WO2023007878A1 - Cargo vehicle system and in-vehicle controller - Google Patents

Cargo vehicle system and in-vehicle controller Download PDF

Info

Publication number
WO2023007878A1
WO2023007878A1 PCT/JP2022/017862 JP2022017862W WO2023007878A1 WO 2023007878 A1 WO2023007878 A1 WO 2023007878A1 JP 2022017862 W JP2022017862 W JP 2022017862W WO 2023007878 A1 WO2023007878 A1 WO 2023007878A1
Authority
WO
WIPO (PCT)
Prior art keywords
cargo handling
vehicle
travel
cargo
upper limit
Prior art date
Application number
PCT/JP2022/017862
Other languages
French (fr)
Japanese (ja)
Inventor
佑里 永崎
誠也 伊藤
達矢 小野
亜弥美 木庭
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Publication of WO2023007878A1 publication Critical patent/WO2023007878A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/02Control of position or course in two dimensions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/09Taking automatic action to avoid collision, e.g. braking and steering
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00

Definitions

  • the present invention relates to technology for controlling the operation of a cargo handling vehicle that performs cargo handling.
  • Cargo handling vehicles are currently in use.
  • unmanned guided vehicles, forklifts, and other cargo handling vehicles are used in cargo transportation operations in distribution warehouses.
  • labor shortage due to the declining birthrate and aging population and the increase in the number of logistics due to the expansion of the e-commerce market
  • labor saving and improvement of work efficiency in distribution warehouses have become issues.
  • the introduction of unmanned industrial vehicles that can operate unmanned is underway.
  • Cargo handling vehicles From the perspective of safety, cargo handling vehicles are required to travel in such a way that they do not overturn or collide with surrounding obstacles. In addition, from the viewpoint of transportation efficiency, it is necessary to shorten the travel time required for a given load to reach its destination. Cargo handling vehicles change their travelable route and speed upper limit depending on the shape, weight, and center of gravity of the cargo to be conveyed, so a flexible travel control method according to the condition of the cargo is required. Desired.
  • Patent Document 1 discloses a technique for avoiding obstacles by changing the traveling route based on the shape of the load. More specifically, we acquire the shape of the cargo handling vehicle during loading, in which the transport vehicle and cargo are integrated, and generate a travel route that improves transportation efficiency within the range where the cargo handling vehicle can avoid obstacles during loading. Is going. By realizing the configuration of Patent Document 1, it is possible to travel on a travel route with high transportation efficiency without interference between the cargo and surrounding obstacles, and safety and productivity during travel of the cargo handling vehicle are improved.
  • the movement of the cargo handling vehicle is analyzed using physical characteristics that indicate the dynamic characteristics of the cargo handling vehicle and the cargo (automated guided vehicle for loading, which is the cargo handling vehicle loaded with the cargo). create a plan;
  • a cargo handling vehicle system for supporting the cargo handling operation of a cargo handling vehicle, it shows the dynamic characteristics of an automated guided vehicle for loading, which is the cargo handling vehicle loaded with cargo to be handled.
  • An operation plan candidate generating unit for generating a plurality of operation plan candidates, which are operation plan candidates for the cargo handling of the cargo handling vehicle, based on the physical characteristics, and a travel speed upper limit calculator for calculating an upper speed limit of the cargo handling vehicle.
  • An obstacle avoidance judging unit for judging the possibility of avoiding obstacles in the operation of the cargo handling vehicle; and an operation plan is determined from the plurality of operation plan candidates according to the speed upper limit value and the result of the judgment. It is a cargo handling vehicle system having an operation plan determination unit that
  • the present invention also includes an in-vehicle controller and a traffic control unit that constitute a cargo handling vehicle system, or a method using these.
  • FIG. 1 is a side view of an automatic guided vehicle according to a first embodiment;
  • FIG. 1 is a top view of an automatic guided vehicle according to Example 1.
  • FIG. 1 is a block diagram showing a functional configuration example of a cargo handling vehicle system according to a first embodiment;
  • FIG. 4 is a diagram showing a travel route and obstacles according to the first embodiment;
  • FIG. 4 is a diagram illustrating the coordinate system and size of the automatic guided vehicle according to the first embodiment;
  • FIG. FIG. 2 is a functional block diagram showing a functional configuration example of a travel command determination unit according to the first embodiment;
  • an operation plan for cargo handling in a cargo handling vehicle capable of transporting cargo is created.
  • an operation plan is determined based on the results of this determination.
  • the movement includes traveling and loading of goods on a loading platform and the like.
  • Examples 1 to 3 which more specifically show the embodiment, will be described.
  • an automatic guided vehicle will be described as an example of a cargo handling vehicle.
  • Example 1 will be described with reference to FIGS. 1 to 11.
  • FIG. 1 an automatic guided vehicle, which is an example of a cargo handling vehicle, is taken as an example.
  • an operation plan based on the shape of the load, the weight of the load, and the position of the center of gravity of the load, the traveling route from the vehicle position when the load is loaded to the destination of the load and the movement amount of the loading platform are determined. decide. The details are described below.
  • FIG. 1 is a side view of an automatic guided vehicle 100 according to this embodiment.
  • FIG. 2 is a top view of the automatic guided vehicle 100 according to this embodiment.
  • the automatic guided vehicle 100 includes a vehicle frame 101 having a bumper 115, a transfer device 102 capable of freely moving a loaded load vertically and horizontally, and a loaded load.
  • a cargo handling member 103 is provided to support the .
  • a transfer actuator 104 is provided inside the automatic guided vehicle 100 , and the transfer device 102 is driven by the transfer actuator 104 .
  • the automatic guided vehicle 100 is provided with driving wheels 105, driven wheels 106, and caster wheels 107 for supporting itself.
  • a travel motor 108 is provided inside the automatic guided vehicle 100 , and the drive wheels 105 are driven by the travel motor 108 .
  • a steering motor 109 is provided inside the automatic guided vehicle 100 , and the driving wheels 105 are driven by the steering motor 109 .
  • the configuration of the driving relationship is not limited to this configuration. In particular, when a so-called carrier robot is used as the unmanned carrier 100, it is desirable that the driving wheels 105 are four-wheel drive.
  • the automatic guided vehicle 100 includes a plurality of load sensors 110 (for example, pressure sensors) that acquire the load of the load to be loaded and the position of the center of gravity in the left-right direction on the cargo handling member 103 in the front-rear direction. Moreover, the automatic guided vehicle 100 equips the cargo handling member 103 with an inclination sensor 111 that acquires the inclination of the cargo handling member 103 .
  • load sensors 110 for example, pressure sensors
  • the automatic guided vehicle 100 has a LiDAR 112 for load shape detection.
  • LiDAR Light Detection and Ranging
  • a sensor that measures the distance to an object existing in the irradiation range while changing the irradiation angle of laser light. It is possible to acquire point group information of feature points indicating the shape of an object from information on the optical axis angle at the time of laser irradiation and information on the distance to the object.
  • a sensor other than LiDAR may be used as long as it can recognize an object.
  • the upper surface of the vehicle frame 101 is equipped with a LiDAR 113 for self-position estimation.
  • the self-position estimation LiDAR 113 measures the distance to surrounding obstacles during travel.
  • the LiDAR 113 for self-position estimation may also use other sensors.
  • An in-vehicle controller 114 is mounted on the upper surface of the vehicle frame 101 .
  • the in-vehicle controller 114 calculates an operation command value for realizing the motion control of the automatic guided vehicle 100 based on the self-position estimation of the vehicle and the self-position based on the values obtained from the sensors described above.
  • FIG. 3 is a block diagram showing a functional configuration example of the cargo handling vehicle system 300 according to this embodiment.
  • solid lines with arrows represent data flow.
  • a cargo handling vehicle system 300 includes a traffic control unit 201 and an in-vehicle controller 114 . Then, on the on-vehicle controller 114 mounted on the automatic guided vehicle 100, a travel command calculation unit 310 that executes the main processing of this embodiment is mounted.
  • functions of the traffic control unit 201 and the in-vehicle controller 114 will be described. Note that only the outline of each function will be described below, and the specific processing flow of each function will be described later. Each device and each part constituting the cargo handling vehicle system 300 will be described below.
  • the traffic control unit 201 manages operation of the automatic guided vehicle 100 .
  • the traffic control unit 201 is composed of an environment map storage unit 202 , an operation management unit 203 , a travel route candidate generation unit 204 and a communication device 205 . Each part of the traffic control unit 201 will be described below.
  • the environment map storage unit 202 stores a two-dimensional map provided with position information of obstacles in the warehouse, which is the travel area (operating environment) of the automatic guided vehicle 100 .
  • FIG. 4 is a diagram showing a travel route and obstacles based on the two-dimensional map stored in the environmental map storage unit 202. As shown in FIG.
  • the two-dimensional map has the environment map position reference coordinate system 400 as the position reference coordinates, and two orthogonal axes represented by the XG axis and the YG axis as reference axes.
  • the environment map storage unit 202 stores the position and shape information of the shelf 421 and the wall 422 in the environment map position reference coordinate system 400, which is the reference coordinate system shown in FIG.
  • the two-dimensional map creation method is, for example, a method of acquiring point cloud data of surrounding obstacles using the LiDAR 113 for self-position estimation while manned driving the unmanned guided vehicle 100, and creating it by SLAM (Simultaneous Localization and Mapping) method.
  • SLAM Simultaneous Localization and Mapping
  • the operation management unit 203 determines the destination of the load loaded by the automatic guided vehicle 100 .
  • the destination for example, input from the user or the schedule for transporting the cargo is used.
  • the travel route candidate generation unit 204 generates travel route candidates 401 that allow the automatic guided vehicle 100 to reach the cargo destination specified by the operation management unit 203 and avoid fixed obstacles stored on the two-dimensional map. Generate multiple.
  • the details of the plurality of travel route candidates 401 to be created will be described with reference to FIG.
  • Each route of the travel route candidate 401 is composed of a node 403 that serves as a passage point for the cargo handling vehicle and an edge 404 that connects adjacent nodes.
  • Each node is provided with two-dimensional position coordinates with respect to the environmental map position reference coordinate system 400, upper travel speed limit, and traveling direction.
  • the standard for the interval between nodes is about 2.0 (m) to 5.0 (m).
  • the shortest route 405 that the automatic guided vehicle 100 passes when traveling without cargo (2) A travel route 406 on which the unmanned guided vehicle 100 can travel while maintaining the high speed upper limit when traveling without cargo; (3) A route 407 in which the unmanned guided vehicle 100 is the farthest from fixed obstacles when traveling without cargo.
  • the travel route candidate generation unit 204 includes information on the vehicle frame 101 and the cargo handling member 103 in the vehicle body width direction and the vehicle body length direction, which characterize the shape of the automatic guided vehicle 100. It has 2D shape information.
  • the automatic guided vehicle 100 realizes travel by following the travel route using the forward gaze model. It is assumed that positional and attitude errors of the vehicle with respect to the route occur during route tracking using the forward gaze model. Therefore, the travel route candidate generation unit 204 generates the travel route candidates 401 based on these errors. Rough guides for the route following error are a position error of 0.10 (m) and an attitude error of 0.05 (rad).
  • the travel route candidate generation unit 204 is a type of motion plan candidate generation unit that generates the travel route candidate 401 that is a type of motion plan for the automatic guided vehicle 100 and the platform movement amount candidate storage unit 308 .
  • the operation plan candidate generation unit may generate at least one of the travel route candidate 401 and the bed movement amount candidate as the operation plan candidate. Therefore, in this embodiment, it is desirable to have a platform movement amount candidate generator (not shown).
  • the travel route candidate generation unit 204 and the motion plan candidate generation unit may be provided in the in-vehicle controller 114 .
  • the communication device 205 transmits the information stored in the traffic control unit 201 to the in-vehicle controller 114 .
  • the above is the internal configuration of the traffic control unit 201 .
  • the traffic control unit 201 can also be realized by a computer connected to the in-vehicle controller 114 via a network.
  • the traffic control unit 201 can be implemented as a so-called server as a traffic management device.
  • the in-vehicle controller 114 can be realized by a so-called ECU (Electronic Control Unit). Each part of the in-vehicle controller 114 will be described below.
  • ECU Electronic Control Unit
  • FIG. 5 is a diagram for explaining the coordinate system and size of the automatic guided vehicle 100 according to this embodiment.
  • FIG. 5 shows the cargo handling vehicle reference coordinate system 411 used in estimating the self-position 412 and the self-orientation 413 .
  • the position reference point of the automatic guided vehicle 100 is the center position of the vehicle (the position of the black circle in the figure).
  • An axis extending from the position reference point of the automatic guided vehicle 100 toward the leading end of the cargo handling member 103 is the Yv axis.
  • the axis extending from the position reference point of the automatic guided vehicle 100 toward the center of the tire of the driven wheel 106 on the right side with respect to the positive direction of the Yv axis is defined as the Xv axis.
  • the axis extending vertically in the vehicle height direction from the position reference point of the automatic guided vehicle 100 is defined as the Zv axis.
  • the self position 412 corresponds to the position coordinates of the position reference point of the automatic guided vehicle 100 in the environment map position reference coordinate system 400
  • the self attitude 413 corresponds to the YG axis of the environment map position reference coordinate system 400 and the cargo handling vehicle reference coordinate system.
  • 411 corresponds to the angle formed by the Yv axis. The above situation is estimated by the self-position estimation unit 309 .
  • the load amount calculation unit 301 calculates the weight m (kg) of the load loaded on the automatic guided vehicle 100 based on the detection result of the load sensor 110 . For this purpose, it is desirable to provide the automatic guided vehicle 100 with a weight scale.
  • the center-of-load calculation unit 302 calculates the three-dimensional center-of-gravity position (x1, y1, z1) (m) of the load in the cargo handling vehicle reference coordinate system 411 based on the detection result of the load sensor 110 .
  • the load shape calculator 303 calculates the width w1 (m) and the depth l1 (m) of the load 500 (that is, the load to be transported) loaded on the automatic guided vehicle 100 shown in FIG. is calculated based on the detection result of the package shape LiDAR 112 .
  • the information storage unit stores information about the vehicle body characteristics of the automatic guided vehicle 100 .
  • the information storage unit 304 includes a vehicle shape storage unit 305 , a vehicle weight storage unit 306 , a vehicle center of gravity position storage unit 307 , and a platform movement amount candidate storage unit 308 .
  • the vehicle shape storage unit 305 stores information indicating shape characteristics of the automatic guided vehicle 100 .
  • FIG. 5 shows an outline of values stored in the vehicle shape storage unit 305.
  • the vehicle shape storage unit 305 stores the tread length W1 (m) as length information regarding the width direction of the automatic guided vehicle 100 .
  • the vehicle weight storage unit 306 stores the weight M (kg) of the automatic guided vehicle 100 .
  • the vehicle center-of-gravity position storage unit 307 stores the center-of-gravity position (x2, y2, z2) (m) of the automatic guided vehicle 100 in the cargo handling vehicle reference coordinate system 411 .
  • the platform movement amount candidate storage unit 308 stores a platform movement amount candidate value when the automatic guided vehicle 100 is traveling.
  • FIG. 5 shows a state in which the unmanned guided vehicle 100 performs s (m) bed movement (side shift) in the positive direction of the Xv axis.
  • a platform movement amount candidate storage unit 308 stores a plurality of platform movement amount candidates corresponding to s(m) in FIG.
  • An example of the candidate values for the amount of movement of the platform includes ten candidate values obtained by dividing the maximum range of motion of the side shift of the automatic guided vehicle 100 into ten.
  • the movement of the cargo bed refers to the operation of moving the position of the cargo while the vehicle is supporting the cargo, such as the side shift operation of moving a pair of cargo handling members in the same direction on the left and right.
  • the amount of bed movement refers to the difference between the position of the bed at the reference position and the position of the bed after the bed is moved. Note that this movement of the loading platform also occurs in the forks of a forklift, which is another example of the cargo handling vehicle.
  • the travel command calculation unit 310 selects a travel route along which the automatic guided vehicle 100 travels from among the travel route candidates 401 generated by the travel route candidate generation unit 204 and the platform movement amount candidates stored in the carrier movement amount candidate storage unit 308. , the amount of movement of the loading platform during travel along the travel route is determined.
  • the travel route candidate generation unit 204 is a kind of operation plan determination unit, and may determine at least one of the travel route and the bed movement amount.
  • the unmanned guided vehicle 100 while traveling, changes the amount of bed movement triggered by reaching each node on the traveling route. Therefore, the travel command calculation unit 310 determines the travel route and the bed movement amount at each node of the travel route.
  • FIG. 6 is a functional block diagram showing a functional configuration example of the travel command calculation unit 310 according to this embodiment.
  • the travel command calculation unit 310 includes a travel speed upper limit calculation unit 501 , an obstacle avoidance determination unit 502 , and a travel command determination unit 503 .
  • a travel speed upper limit calculation unit 501 the travel speed upper limit calculation unit 501
  • an obstacle avoidance determination unit 502 the obstacle avoidance determination unit 502
  • a travel command determination unit 503 a travel command determination unit 503 .
  • the travel speed upper limit calculator 501 calculates the upper limit of travel speed when traveling with the cargo bed moved based on each cargo bed movement amount on each route and each node position stored in the travel route candidate 401 .
  • the upper speed limit mentioned here refers to the maximum value within the range in which the overturning moment of the vehicle does not exceed the restoring moment of the vehicle. be done.
  • the unmanned guided vehicle 100 at the time of loading is hereinafter referred to as the unmanned guided vehicle 600 at the time of loading as one configuration together with the loaded cargo.
  • the obstacle avoidance determination unit 502 determines the position of each node stored in the travel route candidate 401 by moving the cargo bed based on the amount of movement of the cargo bed. Determine whether or not to interfere with obstacles.
  • the travel command determination unit 503 determines the travel route and the amount of bed movement at each node in the travel route information based on the calculation result of the travel speed upper limit calculation unit 501 and the determination result of the obstacle avoidance determination unit 502 .
  • the traveling route and the movement amount of the loading platform reach the final node 402 when the automatic guided vehicle for loading 600 can avoid interference with fixed obstacles and travels within a range in which the traveling stability of the automatic guided vehicle for loading 600 is ensured.
  • the one with the shortest time is selected. Note that, as described above, the travel route and the bed movement amount are a kind of operation plan.
  • An example of the functional block configuration of the travel command calculation unit 310 has been described above. This is merely an example, and other configurations may be added or some configurations may be omitted. This completes the description of the travel command calculation unit 310 .
  • the operation command generation unit 311 is configured to perform cargo handling operations in accordance with the travel route and the bed movement amount calculated by the travel command calculation unit 310 based on the inputs from the travel command calculation unit 310 and the self-position estimation unit 309. Calculates motion commands. Then, the motion command generator 311 outputs motion commands to the traveling motor 108 , the steering motor 109 , and the transfer actuator 104 . As a result, the automatic guided vehicle 100 performs an operation according to the traveling route and the amount of bed movement.
  • the above is an example of the functional block configuration for realizing this embodiment.
  • FIG. 7 is a flow chart showing the processing flow of the cargo handling vehicle system 300 in this embodiment.
  • the travel route candidate generation unit 204 acquires the two-dimensional environment map information from the environment map storage unit 202 in step S701. Also, travel command calculation unit 310 acquires two-dimensional environment map information from environment map storage unit 202 via communication device 350 .
  • step S702 the operation management unit 203 transmits the position coordinates of the transportation destination of the cargo to the travel route candidate generation unit 204.
  • step S ⁇ b>703 the travel route candidate generation unit 204 calculates an area in which the unmanned guided vehicle 100 can travel without interfering with fixed obstacles until it reaches the final node 402 .
  • the travel route candidate generation unit 204 generates the two-dimensional environment map acquired in step S701, the location information of the transport destination acquired in step S702, the shape of the vehicle frame 101 and the cargo handling member 103, the position error when following the route. and attitude error information.
  • the operation management unit 203 sets a plurality of travel route candidates 401 that pass through areas in which the automatic guided vehicle 100 can travel. Then, the operation management unit 203 transmits the set travel route candidate 401 to the travel command calculation unit 310 .
  • step S ⁇ b>704 the LiDAR 112 for load shape detection transmits the optical axis angle information and the corresponding distance information to the peripheral object to the load shape calculator 303 .
  • the load shape calculator 303 calculates the shape of the load from the distance information between the optical axis angle information received in step S704 and the corresponding obstacle.
  • An example of the load shape includes a load width w1 (m) and a depth l1 (m) shown in FIG.
  • the distance between each piece of point cloud data acquired in step S704 is measured, and linear approximation is performed for the point cloud within a threshold value. Then, there is a method of calculating the lengths of the load in the width direction and the depth direction from the lengths of the approximated straight lines.
  • the load shape calculation method may be other than the above.
  • the load point cloud data may be acquired with the automatic guided vehicle 100 facing the load before the load handling operation, and the shape of the load may be detected.
  • the load shape calculation unit 303 transmits the calculation result to the travel command calculation unit 310 .
  • step S ⁇ b>706 the self-position estimation LiDAR 113 transmits the obtained distance information to the surrounding obstacles to the self-position estimation unit 309 .
  • step S ⁇ b>707 the self-position estimation unit 309 acquires two-dimensional map information from the communication device 350 .
  • self-position estimation section 309 calculates self-position 412 and self-orientation 413 using the two-dimensional map information and the distance information to surrounding obstacles received in step S706.
  • self-position estimation section 309 transmits this calculation result to travel command calculation section 310 .
  • step S708 the load sensor 110 measures the load applied to the sensor.
  • the load sensor 110 then transmits the acquired value to the load amount calculation unit 301 and the load center calculation unit 302 .
  • step S709 the load amount calculation unit 301 calculates the load m (kg) of the cargo loaded on the cargo handling member 103 from the sum of the measurement values of the load sensor 110 acquired in step S708.
  • the load amount calculation unit 301 then transmits the calculated value to the travel command calculation unit 310 .
  • step S710 the tilt sensor 111 acquires the tilt angle ⁇ (rad) of the cargo handling member 103 . Then, the tilt sensor 111 transmits the acquired value to the center-of-load calculation unit 302 .
  • the load center computing unit 302 computes the center of gravity position (x1, y1, z1) (m) of the load in the cargo handling vehicle position reference system. For this calculation, the center-of-load calculation unit 302 calculates the center-of-gravity position x1 (m) in the horizontal direction and the center-of-gravity position y1 (m) in the front-rear direction based on the measurement value of the load sensor 110 acquired in step S708. do. In addition, in order to specify these center-of-gravity positions, a plurality of load sensors 110 may be prepared and the load ratio of these sensors may be used. Further, the center-of-load calculation unit 302 calculates the center-of-gravity position z1(m) in the height direction of the load according to (Equation 1) below.
  • step S712 travel command calculation unit 310 acquires the following information.
  • vehicle shape information stored in the vehicle shape storage unit 305 vehicle weight stored in the vehicle weight storage unit 306; the vehicle center-of-gravity position stored in the vehicle center-of-gravity position storage unit 307; Platform movement amount candidates stored in the platform movement amount candidate storage unit 308 .
  • the travel command calculation unit 310 identifies the shape, weight, and center of gravity position of the automatic guided vehicle for loading 600. These are one type of physical characteristics of the automatic guided vehicle 600 for loading. Therefore, part of the shape, weight, and center of gravity position, or other information may be used.
  • step S713 the travel command determination unit 503 determines the travel route and the bed movement amount, which are a type of operation plan. Therefore, in step S713, the travel speed upper limit value is calculated (step S721), the interference between the load 500 and the fixed obstacle is determined (step S722), and the travel route and the bed movement amount are determined based on these.
  • the travel speed upper limit calculator 501 calculates the travel speed upper limit value for the combination of each node position in the travel route and each loading platform movement amount.
  • step S722 the obstacle avoidance determination unit 502 performs interference determination between the load 500 and the fixed obstacle with respect to the combination of each node position in the travel route and each loading platform movement amount. Then, the travel command determination unit 503 determines the travel route and the bed movement amount based on the result of the travel speed upper limit calculation in step S721 and the result of the obstacle interference determination.
  • FIG. 8 is a flow chart showing the processing flow of step S721 for calculating the traveling speed upper limit according to this embodiment.
  • FIG. 9 is a flow chart showing the processing flow of the load 500 and fixed obstacle collision determination step S722 according to the present embodiment.
  • step S741 the travel speed upper limit calculation unit 501 acquires one travel route from the travel route candidates 401 generated in step S703.
  • the travel speed upper limit calculator 501 calculates the node that the automatic guided vehicle 100 should reach first after it starts traveling.
  • the traveling speed upper limit calculation unit 501 uses the self position 412 on the environment map position reference coordinate system 400 received in step S707 and the node information of the traveling route acquired in step S721.
  • the node with the smallest distance between the self-position 412 and the position coordinates of each node included in the travel route candidate information is set as the closest node in each travel route. That is, in this step, the nearest neighbor node is calculated.
  • the closest node exists in the traveling direction of the automatic guided vehicle 100, the closest node is the node that should be reached first when the automatic guided vehicle 100 starts running. Also, if the closest node exists in the direction opposite to the traveling direction of the automatic guided vehicle 100, the node specified next to the closest node becomes the relevant node.
  • step S743 the travel speed upper limit calculator 501 acquires one node that constitutes the travel route acquired in step S741. Further, the traveling speed upper limit calculation unit 501 calculates the turning radius at the node position from the angle of the edge connecting the obtained node and the nodes before and after it. Further, in step S744, the travel speed upper limit calculation unit 501 acquires one bed movement amount from the bed movement amount candidates acquired in step S712.
  • step S745 the travel speed upper limit calculation unit 501 calculates the center of gravity position (xg, yg, zg) of the automatic guided vehicle for loading 600 in the cargo handling vehicle reference coordinate system 411 with respect to the loading platform movement amount acquired in step S712. do.
  • the travel speed upper limit calculation unit 501 calculates the center of gravity position (xg, yg, zg) (m) of the loading automatic guided vehicle 600 after the loading platform is moved calculated in step S745 and the node point obtained in step S743. Use the curvature of the travel path.
  • the upper limit of speed is the upper limit of speed for preventing the vehicle from overturning, and information indicating the running stability of the automatic guided vehicle 600 for loading may be used.
  • step S746 the traveling speed upper limit calculation unit 501 calculates the traveling speed upper limit value for the traveling node acquired in step S743 and the bed movement amount acquired in step S744.
  • step S747 the travel speed upper limit calculation unit 501 determines whether steps S744 to S746 have been executed for each of the bed movement amount candidates acquired in step S712. In other words, it is determined whether or not the processing for each platform movement amount candidate has been completed. As a result, if the process is being executed (Yes), the process proceeds to step S748. If not executed (No), the process returns to step S744 to execute processing for the remaining platform movement amount candidates.
  • step S748 the traveling speed upper limit calculation unit 501 determines whether steps S742 to S747 have been executed for each node connecting the target arrival positions from the nearest neighbor nodes acquired in step S742. As a result, if it is executed (Yes), the process proceeds to step S748. If not (No), the process returns to step S743 to execute processing for the remaining nodes.
  • step S749 if the traveling speed upper limit calculation unit 501 has executed steps S742 to S748 for each traveling route candidate 401 generated in step S703 (Yes), the process proceeds to step S750. If not (No), the process returns to step S741 and the remaining travel route candidates 401 are processed.
  • step S ⁇ b>750 the travel speed upper limit calculation unit 501 transmits to the travel command determination unit 503 the calculation result of the travel speed upper limit for each combination of the travel node and the bed movement amount.
  • the travel speed upper limit calculation unit 501 transmits to the travel command determination unit 503 the calculation result of the travel speed upper limit for each combination of the travel node and the bed movement amount.
  • step S761 the obstacle avoidance determination unit 502 acquires one travel route from the travel route candidates 401 generated in step S703, as in step S741.
  • step S762 the obstacle avoidance determination unit 502 calculates a node that the automatic guided vehicle 100 should reach first after starting traveling, as in step S742.
  • step S763 similarly to step S744, the obstacle avoidance determination unit 502 acquires one carrier movement amount from the carrier movement amount candidates acquired in step S712. Note that steps S761 to S763, steps S741, steps S742, and steps S744 may be executed together.
  • the obstacle avoidance determination unit 502 calculates the traveling area of the cargo in the cargo handling vehicle reference coordinate system 411.
  • the cargo travel area will be described. Areas surrounded by A, B, C, D, E, and F in FIG. 10 are cargo travel areas. This area has a position error of 0.10 (m) and an attitude error of 0.05 (rad) as margins for the shape of the load 500, which is assumed as a route following error when the automatic guided vehicle 600 for loading is traveling. It is a thing.
  • the travel area of the cargo calculated here is mapped to an arbitrary travel route, and the collision determination with fixed obstacles on the two-dimensional map is performed, taking into consideration the route following error. Obstacle interference determination can be performed.
  • A(xa, ya) (w1/2+s+0.10+l1/2tan(0.05), l1/2) (Equation 6)
  • B(xb, yb) (-w1/2+s-0.10-l1/2tan(0.05), l1/2) (Equation 7)
  • C(xc, yc) (-w1/2+s-0.10-l1/2tan(0.05),-l1/2) (Equation 8)
  • D(xd, yd) (w1/2+s-0.10-l1/2tan(0.05),-l1/2) (Equation 9)
  • E(xe,ye) (w1/2+s+0.10,0) (Equation 10)
  • F(xf, yf) (-w1/2+s+0.10,0) (Equation 11)
  • the areas connected by A, B, C, D, E, and F are calculated as the cargo travel area in the cargo handling vehicle reference coordinate system 411 .
  • step S765 the obstacle avoidance determination unit 502 determines whether the travel area and fixed obstacles are interfering with each other.
  • the obstacle avoidance determination unit 502 uses the cargo travel area in the cargo handling vehicle position reference coordinate system calculated in step S, the travel route acquired in step S761, and the environment map acquired in step S701. In other words, the obstacle avoidance determination unit 502 uses these to map the traveling area of the cargo 500 after the cargo bed is moved to the node position stored in each traveling route candidate on the environment map, and makes a judgment. conduct.
  • step S766 the obstacle avoidance determination unit 502 determines whether steps S763 to S765 have been performed for each bed movement amount acquired in step S712. As a result, when it is executed (Yes), the process proceeds to step S767. If not (No), the process returns to step S763, and the remaining platform movement amount candidates are processed.
  • step S767 the obstacle avoidance determination unit 502 determines whether steps S762 to S766 have been performed for each travel route candidate acquired in step S703. As a result, if the process has been executed (Yes), the process proceeds to step S768. If not (No), the process returns to step S761 and the remaining travel route candidates are processed.
  • step S768 the obstacle avoidance determination unit 502 transmits to the travel command determination unit 503 the calculation result, which is the determination result of interference with respect to the combination of each traveling node and the bed movement amount. This completes the detailed processing of step S722.
  • step S713 the travel command determination unit 503 determines the travel route and the bed movement amount using the results of steps S721 and S722. For this purpose, the determination result of interference transmitted in step S768 at the upper travel speed limit transmitted in step S750 is merged.
  • FIG. 11 shows an example of travel route/carrying bed movement amount information created by this merging.
  • the travel command determining unit 503 extracts the node position and the amount of bed movement that allow obstacle avoidance, using the travel route/bed travel amount information. Specifically, for each node and bed movement amount on the travel route in FIG. 11, the travel node and bed movement amount described as avoidance in the lower row are extracted. For example, for node 2 on route A, interference is determined for all bed movement amounts. In this case, the travel route candidate A is excluded from the travel route options.
  • the travel command determination unit 503 selects the bed movement amount with a large travel speed upper limit and the travel speed upper limit value from among the deck movement amount candidates assigned to each node. Extract.
  • the upper limit of the traveling speed includes a predetermined value or more or a predetermined number of cases (for example, the largest).
  • the table movement amount c (m) is selected for node 1
  • the bed movement amount b (m) is selected for node 2
  • the bed movement amount a (m) is selected for node 3.
  • the travel command determination unit 503 calculates the travel time for each route from the travel speed upper limit and the edge length between nodes at the acquired node positions. For example, for route B, the traveling speed of the edge next to node 1 is 0.8 [m/s], and the edge distance is the distance between node 1 and node 2, so the traveling time is (the distance between node 1 and node 2 )/0.8(s). This calculation is performed between each node to calculate the travel time of each route.
  • the travel command determination unit 503 extracts travel routes with shorter travel times from the calculation results of the travel times for each travel route acquired in the preprocessing. Then, the travel command determination unit 503 transmits the extracted travel route and the bed movement amount at each node to the operation command generation unit 311 . As described above, in step S713 of this embodiment, the traveling route and the amount of bed movement are determined. This is a kind of action plan determination in the action plan determination unit. For this reason, at least one of the travel route and the bed movement amount, or other information may be used as the operation plan for the automatic guided vehicle 100 . When this step is executed, the automatic guided vehicle 100 travels by the following processing.
  • step S714 the self-position estimation unit 309 calculates the self-position 412 and self-orientation 413 in the same manner as in step S707.
  • self-position estimation section 309 transmits the self-position estimation result to action command generation section 311 .
  • step S715 the operation command generation unit 311 generates a command value for the traveling motor 108 to run at the upper limit of traveling speed calculated in step S713, based on the self-position information estimated in step S714. do.
  • the operation command generator 311 generates a command value for the steering motor 109 to follow the travel route determined in step S713. Further, the operation command generation unit 311 generates a transfer actuator command value for realizing the loading platform movement amount at each node position determined in step S713. Since the target platform movement amount is set for each node, the transfer actuator changes the platform movement amount when the distance of the closest node with respect to the self-position and the traveling direction becomes equal to or less than a threshold value.
  • step S716 the operation command generator 311 drives the traveling motor 108, steering motor 109, and transfer actuator 104 based on the command values calculated in step S715. As a result, the traveling motor 108, the steering motor 109, and the transfer actuator 104 are driven, and the automatic guided vehicle 100 travels and carries the load.
  • step S717 the action command generator 311 determines whether the automatic guided vehicle 100 has arrived at the destination of the load. For this reason, when the distance between the self-position of the automatic guided vehicle 100 and the final node 402, which is the destination of the load, becomes equal to or less than a threshold value, the motion command generation unit 311 causes the automatic guided vehicle 100 to move to the destination of the load. Determine that you have arrived. Then, when the transport destination is reached, the motion command generator 311 outputs a stop command to the travel motor 108 , the steering motor 109 , and the transfer actuator 104 . As a result, the automatic guided vehicle 100 stops.
  • step S714 the process returns to step S714 to continue traveling. This completes the description of the first embodiment.
  • Example 2 will be described with reference to FIGS. 12 and 13.
  • FIG. 12 and 13 the same reference numerals are assigned to the configurations common to the first embodiment, and detailed description thereof will be omitted.
  • this embodiment adds on-the-spot turning route candidates to the traveling route candidates.
  • the on-the-spot turning means that the unmanned guided vehicle 100 uses the middle point of the driven wheels 106, which is the vehicle position reference point, as the turning center position, and changes only the attitude of the vehicle while the turning center position is fixed, and changes direction. It refers to the action to be performed.
  • FIG. 12 is a functional block diagram showing a functional configuration example of the travel command calculation unit 310 according to this embodiment.
  • functional blocks added or changed to the travel command calculation unit 310 (FIG. 6) of the first embodiment will be mainly described.
  • the cargo handling vehicle system in this embodiment has the same configuration as that of 2 except for the travel command calculation unit 310 .
  • FIG. 13 is a diagram showing a travel route according to this embodiment.
  • a travel route that is the shortest route 405 and a travel route 406 shown in FIG. 13 are travel turning routes
  • a travel route 1110 is a travel route for carrying out spot turns.
  • the traveling route 1110 is composed of a spot turning node 1111, an edge 1112 traveling before spot turning, and an edge 1113 traveling after spot turning.
  • the on-the-spot turning node 1111 is set to a position coordinate that enables on-the-spot turning when the cargo is empty.
  • the position coordinates of the on-the-spot turning node to be set may be other than this, and multiple candidates may be owned.
  • Each node has two-dimensional position coordinates with respect to the environmental map position reference coordinate system 400, the upper limit of running speed, and the direction of travel, as well as information indicating whether or not to perform spot turns on that node.
  • a node that performs on-the-spot turning is referred to as an on-the-spot turning node.
  • a traveling turning route extraction unit 2002 extracts a traveling route that does not include a spot turning node from among the traveling route candidates generated by the traveling route candidate generating unit 204 .
  • the on-the-spot turning route extracting unit 2003 extracts a traveling route including the on-the-spot turning node from the traveling route candidates generated by the traveling route candidate generating unit 204.
  • ⁇ Travel turning travel command calculation unit 2004> Based on the travel and turn route information acquired from the travel and turn route extraction unit 2002, the travel and turn travel command calculation unit 2004 selects a route candidate and a loading platform movement amount candidate that have been acquired so that obstacles can be avoided and travel time is shortened. Calculates the combination of travel route and bed movement amount.
  • the on-the-spot turning travel command calculation unit 2005 performs obstacle avoidance determination and travel time calculation during travel for the on-spot turning route stored in the on-spot turning route extraction unit 2003, thereby enabling obstacle avoidance and shortening the travel time. Calculate a driving route such as Note that specific processing contents will be described later.
  • the travel command determination unit 503 determines the travel route to be transmitted to the action command generation unit 311 from the travel route acquired from the travel turning travel command calculation unit 2004 and the travel route acquired from the spot turning travel command calculation unit 2005 . Note that specific processing contents will be described later.
  • the traveling speed upper limit calculating section 501 the obstacle avoidance determining section 502 and the traveling command determining section 503 of the traveling command calculating section 310 of the first embodiment may also be provided.
  • the travel turning route extraction unit 2002 transmits the node group information of the travel turning route created by the travel route candidate generation unit 204 to the travel turning travel command calculation unit 2004 .
  • the traveling/turning command calculation unit 2004 performs the same processing as step S713 described in the first embodiment using the acquired traveling/turning route information.
  • the travel/turn travel command calculation unit 2004 determines a combination of the travel route and the amount of movement of the bed so that the obstacle can be avoided and the travel time is the shortest.
  • the travel/turn travel command calculation unit 2004 transmits the determined travel route and the bed movement amount to the travel command determination unit.
  • the spot turning route extraction unit 2003 transmits the node group information of the spot turning route extracted by the travel route candidate generation unit 204 to the spot turning travel command calculation unit 2005 .
  • the on-the-spot turning travel command calculation unit 2005 performs obstacle avoidance determination for the cargo traveling area shown in FIG. It should be noted that the cargo travel area described here is calculated by the same processing as in step S764 of the first embodiment.
  • the environment map position reference coordinate system from the state where the unmanned guided vehicle 600 for loading reaches the on-spot turning node to the state where the on-the-spot turning ends and faces the direction of the edge 1113 The position and orientation of the automatic guided vehicle 600 for loading on the 400 are calculated.
  • the on-the-spot turning travel command calculation unit 2005 maps the travel area of the load calculated based on the self-position 412 and the self-orientation 413 of the automatic guided vehicle 600 for loading during the on-spot turning on a two-dimensional map. and determine if it interferes with an obstacle. After this determination is performed for each spot turning route, the process proceeds to the next step.
  • the on-the-spot turning travel command calculation unit 2005 calculates the time required to travel the traveling route for the on-spot turning route, the time required for passing the edge 1112, the time required for the spot turning, and the time required to pass the edge 1113. It is calculated by the sum of the time to The time to pass the edge 1112 and the time to pass the edge 1113 are calculated from the running speed upper limit stored in the preceding node and the length of the edge. Also, the time required for spot turning is calculated from the upper limit of speed during spot turning determined by the vehicle body performance and the angle formed by edge 1112 and edge 1113 . The time required for a spot turn varies depending on the aircraft, but generally it takes about 15.0 (s) for a 90 (degree) turn. After calculating the travel time for each spot turning route, the process proceeds to the next step.
  • the on-the-spot turning travel command calculation unit 2005 calculates travel route information that enables avoidance of obstacles and shortens travel time based on the obstacle avoidance determination result and travel time calculation result for each spot turn travel route. , and transmits information on the running time to the running command determination unit 503 . After that, the processing proceeds to the next step.
  • the travel command determination unit 503 compares the time required for traveling and turning with the time required for on-the-spot turning travel. As a result, when the time required for traveling and turning is shorter, the traveling command determination unit 503 transmits the traveling route and the bed movement amount transmitted from the traveling and turning travel command calculation unit 2004 to the operation command generation unit 311 . Also, if the time required for spot turning is shorter, the travel route sent from the travel/turn travel command calculation unit 2004 is sent to the motion command generation unit 311 .
  • the above is the processing flow of the travel command calculation unit 310 in the second embodiment.
  • Example 3 will be described using FIGS. 14 and 15.
  • FIG. the motion plan is determined in consideration of the positional deviation of the load and the deviation of the center of gravity of the load. Problems related to the present embodiment will be described below.
  • the calculation cycle of the onboard controller 114 becomes longer. Therefore, the transmission cycle of the operation command from the operation command generation unit 311 to the traveling motor 108, the steering motor 109, and the transfer actuator 104 becomes longer. As a result, the displacement of the position and attitude during the transmission of the command values to the traveling motor 108 and the steering motor 109 becomes large, causing meandering operation and the like, and the tracking accuracy with respect to the target route decreases.
  • Embodiments 1 and 2 in order to reduce the calculation load during traveling and eliminate the decrease in tracking accuracy with respect to the target route, first, the shape of the load, the position of the center of gravity of the load, and the weight of the load are calculated before the start of traveling. obtained. Then, using the obtained results, the destination, travel route, and bed movement amount are determined, and then travel is started.
  • the unmanned guided vehicle 100 travels at a low speed during traveling and turning in consideration of traveling safety. At this time, since the displacement of the position and orientation with respect to time is small, even when the computational load increases, the degree of deterioration in the route following accuracy is small.
  • a problem when the unmanned guided vehicle 100 travels is that the position of the load and the position of the center of gravity deviate after performing a traveling turn or a spot turn.
  • the traveling route and the amount of bed movement were determined based on the shape of the load and the position of the center of gravity of the load obtained before the start of travel. For this reason, it is not possible to consider the positional deviation of the load and the positional deviation of the center of gravity that occurs during traveling and turning.
  • the traveling route and the loading platform movement are performed based on the position of the load and the position of the center of load after the end of turning. Determine quantity.
  • FIG. 14 is a block diagram showing a functional configuration example of the cargo handling vehicle system 300 according to this embodiment.
  • an outline of functional blocks newly added or changed with respect to the first and second embodiments will be described.
  • the turning end determination unit 3001 determines whether or not the unmanned guided vehicle 100 that is traveling has reached the traveling turning end node.
  • three nodes are defined: a straight line node, a turn node, and a travel turn end node.
  • a straight line node refers to a node having an angle of ⁇ (rad) formed by an edge connecting the nodes, and a turn node refers to other nodes.
  • the above-mentioned travel turning end node refers to the case where the node itself is a turning node and the node one ahead in the traveling direction is a straight line node.
  • the load amount calculation unit 301 recalculates the load amount M (kg) by the same calculation method as the load amount calculation unit 301 of the first embodiment when the automatic guided vehicle 100 reaches the turning end node.
  • the center-of-load computing unit 302 calculates the center-of-gravity position (x1, y1, z1) (m) of the load by the same computing method as the center-of-load computing unit 302 of the first embodiment. Recalculate.
  • the travel command calculation unit 310 determines the travel route and the cargo bed movement amount for the automatic guided vehicle 100 based on the information received from the load amount calculation unit 301 , the load center calculation unit 302 , and the load shape calculation unit 303 . For this reason, the travel command calculation unit 310 selects the travel route candidates 401 generated by the travel route candidate creation unit 204 and the platform movement amount candidates stored in the platform movement amount candidate storage unit 308, and selects the travel distance of the first embodiment. A calculation method similar to that of the command calculation unit 310 is used.
  • FIG. 15 is a flowchart showing the processing flow of the cargo handling vehicle system 300 according to this embodiment.
  • step S3101 is added after step S717 described in the first and second embodiments.
  • Step S717 is a process of determining whether the automatic guided vehicle 100 has reached the destination of the load. In the third embodiment, if the automatic guided vehicle 100 has reached the final node 402 to which the goods are to be conveyed, all the processes are completed, and if the automatic guided vehicle 100 has not yet reached the final node 402, The process moves to step S3101.
  • step S3101 the turning end determination unit 3001 determines whether the unmanned guided vehicle 100 has reached the turning end node on the target route based on the self-position estimation result and the travel route information calculated by the travel route calculation unit. do. For this purpose, first, the position of the closest node of the cargo handling vehicle is determined using the self-position estimation result and the position coordinate data of the node. Next, it is determined whether the nearest node is the turn end node. If the nearest node is a turn node and the node next to the nearest node is a straight line node, the nearest node is a turn end node.
  • a forklift can be used as a cargo handling vehicle.
  • the traffic control unit 201 can be realized by a traffic management device, which is a cloud-type server.
  • a traffic management device which is a cloud-type server.
  • an operating environment it can be applied to factories other than warehouses.
  • the operating environment may be an open environment such as a general road.
  • the functions of the traffic management device and the in-vehicle controller 114 may be executed according to a program. In this case, this program is preferably stored in a storage medium.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The present invention addresses the problem of generating a traveling route that ensures high safety and conveyance efficiency while the weight of cargos and the gravity center position thereof are taken into account. The present invention comprises: an operation management unit that transmits conveyance destinations of cargos; a cargo shape calculation unit that calculates the shapes of the cargos; a cargo gravity center calculation unit that calculates the gravity center position of the cargos; a cargo weight calculation unit that calculates the weight of the cargos; and an environment map storage unit that transmits a two-dimensional map in a warehouse. The present invention further comprises: a traveling speed upper limit calculation unit for calculating a speed upper limit value at which a vehicle can travel while maintaining traveling stability, on the basis of a traveling route candidate, the gravity center position of the cargos, and a cargo bed movement amount candidate; an obstacle avoidance determination unit for executing determination of interference between a cargo vehicle at the time of traveling and a fixed obstacle, on the basis of the traveling route candidate, the shapes of the cargos, the two-dimensional map, and the cargo bed movement amount candidate; and a traveling command decision unit for deciding, on the basis of the calculation result of the traveling speed upper limit calculation unit and the determination result of the obstacle avoidance determination unit, a cargo bed movement amount and a traveling route on which the cargo vehicle can avoid the fixed obstacle and in which the time of arrival at the conveyance destination is short.

Description

荷役車両システムおよび車載コントローラCargo handling vehicle system and on-board controller
 本発明は、いわゆる荷役を行う荷役車両の動作を制御するための技術に関する。 The present invention relates to technology for controlling the operation of a cargo handling vehicle that performs cargo handling.
 現在、荷役を行う荷役車両が利用されている。その一例として、物流倉庫内での荷の運搬作業では、無人搬送車やフォークリフトをはじめとした荷役車両が利用されている。一方、近年、少子高齢化による労働力不足やE-コマース市場拡大による物流件数の増加に伴い、物流倉庫内の省人化や作業効率の向上が課題となっている。この課題を解決するために、無人で動作可能な無人産業車両の導入が進められている。 Cargo handling vehicles are currently in use. As an example, unmanned guided vehicles, forklifts, and other cargo handling vehicles are used in cargo transportation operations in distribution warehouses. On the other hand, in recent years, with the labor shortage due to the declining birthrate and aging population and the increase in the number of logistics due to the expansion of the e-commerce market, labor saving and improvement of work efficiency in distribution warehouses have become issues. In order to solve this problem, the introduction of unmanned industrial vehicles that can operate unmanned is underway.
 荷役車両は安全性の観点から、車両転倒や周辺障害物との接触等が起こらないよう走行することが求められている。また、運搬効率の観点から、与えられた荷の搬送先に到達するまでの走行時間を短縮する必要がある。荷役車両は搬送する荷の形状・重量・重心位置をはじめとした搬送荷の状態に応じて走行可能な経路や速度上限値が変化するため、搬送荷の状態に応じた柔軟な走行制御手法が求められる。 From the perspective of safety, cargo handling vehicles are required to travel in such a way that they do not overturn or collide with surrounding obstacles. In addition, from the viewpoint of transportation efficiency, it is necessary to shorten the travel time required for a given load to reach its destination. Cargo handling vehicles change their travelable route and speed upper limit depending on the shape, weight, and center of gravity of the cargo to be conveyed, so a flexible travel control method according to the condition of the cargo is required. Desired.
 例えば、特許文献1では、荷の形状に基づき走行経路を変化させることで障害物回避を行う技術について開示されている。より具体的には、搬送車両と搬送荷が一体となった積載時荷役車両の形状を取得し、積載時荷役車両が障害物回避可能な範囲で運搬効率が向上するような走行経路の生成を行っている。特許文献1の構成を実現することで、荷と周辺障害物と干渉せずに運搬効率の高い走行経路を走行することができ、荷役車両の走行時の安全性および生産性が向上する。 For example, Patent Document 1 discloses a technique for avoiding obstacles by changing the traveling route based on the shape of the load. More specifically, we acquire the shape of the cargo handling vehicle during loading, in which the transport vehicle and cargo are integrated, and generate a travel route that improves transportation efficiency within the range where the cargo handling vehicle can avoid obstacles during loading. Is going. By realizing the configuration of Patent Document 1, it is possible to travel on a travel route with high transportation efficiency without interference between the cargo and surrounding obstacles, and safety and productivity during travel of the cargo handling vehicle are improved.
特開2020-77295号公報JP 2020-77295 A
 しかし、特許文献1では、荷の重心位置や重量による車両速度上限を考慮した経路生成がなされていない。これにより、決定した経路を走行する際に必要以上な減速を要し、搬送効率の低下が生じる可能性がある。そこで、本発明の目的は、荷の重量と重心位置を考慮した安全かつ運搬効率の高い走行経路を生成することを目的とする。 However, in Patent Document 1, route generation is not performed in consideration of the vehicle speed upper limit due to the position of the center of gravity of the load and the weight. As a result, when traveling along the determined route, it is necessary to decelerate more than necessary, and there is a possibility that the transport efficiency will be lowered. SUMMARY OF THE INVENTION Accordingly, it is an object of the present invention to generate a travel route that is safe and highly efficient in transportation considering the weight and the position of the center of gravity of the load.
 上記の課題を解決するために、本発明では、荷役車両と荷(荷を積載した前記荷役車両である積載時無人搬送車)の力学的な特性を示す物理特性を用いて、荷役車両の動作計画を作成する。 In order to solve the above problems, in the present invention, the movement of the cargo handling vehicle is analyzed using physical characteristics that indicate the dynamic characteristics of the cargo handling vehicle and the cargo (automated guided vehicle for loading, which is the cargo handling vehicle loaded with the cargo). create a plan;
 より詳細には、荷役車両の荷役のための動作を支援するための荷役車両システムにおいて、前記荷役の対象である荷を積載した前記荷役車両である積載時無人搬送車の力学的な特性を示す物理特性に基づいて、前記荷役車両の前記荷役のための動作計画の候補である複数の動作計画候補を生成する動作計画候補生成部と、前記荷役車両の速度上限値を演算する走行速度上限演算部と、前記荷役車両の動作における障害物との回避可能性を判定する障害物回避判定部と、前記速度上限値および前記判定の結果に応じて、前記複数の動作計画候補から動作計画を決定する動作計画決定部を有する荷役車両システムである。 More specifically, in a cargo handling vehicle system for supporting the cargo handling operation of a cargo handling vehicle, it shows the dynamic characteristics of an automated guided vehicle for loading, which is the cargo handling vehicle loaded with cargo to be handled. An operation plan candidate generating unit for generating a plurality of operation plan candidates, which are operation plan candidates for the cargo handling of the cargo handling vehicle, based on the physical characteristics, and a travel speed upper limit calculator for calculating an upper speed limit of the cargo handling vehicle. an obstacle avoidance judging unit for judging the possibility of avoiding obstacles in the operation of the cargo handling vehicle; and an operation plan is determined from the plurality of operation plan candidates according to the speed upper limit value and the result of the judgment. It is a cargo handling vehicle system having an operation plan determination unit that
 また、本発明には、荷役車両システムを構成する車載コントローラや交通管理部、もしくはこれらを用いた方法も含まれる。 The present invention also includes an in-vehicle controller and a traffic control unit that constitute a cargo handling vehicle system, or a method using these.
 本発明によれば、より適切な動作計画を作成でき、荷役車両をより安全に運搬効率を高く運用することが可能になる。 According to the present invention, it is possible to create a more appropriate operation plan and operate cargo handling vehicles more safely and with high transportation efficiency.
実施例1にかかる無人搬送車の側面図である。1 is a side view of an automatic guided vehicle according to a first embodiment; FIG. 実施例1にかかる無人搬送車の上面図である。1 is a top view of an automatic guided vehicle according to Example 1. FIG. 実施例1にかかる荷役車両システムの機能構成例を示すブロック図である。1 is a block diagram showing a functional configuration example of a cargo handling vehicle system according to a first embodiment; FIG. 実施例1にかかる走行経路及び障害物を示す図である。4 is a diagram showing a travel route and obstacles according to the first embodiment; FIG. 実施例1にかかる無人搬送車の座標系および大きさを説明する図である。4 is a diagram illustrating the coordinate system and size of the automatic guided vehicle according to the first embodiment; FIG. 実施例1にかかる走行指令決定部の機能構成例を示す機能ブロック図である。FIG. 2 is a functional block diagram showing a functional configuration example of a travel command determination unit according to the first embodiment; FIG. 実施例1にかかる荷役車両システムの処理フローを示すフローチャートである。4 is a flow chart showing a processing flow of the cargo handling vehicle system according to the first embodiment; 実施例1にかかるステップS721の処理フローを示すフローチャートである。7 is a flow chart showing a processing flow of step S721 according to the first embodiment; 実施例1にかかるステップS722の処理フローを示すフローチャートである。7 is a flow chart showing the processing flow of step S722 according to the first embodiment; 実施例1での荷の走行エリアを説明するための図である。FIG. 4 is a diagram for explaining a load travel area in the first embodiment; 実施例1で用いられる走行経路・荷台移動量情報の一例を示す図である。FIG. 5 is a diagram showing an example of travel route/cargo bed movement amount information used in the first embodiment; 実施例2にかかる走行指令決定部の機能構成例を示す機能ブロック図である。FIG. 11 is a functional block diagram showing an example of the functional configuration of a travel command determination unit according to the second embodiment; FIG. 実施例2にかかる走行経路を示す図である。FIG. 10 is a diagram showing a travel route according to the second embodiment; FIG. 実施例3にかかる荷役車両システムの機能構成例を示すブロック図である。FIG. 11 is a block diagram showing a functional configuration example of a cargo handling vehicle system according to a third embodiment; 実施例3にかかる荷役車両システムの処理フローを示すフローチャートである。10 is a flow chart showing a processing flow of the cargo handling vehicle system according to the third embodiment;
 以下、本発明の一実施形態について、説明する。本実施形態では、荷を搬送可能な荷役車両における荷役についての動作計画を作成する。この際、荷が搭載された荷役車両の物理特性に基づいて、障害物等との干渉性および走行安定性を判定し、この判定結果に基づいて、動作計画を決定する。なお、動作には、走行、荷台等への荷の積載が含まれる。 An embodiment of the present invention will be described below. In this embodiment, an operation plan for cargo handling in a cargo handling vehicle capable of transporting cargo is created. At this time, based on the physical characteristics of the cargo handling vehicle on which the cargo is loaded, interference with obstacles and the like and running stability are determined, and an operation plan is determined based on the results of this determination. It should be noted that the movement includes traveling and loading of goods on a loading platform and the like.
 次に、実施形態をより具体的に示す実施例1~3について、説明する。各実施例では、荷役車両として、無人搬送車を例に説明する。 Next, Examples 1 to 3, which more specifically show the embodiment, will be described. In each embodiment, an automatic guided vehicle will be described as an example of a cargo handling vehicle.
 まず、実施例1を、図1~図11を参照して説明する。本実施例では、荷役車両の一例である無人搬送車を例とする。そして、本実施例では、動作計画として、荷の形状、荷の重量、荷の重心位置に基づき、搬送荷を荷積みした際の車両位置から荷の搬送先までの走行経路および荷台移動量を決定する。以下、その詳細を説明する。 First, Example 1 will be described with reference to FIGS. 1 to 11. FIG. In this embodiment, an automatic guided vehicle, which is an example of a cargo handling vehicle, is taken as an example. In this embodiment, as an operation plan, based on the shape of the load, the weight of the load, and the position of the center of gravity of the load, the traveling route from the vehicle position when the load is loaded to the destination of the load and the movement amount of the loading platform are determined. decide. The details are described below.
 <無人搬送車100>
 まず、本実施例で用いられる無人運転が可能な無人搬送車100について、説明する。
図1は、本実施例にかかる無人搬送車100の側面図である。また、図2は、本実施例にかかる無人搬送車100の上面図である。図1および図2に示すように、無人搬送車100は、バンパ115を備えた車両フレーム101と、車両フレーム101に、積載荷を上下および左右自在に移動可能な移載装置102と、積載荷を支持する荷役部材103が具備されている。また、無人搬送車100の内部には、移載用アクチュエータ104を備えており、前記移載装置102は移載用アクチュエータ104により駆動される。
<Automated guided vehicle 100>
First, an unmanned guided vehicle 100 capable of unmanned operation used in this embodiment will be described.
FIG. 1 is a side view of an automatic guided vehicle 100 according to this embodiment. FIG. 2 is a top view of the automatic guided vehicle 100 according to this embodiment. As shown in FIGS. 1 and 2, the automatic guided vehicle 100 includes a vehicle frame 101 having a bumper 115, a transfer device 102 capable of freely moving a loaded load vertically and horizontally, and a loaded load. A cargo handling member 103 is provided to support the . A transfer actuator 104 is provided inside the automatic guided vehicle 100 , and the transfer device 102 is driven by the transfer actuator 104 .
 次に、無人搬送車100の駆動関係の構成について説明する。無人搬送車100には、自身を支持する駆動輪105、従動輪106、キャスタホイール107が配設されている。そして、無人搬送車100の内部には、走行モータ108が設けられており、駆動輪105は走行モータ108により駆動される。また、無人搬送車100の内部には、操舵モータ109が設けられており、駆動輪105は操舵モータ109により駆動される。駆動関係の構成は、この構成に限定されない。特に、無人搬送車100として、いわゆる搬送ロボットを用いる場合、駆動輪105を4輪駆動とすることが望ましい。 Next, the drive-related configuration of the automatic guided vehicle 100 will be described. The automatic guided vehicle 100 is provided with driving wheels 105, driven wheels 106, and caster wheels 107 for supporting itself. A travel motor 108 is provided inside the automatic guided vehicle 100 , and the drive wheels 105 are driven by the travel motor 108 . A steering motor 109 is provided inside the automatic guided vehicle 100 , and the driving wheels 105 are driven by the steering motor 109 . The configuration of the driving relationship is not limited to this configuration. In particular, when a so-called carrier robot is used as the unmanned carrier 100, it is desirable that the driving wheels 105 are four-wheel drive.
 またさらに、無人搬送車100は、積載する荷の荷重および左右方向の重心位置を取得する荷重センサ110(例えば、圧力センサ)を、荷役部材103に前後方向に複数備える。また、無人搬送車100は、荷役部材103の傾斜を取得する傾斜センサ111を、荷役部材103に備える。 Furthermore, the automatic guided vehicle 100 includes a plurality of load sensors 110 (for example, pressure sensors) that acquire the load of the load to be loaded and the position of the center of gravity in the left-right direction on the cargo handling member 103 in the front-rear direction. Moreover, the automatic guided vehicle 100 equips the cargo handling member 103 with an inclination sensor 111 that acquires the inclination of the cargo handling member 103 .
 また、無人搬送車100は、荷形状検知用LiDAR112を。例えば車両フレーム101に左右1台ずつ設置する。LiDAR(Light Detection and Ranging)は、レーザー光の照射角度を変化させながら照射範囲に存在する物体との距離を計測するセンサをさす。レーザー照射時の光軸角度の情報と、物体との距離の情報から、物体の形状を示す特徴点の点群情報を取得することが可能である。なお、物体を認識できればLiDAR以外のセンサを用いてもよい。 Also, the automatic guided vehicle 100 has a LiDAR 112 for load shape detection. For example, one left and one right are installed on the vehicle frame 101 . LiDAR (Light Detection and Ranging) refers to a sensor that measures the distance to an object existing in the irradiation range while changing the irradiation angle of laser light. It is possible to acquire point group information of feature points indicating the shape of an object from information on the optical axis angle at the time of laser irradiation and information on the distance to the object. A sensor other than LiDAR may be used as long as it can recognize an object.
 また、車両フレーム101の上面には自己位置推定用LiDAR113を備える。自己位置推定用LiDAR113は、走行時の周辺障害物との距離を計測する。自己位置推定用LiDAR113も他のセンサを用いてもよい。 In addition, the upper surface of the vehicle frame 101 is equipped with a LiDAR 113 for self-position estimation. The self-position estimation LiDAR 113 measures the distance to surrounding obstacles during travel. The LiDAR 113 for self-position estimation may also use other sensors.
 また、車両フレーム101の上面には車載コントローラ114が搭載されている。車載コントローラ114では、上述のセンサより取得した値に基づき、車両の自己位置推定、および自己位置を踏まえた無人搬送車100の運動制御を実現するための動作指令値を演算する。 An in-vehicle controller 114 is mounted on the upper surface of the vehicle frame 101 . The in-vehicle controller 114 calculates an operation command value for realizing the motion control of the automatic guided vehicle 100 based on the self-position estimation of the vehicle and the self-position based on the values obtained from the sensors described above.
 <荷役車両システム300>
 次に、走行経路を決定する荷役車両システム300について説明する。図3は、本実施例にかかる荷役車両システム300の機能構成例を示すブロック図である。図3において、矢印付きの実線はデータの流れを表している。
<Cargo handling vehicle system 300>
Next, the cargo handling vehicle system 300 that determines the travel route will be described. FIG. 3 is a block diagram showing a functional configuration example of the cargo handling vehicle system 300 according to this embodiment. In FIG. 3, solid lines with arrows represent data flow.
 本実施例にかかる荷役車両システム300は、交通管制部201および車載コントローラ114から構成される。そして、無人搬送車100に搭載された車載コントローラ114上に、本実施例の主たる処理を実行する走行指令演算部310が実装される。以降では、交通管制部201および車載コントローラ114が有する機能について記載する。なお、以降では各機能の概要のみ記載し、各機能の具体的な処理フローに関しては後述する。
以下、荷役車両システム300を構成する各装置、各部について説明する。
A cargo handling vehicle system 300 according to this embodiment includes a traffic control unit 201 and an in-vehicle controller 114 . Then, on the on-vehicle controller 114 mounted on the automatic guided vehicle 100, a travel command calculation unit 310 that executes the main processing of this embodiment is mounted. Hereinafter, functions of the traffic control unit 201 and the in-vehicle controller 114 will be described. Note that only the outline of each function will be described below, and the specific processing flow of each function will be described later.
Each device and each part constituting the cargo handling vehicle system 300 will be described below.
 <交通管制部201>
 交通管制部201は、無人搬送車100に対する運行管理を行う。本発明において、交通管制部201は、環境地図格納部202、運行管理部203、走行経路候補生成部204、通信装置205から構成される。以下、交通管制部201の各部について説明する。
<Traffic control unit 201>
The traffic control unit 201 manages operation of the automatic guided vehicle 100 . In the present invention, the traffic control unit 201 is composed of an environment map storage unit 202 , an operation management unit 203 , a travel route candidate generation unit 204 and a communication device 205 . Each part of the traffic control unit 201 will be described below.
 <環境地図格納部202>
 環境地図格納部202は、無人搬送車100の走行領域(動作環境)である倉庫内の障害物の位置情報が付与された二次元地図を格納している。ここで、図4は、環境地図格納部202に格納された二次元地図をベースとした走行経路及び障害物を示す図である。
<Environment map storage unit 202>
The environment map storage unit 202 stores a two-dimensional map provided with position information of obstacles in the warehouse, which is the travel area (operating environment) of the automatic guided vehicle 100 . Here, FIG. 4 is a diagram showing a travel route and obstacles based on the two-dimensional map stored in the environmental map storage unit 202. As shown in FIG.
 二次元地図は、環境地図位置基準座標系400を位置基準座標とし、X軸およびY軸に表される二つの直行する軸を基準軸としている。環境地図格納部202は、図4に示す基準座標系である環境地図位置基準座標系400における、棚421や壁422の位置や形状情報を格納している。二次元地図の作成方法は、例えば、無人搬送車100を有人走行させながら自己位置推定用LiDAR113を用いて周辺障害物の点群データを取得し、SLAM(Simultameous Localization and Mapping)方式により作成する方法がある。 The two-dimensional map has the environment map position reference coordinate system 400 as the position reference coordinates, and two orthogonal axes represented by the XG axis and the YG axis as reference axes. The environment map storage unit 202 stores the position and shape information of the shelf 421 and the wall 422 in the environment map position reference coordinate system 400, which is the reference coordinate system shown in FIG. The two-dimensional map creation method is, for example, a method of acquiring point cloud data of surrounding obstacles using the LiDAR 113 for self-position estimation while manned driving the unmanned guided vehicle 100, and creating it by SLAM (Simultaneous Localization and Mapping) method. There is
 <運行管理部203>
 次に、運行管理部203は、無人搬送車100が積載する荷の搬送先を決定する。搬送先の決定のためには、例えば、利用者からの入力を用いたり、荷の搬送予定を用いたりする。
<Operation management unit 203>
Next, the operation management unit 203 determines the destination of the load loaded by the automatic guided vehicle 100 . For the determination of the destination, for example, input from the user or the schedule for transporting the cargo is used.
 <走行経路候補生成部204>
 走行経路候補生成部204は、無人搬送車100が運行管理部203で指定された荷の搬送先に到達可能、かつ二次元地図上に格納された固定障害物を回避可能な走行経路候補401を複数生成する。ここで、図4を用いて、作成される複数の走行経路候補401の詳細を説明する。走行経路候補401の各経路は、荷役車両の通過点となるノード403と、近接するノードをつなぐエッジ404で構成される。各ノードには、環境地図位置基準座標系400に対する二次元位置座標、走行速度上限、進行方向を備えている。例えば、ノードの間隔の目安は2.0(m)~5.0(m)程度である。
<Traveling route candidate generation unit 204>
The travel route candidate generation unit 204 generates travel route candidates 401 that allow the automatic guided vehicle 100 to reach the cargo destination specified by the operation management unit 203 and avoid fixed obstacles stored on the two-dimensional map. Generate multiple. Here, the details of the plurality of travel route candidates 401 to be created will be described with reference to FIG. Each route of the travel route candidate 401 is composed of a node 403 that serves as a passage point for the cargo handling vehicle and an edge 404 that connects adjacent nodes. Each node is provided with two-dimensional position coordinates with respect to the environmental map position reference coordinate system 400, upper travel speed limit, and traveling direction. For example, the standard for the interval between nodes is about 2.0 (m) to 5.0 (m).
 また、走行経路候補401の設定例としては、以下の3つの例が挙げられる。
(1)無人搬送車100が空荷走行の際に通過する最短経路405、
(2)無人搬送車100が空荷走行時に高速度上限を維持しながら走行可能な走行経路406、
(3)無人搬送車100が空荷走行時に固定障害物との距離が最も遠くなるような経路407。
In addition, the following three examples are given as setting examples of the travel route candidates 401 .
(1) The shortest route 405 that the automatic guided vehicle 100 passes when traveling without cargo,
(2) A travel route 406 on which the unmanned guided vehicle 100 can travel while maintaining the high speed upper limit when traveling without cargo;
(3) A route 407 in which the unmanned guided vehicle 100 is the farthest from fixed obstacles when traveling without cargo.
 または、無人搬送車100が空荷の際に固定障害物と干渉せずに走行可能なエリアを算出し、その後そのエリアを等分した曲線を走行経路候補401として設定することも可能である。なお、この走行経路候補401の生成において必要な情報として、走行経路候補生成部204は、無人搬送車100の形状を特徴づける、車体幅方向と車体長さ方向における車両フレーム101及び荷役部材103の二次元形状情報を所有している。 Alternatively, it is possible to calculate an area in which the unmanned guided vehicle 100 can travel without interfering with fixed obstacles when it is empty, and then set a curve that equally divides that area as the travel route candidate 401 . As information necessary for generating the travel route candidates 401, the travel route candidate generation unit 204 includes information on the vehicle frame 101 and the cargo handling member 103 in the vehicle body width direction and the vehicle body length direction, which characterize the shape of the automatic guided vehicle 100. It has 2D shape information.
 無人搬送車100は、前方注視モデルを用いて走行経路を追従することで、走行を実現する。前方注視モデルを用いた経路追従時には経路に対する自車の位置誤差および姿勢誤差が生じることが想定される。そこで、走行経路候補生成部204では、これら誤差を踏まえて走行経路候補401を生成する。経路追従誤差の目安は、位置誤差0.10(m)、姿勢誤差0.05(rad)程度である。 The automatic guided vehicle 100 realizes travel by following the travel route using the forward gaze model. It is assumed that positional and attitude errors of the vehicle with respect to the route occur during route tracking using the forward gaze model. Therefore, the travel route candidate generation unit 204 generates the travel route candidates 401 based on these errors. Rough guides for the route following error are a position error of 0.10 (m) and an attitude error of 0.05 (rad).
 以上のように、走行経路候補生成部204は、無人搬送車100の動作計画の一種である走行経路候補401と、荷台移動量候補格納部308を生成する動作計画候補生成部の一種である。なお、動作計画候補生成部は、動作計画候補して、走行経路候補401および荷台移動量候補の少なくとも一方を生成すればよい。このため、本実施例では、図示しない荷台移動量候補生成部を有することが望ましい。また、走行経路候補生成部204や動作計画候補生成部は、車載コントローラ114に設けてもよい。 As described above, the travel route candidate generation unit 204 is a type of motion plan candidate generation unit that generates the travel route candidate 401 that is a type of motion plan for the automatic guided vehicle 100 and the platform movement amount candidate storage unit 308 . Note that the operation plan candidate generation unit may generate at least one of the travel route candidate 401 and the bed movement amount candidate as the operation plan candidate. Therefore, in this embodiment, it is desirable to have a platform movement amount candidate generator (not shown). In addition, the travel route candidate generation unit 204 and the motion plan candidate generation unit may be provided in the in-vehicle controller 114 .
 <通信装置205>
 通信装置205は、交通管制部201に格納された情報を、車載コントローラ114に送信する。以上が、交通管制部201の内部構成である。
<Communication device 205>
The communication device 205 transmits the information stored in the traffic control unit 201 to the in-vehicle controller 114 . The above is the internal configuration of the traffic control unit 201 .
 なお、交通管制部201については、ネットワークを介して車載コントローラ114と接続するコンピュータで実現することも可能である。この場合、交通管制部201は、いわゆるサーバで交通管理装置として実現できる。 It should be noted that the traffic control unit 201 can also be realized by a computer connected to the in-vehicle controller 114 via a network. In this case, the traffic control unit 201 can be implemented as a so-called server as a traffic management device.
 <車載コントローラ114>
 続いて、車載コントローラ114の内部構成について説明する。以降では、車載コントローラ114内部に実装される各機能について説明する。車載コントローラ114は、いわゆるECU(Electronic Control Unit)で実現できる。以下、車載コントローラ114の各部について、説明する。
<In-vehicle controller 114>
Next, the internal configuration of the in-vehicle controller 114 will be described. Hereinafter, each function implemented inside the in-vehicle controller 114 will be described. The in-vehicle controller 114 can be realized by a so-called ECU (Electronic Control Unit). Each part of the in-vehicle controller 114 will be described below.
 <自己位置推定部309>
 自己位置推定部309は、図4に示した環境地図位置基準座標系400に対する、無人搬送車100の自己位置412および自己姿勢413を推定する。図5は、本実施例にかかる無人搬送車100の座標系および大きさを説明する図である。図5では、自己位置412よび自己姿勢413の推定で使用する、荷役車両基準座標系411を示す。無人搬送車100の位置基準点は、車両の中心位置とする(図中黒丸の位置)。
<Self-position estimation unit 309>
Self-position estimation unit 309 estimates self-position 412 and self-orientation 413 of automatic guided vehicle 100 with respect to environment map position reference coordinate system 400 shown in FIG. FIG. 5 is a diagram for explaining the coordinate system and size of the automatic guided vehicle 100 according to this embodiment. FIG. 5 shows the cargo handling vehicle reference coordinate system 411 used in estimating the self-position 412 and the self-orientation 413 . The position reference point of the automatic guided vehicle 100 is the center position of the vehicle (the position of the black circle in the figure).
 そして、無人搬送車100の位置基準点から荷役部材103の先端方向に延びる軸をYv軸とする。また、無人搬送車100の位置基準点から、Yv軸正方向に対して右側にある従動輪106のタイヤ中心方向に延びる軸を、Xv軸とする。また、無人搬送車100の位置基準点から車両高さ方向に鉛直に延びる軸を、Zv軸とする。自己位置412は、環境地図位置基準座標系400における無人搬送車100の位置基準点の位置座標に相当し、自己姿勢413は、環境地図位置基準座標系400のY軸と荷役車両基準座標系411のYv軸のなす角に相当する。上記の状況を、自己位置推定部309が推定する。 An axis extending from the position reference point of the automatic guided vehicle 100 toward the leading end of the cargo handling member 103 is the Yv axis. Also, the axis extending from the position reference point of the automatic guided vehicle 100 toward the center of the tire of the driven wheel 106 on the right side with respect to the positive direction of the Yv axis is defined as the Xv axis. Also, the axis extending vertically in the vehicle height direction from the position reference point of the automatic guided vehicle 100 is defined as the Zv axis. The self position 412 corresponds to the position coordinates of the position reference point of the automatic guided vehicle 100 in the environment map position reference coordinate system 400, and the self attitude 413 corresponds to the YG axis of the environment map position reference coordinate system 400 and the cargo handling vehicle reference coordinate system. 411 corresponds to the angle formed by the Yv axis. The above situation is estimated by the self-position estimation unit 309 .
 <荷重量演算部301>
 荷重量演算部301は、無人搬送車100が積載している荷の重量m(kg)を、荷重センサ110の検知結果に基づいて演算する。なお、荷の重量は、このために、無人搬送車100に重量計を設けることが望ましい。
<Load amount calculation unit 301>
The load amount calculation unit 301 calculates the weight m (kg) of the load loaded on the automatic guided vehicle 100 based on the detection result of the load sensor 110 . For this purpose, it is desirable to provide the automatic guided vehicle 100 with a weight scale.
 <荷重心演算部302>
 荷重心演算部302は、荷役車両基準座標系411における荷の三次元重心位置(x1,y1,z1)(m)を、荷重センサ110の検知結果に基づいて演算する。
<Center of load calculation unit 302>
The center-of-load calculation unit 302 calculates the three-dimensional center-of-gravity position (x1, y1, z1) (m) of the load in the cargo handling vehicle reference coordinate system 411 based on the detection result of the load sensor 110 .
 <荷形状演算部303>
 荷形状演算部303は、図5に示す、無人搬送車100が積載する荷500(つまり、搬送される搬送荷)の幅方向の長さw1(m)および奥行き方向の長さl1(m)を、荷形状LiDAR112の検知結果に基づいて演算する。
<Package shape calculator 303>
The load shape calculator 303 calculates the width w1 (m) and the depth l1 (m) of the load 500 (that is, the load to be transported) loaded on the automatic guided vehicle 100 shown in FIG. is calculated based on the detection result of the package shape LiDAR 112 .
 <情報格納部304>
 情報格納部は、無人搬送車100の車体特徴に関する情報が格納されている。情報格納部304は、車両形状格納部305と、車両重量格納部306と、車両重心位置格納部307と、荷台移動量候補格納部308から構成される。
<Information storage unit 304>
The information storage unit stores information about the vehicle body characteristics of the automatic guided vehicle 100 . The information storage unit 304 includes a vehicle shape storage unit 305 , a vehicle weight storage unit 306 , a vehicle center of gravity position storage unit 307 , and a platform movement amount candidate storage unit 308 .
 車両形状格納部305は、無人搬送車100の形状特徴を示す情報を格納する。図5に、車両形状格納部305が格納する値の概要を示す。車両形状格納部305は、無人搬送車100の幅方向に関する長さ情報として、トレッド長さW1(m)を格納している。車両重量格納部306は、無人搬送車100の重量M(kg)を格納している。車両重心位置格納部307は、荷役車両基準座標系411における無人搬送車100の重心位置(x2,y2,z2)(m)を格納している。荷台移動量候補格納部308は、無人搬送車100の走行時の荷台移動量候補値を格納している。 The vehicle shape storage unit 305 stores information indicating shape characteristics of the automatic guided vehicle 100 . FIG. 5 shows an outline of values stored in the vehicle shape storage unit 305. As shown in FIG. The vehicle shape storage unit 305 stores the tread length W1 (m) as length information regarding the width direction of the automatic guided vehicle 100 . The vehicle weight storage unit 306 stores the weight M (kg) of the automatic guided vehicle 100 . The vehicle center-of-gravity position storage unit 307 stores the center-of-gravity position (x2, y2, z2) (m) of the automatic guided vehicle 100 in the cargo handling vehicle reference coordinate system 411 . The platform movement amount candidate storage unit 308 stores a platform movement amount candidate value when the automatic guided vehicle 100 is traveling.
 図5では、無人搬送車100がXv軸正方向にs(m)荷台移動(サイドシフト)を実施した状態を示している。荷台移動量候補格納部308では、図5のs(m)にあたる荷台移動量候補を複数格納している。荷台移動量候補値の例として、無人搬送車100のサイドシフト最大可動域を10分割した10個の候補値を備えることなどが挙げられる。 FIG. 5 shows a state in which the unmanned guided vehicle 100 performs s (m) bed movement (side shift) in the positive direction of the Xv axis. A platform movement amount candidate storage unit 308 stores a plurality of platform movement amount candidates corresponding to s(m) in FIG. An example of the candidate values for the amount of movement of the platform includes ten candidate values obtained by dividing the maximum range of motion of the side shift of the automatic guided vehicle 100 into ten.
 ここで、荷台移動とは、一対の荷役部材を左右同方向に移動させるサイドシフト動作のように、車両が積載荷を支えた状態で荷の位置を移動させる動作をさす。荷台移動量とは、基準位置における荷台の位置と、荷台移動後の荷台の位置の差分をさす。なお、この荷台移動については、荷役車両の他の例であるフォークリフトのフォークでも生じる。 Here, the movement of the cargo bed refers to the operation of moving the position of the cargo while the vehicle is supporting the cargo, such as the side shift operation of moving a pair of cargo handling members in the same direction on the left and right. The amount of bed movement refers to the difference between the position of the bed at the reference position and the position of the bed after the bed is moved. Note that this movement of the loading platform also occurs in the forks of a forklift, which is another example of the cargo handling vehicle.
 <走行指令演算部310>
 走行指令演算部310は、走行経路候補生成部204で生成した走行経路候補401と、荷台移動量候補格納部308に格納される荷台移動量候補の中から、無人搬送車100が走行する走行経路と、走行経路走行の際の荷台移動量を決定する。つまり、走行経路候補生成部204は、動作計画決定部の一種であり、走行経路および荷台移動量の少なくとも一方を決定すればよい。
<Running command calculation unit 310>
The travel command calculation unit 310 selects a travel route along which the automatic guided vehicle 100 travels from among the travel route candidates 401 generated by the travel route candidate generation unit 204 and the platform movement amount candidates stored in the carrier movement amount candidate storage unit 308. , the amount of movement of the loading platform during travel along the travel route is determined. In other words, the travel route candidate generation unit 204 is a kind of operation plan determination unit, and may determine at least one of the travel route and the bed movement amount.
 なお、無人搬送車100は走行中に、走行経路上の各ノードに到達したことをトリガーに、荷台移動量を変化させる。そのため、走行指令演算部310では、走行経路と、走行経路の各ノードにおける荷台移動量を決定する。 It should be noted that the unmanned guided vehicle 100, while traveling, changes the amount of bed movement triggered by reaching each node on the traveling route. Therefore, the travel command calculation unit 310 determines the travel route and the bed movement amount at each node of the travel route.
 ここで、図6に、本実施例にかかる走行指令演算部310の機能構成例を示す機能ブロック図である。走行指令演算部310は、走行速度上限演算部501、障害物回避判定部502、走行指令決定部503からなる。以降では、走行指令演算部310が有する機能の概要を記載する。 Here, FIG. 6 is a functional block diagram showing a functional configuration example of the travel command calculation unit 310 according to this embodiment. The travel command calculation unit 310 includes a travel speed upper limit calculation unit 501 , an obstacle avoidance determination unit 502 , and a travel command determination unit 503 . Hereinafter, an outline of the functions of the travel command calculation unit 310 will be described.
 <走行速度上限演算部501>
 走行速度上限演算部501は、走行経路候補401に格納されている各経路、各ノード位置において、各荷台移動量に基づき荷台を移動させて走行した場合の、速度上限値を算出する。ここで述べる速度上限値とは、車両の転倒モーメントが車両の復元モーメントを超過しない範囲内の最大値を指し、その値は走行経路の旋回半径と積載時の無人搬送車100の重心位置により算出される。なお、積載時の無人搬送車100を、積載した荷と併せて1つの構成として、以下、積載時無人搬送車600を称する。
<Travel speed upper limit calculator 501>
The travel speed upper limit calculator 501 calculates the upper limit of travel speed when traveling with the cargo bed moved based on each cargo bed movement amount on each route and each node position stored in the travel route candidate 401 . The upper speed limit mentioned here refers to the maximum value within the range in which the overturning moment of the vehicle does not exceed the restoring moment of the vehicle. be done. In addition, the unmanned guided vehicle 100 at the time of loading is hereinafter referred to as the unmanned guided vehicle 600 at the time of loading as one configuration together with the loaded cargo.
 <障害物回避判定部502>
 障害物回避判定部502は、走行経路候補401に格納されている各経路、各ノード位置において、各荷台移動量に基づき荷台を移動させて走行した場合に、二次元地図上に格納された固定障害物と干渉するかどうかを判定する。
<Obstacle Avoidance Determination Unit 502>
The obstacle avoidance determination unit 502 determines the position of each node stored in the travel route candidate 401 by moving the cargo bed based on the amount of movement of the cargo bed. Determine whether or not to interfere with obstacles.
 <走行指令決定部503>
 走行指令決定部503は、走行速度上限演算部501の演算結果、障害物回避判定部502の判定結果を元に、走行経路と走行経路情報内の各ノードにおける荷台移動量を決定する。走行経路および荷台移動量は、積載時無人搬送車600が固定障害物と干渉を回避でき、かつ積載時無人搬送車600の走行安定性を担保した範囲で走行した際に最終ノード402への到達時間が短くなるものが選択される。なお、上述のように、走行経路および荷台移動量は、動作計画の一種である。以上が、走行指令演算部310を構成する機能ブロック構成の一例である。これは、あくまでも一例であり、他の構成を付加したり、一部の構成を省略したりすることも可能である。以上で走行指令演算部310の説明を終了する。
<Run command determination unit 503>
The travel command determination unit 503 determines the travel route and the amount of bed movement at each node in the travel route information based on the calculation result of the travel speed upper limit calculation unit 501 and the determination result of the obstacle avoidance determination unit 502 . The traveling route and the movement amount of the loading platform reach the final node 402 when the automatic guided vehicle for loading 600 can avoid interference with fixed obstacles and travels within a range in which the traveling stability of the automatic guided vehicle for loading 600 is ensured. The one with the shortest time is selected. Note that, as described above, the travel route and the bed movement amount are a kind of operation plan. An example of the functional block configuration of the travel command calculation unit 310 has been described above. This is merely an example, and other configurations may be added or some configurations may be omitted. This completes the description of the travel command calculation unit 310 .
 <動作指令生成部311>
 動作指令生成部311は、走行指令演算部310、自己位置推定部309からの入力に基づき、走行指令演算部310で演算された走行経路および荷台移動量に従った荷役の動作を実行するための動作指令を演算する。そして、動作指令生成部311は、走行モータ108、操舵モータ109、移載用アクチュエータ104に、動作指令を出力する。この結果、無人搬送車100が、走行経路および荷台移動量に従った動作を実行する。以上が、本実施例を実現するための機能ブロック構成の一例である。
<Operation command generator 311>
The operation command generation unit 311 is configured to perform cargo handling operations in accordance with the travel route and the bed movement amount calculated by the travel command calculation unit 310 based on the inputs from the travel command calculation unit 310 and the self-position estimation unit 309. Calculates motion commands. Then, the motion command generator 311 outputs motion commands to the traveling motor 108 , the steering motor 109 , and the transfer actuator 104 . As a result, the automatic guided vehicle 100 performs an operation according to the traveling route and the amount of bed movement. The above is an example of the functional block configuration for realizing this embodiment.
 <処理フロー>
 次に、実施例1の処理フローを、図7~図11を参照して、詳述する。図7は、本実施例における荷役車両システム300の処理フローを示すフローチャートである。
<Processing flow>
Next, the processing flow of Example 1 will be described in detail with reference to FIGS. 7 to 11. FIG. FIG. 7 is a flow chart showing the processing flow of the cargo handling vehicle system 300 in this embodiment.
 無人搬送車100に対する積み荷が終了すると、ステップS701において、走行経路候補生成部204が、環境地図格納部202から二次元環境地図情報を取得する。また走行指令演算部310が、通信装置350を介し、環境地図格納部202から二次元環境地図情報を取得する。 When the loading of the automatic guided vehicle 100 is completed, the travel route candidate generation unit 204 acquires the two-dimensional environment map information from the environment map storage unit 202 in step S701. Also, travel command calculation unit 310 acquires two-dimensional environment map information from environment map storage unit 202 via communication device 350 .
 次に、ステップS702では、運行管理部203が、荷の搬送先の位置座標を走行経路候補生成部204に送信する。次に、ステップS703では、走行経路候補生成部204が、空荷時の無人搬送車100が最終ノード402に到達するまでに、固定障害物に干渉せずに走行可能な領域を算出する。このために、走行経路候補生成部204は、ステップS701で取得した二次元環境地図、ステップS702で取得した搬送先の位置情報、車両フレーム101形状および荷役部材103に関する情報、経路追従時の位置誤差および姿勢誤差に関する情報を用いる。そして、運行管理部203が、算出結果を元に、無人搬送車100が走行可能なエリアを通過する走行経路候補401を複数設定する。そして、運行管理部203が、設定された走行経路候補401を走行指令演算部310に送信する。 Next, in step S702, the operation management unit 203 transmits the position coordinates of the transportation destination of the cargo to the travel route candidate generation unit 204. Next, in step S<b>703 , the travel route candidate generation unit 204 calculates an area in which the unmanned guided vehicle 100 can travel without interfering with fixed obstacles until it reaches the final node 402 . For this purpose, the travel route candidate generation unit 204 generates the two-dimensional environment map acquired in step S701, the location information of the transport destination acquired in step S702, the shape of the vehicle frame 101 and the cargo handling member 103, the position error when following the route. and attitude error information. Based on the calculation results, the operation management unit 203 sets a plurality of travel route candidates 401 that pass through areas in which the automatic guided vehicle 100 can travel. Then, the operation management unit 203 transmits the set travel route candidate 401 to the travel command calculation unit 310 .
 次に、ステップS704では、荷形状検知用LiDAR112が、光軸角度情報と対応する周辺物体との距離情報を荷形状演算部303に送信する。次に、ステップS705では、荷形状演算部303が、ステップS704で受信した光軸角度情報と対応する障害物との距離情報から荷形状を計算する。荷形状の一例には、図5に示す、荷の幅方向の長さw1(m)および奥行き方向の長さl1(m)が含まれる。この場合の演算方法の例としては、ステップS704で取得した各点群データ間の距離を計測し、閾値以内である点群に対して直線近似を行う。そして、近似した直線の長さから荷の幅方向および奥行き方向の長さを算出する方法がある。 Next, in step S<b>704 , the LiDAR 112 for load shape detection transmits the optical axis angle information and the corresponding distance information to the peripheral object to the load shape calculator 303 . Next, in step S705, the load shape calculator 303 calculates the shape of the load from the distance information between the optical axis angle information received in step S704 and the corresponding obstacle. An example of the load shape includes a load width w1 (m) and a depth l1 (m) shown in FIG. As an example of the calculation method in this case, the distance between each piece of point cloud data acquired in step S704 is measured, and linear approximation is performed for the point cloud within a threshold value. Then, there is a method of calculating the lengths of the load in the width direction and the depth direction from the lengths of the approximated straight lines.
 なお、荷形状の演算方法は上記以外でも良く、例えば荷役動作前に無人搬送車100が荷に正対した状態で荷の点群データを取得し、荷の形状を検知するようにしてもよい。ステップS705では、荷形状演算部303が、計算結果を走行指令演算部310に送信する。 Note that the load shape calculation method may be other than the above. For example, the load point cloud data may be acquired with the automatic guided vehicle 100 facing the load before the load handling operation, and the shape of the load may be detected. . In step S<b>705 , the load shape calculation unit 303 transmits the calculation result to the travel command calculation unit 310 .
 次に、ステップS706では、自己位置推定用LiDAR113が、取得した周辺障害物との距離情報を自己位置推定部309に送信する。次に、ステップS707では、自己位置推定部309が、通信装置350から二次元地図情報を取得する。そして、自己位置推定部309は、二次元地図情報とステップS706より受信した周辺障害物との距離情報を用いて自己位置412および自己姿勢413を演算する。また、自己位置推定部309は、この演算結果を走行指令演算部310に送信する。 Next, in step S<b>706 , the self-position estimation LiDAR 113 transmits the obtained distance information to the surrounding obstacles to the self-position estimation unit 309 . Next, in step S<b>707 , the self-position estimation unit 309 acquires two-dimensional map information from the communication device 350 . Then, self-position estimation section 309 calculates self-position 412 and self-orientation 413 using the two-dimensional map information and the distance information to surrounding obstacles received in step S706. In addition, self-position estimation section 309 transmits this calculation result to travel command calculation section 310 .
 また、ステップS708では、荷重センサ110が、センサにかかる荷重を計測する。
そして、荷重センサ110は、取得した値を荷重量演算部301および荷重心演算部302に送信する。次に、ステップS709では、荷重量演算部301が、ステップS708で取得した荷重センサ110の計測値の総和から、荷役部材103に積載される荷の荷重m(kg)を演算する。そして、荷重量演算部301は、演算した値を走行指令演算部310に送信する。
Also, in step S708, the load sensor 110 measures the load applied to the sensor.
The load sensor 110 then transmits the acquired value to the load amount calculation unit 301 and the load center calculation unit 302 . Next, in step S709, the load amount calculation unit 301 calculates the load m (kg) of the cargo loaded on the cargo handling member 103 from the sum of the measurement values of the load sensor 110 acquired in step S708. The load amount calculation unit 301 then transmits the calculated value to the travel command calculation unit 310 .
 また、ステップS710では、傾斜センサ111が、荷役部材103の傾斜角θ(rad)を取得する。そして、傾斜センサ111は、取得した値を荷重心演算部302に送信する。 Also, in step S710, the tilt sensor 111 acquires the tilt angle θ (rad) of the cargo handling member 103 . Then, the tilt sensor 111 transmits the acquired value to the center-of-load calculation unit 302 .
 また、ステップS711では、荷重心演算部302が、荷役車両位置基準系における荷の重心位置(x1、y1、z1)(m)を演算する。この演算のために、荷重心演算部302は、ステップS708で取得した、荷重センサ110の計測値に基づき、左右方向の重心位置x1(m)、および前後方向の重心位置y1(m)を演算する。なお、これら重心位置を特定するために、荷重センサ110を複数用意し、これらの荷重割合を用いてもよい。また、荷重心演算部302は、積載の高さ方向の重心位置z1(m)を、以下の(数1)に従って算出する。 Also, in step S711, the load center computing unit 302 computes the center of gravity position (x1, y1, z1) (m) of the load in the cargo handling vehicle position reference system. For this calculation, the center-of-load calculation unit 302 calculates the center-of-gravity position x1 (m) in the horizontal direction and the center-of-gravity position y1 (m) in the front-rear direction based on the measurement value of the load sensor 110 acquired in step S708. do. In addition, in order to specify these center-of-gravity positions, a plurality of load sensors 110 may be prepared and the load ratio of these sensors may be used. Further, the center-of-load calculation unit 302 calculates the center-of-gravity position z1(m) in the height direction of the load according to (Equation 1) below.
 ここで、(数1)では、以下の情報を用いる。
荷重センサ110の前後方向の設置距離D1(m)
ステップS708で計測した荷の重量m(kg)
重力加速度g(m/s2)
ステップS710で計測した荷役部材103の傾斜角θ(rad)、
荷役部材103が地面に対し水平である場合の荷重センサ110の検出値F1(kg)、荷役部材が地面に対し傾斜角θ(rad)
傾斜した場合の荷役部材103に先端部に備えられた荷重センサの検出値F2(kg)
z1=D1/(mg・tanθ)・(F1-F2/cosθ)・・・(数1)
 そして、荷重心演算部302は、演算した荷の重心位置(x1,y1,z1)(m)を走行指令演算部310に送信する。なお、ステップS706~S711の処理順序は、記載された順序に特に限定されない。
Here, in (Formula 1), the following information is used.
Installation distance D1 (m) in the front-rear direction of the load sensor 110
Load weight m (kg) measured in step S708
Gravitational acceleration g (m/s2 )
the inclination angle θ (rad) of the cargo handling member 103 measured in step S710,
A detection value F1 (kg) of the load sensor 110 when the cargo handling member 103 is horizontal to the ground, and an inclination angle θ (rad) of the cargo handling member to the ground
Detected value F2 (kg) of the load sensor provided at the tip of the cargo handling member 103 when tilted
z1=D1/(mg·tan θ)·(F1−F2/cos θ) (Equation 1)
Then, the load center calculation unit 302 transmits the calculated load center-of-gravity position (x1, y1, z1) (m) to the travel command calculation unit 310 . Note that the processing order of steps S706 to S711 is not particularly limited to the described order.
 次に、ステップS712では、走行指令演算部310が、以下の情報を取得する。
車両形状格納部305に格納される車両形状情報、
車両重量格納部306に格納されている車両重量、
車両重心位置格納部307に格納されている車両重心位置、
荷台移動量候補格納部308に格納されている荷台移動量候補。
Next, in step S712, travel command calculation unit 310 acquires the following information.
vehicle shape information stored in the vehicle shape storage unit 305;
vehicle weight stored in the vehicle weight storage unit 306;
the vehicle center-of-gravity position stored in the vehicle center-of-gravity position storage unit 307;
Platform movement amount candidates stored in the platform movement amount candidate storage unit 308 .
 このことで、ステップS712では、走行指令演算部310は、積載時無人搬送車600の形状、重量および重心位置を特定する。これらは、積載時無人搬送車600の物理特性の一種である。このため、形状、重量および重心位置の一部やこれら以外の情報を用いてもよい。 Thus, in step S712, the travel command calculation unit 310 identifies the shape, weight, and center of gravity position of the automatic guided vehicle for loading 600. These are one type of physical characteristics of the automatic guided vehicle 600 for loading. Therefore, part of the shape, weight, and center of gravity position, or other information may be used.
 次に、ステップS713では、走行指令決定部503が、動作計画の一種である走行経路および荷台移動量を決定する。このために、ステップS713では、走行速度上限値の算出(ステップS721)、荷500と固定障害物の干渉判定(ステップS722)およびこれらに基づいて走行経路や荷台移動量の決定を行う。ここで、ステップS721では、走行速度上限演算部501が、走行経路内各ノード位置と各荷台移動量の組み合わせに対する、走行速度上限値を算出する。また、ステップS722では、障害物回避判定部502が、走行経路内各ノード位置と、各荷台移動量の組み合わせに対する、荷500と固定障害物の干渉判定を実施する。そして、走行指令決定部503が、ステップS721の走行速度上限演算の結果と、障害物の干渉判定の結果から、走行経路と荷台移動量を決定する。 Next, in step S713, the travel command determination unit 503 determines the travel route and the bed movement amount, which are a type of operation plan. Therefore, in step S713, the travel speed upper limit value is calculated (step S721), the interference between the load 500 and the fixed obstacle is determined (step S722), and the travel route and the bed movement amount are determined based on these. Here, in step S721, the travel speed upper limit calculator 501 calculates the travel speed upper limit value for the combination of each node position in the travel route and each loading platform movement amount. Further, in step S722, the obstacle avoidance determination unit 502 performs interference determination between the load 500 and the fixed obstacle with respect to the combination of each node position in the travel route and each loading platform movement amount. Then, the travel command determination unit 503 determines the travel route and the bed movement amount based on the result of the travel speed upper limit calculation in step S721 and the result of the obstacle interference determination.
 以下、これらステップS721およびステップS722の詳細を説明する。図8は、本実施例にかかる走行速度上限値の算出であるステップS721の処理フローを示すフローチャートである。また、図9は、本実施例にかかる荷500と固定障害物の干渉判定ステップS722の処理フローを示すフローチャートである。 Details of these steps S721 and S722 will be described below. FIG. 8 is a flow chart showing the processing flow of step S721 for calculating the traveling speed upper limit according to this embodiment. FIG. 9 is a flow chart showing the processing flow of the load 500 and fixed obstacle collision determination step S722 according to the present embodiment.
 まず、図8を用いて、ステップS721の詳細を説明する。ステップS741では、走行速度上限演算部501が、ステップS703で生成した走行経路候補401から走行経路の一つを取得する。 First, the details of step S721 will be described using FIG. In step S741, the travel speed upper limit calculation unit 501 acquires one travel route from the travel route candidates 401 generated in step S703.
 次に、ステップS742では、走行速度上限演算部501が、無人搬送車100が走行開始後最初に到達すべきノードを算出する。このために、走行速度上限演算部501は、ステップS707で受信した環境地図位置基準座標系400上における自己位置412およびステップS721で取得した走行経路のノード情報を用いる。ここでは、自己位置412と走行経路候補情報が備える各ノードの位置座標の距離が最も小さいノードを、各走行経路における最近接ノードとする。つまり、本ステップでは、最近傍ノードが算出される。 Next, in step S742, the travel speed upper limit calculator 501 calculates the node that the automatic guided vehicle 100 should reach first after it starts traveling. For this purpose, the traveling speed upper limit calculation unit 501 uses the self position 412 on the environment map position reference coordinate system 400 received in step S707 and the node information of the traveling route acquired in step S721. Here, the node with the smallest distance between the self-position 412 and the position coordinates of each node included in the travel route candidate information is set as the closest node in each travel route. That is, in this step, the nearest neighbor node is calculated.
 最近接ノードが無人搬送車100の進行方向に存在する場合は、最近接ノードが無人搬送車100の走行開始時に最初に到達すべきノードである。また、最近接ノードが無人搬送車100の進行方向に対して逆方向に存在する場合は、最近接ノードの次に指定されているノードが該当ノードとなる。 If the closest node exists in the traveling direction of the automatic guided vehicle 100, the closest node is the node that should be reached first when the automatic guided vehicle 100 starts running. Also, if the closest node exists in the direction opposite to the traveling direction of the automatic guided vehicle 100, the node specified next to the closest node becomes the relevant node.
 次に、ステップS743では、走行速度上限演算部501が、ステップS741で取得した走行経路を構成するノードを一つ取得する。また、走行速度上限演算部501は、ノード位置における旋回半径を、取得したノードとその前後ノードを接続するエッジの角度から演算する。また、ステップS744では、走行速度上限演算部501が、ステップS712で取得した荷台移動量候補から、荷台移動量を一つ取得する。 Next, in step S743, the travel speed upper limit calculator 501 acquires one node that constitutes the travel route acquired in step S741. Further, the traveling speed upper limit calculation unit 501 calculates the turning radius at the node position from the angle of the edge connecting the obtained node and the nodes before and after it. Further, in step S744, the travel speed upper limit calculation unit 501 acquires one bed movement amount from the bed movement amount candidates acquired in step S712.
 また、ステップS745では、走行速度上限演算部501が、ステップS712で取得した荷台移動量に対し、荷役車両基準座標系411における積載時無人搬送車600の重心位置(xg,yg,zg)を算出する。 Further, in step S745, the travel speed upper limit calculation unit 501 calculates the center of gravity position (xg, yg, zg) of the automatic guided vehicle for loading 600 in the cargo handling vehicle reference coordinate system 411 with respect to the loading platform movement amount acquired in step S712. do.
 ここで、荷台移動量をs(m)とした場合、以下の情報を用いて、下記(数2)~(数4)に従って重心位置(xg,yg,zg)を算出する。
台移動後の荷500の重心位置(x1+s,y1,z1)(m)
ステップS712で取得した無人搬送車100の重心位置(x2,y2,z2)(m)
ステップS711で取得した荷500の重量m(kg)
ステップS712で取得した無人搬送車100の重量M(kg)
xg=(m・(x1+s)+M・x2)/(M+m)・・・(数2)
yg=(m・(y1+s)+M・y2)/(M+m)・・・(数3)
zg=(m・(z1+s)+M・z2)/(M+m)・・・(数4)
 次に、ステップS746では、走行速度上限演算部501が、車両が安定して走行可能な速度上限値を算出する。このために、走行速度上限演算部501は、ステップS745で演算した荷台移動後の積載時無人搬送車600の重心位置(xg,yg,zg)(m)およびステップS743で取得したノード地点での走行経路の曲率を用いる。この速度上限値とは、車両が転倒しないための速度上限であり、積載時無人搬送車600の走行安定性を示す情報を用いてよい。
Here, assuming that the bed movement amount is s (m), the following information is used to calculate the center of gravity position (xg, yg, zg) according to the following (Equation 2) to (Equation 4).
Position of center of gravity of load 500 after platform movement (x1+s, y1, z1) (m)
The center of gravity position (x2, y2, z2) (m) of the automatic guided vehicle 100 acquired in step S712
Weight m (kg) of load 500 acquired in step S711
Weight M (kg) of the automatic guided vehicle 100 acquired in step S712
xg=(m.(x1+s)+M.x2)/(M+m) (Equation 2)
yg=(m·(y1+s)+M·y2)/(M+m) (Equation 3)
zg=(m.(z1+s)+M.z2)/(M+m) (Equation 4)
Next, in step S746, the running speed upper limit calculation unit 501 calculates a speed upper limit at which the vehicle can stably run. For this reason, the travel speed upper limit calculation unit 501 calculates the center of gravity position (xg, yg, zg) (m) of the loading automatic guided vehicle 600 after the loading platform is moved calculated in step S745 and the node point obtained in step S743. Use the curvature of the travel path. The upper limit of speed is the upper limit of speed for preventing the vehicle from overturning, and information indicating the running stability of the automatic guided vehicle 600 for loading may be used.
 ここで、積載時無人搬送車600が走行時、Xv軸方向に遠心力がかかる走行経路を仮定した場合、Xv軸方向における積載時荷役車両の重心位置とタイヤの距離をd、重力加速度をg(m/s)、旋回半径をr(m)、重心高さをh(m)とすると、車両が転倒しないための速度上限値v(m/s)は、(数5)により求めることができる。
v=√(rgd/h)・・・(数5)
 ただし、d=(W1/2)-xg(m)、h=zg(m)である。このように、ステップS746では、走行速度上限演算部501が、ステップS743で取得した走行ノードおよびステップS理744で取得した荷台移動量に対する走行速度上限値を演算することになる。
Here, assuming a travel route where centrifugal force is applied in the Xv-axis direction when the automatic guided vehicle for loading 600 travels, d is the distance between the center of gravity of the loading vehicle and the tires in the Xv-axis direction, and g is the gravitational acceleration. (m/s 2 ), r (m) is the turning radius, and h (m) is the height of the center of gravity. can be done.
v=√(rgd/h) (Equation 5)
However, d=(W1/2)-xg(m) and h=zg(m). Thus, in step S746, the traveling speed upper limit calculation unit 501 calculates the traveling speed upper limit value for the traveling node acquired in step S743 and the bed movement amount acquired in step S744.
 次に、ステップS747では、走行速度上限演算部501が、ステップS712で取得した荷台移動量候補のそれぞれに対し、ステップS744~ステップS746が実行されたかを判定する。つまり、各荷台移動量候補に対する処理が終了したかを判定する。この結果、処理が実行されている場合(Yes)、ステップS748に移行する。実行されていない場合(No)、ステップS744に戻り、残りの荷台移動量候補に対する処理を実行する。 Next, in step S747, the travel speed upper limit calculation unit 501 determines whether steps S744 to S746 have been executed for each of the bed movement amount candidates acquired in step S712. In other words, it is determined whether or not the processing for each platform movement amount candidate has been completed. As a result, if the process is being executed (Yes), the process proceeds to step S748. If not executed (No), the process returns to step S744 to execute processing for the remaining platform movement amount candidates.
 次に、ステップS748では、走行速度上限演算部501が、ステップS742で取得した最近傍ノードから、目標到達位置をつなぐ各ノードについて、ステップS742~ステップS747が実行されているかを判定する。この結果、実行されている場合(Yes)、ステップS748に移行する。実行されていない場合(No)、ステップS743に戻り、残りのノードへの処理を実行する。 Next, in step S748, the traveling speed upper limit calculation unit 501 determines whether steps S742 to S747 have been executed for each node connecting the target arrival positions from the nearest neighbor nodes acquired in step S742. As a result, if it is executed (Yes), the process proceeds to step S748. If not (No), the process returns to step S743 to execute processing for the remaining nodes.
 次に、ステップS749では、走行速度上限演算部501が、ステップS703で生成した各走行経路候補401について、ステップS742~ステップS748が実行されている場合(Yes)、ステップS750に移行する。実行されていない場合(No)、ステップS741に戻り、残りの走行経路候補401に対して、処理を実行する。 Next, in step S749, if the traveling speed upper limit calculation unit 501 has executed steps S742 to S748 for each traveling route candidate 401 generated in step S703 (Yes), the process proceeds to step S750. If not (No), the process returns to step S741 and the remaining travel route candidates 401 are processed.
 次に、ステップS750では、走行速度上限演算部501が、各走行ノード、荷台移動量の組み合わせに対する走行速度上限の演算結果を、走行指令決定部503へ送信する。
以上が、ステップS721の処理の詳細である。
Next, in step S<b>750 , the travel speed upper limit calculation unit 501 transmits to the travel command determination unit 503 the calculation result of the travel speed upper limit for each combination of the travel node and the bed movement amount.
The above is the details of the processing in step S721.
 次に、図9を用いて、荷500と固定障害物の干渉判定ステップS722の詳細を説明する。 Next, using FIG. 9, details of the step S722 for determining interference between the load 500 and the fixed obstacle will be described.
 まず、ステップS761では、障害物回避判定部502が、ステップS741と同様に、ステップS703で生成した走行経路候補401から走行経路を一つ取得する。次に、ステップS762では、障害物回避判定部502が、ステップS742と同様に、無人搬送車100が走行開始後最初に到達すべきノードを算出する。 First, in step S761, the obstacle avoidance determination unit 502 acquires one travel route from the travel route candidates 401 generated in step S703, as in step S741. Next, in step S762, the obstacle avoidance determination unit 502 calculates a node that the automatic guided vehicle 100 should reach first after starting traveling, as in step S742.
 次に、ステップS763では、障害物回避判定部502が、ステップS744と同様に、ステップS712で取得した荷台移動量候補から、荷台移動量を一つ取得する。なお、ステップS761~ステップS763とステップS741、ステップS742およびステップS744は、それぞれ、まとめて実行されてよい。 Next, in step S763, similarly to step S744, the obstacle avoidance determination unit 502 acquires one carrier movement amount from the carrier movement amount candidates acquired in step S712. Note that steps S761 to S763, steps S741, steps S742, and steps S744 may be executed together.
 次に、ステップS764では、障害物回避判定部502が、荷役車両基準座標系411における荷の走行エリアを算出する。ここで、図10を用いて、荷の走行エリアについて説明する。図10内A、B、C、D、E、Fで囲む領域が荷の走行エリアである。このエリアは、荷500の形状に対し、積載時無人搬送車600の走行時の経路追従誤差として想定される位置誤差0.10(m)および姿勢誤差0.05(rad)をマージンとして持たせたものである。なお、後述の障害物判定においては、ここで算出した荷の走行エリアを任意の走行経路にマッピングし、二次元地図上の固定障害物との干渉判定を行うことで、経路追従誤差を考慮した障害物干渉判定を実施することが可能になる。 Next, in step S764, the obstacle avoidance determination unit 502 calculates the traveling area of the cargo in the cargo handling vehicle reference coordinate system 411. Here, with reference to FIG. 10, the cargo travel area will be described. Areas surrounded by A, B, C, D, E, and F in FIG. 10 are cargo travel areas. This area has a position error of 0.10 (m) and an attitude error of 0.05 (rad) as margins for the shape of the load 500, which is assumed as a route following error when the automatic guided vehicle 600 for loading is traveling. It is a thing. In the obstacle determination described later, the travel area of the cargo calculated here is mapped to an arbitrary travel route, and the collision determination with fixed obstacles on the two-dimensional map is performed, taking into consideration the route following error. Obstacle interference determination can be performed.
 また、図10のように荷台をXv方向にs(m)移動させた際の、荷役車両基準座標系411における荷の特徴点A、B、C、D、E、Fの座標位置は、以下の(数6)~(数11)により算出される。
A(xa,ya)=(w1/2+s+0.10+l1/2tan(0.05),l1/2)・・・(数6)
B(xb,yb)=(-w1/2+s-0.10-l1/2tan(0.05),l1/2)・・・(数7)
C(xc,yc)=(-w1/2+s-0.10-l1/2tan(0.05),-l1/2)・・・(数8)
D(xd,yd)=(w1/2+s-0.10-l1/2tan(0.05),-l1/2)・・・(数9)
E(xe,ye)=(w1/2+s+0.10,0)・・・(数10)
F(xf,yf)=(-w1/2+s+0.10,0)・・・(数11)
 以上のように、このステップS764では、荷役車両基準座標系411における荷の走行エリアとしてA、B、C、D、E、Fで結ばれる領域が算出される。
Further, the coordinate positions of characteristic points A, B, C, D, E, and F of the cargo in the cargo handling vehicle reference coordinate system 411 when the cargo bed is moved in the Xv direction by s (m) as shown in FIG. (Equation 6) to (Equation 11).
A(xa, ya)=(w1/2+s+0.10+l1/2tan(0.05), l1/2) (Equation 6)
B(xb, yb)=(-w1/2+s-0.10-l1/2tan(0.05), l1/2) (Equation 7)
C(xc, yc)=(-w1/2+s-0.10-l1/2tan(0.05),-l1/2) (Equation 8)
D(xd, yd)=(w1/2+s-0.10-l1/2tan(0.05),-l1/2) (Equation 9)
E(xe,ye)=(w1/2+s+0.10,0) (Equation 10)
F(xf, yf)=(-w1/2+s+0.10,0) (Equation 11)
As described above, in step S764, the areas connected by A, B, C, D, E, and F are calculated as the cargo travel area in the cargo handling vehicle reference coordinate system 411 .
 次に、ステップS765では、障害物回避判定部502が、走行エリアと固定障害物が干渉しているかを判定する。このために、障害物回避判定部502は、ステップSで算出した荷役車両位置基準座標系における荷の走行エリアと、ステップS761で取得した走行経路と、ステップS701で取得した環境地図を用いる。つまり、障害物回避判定部502は、これらを用いて、各走行経路候補に格納されるノード位置に対し、荷台移動後の荷500の走行エリアを環境地図上にマッピングするこことで、判定を行う。 Next, in step S765, the obstacle avoidance determination unit 502 determines whether the travel area and fixed obstacles are interfering with each other. For this purpose, the obstacle avoidance determination unit 502 uses the cargo travel area in the cargo handling vehicle position reference coordinate system calculated in step S, the travel route acquired in step S761, and the environment map acquired in step S701. In other words, the obstacle avoidance determination unit 502 uses these to map the traveling area of the cargo 500 after the cargo bed is moved to the node position stored in each traveling route candidate on the environment map, and makes a judgment. conduct.
 次に、ステップS766では、障害物回避判定部502が、ステップS712で取得した各荷台移動量に対して、ステップS763~ステップS765が実施されたかを判定する。この結果、実行された場合(Yes)、ステップS767に移行する。実施されていない場合(No)、ステップS763に戻り、残りの荷台移動量候補に対する処理を実施する。 Next, in step S766, the obstacle avoidance determination unit 502 determines whether steps S763 to S765 have been performed for each bed movement amount acquired in step S712. As a result, when it is executed (Yes), the process proceeds to step S767. If not (No), the process returns to step S763, and the remaining platform movement amount candidates are processed.
 次に、ステップS767では、障害物回避判定部502が、ステップS703で取得した各走行経路候補に対して、ステップS762~ステップS766が実施されたかを判定する。この結果、処理が実施された場合(Yes)、ステップS768に移行する。実施されていない場合(No)、ステップS761に戻り、残りの走行経路候補に対して処理を実施する。 Next, in step S767, the obstacle avoidance determination unit 502 determines whether steps S762 to S766 have been performed for each travel route candidate acquired in step S703. As a result, if the process has been executed (Yes), the process proceeds to step S768. If not (No), the process returns to step S761 and the remaining travel route candidates are processed.
 次に、ステップS768では、障害物回避判定部502が、各走行ノード、荷台移動量の組み合わせに対する干渉の判定結果である演算結果を、走行指令決定部503へ送信する。以上で、ステップS722の詳細の処理を終了する。 Next, in step S768, the obstacle avoidance determination unit 502 transmits to the travel command determination unit 503 the calculation result, which is the determination result of interference with respect to the combination of each traveling node and the bed movement amount. This completes the detailed processing of step S722.
 そして、図7のフローチャートの説明に戻る。ステップS713では、走行指令決定部503が、ステップS721およびステップS722の結果を用いて、走行経路や荷台移動量を決定する。このために、ステップS750で送信される走行速度上限における、ステップS768で送信される干渉の判定結果をマージする。このマージにより、作成される走行経路・荷台移動量情報の一例を、図11に示す。 Then, return to the description of the flowchart in FIG. In step S713, the travel command determination unit 503 determines the travel route and the bed movement amount using the results of steps S721 and S722. For this purpose, the determination result of interference transmitted in step S768 at the upper travel speed limit transmitted in step S750 is merged. FIG. 11 shows an example of travel route/carrying bed movement amount information created by this merging.
 図11に示す例では3つのノードで構成された走行経路候補A、B、Cが存在し、また荷台移動量候補としてa(m),b(m),c(m),d(m)が存在する。各経路、ノード、荷台移動量に対応する表内マスについて、上段ステップS721により演算した走行速度上限値(m/s)、下段にステップS722による固定障害物との干渉判定結果(障害物に干渉、または障害物を回避可能)が記載されている。 In the example shown in FIG. 11, there are travel route candidates A, B, and C composed of three nodes. exists. For the cells in the table corresponding to each route, node, and bed movement amount, the travel speed upper limit value (m/s) calculated in step S721 in the upper row, and the result of collision determination with a fixed obstacle in step S722 in the lower row (interference with obstacle , or can avoid obstacles).
 また、ステップS713においては、走行指令決定部503が、走行経路・荷台移動量情報を用いて、障害物回避可能なノード位置及び荷台移動量を抽出する。具体的には、図11内走行経路上の各ノードおよび荷台移動量について、下段に回避と記載のある走行ノードおよび荷台移動量を抽出する。例えば、経路Aのノード2はすべての荷台移動量について判定結果が干渉となっている。この場合、走行経路候補Aは走行経路の選択肢から除外される。 Also, in step S713, the travel command determining unit 503 extracts the node position and the amount of bed movement that allow obstacle avoidance, using the travel route/bed travel amount information. Specifically, for each node and bed movement amount on the travel route in FIG. 11, the travel node and bed movement amount described as avoidance in the lower row are extracted. For example, for node 2 on route A, interference is determined for all bed movement amounts. In this case, the travel route candidate A is excluded from the travel route options.
 また、走行指令決定部503は、走行経路・荷台移動量情報に基づき、各ノードに付与された荷台移動量候補の中で、走行速度上限が大きい荷台移動量と、合わせて走行速度上限値を抽出する。ここで、走行速度上限が大きいとは、所定値以上ないし予め定められた件数の上位(例えば、最も大きい)などが含まれる。 In addition, based on the travel route/bed movement amount information, the travel command determination unit 503 selects the bed movement amount with a large travel speed upper limit and the travel speed upper limit value from among the deck movement amount candidates assigned to each node. Extract. Here, the upper limit of the traveling speed includes a predetermined value or more or a predetermined number of cases (for example, the largest).
 例えば、経路Bについて、ノード1では台動作量c(m)、ノード2では荷台移動量b(m)、ノード3では荷台移動量a(m)が選択される。この処理により、各経路のノード位置における適切な荷台移動量を算出することができる。 For example, for the route B, the table movement amount c (m) is selected for node 1, the bed movement amount b (m) is selected for node 2, and the bed movement amount a (m) is selected for node 3. By this processing, it is possible to calculate an appropriate loading platform movement amount at the node position of each route.
 次に、走行指令決定部503は、取得したノード位置における走行速度上限とノード間エッジ長さから、各経路に対する走行時間の演算を行う。例えば、経路Bについて、ノード1の次のエッジの走行速度は0.8[m/s]、エッジ距離はノード1とノード2の距離であるため、走行時間は(ノード1とノード2の距離)/0.8(s)となる。この計算を、各ノード間において計算し、各経路の走行時間を算出する。 Next, the travel command determination unit 503 calculates the travel time for each route from the travel speed upper limit and the edge length between nodes at the acquired node positions. For example, for route B, the traveling speed of the edge next to node 1 is 0.8 [m/s], and the edge distance is the distance between node 1 and node 2, so the traveling time is (the distance between node 1 and node 2 )/0.8(s). This calculation is performed between each node to calculate the travel time of each route.
 また、走行指令決定部503は、前処理から取得した各走行経路に対する走行時間の演算結果から、走行時間が短くなる走行経路を抽出する。そして、走行指令決定部503は、抽出した走行経路と各ノードにおける荷台移動量を、動作指令生成部311へ送信する。以上のように、本実施例のステップS713では、走行経路および荷台移動量を決定する。これは、動作計画決定部での動作計画の決定の一種である。このため、無人搬送車100の動作計画として、走行経路および荷台移動量の少なくとも一方や他の情報を用いてもよい。本ステップを実行すると、以下の処理で無人搬送車100が走行を行う。 In addition, the travel command determination unit 503 extracts travel routes with shorter travel times from the calculation results of the travel times for each travel route acquired in the preprocessing. Then, the travel command determination unit 503 transmits the extracted travel route and the bed movement amount at each node to the operation command generation unit 311 . As described above, in step S713 of this embodiment, the traveling route and the amount of bed movement are determined. This is a kind of action plan determination in the action plan determination unit. For this reason, at least one of the travel route and the bed movement amount, or other information may be used as the operation plan for the automatic guided vehicle 100 . When this step is executed, the automatic guided vehicle 100 travels by the following processing.
 次に、ステップS714では、自己位置推定部309が、ステップS707と同様の方法で、自己位置412および自己姿勢413を演算する。また、自己位置推定部309が、自己位置推定結果を動作指令生成部311に送信する。 Next, in step S714, the self-position estimation unit 309 calculates the self-position 412 and self-orientation 413 in the same manner as in step S707. In addition, self-position estimation section 309 transmits the self-position estimation result to action command generation section 311 .
 次に、ステップS715では、動作指令生成部311が、ステップS714で推定した自己位置の情報を元に、ステップS713で演算された走行速度上限で走行するような走行モータ108への指令値を生成する。 Next, in step S715, the operation command generation unit 311 generates a command value for the traveling motor 108 to run at the upper limit of traveling speed calculated in step S713, based on the self-position information estimated in step S714. do.
 また、動作指令生成部311は、ステップS713で決定された走行経路を追従するような操舵モータ109への指令値を生成する。さらに、動作指令生成部311は、ステップS713で決定された各ノード位置における荷台移動量を実現するための移載アクチュエータ指令値を生成する。なお、目標荷台移動量はノードごとに設定されているため、自己位置と進行方向に対する最接近ノードの距離が閾値以下になった際、移載アクチュエータにより荷台移動量を変化させる。 Also, the operation command generator 311 generates a command value for the steering motor 109 to follow the travel route determined in step S713. Further, the operation command generation unit 311 generates a transfer actuator command value for realizing the loading platform movement amount at each node position determined in step S713. Since the target platform movement amount is set for each node, the transfer actuator changes the platform movement amount when the distance of the closest node with respect to the self-position and the traveling direction becomes equal to or less than a threshold value.
 次に、ステップS716では、動作指令生成部311は、ステップS715で演算された各指令値に基づき、走行モータ108、操舵モータ109、移載用アクチュエータ104を駆動させる。この結果、走行モータ108、操舵モータ109、移載用アクチュエータ104が駆動し、無人搬送車100が走行、荷の運搬を行うことになる。 Next, in step S716, the operation command generator 311 drives the traveling motor 108, steering motor 109, and transfer actuator 104 based on the command values calculated in step S715. As a result, the traveling motor 108, the steering motor 109, and the transfer actuator 104 are driven, and the automatic guided vehicle 100 travels and carries the load.
 次に、ステップS717では、動作指令生成部311が、無人搬送車100が荷の搬送先に到着したかを判定する。このために、動作指令生成部311が、無人搬送車100の自己位置と、荷の搬送先である最終ノード402の距離が閾値以下になった時点で、無人搬送車100が荷の搬送先に到着したと判定する。そして、搬送先に到着すると、動作指令生成部311は、走行モータ108、操舵モータ109、移載用アクチュエータ104へ停止指令を出力する。この結果、無人搬送車100が停止する。 Next, in step S717, the action command generator 311 determines whether the automatic guided vehicle 100 has arrived at the destination of the load. For this reason, when the distance between the self-position of the automatic guided vehicle 100 and the final node 402, which is the destination of the load, becomes equal to or less than a threshold value, the motion command generation unit 311 causes the automatic guided vehicle 100 to move to the destination of the load. Determine that you have arrived. Then, when the transport destination is reached, the motion command generator 311 outputs a stop command to the travel motor 108 , the steering motor 109 , and the transfer actuator 104 . As a result, the automatic guided vehicle 100 stops.
 また、無人搬送車100が荷の搬送先に到着していない場合、ステップS714に戻り、走行を継続する。以上で実施例1の説明を終了する。 Also, if the unmanned guided vehicle 100 has not arrived at the cargo destination, the process returns to step S714 to continue traveling. This completes the description of the first embodiment.
 次に、実施例2を、図12および図13を用いて説明する。本実施例および後述の実施例3にあって、実施例1と共通する構成については、同一の符号を付してその詳細な説明は省略する。 Next, Example 2 will be described with reference to FIGS. 12 and 13. FIG. In the present embodiment and a third embodiment to be described later, the same reference numerals are assigned to the configurations common to the first embodiment, and detailed description thereof will be omitted.
 本実施例は、実施例1と比較して、走行経路候補にその場旋回経路候補を追加している。ここで、その場旋回とは、無人搬送車100が車両位置基準点である従動輪106の中点を旋回中心位置とし、旋回中心位置を固定したまま車両の姿勢のみを変更し、方向転換を行う動作のことをさす。図12は、本実施例にかかる走行指令演算部310の機能構成例を示す機能ブロック図である。以降では、実施例1の走行指令演算部310(図6)に追加または変更した機能ブロックを中心に説明する。なお、本実施例での荷役車両システムは、走行指令演算部310以外は2と同様の構成である。 In comparison with the first embodiment, this embodiment adds on-the-spot turning route candidates to the traveling route candidates. Here, the on-the-spot turning means that the unmanned guided vehicle 100 uses the middle point of the driven wheels 106, which is the vehicle position reference point, as the turning center position, and changes only the attitude of the vehicle while the turning center position is fixed, and changes direction. It refers to the action to be performed. FIG. 12 is a functional block diagram showing a functional configuration example of the travel command calculation unit 310 according to this embodiment. Hereinafter, functional blocks added or changed to the travel command calculation unit 310 (FIG. 6) of the first embodiment will be mainly described. Note that the cargo handling vehicle system in this embodiment has the same configuration as that of 2 except for the travel command calculation unit 310 .
 <走行経路候補生成部204>
 本実施例において、走行経路候補生成部204は、その場旋回経路を含む走行経路を生成する。この走行経路について、図13を用いて説明する。図13は、本実施例にかかる走行経路を示す図である。図13に示す最短経路405である走行経路および走行経路406は走行旋回経路であり、走行経路1110はその場旋回を実施する走行経路である。
ここで、走行経路1110は、その場旋回ノード1111と、その場旋回前に走行するエッジ1112およびその場旋回後に走行するエッジ1113からなる。その場旋回ノード1111は、空荷時にその場旋回可能な位置座標に設定され、例えば方向転換前の通路の中線と方向転換後の通路の中線の交点に設定する方法がある。ただし、設定するその場旋回ノードの位置座標はこれ以外でもよく、複数候補所有していてもよい。
<Travel route candidate generation unit 204>
In this embodiment, the travel route candidate generating unit 204 generates a travel route including an on-the-spot turning route. This travel route will be described with reference to FIG. 13 . FIG. 13 is a diagram showing a travel route according to this embodiment. A travel route that is the shortest route 405 and a travel route 406 shown in FIG. 13 are travel turning routes, and a travel route 1110 is a travel route for carrying out spot turns.
Here, the traveling route 1110 is composed of a spot turning node 1111, an edge 1112 traveling before spot turning, and an edge 1113 traveling after spot turning. The on-the-spot turning node 1111 is set to a position coordinate that enables on-the-spot turning when the cargo is empty. However, the position coordinates of the on-the-spot turning node to be set may be other than this, and multiple candidates may be owned.
 各ノードには環境地図位置基準座標系400に対する二次元位置座標、走行速度上限、進行方向に加え、そのノード上でその場旋回を実施するかどうかを表す情報を備えている。なお、以降ではノード上でその場旋回を実施するノードをその場旋回ノードと記載する。 Each node has two-dimensional position coordinates with respect to the environmental map position reference coordinate system 400, the upper limit of running speed, and the direction of travel, as well as information indicating whether or not to perform spot turns on that node. In the following description, a node that performs on-the-spot turning is referred to as an on-the-spot turning node.
 <走行旋回経路抽出部2002>
 走行旋回経路抽出部2002では、走行経路候補生成部204で作成された走行経路候補の中から、その場旋回ノードを含まない走行経路を抽出する。
<Traveling Turning Route Extraction Unit 2002>
A traveling turning route extraction unit 2002 extracts a traveling route that does not include a spot turning node from among the traveling route candidates generated by the traveling route candidate generating unit 204 .
 <その場旋回経路抽出部2003>
 その場走行旋回経路抽出部2003では、走行経路候補生成部204で作成された走行経路候補の中から、その場旋回ノードを含む走行経路を抽出する。
<On-the-Spot Turning Route Extraction Unit 2003>
The on-the-spot turning route extracting unit 2003 extracts a traveling route including the on-the-spot turning node from the traveling route candidates generated by the traveling route candidate generating unit 204.
 <走行旋回走行指令演算部2004>
 走行旋回走行指令演算部2004では、走行旋回経路抽出部2002から取得した走行旋回経路情報を元に、取得した経路候補および荷台移動量候補の中から障害物回避可能かつ走行時間が短くなるような走行経路と荷台移動量の組み合わせを演算する。
<Travel turning travel command calculation unit 2004>
Based on the travel and turn route information acquired from the travel and turn route extraction unit 2002, the travel and turn travel command calculation unit 2004 selects a route candidate and a loading platform movement amount candidate that have been acquired so that obstacles can be avoided and travel time is shortened. Calculates the combination of travel route and bed movement amount.
 <その場旋回走行指令演算部2005>
 その場旋回走行指令演算部2005では、その場旋回経路抽出部2003に格納されたその場旋回経路について走行時の障害物回避判定および走行時間算出を行い、障害物回避可能かつ走行時間が短くなるような走行経路を演算する。なお、具体的な処理内容に関しては後述する。
<On-the-Spot Turning Command Calculation Unit 2005>
The on-the-spot turning travel command calculation unit 2005 performs obstacle avoidance determination and travel time calculation during travel for the on-spot turning route stored in the on-spot turning route extraction unit 2003, thereby enabling obstacle avoidance and shortening the travel time. Calculate a driving route such as Note that specific processing contents will be described later.
 <走行指令決定部503>
 走行指令決定部503は、走行旋回走行指令演算部2004より取得した走行経路と、その場旋回走行指令演算部2005により取得した走行経路から、動作指令生成部311に送信する走行経路を決定する。なお、具体的な処理内容に関しては後述する。
<Run command determination unit 503>
The travel command determination unit 503 determines the travel route to be transmitted to the action command generation unit 311 from the travel route acquired from the travel turning travel command calculation unit 2004 and the travel route acquired from the spot turning travel command calculation unit 2005 . Note that specific processing contents will be described later.
 以上が、実施例2における走行指令演算部310の構成である。なお、本実施例においては、実施例1の走行指令演算部310の走行速度上限演算部501、障害物回避判定部502および走行指令決定部503も設けてもよい。 The above is the configuration of the travel command calculation unit 310 in the second embodiment. In addition, in the present embodiment, the traveling speed upper limit calculating section 501, the obstacle avoidance determining section 502 and the traveling command determining section 503 of the traveling command calculating section 310 of the first embodiment may also be provided.
 <処理フロー>
 以降では、実施例2の処理フローを説明する。なお、実施例1と実施例2の処理の差分は、ステップS712が完了した状態からステップS713が完了した状態までである。
そこで、以下、この差分についてのみ説明する。
<Processing flow>
The processing flow of the second embodiment will be described below. Note that the difference between the processes of the first embodiment and the second embodiment is from the state where step S712 is completed to the state where step S713 is completed.
Therefore, only this difference will be described below.
 まず、走行旋回経路抽出部2002が、走行経路候補生成部204で作成された走行旋回経路のノード群情報を、走行旋回走行指令演算部2004に送信する。その後、走行旋回走行指令演算部2004が、取得された走行旋回経路情報を用いて実施例1で述べたステップS713と同じ処理を実施する。この結果、走行旋回走行指令演算部2004は、障害物回避可能かつ走行時間が最も短くなるような走行経路と荷台移動量の組み合わせを決定する。その後、走行旋回走行指令演算部2004は、決定した走行経路および荷台移動量を走行指令決定部に送信する。 First, the travel turning route extraction unit 2002 transmits the node group information of the travel turning route created by the travel route candidate generation unit 204 to the travel turning travel command calculation unit 2004 . After that, the traveling/turning command calculation unit 2004 performs the same processing as step S713 described in the first embodiment using the acquired traveling/turning route information. As a result, the travel/turn travel command calculation unit 2004 determines a combination of the travel route and the amount of movement of the bed so that the obstacle can be avoided and the travel time is the shortest. After that, the travel/turn travel command calculation unit 2004 transmits the determined travel route and the bed movement amount to the travel command determination unit.
 次に、その場旋回経路抽出部2003が、走行経路候補生成部204で抽出したその場旋回経路のノード群情報を、その場旋回走行指令演算部2005に送信する。その後、その場旋回走行指令演算部2005が、その場旋回経路候補抽出部2014が取得したその場旋回経路について、図10で示す荷の走行エリアに対する障害物回避判定を実施する。
なお、ここで述べた荷の走行エリアは、実施例1のステップS764と同様の処理により演算される。
Next, the spot turning route extraction unit 2003 transmits the node group information of the spot turning route extracted by the travel route candidate generation unit 204 to the spot turning travel command calculation unit 2005 . After that, the on-the-spot turning travel command calculation unit 2005 performs obstacle avoidance determination for the cargo traveling area shown in FIG.
It should be noted that the cargo travel area described here is calculated by the same processing as in step S764 of the first embodiment.
 その場旋回の際の障害物回避判定では、積載時無人搬送車600がその場旋回ノードに到達した状態からその場旋回を終了しエッジ1113の方向を向く状態までにおける、環境地図位置基準座標系400上での積載時無人搬送車600の位置および姿勢を算出する。次に、その場旋回走行指令演算部2005が、算出したその場旋回時の積載時無人搬送車600の自己位置412、自己姿勢413に基づき算出された荷の走行エリアを二次元地図上にマッピングし、障害物と干渉するかを判定する。この判定を、各その場旋回経路について実施後、次の処理に移行する。 In the obstacle avoidance judgment during on-the-spot turning, the environment map position reference coordinate system from the state where the unmanned guided vehicle 600 for loading reaches the on-spot turning node to the state where the on-the-spot turning ends and faces the direction of the edge 1113 The position and orientation of the automatic guided vehicle 600 for loading on the 400 are calculated. Next, the on-the-spot turning travel command calculation unit 2005 maps the travel area of the load calculated based on the self-position 412 and the self-orientation 413 of the automatic guided vehicle 600 for loading during the on-spot turning on a two-dimensional map. and determine if it interferes with an obstacle. After this determination is performed for each spot turning route, the process proceeds to the next step.
 次に、その場旋回走行指令演算部2005が、その場旋回経路について、走行経路を走行するのに所要する時間を、エッジ1112を通過する時間、その場旋回に所要する時間、エッジ1113を通過する時間の和により算出する。エッジ1112を通過する時間、エッジ1113を通過する時間は、走行手前ノードに格納される走行速度上限と、エッジの長さにより算出される。また、その場旋回に所要する時間は、車体性能により決定されるその場旋回時の速度上限と、エッジ1112およびエッジ1113のなす角により算出される。その場旋回に所要する時間は機体によって異なるが、一般に90(度)旋回する場合は15.0(s)程度所要する。この走行時間の計算を、各その場旋回経路について実施後、次の処理に移行する。 Next, the on-the-spot turning travel command calculation unit 2005 calculates the time required to travel the traveling route for the on-spot turning route, the time required for passing the edge 1112, the time required for the spot turning, and the time required to pass the edge 1113. It is calculated by the sum of the time to The time to pass the edge 1112 and the time to pass the edge 1113 are calculated from the running speed upper limit stored in the preceding node and the length of the edge. Also, the time required for spot turning is calculated from the upper limit of speed during spot turning determined by the vehicle body performance and the angle formed by edge 1112 and edge 1113 . The time required for a spot turn varies depending on the aircraft, but generally it takes about 15.0 (s) for a 90 (degree) turn. After calculating the travel time for each spot turning route, the process proceeds to the next step.
 次に、その場旋回走行指令演算部2005は、各その場旋回走行経路について、障害物回避判定結果および走行時間算出結果から、障害物を回避可能かつ走行時間が短くなるような走行経路情報と、走行時間の情報を走行指令決定部503に送信する。その後、次の処理に移行する。 Next, the on-the-spot turning travel command calculation unit 2005 calculates travel route information that enables avoidance of obstacles and shortens travel time based on the obstacle avoidance determination result and travel time calculation result for each spot turn travel route. , and transmits information on the running time to the running command determination unit 503 . After that, the processing proceeds to the next step.
 次に、走行指令決定部503が、走行旋回に要する時間と、その場旋回走行に要する時間を比較する。この結果、走行旋回に要する時間の方が短い場合は、走行指令決定部503は、走行旋回走行指令演算部2004より送信された走行経路および荷台移動量を動作指令生成部311に送信する。また、その場旋回に要する時間の方が短い場合は、走行旋回走行指令演算部2004より送信された走行経路を動作指令生成部311に送信する。
以上が、実施例2における走行指令演算部310の処理の流れである。
Next, the travel command determination unit 503 compares the time required for traveling and turning with the time required for on-the-spot turning travel. As a result, when the time required for traveling and turning is shorter, the traveling command determination unit 503 transmits the traveling route and the bed movement amount transmitted from the traveling and turning travel command calculation unit 2004 to the operation command generation unit 311 . Also, if the time required for spot turning is shorter, the travel route sent from the travel/turn travel command calculation unit 2004 is sent to the motion command generation unit 311 .
The above is the processing flow of the travel command calculation unit 310 in the second embodiment.
 以降では、図14および図15を用いて、実施例3について説明する。本実施例では、荷の位置ずれおよび荷の重心ずれを考慮して、動作計画を決定する。以下、本実施例にかかる課題から説明する。 Hereinafter, Example 3 will be described using FIGS. 14 and 15. FIG. In this embodiment, the motion plan is determined in consideration of the positional deviation of the load and the deviation of the center of gravity of the load. Problems related to the present embodiment will be described below.
 無人搬送車100は、走行時の計算負荷が高い場合、車載コントローラ114の演算周期が長くなる。このため、動作指令生成部311から、走行モータ108、操舵モータ109、移載用アクチュエータ104への動作指令の送信周期が長くなる。その結果、走行モータ108、操舵モータ109に指令値が送信される間の位置および姿勢の変位が大きくなり、蛇行運転などが生じ、目標経路に対する追従精度が低下する。 When the automatic guided vehicle 100 has a high calculation load during travel, the calculation cycle of the onboard controller 114 becomes longer. Therefore, the transmission cycle of the operation command from the operation command generation unit 311 to the traveling motor 108, the steering motor 109, and the transfer actuator 104 becomes longer. As a result, the displacement of the position and attitude during the transmission of the command values to the traveling motor 108 and the steering motor 109 becomes large, causing meandering operation and the like, and the tracking accuracy with respect to the target route decreases.
 そのため、実施例1および実施例2では、走行時の計算負荷を低くし、目標経路に対する追従精度低下を解消するために、まず、走行開始前に荷の形状、荷の重心位置、荷の重量を取得した。そして、取得した結果を用いて目的地および走行経路および荷台移動量を決定し、その後、走行を開始していた。 Therefore, in Embodiments 1 and 2, in order to reduce the calculation load during traveling and eliminate the decrease in tracking accuracy with respect to the target route, first, the shape of the load, the position of the center of gravity of the load, and the weight of the load are calculated before the start of traveling. obtained. Then, using the obtained results, the destination, travel route, and bed movement amount are determined, and then travel is started.
 一方、実施例1および実施例2では、走行旋回時においては、無人搬送車100の走行安全性を考慮し低速での走行を行う。この際、時間に対する位置および姿勢の変位が少ないため、計算負荷が大きくなった場合においても、経路追従精度の低下の程度は小さい。 On the other hand, in Embodiments 1 and 2, the unmanned guided vehicle 100 travels at a low speed during traveling and turning in consideration of traveling safety. At this time, since the displacement of the position and orientation with respect to time is small, even when the computational load increases, the degree of deterioration in the route following accuracy is small.
 無人搬送車100の走行時の課題として、走行旋回またはその場旋回を実施した後に、荷の位置および重心の位置がずれることが挙げられる。実施例1および実施例2では、走行開始前に取得した荷形状、荷の重心位置をもとに走行経路および荷台移動量を決定した。このため、走行旋回時に生じる荷の位置および重心の位置ずれを考慮することができない。 A problem when the unmanned guided vehicle 100 travels is that the position of the load and the position of the center of gravity deviate after performing a traveling turn or a spot turn. In Examples 1 and 2, the traveling route and the amount of bed movement were determined based on the shape of the load and the position of the center of gravity of the load obtained before the start of travel. For this reason, it is not possible to consider the positional deviation of the load and the positional deviation of the center of gravity that occurs during traveling and turning.
 以上を踏まえ、本実施例では、走行旋回後およびその場旋回後の荷の位置ずれおよび荷の重心ずれを考慮し、旋回終了後の荷位置および荷重心の位置に基づき、走行経路および荷台移動量を決定する。 Based on the above, in this embodiment, considering the positional deviation of the load and the deviation of the center of gravity of the load after traveling and turning on the spot, the traveling route and the loading platform movement are performed based on the position of the load and the position of the center of load after the end of turning. Determine quantity.
 以降では、実施例1および実施例2と、実施例3の処理の差分について詳述する。図14は、本実施例にかかる荷役車両システム300の機能構成例を示すブロック図である。
以降では、実施例1および実施例2に対し新たに追加または変更した機能ブロックの概要について説明する。
Hereinafter, differences in processing between the first and second embodiments and the third embodiment will be described in detail. FIG. 14 is a block diagram showing a functional configuration example of the cargo handling vehicle system 300 according to this embodiment.
Hereinafter, an outline of functional blocks newly added or changed with respect to the first and second embodiments will be described.
 <旋回終了判定部3001>
 旋回終了判定部3001では、走行中の無人搬送車100が走行旋回終了ノードに到達したかどうかを判定する。ここでは、ノードの特徴として、直線ノード、旋回ノード、走行旋回終了ノードの三つを定義する。直線ノードとは、ノード間を接続するエッジのなす角がπ(rad)であるノードをさし、旋回ノードはそれ以外のノードをさす。これを踏まえ、前述の走行旋回終了ノードとは、ノード自身が旋回ノードであり、かつ進行方向一つ先にあるノードが直線ノードである場合をさす。
<Turn end determination unit 3001>
The turning end determination unit 3001 determines whether or not the unmanned guided vehicle 100 that is traveling has reached the traveling turning end node. Here, as features of nodes, three nodes are defined: a straight line node, a turn node, and a travel turn end node. A straight line node refers to a node having an angle of π (rad) formed by an edge connecting the nodes, and a turn node refers to other nodes. Based on this, the above-mentioned travel turning end node refers to the case where the node itself is a turning node and the node one ahead in the traveling direction is a straight line node.
 <荷重量演算部301>
 荷重量演算部301は、無人搬送車100が旋回終了ノードに到達した際に、実施例1の荷重量演算部301と同様の演算手法により荷重量M(kg)を再演算する。
<Load amount calculation unit 301>
The load amount calculation unit 301 recalculates the load amount M (kg) by the same calculation method as the load amount calculation unit 301 of the first embodiment when the automatic guided vehicle 100 reaches the turning end node.
 <荷重心演算部302>
 荷重心演算部302は、無人搬送車100が旋回終了ノードに到達した場合、実施例1の荷重心演算部302と同様の演算手法により荷の重心位置(x1,y1,z1)(m)を再演算する。
<Center of load calculation unit 302>
When the automatic guided vehicle 100 reaches the turning end node, the center-of-load computing unit 302 calculates the center-of-gravity position (x1, y1, z1) (m) of the load by the same computing method as the center-of-load computing unit 302 of the first embodiment. Recalculate.
 <荷形状演算部303>
 荷形状演算部303は、無人搬送車100が旋回終了ノードに到達した場合、実施例1の荷形状演算部303と同様の演算手法により荷の形状を再演算する。
<Package shape calculator 303>
When the automatic guided vehicle 100 reaches the turning end node, the load shape calculator 303 recalculates the shape of the load by the same calculation method as the load shape calculator 303 of the first embodiment.
 <走行指令演算部310>
 走行指令演算部310は、荷重量演算部301、荷重心演算部302、荷形状演算部303から受信した情報に基づき、無人搬送車100が走行する走行経路および荷台移動量を決定する。このために、走行指令演算部310は、走行経路候補生成部204で生成した走行経路候補401および荷台移動量候補格納部308に格納されている荷台移動量候補の中から、実施例1の走行指令演算部310と同様の演算手法を用いる。
<Running command calculation unit 310>
The travel command calculation unit 310 determines the travel route and the cargo bed movement amount for the automatic guided vehicle 100 based on the information received from the load amount calculation unit 301 , the load center calculation unit 302 , and the load shape calculation unit 303 . For this reason, the travel command calculation unit 310 selects the travel route candidates 401 generated by the travel route candidate creation unit 204 and the platform movement amount candidates stored in the platform movement amount candidate storage unit 308, and selects the travel distance of the first embodiment. A calculation method similar to that of the command calculation unit 310 is used.
 以上が、実施例3に特徴的な構成である。 The above is the characteristic configuration of the third embodiment.
 <処理フロー>
 以降では、実施例3の処理フローを、図15を用いて詳述する。図15は、本実施例にかかる荷役車両システム300の処理フローを示すフローチャートである。実施例3では、実施例1および実施例2に記載のステップS717の後に、ステップS3101が追加される。ステップS717は、無人搬送車100が荷の搬送先に到達したかを判定する処理である。実施例3においては、無人搬送車100が荷の搬送先である最終ノード402に到達していた場合、すべての処理を終了し、無人搬送車100が最終ノード402に到達していない場合は、ステップS3101へ移行する。
<Processing flow>
Hereinafter, the processing flow of the third embodiment will be described in detail with reference to FIG. 15 . FIG. 15 is a flowchart showing the processing flow of the cargo handling vehicle system 300 according to this embodiment. In the third embodiment, step S3101 is added after step S717 described in the first and second embodiments. Step S717 is a process of determining whether the automatic guided vehicle 100 has reached the destination of the load. In the third embodiment, if the automatic guided vehicle 100 has reached the final node 402 to which the goods are to be conveyed, all the processes are completed, and if the automatic guided vehicle 100 has not yet reached the final node 402, The process moves to step S3101.
 ステップS3101では、旋回終了判定部3001が、自己位置推定結果と走行経路演算部により演算された走行経路情報を元に、無人搬送車100が目標経路上の旋回走行終了ノードに到達したかを判定する。このために、まず、自己位置推定結果およびノードの位置座標データを用いて荷役車両の最近接ノードの位置を判定する。次に、最近接ノードが旋回終了ノードであるかどうかを判定する。最近接ノードが旋回ノードであり、かつ最近接ノードの次ノードが直線ノードである場合、最近接ノードは旋回終了ノードである。 In step S3101, the turning end determination unit 3001 determines whether the unmanned guided vehicle 100 has reached the turning end node on the target route based on the self-position estimation result and the travel route information calculated by the travel route calculation unit. do. For this purpose, first, the position of the closest node of the cargo handling vehicle is determined using the self-position estimation result and the position coordinate data of the node. Next, it is determined whether the nearest node is the turn end node. If the nearest node is a turn node and the node next to the nearest node is a straight line node, the nearest node is a turn end node.
 次に、無人搬送車100の位置と最近接ノードの位置間の距離を計測し、距離が閾値以下である場合、走行終了ノードに到達したと判定する。判定結果より、走行旋回終了ノードに到達していた場合は(Yes)、ステップS704に移行する。到達していない場合は(No)、ステップS714へ移行する。以上で、実施例3の説明を終了する。 Next, the distance between the position of the automatic guided vehicle 100 and the position of the nearest node is measured, and if the distance is equal to or less than the threshold, it is determined that the travel end node has been reached. If the determination result indicates that the travel turning end node has been reached (Yes), the process proceeds to step S704. If not reached (No), the process proceeds to step S714. This completes the description of the third embodiment.
 以上で、各実施例の説明を終了するが、本発明はこれら実施例に限定されない。例えば、荷役車両として、フォークリフトを用いることが可能である。また、交通管制部201として、クラウド形式のサーバである交通管理装置で実現することもできる。また、動作環境として、倉庫以外の工場などでも適用可能である。さらに、動作環境は、一般道などオープンな環境であってもよい。またさらに、交通管理装置や車載コントローラ114の機能をプログラムに従って実行してもよい。この場合、このプログラムは、記憶媒体に格納されることが望ましい。 This completes the description of each embodiment, but the present invention is not limited to these embodiments. For example, a forklift can be used as a cargo handling vehicle. Also, the traffic control unit 201 can be realized by a traffic management device, which is a cloud-type server. Also, as an operating environment, it can be applied to factories other than warehouses. Furthermore, the operating environment may be an open environment such as a general road. Furthermore, the functions of the traffic management device and the in-vehicle controller 114 may be executed according to a program. In this case, this program is preferably stored in a storage medium.
201・・・交通管制部、202・・・環境地図格納部、203・・・運行管理部、204・・・走行経路候補生成部、205・・・通信装置、300・・・荷役車両システム、301・・・荷重量演算部、302・・・荷重心演算部、303・・・荷形状演算部、304・・・情報格納部、309・・・自己位置推定部、310・・・走行指令演算部、311・・・動作指令生成部、501・・・走行速度上限演算部、502・・・障害物回避判定部、503・・・走行指令決定部、2002・・・走行旋回経路抽出部、2003・・・その場旋回経路抽出部、2004・・・走行旋回走行指令演算部、2005・・・その場旋回走行指令演算部、3001・・・旋回終了判定部 201... Traffic control unit, 202... Environment map storage unit, 203... Operation management unit, 204... Travel route candidate generation unit, 205... Communication device, 300... Cargo handling vehicle system, 301 Load amount calculation unit 302 Load center calculation unit 303 Load shape calculation unit 304 Information storage unit 309 Self-position estimation unit 310 Travel command Operation unit 311 Operation command generation unit 501 Running speed upper limit calculation unit 502 Obstacle avoidance determination unit 503 Travel command determination unit 2002 Travel turning route extraction unit , 2003... on-the-spot turning route extraction unit, 2004... traveling/turning travel command calculation unit, 2005... on-the-spot turning travel command calculation unit, 3001... turning end determination unit

Claims (8)

  1.  荷役車両の荷役のための動作を支援するための荷役車両システムにおいて、
     前記荷役の対象である荷を積載した前記荷役車両である積載時無人搬送車の力学的な特性を示す物理特性に基づいて、前記荷役車両の前記荷役のための動作計画の候補である複数の動作計画候補を生成する動作計画候補生成部と、
     前記荷役車両の速度上限値を演算する走行速度上限演算部と、
     前記荷役車両の動作における障害物との回避可能性を判定する障害物回避判定部と、
     前記速度上限値および前記判定の結果に応じて、前記複数の動作計画候補から動作計画を決定する動作計画決定部を有する荷役車両システム。
    In a cargo handling vehicle system for supporting the cargo handling operation of a cargo handling vehicle,
    A plurality of operation plan candidates for the cargo handling of the cargo handling vehicle based on physical characteristics indicating dynamic characteristics of the automatic guided vehicle for loading, which is the cargo handling vehicle loaded with the cargo to be handled. an operation plan candidate generation unit that generates an operation plan candidate;
    a travel speed upper limit calculation unit that calculates the speed upper limit of the cargo handling vehicle;
    an obstacle avoidance determination unit that determines the possibility of avoiding obstacles in the operation of the cargo handling vehicle;
    A cargo handling vehicle system comprising an operation plan determination unit that determines an operation plan from the plurality of operation plan candidates according to the speed upper limit value and the result of the determination.
  2.  請求項1に記載の荷役車両システムにおいて、
     前記物理特性は、前記積載時無人搬送車の形状、重心および重量を示す情報であり、
     前記走行速度上限演算部は、前記重心および前記重量に基づいて、前記速度上限値を演算し、
     前記走行速度上限演算部は、前記形状を用いて、前記障害物との回避可能性を判定する荷役車両システム。
    In the cargo handling vehicle system according to claim 1,
    The physical characteristics are information indicating the shape, center of gravity and weight of the automatic guided vehicle for loading,
    The running speed upper limit calculation unit calculates the speed upper limit based on the center of gravity and the weight,
    The cargo handling vehicle system, wherein the traveling speed upper limit calculation unit uses the shape to determine the possibility of avoiding the obstacle.
  3.  請求項2に記載の荷役車両システムにおいて、
     前記動作計画候補生成部は、前記動作計画候補として、前記荷役車両の走行経路候補および荷台移動量候補の少なくとも一方を生成する荷役車両システム。
    In the cargo handling vehicle system according to claim 2,
    The cargo handling vehicle system, wherein the motion plan candidate generation unit generates at least one of a travel route candidate and a cargo bed movement amount candidate of the cargo handling vehicle as the motion plan candidate.
  4.  請求項2に記載の荷役車両システムにおいて、
     前記動作計画候補生成部は、その場旋回を含む前記荷役車両の走行経路候補を生成する荷役車両システム。
    In the cargo handling vehicle system according to claim 2,
    The cargo handling vehicle system, wherein the operation plan candidate generation unit generates a traveling route candidate of the cargo handling vehicle including spot turning.
  5.  荷役車両に設けられ、当該荷役車両の荷役のための動作を制御する車載コントローラにおいて、
     前記荷役の対象である荷を積載した前記荷役車両である積載時無人搬送車の力学的な特性を示す物理特性に基づいて作成される、前記荷役車両の前記荷役のための動作計画の候補である複数の動作計画候補を受け付ける通信部と、
     前記荷役車両の速度上限値を演算する走行速度上限演算部と、
     前記荷役車両の動作における障害物の回避を判定する障害物回避判定部と、
     前記速度上限値および前記判定の結果に応じて、前記複数の動作計画候補から動作計画を決定する動作計画決定部を有する車載コントローラ。
    In an in-vehicle controller that is provided in a cargo handling vehicle and controls the operation of the cargo handling vehicle for cargo handling,
    An operation plan candidate for the cargo handling of the cargo handling vehicle, which is created based on physical characteristics indicating dynamic characteristics of the automatic guided vehicle for loading, which is the cargo handling vehicle loaded with the cargo to be handled. a communication unit that receives a plurality of operation plan candidates;
    a travel speed upper limit calculation unit that calculates the speed upper limit of the cargo handling vehicle;
    an obstacle avoidance determination unit that determines obstacle avoidance in the operation of the cargo handling vehicle;
    An in-vehicle controller comprising an operation plan determination unit that determines an operation plan from the plurality of operation plan candidates according to the speed upper limit value and the result of the determination.
  6.  請求項5に記載の車載コントローラにおいて、
     前記物理特性は、前記積載時無人搬送車の形状、重心および重量を示す情報であり、
     前記走行速度上限演算部は、前記重心および前記重量に基づいて、前記速度上限値を演算し、
     前記走行速度上限演算部は、前記形状を用いて、前記障害物との回避可能性を判定する車載コントローラ。
    The in-vehicle controller according to claim 5,
    The physical characteristics are information indicating the shape, center of gravity and weight of the automatic guided vehicle for loading,
    The running speed upper limit calculation unit calculates the speed upper limit based on the center of gravity and the weight,
    The traveling speed upper limit calculation unit is an in-vehicle controller that uses the shape to determine the possibility of avoiding the obstacle.
  7.  請求項6に記載の車載コントローラにおいて、
     前記通信部は、前記動作計画候補として、前記荷役車両の走行経路候補および荷台移動量候補の少なくとも一方を受け付ける車載コントローラ。
    The in-vehicle controller according to claim 6,
    The communication unit is an in-vehicle controller that receives at least one of a travel route candidate and a loading platform movement amount candidate of the cargo handling vehicle as the operation plan candidate.
  8.  請求項6に記載の車載コントローラにおいて、
     前記通信部は、その場旋回を含む前記荷役車両の走行経路候補を受け付ける車載コントローラ。
    The in-vehicle controller according to claim 6,
    The communication unit is an in-vehicle controller that receives travel route candidates for the cargo handling vehicle, including on-the-spot turning.
PCT/JP2022/017862 2021-07-26 2022-04-14 Cargo vehicle system and in-vehicle controller WO2023007878A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021121407A JP2023017275A (en) 2021-07-26 2021-07-26 Cargo handling vehicle system and on-vehicle controller
JP2021-121407 2021-07-26

Publications (1)

Publication Number Publication Date
WO2023007878A1 true WO2023007878A1 (en) 2023-02-02

Family

ID=85086471

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/017862 WO2023007878A1 (en) 2021-07-26 2022-04-14 Cargo vehicle system and in-vehicle controller

Country Status (2)

Country Link
JP (1) JP2023017275A (en)
WO (1) WO2023007878A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152834A (en) * 2008-12-26 2010-07-08 Ihi Aerospace Co Ltd Unmanned mobile body system
JP2019144841A (en) * 2018-02-20 2019-08-29 日立建機株式会社 Autonomous traveling system
US20200238980A1 (en) * 2017-08-30 2020-07-30 Mazda Motor Corporation Vehicle control device
JP6793273B1 (en) * 2020-05-22 2020-12-02 ジャパンマリンユナイテッド株式会社 Vessel navigation methods, navigation systems and vessels

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010152834A (en) * 2008-12-26 2010-07-08 Ihi Aerospace Co Ltd Unmanned mobile body system
US20200238980A1 (en) * 2017-08-30 2020-07-30 Mazda Motor Corporation Vehicle control device
JP2019144841A (en) * 2018-02-20 2019-08-29 日立建機株式会社 Autonomous traveling system
JP6793273B1 (en) * 2020-05-22 2020-12-02 ジャパンマリンユナイテッド株式会社 Vessel navigation methods, navigation systems and vessels

Also Published As

Publication number Publication date
JP2023017275A (en) 2023-02-07

Similar Documents

Publication Publication Date Title
US10875448B2 (en) Visually indicating vehicle caution regions
JP5086942B2 (en) Route search device, route search method, and route search program
CN112499298B (en) Transport robot for loading
CN114258366A (en) Polyline profile representation for autonomous vehicles
ES2766148B2 (en) METHOD AND SYSTEM TO CONTROL A PLURALITY OF AUTONOMOUS VEHICLES
Behrje et al. An autonomous forklift with 3d time-of-flight camera-based localization and navigation
KR20200084938A (en) Method and Apparatus for Planning Car Motion
CN108136934B (en) Moving body
US11794756B2 (en) Estimating vehicle velocity based on variables associated with wheels
JP2018194937A (en) Travel control device and travel control method of unmanned carrier
WO2023007878A1 (en) Cargo vehicle system and in-vehicle controller
CN113341999A (en) Forklift path planning method and device based on optimized D-x algorithm
WO2023113005A1 (en) Mining machine and autonomous travel system
KR20220050483A (en) Coordinates recognition apparatus of automatic guided vehicle and method thereof
WO2020122212A1 (en) Transport vehicle management system and transport vehicle management method
US20230150532A1 (en) Vehicle path adjustment
US20230022637A1 (en) Information processing apparatus, information processing method, and program
JP6642026B2 (en) Autonomous mobile control device
JP2022013243A (en) Mobile body controller, map generation method and map generation program
JP7478092B2 (en) Cargo handling system
JP2023154648A (en) Route planning device and transport vehicle system
CN113835425A (en) Path planning method
JP7468392B2 (en) Self-location estimation device
CN111766856A (en) Automatic guide transport vehicle, auxiliary positioning method and system thereof and vehicle-mounted controller
US20240075954A1 (en) Moving object control system, control method therefor, and recording medium

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848961

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE