WO2023007825A1 - 異常検知装置、異常検知方法、及び異常検知プログラム - Google Patents

異常検知装置、異常検知方法、及び異常検知プログラム Download PDF

Info

Publication number
WO2023007825A1
WO2023007825A1 PCT/JP2022/012045 JP2022012045W WO2023007825A1 WO 2023007825 A1 WO2023007825 A1 WO 2023007825A1 JP 2022012045 W JP2022012045 W JP 2022012045W WO 2023007825 A1 WO2023007825 A1 WO 2023007825A1
Authority
WO
WIPO (PCT)
Prior art keywords
waveform
measured
anomaly detection
generated
unit
Prior art date
Application number
PCT/JP2022/012045
Other languages
English (en)
French (fr)
Inventor
克行 木村
Original Assignee
オムロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オムロン株式会社 filed Critical オムロン株式会社
Publication of WO2023007825A1 publication Critical patent/WO2023007825A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B23/00Testing or monitoring of control systems or parts thereof
    • G05B23/02Electric testing or monitoring
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/088Non-supervised learning, e.g. competitive learning

Definitions

  • the present invention relates to an anomaly detection device, an anomaly detection method, and an anomaly detection program.
  • anomaly detection technology has been proposed that detects failure predictions based on waveform data from sensors installed in production equipment.
  • anomaly detection does not collect enough anomaly data, and the problem is to detect unknown anomalies. Therefore, as a conventional technique, a machine learning method of learning only normal data and detecting anomalies has been proposed.
  • Patent Literature 2 proposes a method of determining an abnormality by inputting a measured waveform into a model that has learned only normal data, outputting a generated waveform, and comparing the measured waveform and the generated waveform.
  • Patent Document 1 has a problem with detection accuracy because it determines an abnormality when all the inference results of each learning model prepared for each operating condition exceed all thresholds.
  • this is a method of detecting anomalies by extracting feature amounts of generated waveforms, it is not easy to design effective feature amounts in a state of lack of anomaly data.
  • Patent Document 2 does not require feature amount design because of the waveform comparison.
  • the input to the autoencoder proposed in Patent Document 2 is only a univariate explanatory variable, and a multivariate case in which many parameters are used is not assumed.
  • both Patent Documents 1 and 2 only the degree of anomaly of a single variable is notified as an index of anomaly, so there is a problem that the explanation of the anomaly judgment is poor.
  • the present invention has been made to solve the above problems, and an abnormality detection device and an abnormality detection method that do not require the design of waveform feature values to be handled and are highly descriptive corresponding to waveforms of a large number of parameters. , and to provide an anomaly detection program.
  • the present invention provides an acquisition unit that acquires a measured waveform that is time-series data relating to a plurality of parameters of a target machine, and a waveform that generates a generated waveform that is time-series data relating to the plurality of parameters by inputting the measured waveform.
  • a generating unit a divergence calculating unit that calculates a degree of divergence by comparing the measured waveform and the generated waveform, and a determination that the measured waveform is abnormal when the degree of divergence exceeds a predetermined threshold
  • the waveform generation unit includes a trained learning model that has been trained based on the measured waveform in the normal state of the target machine.
  • the learning model may be learned based on the normal measured waveforms acquired under a plurality of operating conditions of the target machine.
  • the learning model can be generated by unsupervised learning.
  • the learning model can be configured by a neural network.
  • the neural network includes an encoding unit and a generation unit, the encoding unit receives the measured waveform and outputs the latent variable, and the generation unit receives the latent variable.
  • the generated waveform may be output, and the encoder and the generator may be configured by a convolutional neural network.
  • the learning model can be configured by, for example, an efficient GAN.
  • the degree of divergence may be a single scalar value.
  • the divergence calculator may be configured to calculate a time-series individual divergence for each of the parameters.
  • the anomaly detection device may further include a display unit that displays at least one of the measured waveform, the generated waveform, the deviation, and the time-series individual deviation for each parameter.
  • An abnormality determination method includes steps of acquiring a measured waveform that is time-series data relating to a plurality of parameters of a target machine; calculating a degree of divergence by comparing the measured waveform and the generated waveform; and determining that the measured waveform is abnormal when the degree of divergence exceeds a prescribed threshold. and the step of generating the generated waveform is performed by a trained learning model that has been trained based on the measured waveform in the normal state of the target machine.
  • An abnormality determination program comprises the steps of: acquiring a measured waveform, which is time-series data relating to a plurality of parameters of a target machine, into a computer; generating a generated waveform; comparing the measured waveform and the generated waveform to calculate a degree of divergence; and determining that the measured waveform is abnormal when the degree of deviation exceeds a prescribed threshold and the step of executing and generating the generated waveform are performed by a trained learning model that has learned based on the measured waveform in the normal state of the target machine.
  • an anomaly detection device it is possible to provide an anomaly detection device, an anomaly detection method, and an anomaly detection program that do not require designing of feature quantities of waveforms to be handled and are highly descriptive corresponding to waveforms of many parameters. .
  • FIG. 1 is a configuration example of an embodiment of a system including an abnormality detection device of the present invention; It is a block diagram which shows the hardware constitutions of an abnormality detection apparatus.
  • 2 is a block diagram showing the hardware configuration of a learning device;
  • FIG. 3 is a block diagram showing the software configuration of the learning device;
  • FIG. 4 is a graph in which measured waveforms and generated waveforms are superimposed under different operating conditions;
  • FIG. 4 is a diagram showing correspondence between an encoding unit, a generation unit, and a CNN;
  • FIG. 10 is a graph showing superimposed measured waveforms and generated waveforms for three parameters, and deviation time-series data for each parameter;
  • FIG. 10 is a graph showing superimposed measured waveforms and generated waveforms in an abnormal state and deviation time-series data of each parameter for three parameters;
  • FIG. FIG. 10 is a diagram showing the ranking of the degree of divergence;
  • FIG. 10 is a diagram showing determination of normality and abnormality based on the relationship between the degree of divergence and the threshold;
  • 4 is a flowchart showing learning processing of the learning device; It is a flow chart which shows the abnormality detection method in an abnormality detection apparatus.
  • FIG. 1 shows an example of the configuration of a system including this anomaly detection device. I have. Each configuration will be described in detail below.
  • the transfer device 3 includes a ball screw 31 , a nut 32 screwed onto the ball screw 31 , and a stage 33 for the workpiece W provided on the nut 32 .
  • a servomotor 34 is connected to the ball screw 31 , and the ball screw 31 is rotated by the servomotor 34 .
  • a servo driver 35 is connected to the servo motor 34 to control it. In this embodiment, the rotational speed and output torque of the servomotor 34 controlled by the servo driver 35, the output torque, and the position of the stage are used as parameters for abnormality detection, and abnormality determination is performed using these time-series waveforms. .
  • FIG. 2 is an example of the hardware configuration of the abnormality detection device according to this embodiment.
  • This anomaly detection device 1 is a computer to which a control unit 11, a storage unit 12, an external interface 13, and a communication interface 14 are electrically connected, and can be composed of, for example, a PLC. 2, the external interface 13 and the communication interface 14 are described as “external I/F” and “communication I/F.” This point also applies to various devices described later.
  • the control unit 11 includes a CPU, RAM, ROM, etc., and is configured to execute various types of information processing based on programs and data.
  • the storage unit 12 is composed of, for example, an auxiliary storage device such as an HDD or an SDD, and stores an abnormality detection program 121, learning result data 122, and various data for determining abnormality and driving the device.
  • the abnormality detection program 121 is a program for causing the abnormality detection device 1 to determine whether there is an abnormality in the measured waveform. By interpreting and executing this abnormality detection program 121, the control unit 11 is configured to execute the processing of each step described later.
  • the external interface 13 is an interface for connecting with an external device, and is appropriately configured according to the external device to be connected.
  • the external interface 13 is connected to the display (display section) 4 .
  • This display 4 is used, for example, to display the result of abnormality determination.
  • the display 4 is not particularly limited, and a known liquid crystal display, touch panel display, or the like can be used.
  • an input device, an output device, and the like can be appropriately connected to the external interface 13 .
  • the communication interface 14 is, for example, a wired LAN (Local Area Network) module, a wireless LAN module, or the like, and is an interface for performing wired or wireless communication. That is, the communication interface 14 is an example of a communication unit configured to communicate with another device. In this embodiment, it is connected to the above-described learning device 2 and transport device 3 via a network.
  • a wired LAN Local Area Network
  • a wireless LAN module Wireless Local Area Network
  • the communication interface 14 is, for example, a wired LAN (Local Area Network) module, a wireless LAN module, or the like, and is an interface for performing wired or wireless communication. That is, the communication interface 14 is an example of a communication unit configured to communicate with another device. In this embodiment, it is connected to the above-described learning device 2 and transport device 3 via a network.
  • the control unit 11 may include multiple processors.
  • the control part 11 may be comprised by FPGA.
  • the storage unit 12 may be configured by RAM and ROM included in the control unit 11 .
  • the anomaly detection device 1 can use an information processing device designed exclusively for the service to be provided, in addition to the PLC.
  • it may be a general-purpose desktop PC, a tablet PC, or the like, depending on the target for abnormality determination. The above points are the same for the learning device 2 described later.
  • FIG. 3 is an example of the hardware configuration of the learning device according to this embodiment.
  • the learning device 2 is a computer to which a control unit 21, a storage unit 22, an external I/F 23, and a communication I/F 24 are electrically connected, similar to the anomaly detection device 1.
  • the configuration of the control unit 21 and the storage unit 22 is the same as that of the abnormality detection device.
  • the storage unit stores a learning program 221, a learning model 222, first learning result data 223, second learning result data 224, and various data for driving the learning device.
  • the learning program 221 is a program for learning a learning model 222 for outputting a generated waveform from a measured waveform. By interpreting and executing this learning program 221, the control unit 21 is configured to execute the processing of each step described later.
  • the learning device 2 learns the learning model 222 using measured waveforms, which are time-series data relating to the rotational speed, output torque, and stage position of the servo motor 34 transmitted from the servo driver 35 of the transport device 3 .
  • this learning model 222 is learned from the measured waveforms during normal operation of the conveying device 3 .
  • the software configuration of the learning device 2 will be described below with reference to FIG. FIG. 4 is a block diagram showing the software configuration of the learning device.
  • the acquisition unit 211 acquires measured waveforms, which are time-series data, regarding the rotational speed and output torque of the servomotor 34 and the position of the stage.
  • This measured waveform is transmitted after preprocessing by the abnormality detection device 1, as will be described later.
  • the data may be directly transmitted from the servo driver 35 and subjected to preprocessing in the acquisition unit 211 as described later.
  • the measured waveforms acquired by the acquiring unit 211 are obtained not only under the same operating conditions, but also under different operating conditions when the conveying device 3 is operated.
  • a measured waveform when a light work is conveyed (operating condition 1)
  • a measured waveform when a heavy work is conveyed (operating condition 2) are input.
  • FIG. 5 shows examples of measured waveforms under various operating conditions. In this example, it can be seen that when a heavy work W is conveyed, the speed decreases and the torque increases.
  • the encoding unit 212, generation unit 213, and determination unit 214 constitute a learning model based on an efficient generative adversarial network (Efficient GAN).
  • the encoding unit 212 and the generating unit 213 are configured by, for example, a convolutional neural network (CNN). This will be described later.
  • the determination unit 214 is also configured by a similar CNN. However, the configuration of the determination unit 214 may be different from that of the encoding unit 212 and the generation unit 213 .
  • a first training step for training the discriminating unit 214 and a second training step for training the encoding unit 212 and the generating unit 213 are alternately performed.
  • the determination unit 214 determines whether the generated waveform input to the determination unit 214 is the generated waveform generated by the generation unit 213 or the measured waveform transmitted from the acquisition unit 211. to train. That is, the determination unit 214 is trained to determine whether the input waveform is derived from the acquisition unit 211 or the generation unit 213 .
  • the encoding unit 212 and the generating unit 213 are trained so as to generate waveforms that make the discrimination by the discriminating unit 214 erroneous.
  • originating from the acquisition unit 211 is expressed as “true”
  • originating from the generation unit 213 is expressed as “false”.
  • the method of expressing each origin is not limited to such examples, and may be appropriately selected according to the embodiment.
  • the measured waveform is input to the encoding unit 212 .
  • the encoding unit 212 outputs the latent variable z, and when the latent variable z is input to the generating unit 213, the generating unit 213 outputs a generated waveform that approximates the measured waveform input to the encoding unit 212. .
  • This generated waveform is input to the determination unit 214 and arithmetic processing is performed. As a result, an output value corresponding to the result of determining whether the generated waveform is derived from the generation unit 213 or the acquisition unit 211 is output.
  • the generated waveform input to the determination unit 214 is the generated waveform generated by the generation unit 213, it is correct for the determination unit 214 to determine "false”. Then, the error between the output value and this correct answer is calculated. In this way, the error between the output value and the correct answer is calculated for each generated waveform.
  • the measured waveform is input to the determination unit 214 and arithmetic processing of the determination unit 214 is executed. Accordingly, the determination unit 214 outputs an output value corresponding to the result of determining whether the input waveform is derived from the generation unit 213 or the acquisition unit 211 .
  • the input waveform is a measured waveform, it is correct for the determination unit 214 to determine "true". Thus, for each waveform, the error between the output value and this correct answer is calculated.
  • the CNN parameter values of the determination unit 214 are adjusted so that the sum of the calculated errors is small. Until the sum of the error between the output value and the true/false answer becomes equal to or less than the threshold value, the adjustment of the parameter value of the determination unit 214 is repeated by the series of processes described above.
  • the discriminating unit 214 is trained by backpropagation or the like so as to discriminate between the generated waveform generated by the generating unit 213 and the measured waveform.
  • the measured waveform is input to the encoding unit 212.
  • the encoding unit 212 outputs the latent variable z, and when the latent variable z is input to the generating unit 213, the generating unit 213 outputs a generated waveform that approximates the measured waveform input to the encoding unit 212. .
  • the generated waveform is input to the determination unit 214, and arithmetic processing of the determination unit 214 is executed.
  • an output value corresponding to the result of determining whether the input generated waveform is derived from the generation unit 213 or the acquisition unit 211 is output.
  • the correct answer is to make the determination result of the determination unit 214 erroneous.
  • the generated waveform generated by the generator 213 is similar enough to the measured waveform, and the correct answer is that the obtained output value corresponds to "true”.
  • the error between the output value obtained by the series of processing and this correct answer that is, "true" is calculated.
  • the CNN parameter values of the encoding unit 212 and the generating unit 213 are adjusted so that the sum of the calculated errors becomes small. For each combination of the measured waveform and the generated waveform, until the sum of the error between the output value obtained by the series of processes and the "true" value becomes equal to or less than the threshold, Repeat adjusting the value of the parameter.
  • the generation unit 213 (and the encoding unit 212) is trained by backpropagation or the like so as to generate a generated waveform that causes the determination unit 214 to make an erroneous determination.
  • the generator 213 can learn the ability to appropriately generate a generated waveform that is almost the same as the measured waveform.
  • the storage processing unit 215 stores the configuration of the constructed encoding unit 212 and generation unit 213, and the discrimination unit 214 (for example, the number of layers of the neural network, the number of neurons in each layer, the number of neurons A first learning result data 223 and a second learning result data 224 are generated, which indicate connection relations, transfer functions of each neuron), and calculation parameters (for example, weights of connections between neurons, threshold values of each neuron), respectively. Then, the storage processing unit 215 stores the generated first and second learning result data 223 and 224 in the storage unit 22 .
  • the measured waveform is input to the learned encoding unit 212 and generation unit 213, it is possible to generate a generated waveform that approximates the measured waveform.
  • FIG. 6 is a diagram showing the correspondence between the encoding unit, the generating unit, and the CNN.
  • a measured waveform input to the encoding unit 212 is generated by the preprocessing unit 112 of the abnormality detection device 1 .
  • the preprocessing unit 112 preprocesses the collected measured waveforms.
  • preprocessing for example, the following three processes can be performed.
  • a waveform is cut out while the stage 33 moves in a section (frame) from the start point to the end point, and this is used for determination.
  • the values of the measured waveforms are normalized to have numerical values of 0-1. Further, linear transformation is performed so that the frame length of the time series is 64.
  • the data in the four layers are calculated to reduce the data frame length to (32, 32), (64, 16), and (128, 8).
  • this latent variable z is obtained by reducing the dimension of the measured waveform and showing the characteristics of the measured waveform in a low dimension. Representing the measured waveform in a low dimension in this manner facilitates learning.
  • the data corresponding to this latent variable z is input to the generation unit 213, and the data in the five layers is reduced to (512, 4), (256, 8), and (128, 16). Calculations are performed so as to expand, and finally data of (3, 64) corresponding to the measured waveform, that is, generated waveform is generated.
  • this CNN is an example, and a normal neural network can also be used.
  • FIG. 7 is a block diagram showing the software configuration of the abnormality detection device.
  • the control unit 11 of the abnormality detection device 1 develops the abnormality detection program 121 stored in the storage unit 12 in the RAM
  • the CPU interprets and executes the abnormality detection program 121, and the collection unit 111 , a preprocessing unit 112 , a waveform generation unit 113 , a divergence calculation unit 114 , a determination unit 115 and an output unit 116 .
  • the collection unit 111 collects measured waveforms, which are time-series data, regarding the rotational speed and output torque of the servomotor 34 and the position of the stage transmitted from the servo driver 35 of the transport device 3 .
  • the collected measured waveforms are stored in the storage unit 12 or RAM.
  • the preprocessing unit 112 preprocesses the collected measured waveforms. This processing is as described above. Also, the preprocessed measured waveform is transmitted to the learning device 2 and used for the learning described above.
  • the waveform generation unit 113 is composed of the trained encoding unit 212 and generation unit 213 into which the first learning result data 223 generated by the learning device 2 has been introduced.
  • the degree of divergence calculation unit 114 compares the measured waveform and the generated waveform and calculates the degree of divergence. As the degree of deviation, an individual degree of deviation and a total degree of deviation are calculated. Calculation of individual divergence is performed as follows. First, for each of the above three parameters, divergence time-series data is calculated by calculating in time-series the difference between the measured waveform and the generated waveform indicated by the time-series data. For example, a difference is calculated for each of 64 pieces of data that is the frame length, and divergence degree time-series data composed of 64 pieces of difference data is calculated. Subsequently, the 64 pieces of data are totaled to calculate the individual divergence. That is, the degree of divergence for each of the three parameters can be expressed.
  • FIG. 8 is a graph showing normal measured waveforms and generated waveforms superimposed on three parameters, and a graph showing divergence time-series data for each parameter.
  • FIG. 9 is a graph showing superimposed measured waveforms and generated waveforms in an abnormal state and deviation time-series data of each parameter for three parameters.
  • the divergence degree time-series data in the normal state shown in FIG. 8
  • the divergence degree is approximately 0 for any parameter in any time zone.
  • the two are almost the same, so they appear as one line.
  • the degree of divergence changes in the degree of divergence time-series data at the time of abnormality shown in FIG.
  • the divergence time-series data regarding torque changes significantly at the start of conveyance (the circled portion).
  • the overall degree of deviation is a single scalar value that is the sum of the individual degrees of deviation. In this way, the individual degree of deviation and the total degree of deviation are calculated for each combination of the measured waveform and the generated waveform.
  • the determination unit 115 determines that it is abnormal when the total degree of divergence exceeds a prescribed threshold, and determines that it is normal when the threshold is less than or equal to.
  • Waveform generation unit 113 includes a learning model learned based on the normal measured waveform, so that when the normal measured waveform is input, a generated waveform approximating it is generated.
  • a measured waveform in an abnormal state is input, a generated waveform different from the generated waveform in a normal state is generated, resulting in a large divergence. Therefore, when the total degree of divergence exceeds a predetermined threshold value, it is determined to be abnormal.
  • FIG. 11 is one example. When a normal measured waveform is input, a total divergence lower than the threshold is calculated, and when an abnormal measured waveform is input, a total divergence higher than the threshold is calculated. I understand.
  • the output unit 116 outputs at least one of the measured waveform, the generated waveform, the divergence time-series data, the individual divergence, and the total divergence, and displays them on the display 4 .
  • the conveying device 3 is operated (step S11), and normal measurement waveforms are collected for the three parameters described above (step S12).
  • preprocessing is applied to the measured waveform (step S13).
  • the preprocessed measured waveform is input to the learning model 222 to generate the above-described first and second learning result data 223 and 224 (step S14).
  • a threshold is set (step S15).
  • the setting of the threshold is not particularly limited, for example, the normal distribution of the overall divergence can be calculated and the threshold can be set to 3 ⁇ or more, such as 3 ⁇ or 4 ⁇ . Note that the threshold value can be automatically set by the learning device 2 or set by the anomaly detection device 1 .
  • the user can arbitrarily set it.
  • the first learning result data 223 is transmitted to the abnormality detection device 1 and incorporated into the waveform generator 113 (step S16). Note that the first learning result data 223 is created periodically and can be incorporated into the waveform generator 113 each time. Thus, the learning process in the learning device 2 ends.
  • the collection unit 111 collects measured waveforms for the above-described three parameters (step S21).
  • the preprocessing unit 112 preprocesses the measured waveform (step S22).
  • the preprocessed measured waveform is input to the waveform generator 113 in which the first learning result data 223 is incorporated to generate a generated waveform (step S23).
  • the calculated generated waveform and the measured waveform are compared by the divergence calculator 114 to calculate the total divergence (step S24).
  • step S25 determines that the total degree of divergence is less than the threshold value (YES in step S25). If the total divergence is greater than or equal to the threshold value (NO in step S25), it is determined that an abnormality has occurred, and an alert of abnormality is displayed on the display 4 (step S26).
  • a generated waveform which is time-series data relating to a plurality of parameters
  • a normal measured waveform which is time-series data relating to a plurality of parameters, measured in the transport device 3.
  • the above embodiment has a learning model based on GAN, it is not limited to this, and can be configured with a neural network such as autoencoder, GANomaly, Skip GANomaly. That is, any method may be used as long as it can learn multivariate multidimensional data such as time-series data relating to a plurality of parameters as described above.
  • a neural network such as autoencoder, GANomaly, Skip GANomaly. That is, any method may be used as long as it can learn multivariate multidimensional data such as time-series data relating to a plurality of parameters as described above.
  • a method of calculating the degree of divergence for performing the abnormality determination in the degree of divergence calculation section 114 is not particularly limited as long as the difference between the measured waveform and the generated waveform that can be evaluated by the determination section 115 can be calculated as the degree of divergence.
  • the anomaly detection device 1 and the learning device 2 are composed of different computers, but they can also be composed of one computer. That is, a learning function may be added to the abnormality detection device 1 .
  • the method of preprocessing the measured waveform is not particularly limited, and can be changed as appropriate according to the learning model used. Alternatively, learning can be performed without preprocessing, and generation waveforms can be generated.
  • the abnormality detection device 1 of the above embodiment determines abnormality in a conveying device having a ball screw mechanism, it is not limited to this, and can be applied to determination of abnormality in various target machines.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Computational Linguistics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • Biomedical Technology (AREA)
  • Computing Systems (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mathematical Physics (AREA)
  • Software Systems (AREA)
  • Health & Medical Sciences (AREA)
  • Automation & Control Theory (AREA)
  • Testing And Monitoring For Control Systems (AREA)

Abstract

本発明は、対象機械の複数のパラメータに関する時系列データである計測波形を取得する取得部と、前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成する波形生成部と、前記計測波形と前記生成波形とを比較することで、乖離度を算出する乖離度算出部と、前記乖離度が所定の閾値を上回った場合には、前記計測波形が異常と判定する判定部と、を備え、前記波形生成部は、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルを備えている。

Description

異常検知装置、異常検知方法、及び異常検知プログラム
 本発明は、異常検知装置、異常検知方法、及び異常検知プログラムに関する。
 従来より、生産装置に設けられたセンサからの波形データに基づき故障の予知を検出する異常検知の技術が提案されている。一般に、異常検知では異常データが十分に集まらず、未知の異常を検知することが課題である。したがって、従来技術としては、正常データのみ学習し異常検知する機械学習の手法が提案されている。
 一般的に、生産装置は正常状態でも複数の動作条件下で稼働し得る。そこで、特許文献1では、複数の動作条件を考慮した異常検知の手法を提案している。一方、特許文献2では、正常データのみを学習させたモデルに計測波形を入力することで、生成波形を出力し、計測波形と生成波形を比較することで異常判定する手法を提案している。
特開2021-51698号公報 特開2021-9441号公報
 しかしながら、特許文献1の技術では、動作条件ごとに用意した各学習モデルの全推論結果が全閾値を越えた場合に異常と判定するため、検知精度に課題がある。また、生成波形の特徴量を抽出して異常を検知する手法であるものの、異常データ不足の状態で有効な特徴量を設計するのは容易ではない。これに対して、特許文献2の技術は、波形での比較のため特徴量設計の必要がない。しかしながら、特許文献2で提案されているオートエンコーダへの入力は、単変量の説明変数のみとなっており、多数のパラメータが用いられる多変量の場合は想定されていない。さらに、特許文献1,2のいずれも異常の指標として単変数の異常度のみが通知されるため、異常判断の説明性が乏しいという問題がある。
 本発明は、上記問題を解決するためになされたものであり、取り扱う波形の特徴量の設計が不要であり、且つ多数のパラメータの波形に対応した説明性の高い、異常検知装置、異常検知方法、及び異常検知プログラムを提供することを目的とする。
 本発明は、対象機械の複数のパラメータに関する時系列データである計測波形を取得する取得部と、前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成する波形生成部と、前記計測波形と前記生成波形とを比較することで、乖離度を算出する乖離度算出部と、前記乖離度が所定の閾値を上回った場合には、前記計測波形が異常と判定する判定部と、を備え、前記波形生成部は、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルを備えている。
 上記異常検知装置において、前記学習モデルは、前記対象機械の複数の動作条件下で取得された正常時の前記計測波形に基づいて学習されたものとすることができる。
 上記異常検知装置において、前記学習モデルは、教師なし学習により生成することができる。
 上記異常検知装置において、前記学習モデルは、ニューラルネットワークにより構成することができる。
 上記異常検知装置において、前記ニューラルネットワークは、符号化部及び生成部を含み、前記符号化部は、前記計測波形を入力とし、潜在変数を出力とし、前記生成部は、前記潜在変数を入力とし、前記生成波形を出力とし、前記符号化部及び前記生成器は、畳み込みニューラルネットワークにより構成することができる。
 上記異常検知装置において、前記学習モデルは、例えば、Efficient GANにより構成することができる。
 上記異常検知装置において、前記乖離度は、一のスカラー値とすることができる。
 上記異常検知装置において、前記乖離度算出部は、前記各パラメータ毎の時系列の個別乖離度を算出するように構成することができる。
 上記異常検知装置において、前記計測波形、前記生成波形、前記乖離度、及び前記パラメータ毎の時系列の個別乖離度の少なくとも1つを表示する表示部をさらに備えることができる。
 本発明に係る異常判定方法は、対象機械の複数のパラメータに関する時系列データである計測波形を取得するステップと、前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成するステップと、前記計測波形と前記生成波形とを比較することで、乖離度を算出するステップと、前記乖離度が規定の閾値を上回った場合には、前記計測波形が異常と判定するステップと、を備え、前記生成波形を生成するステップは、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルにより行われている。
 本発明に係る異常判定プログラムは、コンピュータに、対象機械の複数のパラメータに関する時系列データである計測波形を取得するステップと、前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成するステップと、前記計測波形と前記生成波形とを比較することで、乖離度を算出するステップと、前記乖離度が規定の閾値を上回った場合には、前記計測波形が異常と判定するステップと、を実行させ、前記生成波形を生成するステップは、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルにより行われている。
 本発明によれば、取り扱う波形の特徴量の設計が不要であり、且つ多数のパラメータの波形に対応した説明性の高い、異常検知装置、異常検知方法、及び異常検知プログラムを提供することができる。
本発明の異常検知装置を含むシステムの一実施形態の構成例である。 異常検知装置のハードウエア構成を示すブロック図である。 学習装置のハードウエア構成を示すブロック図である。 学習装置のソフトウエア構成を示すブロック図である。 異なる動作条件における計測波形と生成波形を重ねたグラフである。 符号化部及び生成部とCNNとの対応を示す図である。 異常検知装置のソフトウエア構成を示すブロック図である。 3つのパラメータについて、正常時の計測波形と生成波形と重ねたグラフ、及び各パラメータの乖離度時系列データを示すグラフである。 3つのパラメータについて、異常時の計測波形と生成波形と重ねたグラフ、及び各パラメータの乖離度時系列データを示すグラフである。 乖離度のランキングを示す図である。 乖離度と閾値に関係による正常と異常の判定を示す図である。 学習装置の学習処理を示すフローチャートである。 異常検知装置における異常検知方法を示すフローチャートである。
 以下、本発明に係る異常検知装置の一実施形態について、図面を参照しつつ説明する。以下では、一例として生産設備のボールネジ機構の異常検知を行う異常検知装置について説明する。図1は、この異常検知装置を含むシステムの構成例であり、異常検知装置1と、この異常検知装置1で用いる学習モデルを生成する学習装置2と、ボールネジ機構を含む搬送装置3と、を備えている。以下、各構成について、詳細に説明する。
 <1.ハードウエア構成>
 <1-1.搬送装置>
 図1に示すように、この搬送装置3は、ボールネジ31と、ボールネジ31に螺合するナット32と、ナット32上に設けられたワークWのステージ33と、を備えている。ボールネジ31にはサーボモータ34が連結され、このサーボモータ34によってボールネジ31が回転する。また、サーボモータ34には、これを制御するサーボドライバ35が接続されている。本実施形態では、異常検知のパラメータとして、サーボドライバ35で制御される、サーボモータ34の回転速度、出力トルク、及びステージの位置を用い、これらの時系列の波形を用いて異常の判定を行う。
 <1-2.異常検知装置>
 次に、本実施形態に係る異常検知装置1のハードウェア構成の一例について説明する。図2は、本実施形態に係る異常検知装置のハードウェア構成の一例である。
 この異常検知装置1は、制御部11、記憶部12、外部インタフェース13、及び通信インタフェース14が電気的に接続されたコンピュータであり、例えば、PLCで構成することができる。なお、図2では、外部インタフェース13及び通信インタフェース14を「外部I/F」及び「通信I/F」と記載している。この点は、後述する各種装置においても同様である。
 制御部11は、CPU、RAM、ROM等を含み、プログラム及びデータに基づいて各種情報処理を実行するように構成される。記憶部12は、例えば、HDD、SDD等の補助記憶装置で構成され、異常検知プログラム121、学習結果データ122、異常判定や装置を駆動するための種々のデータを記憶する。異常検知プログラム121は、異常検知装置1に計測波形の異常の有無の判定をさせるためのプログラムである。制御部11は、この異常検知プログラム121を解釈及び実行することで、後述する各ステップの処理を実行するように構成される。
 外部インタフェース13は、外部装置と接続するためのインタフェースであり、接続する外部装置に応じて適宜構成される。本実施形態では、外部インタフェース13が、ディスプレイ(表示部)4に接続されている。このディスプレイ4は、例えば、異常判定の結果等を表示するのに利用される。ディスプレイ4は、特には限定されず、公知の液晶ディスプレイ、タッチパネルディスプレイ等を用いることができる。その他、外部インタフェース13には、入力装置及び出力装置等を適宜接続することができる。
 通信インタフェース14は、例えば、有線LAN(Local Area Network)モジュール、無線LANモジュール等であり、有線又は無線通信を行うためのインタフェースである。すなわち、通信インタフェース14は、他の装置と通信を行うように構成された通信部の一例である。本実施形態では、ネットワークを介して、上述した学習装置2、及び搬送装置3に接続されている。
 なお、異常検知装置1の具体的なハードウェア構成に関して、実施形態に応じて、適宜、構成要素の省略、置換及び追加が可能である。例えば、制御部11は、複数のプロセッサを含んでもよい。また、制御部11は、FPGAにより構成されてもよい。記憶部12は、制御部11に含まれるRAM及びROMにより構成されてもよい。異常検知装置1は、PLCのほか、提供されるサービス専用に設計された情報処理装置を用いることができる。さらには、異常判定を行う対象に応じて、汎用のデスクトップPC、タブレットPC等であってもよい。以上の点は、後述する学習装置2においても同じである。
 <1-3.学習装置>
 次に、本実施形態に係る学習装置2のハードウェア構成の一例について説明する。図3は、本実施形態に係る学習装置のハードウェア構成の一例である。
 図3に示すように、学習装置2は、異常検知装置1と同様に、制御部21、記憶部22、外部I/F23、及び通信I/F24が電気的に接続されたコンピュータである。
 制御部21及び記憶部22の構成は、異常検知装置と同じである。記憶部には、学習プログラム221、学習モデル222、第1学習結果データ223、第2学習結果データ224、及び学習装置を駆動するための種々のデータを記憶する。学習プログラム221は、計測波形から生成波形を出力するための学習モデル222を学習するためのプログラムである。制御部21は、この学習プログラム221を解釈及び実行することで、後述する各ステップの処理を実行するように構成される。
 その他のハードウエア構成は、異常検知装置1と同じであるため、ここでは省略する。
 <2.ソフトウエア構成>
 <2-1.学習装置>
 学習装置2では、搬送装置3のサーボドライバ35から送信されたサーボモータ34の回転速度、出力トルク、及びステージの位置に関する、時系列データである計測波形を用いて学習モデル222の学習を行う。特に、この学習モデル222は、搬送装置3が正常に稼働しているときの正常時の計測波形により、学習される。以下、図4を参照しつつ、学習装置2のソフトウエア構成について説明する。図4は、学習装置のソフトウエア構成を示すブロック図である。
 <2-1-1.学習モデル>
 図4に示すように、学習装置2の制御部21は、記憶部22に記憶された学習プログラム221をRAMに展開すると、その学習プログラム221をCPUにより解釈及び実行して、取得部211、符号化部212、生成部213、判別部214、及び保存処理部215を備えたコンピュータとして機能する。
 取得部211は、上述したように、サーボモータ34の回転速度、出力トルク、及びステージの位置に関する、時系列データである計測波形を取得する。この計測波形は、後述するように、異常検知装置1の前処理後に送信される。但し、サーボドライバ35から直接送信し、後述するように、取得部211において、前処理が施されてもよい。
 また、取得部211で取得される計測波形は、同じ動作条件のみならず、異なる動作条件で搬送装置3が稼働したときの計測波形も取得される。例えば、軽いワークを搬送したとき(動作条件1)の計測波形と、重いワークを搬送したとき(動作条件2)の計測波形とが入力される。各動作条件時の計測波形の例を図5に示す。この例では、重いワークWを搬送したとき、速度が低下し、トルクが増大していることがわかる。なお、異なる動作条件としては、上記のほか、種々のものがあり、例えば、異なる加工部品を用いる場合(例えば、段取り替えによるステージの付け替えなど)、異なる環境温度で動作する場合(例えば。朝・昼の気温の変化など)がある。
 次に、符号化部212、生成部213、及び判別部214について説明する。これら符号化部212、生成部213、及び判別部214は、Efficient Generative Adversarial Network(Efficient GAN:敵対的生成ネットワーク)による学習モデルを構成している。そして、符号化部212及び生成部213は、例えば、畳み込みニューラルネットワーク(CNN)により構成されている。これについては、後述する。判別部214も、同様のCNNにより構成されている。但し、判別部214の構成は、符号化部212及び生成部213と異なっていてよい。
 学習の実施に際しては、判別部214を訓練する第1訓練ステップ、及び符号化部212及び生成部213を訓練する第2訓練ステップを交互に行う。第1訓練ステップでは、判別部214に入力された生成波形が、生成部213により生成された生成波形であるか、取得部211から送信された計測波形であるかを判別するように判別部214を訓練する。つまり、判別部214は、入力された波形が取得部211由来か、生成部213由来かを判別するように訓練される。また、第2訓練ステップでは、判別部214による判別が誤るような波形を生成するように符号化部212及び生成部213を訓練する。なお、ここでは、取得部211由来であることを「真」と表現し、生成部213由来であることを「偽」と表現する。ただし、各由来を表現する方法は、このような例に限定されなくてよく、実施の形態に応じて適宜選択されてよい。
 具体的に説明すると、第1訓練ステップでは、計測波形を符号化部212に入力する。符号化部212は、潜在変数zを出力し、この潜在変数zが生成部213に入力されると、生成部213は、符号化部212に入力された計測波形に近似する生成波形を出力する。
 この生成波形は、判別部214に入力され、演算処理が実行される。これにより、生成波形が生成部213由来か取得部211由来かを判別した結果に対応する出力値を出力する。ここでは、判別部214に入力された生成波形は、生成部213が生成した生成波形であるため、判別部214は、「偽」と判別するのが正解である。そして、出力値とこの正解との誤差を算出する。こうして、各生成波形について、出力値とこの正解との誤差を算出する。
 同様に、計測波形を判別部214に入力し、判別部214の演算処理を実行する。これにより、判別部214は、入力された波形が生成部213由来か取得部211由来かを判別した結果に対応する出力値を出力する。ここでは、入力された波形は計測波形であるため、判別部214は、「真」と判別するのが正解である。こうして、各波形について、出力値とこの正解との誤差を算出する。
 そして、算出される誤差の和が小さくなるように、判別部214のCNNのパラメータの値を調節する。出力値と真偽の正解との誤差の和が閾値以下になるまで、上記一連の処理により、判別部214のパラメータの値の調節を繰り返す。これにより、第1訓練ステップでは、生成部213により生成された生成波形であるか、計測波形であるかを判別するように、誤差逆伝播法(Backpropagation)等により判別部214を訓練する。
 一方、第2訓練ステップでは、計測波形を符号化部212に入力する。符号化部212は、潜在変数zを出力し、この潜在変数zが生成部213に入力されると、生成部213は、符号化部212に入力された計測波形に近似する生成波形を出力する。
 次に、生成された生成波形を判別部214に入力し、判別部214の演算処理を実行する。これにより、入力された生成波形が生成部213由来か取得部211由来かを判別した結果に対応する出力値を出力する。この生成部213の訓練では、判別部214による判別の結果を誤らせることが正解である。つまり、生成部213で生成された生成波形が、計測波形と見間違うほどに近似したものが生成されていればよく、得られる出力値が「真」に対応することが正解である。計測波形と生成波形の組み合わせについて、一連の処理により得られた出力値とこの正解(つまり、「真」)との誤差を算出する。
 そして、算出される誤差の和が小さくなるように、符号化部212及び生成部213のCNNのパラメータの値を調節する。各計測波形と生成波形との組み合わせについて、一連の処理により得られる出力値と「真」との誤差の和が閾値以下になるまで、上記一連の処理により、符号化部212及び生成部213のパラメータの値の調節を繰り返す。これにより、第2訓練ステップでは、判別部214による判別が誤るような生成波形を生成するように、誤差逆伝播法(Backpropagation)等により生成部213(及び符号化部212)を訓練する。
 このように、上記第1訓練ステップ及び第2訓練ステップを交互に実施することで、判別部214及び生成部213(及び符号化部212)の精度を交互に高めていく。これにより、生成部213は、計測波形とほぼ同じであるような生成波形を適切に生成する能力を習得することができる。
 この学習が完了した後、保存処理部215は、構築された符号化部212及び生成部213と、判別部214との構成(例えば、ニューラルネットワークの層数、各層におけるニューロンの個数、ニューロン同士の結合関係、各ニューロンの伝達関数)、及び演算パラメータ(例えば、各ニューロン間の結合の重み、各ニューロンの閾値)をそれぞれ示す第1学習結果データ223及び第2学習結果データ224を生成する。そして、保存処理部215は、生成した第1及び第2学習結果データ223,224を記憶部22に保存する。
 こうして、学習された符号化部212及び生成部213に、計測波形を入力すると、計測波形に近似する生成波形を生成することができる。
 <2-1-2.CNN>
 次に、符号化部212及び生成部213を構成するCNNの一例について、図6を参照しつつ説明する。このCNNは一次元CNNで構成され、具体的には、符号化部は一次元CNN、生成部は一次元転置CNNで構成されている。図6は、符号化部及び生成部とCNNとの対応を示す図である。符号化部212に入力される計測波形は、異常検知装置1の前処理部112で生成される。
 この点について先に説明を行う。前処理部112は、収集された計測波形に対し、前処理を行う。前処理としては、例えば、以下の3個の処理を行うことができる。まず、搬送装置3において、ステージ33が始点から終点まで区間(フレーム)を移動する間の波形を切り出し、これを判定に用いる。また、計測波形の値を0~1の数値となるように正規化する。さらに、時系列のフレーム長が64となるように線形変換する。
 図6に示すように、このCNNでは、符号化部212に、上述した3つのパラメータについて、フレーム長が64に変換した(C,T)で示されるデータを入力する。ここで、Cは変数の次元数、Tはデータのフレーム長である。符号化部212に入力されるデータは、パラメータの数が3,フレーム長が64であるため、(3,64)となる。つまり、3*64=192のデータが入力される。したがって、図6に示すように、CNNの各層のデータは、(C,T)で示されている。
 また、このCNNでは、符号化部212において、4つの層でデータが、(32,32)、(64,16)、(128,8)と、データフレーム長を縮小するように演算し、全結合層において、潜在変数zに対応する10のデータを生成する。すなわち、この潜在変数zは、計測波形の次元を縮小し、計測波形の特徴を低次元で示したものである。このように計測波形を低次元で表すことで、学習を容易に行うことができる。その後、この潜在変数zに対応するデータを生成部213に入力し、5つの層でデータが、(512,4)、(256,8)、(128,16)と縮小されたデータフレーム長が拡大するように演算し、最終的に計測波形と対応する(3,64)のデータ、つまり生成波形を生成する。
 なお、このCNNは一例であり、通常のニューラルネットワークを用いることもできる。
 <2-2.異常検知装置>
 次に、異常検知装置1のソフトウエア構成について説明する。図7は、異常検知装置のソフトウエア構成を示すブロック図である。図7に示すように、異常検知装置1の制御部11は、記憶部12に記憶された異常検知プログラム121をRAMに展開すると、その異常検知プログラム121をCPUにより解釈及び実行して、収集部111、前処理部112、波形生成部113、乖離度算出部114、判定部115、及び出力部116を備えたコンピュータとして機能する。
 収集部111は、搬送装置3のサーボドライバ35から送信されたサーボモータ34の回転速度、出力トルク、及びステージの位置に関する、時系列データである計測波形を収集する。収集された計測波形は、記憶部12またはRAMに記憶される。
 前処理部112は、収集された計測波形に対し、前処理を行う。この処理については、上述したとおりである。また、前処理された計測波形は、学習装置2に送信され、上述した学習に用いられる。
 波形生成部113は、上述したように、学習装置2で生成された第1学習結果データ223が導入された訓練済みの符号化部212及び生成部213により構成されている。
 乖離度算出部114は、計測波形と生成波形とを比較し、その乖離度を算出する。乖離度としては、個別乖離度と総合乖離度を算出する。個別乖離度の算出は、次のように行う。まず、上記3つのパラメータのそれぞれについて、時系列データで示された計測波形と生成波形の差分を時系列に算出した乖離度時系列データを算出する。例えば、フレーム長である64個のデータそれぞれについて差分を算出し、64個の差分のデータからなる乖離度時系列データを算出する。続いて、64個のデータを合計し、個別乖離度を算出する。すなわち、3つのパラメータ毎の乖離度を表すことができる。
 図8は、3つのパラメータについて、正常時の計測波形と生成波形と重ねたグラフ、及び各パラメータの乖離度時系列データを示すグラフである。一方、図9は、3つのパラメータについて、異常時の計測波形と生成波形と重ねたグラフ,及び各パラメータの乖離度時系列データを示すグラフである。図8に示す正常時の乖離度時系列データでは、いずれのパラメータにおいても、乖離度はどの時間帯においても、概ね0である。なお、図8の計測波形と生成波形を重ねたグラフでは、両者がほぼ同じであるため、1つの線に見えている。一方、図9に示す異常時の乖離度時系列データでは、乖離度が変化していることが分かる。例えば、トルクに関する乖離度時系列データは、搬送の開始時に大きく変化していることが分かる(丸で囲んだ部分)。
 また、個別乖離度に基づいて、図10に示すような乖離度のランキングを生成することもできる。一方、総合乖離度は、個別乖離度を合計した一のスカラー値である。こうして、各計測波形と生成波形の組み合わせについて、個別乖離度と総合乖離度が算出される。
 判定部115は、総合乖離度が規定の閾値を超えた場合には、異常と判定し、閾値を以下である場合には、正常と判定する。波形生成部113は、正常時の計測波形に基づいて学習された学習モデルを含んでいるため、正常時の計測波形を入力すると、これに近似する生成波形が生成される。一方、異常時の計測波形を入力すると、正常時の生成波形とは異なる生成波形が生成されるため、乖離が大きくなる。したがって、総合乖離度が所定の閾値を超えた場合には、異常と判定される。図11はその一例である。正常な計測波形が入力された場合には、閾値よりも低い総合乖離度が算出される一方、異常な計測波形が入力された場合には、閾値よりも高い総合乖離度が算出されていることが分かる。
 出力部116は、計測波形、生成波形、乖離度時系列データ、個別乖離度、総合乖離度の少なくとも1つを出力し、ディスプレイ4に表示する。
 <3.学習装置での学習処理>
 次に、上記のように構成された学習装置の学習処理について、図12のフローチャートを参照しつつ説明する。
 図12に示すように、まず、搬送装置3を稼働し(ステップS11)、上述した3つのパラメータについて、正常時の計測波形を収集する(ステップS12)。次に、計測波形に前処理を施す(ステップS13)。続いて、前処理が施された計測波形を学習モデル222に入力し、上述した第1及び第2学習結果データ223,224を生成する(ステップS14)。これに続いて、閾値を設定する(ステップS15)。閾値の設定は、特には限定されないが、例えば、上記総合乖離度の正規分布を算出し、その3σ以上、例えば、3σ、4σなどに閾値を設定することができる。なお、閾値は、学習装置2において自動で設定するほか、異常検知装置1で設定することもできる。あるいは、利用者が任意に設定することもできる。その後、第1学習結果データ223は、異常検知装置1に送信され、波形生成部113に組み込まれる(ステップS16)。なお、第1学習結果データ223は、定期的に作成され、その都度、波形生成部113に組み込むことができる。こうして、学習装置2での学習処理が終了する。
 <4.異常検知装置での異常検知方法>
 次に、上記のように構成された異常検知装置における異常検知方法について、図13のフローチャートを参照しつつ説明する。
 図13に示すように、まず、搬送装置3の稼働中に、収集部111において、上述した3つのパラメータについて、計測波形を収集する(ステップS21)。次に、前処理部112により、計測波形に前処理を施す(ステップS22)。続いて、上記第1学習結果データ223が組み込まれた波形生成部113に、前処理が施された計測波形を入力し、生成波形を生成する(ステップS23)。これに続いて、乖離度算出部114により、算出された生成波形と計測波形を比較し、総合乖離度を算出する(ステップS24)。最後に、判定部115により総合乖離度が閾値未満である場合には(ステップS25のYES)、正常であるとして搬送装置の可動を続ける。一方、総合乖離度が閾値以上である場合には(ステップS25のNO)、異常が発生しているとして、ディスプレイ4に異常のアラートを表示する(ステップS26)。
 <5.特徴>
 以上のように、本実施形態によれば、搬送装置3において計測される、複数のパラメータに関する時系列データである正常時の計測波形から、この複数のパラメータに関する時系列データである生成波形を生成する波形生成部113を有し、計測波形と生成波形とを比較することで、乖離度を算出し、これが所定の閾値を上回った場合には、異常であると判定するようにしている。そのため、以下の効果を得ることができる。
(1)複数の動作条件に対応した精度の高い異常の検知が可能となる。
(2)乖離度時系列データ、個別乖離度を算出できるため、各パラメータにおいて、例えば、どの時刻に乖離度が大きくなっているかを確認することができる。したがって、異常判断の説明性を高くすることができる。
(3)簡単な前処理を施した計測波形を入力して生成波形を出力するため、波形の特徴量を設計する必要がない。
 <6.変形例>
 以上、本発明の実施形態について説明してが、前述までの説明はあらゆる点において本発明の例示に過ぎず、本発明の範囲を逸脱することなく種々の改良や変形を行うことができることは言うまでもない。例えば、以下のような変更が可能である。なお、以下では、上記実施形態と同様の構成要素に関しては同様の符号を用い、上記実施形態と同様の点については、適宜説明を省略した。また、以下の変形例は適宜組み合わせ可能である。
 <6-1>
 上実施形態では、GANによる学習モデルを有しているが、これに限定されるものではなく、オートエンコーダ、GANomaly、Skip GANomaly等のニューラルネットワークで構成することができる。すなわち、上記のような複数のパラメータに関する時系列データのような多変量多次元のデータを学習できる手法であればよい。
 <6-2>
 乖離度算出部114における異常判定を行うための乖離度の算出方法は、特には限定されず、判定部115で評価可能な計測波形と生成波形との差を乖離度として算出できればよい。
 <6-3>
 上記実施形態では、異常検知装置1と学習装置2とを別のコンピュータで構成しているが、1つのコンピュータで構成することもできる。すなわち、異常検知装置1に学習機能が付加されていてもよい。
 <6-4>
 計測波形の前処理の方法は、特には限定されず、使用される学習モデルに応じて適宜変更することができる。あるいは、前処理を行わずに学習を行ったり、生成波形を生成することもできる。
 <6-5>
 上記実施形態の異常検知装置1では、ボールネジ機構を有する搬送装置における異常を判定しているが、これに限定されものでなく、種々の対象機械の異常を判定に適用することができる。
1 異常検知装置
11 取得部
13 波形生成部
14 乖離度算出部
15 判定部
2 学習装置
212 符号化部
213 生成部
214 判別部
222 学習モデル
3 搬送装置(対象機械)
4 ディスプレイ(表示部)

Claims (11)

  1.  対象機械の複数のパラメータに関する時系列データである計測波形を取得する取得部と、
     前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成する波形生成部と、
     前記計測波形と前記生成波形とを比較することで、乖離度を算出する乖離度算出部と、
     前記乖離度が所定の閾値を上回った場合には、前記計測波形が異常と判定する判定部と、
     を備え、
     前記波形生成部は、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルを備えている、異常検知装置。
  2.  前記学習モデルは、前記対象機械の複数の動作条件下で取得された正常時の前記計測波形に基づいて学習されている、請求項1に記載の異常検知装置。
  3.  前記学習モデルは、教師なし学習により生成されている、請求項1または2に記載の異常検知装置。
  4.  前記学習モデルは、ニューラルネットワークにより構成されている、請求項3に記載の異常検知装置。
  5.  前記ニューラルネットワークは、符号化部及び生成部を含み、
     前記符号化部は、前記計測波形を入力とし、潜在変数を出力とし、
     前記生成部は、前記潜在変数を入力とし、前記生成波形を出力とし、
     前記符号化部及び前記生成器は、畳み込みニューラルネットワークにより構成されている、請求項4に記載の異常検知装置。
  6.  前記学習モデルは、Efficient GANにより構成されている、請求項4または5に記載の異常検知装置。
  7.  前記乖離度は、一のスカラー値である、請求項1から6のいずれかに記載の異常検知装置。
  8.  前記乖離度算出部は、前記各パラメータ毎の時系列の個別乖離度を算出するように構成されている、請求項1から7のいずれかに記載の異常検知装置。
  9.  前記計測波形、前記生成波形、前記乖離度、及び前記パラメータ毎の時系列の個別乖離度の少なくとも1つを表示する表示部をさらに備えている、請求項1から8のいずれかに記載の異常検知装置。
  10.  対象機械の複数のパラメータに関する時系列データである計測波形を取得するステップと、
     前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成するステップと、
     前記計測波形と前記生成波形とを比較することで、乖離度を算出するステップと、
     前記乖離度が規定の閾値を上回った場合には、前記計測波形が異常と判定するステップと、
     を備え、
     前記生成波形を生成するステップは、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルにより行われている、異常検知方法。
  11.  コンピュータに、
     対象機械の複数のパラメータに関する時系列データである計測波形を取得するステップと、
     前記計測波形を入力することで、前記複数のパラメータに関する時系列データである生成波形を生成するステップと、
     前記計測波形と前記生成波形とを比較することで、乖離度を算出するステップと、
     前記乖離度が規定の閾値を上回った場合には、前記計測波形が異常と判定するステップと、
     を実行させ、
     前記生成波形を生成するステップは、前記対象機械における正常時の前記計測波形に基づいて学習された訓練済みの学習モデルにより行われている、異常検知プログラム。
PCT/JP2022/012045 2021-07-30 2022-03-16 異常検知装置、異常検知方法、及び異常検知プログラム WO2023007825A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021126335A JP2023020770A (ja) 2021-07-30 2021-07-30 異常検知装置、異常検知方法、及び異常検知プログラム
JP2021-126335 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023007825A1 true WO2023007825A1 (ja) 2023-02-02

Family

ID=85087799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012045 WO2023007825A1 (ja) 2021-07-30 2022-03-16 異常検知装置、異常検知方法、及び異常検知プログラム

Country Status (2)

Country Link
JP (1) JP2023020770A (ja)
WO (1) WO2023007825A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615180A (en) * 2021-12-08 2023-08-02 Ford Global Tech Llc Systems and methods for detecting manufacturing anomalies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187667A (ja) * 2019-05-17 2020-11-19 トヨタ自動車株式会社 情報処理装置及び情報処理方法
JP2020191050A (ja) * 2019-05-24 2020-11-26 Kyb株式会社 異常検知装置及び異常検知方法
JP2021009441A (ja) * 2019-06-28 2021-01-28 ルネサスエレクトロニクス株式会社 異常検知システム及び異常検知プログラム
KR20210061517A (ko) * 2019-11-19 2021-05-28 한국생산기술연구원 머신러닝에 의해 생성된 가상 데이터를 이용한 고장 진단 방법 및 장치
JP2021086571A (ja) * 2019-11-29 2021-06-03 東京エレクトロン株式会社 異常検知装置、異常検知方法及び異常検知プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020187667A (ja) * 2019-05-17 2020-11-19 トヨタ自動車株式会社 情報処理装置及び情報処理方法
JP2020191050A (ja) * 2019-05-24 2020-11-26 Kyb株式会社 異常検知装置及び異常検知方法
JP2021009441A (ja) * 2019-06-28 2021-01-28 ルネサスエレクトロニクス株式会社 異常検知システム及び異常検知プログラム
KR20210061517A (ko) * 2019-11-19 2021-05-28 한국생산기술연구원 머신러닝에 의해 생성된 가상 데이터를 이용한 고장 진단 방법 및 장치
JP2021086571A (ja) * 2019-11-29 2021-06-03 東京エレクトロン株式会社 異常検知装置、異常検知方法及び異常検知プログラム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2615180A (en) * 2021-12-08 2023-08-02 Ford Global Tech Llc Systems and methods for detecting manufacturing anomalies

Also Published As

Publication number Publication date
JP2023020770A (ja) 2023-02-09

Similar Documents

Publication Publication Date Title
US11275345B2 (en) Machine learning Method and machine learning device for learning fault conditions, and fault prediction device and fault prediction system including the machine learning device
Shin et al. One-class support vector machines—an application in machine fault detection and classification
EP3776113B1 (en) Apparatus and method for controlling system
Costa et al. Failure detection in robotic arms using statistical modeling, machine learning and hybrid gradient boosting
Cabrera et al. Automatic feature extraction of time-series applied to fault severity assessment of helical gearbox in stationary and non-stationary speed operation
JP2021528745A (ja) アプリケーション情報に関連する時系列ズデータに関する深層学習を使用した異常検出
US20050261837A1 (en) Kernel-based system and method for estimation-based equipment condition monitoring
Guh Simultaneous process mean and variance monitoring using artificial neural networks
Unal et al. Data-driven artificial intelligence and predictive analytics for the maintenance of industrial machinery with hybrid and cognitive digital twins
WO2023007825A1 (ja) 異常検知装置、異常検知方法、及び異常検知プログラム
WO2020188696A1 (ja) 異常検知装置および異常検知方法
Bai et al. A novel transformer-based multi-variable multi-step prediction method for chemical process fault prognosis
KR20230017556A (ko) 빅데이터 및 인공지능 기반의 제조 실행 시스템 및 이의 운영방법
Gordon et al. Data‐driven prescriptive maintenance toward fault‐tolerant multiparametric control
Ming et al. Feature selection for chemical process fault diagnosis by artificial immune systems
JP2023106037A (ja) 運転支援装置、運転支援方法及びプログラム
Zahara Peramalan Data Indeks Harga Konsumen Berbasis Time Series Multivariate Menggunakan Deep Learning
CN116894211A (zh) 用于生成能由人类感知的解释性输出的系统及用于监控异常识别的方法和计算机程序
JP7173168B2 (ja) 異常検知装置、システム、方法及びプログラム
Arakelian et al. Creation of predictive analytics system for power energy objects
Niu et al. A novel one‐dimensional convolutional neural network architecture for chemical process fault diagnosis
Kumar et al. Review on prognostics and health management in smart factory: From conventional to deep learning perspectives
Lughofer et al. Prologue: Predictive maintenance in dynamic systems
Jenab et al. Fuzzy quality feature monitoring model
Khaziev et al. Intelligent diagnostic system for hydraulic actuator

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848909

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE