WO2023007827A1 - Sample observation device and sample observation method - Google Patents

Sample observation device and sample observation method Download PDF

Info

Publication number
WO2023007827A1
WO2023007827A1 PCT/JP2022/012214 JP2022012214W WO2023007827A1 WO 2023007827 A1 WO2023007827 A1 WO 2023007827A1 JP 2022012214 W JP2022012214 W JP 2022012214W WO 2023007827 A1 WO2023007827 A1 WO 2023007827A1
Authority
WO
WIPO (PCT)
Prior art keywords
axis
sample
planar light
image data
image
Prior art date
Application number
PCT/JP2022/012214
Other languages
French (fr)
Japanese (ja)
Inventor
諭 山本
なつみ 加藤
春樹 鈴木
俊毅 山田
慎通 茅根
拓海 岩村
Original Assignee
浜松ホトニクス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浜松ホトニクス株式会社 filed Critical 浜松ホトニクス株式会社
Priority to JP2023538256A priority Critical patent/JPWO2023007827A1/ja
Publication of WO2023007827A1 publication Critical patent/WO2023007827A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/06Means for illuminating specimens
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/24Base structure
    • G02B21/26Stages; Adjusting means therefor
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B21/00Microscopes
    • G02B21/36Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements

Definitions

  • the present disclosure relates to a sample observation device and a sample observation method.
  • SPIM Selective Plane Illumination Microscopy
  • a tomographic image observation apparatus described in Patent Document 1 discloses the basic principle of SPIM.
  • a sample is irradiated with planar light, and fluorescence or scattered light generated inside the sample is imaged on an imaging plane to obtain observation image data of the inside of the sample.
  • This sample observation apparatus includes an irradiation optical system that irradiates a sample with planar light, and a scanning unit that scans the sample with respect to the irradiation surface of the planar light.
  • An imaging optical system that has an observation axis that is inclined with respect to the irradiation surface and that forms an image of observation light generated in the sample by the irradiation of the planar light;
  • An image acquisition unit that acquires a plurality of partial image data corresponding to a part of an image, and an image generation unit that generates observation image data of the sample based on the plurality of partial image data generated by the image acquisition unit.
  • the present disclosure has been made to solve the above problems, and aims to provide a sample observation device and a sample observation method that can efficiently scan a sample when acquiring observation image data.
  • a sample observation apparatus includes an irradiation optical system that irradiates a sample with planar light, a scanning unit that has a rotating shaft that rotates the sample at a predetermined angular velocity with respect to the irradiation surface of the planar light, An imaging optical system that has an observation axis that is inclined with respect to the irradiation surface and forms an image of the observation light generated by the sample due to the irradiation of the planar light, and an observation that is imaged by the imaging optical system during scanning of the sample.
  • An image acquisition unit that acquires image data of an optical image using light
  • an image generation unit that generates observation image data of a sample based on the image data.
  • the sample is scanned with the planar light by rotating the sample around the rotation axis at a predetermined angular velocity with respect to the irradiation surface of the planar light.
  • the image generation unit A plurality of XZ image data acquired by the image acquisition unit are integrated in the Z-axis direction to generate a plurality of X image data, and XY image data obtained by reconstructing the plurality of X image data in the R-axis direction are generated. It may be generated as observation image data. Thereby, XY image data having an arbitrary thickness at an arbitrary position in the Z-axis direction can be generated as observation image data. Also, the background of the generated observation image data can be suppressed.
  • the image generation unit corrects the amount of data assigned to each pixel based on at least the angular velocity of rotation of the rotation axis of the scanning unit and the field size of the image acquisition unit, thereby generating XY image data from a plurality of X image data. may be generated.
  • the sample S is scanned with respect to the planar light by the rotating shaft, even if the angular velocity of the rotating shaft is constant, the tangential velocity of each part of the sample S changes according to the distance from the rotating shaft. Therefore, by correcting the amount of data assigned to each pixel based on the angular velocity of the rotating shaft and the size of the field of view of the image acquisition unit, it is possible to appropriately convert a plurality of X image data into XY image data.
  • the rotation axis may be located within the cross section of the planar light. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
  • the width direction of the planar light is the X axis
  • the thickness direction of the planar light is the Y axis
  • the optical axis of the planar light is the Z axis
  • the rotation axis is the XZ plane including the X axis and the Z axis
  • It may be parallel to at least one of the YZ planes including the Y axis and the Z axis. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
  • a sample observation method includes an irradiation step of irradiating a sample with planar light, a scanning step of rotating the sample around a rotation axis at a predetermined angular velocity with respect to the irradiation surface of the planar light, and an irradiation step.
  • the specimen is scanned with the planar light by rotating the specimen at a predetermined angular velocity around the rotation axis with respect to the irradiation surface of the planar light.
  • a plurality of XZ image data acquired in the image acquisition step are integrated in the Z-axis direction to generate a plurality of X image data, and an XY image data obtained by reconstructing the plurality of X image data in the R-axis direction is observed. It may be generated as image data.
  • XY image data having an arbitrary thickness at an arbitrary position in the Z-axis direction can be generated as observation image data. Also, the background of the generated observation image data can be suppressed.
  • XY image data is generated from a plurality of X image data by correcting the amount of data assigned to each pixel based on at least the angular velocity of the rotation axis in the scanning step and the field size in the image acquisition step.
  • the rotation axis may be positioned within the cross section of the planar light. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
  • the width direction of the planar light is the X axis
  • the thickness direction of the planar light is the Y axis
  • the optical axis of the planar light is the Z axis. It may be parallel to at least one of the YZ planes including the Z axis. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
  • FIG. 1 is a schematic configuration diagram showing an embodiment of a sample observation device according to the present disclosure
  • FIG. 2 is a flow chart showing an example of a sample observation method using the sample observation apparatus shown in FIG. 1
  • (A) is a schematic diagram showing an example of the positional relationship between the rotation axis and planar light when viewed from the Z-axis direction, and (B) and (C) when viewed from the Z-axis direction.
  • FIG. 10 is a schematic diagram showing another example of the arrangement relationship between the rotational axis of and planar light.
  • FIG. 4 is a schematic diagram showing a plurality of XZ image data acquired by an image acquisition unit;
  • FIG. 4 is a schematic diagram showing how XY image data (observation image data) is generated from a plurality of XZ image data;
  • FIG. 4 is a schematic diagram showing how XY image data (observation image data) is generated from a plurality of XZ image data;
  • FIG. 4 is a schematic diagram showing the amount of data assigned to each pixel of the image acquisition unit;
  • (A) is a schematic diagram showing the relationship between the irradiation surface of planar light with respect to the sample and the observation axis, and
  • (B) is a schematic diagram showing the relationship between the scanning operation and image acquisition in this mode. It is a diagram.
  • (A) and (B) are schematic diagrams showing modifications of the positional relationship between the rotation axis and the planar light when viewed from the Z-axis direction.
  • (A) and (B) are schematic diagrams showing another modification of the positional relationship between the rotation axis and the planar light when viewed from the Z-axis direction.
  • FIG. 11 is a schematic diagram showing still another modified example of the positional relationship between the rotation axis and the planar light when viewed from the Z-axis direction;
  • FIG. 1 is a schematic configuration diagram showing one embodiment of the sample observation device according to the present disclosure.
  • This sample observation apparatus 1 is an apparatus that acquires observation image data of the inside of the sample S by irradiating the sample S with planar light L2 and forming an image of fluorescence or scattered light generated inside the sample S on an imaging plane. It is configured.
  • a sample observation apparatus 1 of this type may be a slide scanner that acquires and displays an image of a sample S held on a slide glass, or acquires image data of a sample S held on a microplate and analyzes the image data. A plate reader etc. are mentioned.
  • Examples of the sample S to be observed include human or animal cells, tissues, organs, animal or plant itself, and plant cells and tissues.
  • the sample S may be contained in a solution, a gel, or a substance having a different refractive index from that of the sample S.
  • the sample observation apparatus 1 includes a light source 2, an irradiation optical system 3, a scanning section 4, an imaging optical system 5, an image acquisition section 6, and a computer 7.
  • the light source 2 is a light source that outputs light L1 with which the sample S is irradiated.
  • Examples of the light source 2 include laser light sources such as laser diodes and solid-state laser light sources.
  • the light source 2 may be a light-emitting diode, a super-luminescent diode, or a lamp-based light source.
  • Light L ⁇ b>1 output from the light source 2 is guided to the irradiation optical system 3 .
  • the irradiation optical system 3 is an optical system that shapes the light L1 output from the light source 2 into planar light L2 and irradiates the sample S with the shaped planar light L2 along the optical axis P1.
  • the optical axis P1 of the irradiation optical system 3 may be referred to as the optical axis of the planar light L2.
  • the irradiation optical system 3 includes a light shaping element such as a cylindrical lens, an axicon lens, or a spatial light modulator, and is optically coupled to the light source 2 .
  • the irradiation optical system 3 may be configured including an objective lens.
  • the sample S is irradiated with the planar light L2 formed by the irradiation optical system 3 .
  • the observation light L3 is generated on the irradiation surface V of the planar light L2.
  • the observation light L3 is, for example, fluorescence excited by the planar light L2, scattered light of the planar light L2, or diffuse reflected light of the planar light L2.
  • the planar light L2 is preferably thin planar light with a thickness of 2 mm or less in consideration of resolution. Further, when the thickness of the sample S is very small, that is, when observing the sample S with a thickness equal to or less than the resolution in the Z-axis direction, the thickness of the planar light L2 does not affect the resolution. Therefore, planar light L2 having a thickness exceeding 2 mm may be used.
  • the scanning unit 4 is a mechanism that scans the sample S with respect to the irradiation surface V of the planar light L2.
  • the scanning unit 4 has a rotating shaft 12 that rotates a sample container 11 holding the sample S at a predetermined angular velocity.
  • the sample container 11 is configured by, for example, a petri dish having a circular shape in plan view.
  • the sample container 11 is made of a member having transparency to the planar light L2. Examples of such members include glass, quartz, and synthetic resin.
  • the sample container 11 is attached to the rotating shaft 12 so that the input surface of the planar light L2 (here, the bottom surface of the petri dish) is orthogonal to the optical axis P1 of the planar light L2.
  • the scanning unit 4 scans the sample container 11 with respect to the planar light L2 by rotating the rotation shaft 12 in a preset rotation direction according to the control signal from the computer 7 .
  • the width direction of the planar light L2 is the X axis
  • the thickness direction of the planar light L2 is the Y axis
  • the optical axis P1 direction of the planar light L2 is the Z axis
  • the scanning direction of the sample S by the scanning unit 4. (the tangential direction of the rotation of the rotating shaft 12) is called the R-axis.
  • the irradiation surface V of the planar light L2 with respect to the sample S is a surface within the XZ plane.
  • the imaging optical system 5 is an optical system that forms an image of the observation light L3 generated at the sample S by the irradiation of the planar light L2.
  • the imaging optical system 5 includes, for example, an objective lens 16, a bandpass filter 17, a relay lens 18, and the like.
  • the optical axis of the imaging optical system 5 is the optical axis of the observation light L3 (hereinafter "observation axis P2").
  • the observation axis P2 is inclined with respect to the irradiation plane V of the sample S with the planar light L2 at an inclination angle ⁇ .
  • the tilt angle ⁇ also coincides with the angle formed by the optical axis P1 of the planar light L2 directed toward the sample S and the observation axis P2.
  • the inclination angle ⁇ is, for example, 10° to 80°. From the viewpoint of improving the resolution of the observed image, the tilt angle ⁇ is preferably 20° to 70°. Further, from the viewpoint of improving the resolution of the observed image and stabilizing the field of view, the tilt angle ⁇ is more preferably 30° to 65°.
  • the image acquisition unit 6 is a device that acquires image data of an optical image formed by the observation light L3 formed by the imaging optical system 5 while the sample S is being scanned.
  • the image acquisition unit 6 includes, for example, an imaging device that captures an optical image using the observation light L3.
  • imaging devices include area image sensors such as CMOS image sensors and CCD image sensors. These area image sensors are arranged on the imaging plane of the imaging optical system 5 and output two-dimensional image data to the computer 7 .
  • the readout method of the imaging device may be a global shutter method in which the exposure period of each pixel row is the same, or may be a rolling shutter method in which the exposure period of each pixel row is shifted by a predetermined time.
  • the computer 7 is physically configured with memories such as RAM and ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, a storage unit such as a hard disk, and a display unit such as a display.
  • Such computers 7 include, for example, personal computers, cloud servers, smart devices (smartphones, tablet terminals, etc.).
  • the computer 7 includes a controller that controls the operation of the light source 2 and the rotating shaft 12, an image generator 8 that generates observation image data of the sample S, and an observation It functions as an analysis unit 10 that analyzes image data.
  • the computer 7 as a controller receives the user's operation to start measurement, and drives the light source 2, the scanning unit 4, and the image acquisition unit 6 in synchronization.
  • the computer 7 may control the light source 2 so that the light source 2 continuously outputs the light L1 while the sample S is being moved by the rotating shaft 12. ON/OFF of the output of the light L1 may be controlled.
  • the irradiation optical system 3 includes an optical shutter (not shown), the computer 7 may turn on/off the irradiation of the sample S with the planar light L2 by controlling the optical shutter.
  • the computer 7 as the image generation unit 8 generates observed image data of the sample S based on the image data generated by the image acquisition unit 6 .
  • the image generation unit 8 generates observation image data of the sample S on a plane (XY plane) perpendicular to the optical axis P1 of the planar light L2, for example, based on the image data output from the image acquisition unit 6 .
  • the image generation unit 8 stores the generated observation image data and displays it on a monitor or the like, for example, according to a predetermined operation by the user.
  • FIG. 2 is a flow chart showing an example of a sample observation method using a sample observation device.
  • this sample observation method includes an irradiation step (step S01), a scanning step (step S02), an imaging step (step S03), an image acquisition step (step S04), and an image generation step (step S05). , and an analysis step (step S06).
  • the sample S is irradiated with planar light L2.
  • the light source 2 is driven based on a control signal from the computer 7, and the light source 2 outputs light L1.
  • the light L1 output from the light source 2 is shaped by the irradiation optical system 3 to become planar light L2, and the sample S is irradiated with the planar light L2.
  • the sample S is scanned with respect to the irradiation surface V of the planar light L2.
  • the rotating shaft 12 rotates in synchronization with the driving of the light source 2 based on the control signal from the computer 7 .
  • the sample container 11 rotates in the R-axis direction at a predetermined angular velocity, and the sample S in the sample container 11 is scanned with respect to the irradiation surface V of the planar light L2.
  • the irradiation optical system 3 and the scanning unit 4 it is preferable to arrange the irradiation optical system 3 and the scanning unit 4 so that the rotating shaft 12 is positioned within the cross section of the planar light L2.
  • the center C of the sample container 11 and the rotation axis 12 are aligned in plan view from the Z-axis direction.
  • the width W of the planar light L2 is, for example, the same as the radius r of the sample container 11 or slightly larger than the radius r of the sample container 11 .
  • the planar light L2 extends radially from the center C of the sample container 11 so as to straddle the rotating shaft 12 and the edge of the sample container 11 in plan view in the Z-axis direction. Therefore, in the example of FIG. 3A, the scanning of the sample S with the planar light L2 is completed when the sample container 11 makes one rotation about the rotating shaft 12 .
  • the rotating shaft 12 does not necessarily have to be positioned within the cross section of the planar light L2.
  • the rotating shaft 12 may be displaced from the center C of the sample container 11 in plan view in the Z-axis direction.
  • the planar light L2 extends radially from the center C of the sample container 11 so as to straddle the center C and the edge of the sample container 11, while the rotation axis 12 is It is slightly shifted in the Y-axis direction with respect to the center C of the sample container 11 .
  • the planar light L2 may be displaced from the center C of the sample container 11 in a plan view in the Z-axis direction.
  • the planar light L2 is slightly shifted in the Y-axis direction with respect to the center C of the sample container 11.
  • the shift amount d is Accordingly, there may be a region in the vicinity of the edge of the sample container 11 that is not irradiated with the planar light L2. In this case, by making the width W of the planar light L2 longer than the radius r of the sample container 11 by at least d (W ⁇ r+d), the area of the sample container 11 not irradiated with the planar light L2 can be reduced.
  • the configuration shown in FIG. 1 in the configuration shown in FIG.
  • the rotation axis 12 is preferably parallel to at least one of the XZ plane including the X and Z axes and the YZ plane including the Y and Z axes. .
  • the rotation axis 12 and the optical axis P1 of the planar light L2 are parallel.
  • FIG. 4B when the planar light L2 is viewed from the X-axis direction, the rotation axis 12 and the optical axis P1 of the planar light L2 are parallel. That is, in this embodiment, the rotating shaft 12 is parallel to both the XZ plane and the YZ plane.
  • the rotating shaft 12 may be non-parallel to one of the XZ plane and the YZ plane.
  • the optical axis P1 of the planar light L2 obliquely intersects the rotation axis 12, while ), when the planar light L2 is viewed from the X-axis direction, the rotation axis 12 and the optical axis P1 of the planar light L2 may be parallel. Also, although not shown, in contrast to FIGS.
  • the rotation axis 12 and the optical axis P1 of the planar light L2 are aligned. While being parallel, the optical axis P1 of the planar light L2 may obliquely cross the rotation axis 12 when the planar light L2 is viewed from the X-axis direction.
  • the amount of data assigned to each pixel is corrected in the image generation step S05 described later. can do.
  • the optical axis P1 of the planar light L2 is oblique to the rotation axis 12 when viewed from the X-axis direction
  • the observation light L3 from the sample S is inclined in the Y-axis direction.
  • a light image of the observation light L3 can be acquired at a position deviated from the coordinates of the sample S of .
  • each pixel is in the tilt axis direction tilted from the Z axis direction by the oblique angle of the optical axis of the planar light L2.
  • the amount of data assigned to each pixel can be corrected.
  • the amount of data assigned to each pixel can be corrected.
  • the imaging optical system 5 having the observation axis P2 inclined with respect to the irradiation surface V is used, and the observation light L3 generated in the sample S by the irradiation of the planar light L2 is imaged by the image acquisition unit 6.
  • An image is formed on a plane.
  • a plurality of XZ image data 21 corresponding to the optical image formed by the observation light L3 formed by the imaging optical system 5 during scanning of the sample S are acquired in the R-axis direction. .
  • a plurality of XZ image data 21 are sequentially output from the image acquisition section 6 to the image generation section 8 .
  • observation image data of the sample S is generated based on a plurality of XZ image data 21.
  • the brightness value of each pixel included in the plurality of XZ image data 21 obtained in the image acquisition step S04 is integrated in the Z-axis direction to generate a plurality of X image data 22.
  • FIG. XY image data 23 is generated by reconstructing the plurality of X image data 22 in the R-axis direction, and the XY image data 23 is generated as observed image data 24 of the sample S.
  • the luminance values of each pixel in an arbitrary range in the Z-axis direction in the plurality of XZ image data 21 may be integrated in the Z-axis direction.
  • the XY image data 23 may be directly generated by reconstructing the plurality of X image data 22.
  • Combined XR image data may be generated, and the XY image data 23 may be generated by reconstructing the XR image data.
  • each pixel is assigned based on at least the angular velocity of the rotating shaft 12 in the scanning unit 4 and the field size of the image acquisition unit 6. Correct the amount of data.
  • the tangential velocity of each part of the sample S changes from the center of the rotation shaft 12 to It will change according to the distance of In correcting the amount of data assigned to each pixel, the shift amount d of the rotation axis 12 with respect to the planar light L2, the exposure time of the image acquisition section 6, the resolution, etc.
  • the rotation axis 12 may be further taken into consideration.
  • the oblique angle of the optical axis P1 of the planar light L2 with respect to the rotation axis 12 may be further taken into consideration.
  • the n-th to n+2-th X image data 22 are shown in association with the pixels 25 of the image acquisition unit 6 .
  • the data amount [data/pix] per pixel is larger for pixels closer to the position corresponding to the rotation axis 12 and smaller for pixels farther from the position corresponding to the rotation axis 12 .
  • the data amount per pixel is 3.2 [data/pix].
  • the data amount per pixel is 1 [data/pix] at the 11th pixel 25-11 when viewed from the position corresponding to .
  • the plurality of X image data 22 are converted to the XY image data 23. Appropriate conversions can be performed.
  • the analysis unit 10 analyzes the observation image data 24 and generates an analysis result. For example, in drug discovery screening, a sample S and a reagent are placed in the sample container 11 and observation image data 24 are acquired. Then, the analysis unit 10 evaluates the reagent based on the observed image data 24 and generates evaluation data as an analysis result.
  • the image acquisition unit 6 acquires an image while scanning the sample S against the irradiation surface V of the planar light L2. Therefore, the image acquisition unit 6 can sequentially acquire the XZ image data 21 of the tomographic plane in the optical axis P1 direction (Z-axis direction) of the planar light L2, and the image generation unit 8 can generate a plurality of XZ images. Observation image data 24 of the sample S can be generated based on the data 21 .
  • image acquisition can be performed sequentially while the sample S is continuously scanned.
  • the throughput until the observation image data 24 is obtained can be improved.
  • the sample S rotates around the rotation axis 12 at a predetermined angular velocity with respect to the irradiation surface V of the planar light L2, thereby scanning the sample S with the planar light L2. done.
  • the sample container 11 in which the sample S is placed has a circular shape, the sample S can be scanned without waste, and the scanning of the sample S can be made efficient in obtaining the observation image data 24. .
  • a unit 8 integrates a plurality of XZ image data 21 acquired by the image acquisition unit 6 in the Z-axis direction to generate a plurality of X image data 22, and combines the plurality of X image data 22 in the R-axis direction.
  • the obtained XY image data 23 is generated as observation image data 24 .
  • XY image data 23 having an arbitrary thickness at an arbitrary position in the Z-axis direction can be generated as observation image data 24 .
  • the background of the generated observation image data 24 can be suppressed.
  • a plurality of X image data 22 are obtained by correcting the amount of data assigned to each pixel based on at least the angular velocity of rotation of the rotating shaft 12 in the scanning section 4 and the field size of the image acquisition section 6.
  • XY image data 23 is generated from the When the sample S is scanned with respect to the planar light L2 by the rotating shaft 12, even if the angular velocity of the rotating shaft 12 is constant, the tangential velocity of each part of the sample S changes according to the distance from the rotating shaft 12. It will happen.
  • the plurality of X image data 22 are appropriately converted into the XY image data 23. can.
  • the rotating shaft 12 is positioned within the cross section of the planar light L2. Further, the rotation axis is parallel to both the width direction (X-axis) of the planar light L2 and the thickness direction (Y-axis) of the planar light L2. This makes it possible to generate the observed image data 24 without complicating the correction of the amount of data assigned to each pixel.
  • the width W of the planar light L2 is approximately the same as the radius r of the sample container 11. However, as shown in FIG. , or may be slightly larger than the diameter 2r of the sample container 11 . If the width W of the planar light L2 is approximately the same as the radius r of the sample container 11, the resolution of the observation image data 24 can be improved. , the scanning of the sample S with the planar light L2 is completed by rotating the sample container 11 halfway around the rotating shaft 12, so that the time required for scanning the sample S can be shortened. .
  • FIG. 10(B) When the width W of the planar light L2 is approximately the same as the diameter 2r of the sample container 11, two image acquisition units 6A and 6B may be used as shown in FIG. 10(B).
  • the image acquisition units 6A and 6B are arranged at rotationally symmetrical (two-fold symmetrical) positions with respect to the planar light L2 passing through the center C of the sample container 11 .
  • one image acquisition unit 6 captures the optical image of the observation light L3 corresponding to the entire width W of the planar light L2, so the image size is large.
  • FIG. 10A one image acquisition unit 6 captures the optical image of the observation light L3 corresponding to the entire width W of the planar light L2, so the image size is large.
  • the image size can be made relatively small. , high-speed reading becomes possible. Therefore, the time required for scanning the sample S can be shortened.
  • the single planar light L2 is used to scan the sample S, but a plurality of planar lights L2 may be used to scan the sample S.
  • a plurality of planar lights L2 may be used to scan the sample S.
  • two planar lights L2A and L2B with different wavelengths and two image acquisition units 6A and 6B with different detection wavelength bands are used.
  • Both of the planar lights L2A and L2B have a width W of the planar light L2 that is approximately the same as the radius r of the sample container 11, and are 90°
  • the sample container 11 is irradiated with the phase angle.
  • the image acquisition unit 6A acquires the XZ image data 21 of the optical image based on the observation light L3 generated on the sample S by the irradiation of the planar light L2A, and the image acquisition unit 6B acquires the XZ image data 21 on the sample S by irradiation of the planar light L2B.
  • XZ image data 21 of an optical image based on the generated observation light L3 is acquired.
  • the planar lights L2A and L2B are arranged around the rotation axis 12 with a phase angle of 180° in plan view from the Z-axis direction. That is, in a plan view in the Z-axis direction, the planar lights L2A and L2B are arranged to irradiate the sample container 11 as linear light passing through the rotating shaft 12 .
  • the two image acquisition units 6A and 6B are arranged at rotationally symmetrical (two-fold symmetrical) positions with the planar lights L2A and L2B passing through the center C of the sample container 11 interposed therebetween.
  • a plurality of sample containers 11 may be scanned on a circular orbit F around the rotation axis 12.
  • four sample containers 11 are arranged on a circular orbit F around the rotating shaft 12 .
  • the planar light L2 has a width slightly larger than the diameter 2r of the sample container 11 .
  • the radius rr of the circular orbit F is not particularly limited, but is appropriately set according to the diameter of the sample container 11 and the number of sample containers 11 arranged on the circular orbit F, for example.
  • the planar light L2 is irradiated toward the sample container 11 at a predetermined point on the circular orbit F so as to be perpendicular to the tangent line of the circular orbit F at the predetermined point.
  • Rotation of the rotating shaft 12 causes the sample container 11 scanned on the circular orbit F to pass the position of the planar light L2, so that the sample S in the sample container 11 is aligned with the irradiation surface V of the planar light L2. Scanned.
  • the plurality of sample containers 11 can be continuously scanned with the planar light L2, thereby improving the throughput until obtaining the observation image data 24 of the plurality of samples S. .

Abstract

A sample observation device 1 comprises: an irradiation optical system 3 that irradiates a sample S with planar light L2; a scanning unit 4 that has a rotating shaft 12 for rotating the sample S at a predetermined angular speed with respect to an irradiation plane V of the planar light L2; an image formation optical system 5 that has an observation axis P2 inclined with respect to the irradiation plane V, and forms an image of observation light L3 generated by the sample S by irradiation with the planar light L2; an image acquisition unit 6 that acquires image data of a light image of the observation light L3 an image of which has been formed by the image formation optical system 5 while the sample S is being scanned; and an image generation unit 8 that, on the basis of the image data, generates observation image data 24 of the sample S.

Description

試料観察装置及び試料観察方法Specimen observation device and specimen observation method
 本開示は、試料観察装置及び試料観察方法に関する。 The present disclosure relates to a sample observation device and a sample observation method.
 細胞などの3次元立体構造を有する試料の内部を観察する手法の一つとして、SPIM(Selective Plane Illumination Microscopy)が知られている。例えば特許文献1に記載の断層像観察装置は、SPIMの基本的な原理を開示したものである。この従来の装置では、面状光を試料に照射し、試料の内部で発生した蛍光又は散乱光を結像面に結像させて試料内部の観察画像データを取得する。 SPIM (Selective Plane Illumination Microscopy) is known as one of the methods for observing the inside of samples with a three-dimensional structure such as cells. For example, a tomographic image observation apparatus described in Patent Document 1 discloses the basic principle of SPIM. In this conventional apparatus, a sample is irradiated with planar light, and fluorescence or scattered light generated inside the sample is imaged on an imaging plane to obtain observation image data of the inside of the sample.
 面状光を用いた他の試料観察装置としては、例えば特許文献2に記載の試料観察装置がある。この試料観察装置は、試料に面状光を照射する照射光学系と、面状光の照射面に対して試料を走査する走査部とを備えている。また、照射面に対して傾斜する観察軸を有し、面状光の照射によって試料で発生した観察光を結像する結像光学系と、結像光学系によって結像された観察光による光像の一部に対応する部分画像データを複数取得する画像取得部と、画像取得部によって生成された複数の部分画像データに基づいて試料の観察画像データを生成する画像生成部とを備えている。 As another sample observation device using planar light, there is a sample observation device described in Patent Document 2, for example. This sample observation apparatus includes an irradiation optical system that irradiates a sample with planar light, and a scanning unit that scans the sample with respect to the irradiation surface of the planar light. An imaging optical system that has an observation axis that is inclined with respect to the irradiation surface and that forms an image of observation light generated in the sample by the irradiation of the planar light; An image acquisition unit that acquires a plurality of partial image data corresponding to a part of an image, and an image generation unit that generates observation image data of the sample based on the plurality of partial image data generated by the image acquisition unit. .
特開昭62-180241号公報JP-A-62-180241 特開2018-063292号公報JP 2018-063292 A
 上述した特許文献2の試料観察装置では、試料の3次元画像を観察画像データとして取得するにあたって、面状光の照射面に対して試料を2軸で走査している。一方で、実際に試料観察装置で試料の観察を実施する際には、試料が載置されるシャーレ等の試料容器は、円形状をなしていることが多い。このため、観察画像データの取得にあたって試料の走査を効率化できる技術の開発が求められていた。 In the sample observation device of Patent Document 2 described above, in acquiring a three-dimensional image of the sample as observation image data, the sample is scanned on two axes with respect to the irradiation surface of the planar light. On the other hand, when actually observing a sample with a sample observing apparatus, a sample container such as a petri dish on which the sample is placed is often circular. Therefore, there has been a demand for the development of a technique that can efficiently scan a sample when acquiring observation image data.
 本開示は、上記課題の解決のためになされたものであり、観察画像データの取得にあたって試料の走査を効率化できる試料観察装置及び試料観察方法を提供することを目的とする。 The present disclosure has been made to solve the above problems, and aims to provide a sample observation device and a sample observation method that can efficiently scan a sample when acquiring observation image data.
 本開示の一側面に係る試料観察装置は、試料に面状光を照射する照射光学系と、面状光の照射面に対し、試料を所定の角速度で回転させる回転軸を有する走査部と、照射面に対して傾斜する観察軸を有し、面状光の照射によって試料で発生した観察光を結像する結像光学系と、試料の走査中に結像光学系によって結像された観察光による光像の画像データを取得する画像取得部と、画像データに基づいて試料の観察画像データを生成する画像生成部と、を備える。 A sample observation apparatus according to one aspect of the present disclosure includes an irradiation optical system that irradiates a sample with planar light, a scanning unit that has a rotating shaft that rotates the sample at a predetermined angular velocity with respect to the irradiation surface of the planar light, An imaging optical system that has an observation axis that is inclined with respect to the irradiation surface and forms an image of the observation light generated by the sample due to the irradiation of the planar light, and an observation that is imaged by the imaging optical system during scanning of the sample. An image acquisition unit that acquires image data of an optical image using light, and an image generation unit that generates observation image data of a sample based on the image data.
 この試料観察装置では、面状光の照射面に対して試料が回転軸回りに所定の角速度で回転することによって、試料に対する面状光の走査が行われる。これにより、試料が載置される試料容器が円形状をなしている場合において、試料を無駄なく走査することが可能となり、観察画像データの取得にあたって試料の走査を一層効率化できる。 In this sample observation device, the sample is scanned with the planar light by rotating the sample around the rotation axis at a predetermined angular velocity with respect to the irradiation surface of the planar light. As a result, when the sample container in which the sample is placed has a circular shape, the sample can be scanned without waste, and the sample can be scanned more efficiently in acquiring observation image data.
 面状光の幅方向をX軸、面状光の厚さ方向をY軸、面状光の光軸をZ軸、回転軸の回転の接線方向をR軸とした場合、画像生成部は、画像取得部で取得された複数のXZ画像データをZ軸方向に積算して複数のX画像データを生成し、複数のX画像データをR軸方向について再構成して得られたXY画像データを観察画像データとして生成してもよい。これにより、Z軸方向の任意の位置で任意の厚さを持ったXY画像データを観察画像データとして生成することができる。また、生成された観察画像データのバックグラウンドを抑制することができる。 When the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, the optical axis of the planar light is the Z axis, and the tangential direction of rotation of the rotation axis is the R axis, the image generation unit A plurality of XZ image data acquired by the image acquisition unit are integrated in the Z-axis direction to generate a plurality of X image data, and XY image data obtained by reconstructing the plurality of X image data in the R-axis direction are generated. It may be generated as observation image data. Thereby, XY image data having an arbitrary thickness at an arbitrary position in the Z-axis direction can be generated as observation image data. Also, the background of the generated observation image data can be suppressed.
 画像生成部は、少なくとも走査部における回転軸の回転の角速度と、画像取得部の視野サイズとに基づいて各画素に割り当てられるデータ量を補正することにより、複数のX画像データからXY画像データを生成してもよい。回転軸によって面状光に対する試料Sの走査を行う場合、回転軸の角速度が一定であっても、試料Sの各部位の接線速度は、回転軸からの距離に応じて変化することとなる。したがって、回転軸の角速度と画像取得部の視野サイズとに基づいて各画素に割り当てられるデータ量を補正することにより、複数のX画像データからXY画像データへの適切な変換を実施できる。 The image generation unit corrects the amount of data assigned to each pixel based on at least the angular velocity of rotation of the rotation axis of the scanning unit and the field size of the image acquisition unit, thereby generating XY image data from a plurality of X image data. may be generated. When the sample S is scanned with respect to the planar light by the rotating shaft, even if the angular velocity of the rotating shaft is constant, the tangential velocity of each part of the sample S changes according to the distance from the rotating shaft. Therefore, by correcting the amount of data assigned to each pixel based on the angular velocity of the rotating shaft and the size of the field of view of the image acquisition unit, it is possible to appropriately convert a plurality of X image data into XY image data.
 回転軸は、面状光の断面内に位置していてもよい。この場合、各画素に割り当てられるデータ量の補正を複雑化させずに観察画像データを生成することが可能となる。 The rotation axis may be located within the cross section of the planar light. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
 面状光の幅方向をX軸、面状光の厚さ方向をY軸、面状光の光軸をZ軸とした場合、回転軸は、X軸とZ軸とを含むXZ面、及びY軸とZ軸とを含むYZ面の少なくとも一方の面と平行となっていてもよい。この場合、各画素に割り当てられるデータ量の補正を複雑化させずに観察画像データを生成することが可能となる。 When the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, and the optical axis of the planar light is the Z axis, the rotation axis is the XZ plane including the X axis and the Z axis, and It may be parallel to at least one of the YZ planes including the Y axis and the Z axis. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
 本開示の一側面に係る試料観察方法は、試料に面状光を照射する照射ステップと、面状光の照射面に対し、試料を所定の角速度で回転軸回りに回転させる走査ステップと、照射面に対して傾斜する観察軸を有する結像光学系を用い、面状光の照射によって試料で発生した観察光を結像する結像ステップと、試料の走査中に結像光学系によって結像された観察光による光像の画像データを取得する画像取得ステップと、画像データに基づいて試料の観察画像データを生成する画像生成ステップと、を備える。 A sample observation method according to one aspect of the present disclosure includes an irradiation step of irradiating a sample with planar light, a scanning step of rotating the sample around a rotation axis at a predetermined angular velocity with respect to the irradiation surface of the planar light, and an irradiation step. An image forming step of forming an image of observation light generated in a sample by irradiation with planar light using an image forming optical system having an observation axis inclined with respect to the plane; an image acquisition step of acquiring image data of an optical image by the observed light; and an image generating step of generating observation image data of the sample based on the image data.
 この試料観察方法では、面状光の照射面に対して試料が回転軸回りに所定の角速度で回転することによって、試料に対する面状光の走査を行う。これにより、試料が載置される試料容器が円形状をなしている場合において、試料を無駄なく走査することが可能となり、観察画像データの取得にあたって試料の走査を一層効率化できる。 In this specimen observation method, the specimen is scanned with the planar light by rotating the specimen at a predetermined angular velocity around the rotation axis with respect to the irradiation surface of the planar light. As a result, when the sample container in which the sample is placed has a circular shape, the sample can be scanned without waste, and the sample can be scanned more efficiently in acquiring observation image data.
 面状光の幅方向をX軸、面状光の厚さ方向をY軸、面状光の光軸をZ軸、回転軸の回転の接線方向をR軸とした場合、画像生成ステップでは、画像取得ステップで取得した複数のXZ画像データをZ軸方向に積算して複数のX画像データを生成し、複数のX画像データをR軸方向について再構成して得られたXY画像データを観察画像データとして生成してもよい。これにより、Z軸方向の任意の位置で任意の厚さを持ったXY画像データを観察画像データとして生成することができる。また、生成された観察画像データのバックグラウンドを抑制することができる。 Assuming that the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, the optical axis of the planar light is the Z axis, and the tangential direction of the rotation of the rotation axis is the R axis, in the image generation step, A plurality of XZ image data acquired in the image acquisition step are integrated in the Z-axis direction to generate a plurality of X image data, and an XY image data obtained by reconstructing the plurality of X image data in the R-axis direction is observed. It may be generated as image data. Thereby, XY image data having an arbitrary thickness at an arbitrary position in the Z-axis direction can be generated as observation image data. Also, the background of the generated observation image data can be suppressed.
 画像生成ステップでは、少なくとも走査ステップにおける回転軸の角速度と、画像取得ステップにおける視野サイズとに基づいて、各画素に割り当てられるデータ量を補正することにより、複数のX画像データからXY画像データを生成してもよい。回転軸によって面状光に対する試料Sの走査を行う場合、回転軸の角速度が一定であっても、試料Sの各部位の接線速度は、回転軸からの距離に応じて変化することとなる。したがって、回転軸の角速度と画像取得部の視野サイズとに基づいて各画素に割り当てられるデータ量を補正することにより、複数のX画像データからXY画像データへの適切な変換を実施できる。 In the image generation step, XY image data is generated from a plurality of X image data by correcting the amount of data assigned to each pixel based on at least the angular velocity of the rotation axis in the scanning step and the field size in the image acquisition step. You may When the sample S is scanned with respect to the planar light by the rotating shaft, even if the angular velocity of the rotating shaft is constant, the tangential velocity of each part of the sample S changes according to the distance from the rotating shaft. Therefore, by correcting the amount of data assigned to each pixel based on the angular velocity of the rotating shaft and the size of the field of view of the image acquisition unit, it is possible to appropriately convert a plurality of X image data into XY image data.
 走査ステップでは、回転軸を面状光の断面内に位置させてもよい。この場合、各画素に割り当てられるデータ量の補正を複雑化させずに観察画像データを生成することが可能となる。 In the scanning step, the rotation axis may be positioned within the cross section of the planar light. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
 面状光の幅方向をX軸、面状光の厚さ方向をY軸、面状光の光軸をZ軸、走査ステップでは、X軸とZ軸とを含むXZ面、及びY軸とZ軸とを含むYZ面の少なくとも一方の面と平行としてもよい。この場合、各画素に割り当てられるデータ量の補正を複雑化させずに観察画像データを生成することが可能となる。 The width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, and the optical axis of the planar light is the Z axis. It may be parallel to at least one of the YZ planes including the Z axis. In this case, observation image data can be generated without complicating the correction of the amount of data assigned to each pixel.
 本開示によれば、観察画像データの取得にあたって試料の走査を効率化できる。 According to the present disclosure, it is possible to make the scanning of the sample more efficient when acquiring observation image data.
[規則91に基づく訂正 30.03.2022] 
本開示に係る試料観察装置の一実施形態を示す概略構成図である。 図1に示した試料観察装置を用いた試料観察方法の一例を示すフローチャートである。 (A)は、Z軸方向から見た場合の回転軸と面状光との配置関係の一例を示す模式的な図であり、(B)及び(C)は、Z軸方向から見た場合の回転軸と面状光との配置関係の別例を示す模式的な図である。 (A)は、Y軸方向からみた場合の回転軸と面状光との配置関係の一例を示す模式的な図であり、(B)は、X軸方向からみた場合の回転軸と面状光との配置関係の一例を示す模式的な図である。 (A)は、Y軸方向からみた場合の回転軸と面状光との配置関係の別例を示す模式的な図であり、(B)は、X軸方向からみた場合の回転軸と面状光との配置関係の別例を示す模式的な図である。 画像取得部で取得される複数のXZ画像データを示す模式的な図である。 複数のXZ画像データからXY画像データ(観察画像データ)を生成する様子を示す模式的な図である。 画像取得部の各画素に割り当てられるデータ量を示す模式的な図である。 (A)は、試料に対する面状光の照射面と観察軸との関係を示す模式的な図であり、(B)は、かかる態様での走査動作と画像取得との関係を示す模式的な図である。 (A)及び(B)は、Z軸方向から見た場合の回転軸と面状光との配置関係の変形例を示す模式的な図である。 (A)及び(B)は、Z軸方向から見た場合の回転軸と面状光との配置関係の別の変形例を示す模式的な図である。 Z軸方向から見た場合の回転軸と面状光との配置関係の更に別の変形例を示す模式的な図である。
[Correction under Rule 91 30.03.2022]
1 is a schematic configuration diagram showing an embodiment of a sample observation device according to the present disclosure; FIG. 2 is a flow chart showing an example of a sample observation method using the sample observation apparatus shown in FIG. 1; (A) is a schematic diagram showing an example of the positional relationship between the rotation axis and planar light when viewed from the Z-axis direction, and (B) and (C) when viewed from the Z-axis direction. FIG. 10 is a schematic diagram showing another example of the arrangement relationship between the rotational axis of and planar light. (A) is a schematic diagram showing an example of the positional relationship between the rotation axis and planar light when viewed from the Y-axis direction; It is a typical figure which shows an example of the arrangement|positioning relationship with light. (A) is a schematic diagram showing another example of the arrangement relationship between the rotation axis and planar light when viewed from the Y-axis direction; FIG. 11 is a schematic diagram showing another example of the arrangement relationship with the shape light. FIG. 4 is a schematic diagram showing a plurality of XZ image data acquired by an image acquisition unit; FIG. 4 is a schematic diagram showing how XY image data (observation image data) is generated from a plurality of XZ image data; FIG. 4 is a schematic diagram showing the amount of data assigned to each pixel of the image acquisition unit; (A) is a schematic diagram showing the relationship between the irradiation surface of planar light with respect to the sample and the observation axis, and (B) is a schematic diagram showing the relationship between the scanning operation and image acquisition in this mode. It is a diagram. (A) and (B) are schematic diagrams showing modifications of the positional relationship between the rotation axis and the planar light when viewed from the Z-axis direction. (A) and (B) are schematic diagrams showing another modification of the positional relationship between the rotation axis and the planar light when viewed from the Z-axis direction. FIG. 11 is a schematic diagram showing still another modified example of the positional relationship between the rotation axis and the planar light when viewed from the Z-axis direction;
 以下、図面を参照しながら、本開示の一側面に係る試料観察装置及び試料観察方法の好適な実施形態について詳細に説明する。 Preferred embodiments of a sample observation device and a sample observation method according to one aspect of the present disclosure will be described below in detail with reference to the drawings.
 図1は、本開示に係る試料観察装置の一実施形態を示す概略構成図である。この試料観察装置1は、面状光L2を試料Sに照射し、試料Sの内部で発生した蛍光又は散乱光を結像面に結像させて試料S内部の観察画像データを取得する装置として構成されている。この種の試料観察装置1としては、スライドガラスに保持される試料Sの画像を取得して表示するスライドスキャナ、或いはマイクロプレートに保持される試料Sの画像データを取得して画像データを解析するプレートリーダなどが挙げられる。観察対象となる試料Sとしては、例えばヒト或いは動物の細胞、組織、臓器、動物或いは植物自体、植物の細胞、組織などが挙げられる。また、試料Sは、溶液、ゲル、或いは試料Sとは屈折率の異なる物質に含まれていてもよい。 FIG. 1 is a schematic configuration diagram showing one embodiment of the sample observation device according to the present disclosure. This sample observation apparatus 1 is an apparatus that acquires observation image data of the inside of the sample S by irradiating the sample S with planar light L2 and forming an image of fluorescence or scattered light generated inside the sample S on an imaging plane. It is configured. A sample observation apparatus 1 of this type may be a slide scanner that acquires and displays an image of a sample S held on a slide glass, or acquires image data of a sample S held on a microplate and analyzes the image data. A plate reader etc. are mentioned. Examples of the sample S to be observed include human or animal cells, tissues, organs, animal or plant itself, and plant cells and tissues. Moreover, the sample S may be contained in a solution, a gel, or a substance having a different refractive index from that of the sample S.
 試料観察装置1は、図1に示すように、光源2と、照射光学系3と、走査部4と、結像光学系5と、画像取得部6と、コンピュータ7とを備えて構成されている。光源2は、試料Sに照射される光L1を出力する光源である。光源2としては、例えばレーザダイオード、固体レーザ光源といったレーザ光源が挙げられる。また、光源2は、発光ダイオード、スーパールミネッセントダイオード、ランプ系光源であってもよい。光源2から出力された光L1は、照射光学系3に導光される。 As shown in FIG. 1, the sample observation apparatus 1 includes a light source 2, an irradiation optical system 3, a scanning section 4, an imaging optical system 5, an image acquisition section 6, and a computer 7. there is The light source 2 is a light source that outputs light L1 with which the sample S is irradiated. Examples of the light source 2 include laser light sources such as laser diodes and solid-state laser light sources. Also, the light source 2 may be a light-emitting diode, a super-luminescent diode, or a lamp-based light source. Light L<b>1 output from the light source 2 is guided to the irradiation optical system 3 .
 照射光学系3は、光源2から出力された光L1を面状光L2に整形し、整形された面状光L2を光軸P1に沿って試料Sに照射する光学系である。以下の説明では、照射光学系3の光軸P1を面状光L2の光軸と称す場合もある。照射光学系3は、例えばシリンドリカルレンズ、アキシコンレンズ、或いは空間光変調器などの光整形素子を含んで構成され、光源2に対して光学的に結合されている。照射光学系3は、対物レンズを含んで構成されていてもよい。照射光学系3によって形成された面状光L2は、試料Sに照射される。面状光L2が照射された試料Sでは、面状光L2の照射面Vにおいて観察光L3が発生する。観察光L3は、例えば面状光L2によって励起された蛍光、面状光L2の散乱光、或いは面状光L2の拡散反射光である。 The irradiation optical system 3 is an optical system that shapes the light L1 output from the light source 2 into planar light L2 and irradiates the sample S with the shaped planar light L2 along the optical axis P1. In the following description, the optical axis P1 of the irradiation optical system 3 may be referred to as the optical axis of the planar light L2. The irradiation optical system 3 includes a light shaping element such as a cylindrical lens, an axicon lens, or a spatial light modulator, and is optically coupled to the light source 2 . The irradiation optical system 3 may be configured including an objective lens. The sample S is irradiated with the planar light L2 formed by the irradiation optical system 3 . In the sample S irradiated with the planar light L2, the observation light L3 is generated on the irradiation surface V of the planar light L2. The observation light L3 is, for example, fluorescence excited by the planar light L2, scattered light of the planar light L2, or diffuse reflected light of the planar light L2.
 試料Sの厚さ方向に観察を行う場合、分解能を考慮して、面状光L2は、厚さ2mm以下の薄い面状光であることが好ましい。また、試料Sの厚さが非常に小さい場合、すなわち、Z軸方向の解像度以下の厚さの試料Sを観察する場合には、面状光L2の厚さは分解能に影響しない。したがって、厚さ2mmを超える面状光L2を用いてもよい。 When observing the sample S in the thickness direction, the planar light L2 is preferably thin planar light with a thickness of 2 mm or less in consideration of resolution. Further, when the thickness of the sample S is very small, that is, when observing the sample S with a thickness equal to or less than the resolution in the Z-axis direction, the thickness of the planar light L2 does not affect the resolution. Therefore, planar light L2 having a thickness exceeding 2 mm may be used.
 走査部4は、面状光L2の照射面Vに対して試料Sを走査する機構である。本実施形態では、走査部4は、試料Sを保持する試料容器11を所定の角速度で回転させる回転軸12を有している。試料容器11は、例えば平面視で円形状をなすシャーレによって構成されている。試料容器11は、面状光L2に対する透明性を有する部材によって形成されている。このような部材としては、例えばガラス、石英、合成樹脂などが挙げられる。試料容器11は、例えば面状光L2の入力面(ここではシャーレの底面)が面状光L2の光軸P1と直交するように回転軸12に取り付けられている。 The scanning unit 4 is a mechanism that scans the sample S with respect to the irradiation surface V of the planar light L2. In this embodiment, the scanning unit 4 has a rotating shaft 12 that rotates a sample container 11 holding the sample S at a predetermined angular velocity. The sample container 11 is configured by, for example, a petri dish having a circular shape in plan view. The sample container 11 is made of a member having transparency to the planar light L2. Examples of such members include glass, quartz, and synthetic resin. The sample container 11 is attached to the rotating shaft 12 so that the input surface of the planar light L2 (here, the bottom surface of the petri dish) is orthogonal to the optical axis P1 of the planar light L2.
 走査部4は、コンピュータ7からの制御信号に従い、予め設定された回転方向に回転軸12を回転させることにより、面状光L2に対して試料容器11を走査する。以下の説明では、面状光L2の幅方向をX軸、面状光L2の厚さ方向をY軸、面状光L2の光軸P1方向をZ軸、走査部4による試料Sの走査方向(回転軸12の回転の接線方向)をR軸と称する。試料Sに対する面状光L2の照射面Vは、XZ平面内の面となる。 The scanning unit 4 scans the sample container 11 with respect to the planar light L2 by rotating the rotation shaft 12 in a preset rotation direction according to the control signal from the computer 7 . In the following description, the width direction of the planar light L2 is the X axis, the thickness direction of the planar light L2 is the Y axis, the optical axis P1 direction of the planar light L2 is the Z axis, and the scanning direction of the sample S by the scanning unit 4. (the tangential direction of the rotation of the rotating shaft 12) is called the R-axis. The irradiation surface V of the planar light L2 with respect to the sample S is a surface within the XZ plane.
 結像光学系5は、面状光L2の照射によって試料Sで発生した観察光L3を結像する光学系である。結像光学系5は、例えば対物レンズ16、バンドパスフィルタ17、リレーレンズ18等を含んで構成されている。結像光学系5の光軸は、観察光L3の光軸(以下「観察軸P2」)となっている。観察軸P2は、試料Sにおける面状光L2の照射面Vに対して傾斜角度θをもって傾斜している。傾斜角度θは、試料Sに向かう面状光L2の光軸P1と観察軸P2とがなす角とも一致する。傾斜角度θは、例えば10°~80°となっている。観察画像の解像度を向上させる観点から、傾斜角度θは、20°~70°であることが好ましい。また、観察画像の解像度の向上及び視野の安定性の観点から、傾斜角度θは、30°~65°であることが更に好ましい。 The imaging optical system 5 is an optical system that forms an image of the observation light L3 generated at the sample S by the irradiation of the planar light L2. The imaging optical system 5 includes, for example, an objective lens 16, a bandpass filter 17, a relay lens 18, and the like. The optical axis of the imaging optical system 5 is the optical axis of the observation light L3 (hereinafter "observation axis P2"). The observation axis P2 is inclined with respect to the irradiation plane V of the sample S with the planar light L2 at an inclination angle θ. The tilt angle θ also coincides with the angle formed by the optical axis P1 of the planar light L2 directed toward the sample S and the observation axis P2. The inclination angle θ is, for example, 10° to 80°. From the viewpoint of improving the resolution of the observed image, the tilt angle θ is preferably 20° to 70°. Further, from the viewpoint of improving the resolution of the observed image and stabilizing the field of view, the tilt angle θ is more preferably 30° to 65°.
 画像取得部6は、試料Sの走査中に結像光学系5によって結像された観察光L3による光像の画像データを取得する装置である。画像取得部6は、例えば観察光L3による光像を撮像する撮像装置を含んで構成されている。撮像装置としては、例えばCMOSイメージセンサ、CCDイメージセンサといったエリアイメージセンサが挙げられる。これらのエリアイメージセンサは、結像光学系5による結像面に配置され、二次元の画像データをコンピュータ7に出力する。撮像装置の読出方式は、各画素列の露光期間が一致するグローバルシャッタ方式であってもよく、各画素列の露光期間が所定時間ずつずれるローリングシャッタ方式であってもよい。 The image acquisition unit 6 is a device that acquires image data of an optical image formed by the observation light L3 formed by the imaging optical system 5 while the sample S is being scanned. The image acquisition unit 6 includes, for example, an imaging device that captures an optical image using the observation light L3. Examples of imaging devices include area image sensors such as CMOS image sensors and CCD image sensors. These area image sensors are arranged on the imaging plane of the imaging optical system 5 and output two-dimensional image data to the computer 7 . The readout method of the imaging device may be a global shutter method in which the exposure period of each pixel row is the same, or may be a rolling shutter method in which the exposure period of each pixel row is shifted by a predetermined time.
 コンピュータ7は、物理的には、RAM、ROM等のメモリ、及びCPU等のプロセッサ(演算回路)、通信インターフェイス、ハードディスク等の格納部、ディスプレイ等の表示部を備えて構成されている。かかるコンピュータ7としては、例えばパーソナルコンピュータ、クラウドサーバ、スマートデバイス(スマートフォン、タブレット端末など)などが挙げられる。コンピュータ7は、メモリに格納されるプログラムをコンピュータシステムのCPUで実行することにより、光源2及び回転軸12の動作を制御するコントローラ、試料Sの観察画像データを生成する画像生成部8、及び観察画像データを解析する解析部10として機能する。 The computer 7 is physically configured with memories such as RAM and ROM, a processor (arithmetic circuit) such as a CPU, a communication interface, a storage unit such as a hard disk, and a display unit such as a display. Such computers 7 include, for example, personal computers, cloud servers, smart devices (smartphones, tablet terminals, etc.). The computer 7 includes a controller that controls the operation of the light source 2 and the rotating shaft 12, an image generator 8 that generates observation image data of the sample S, and an observation It functions as an analysis unit 10 that analyzes image data.
 コントローラとしてのコンピュータ7は、ユーザによる測定開始の操作の入力を受け、光源2、走査部4、及び画像取得部6を同期させて駆動する。この場合、コンピュータ7は、回転軸12による試料Sの移動中、光源2が光L1を連続的に出力するように光源2を制御してもよく、画像取得部6による撮像に合わせて光源2による光L1の出力のON/OFFを制御してもよい。また、照射光学系3が光シャッタ(不図示)を備えている場合、コンピュータ7は、当該光シャッタの制御によって試料Sへの面状光L2の照射をON/OFFさせてもよい。 The computer 7 as a controller receives the user's operation to start measurement, and drives the light source 2, the scanning unit 4, and the image acquisition unit 6 in synchronization. In this case, the computer 7 may control the light source 2 so that the light source 2 continuously outputs the light L1 while the sample S is being moved by the rotating shaft 12. ON/OFF of the output of the light L1 may be controlled. If the irradiation optical system 3 includes an optical shutter (not shown), the computer 7 may turn on/off the irradiation of the sample S with the planar light L2 by controlling the optical shutter.
 画像生成部8としてのコンピュータ7は、画像取得部6によって生成された画像データに基づいて試料Sの観察画像データを生成する。画像生成部8は、画像取得部6から出力された画像データに基づいて、例えば面状光L2の光軸P1に直交する面(XY面)における試料Sの観察画像データを生成する。画像生成部8は、例えばユーザによる所定の操作に従って、生成した観察画像データの格納、モニタ等への表示等を実行する。 The computer 7 as the image generation unit 8 generates observed image data of the sample S based on the image data generated by the image acquisition unit 6 . The image generation unit 8 generates observation image data of the sample S on a plane (XY plane) perpendicular to the optical axis P1 of the planar light L2, for example, based on the image data output from the image acquisition unit 6 . The image generation unit 8 stores the generated observation image data and displays it on a monitor or the like, for example, according to a predetermined operation by the user.
 図2は、試料観察装置を用いた試料観察方法の一例を示すフローチャートである。同図に示すように、この試料観察方法は、照射ステップ(ステップS01)、走査ステップ(ステップS02)、結像ステップ(ステップS03)、画像取得ステップ(ステップS04)、画像生成ステップ(ステップS05)、及び解析ステップ(ステップS06)を備えている。 FIG. 2 is a flow chart showing an example of a sample observation method using a sample observation device. As shown in the figure, this sample observation method includes an irradiation step (step S01), a scanning step (step S02), an imaging step (step S03), an image acquisition step (step S04), and an image generation step (step S05). , and an analysis step (step S06).
 照射ステップS01では、試料Sに面状光L2を照射する。ユーザによって測定開始の操作が入力されると、コンピュータ7からの制御信号に基づいて光源2が駆動し、光源2から光L1が出力される。光源2から出力された光L1は、照射光学系3によって整形されて面状光L2となり、試料Sに照射される。 In the irradiation step S01, the sample S is irradiated with planar light L2. When the user inputs an operation to start measurement, the light source 2 is driven based on a control signal from the computer 7, and the light source 2 outputs light L1. The light L1 output from the light source 2 is shaped by the irradiation optical system 3 to become planar light L2, and the sample S is irradiated with the planar light L2.
 走査ステップS02では、面状光L2の照射面Vに対して試料Sを走査する。ユーザによって測定開始の操作が入力されると、コンピュータ7からの制御信号に基づいて、光源2の駆動と同期して回転軸12が回転する。これにより、試料容器11がR軸方向に所定の角速度で回転し、面状光L2の照射面Vに対して試料容器11内の試料Sが走査される。 In the scanning step S02, the sample S is scanned with respect to the irradiation surface V of the planar light L2. When the user inputs an operation to start measurement, the rotating shaft 12 rotates in synchronization with the driving of the light source 2 based on the control signal from the computer 7 . As a result, the sample container 11 rotates in the R-axis direction at a predetermined angular velocity, and the sample S in the sample container 11 is scanned with respect to the irradiation surface V of the planar light L2.
 照射ステップS01及び走査ステップS02では、回転軸12が面状光L2の断面内に位置するように、照射光学系3と走査部4とを配置することが好ましい。図3(A)の例では、Z軸方向から見た平面視において、試料容器11の中心Cと回転軸12とが一致した状態となっている。面状光L2の幅Wは、例えば試料容器11の半径rと一致しているか、或いは試料容器11の半径rよりも僅かに大きくなっている。面状光L2は、Z軸方向から見た平面視において、回転軸12と試料容器11の縁とに跨るように試料容器11の中心Cから径方向に延在している。したがって、図3(A)の例では、回転軸12によって試料容器11が1回転することで、面状光L2による試料Sの走査が完了する。 In the irradiation step S01 and the scanning step S02, it is preferable to arrange the irradiation optical system 3 and the scanning unit 4 so that the rotating shaft 12 is positioned within the cross section of the planar light L2. In the example of FIG. 3A, the center C of the sample container 11 and the rotation axis 12 are aligned in plan view from the Z-axis direction. The width W of the planar light L2 is, for example, the same as the radius r of the sample container 11 or slightly larger than the radius r of the sample container 11 . The planar light L2 extends radially from the center C of the sample container 11 so as to straddle the rotating shaft 12 and the edge of the sample container 11 in plan view in the Z-axis direction. Therefore, in the example of FIG. 3A, the scanning of the sample S with the planar light L2 is completed when the sample container 11 makes one rotation about the rotating shaft 12 .
 回転軸12は、必ずしも面状光L2の断面内に位置していなくてもよい。例えば図3(B)に示すように、Z軸方向から見た平面視において、試料容器11の中心Cに対して回転軸12がずれていてもよい。図3(B)の例では、面状光L2は、試料容器11の中心Cと縁とを跨るように試料容器11の中心Cから径方向に延在している一方で、回転軸12が試料容器11の中心Cに対してY軸方向に僅かにシフトしている。また、図3(C)に示すように、Z軸方向から見た平面視において、試料容器11の中心Cに対して面状光L2がずれていてもよい。図3(C)の例では、回転軸12が試料容器11の中心Cと一致している一方で、面状光L2が試料容器11の中心Cに対してY軸方向に僅かにシフトしている。 The rotating shaft 12 does not necessarily have to be positioned within the cross section of the planar light L2. For example, as shown in FIG. 3B, the rotating shaft 12 may be displaced from the center C of the sample container 11 in plan view in the Z-axis direction. In the example of FIG. 3B, the planar light L2 extends radially from the center C of the sample container 11 so as to straddle the center C and the edge of the sample container 11, while the rotation axis 12 is It is slightly shifted in the Y-axis direction with respect to the center C of the sample container 11 . Further, as shown in FIG. 3C, the planar light L2 may be displaced from the center C of the sample container 11 in a plan view in the Z-axis direction. In the example of FIG. 3C, while the rotation axis 12 is aligned with the center C of the sample container 11, the planar light L2 is slightly shifted in the Y-axis direction with respect to the center C of the sample container 11. there is
 図3(B)及び図3(C)のような構成においては、中心Cに対する回転軸12のシフト量、或いは中心Cに対する面状光L2のシフト量をdとした場合に、シフト量dに応じて試料容器11の縁部付近の一部に面状光L2が照射されない領域が生じ得る。この場合、面状光L2の幅Wを試料容器11の半径rより少なくともd以上長くする(W≧r+d)ことで、試料容器11に面状光L2が照射されない領域を低減することができる。また、図3(B)或いは図3(C)のような構成においては、回転軸12の周辺に面状光L2が照射されない領域が生じ得る。この場合、試料容器11の中心Cに対する回転軸12のずれ量を予め把握しておくことで、後述の画像生成ステップS05において、回転軸12の周辺の面状光L2が照射されない領域を画像生成から除外する補正を行うことができる。 In the configurations shown in FIGS. 3B and 3C, when the shift amount of the rotating shaft 12 with respect to the center C or the shift amount of the planar light L2 with respect to the center C is d, the shift amount d is Accordingly, there may be a region in the vicinity of the edge of the sample container 11 that is not irradiated with the planar light L2. In this case, by making the width W of the planar light L2 longer than the radius r of the sample container 11 by at least d (W≧r+d), the area of the sample container 11 not irradiated with the planar light L2 can be reduced. In addition, in the configuration shown in FIG. 3B or 3C, there may be a region around the rotating shaft 12 that is not irradiated with the planar light L2. In this case, by grasping in advance the amount of deviation of the rotating shaft 12 with respect to the center C of the sample container 11, in the image generation step S05 described later, an image is generated of the area around the rotating shaft 12 which is not irradiated with the planar light L2. A correction can be made to exclude from
 照射ステップS01及び走査ステップS02では、回転軸12は、X軸とZ軸とを含むXZ面、及びY軸とZ軸とを含むYZ面の少なくとも一方の面と平行となっていることが好ましい。本実施形態では、図4(A)に示すように、面状光L2をY軸方向から見た場合に、回転軸12と面状光L2の光軸P1とが平行になっている。また、図4(B)に示すように、面状光L2をX軸方向から見た場合に、回転軸12と面状光L2の光軸P1とが平行になっている。すなわち、本実施形態では、回転軸12は、XZ面及びYZ面の双方の面と平行となっている。 In the irradiation step S01 and the scanning step S02, the rotation axis 12 is preferably parallel to at least one of the XZ plane including the X and Z axes and the YZ plane including the Y and Z axes. . In this embodiment, as shown in FIG. 4A, when the planar light L2 is viewed from the Y-axis direction, the rotation axis 12 and the optical axis P1 of the planar light L2 are parallel. Further, as shown in FIG. 4B, when the planar light L2 is viewed from the X-axis direction, the rotation axis 12 and the optical axis P1 of the planar light L2 are parallel. That is, in this embodiment, the rotating shaft 12 is parallel to both the XZ plane and the YZ plane.
 回転軸12は、XZ面及びYZ面の一方の面と非平行となっていてもよい。例えば図5(A)に示すように、面状光L2をY軸方向から見た場合に、回転軸12に対して面状光L2の光軸P1が斜交する一方で、図5(B)に示すように、面状光L2をX軸方向から見た場合に、回転軸12と面状光L2の光軸P1とが平行になっていてもよい。また、図示しないが、図5(A)及び図5(B)とは反対に、面状光L2をY軸方向から見た場合に、回転軸12と面状光L2の光軸P1とが平行となっている一方で、面状光L2をX軸方向から見た場合に、回転軸12に対して面状光L2の光軸P1が斜交していてもよい。 The rotating shaft 12 may be non-parallel to one of the XZ plane and the YZ plane. For example, as shown in FIG. 5A, when the planar light L2 is viewed from the Y-axis direction, the optical axis P1 of the planar light L2 obliquely intersects the rotation axis 12, while ), when the planar light L2 is viewed from the X-axis direction, the rotation axis 12 and the optical axis P1 of the planar light L2 may be parallel. Also, although not shown, in contrast to FIGS. 5A and 5B, when the planar light L2 is viewed from the Y-axis direction, the rotation axis 12 and the optical axis P1 of the planar light L2 are aligned. While being parallel, the optical axis P1 of the planar light L2 may obliquely cross the rotation axis 12 when the planar light L2 is viewed from the X-axis direction.
 このような構成であっても、回転軸12に対する面状光L2の光軸の斜交角度を予め把握しておくことで、後述の画像生成ステップS05において、各画素に割り当てられるデータ量を補正することができる。上述したように、X軸方向から見て、回転軸12に対して面状光L2の光軸P1が斜交している場合、試料Sからの観察光L3がY軸方向に傾くため、実際の試料Sの座標からずれた位置で観察光L3の光像が取得され得る。したがって、後述の画像生成ステップS05において、XZ画像データ21からX画像データ22を生成する際に、Z軸方向から面状光L2の光軸の斜交角度だけ傾いた傾斜軸方向に各画素の輝度値を積算することで、各画素に割り当てられるデータ量を補正することができる。また、X画像データ22に代えて、Y軸方向への観察光L3の投影幅を考慮した二次元画像データを生成することによっても、各画素に割り当てられるデータ量を補正することができる。 Even with such a configuration, by grasping in advance the oblique angle of the optical axis of the planar light L2 with respect to the rotation axis 12, the amount of data assigned to each pixel is corrected in the image generation step S05 described later. can do. As described above, when the optical axis P1 of the planar light L2 is oblique to the rotation axis 12 when viewed from the X-axis direction, the observation light L3 from the sample S is inclined in the Y-axis direction. A light image of the observation light L3 can be acquired at a position deviated from the coordinates of the sample S of . Therefore, in the image generation step S05, which will be described later, when generating the X image data 22 from the XZ image data 21, each pixel is in the tilt axis direction tilted from the Z axis direction by the oblique angle of the optical axis of the planar light L2. By accumulating the luminance values, the amount of data assigned to each pixel can be corrected. Also, by generating two-dimensional image data in consideration of the projection width of the observation light L3 in the Y-axis direction instead of the X image data 22, the amount of data assigned to each pixel can be corrected.
 結像ステップS03では、照射面Vに対して傾斜する観察軸P2を有する結像光学系5を用い、面状光L2の照射によって試料Sで発生した観察光L3を画像取得部6の結像面に対して結像する。画像取得ステップS04では、図6に示すように、試料Sの走査中に結像光学系5によって結像された観察光L3による光像に対応するXZ画像データ21をR軸方向について複数取得する。複数のXZ画像データ21は、画像取得部6から画像生成部8に順次出力される。 In the imaging step S03, the imaging optical system 5 having the observation axis P2 inclined with respect to the irradiation surface V is used, and the observation light L3 generated in the sample S by the irradiation of the planar light L2 is imaged by the image acquisition unit 6. An image is formed on a plane. In the image acquisition step S04, as shown in FIG. 6, a plurality of XZ image data 21 corresponding to the optical image formed by the observation light L3 formed by the imaging optical system 5 during scanning of the sample S are acquired in the R-axis direction. . A plurality of XZ image data 21 are sequentially output from the image acquisition section 6 to the image generation section 8 .
 画像生成ステップS05では、複数のXZ画像データ21に基づいて試料Sの観察画像データを生成する。ここでは、図7に示すように、画像取得ステップS04で得られた複数のXZ画像データ21に含まれる各画素の輝度値をZ軸方向に積算し、複数のX画像データ22を生成する。そして、複数のX画像データ22をR軸方向に再構成することによってXY画像データ23を生成し、当該XY画像データ23を試料Sの観察画像データ24として生成する。 In the image generation step S05, observation image data of the sample S is generated based on a plurality of XZ image data 21. Here, as shown in FIG. 7, the brightness value of each pixel included in the plurality of XZ image data 21 obtained in the image acquisition step S04 is integrated in the Z-axis direction to generate a plurality of X image data 22. FIG. XY image data 23 is generated by reconstructing the plurality of X image data 22 in the R-axis direction, and the XY image data 23 is generated as observed image data 24 of the sample S. FIG.
 X画像データ22の生成にあたっては、複数のXZ画像データ21におけるZ軸方向の任意の範囲の各画素の輝度値をZ軸方向に積算してもよい。複数のX画像データ22からのXY画像データ23の生成にあたっては、複数のX画像データ22の再構成によってXY画像データ23を直接生成してもよく、複数のX画像データ22をR軸方向に結合したXR画像データを生成し、当該XR画像データの再構成によってXY画像データ23を生成してもよい。 In generating the X image data 22, the luminance values of each pixel in an arbitrary range in the Z-axis direction in the plurality of XZ image data 21 may be integrated in the Z-axis direction. In generating the XY image data 23 from the plurality of X image data 22, the XY image data 23 may be directly generated by reconstructing the plurality of X image data 22. Combined XR image data may be generated, and the XY image data 23 may be generated by reconstructing the XR image data.
 画像生成ステップS05では、複数のX画像データ22からXY画像データ23を生成するにあたって、少なくとも走査部4における回転軸12の角速度と、画像取得部6の視野サイズとに基づいて各画素に割り当てられるデータ量を補正する。本実施形態では、回転軸12によって面状光L2に対する試料Sの走査を行うため、回転軸12の角速度が一定であっても、試料Sの各部位の接線速度は、回転軸12の中心からの距離に応じて変化することとなる。各画素に割り当てられるデータ量の補正にあたっては、面状光L2に対する回転軸12のシフト量d、画像取得部6の露光時間、解像度などを更に考慮に入れてもよい。回転軸12がXZ面及びYZ面の一方の面と非平行となっている場合には、回転軸12に対する面状光L2の光軸P1の斜交角度を更に考慮に入れてもよい。 In the image generation step S05, when generating the XY image data 23 from the plurality of X image data 22, each pixel is assigned based on at least the angular velocity of the rotating shaft 12 in the scanning unit 4 and the field size of the image acquisition unit 6. Correct the amount of data. In the present embodiment, since the sample S is scanned with respect to the planar light L2 by the rotation shaft 12, even if the angular velocity of the rotation shaft 12 is constant, the tangential velocity of each part of the sample S changes from the center of the rotation shaft 12 to It will change according to the distance of In correcting the amount of data assigned to each pixel, the shift amount d of the rotation axis 12 with respect to the planar light L2, the exposure time of the image acquisition section 6, the resolution, etc. may be further taken into consideration. When the rotation axis 12 is non-parallel to one of the XZ plane and the YZ plane, the oblique angle of the optical axis P1 of the planar light L2 with respect to the rotation axis 12 may be further taken into consideration.
 図8では、n番目~n+2番目のX画像データ22を画像取得部6の画素25と対応付けて示している。図8に示すように、1画素当たりのデータ量[data/pix]は、回転軸12に対応する位置に近い画素ほど大きく、回転軸12に対応する位置から遠い画素ほど小さくなる。図8の例では、回転軸12に対応する位置から見て4番目の画素25では、1画素当たりのデータ量が3.2[data/pix]となっているのに対し、回転軸12に対応する位置から見て11番目の画素2511では、1画素当たりのデータ量が1[data/pix]となっている。したがって、回転軸12の角速度と画像取得部6の視野サイズとに基づいて各画素25に割り当てられるデータ量を補正(例えば除算)することにより、複数のX画像データ22からXY画像データ23への適切な変換を実施できる。 In FIG. 8 , the n-th to n+2-th X image data 22 are shown in association with the pixels 25 of the image acquisition unit 6 . As shown in FIG. 8, the data amount [data/pix] per pixel is larger for pixels closer to the position corresponding to the rotation axis 12 and smaller for pixels farther from the position corresponding to the rotation axis 12 . In the example of FIG. 8, in the fourth pixel 254 as seen from the position corresponding to the rotation axis 12, the data amount per pixel is 3.2 [data/pix]. The data amount per pixel is 1 [data/pix] at the 11th pixel 25-11 when viewed from the position corresponding to . Therefore, by correcting (for example, dividing) the amount of data assigned to each pixel 25 based on the angular velocity of the rotating shaft 12 and the size of the field of view of the image acquisition unit 6, the plurality of X image data 22 are converted to the XY image data 23. Appropriate conversions can be performed.
 解析ステップS06では、解析部10によって観察画像データ24を解析し、解析結果を生成する。例えば創薬スクリーニングでは、試料容器11に試料S及び試薬を入れ、観察画像データ24を取得する。そして、解析部10は、観察画像データ24に基づいて試薬を評価し、評価データを解析結果として生成する。 In the analysis step S06, the analysis unit 10 analyzes the observation image data 24 and generates an analysis result. For example, in drug discovery screening, a sample S and a reagent are placed in the sample container 11 and observation image data 24 are acquired. Then, the analysis unit 10 evaluates the reagent based on the observed image data 24 and generates evaluation data as an analysis result.
 上述した結像ステップS03及び画像取得ステップS04では、図9(A)に示すように、面状光L2の照射面Vに対して結像光学系5の観察軸P2が傾斜しており、この状態で、面状光L2の照射面Vに対して試料Sを走査しながら画像取得部6によって画像取得を行う。このため、画像取得部6では、面状光L2の光軸P1方向(Z軸方向)における断層面のXZ画像データ21を順次取得することが可能となり、画像生成部8では、複数のXZ画像データ21に基づいて、試料Sの観察画像データ24を生成できる。 In the image formation step S03 and the image acquisition step S04 described above, as shown in FIG. In this state, the image acquisition unit 6 acquires an image while scanning the sample S against the irradiation surface V of the planar light L2. Therefore, the image acquisition unit 6 can sequentially acquire the XZ image data 21 of the tomographic plane in the optical axis P1 direction (Z-axis direction) of the planar light L2, and the image generation unit 8 can generate a plurality of XZ images. Observation image data 24 of the sample S can be generated based on the data 21 .
 例えば面状光L2の照射面Vに対して直交する観察軸を有する装置構成(比較例)では、全ての断層面の画像を取得するまでに、画像を取得する断層面の選択(試料Sの走査及び停止)と画像取得とを繰り返す必要がある。また、観察対象が存在する領域が撮像よりも広い場合には、観察軸方向の断面画像を取得する動作に加え、観察軸方向とは異なる方向へステージを移動することにより撮像視野を選択する動作を行う必要がある。これに対し、試料観察装置1のように、面状光L2の照射面Vに対して結像光学系5の観察軸P2が傾斜させる構成を採用する場合、図9(B)に示すように、試料Sを連続的に走査しながら画像取得を順次行うことが可能となる。回転軸12の駆動及び停止の回数を削減し、試料Sの走査動作と画像取得とを同時進行することで、観察画像データ24を得るまでのスループットの向上が図られる。 For example, in the apparatus configuration (comparative example) having an observation axis orthogonal to the irradiation plane V of the planar light L2, selection of a tomographic plane for acquiring an image ( scanning and pausing) and image acquisition must be repeated. Further, when the area where the observation target exists is larger than the imaging area, in addition to the operation of acquiring the cross-sectional image in the observation axis direction, the operation of selecting the imaging field of view by moving the stage in a direction different from the observation axis direction. need to do On the other hand, when adopting a structure in which the observation axis P2 of the imaging optical system 5 is inclined with respect to the irradiation surface V of the planar light L2 as in the sample observation apparatus 1, as shown in FIG. , image acquisition can be performed sequentially while the sample S is continuously scanned. By reducing the number of times the rotating shaft 12 is driven and stopped, and by performing the scanning operation of the sample S and the acquisition of the image at the same time, the throughput until the observation image data 24 is obtained can be improved.
 以上説明したように、試料観察装置1では、面状光L2の照射面Vに対して試料Sが回転軸12回りに所定の角速度で回転することによって、試料Sに対する面状光L2の走査が行われる。これにより、試料Sが載置される試料容器11が円形状をなしている場合において、試料Sを無駄なく走査することが可能となり、観察画像データ24の取得にあたって試料Sの走査を効率化できる。 As described above, in the sample observation apparatus 1, the sample S rotates around the rotation axis 12 at a predetermined angular velocity with respect to the irradiation surface V of the planar light L2, thereby scanning the sample S with the planar light L2. done. As a result, when the sample container 11 in which the sample S is placed has a circular shape, the sample S can be scanned without waste, and the scanning of the sample S can be made efficient in obtaining the observation image data 24. .
 試料観察装置1では、面状光L2の幅方向をX軸、面状光L2の光軸P1をZ軸、走査部4による回転軸12の回転の接線方向をR軸とした場合、画像生成部8は、画像取得部6で取得された複数のXZ画像データ21をZ軸方向に積算して複数のX画像データ22を生成し、複数のX画像データ22をR軸方向に結合して得られたXY画像データ23を観察画像データ24として生成している。これにより、Z軸方向の任意の位置で任意の厚さを持ったXY画像データ23を観察画像データ24として生成することができる。また、生成された観察画像データ24のバックグラウンドを抑制することができる。 In the sample observation device 1, when the width direction of the planar light L2 is the X axis, the optical axis P1 of the planar light L2 is the Z axis, and the tangential direction of the rotation of the rotating shaft 12 by the scanning unit 4 is the R axis, an image is generated. A unit 8 integrates a plurality of XZ image data 21 acquired by the image acquisition unit 6 in the Z-axis direction to generate a plurality of X image data 22, and combines the plurality of X image data 22 in the R-axis direction. The obtained XY image data 23 is generated as observation image data 24 . Thereby, XY image data 23 having an arbitrary thickness at an arbitrary position in the Z-axis direction can be generated as observation image data 24 . Also, the background of the generated observation image data 24 can be suppressed.
 試料観察装置1では、少なくとも走査部4における回転軸12の回転の角速度と、画像取得部6の視野サイズとに基づいて各画素に割り当てられるデータ量を補正することにより、複数のX画像データ22からXY画像データ23を生成している。回転軸12によって面状光L2に対する試料Sの走査を行う場合、回転軸12の角速度が一定であっても、試料Sの各部位の接線速度は、回転軸12からの距離に応じて変化することとなる。したがって、回転軸12の角速度と画像取得部6の視野サイズとに基づいて各画素に割り当てられるデータ量を補正することにより、複数のX画像データ22からXY画像データ23への適切な変換を実施できる。 In the sample observing apparatus 1, a plurality of X image data 22 are obtained by correcting the amount of data assigned to each pixel based on at least the angular velocity of rotation of the rotating shaft 12 in the scanning section 4 and the field size of the image acquisition section 6. XY image data 23 is generated from the When the sample S is scanned with respect to the planar light L2 by the rotating shaft 12, even if the angular velocity of the rotating shaft 12 is constant, the tangential velocity of each part of the sample S changes according to the distance from the rotating shaft 12. It will happen. Therefore, by correcting the amount of data assigned to each pixel based on the angular velocity of the rotating shaft 12 and the size of the field of view of the image acquisition unit 6, the plurality of X image data 22 are appropriately converted into the XY image data 23. can.
 試料観察装置1では、回転軸12が面状光L2の断面内に位置している。また、回転軸が面状光L2の幅方向(X軸)及び面状光L2の厚さ方向(Y軸)の双方と平行となっている。これにより、各画素に割り当てられるデータ量の補正を複雑化させずに観察画像データ24を生成することが可能となる。 In the sample observation device 1, the rotating shaft 12 is positioned within the cross section of the planar light L2. Further, the rotation axis is parallel to both the width direction (X-axis) of the planar light L2 and the thickness direction (Y-axis) of the planar light L2. This makes it possible to generate the observed image data 24 without complicating the correction of the amount of data assigned to each pixel.
 本開示は、上記実施形態に限られるものではない。例えば上記実施形態では、面状光L2の幅Wが試料容器11の半径rと同程度となっているが、図10(A)に示すように、面状光L2の幅Wを試料容器11の直径2rと一致、或いは試料容器11の直径2rよりも僅かに大きくしてもよい。面状光L2の幅Wを試料容器11の半径rと同程度とする場合には、観察画像データ24の解像度の向上が図られるが、面状光L2の幅Wを試料容器11の直径2rと同程度とする場合には、回転軸12によって試料容器11が半回転することで面状光L2による試料Sの走査が完了するため、試料Sの走査に要する時間を短縮化することができる。 The present disclosure is not limited to the above embodiments. For example, in the above embodiment, the width W of the planar light L2 is approximately the same as the radius r of the sample container 11. However, as shown in FIG. , or may be slightly larger than the diameter 2r of the sample container 11 . If the width W of the planar light L2 is approximately the same as the radius r of the sample container 11, the resolution of the observation image data 24 can be improved. , the scanning of the sample S with the planar light L2 is completed by rotating the sample container 11 halfway around the rotating shaft 12, so that the time required for scanning the sample S can be shortened. .
 面状光L2の幅Wを試料容器11の直径2rと同程度とする場合、図10(B)に示すように、2つの画像取得部6A,6Bを用いてもよい。図10(B)の例では、試料容器11の中心Cを通る面状光L2を挟んで回転対称(2回対称)となる位置に画像取得部6A,6Bが配置されている。図10(A)の構成では、1つの画像取得部6で面状光L2の幅Wの全体に対応する観察光L3の光像を撮像するため、画像サイズが大きくなる。一方、図10(B)の構成では、2つの画像取得部6A,6Bで面状光L2の幅Wの全体に対応する観察光L3の光像を撮像するので、画像サイズを比較的小さくでき、高速読み出しが可能になる。したがって、試料Sの走査に要する時間を短縮化することができる。 When the width W of the planar light L2 is approximately the same as the diameter 2r of the sample container 11, two image acquisition units 6A and 6B may be used as shown in FIG. 10(B). In the example of FIG. 10B, the image acquisition units 6A and 6B are arranged at rotationally symmetrical (two-fold symmetrical) positions with respect to the planar light L2 passing through the center C of the sample container 11 . In the configuration of FIG. 10A, one image acquisition unit 6 captures the optical image of the observation light L3 corresponding to the entire width W of the planar light L2, so the image size is large. On the other hand, in the configuration of FIG. 10B, since the two image acquisition units 6A and 6B capture the optical image of the observation light L3 corresponding to the entire width W of the planar light L2, the image size can be made relatively small. , high-speed reading becomes possible. Therefore, the time required for scanning the sample S can be shortened.
 また、上記実施形態では、単一の面状光L2を用いて試料Sの走査を行っているが、複数の面状光L2を用いて試料Sの走査を行う態様としてもよい。図11(A)の例では、互いに波長が異なる2つの面状光L2A,L2Bと、互いに検出波長帯域が異なる2つの画像取得部6A,6Bとが用いられている。面状光L2A,L2Bは、いずれも面状光L2の幅Wが試料容器11の半径rと同程度となっており、Z軸方向から見た平面視において、回転軸12回りに90°の位相角をもって試料容器11に照射されるようになっている。画像取得部6Aは、面状光L2Aの照射によって試料Sで発生した観察光L3に基づく光像のXZ画像データ21を取得し、画像取得部6Bは、面状光L2Bの照射によって試料Sで発生した観察光L3に基づく光像のXZ画像データ21を取得する。 Also, in the above embodiment, the single planar light L2 is used to scan the sample S, but a plurality of planar lights L2 may be used to scan the sample S. In the example of FIG. 11A, two planar lights L2A and L2B with different wavelengths and two image acquisition units 6A and 6B with different detection wavelength bands are used. Both of the planar lights L2A and L2B have a width W of the planar light L2 that is approximately the same as the radius r of the sample container 11, and are 90° The sample container 11 is irradiated with the phase angle. The image acquisition unit 6A acquires the XZ image data 21 of the optical image based on the observation light L3 generated on the sample S by the irradiation of the planar light L2A, and the image acquisition unit 6B acquires the XZ image data 21 on the sample S by irradiation of the planar light L2B. XZ image data 21 of an optical image based on the generated observation light L3 is acquired.
 図11(B)の例では、Z軸方向から見た平面視において、面状光L2A,L2Bが回転軸12回りに180°の位相角をなして配置されている。すなわち、Z軸方向から見た平面視において、面状光L2A,L2Bは、回転軸12を通る一直線状の光として試料容器11に照射されるようになっている。2つの画像取得部6A,6Bは、試料容器11の中心Cを通る面状光L2A,L2Bを挟んで回転対称(2回対称)となる位置に配置されている。 In the example of FIG. 11(B), the planar lights L2A and L2B are arranged around the rotation axis 12 with a phase angle of 180° in plan view from the Z-axis direction. That is, in a plan view in the Z-axis direction, the planar lights L2A and L2B are arranged to irradiate the sample container 11 as linear light passing through the rotating shaft 12 . The two image acquisition units 6A and 6B are arranged at rotationally symmetrical (two-fold symmetrical) positions with the planar lights L2A and L2B passing through the center C of the sample container 11 interposed therebetween.
 また、図12に示すように、複数の試料容器11を回転軸12回りの円軌道F上に走査する態様であってもよい。図12の例では、4つの試料容器11が回転軸12回りの円軌道F上に配置されている。面状光L2は、試料容器11の直径2rよりも僅かに大きい幅を有している。円軌道Fの半径rrは、特に制限はないが、例えば試料容器11の直径や円軌道F上の試料容器11の配置数などに応じて適宜設定される。面状光L2は、円軌道F上の所定点において、当該所定点における円軌道Fの接線と直交するように試料容器11に向けて照射される。回転軸12の回転により、円軌道F上に走査される試料容器11が面状光L2の位置を通過することにより、面状光L2の照射面Vに対して試料容器11内の試料Sが走査される。このような態様によれば、複数の試料容器11に対して面状光L2を連続的に走査することができるため、複数の試料Sの観察画像データ24を得るまでのスループットの向上が図られる。 Alternatively, as shown in FIG. 12, a plurality of sample containers 11 may be scanned on a circular orbit F around the rotation axis 12. In the example of FIG. 12, four sample containers 11 are arranged on a circular orbit F around the rotating shaft 12 . The planar light L2 has a width slightly larger than the diameter 2r of the sample container 11 . The radius rr of the circular orbit F is not particularly limited, but is appropriately set according to the diameter of the sample container 11 and the number of sample containers 11 arranged on the circular orbit F, for example. The planar light L2 is irradiated toward the sample container 11 at a predetermined point on the circular orbit F so as to be perpendicular to the tangent line of the circular orbit F at the predetermined point. Rotation of the rotating shaft 12 causes the sample container 11 scanned on the circular orbit F to pass the position of the planar light L2, so that the sample S in the sample container 11 is aligned with the irradiation surface V of the planar light L2. Scanned. According to this aspect, the plurality of sample containers 11 can be continuously scanned with the planar light L2, thereby improving the throughput until obtaining the observation image data 24 of the plurality of samples S. .
 1…試料観察装置、3…照射光学系、4…走査部、5…結像光学系、6…画像取得部、8…画像生成部、12…回転軸、21…XZ画像データ(画像データ)、22…X画像データ、23…XY画像データ、24…観察画像データ、L2…面状光、L3…観察光、P2…観察軸、S…試料、V…照射面。 DESCRIPTION OF SYMBOLS 1... Sample observation apparatus 3... Irradiation optical system 4... Scanning part 5... Imaging optical system 6... Image acquisition part 8... Image generation part 12... Rotating shaft 21... XZ image data (image data) , 22... X image data, 23... XY image data, 24... Observation image data, L2... Planar light, L3... Observation light, P2... Observation axis, S... Sample, V... Irradiation surface.

Claims (10)

  1.  試料に面状光を照射する照射光学系と、
     前記面状光の照射面に対し、前記試料を所定の角速度で回転させる回転軸を有する走査部と、
     前記照射面に対して傾斜する観察軸を有し、前記面状光の照射によって前記試料で発生した観察光を結像する結像光学系と、
     前記試料の走査中に前記結像光学系によって結像された前記観察光による光像の画像データを取得する画像取得部と、
     前記画像データに基づいて前記試料の観察画像データを生成する画像生成部と、を備える試料観察装置。
    an irradiation optical system for irradiating a sample with planar light;
    a scanning unit having a rotating shaft for rotating the sample at a predetermined angular velocity with respect to the irradiation surface of the planar light;
    an imaging optical system that has an observation axis that is inclined with respect to the irradiation surface and that forms an image of observation light generated in the sample by irradiation with the planar light;
    an image acquisition unit that acquires image data of an optical image formed by the imaging optical system during scanning of the sample by the observation light;
    and an image generator that generates observation image data of the sample based on the image data.
  2.  前記面状光の幅方向をX軸、前記面状光の厚さ方向をY軸、前記面状光の光軸をZ軸、前記回転軸の回転の接線方向をR軸とした場合、
     前記画像生成部は、前記画像取得部で取得された複数のXZ画像データをZ軸方向に積算して複数のX画像データを生成し、前記複数のX画像データをR軸方向について再構成して得られたXY画像データを前記観察画像データとして生成する請求項1記載の試料観察装置。
    When the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, the optical axis of the planar light is the Z axis, and the tangential direction of the rotation of the rotation axis is the R axis,
    The image generation unit integrates the plurality of XZ image data acquired by the image acquisition unit in the Z-axis direction to generate a plurality of X image data, and reconstructs the plurality of X image data in the R-axis direction. 2. A sample observation apparatus according to claim 1, wherein the XY image data obtained by said observation image data is generated as said observation image data.
  3.  前記画像生成部は、少なくとも前記走査部における前記回転軸の角速度と、前記画像取得部の視野サイズとに基づいて各画素に割り当てられるデータ量を補正することにより、前記複数のX画像データから前記XY画像データを生成する請求項2記載の試料観察装置。 The image generation unit corrects the amount of data assigned to each pixel based on at least the angular velocity of the rotation axis in the scanning unit and the field size of the image acquisition unit, thereby converting the plurality of X image data into the 3. A specimen observing apparatus according to claim 2, which generates XY image data.
  4.  前記回転軸は、前記面状光の断面内に位置している請求項1~3のいずれか一項記載の試料観察装置。 The sample observation apparatus according to any one of claims 1 to 3, wherein the rotating shaft is positioned within the cross section of the planar light.
  5.  前記面状光の幅方向をX軸、前記面状光の厚さ方向をY軸、前記面状光の光軸をZ軸とした場合、
     前記回転軸は、前記X軸と前記Z軸とを含むXZ面、及び前記Y軸と前記Z軸とを含むYZ面の少なくとも一方の面と平行となっている請求項1~4のいずれか一項記載の試料観察装置。
    When the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, and the optical axis of the planar light is the Z axis,
    5. The rotation axis is parallel to at least one of an XZ plane including the X axis and the Z axis and a YZ plane including the Y axis and the Z axis. The sample observation device according to item 1.
  6.  試料に面状光を照射する照射ステップと、
     前記面状光の照射面に対し、前記試料を所定の角速度で回転軸回りに回転させる走査ステップと、
     照射面に対して傾斜する観察軸を有する結像光学系を用い、面状光の照射によって前記試料で発生した観察光を結像する結像ステップと、
     前記試料の走査中に前記結像光学系によって結像された前記観察光による光像の画像データを取得する画像取得ステップと、
     前記画像データに基づいて前記試料の観察画像データを生成する画像生成ステップと、を備える試料観察方法。
    an irradiation step of irradiating the sample with planar light;
    a scanning step of rotating the sample around a rotation axis at a predetermined angular velocity with respect to the irradiation surface of the planar light;
    an image forming step of forming an image of the observation light generated in the sample by the irradiation of the planar light using an image forming optical system having an observation axis inclined with respect to the irradiation surface;
    an image acquisition step of acquiring image data of an optical image of the observation light formed by the imaging optical system during scanning of the sample;
    and an image generating step of generating observation image data of the sample based on the image data.
  7.  前記面状光の幅方向をX軸、前記面状光の厚さ方向をY軸、前記面状光の光軸をZ軸、前記回転軸の回転の接線方向をR軸とした場合、
     前記画像生成ステップでは、前記画像取得ステップで取得した複数のXZ画像データをZ軸方向に積算して複数のX画像データを生成し、前記複数のX画像データをR軸方向について再構成して得られたXY画像データを前記観察画像データとして生成する請求項6記載の試料観察方法。
    When the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, the optical axis of the planar light is the Z axis, and the tangential direction of the rotation of the rotation axis is the R axis,
    In the image generation step, the plurality of XZ image data acquired in the image acquisition step are integrated in the Z-axis direction to generate a plurality of X image data, and the plurality of X image data are reconstructed in the R-axis direction. 7. A sample observation method according to claim 6, wherein the obtained XY image data is generated as said observation image data.
  8.  前記画像生成ステップでは、少なくとも前記走査ステップにおける前記回転軸の回転の角速度と、前記画像取得ステップにおける視野サイズとに基づいて、各画素に割り当てられるデータ量を補正することにより、前記複数のX画像データから前記XY画像データを生成する請求項7記載の試料観察方法。 In the image generating step, the plurality of X images are generated by correcting the amount of data assigned to each pixel based on at least the angular velocity of rotation of the rotation axis in the scanning step and the field size in the image acquiring step. 8. A sample observation method according to claim 7, wherein the XY image data is generated from the data.
  9.  前記走査ステップでは、前記回転軸を前記面状光の断面内に位置させる請求項6~8のいずれか一項記載の試料観察方法。 The sample observation method according to any one of claims 6 to 8, wherein in the scanning step, the rotation axis is positioned within the cross section of the planar light.
  10.  前記面状光の幅方向をX軸、前記面状光の厚さ方向をY軸、前記面状光の光軸をZ軸とした場合、
     前記走査ステップでは、前記X軸と前記Z軸とを含むXZ面、及び前記Y軸と前記Z軸とを含むYZ面の少なくとも一方の面と平行とする請求項6~9のいずれか一項記載の試料観察方法。
    When the width direction of the planar light is the X axis, the thickness direction of the planar light is the Y axis, and the optical axis of the planar light is the Z axis,
    10. The scanning step is parallel to at least one of an XZ plane including the X axis and the Z axis and a YZ plane including the Y axis and the Z axis. Specimen observation method described.
PCT/JP2022/012214 2021-07-26 2022-03-17 Sample observation device and sample observation method WO2023007827A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023538256A JPWO2023007827A1 (en) 2021-07-26 2022-03-17

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021121602 2021-07-26
JP2021-121602 2021-07-26

Publications (1)

Publication Number Publication Date
WO2023007827A1 true WO2023007827A1 (en) 2023-02-02

Family

ID=85087802

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012214 WO2023007827A1 (en) 2021-07-26 2022-03-17 Sample observation device and sample observation method

Country Status (2)

Country Link
JP (1) JPWO2023007827A1 (en)
WO (1) WO2023007827A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183425A (en) * 2006-01-06 2007-07-19 Olympus Corp Observation device
JP2014056060A (en) * 2012-09-11 2014-03-27 Keyence Corp Optical microscope
JP2015118378A (en) * 2013-12-18 2015-06-25 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Microscope and spim microscopy inspection method
JP2016525228A (en) * 2013-07-10 2016-08-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
JP2016525229A (en) * 2013-07-10 2016-08-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
JP2016537671A (en) * 2013-11-15 2016-12-01 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Optical transmission system and microscope comprising such a transmission system
JP2016537670A (en) * 2013-11-15 2016-12-01 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for light sheet microscopy
JP2017501429A (en) * 2013-11-15 2017-01-12 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
JP2017513063A (en) * 2014-04-08 2017-05-25 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Microscopy GmbH Configuration for light sheet microscope
JP2019530006A (en) * 2016-09-15 2019-10-17 モレキュラー デバイシーズ (オーストリア) ゲーエムベーハー Bright field microscope with selective planar illumination
JP3228117U (en) * 2019-07-01 2020-10-08 台灣電鏡儀器股▲ふん▼有限公司 Inspection jig for microscope, microscope device equipped with it

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007183425A (en) * 2006-01-06 2007-07-19 Olympus Corp Observation device
JP2014056060A (en) * 2012-09-11 2014-03-27 Keyence Corp Optical microscope
JP2016525228A (en) * 2013-07-10 2016-08-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
JP2016525229A (en) * 2013-07-10 2016-08-22 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
JP2016537671A (en) * 2013-11-15 2016-12-01 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Optical transmission system and microscope comprising such a transmission system
JP2016537670A (en) * 2013-11-15 2016-12-01 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for light sheet microscopy
JP2017501429A (en) * 2013-11-15 2017-01-12 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Equipment for optical sheet microscopy
JP2015118378A (en) * 2013-12-18 2015-06-25 カール ツァイス マイクロスコピー ゲーエムベーハーCarl Zeiss Microscopy Gmbh Microscope and spim microscopy inspection method
JP2017513063A (en) * 2014-04-08 2017-05-25 カール・ツァイス・マイクロスコピー・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツングCarl Zeiss Microscopy GmbH Configuration for light sheet microscope
JP2019530006A (en) * 2016-09-15 2019-10-17 モレキュラー デバイシーズ (オーストリア) ゲーエムベーハー Bright field microscope with selective planar illumination
JP3228117U (en) * 2019-07-01 2020-10-08 台灣電鏡儀器股▲ふん▼有限公司 Inspection jig for microscope, microscope device equipped with it

Also Published As

Publication number Publication date
JPWO2023007827A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
US20070091425A1 (en) Microscope examination apparatus and microscope examination method
JP7167276B2 (en) Low-Resolution Slide Imaging, Slide Label Imaging and High-Resolution Slide Imaging Using Dual Optical Paths and Single Imaging Sensor
JP7021348B2 (en) Safety light curtain that disables the rotation of the carousel
JP6869435B2 (en) Slide rack carousel
JP6940696B2 (en) Two-dimensional and three-dimensional fixed Z-scan
JP7004808B2 (en) Opposed edge system for scanning and processing glass slides
JP2020535478A (en) Double-pass macro image
US11822066B2 (en) Sample observation device and sample observation method
JP7379743B2 (en) Systems and methods for managing multiple scanning devices in a high-throughput laboratory environment
WO2023103960A1 (en) Three-dimensional imaging apparatus and imaging method
JP6419761B2 (en) Imaging arrangement determination method, imaging method, and imaging apparatus
JP5848596B2 (en) Image acquisition device and focus method of image acquisition device
WO2023007827A1 (en) Sample observation device and sample observation method
CN111971607B (en) Sample observation device
CN111902711B (en) Sample observation device and sample observation method
WO2023007828A1 (en) Sample observation device and sample observation method
JP6945737B2 (en) Dual processor image processing
JP6978562B2 (en) Sample observation device and sample observation method
WO2021246021A1 (en) Sample observation device and sample observation method
JP2023017369A (en) Fungus body detection device and fungus body detection method
US11630064B2 (en) Sample observation device and sample observation method
US20230070475A1 (en) System and method for parallelized volumetric microscope imaging
JP2019023751A (en) Sample observation device and sample observation method
CN115668027A (en) Light irradiation device and sample observation device
JP2006317836A (en) Scanning microscope

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848911

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023538256

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE