode when the unmanned aerial vehicle 100 mainly flies horizontally. Horizontal flight mode is set.
  • the flight controller activates the actuators 220 to place the landing leg 105 in a downwardly extending first droop state in take-off and landing modes, and activates the actuators 220 to place the landing leg 105 in level flight mode.
  • the portion 105 is brought into a second expanded state extending in the lateral direction.
  • FIG. 8 is a diagram showing the hardware configuration of the information processing unit of the unmanned aerial vehicle shown in FIG.
  • the information processing unit 230 includes a CPU 230a, a RAM 230b, a ROM 230c, an external memory 230d, an input section 230e, an output section 230f, and a communication section 230g.
  • the RAM 230b, ROM 230c, external memory 230d, input section 230e, output section 230f, and communication section 230g are connected to the CPU 230a via a bus 230h.
  • the CPU 230a centrally controls each device connected to the system bus 230h.
  • the ROM 230c and external memory store the BIOS and OS, which are control programs for the CPU 230a, and various programs and data necessary for realizing the functions executed by the computer.
  • the RAM 230b functions as the main memory and work area of the CPU 230a.
  • the CPU 230a loads necessary programs and the like from the ROM 230c and the external memory 230d to the RAM 230b and executes the loaded programs to realize various operations.
  • the external memory 230d is composed of, for example, a flash memory, hard disk, DVD-RAM, USB memory, or the like.
  • the input unit 230e receives an operation instruction or the like from a user or the like.
  • the input unit 230e includes input devices such as input buttons, a keyboard, a pointing device, a wireless remote controller, a microphone, and a camera.
  • the output unit 230f outputs data processed by the CPU 230a and data stored in the RAM 230b, ROM 230c, and external memory 230d.
  • the output unit 230f is composed of output devices such as a CRT display, an LCD, an organic EL panel, a printer, and a speaker.
  • the communication unit 230g is an interface for connecting and communicating with an external device directly or via a network.
  • 230 g of communication parts are comprised from interfaces, such as a serial interface and a LAN interface, for example.
  • the flight control unit is realized by various programs stored in the ROM 230c and the external memory 230d using the CPU 230a, the RAM 230b, the ROM 230c, the external memory 230d, the input unit 230e, the output unit 230f, the communication unit 230g, etc. as resources. .
  • the information processing unit 230 and the control signal generation unit 232 function as a flight control unit. good.
  • the self-localization system or its components need not be configured as one physical device, but may be configured from multiple physical devices.
  • the self-localization system may be configured as a ground station computer separate from the unmanned aerial vehicle, any appropriate device such as a PC, a smartphone, a tablet terminal, a cloud computing system, or a combination thereof. good.
  • the function of each part of the self-localization system is distributed in one or more of one or more devices provided in the unmanned aerial vehicle and one or more devices separate from the unmanned aerial vehicle. It may be configured to be executed.
  • FIG. 9 is a flow chart showing the flow of autonomous flight to a predetermined destination by an unmanned aerial vehicle.
  • the flight control unit stores flight plan route data in advance.
  • the unmanned aerial vehicle 100 is on the ground when it takes off, and in this state the flight control unit is set to the takeoff mode (S1). As a result, the landing leg 105 is in the first hanging state extending downward, and the unmanned aerial vehicle 100 is grounded by the grounding portion 105A of the landing leg 105 touching the ground. In the first hanging state in which the landing leg 105 extends downward, the ground contact portion 105A of the landing leg 105 supports the weight of the aircraft body 101 itself. In this embodiment, the grounding portion 105A of the landing leg 105 supports the entire weight of the aircraft body 101, but another grounding leg may be provided to support only a portion of the weight. In this state, the flight control unit rotates the motor 103 to ascend while maintaining the attitude of the unmanned aerial vehicle 100 (S2).
  • the flight control unit detects the altitude of the unmanned aircraft with the altitude sensor 222 at predetermined time intervals (S3). If the altitude measured by the altitude sensor 222 has not reached the preset height (NO in S4), the flight control unit controls the unmanned aerial vehicle 100 to further ascend.
  • the flight control unit shifts to the horizontal flight mode (S5).
  • the flight control section When shifting to the horizontal flight mode, the flight control section first drives the actuator 220 to put the landing leg section 105 into the second deployed state (S6). As a result, the landing leg 105 extends laterally.
  • FIG. 10 is a side view showing the unmanned aerial vehicle in level flight.
  • the rotational speed of the rotor 104B provided on the rear arm 102B is increased.
  • the unmanned aerial vehicle 100 is in a forward-leaning posture.
  • the attitude of the unmanned aerial vehicle 100 detected by the IMU 224 is feedback-controlled so that the wing bodies 105B of the landing legs 105 are horizontal in the longitudinal direction.
  • a greater forward propulsive force acts.
  • the unmanned aerial vehicle 100 moves forward, it receives lift from the wing body portion 105B. This enables horizontal flight with low power consumption.
  • the flight control unit detects the self-position of the unmanned aerial vehicle 100 with the positioning device 221 at predetermined time intervals (S8). Then, it is determined whether the self-position of the unmanned aerial vehicle 100 has reached the vicinity of the destination (S9). Whether the self-position of the unmanned aerial vehicle 100 has reached the vicinity of the destination can be determined, for example, by determining whether the distance between the destination and the self-position of the unmanned aerial vehicle 100 is equal to or less than a predetermined threshold. can be done. When it is determined that the self-position of unmanned aerial vehicle 100 has not reached the vicinity of the destination (NO in S9), level flight is continued.
  • the flight control unit shifts to landing mode (S10).
  • the flight control section shifts to the landing mode, it drives the actuator 220 to change the landing leg section 105 to the first hanging state (S11). Control rotation.
  • the flight control unit controls the rotation of the rotors 104A and 104B to make the unmanned aerial vehicle 100 descend while finely adjusting the horizontal position so that it is positioned directly above the landing point (S12). Then, when it is detected that the ground contact portion 105A of the landing leg 105 has landed (S13), the flight control unit stops the rotors 104A and 104B. As described above, the unmanned aerial vehicle 100 can independently fly to the destination.
  • the transition from the horizontal flight mode to the landing mode is made based on the self-position of the unmanned aerial vehicle 100. You may transition from level flight mode to landing mode when Further, when the height of the unmanned aerial vehicle 100 becomes equal to or less than a predetermined height during level flight, the unmanned aerial vehicle 100 may shift to the landing mode for safety.
  • an aircraft body 101 a plurality of rotors 104A and 104B facing upward, and left and right landing legs 105 connected to the aircraft body 101 are provided.
  • Landing leg 105 including ground contact portion 105A and wing body portion 105B, transitions between a downwardly extending first drooped state and a laterally extending second deployed state. Possibly, upon landing, landing leg 105 is in a first drooped condition, and ground contact portion 105A grounds to provide an unmanned aerial vehicle that at least partially supports the weight of aircraft body 101.
  • the wing bodies 105B are in the second deployed state extending in the lateral direction, so that the unmanned aerial vehicle 100 can receive lift when moving forward, thereby consuming power. can be suppressed. Further, during takeoff and landing, by setting the wing body portion 105B to the first state extending downward, power consumption during takeoff and landing can be suppressed without causing resistance during takeoff and landing. Furthermore, since the landing leg 105 functions as a leg supporting the aircraft body 101 during landing, there is no need to provide a leg separate from the wing body.
  • the rotors 104A and 104B are arranged so as not to overlap the wing bodies 105B in plan view in the second deployed state.
  • the wind sent by the rotors 104A and 104B does not hit the wing body 105B during horizontal flight, and flight performance can be ensured.
  • the plurality of rotors 104A, 104B includes a forward pair of rotors 104A and an aft pair of rotors 104B, wherein the aft pair of rotors 104B is the same as the forward pair. It is positioned above the rotor 104A.
  • the unmanned aerial vehicle is tilted forward.
  • the rotor 104B forming the rear pair is provided above the rotor 104A forming the front pair, the rotor 104A forming the front pair and the rotor 104B forming the rear pair are arranged in a forward tilted posture. As a result, they are spaced apart more in the vertical direction, and the influence of the wake of the forward paired rotor 104A can be reduced.
  • the landing leg section 105 is provided so that the front side of the wing body section 105B is inclined upward with respect to the longitudinal direction of the aircraft body 101 in the second deployed state.
  • the unmanned aerial vehicle 100 includes the actuator 220 for rotating the landing leg section 105, and the flight control section for controlling the drive of the plurality of rotors 104A and 104B and the actuator 220.
  • the flight control unit controls the actuator 220 so that the landing leg 105 is in the second deployed state, and in a takeoff mode in which the unmanned aerial vehicle 100 takes off and lands. and in the landing mode, it controls the actuator 220 so that the landing leg 105 is in the first drooping state.
  • the landing leg portion 105 when taking off and landing, the landing leg portion 105 is placed in the first hanging state to suppress the landing leg portion 105 from acting as a resistance to ascending or descending. , the landing leg 105 can be in the second deployed state to reduce power consumption relative to flight distance.
  • the unmanned aerial vehicle 100 further includes a positioning device 221 that identifies the position of the unmanned aerial vehicle 100 and an altitude sensor 222 that measures the height of the unmanned aerial vehicle. Based on the position measured by the device 221 and/or the height measured by the altitude sensor 222, it switches between level flight mode and takeoff and landing modes.
  • the entire landing leg 105 is formed as the wing-shaped wing body 105B, and the entire wing body 105B is rotatable with respect to the aircraft body 101.
  • a rotation shaft may be provided in the portion, and only the tip portion of the wing body portion 105B may be configured to be rotatable.
  • Unmanned aerial vehicle 101 Aircraft body 102A Forearm 102B Rear arms 104A, 104B Rotor 105 Landing leg 105A Ground contact 105B Wing body 132 Control signal generator 200 Flight control system 201 Control unit 220 Actuator 221 Positioning device 222 Altitude sensor 223 Compass 230 Information processing unit 230a CPU 230b RAM 230c ROMs 230d external memory 230e input unit 230f output unit 230g communication unit 230h system bus 230h bus 231 communication circuit 232 control signal generation unit 233 speed controller 234 interface

Abstract

Provided is an unmanned aircraft in which an increase in power consumed by landing legs can be minimized. An unmanned aircraft 100 comprises an aircraft body 101, a plurality of rotors 104A, 104B facing upward, and left and right landing leg parts 105 connected to the aircraft body 101. The landing leg parts 105 are capable of shifting between a first hanging state of extending downward and a second deployed state of extending horizontally. When the aircraft lands, the landing leg parts 105 are in the first hanging state and ground contact parts 105A come into contact with the ground to at least partially support the weight of the aircraft body 101.

Description

無人航空機unmanned aerial vehicle
 本発明は、無人航空機に関する。 The present invention relates to unmanned aerial vehicles.
 従来より、例えば、特許文献1に記載されているように、本体部と、本体部から外方に向かって延びる複数のアームにそれぞれ取り付けられた複数のプロペラと、本体部から下方に向かって延びる着陸脚(スキッド)とを備えた無人航空機が広く知られている。 Conventionally, for example, as described in Patent Document 1, a main body, a plurality of propellers each attached to a plurality of arms extending outward from the main body, and propellers extending downward from the main body Unmanned aerial vehicles with landing legs (skids) are widely known.
 このような無人航空機は、離着陸時には着陸脚により接地し、飛行時には各プロペラの駆動を制御することにより、垂直飛行及び水平飛行することができる。 Such unmanned aerial vehicles can fly vertically and horizontally by grounding with landing legs during takeoff and landing, and controlling the drive of each propeller during flight.
特開2021-57078号公報Japanese Patent Application Laid-Open No. 2021-57078
 上記のような着陸脚は、無人航空機の離着陸時のみに使用されるものであり、荷重となり、消費電力を増大させてしまう。特に、水平飛行時には、着陸脚は空気抵抗の原因となり、消費電力をより増大させてしまう。 The landing legs as described above are used only during takeoff and landing of the unmanned aerial vehicle, and they act as a load and increase power consumption. In particular, during level flight, the landing gear causes air resistance, which increases power consumption.
 本発明は、上記の課題に鑑みなされたものであり、着陸脚による消費電力の増大を抑制できる無人航空機を提供することを目的としている。 The present invention has been made in view of the above problems, and aims to provide an unmanned aerial vehicle capable of suppressing an increase in power consumption due to landing legs.
 本発明の一態様は、航空機本体と、上方に向いた複数の回転翼と、航空機本体に接続された左右の脚部を、備え、脚部は、先端に設けられた接地部と、翼体部と、を含み、脚部の少なくとも一部が、下方に向けて延びる第1の状態と、横方向に向けて延びる第2の状態との間で移行可能であり、着地時に、脚部は第1の状態にあり、接地部が接地して航空機本体の自重を少なくとも部分的に支持する、無人航空機を提供するものである。 One aspect of the present invention includes an aircraft body, a plurality of upward-facing rotor blades, and left and right legs connected to the aircraft body, wherein the legs include a grounding portion provided at the tip and a wing body. and at least a portion of the leg is transitionable between a first downwardly extending state and a second laterally extending state, and upon landing, the leg is An unmanned aerial vehicle is provided in a first state, wherein the ground contact portion is grounded to at least partially support the dead weight of the aircraft body.
 本発明の一態様において、回転翼は、第2の状態において平面視で翼体部と重ならないように配置されている。 In one aspect of the present invention, the rotor blade is arranged so as not to overlap the blade body in plan view in the second state.
 本発明の一態様において、数の回転翼は、前方の対となる回転翼と、後方の対となる回転翼とを含み、後方の対となる回転翼は、前方の対となる回転翼よりも上方に位置している。 In one aspect of the invention, the number of rotors includes a forward pair of rotors and an aft pair of rotors, wherein the aft pair of rotors is greater than the forward pair of rotors. is also located above.
 本発明の一態様において、脚部は、第2の状態において翼体部が航空機本体の前後方向に対して、前方が上側に傾斜するように設けられている。 In one aspect of the present invention, the leg section is provided so that the wing body section is inclined upward with respect to the longitudinal direction of the aircraft body in the second state.
 本発明の一態様において、さらに、脚部の少なくとも一部を航空機本体に対して回動させるためのアクチュエータと、複数の回転翼、及び、アクチュエータの駆動を制御する飛行制御部と、を備え、飛行制御部は、無人航空機が水平に飛行する水平飛行モードでは、脚部の少なくとも一部が第2の状態になるようにアクチュエータを制御し、無人航空機が離陸する離陸モード及び/又は無人航空機が着陸する着陸モードでは、脚部の少なくとも一部が第1の状態になるようにアクチュエータを制御する。 In one aspect of the present invention, the aircraft further comprises an actuator for rotating at least part of the leg with respect to the aircraft body, a plurality of rotor blades, and a flight control section for controlling driving of the actuator, In a horizontal flight mode in which the unmanned aerial vehicle flies horizontally, the flight control unit controls the actuator so that at least part of the leg is in the second state, and in a takeoff mode in which the unmanned aerial vehicle takes off and/or the unmanned aerial vehicle In a landing mode for landing, the actuator is controlled such that at least a portion of the leg is in the first state.
 本発明の一態様において、さらに、さらに、無人航空機の位置を特定する測位装置、及び、無人航空機の高さを測定する高度計を備え、飛行制御部は、測位装置により測定された位置、及び/又は、高度計により測定された高さに基づき、水平飛行モードと、離陸モード又は着陸モードとを切り換える。 An aspect of the present invention further comprises a positioning device for identifying the position of the unmanned aerial vehicle, and an altimeter for measuring the height of the unmanned aerial vehicle, wherein the flight control unit controls the position measured by the positioning device and/or Alternatively, it switches between level flight mode and takeoff or landing mode based on the height measured by the altimeter.
 本発明によれば、着陸脚による消費電力の増大を抑制できる無人航空機を提供することができる。 According to the present invention, it is possible to provide an unmanned aerial vehicle capable of suppressing an increase in power consumption due to landing legs.
本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタであって、着陸脚部が航空機本体から下方に向かって延びた第1の垂下状態である無人航空機を示す平面図である。1 is a plan view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend downward from the aircraft body; FIG. . 本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタであって、着陸脚部が航空機本体から下方に向かって延びた第1の垂下状態である無人航空機を示す正面図である。1 is a front view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend downward from the aircraft body; FIG. . 本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタであって、着陸脚部が航空機本体から下方に向かって延びた第1の垂下状態である無人航空機を示す側面図である。1 is a side view of a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, and shows the unmanned aerial vehicle in a first hanging state in which landing legs extend downward from the aircraft body; FIG. . 本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタであって、着陸脚部が航空機本体から横方向に向かって延びた第2の展開状態である無人航空機を示す平面図である。FIG. 2 is a plan view showing a multicopter that is an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, the unmanned aerial vehicle being in a second deployed state in which the landing legs extend laterally from the aircraft body; be. 本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタであって、着陸脚部が航空機本体から横方向に向かって延びた第2の展開状態である無人航空機を示す正面図である。1 is a front view showing an unmanned aerial vehicle (multicopter) as an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, the unmanned aerial vehicle being in a second deployed state in which the landing legs extend laterally from the aircraft body; FIG. be. 本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタであって、着陸脚部が航空機本体から横方向に向かって延びた第2の展開状態である無人航空機を示す側面図である。FIG. 2 is a side view showing a multicopter as an example of an unmanned aerial vehicle (multicopter) according to an embodiment of the present invention, the unmanned aerial vehicle being in a second deployed state in which the landing legs extend laterally from the aircraft body; be. 図1に示す無人航空機の飛行制御システムを示す図である。2 is a diagram illustrating a flight control system for the unmanned aerial vehicle shown in FIG. 1; FIG. 図1に示す無人航空機の情報処理ユニットのハードウェア構成を示す図である。2 is a diagram showing a hardware configuration of an information processing unit of the unmanned aerial vehicle shown in FIG. 1; FIG. 無人航空機により所定の目的地まで自立飛行する流れを示すフローチャートである。4 is a flow chart showing a flow of autonomous flight to a predetermined destination by an unmanned aerial vehicle. 水平飛行中の無人航空機を示す側面図である。1 is a side view of an unmanned aerial vehicle in level flight; FIG.
 以下、本発明の一実施形態について図面を参照して説明する。ただし、本発明は以下に説明する具体的態様に限定されるわけではなく、本発明の技術思想の範囲内で種々の態様を取り得る。例えば、無人航空機のシステム構成も、図に示されるものに限らず同様の動作が可能であれば任意の構成を取ることができる。例えば通信回路の機能を飛行制御部に統合する等、複数の構成要素が実行する動作を単独の構成要素により実行してもよいし、あるいは主演算部の機能を複数の演算部に分散する等、単独の構成要素が実行する動作を複数の構成要素により実行してもよい。また、無人航空機100のメモリ内に記憶される各種データは、それとは別の場所に記憶されていてもよいし、各種メモリに記録される情報も、1種類の情報を複数の種類に分散して記憶してもよいし、複数の種類の情報を1種類にまとめて記憶してもよい。 An embodiment of the present invention will be described below with reference to the drawings. However, the present invention is not limited to the specific embodiments described below, and can take various forms within the scope of the technical idea of the present invention. For example, the system configuration of the unmanned aerial vehicle is not limited to that shown in the drawings, and any configuration can be adopted as long as similar operations are possible. For example, the function of the communication circuit may be integrated into the flight control unit, and the operation performed by multiple components may be executed by a single component, or the function of the main processing unit may be distributed to multiple processing units. , operations performed by a single component may be performed by multiple components. In addition, the various data stored in the memory of the unmanned aerial vehicle 100 may be stored in a different location, and the information recorded in the various memories may be divided into a plurality of types by distributing one type of information. Alternatively, a plurality of types of information may be collectively stored as one type.
 図1~図6は、本発明の一実施形態に係る無人航空機(マルチコプタ)の一例であるマルチコプタを示す。図1~図3は、着陸脚部が航空機本体から下方に向かって延びた第1の垂下状態を示し、図4~図6は、着陸脚部が航空機本体から横方向に向かって延びた第2の展開状態を示す。図1及び図4は、無人航空機の平面図であり、図2及び図5は、無人航空機の正面図であり、図3及び図6は、無人航空機の側面図である。図1及び図4における下方が無人航空機の前方であり、上方が無人航空機の後方である。また、図3及び図6における左方が無人航空機の前方であり、右方が無人航空機の後方である。なお、図1、図2、図4、図5には、ロータの回転範囲を破線で示している。なお、以下の説明でいう無人航空機の上下方向とは、ロータの回転軸の方向を基準としている。 1 to 6 show a multicopter which is an example of an unmanned aerial vehicle (multicopter) according to one embodiment of the present invention. 1-3 show a first droop condition with the landing legs extending downward from the aircraft body, and FIGS. 4-6 show a first droop condition with the landing legs extending laterally from the aircraft body. 2 deployed. 1 and 4 are plan views of the unmanned aerial vehicle, FIGS. 2 and 5 are front views of the unmanned aerial vehicle, and FIGS. 3 and 6 are side views of the unmanned aerial vehicle. 1 and 4 is the front of the unmanned aerial vehicle, and the top is the rear of the unmanned aerial vehicle. The left side in FIGS. 3 and 6 is the front of the unmanned aerial vehicle, and the right side is the rear of the unmanned aerial vehicle. 1, 2, 4, and 5, the rotation range of the rotor is indicated by broken lines. Note that the vertical direction of the unmanned aerial vehicle in the following description is based on the direction of the rotation axis of the rotor.
 図1~図3に示すように、無人航空機100は、航空機本体101と、航空機本体101から四方向に向かって延びる4つのアーム102A、102Bと、アーム102A、102Bの先端に接続され、飛行制御部からの制御信号により駆動される4つのモータ103と、各々のモータ103の駆動により回転して揚力を発生させる4つのロータ(回転翼)104A、104Bと、着陸時に無人航空機を支える一対の着陸脚部105とを備える。モータ103、ロータ104A、104B、及びアーム102A、102Bの数は、それぞれ、3、4などのような3以上の数とすることもできる。飛行制御部からの制御信号により4つのモータ103が回転させられ、それにより4つのロータ104A、104Bの各々の回転数を制御することにより、上昇、下降、前後左右への飛行、旋回等、無人航空機100の飛行が制御される。 As shown in FIGS. 1 to 3, an unmanned aerial vehicle 100 includes an aircraft body 101, four arms 102A and 102B extending in four directions from the aircraft body 101, and the ends of the arms 102A and 102B connected to control flight control. Four motors 103 driven by control signals from the unit, four rotors (rotary blades) 104A and 104B that rotate to generate lift by driving the respective motors 103, and a pair of landing gears that support the unmanned aircraft during landing. legs 105; The number of motors 103, rotors 104A, 104B, and arms 102A, 102B, respectively, can also be three or more, such as three, four, and so on. Control signals from the flight control unit cause the four motors 103 to rotate, thereby controlling the number of rotations of each of the four rotors 104A and 104B. Flight of aircraft 100 is controlled.
 航空機本体101は、後述する情報処理ユニットや、測位装置、高度センサ、バッテリー、アンテナなどを保持する筐体である。 The aircraft body 101 is a housing that holds an information processing unit, a positioning device, an altitude sensor, a battery, an antenna, etc., which will be described later.
 アーム102A、102Bは、前方に向かって左右に広がるように延びる一対の前方アーム102Aと、後方に向かって左右に広がるように延びる一対の後方アーム102Bと、を含む。図3に示すように、前方アーム102Aは、前方に向かって下方に傾斜して延びており、後方アーム102Bは、後方に向かって上方に傾斜して延びている。これにより、後方アーム102Bの先端に設けられた後方の対となるロータ104Bは、前方アーム102Aの先端に設けられた前方の対となるロータ104A、104Bよりも上方に位置する。ロータ104A、104Bは、上方に向くように(回転軸が上下方向に延びるように)設けられている。なお、ここでいう上方とは、ロータ104A、104Bが前後左右に傾斜した状態で斜め上方に向いている状態も含む。また、ロータ104A、104B及びモータ103は、ロータ104A、104Bの回転軸が前後左右方向に傾斜させることができるように、アーム102A、102Bに取り付けられていてもよい。 The arms 102A, 102B include a pair of front arms 102A extending forward and left and right, and a pair of rear arms 102B extending rearward and left and right. As shown in FIG. 3, the front arm 102A extends forward with a downward inclination, and the rear arm 102B extends rearward with an upward inclination. Thereby, the rear paired rotor 104B provided at the tip of the rear arm 102B is positioned above the front paired rotors 104A and 104B provided at the tip of the front arm 102A. Rotors 104A and 104B are provided so as to face upward (rotation shafts extending in the vertical direction). Here, the term "upward" also includes a state in which the rotors 104A and 104B are slanted forward, backward, leftward, and rightward and face obliquely upward. Further, the rotors 104A, 104B and the motor 103 may be attached to the arms 102A, 102B so that the rotating shafts of the rotors 104A, 104B can be tilted in the front, rear, left, and right directions.
 着陸脚部105は、図1~図3に示すように下方に向かって延びる第1の垂下状態と、図4~図6に示すように横方向に向かって延びる第2の展開状態との間で回動可能に航空機本体101に取り付けられている。着陸脚部105は、航空機本体101内に設けられたアクチュエータ220を駆動することにより、第1の垂下状態と第2の展開状態との間で移行することができる。 Landing leg 105 is positioned between a first, downwardly extending, draped state, as shown in FIGS. 1-3, and a second, laterally extending, deployed state, as shown in FIGS. 4-6. is attached to the aircraft body 101 so as to be rotatable with the The landing leg 105 can transition between a first drooped state and a second deployed state by actuating an actuator 220 provided within the aircraft body 101 .
 着陸脚部105は翼体部105Bを有し、先端に接地部105Aが形成されている。図6に示すように、翼体部105Bは、着陸脚部105が水平になった状態で前後方向の垂直断面形状が翼型となっている。ここでいう翼型とは、航空機本体101が前進する際に、空気により揚力が生じるような形状である。着陸脚部105の先端の接地部105Aは、第1の垂下状態において水平に前後方向に延びており、下縁が湾曲形状になっている。なお、本実施形態では、翼体部105Bが翼型であるが、これに限らず、空気中を滑空できるような形状であれば、例えば、平坦な形状等であってもよい。 The landing leg part 105 has a wing body part 105B, and a grounding part 105A is formed at the tip. As shown in FIG. 6, the wing body portion 105B has a wing-shaped vertical cross-sectional shape in the front-rear direction when the landing leg portion 105 is horizontal. The term "airfoil" as used herein refers to a shape in which lift is generated by the air when the aircraft body 101 moves forward. A grounding portion 105A at the tip of the landing leg portion 105 extends horizontally in the front-rear direction in the first hanging state, and has a curved lower edge. Although the wing body portion 105B has a wing shape in this embodiment, it is not limited to this, and may have a flat shape, for example, as long as it can glide in the air.
 図2に示すように、第1の垂下状態において、一対の着陸脚部105は下方に向かって延びている。なお、ここでいう下方とは、垂直方向下方に限らず、一対の着陸脚部105が下方に向かって横方向に広がるように傾斜している場合も含む。 As shown in FIG. 2, in the first hanging state, the pair of landing legs 105 extend downward. The term "downward" as used herein is not limited to the vertical downward direction, but also includes the case where the pair of landing legs 105 are tilted so as to widen in the lateral direction downward.
 また、第1の垂下状態において、一対の着陸脚部105は後方に向かって間隔が狭まるように航空機本体101に接続されている。また、第1の垂下状態において、無人航空機100の重心が着陸脚部105の前後方向中央近傍に位置するように、一対の着陸脚部105は設けられている。 Also, in the first hanging state, the pair of landing legs 105 are connected to the aircraft body 101 so that the distance between them narrows toward the rear. Also, the pair of landing legs 105 are provided so that the center of gravity of the unmanned aerial vehicle 100 is located near the center of the landing legs 105 in the front-rear direction in the first hanging state.
 また、図6に示すように、第2の展開状態において、一対の着陸脚部105は、横方向に延びている。なお、ここでいう横方向とは、着陸脚部105が上下方向や前後方向に傾斜した状態で横方向に延びる場合も含む。また、一対の着陸脚部105は、無人航空機100が水平になった状態で、無人航空機100の前後方向に対して前方側が上方に位置するように傾斜するように航空機本体101に接続されている。 Also, as shown in FIG. 6, in the second deployed state, the pair of landing legs 105 extend laterally. Note that the term "horizontal direction" as used herein also includes the case where the landing leg 105 extends in the horizontal direction while being inclined in the vertical direction or the front-rear direction. Also, the pair of landing legs 105 are connected to the aircraft body 101 so that the front side is positioned upward in the longitudinal direction of the unmanned aerial vehicle 100 when the unmanned aerial vehicle 100 is horizontal. .
 着陸脚部105は、航空機本体101の前後方向中間部の両側に接続されている。図4に示すように、着陸脚部105は、第2の展開状態において、平面視においてロータ104A、104Bと重ならないように配置されている。ここで、ロータ104A、104Bと重ならないとはロータ104A、104Bの各翼の軌跡(破線で囲まれる領域)と、着陸脚部105とが上下に重ならないことをいう。
 なお、着陸脚部105の回動軸は航空機本体101内に前後方向に延びるように設けられている。
The landing legs 105 are connected to both sides of the longitudinally intermediate portion of the aircraft body 101 . As shown in FIG. 4, the landing leg 105 is arranged so as not to overlap the rotors 104A and 104B in plan view in the second deployed state. Here, "does not overlap with rotors 104A, 104B" means that the trajectory of each blade of rotors 104A, 104B (area surrounded by broken lines) and landing leg 105 do not overlap vertically.
The rotation shaft of the landing leg 105 is provided inside the aircraft body 101 so as to extend in the longitudinal direction.
 次に、図1に示す無人航空機の飛行制御システムの構成について説明する。図7は、図1に示す無人航空機の飛行制御システムを示す図である。無人航空機100の飛行制御システム200は、制御ユニット201、制御ユニット201に電気的に接続されたモータ103、モータ103に機械的に接続されたロータ104A、104B、制御ユニット201に電気的に接続された一対のアクチュエータ220、測位装置221、高度センサ222、コンパス223、及び、IMU224を有する。 Next, the configuration of the unmanned aerial vehicle flight control system shown in FIG. 1 will be described. 7 is a diagram showing a flight control system of the unmanned aerial vehicle shown in FIG. 1. FIG. The flight control system 200 of the unmanned aerial vehicle 100 includes a control unit 201 , a motor 103 electrically connected to the control unit 201 , rotors 104 A, 104 B mechanically connected to the motor 103 , and electrically connected to the control unit 201 . It has a pair of actuators 220 , a positioning device 221 , an altitude sensor 222 , a compass 223 and an IMU 224 .
 制御ユニット201は、無人航空機100の飛行制御を行うための情報処理や、そのための電気信号の制御を行うための構成であり、典型的には基板上に各種の電子部品を配置して配線することによってそのような機能の実現に必要な回路を構成したユニットである。制御ユニット201は、さらに、情報処理ユニット230、通信回路231、制御信号生成部232、スピードコントローラ233、インターフェイス234から構成される。 The control unit 201 is a configuration for performing information processing for performing flight control of the unmanned aerial vehicle 100 and controlling electric signals for that purpose, and typically various electronic components are arranged and wired on a substrate. Therefore, it is a unit that constitutes a circuit necessary for realizing such a function. The control unit 201 further comprises an information processing unit 230 , a communication circuit 231 , a control signal generator 232 , a speed controller 233 and an interface 234 .
 測位装置221は、GPS(Global Positioning System)センサのような無人航空機100の飛行位置の座標を感知するナビゲーションのためのセンサである。測位装置221は、好適には、三次元的な座標を感知する。なお、測位装置221が取得する座標は、緯度、経度及び高度からなる。 The positioning device 221 is a sensor for navigation that senses the coordinates of the flight position of the unmanned aerial vehicle 100, such as a GPS (Global Positioning System) sensor. Positioning device 221 preferably senses coordinates in three dimensions. The coordinates acquired by the positioning device 221 consist of latitude, longitude and altitude.
 高度センサ222は、例えば、気圧計などからなり、気圧に基づき無人航空機の高度を推定する。
 コンパス223は、いわゆる方位磁針であり、北を基準とした無人航空機100の前方の角度を検知する。
The altitude sensor 222 is, for example, a barometer or the like, and estimates the altitude of the unmanned aerial vehicle based on the atmospheric pressure.
The compass 223 is a so-called compass and detects the angle ahead of the unmanned aerial vehicle 100 relative to north.
 IMU224は、慣性計測装置(Inertial Measurement Unit)であり、加速度センサにより並進運動を、角速度センサ(ジャイロ)により回転運動を検出する。さらに、IMU224は、加速度センサにより検出された並進運動(加速度)を積分することにより、速度を算出することができ、さらに、速度を積分することにより移動距離(位置)を算出することができる。また、同様に、角速度センサにより検出された回転運動(角速度)を積分することにより、角度(姿勢)を算出することができる。 The IMU 224 is an inertial measurement unit that detects translational motion with an acceleration sensor and rotational motion with an angular velocity sensor (gyro). Furthermore, the IMU 224 can calculate the velocity by integrating the translational motion (acceleration) detected by the acceleration sensor, and can calculate the moving distance (position) by integrating the velocity. Similarly, the angle (orientation) can be calculated by integrating the rotational motion (angular velocity) detected by the angular velocity sensor.
 通信回路231は、例えば、アンテナに接続されている。アンテナは、無人航空機100を操縦したり制御するための情報や各種データを含む無線信号を受信したり、テレメトリ信号を含む無線信号を無人航空機100から送信する。 The communication circuit 231 is connected to, for example, an antenna. The antenna receives radio signals including information and various data for operating and controlling the unmanned aerial vehicle 100 and transmits radio signals including telemetry signals from the unmanned aerial vehicle 100 .
 通信回路231は、アンテナを通じて受信した無線信号から、無人航空機100のための操縦信号、制御信号や各種データなどを復調して情報処理ユニット230に入力したり、無人航空機100から出力されるテレメトリ信号などを搬送する無線信号を生成するための電子回路であり、典型的には無線信号処理ICである。なお、例えば、操縦信号の通信と、制御信号、各種データの通信とを別の周波数帯の異なる通信回路で実行するようにしてもよい。例えば、手動での操縦を行うためのコントローラ(プロポ)の送信器と950MHz帯の周波数で通信し、データ通信を2GHz帯/1.7GHz帯/1.5GHz帯/800MHz帯の周波数で通信するような構成を採ることも可能である。 The communication circuit 231 demodulates operation signals, control signals, various data, etc. for the unmanned aerial vehicle 100 from radio signals received through the antenna, and inputs them to the information processing unit 230, or telemetry signals output from the unmanned aerial vehicle 100. An electronic circuit, typically a radio signal processing IC, for generating radio signals that carry, for example. Note that, for example, the communication of the steering signal and the communication of the control signal and various data may be performed by communication circuits in different frequency bands. For example, to communicate with the transmitter of the controller (propo) for manual operation at a frequency of 950 MHz band, and to communicate data communication at a frequency of 2 GHz band / 1.7 GHz band / 1.5 GHz band / 800 MHz band It is also possible to adopt a configuration
 制御信号生成部232は、情報処理ユニット230によって演算により得られた制御指令値データを、電圧を表わすパルス信号(PWM信号など)に変換する構成であり、典型的には、発振回路とスイッチング回路を含むICである。スピードコントローラ233は、制御信号生成部232からのパルス信号を、モータ103を駆動する駆動電圧に変換する構成であり、典型的には、平滑回路とアナログ増幅器である。図示していないが、無人航空機100は、リチウムポリマーバッテリやリチウムイオンバッテリ等のバッテリデバイスや各要素への配電系を含む電源系を備えている。 The control signal generator 232 is configured to convert the control command value data obtained by calculation by the information processing unit 230 into a pulse signal (PWM signal or the like) representing voltage, and typically includes an oscillation circuit and a switching circuit. is an IC containing The speed controller 233 is configured to convert the pulse signal from the control signal generator 232 into a driving voltage for driving the motor 103, and is typically a smoothing circuit and an analog amplifier. Although not shown, the unmanned aerial vehicle 100 includes a battery device such as a lithium polymer battery or a lithium ion battery, and a power supply system including a power distribution system for each element.
 インターフェイス234は、情報処理ユニット230と測位装置221、高度センサ222、コンパス223などの機能要素との間で信号の送受信ができるように信号の形態を変換することにより、それらを電気的に接続する構成である。なお、説明の都合上、図面においてインターフェイスは1つの構成として記載しているが、接続対象の機能要素の種類によって別のインターフェイスを使用することが通常である。また、接続対象の機能要素が入出力する信号の種類によってはインターフェイス234が不要な場合もある。また、図7において、インターフェイス234が媒介せずに接続されている情報処理ユニット230であっても、接続対象の機能要素が入出力する信号の種類によってはインターフェイスが必要となる場合もある。 The interface 234 electrically connects the information processing unit 230 and functional elements such as the positioning device 221, the altitude sensor 222, and the compass 223 by converting the form of signals so that they can be transmitted and received. Configuration. For convenience of explanation, the interface is shown as one configuration in the drawings, but usually different interfaces are used depending on the types of functional elements to be connected. In addition, the interface 234 may not be necessary depending on the type of signal input/output by the functional element to be connected. Further, in FIG. 7, even the information processing unit 230 connected without the interface 234 intervening may require an interface depending on the types of signals input/output by the functional elements to be connected.
 また、情報処理ユニット230と制御信号生成部232とにより、無人航空機100の飛行を制御する飛行制御部が構成される。飛行制御部は、飛行計画経路データが記憶されており、これに基づき、所定の飛行経路に沿って無人航空機100が飛行するように、モータ103やアクチュエータ220の駆動を制御する。 Also, the information processing unit 230 and the control signal generator 232 constitute a flight controller that controls the flight of the unmanned aerial vehicle 100 . The flight control unit stores flight plan route data, and based on this, controls driving of the motor 103 and the actuator 220 so that the unmanned aerial vehicle 100 flies along a predetermined flight route.
 飛行計画経路データは、無人航空機100の飛行計画経路を表すデータであり、典型的には、飛行計画経路上に存在する一連の複数のウェイポイントの集合のデータである。飛行計画経路は、典型的には、それらの複数のウェイポイントを順番に結んだ直線の集合であるが、ウェイポイントの所定範囲内においては所定の曲率の曲線とすることもできる。飛行計画経路データは、複数のウェイポイントにおける飛行速度を定めるデータを含んでいてもよい。飛行計画経路データは、典型的には自律飛行において飛行計画経路を定めるために使用されるが、非自律飛行において飛行時のガイド用として使用することもできる。飛行計画経路データは、典型的には、飛行前に無人航空機100に入力されて記憶される。 The flight-planned route data is data representing the flight-planned route of the unmanned aerial vehicle 100, and is typically a set of a series of multiple waypoints existing on the flight-planned route. A flight plan path is typically a set of straight lines connecting the plurality of waypoints in order, but it can also be a curve with a predetermined curvature within a predetermined range of waypoints. The flight plan route data may include data defining flight speeds at multiple waypoints. Flight-planned path data is typically used to define flight-planned paths in autonomous flight, but can also be used in non-autonomous flight for guidance during flight. Flight plan path data is typically input and stored in unmanned aerial vehicle 100 prior to flight.
 飛行制御部は、測位装置221、高度センサ222、コンパス223、及びIMU224により測定された自己位置及び姿勢に基づき、飛行計画経路データの飛行計画経路に沿うように無人航空機の飛行を制御する。具体的には、各種センサにより、無人航空機100の自己位置、ヘディング、姿勢、速度等を判断し、に基づき無人航空機100の現在の飛行位置及びヘディングなどを判断し、操縦信号、飛行計画経路(目標)、速度制限、高度制限等の目標値と比較することにより各ロータ104A、104Bに対する制御指令値を演算し、制御指令値を示すデータを制御信号生成部132に出力する。制御信号生成部132は、その制御指令値を電圧を表わすパルス信号に変換して各スピードコントローラ233に送信する。各スピードコントローラ233は、そのパルス信号を駆動電圧へと変換して各モータ103に印加し、これにより各モータ103の駆動を制御して各ロータ104A、104Bの回転数を制御することにより無人航空機100の飛行が制御される。 The flight control unit controls the flight of the unmanned aerial vehicle to follow the flight plan route of the flight plan route data based on the self-position and attitude measured by the positioning device 221, altitude sensor 222, compass 223, and IMU 224. Specifically, the self-position, heading, attitude, speed, etc. of the unmanned aerial vehicle 100 are determined by various sensors, the current flight position and heading of the unmanned aerial vehicle 100 are determined based on the control signals, the flight plan route ( target), speed limit, altitude limit, etc. to calculate control command values for the rotors 104A and 104B, and output data indicating the control command values to the control signal generator 132. FIG. The control signal generator 132 converts the control command value into a pulse signal representing voltage and transmits the pulse signal to each speed controller 233 . Each speed controller 233 converts the pulse signal into a drive voltage and applies it to each motor 103, thereby controlling the drive of each motor 103 to control the rotation speed of each rotor 104A, 104B, thereby controlling the unmanned aerial vehicle. 100 flights are controlled.
 本実施形態では、飛行制御部には、離陸時及び着陸時における無人航空機100が主に上下方向に移動する際の離陸モード及び着陸モードと、無人航空機100が主に水平方向に飛行する際の水平飛行モードとが設定されている。飛行制御部は、離陸モード及び着陸モードでは、アクチュエータ220を起動して、着陸脚部105を下方に向かって延びる第1の垂下状態とし、水平飛行モードでは、アクチュエータ220を起動して、着陸脚部105を横方向に向かって延びる第2の展開状態とする。 In this embodiment, the flight control unit includes a takeoff mode and a landing mode when the unmanned aerial vehicle 100 mainly moves vertically during takeoff and landing, and a mode when the unmanned aerial vehicle 100 mainly flies horizontally. Horizontal flight mode is set. The flight controller activates the actuators 220 to place the landing leg 105 in a downwardly extending first droop state in take-off and landing modes, and activates the actuators 220 to place the landing leg 105 in level flight mode. The portion 105 is brought into a second expanded state extending in the lateral direction.
 図8は、図1に示す無人航空機の情報処理ユニットのハードウェア構成を示す図である。情報処理ユニット230は、CPU230aと、RAM230bと、ROM230cと、外部メモリ230dと、入力部230eと、出力部230fと、通信部230gとを含む。RAM230b、ROM230c、外部メモリ230d、入力部230e、出力部230f、及び、通信部230gはバス230hを介してCPU230aに接続されている。 FIG. 8 is a diagram showing the hardware configuration of the information processing unit of the unmanned aerial vehicle shown in FIG. The information processing unit 230 includes a CPU 230a, a RAM 230b, a ROM 230c, an external memory 230d, an input section 230e, an output section 230f, and a communication section 230g. The RAM 230b, ROM 230c, external memory 230d, input section 230e, output section 230f, and communication section 230g are connected to the CPU 230a via a bus 230h.
 CPU230aは、システムバス230hに接続される各デバイスを統括的に制御する。
 ROM230cや外部メモリには、CPU230aの制御プログラムであるBIOSやOS、コンピュータが実行する機能を実現するために必要な各種プログラムやデータ等が記憶されている。
The CPU 230a centrally controls each device connected to the system bus 230h.
The ROM 230c and external memory store the BIOS and OS, which are control programs for the CPU 230a, and various programs and data necessary for realizing the functions executed by the computer.
 RAM230bは、CPU230aの主メモリや作業領域等として機能する。CPU230aは、処理の実行に際して必要なプログラム等をROM230cや外部メモリ230dからRAM230bにロードして、ロードしたプログラムを実行することで各種動作を実現する。 The RAM 230b functions as the main memory and work area of the CPU 230a. The CPU 230a loads necessary programs and the like from the ROM 230c and the external memory 230d to the RAM 230b and executes the loaded programs to realize various operations.
 外部メモリ230dは、例えば、フラッシュメモリ、ハードディスク、DVD-RAM、USBメモリ等から構成される。
 入力部230eは、ユーザ等から操作指示等を受け付ける。入力部230eは、例えば、入力ボタン、キーボード、ポインティングデバイス、ワイヤレスリモコン、マイクロフォン、カメラ等の入力デバイスから構成される。
The external memory 230d is composed of, for example, a flash memory, hard disk, DVD-RAM, USB memory, or the like.
The input unit 230e receives an operation instruction or the like from a user or the like. The input unit 230e includes input devices such as input buttons, a keyboard, a pointing device, a wireless remote controller, a microphone, and a camera.
 出力部230fは、CPU230aで処理されるデータや、RAM230b、ROM230cや外部メモリ230dに記憶されるデータを出力する。出力部230fは、例えば、CRTディスプレイ、LCD、有機ELパネル、プリンタ、スピーカ当の出力デバイスから構成される。 The output unit 230f outputs data processed by the CPU 230a and data stored in the RAM 230b, ROM 230c, and external memory 230d. The output unit 230f is composed of output devices such as a CRT display, an LCD, an organic EL panel, a printer, and a speaker.
 通信部230gは、ネットワークを介して、又は、直接外部機器と接続・通信するためのインターフェイスである。通信部230gは、例えば、シリアルインタフェース、LANインターフェイス等のインターフェイスから構成される。 The communication unit 230g is an interface for connecting and communicating with an external device directly or via a network. 230 g of communication parts are comprised from interfaces, such as a serial interface and a LAN interface, for example.
 飛行制御部は、ROM230cや外部メモリ230dに記憶された各種プログラムが、CPU230a、RAM230b、ROM230c、外部メモリ230d、入力部230e、出力部230f、通信部230g等を資源として使用することで実現される。 The flight control unit is realized by various programs stored in the ROM 230c and the external memory 230d using the CPU 230a, the RAM 230b, the ROM 230c, the external memory 230d, the input unit 230e, the output unit 230f, the communication unit 230g, etc. as resources. .
 本実施形態では、情報処理ユニット230及び制御信号生成部232を飛行制御部として機能させているが、情報処理ユニット230とは別個にこれらシステムを搭載する等して無人航空機に備えられる構成としてもよい。また、自己位置推定システム又はその構成要素は、1つの物理的な装置として構成される必要はなく、複数の物理的な装置から構成されてもよい。また、自己位置推定システムを、無人航空機とは別体の地上局のコンピュータ、PC、スマートフォン、タブレット端末等の任意の適切な装置、クラウド・コンピューティングシステム、又はそれらの組み合わせ等として構成してもよい。また、自己位置推定システムの各部の機能は、無人航空機が備える1つ又は複数の装置及び無人航空機とは別体の1つ又は複数の装置のうちのいずれか1つで又は複数で分散して実行される構成としてもよい。 In this embodiment, the information processing unit 230 and the control signal generation unit 232 function as a flight control unit. good. Also, the self-localization system or its components need not be configured as one physical device, but may be configured from multiple physical devices. In addition, the self-localization system may be configured as a ground station computer separate from the unmanned aerial vehicle, any appropriate device such as a PC, a smartphone, a tablet terminal, a cloud computing system, or a combination thereof. good. In addition, the function of each part of the self-localization system is distributed in one or more of one or more devices provided in the unmanned aerial vehicle and one or more devices separate from the unmanned aerial vehicle. It may be configured to be executed.
 以下、上記の無人航空機により所定の目的地まで自立飛行する流れを説明する。図9は、無人航空機により所定の目的地まで自立飛行する流れを示すフローチャートである。
 飛行制御部には、予め飛行計画経路データが記憶されている。
The flow of autonomous flight to a predetermined destination by the above-described unmanned aerial vehicle will be described below. FIG. 9 is a flow chart showing the flow of autonomous flight to a predetermined destination by an unmanned aerial vehicle.
The flight control unit stores flight plan route data in advance.
 無人航空機100は、離陸時には着地しており、この状態で飛行制御部は離陸モードに設定されている(S1)。これにより、着陸脚部105は下方に向かって延びた第1の垂下状態となっており、着陸脚部105の接地部105Aが地面に接地することにより、無人航空機100は着地している。着陸脚部105が下方に向かって延びた第1の垂下状態において、着陸脚部105の接地部105Aは航空機本体101の自重を支持する。なお、本実施形態では、着陸脚部105の接地部105Aは航空機本体101の全重量を支持するが、他の接地脚を設け、一部のみを支持する構成としてもよい。このような状態で、飛行制御部は、モータ103を回転駆動させて、無人航空機100の姿勢を保ちながら上昇する(S2)。 The unmanned aerial vehicle 100 is on the ground when it takes off, and in this state the flight control unit is set to the takeoff mode (S1). As a result, the landing leg 105 is in the first hanging state extending downward, and the unmanned aerial vehicle 100 is grounded by the grounding portion 105A of the landing leg 105 touching the ground. In the first hanging state in which the landing leg 105 extends downward, the ground contact portion 105A of the landing leg 105 supports the weight of the aircraft body 101 itself. In this embodiment, the grounding portion 105A of the landing leg 105 supports the entire weight of the aircraft body 101, but another grounding leg may be provided to support only a portion of the weight. In this state, the flight control unit rotates the motor 103 to ascend while maintaining the attitude of the unmanned aerial vehicle 100 (S2).
 そして、飛行制御部は、所定の時間間隔で高度センサ222により無人航空機の高度を検知する(S3)。高度センサ222により測定された高度が予め設定された所定の高さまで到達していない場合(S4においてNO)には、飛行制御部は無人航空機100がさらに上昇するように制御する。 Then, the flight control unit detects the altitude of the unmanned aircraft with the altitude sensor 222 at predetermined time intervals (S3). If the altitude measured by the altitude sensor 222 has not reached the preset height (NO in S4), the flight control unit controls the unmanned aerial vehicle 100 to further ascend.
 そして、高度センサ222により測定された高度が予め設定された所定の高さまで到達している場合(S4においてYES)には、飛行制御部は水平飛行モードに移行する(S5)。 Then, if the altitude measured by the altitude sensor 222 has reached a predetermined height (YES in S4), the flight control unit shifts to the horizontal flight mode (S5).
 飛行制御部は、水平飛行モードに移行すると、まず、アクチュエータ220を駆動して着陸脚部105を第2の展開状態にする(S6)。これにより、着陸脚部105が横方向に延びた状態となる。 When shifting to the horizontal flight mode, the flight control section first drives the actuator 220 to put the landing leg section 105 into the second deployed state (S6). As a result, the landing leg 105 extends laterally.
 そして、無人航空機100は水平飛行を開始する(S7)。なお、水平飛行とは厳密に水平に飛行する場合のみならず、上昇又は下降しながら横方向に飛行する場合も含み、鉛直方向の移動よりも水平方向の移動を目的とした飛行状態をいう。図10は、水平飛行中の無人航空機を示す側面図である。水平飛行中には、後方アーム102Bに設けられたロータ104Bの回転速度を早くする。これにより、図10に示すように、無人航空機100は前傾姿勢となる。そして、水平飛行中には、IMU224により検知された無人航空機100の姿勢が、着陸脚部105の翼体部105Bが前後方向に水平となるようにフィードバック制御する。そして、無人航空機100が前傾姿勢となることにより、より大きな前方への推進力が作用する。無人航空機100が前進すると、翼体部105Bにより揚力を受ける。これにより、低消費電力で水平飛行することが可能になる。 Then, the unmanned aerial vehicle 100 starts level flight (S7). Note that horizontal flight includes not only flight in a strictly horizontal direction, but also flight in the lateral direction while ascending or descending, and refers to a flight state aimed at horizontal movement rather than vertical movement. FIG. 10 is a side view showing the unmanned aerial vehicle in level flight. During level flight, the rotational speed of the rotor 104B provided on the rear arm 102B is increased. As a result, as shown in FIG. 10, the unmanned aerial vehicle 100 is in a forward-leaning posture. During level flight, the attitude of the unmanned aerial vehicle 100 detected by the IMU 224 is feedback-controlled so that the wing bodies 105B of the landing legs 105 are horizontal in the longitudinal direction. As the unmanned aerial vehicle 100 is tilted forward, a greater forward propulsive force acts. As the unmanned aerial vehicle 100 moves forward, it receives lift from the wing body portion 105B. This enables horizontal flight with low power consumption.
 また、水平飛行しながら、飛行制御部は所定の時間間隔で測位装置221により無人航空機100の自己位置を検知する(S8)。そして、無人航空機100の自己位置が目的地の近傍に到達しているかどうかを判定する(S9)。なお、無人航空機100の自己位置が目的地の近傍に到達しているかは、例えば、目的地と、無人航空機100の自己位置との距離が所定の閾値以下となっているかどうかにより、判定することができる。そして、無人航空機100の自己位置が目的地の近傍に到達していないと判定された場合(S9においてNO)には、水平飛行を続ける。 Also, while flying horizontally, the flight control unit detects the self-position of the unmanned aerial vehicle 100 with the positioning device 221 at predetermined time intervals (S8). Then, it is determined whether the self-position of the unmanned aerial vehicle 100 has reached the vicinity of the destination (S9). Whether the self-position of the unmanned aerial vehicle 100 has reached the vicinity of the destination can be determined, for example, by determining whether the distance between the destination and the self-position of the unmanned aerial vehicle 100 is equal to or less than a predetermined threshold. can be done. When it is determined that the self-position of unmanned aerial vehicle 100 has not reached the vicinity of the destination (NO in S9), level flight is continued.
 これに対して、無人航空機100が目的の近傍に到達した場合(S9においてYES)には、飛行制御部は着陸モードに移行する(S10)。飛行制御部は着陸モードに移行すると、アクチュエータ220を駆動して、着陸脚部105を第1の垂下状態に変更し(S11)、航空機本体101が水平になるように、各ロータ104A、104Bの回転を制御する。 On the other hand, if the unmanned aerial vehicle 100 has reached the target vicinity (YES in S9), the flight control unit shifts to landing mode (S10). When the flight control section shifts to the landing mode, it drives the actuator 220 to change the landing leg section 105 to the first hanging state (S11). Control rotation.
 そして、飛行制御部はロータ104A、104Bの回転を制御し、着地地点の直上に位置するように水平方向位置を微調整しながら、無人航空機100が下降させる(S12)。そして、高度センサ222により測定された高度の変化がなくなるなどにより、着陸脚部105の接地部105Aが着地したことを検知すると(S13)、飛行制御部はロータ104A、104Bを停止する。
 以上により、無人航空機100が目的地まで自立飛行することができる。
Then, the flight control unit controls the rotation of the rotors 104A and 104B to make the unmanned aerial vehicle 100 descend while finely adjusting the horizontal position so that it is positioned directly above the landing point (S12). Then, when it is detected that the ground contact portion 105A of the landing leg 105 has landed (S13), the flight control unit stops the rotors 104A and 104B.
As described above, the unmanned aerial vehicle 100 can independently fly to the destination.
 なお、本実施形態では、S9において、無人航空機100の自己位置に基づき、水平飛行モードから着陸モードに移行しているが、これに限らず、無人航空機100の自己位置及び高さが所定の範囲になった場合に、水平飛行モードから着陸モードに移行してもよい。また、水平飛行中に無人航空機100の高さが所定の高さ以下になった場合には、安全のため、着陸モードに移行してもよい。 In this embodiment, in S9, the transition from the horizontal flight mode to the landing mode is made based on the self-position of the unmanned aerial vehicle 100. You may transition from level flight mode to landing mode when Further, when the height of the unmanned aerial vehicle 100 becomes equal to or less than a predetermined height during level flight, the unmanned aerial vehicle 100 may shift to the landing mode for safety.
 本実施形態によれば、以下の効果が奏される。
 本実施形態によれば、航空機本体101と、上方に向いた複数のロータ104A、104Bと、航空機本体101に接続された左右の着陸脚部105を、備え、着陸脚部105は、先端に設けられた接地部105Aと、翼体部105Bと、を含み、着陸脚部105が、下方に向けて延びる第1の垂下状態と、横方向に向けて延びる第2の展開状態との間で移行可能であり、着地時に、着陸脚部105は第1の垂下状態にあり、接地部105Aが接地して航空機本体101の自重を少なくとも部分的に支持する、無人航空機を提供するものである。
According to this embodiment, the following effects are achieved.
According to this embodiment, an aircraft body 101, a plurality of rotors 104A and 104B facing upward, and left and right landing legs 105 connected to the aircraft body 101 are provided. Landing leg 105, including ground contact portion 105A and wing body portion 105B, transitions between a downwardly extending first drooped state and a laterally extending second deployed state. Possibly, upon landing, landing leg 105 is in a first drooped condition, and ground contact portion 105A grounds to provide an unmanned aerial vehicle that at least partially supports the weight of aircraft body 101.
 このような構成によれば、水平飛行時には、翼体部105Bを横方向に向けて延びる第2の展開状態にすることにより、無人航空機100が前進すると揚力を受けることができ、これにより消費電力の増大を抑制することができる。さらに、離着陸時には、翼体部105Bを下方に向けて延びる第1の状態とすることにより、離着陸の抵抗となることがなく、離着陸時の消費電力を抑制することができる。さらに、着地時には着陸脚部105が航空機本体101を支持する脚部として機能するため、翼体と別に脚部を設ける必要がない。 According to such a configuration, during horizontal flight, the wing bodies 105B are in the second deployed state extending in the lateral direction, so that the unmanned aerial vehicle 100 can receive lift when moving forward, thereby consuming power. can be suppressed. Further, during takeoff and landing, by setting the wing body portion 105B to the first state extending downward, power consumption during takeoff and landing can be suppressed without causing resistance during takeoff and landing. Furthermore, since the landing leg 105 functions as a leg supporting the aircraft body 101 during landing, there is no need to provide a leg separate from the wing body.
 また、本実施形態によれば、ロータ104A、104Bは、第2の展開状態において平面視で翼体部105Bと重ならないように配置されている。 Further, according to the present embodiment, the rotors 104A and 104B are arranged so as not to overlap the wing bodies 105B in plan view in the second deployed state.
 このような構成によれば、水平飛行時にロータ104A、104Bにより送られた風が翼体部105Bに当たることがなく、飛行性能を確保することができる。 According to such a configuration, the wind sent by the rotors 104A and 104B does not hit the wing body 105B during horizontal flight, and flight performance can be ensured.
 また、本実施形態によれば、複数のロータ104A、104Bは、前方の対となるロータ104Aと、後方の対となるロータ104Bとを含み、後方の対となるロータ104Bは、前方の対となるロータ104Aよりも上方に位置している。 Also according to this embodiment, the plurality of rotors 104A, 104B includes a forward pair of rotors 104A and an aft pair of rotors 104B, wherein the aft pair of rotors 104B is the same as the forward pair. It is positioned above the rotor 104A.
 水平飛行する際には、ロータ104A、104Bによる前方への推進力を大きくするため、無人航空機を前傾姿勢とすることになる。この際、後方の対となるロータ104Bが前方の対となるロータ104Aよりも上方に設けられていることにより、前傾姿勢において前方の対となるロータ104Aと、後方の対となるロータ104Bとがより、上下方向により大きく離間することになり、前方の対となるロータ104Aの後流の影響を減らすことができる。 In order to increase the forward propulsion force of the rotors 104A and 104B during horizontal flight, the unmanned aerial vehicle is tilted forward. At this time, since the rotor 104B forming the rear pair is provided above the rotor 104A forming the front pair, the rotor 104A forming the front pair and the rotor 104B forming the rear pair are arranged in a forward tilted posture. As a result, they are spaced apart more in the vertical direction, and the influence of the wake of the forward paired rotor 104A can be reduced.
 また、本実施形態によれば、着陸脚部105は、第2の展開状態において翼体部105Bが航空機本体101の前後方向に対して、前方側が上方に傾斜するように設けられている。 Further, according to the present embodiment, the landing leg section 105 is provided so that the front side of the wing body section 105B is inclined upward with respect to the longitudinal direction of the aircraft body 101 in the second deployed state.
 このような構成によれば、無人航空機100が水平飛行する際に、翼体部105Bが水平となり、翼体部105Bの抵抗を減らし、揚力を発生させることができる。 According to this configuration, when the unmanned aerial vehicle 100 flies horizontally, the wing body 105B becomes horizontal, the resistance of the wing body 105B is reduced, and lift can be generated.
 また、本実施形態によれば、無人航空機100は、着陸脚部105を回動させるためのアクチュエータ220と、複数のロータ104A、104B、及び、アクチュエータ220の駆動を制御する飛行制御部と、を備え、飛行制御部は、無人航空機100が水平に飛行する水平飛行モードでは、着陸脚部105が第2の展開状態になるようにアクチュエータ220を制御し、無人航空機100が離陸及び着陸する離陸モード及び着陸モードでは、着陸脚部105が第1の垂下状態になるようにアクチュエータ220を制御する。 Further, according to this embodiment, the unmanned aerial vehicle 100 includes the actuator 220 for rotating the landing leg section 105, and the flight control section for controlling the drive of the plurality of rotors 104A and 104B and the actuator 220. In a horizontal flight mode in which the unmanned aerial vehicle 100 flies horizontally, the flight control unit controls the actuator 220 so that the landing leg 105 is in the second deployed state, and in a takeoff mode in which the unmanned aerial vehicle 100 takes off and lands. and in the landing mode, it controls the actuator 220 so that the landing leg 105 is in the first drooping state.
 このような構成によれば、離着陸をする際には、着陸脚部105を第1の垂下状態とし、着陸脚部105が上昇又は下降の抵抗となることを抑制し、水平飛行する際には、着陸脚部105を第2の展開状態とし、飛行距離に対する電力消費を少なくすることができる。 According to such a configuration, when taking off and landing, the landing leg portion 105 is placed in the first hanging state to suppress the landing leg portion 105 from acting as a resistance to ascending or descending. , the landing leg 105 can be in the second deployed state to reduce power consumption relative to flight distance.
 また、本実施形態によれば、無人航空機100は、さらに、無人航空機100の位置を特定する測位装置221、及び、無人航空機の高さを測定する高度センサ222を備え、飛行制御部は、測位装置221により測定された位置、及び/又は、高度センサ222により測定された高さに基づき、水平飛行モードと、離陸モード及び着陸モードとを切り換える。 Further, according to this embodiment, the unmanned aerial vehicle 100 further includes a positioning device 221 that identifies the position of the unmanned aerial vehicle 100 and an altitude sensor 222 that measures the height of the unmanned aerial vehicle. Based on the position measured by the device 221 and/or the height measured by the altitude sensor 222, it switches between level flight mode and takeoff and landing modes.
 このような構成によれば、無人航空機100の自律飛行の際に、水平飛行モードと、離離モード及び着陸モードとを確実に切り替えることができる。 With such a configuration, it is possible to reliably switch between the horizontal flight mode, the takeoff mode, and the landing mode during autonomous flight of the unmanned aerial vehicle 100 .
 なお、本実施形態では、着陸脚部105の全体が翼形状の翼体部105Bとして形成され、翼体部105B全体が航空機本体101に対して回動可能としているが、翼体部105Bの途中部に回動軸を設け、翼体部105Bの先端部のみが回動可能に構成してもよい。 In this embodiment, the entire landing leg 105 is formed as the wing-shaped wing body 105B, and the entire wing body 105B is rotatable with respect to the aircraft body 101. A rotation shaft may be provided in the portion, and only the tip portion of the wing body portion 105B may be configured to be rotatable.
100        無人航空機
101        航空機本体
102A       前方アーム
102B       後方アーム
104A、104B  ロータ
105        着陸脚部
105A       接地部
105B       翼体部
132        制御信号生成部
200        飛行制御システム
201        制御ユニット
220        アクチュエータ
221        測位装置
222        高度センサ
223        コンパス
230        情報処理ユニット
230a       CPU
230b       RAM
230c       ROM
230d       外部メモリ
230e       入力部
230f       出力部
230g       通信部
230h       システムバス
230h       バス
231        通信回路
232        制御信号生成部
233        スピードコントローラ
234        インターフェイス
100 Unmanned aerial vehicle 101 Aircraft body 102A Forearm 102B Rear arms 104A, 104B Rotor 105 Landing leg 105A Ground contact 105B Wing body 132 Control signal generator 200 Flight control system 201 Control unit 220 Actuator 221 Positioning device 222 Altitude sensor 223 Compass 230 Information processing unit 230a CPU
230b RAM
230c ROMs
230d external memory 230e input unit 230f output unit 230g communication unit 230h system bus 230h bus 231 communication circuit 232 control signal generation unit 233 speed controller 234 interface

Claims (6)

  1.  航空機本体と、
     上方に向いた複数の回転翼と、
     前記航空機本体に接続された左右の脚部を、備え、
     前記脚部は、
     先端に設けられた接地部と、
     翼体部と、を含み、
     前記脚部の少なくとも一部が、下方に向けて延びる第1の状態と、横方向に向けて延びる第2の状態との間で移行可能であり、
     着地時に、前記脚部は前記第1の状態にあり、前記接地部が接地して前記航空機本体の自重を少なくとも部分的に支持する、
     無人航空機。
    the aircraft body and
    a plurality of upwardly facing rotor blades;
    comprising left and right legs connected to the aircraft body,
    The legs are
    A ground part provided at the tip,
    a wing body, and
    at least a portion of the leg is transitionable between a downwardly extending first state and a laterally extending second state;
    upon landing, the leg is in the first state and the ground contact portion is grounded and at least partially supports the weight of the aircraft body;
    unmanned aircraft.
  2.  前記回転翼は、前記第2の状態において平面視で前記翼体部と重ならないように配置されている、
     請求項1に記載の無人航空機。
    The rotor blade is arranged so as not to overlap with the blade body in a plan view in the second state,
    An unmanned aerial vehicle according to claim 1.
  3.  前記複数の回転翼は、前方の対となる回転翼と、後方の対となる回転翼とを含み、
     前記後方の対となる回転翼は、前記前方の対となる回転翼よりも上方に位置している、
     請求項1又は2に記載の無人航空機。
    The plurality of rotor blades includes a forward pair of rotor blades and a rear pair of rotor blades,
    The rear pair of rotor blades is positioned above the front pair of rotor blades,
    3. An unmanned aerial vehicle according to claim 1 or 2.
  4.  前記脚部は、前記第2の状態において前記翼体部が前記航空機本体の前後方向に対して、前方が上側に傾斜するように設けられている、
     請求項1~3の何れか1項に記載の無人航空機。
    The leg portion is provided so that the front portion of the wing body portion is inclined upward with respect to the longitudinal direction of the aircraft body in the second state,
    An unmanned aerial vehicle according to any one of claims 1-3.
  5.  さらに、
     前記脚部の少なくとも一部を前記航空機本体に対して回動させるためのアクチュエータと、
     前記複数の回転翼、及び、前記アクチュエータの駆動を制御する飛行制御部と、を備え、
     前記飛行制御部は、前記無人航空機が水平に飛行する水平飛行モードでは、前記脚部の少なくとも一部が前記第2の状態になるように前記アクチュエータを制御し、前記無人航空機が離陸する離陸モード及び/又は前記無人航空機が着陸する着陸モードでは、前記脚部の少なくとも一部が前記第1の状態になるように前記アクチュエータを制御する、
     請求項1~4の何れか1項に記載の無人航空機。
    moreover,
    an actuator for rotating at least a portion of the leg with respect to the aircraft body;
    a flight control unit that controls driving of the plurality of rotor blades and the actuator;
    In a horizontal flight mode in which the unmanned aerial vehicle flies horizontally, the flight control unit controls the actuator so that at least a part of the leg is in the second state, and in a takeoff mode in which the unmanned aerial vehicle takes off. and/or in a landing mode in which the unmanned aerial vehicle lands, controlling the actuator such that at least a portion of the leg is in the first state;
    An unmanned aerial vehicle according to any one of claims 1-4.
  6.  さらに、
     前記無人航空機の位置を特定する測位装置、及び、前記無人航空機の高さを測定する高度計を備え、
     前記飛行制御部は、前記測位装置により測定された位置、及び/又は、高度計により測定された高さに基づき、前記水平飛行モードと、前記離陸モード又は着陸モードとを切り換える、
     請求項5に記載の無人航空機。
    moreover,
    A positioning device that identifies the position of the unmanned aerial vehicle, and an altimeter that measures the height of the unmanned aerial vehicle,
    The flight control unit switches between the horizontal flight mode and the takeoff mode or landing mode based on the position measured by the positioning device and/or the height measured by the altimeter.
    6. An unmanned aerial vehicle according to claim 5.
PCT/JP2022/020516 2021-07-28 2022-05-17 Unmanned aircraft WO2023007909A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021123273A JP7048131B1 (en) 2021-07-28 2021-07-28 Unmanned aerial vehicle
JP2021-123273 2021-07-28

Publications (1)

Publication Number Publication Date
WO2023007909A1 true WO2023007909A1 (en) 2023-02-02

Family

ID=81259162

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/020516 WO2023007909A1 (en) 2021-07-28 2022-05-17 Unmanned aircraft

Country Status (2)

Country Link
JP (1) JP7048131B1 (en)
WO (1) WO2023007909A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236295A1 (en) * 2017-06-21 2018-12-27 Ali Turan Easing the horizontal movement of drones
CN110418753A (en) * 2017-10-30 2019-11-05 深圳市大疆创新科技有限公司 A kind of unmanned vehicle and its ascending, descending frame

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018236295A1 (en) * 2017-06-21 2018-12-27 Ali Turan Easing the horizontal movement of drones
CN110418753A (en) * 2017-10-30 2019-11-05 深圳市大疆创新科技有限公司 A kind of unmanned vehicle and its ascending, descending frame

Also Published As

Publication number Publication date
JP7048131B1 (en) 2022-04-05
JP2023018907A (en) 2023-02-09

Similar Documents

Publication Publication Date Title
AU2019203204B2 (en) Vertical takeoff and landing (VTOL) air vehicle
KR101767943B1 (en) Multirotor type Unmanned Aerial Vehicle Available for Adjusting Direction of Thrust
JP5633799B2 (en) Weather observation equipment
KR100812756B1 (en) Quadro copter
US8128033B2 (en) System and process of vector propulsion with independent control of three translation and three rotation axis
CN110641693A (en) Vertical take-off and landing unmanned aerial vehicle
US11613349B2 (en) Vertical take off and landing (VTOL) aircraft with vectored thrust having continuously variable pitch attitude in hover
KR101827308B1 (en) A multicopter type smart drone using tilt rotor
US11117657B2 (en) Aeronautical apparatus
JP2012111475A (en) Vertical takeoff and landing unmanned aircraft by wing-rotor
KR102135285B1 (en) Veryical takeoff and landing fixed wing unmanned aerial vehicle
JP5713231B2 (en) Flying object
US10967967B2 (en) Systems and methods for winged drone platform
WO2017042291A1 (en) Aircraft for transport and delivery of payloads
JP2008094278A (en) Double reversal rotation impeller machine
JP2018134908A (en) Unmanned aircraft
JP2009143268A (en) Flight control system for aircraft and aircraft with the flight control system
JP2008093204A (en) Co-axial helicopter
WO2023007909A1 (en) Unmanned aircraft
JP2017190091A (en) Tray type multi-copter
WO2023007910A1 (en) Unmanned aircraft
JP2019064581A (en) Rotor craft
WO2024004158A1 (en) Unmanned aircraft
JP6561272B1 (en) Rotorcraft
US20190310660A1 (en) Flying vehicle architecture

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848990

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE