WO2023007589A1 - Structure and structure diagnosis method - Google Patents

Structure and structure diagnosis method Download PDF

Info

Publication number
WO2023007589A1
WO2023007589A1 PCT/JP2021/027761 JP2021027761W WO2023007589A1 WO 2023007589 A1 WO2023007589 A1 WO 2023007589A1 JP 2021027761 W JP2021027761 W JP 2021027761W WO 2023007589 A1 WO2023007589 A1 WO 2023007589A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
lining
porous body
fluid
hole
Prior art date
Application number
PCT/JP2021/027761
Other languages
French (fr)
Japanese (ja)
Inventor
聡 篠崎
安弘 松本
潤一郎 玉松
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/027761 priority Critical patent/WO2023007589A1/en
Priority to JP2023537792A priority patent/JPWO2023007589A1/ja
Publication of WO2023007589A1 publication Critical patent/WO2023007589A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/38Waterproofing; Heat insulating; Soundproofing; Electric insulating

Definitions

  • the present disclosure relates to a structure and a method of diagnosing the structure.
  • Patent Document 1 prevents water outside the tunnel from flowing into the tunnel.
  • the dam also prevents the water that resides inside from flowing out to the outside.
  • the present disclosure provides a structure and a method of diagnosing the structure that can prevent the structure from being destroyed by suppressing the local concentration of fluid pressure when the structure deteriorates. for the purpose.
  • a structure includes a tubular first lining, a porous body extending along at least a portion of the inside of the first lining and permeable with a fluid, and an inner side of the porous body. a tubular second lining disposed in the .
  • a structure according to one embodiment is a structure comprising a wall that blocks water and a porous body that extends from an opening through the wall to a water outlet and through which the water permeates, wherein the porous The opening of the mass is positioned above the normal water level.
  • a method for diagnosing a structure includes a tubular first lining, a porous body extending along at least a portion of the inner side of the first lining and permeable with a fluid, and A structure comprising: a tubular second lining disposed inside a body; and a sensor for detecting that the fluid has passed through the second lining and through a through-hole reaching the porous body.
  • a method of diagnosis comprising using the sensor to determine if the fluid has flowed through the through-hole.
  • a structure and a structure diagnostic method that can prevent the structure from being destroyed by suppressing the local concentration of fluid pressure when the structure deteriorates. can provide.
  • FIG. 1 shows a sectional view of a structure according to a first embodiment
  • FIG. Fig. 4 shows a sectional view of a modification of the structure according to the first embodiment
  • Figure 3 shows a side perspective view of the structure of Figure 2
  • 3 is a flow chart showing an example of a diagnostic method for the structure 200 shown in FIG. 2
  • Fig. 4 shows a cross-sectional view of a structure according to a second embodiment
  • the front view of the structure which concerns on 2nd Embodiment is shown.
  • Fig. 4 shows a perspective view from above of a structure according to a second embodiment;
  • Fig. 4 shows a cross-sectional view of a structure according to a third embodiment;
  • the front view of the structure which concerns on 3rd Embodiment is shown.
  • Fig. 3 shows a perspective view from above of a structure according to a third embodiment; Shows a conventional tunnel. Shows a conventional tunnel. Shows a conventional tunnel. Shows a conventional tunnel. Shows
  • the lining material (secondary lining material) 730 on the tunnel inner space side is generally made of a material such as concrete.
  • the lining material 710 on the soil 1000 side prevents the fluid 1100 from flowing into the tunnel 700 .
  • the lining material 730 on the inner space side of the tunnel is directly affected by stagnant water and the like. This causes cracks in the lining material 730 on the tunnel inner space side, as described in Reference 1 below, and gaps such as seams between the lining materials 710 and 730 as shown in FIG. 7C. water flows into the As cracks and water inflow progress further, as shown in FIG. 7D, the lining material 730 on the side of the inner space of the tunnel collapses and the collapsed pieces 740 fall, or the road collapses due to large-scale flooding and sediment inflow. etc. [Reference 1] "Tunnel Library No.
  • the lining material 730 on the inner space side of the tunnel is generally opaque, the state of deterioration and soundness of the lining material 710 on the side of the soil 1000 can be quickly and easily confirmed by remote diagnosis such as visual inspection of the exterior. It was difficult.
  • the purpose of the structure according to the first embodiment is to provide a structure that allows quick and easy confirmation of the state of deterioration and soundness of the lining material.
  • a structure 100 such as a tunnel, underpass, or the like, includes a tubular first lining 110 and a porous body 120 extending along the entire inside of the first lining 110 and permeable by a fluid. , a tubular second lining 130 disposed inside the porous body 120 .
  • a through-hole 140 is also formed that penetrates through the first lining 110 to reach the porous body 120 and extends in the axial direction of the structure 100 (the direction orthogonal to the plane of FIG. 1).
  • the first lining 110 shown in FIG. 1 is cylindrical.
  • the shape of the first lining 110 can also be rectangular, elliptical, or the like. The same applies to the shapes of the porous body 120 and the second lining 130 described below.
  • First lining 110 prevents fluid 1100 from flowing into structure 100 .
  • the first lining 110 can be metal.
  • the first lining 110 is provided to prevent the excavated portion from collapsing while the shield machine is digging the soil 1000 . Also, the first lining 110 can be assembled from segments.
  • the porous body 120 may extend along at least part of the inside of the first lining 110 .
  • the porous body 120 extends from the top to the bottom of the structure 100 on the side of the structure 100 where the through holes 140 are provided (the right side in FIG. 1).
  • the porous body 120 is preferably made of porous concrete, pumice stone, or the like from the viewpoint of strength.
  • the porous body 120 may be sponge, zeolite, porous ceramics, porous glass, porous fiber, foam, urethane rubber, plastic foam, or the like.
  • the thickness of the porous body 120 is, for example, several mm to several cm, but is not limited to this range.
  • the porous body 120 is sprayed inside the first lining 110 .
  • the porous body 120 can also be attached inside the first lining 110 as a panel.
  • the second lining 130 can be concrete.
  • the first lining 110 and the second lining 130 can also be constructed of the same material.
  • a through hole 140 is formed in the lower part of the structure 100, on the right side of FIG.
  • Other arrangements of through-holes are possible, for example through-holes 140 can be formed on each of the left and right sides of FIG.
  • the cross-sectional shape of the through hole 140 can be circular, for example.
  • the through hole 140 can be formed by a drill or the like.
  • the structure 100 includes a trackbed 150.
  • a worker can walk on the track bed 150 .
  • Goods and the like can also be transported on the track bed 150 .
  • Track bed 150 may be concrete.
  • FIG. 2 shows a cross-sectional view of a structure 200 that is a modification of the structure 100 according to the first embodiment.
  • Structure 200 has a configuration similar to structure 100 . Therefore, the configuration of the structure 200 that is different from that of the structure 100 will be described, and the description of the configuration of the structure 100 will be omitted.
  • the structure 200 further includes a channel 260 for receiving a fluid 1100 such as groundwater flowing out from the through hole 140 and flowing it to a water tank or the like. Further, as shown in FIG. 2, the outlet of the through hole 140 is provided with a flowmeter 270 as a sensor, for example.
  • the flow paths 260 are formed on both sides of the track bed 150 on the inner surface of the lower portion of the secondary lining 130 .
  • the through-hole 140 extends in the axial direction of the structure 100 (the direction perpendicular to the paper surface of FIG. 2) and communicates with the water tank.
  • a fluid 1100 such as groundwater existing outside the structure 200 begins to flow into the first lining 110 from the deteriorated location.
  • the fluid 1100 flows into the porous body 120 .
  • the fluid 1100 permeates a wide range of the porous body 120 because the porous body 120 has air bubbles and pores. Therefore, the hydraulic pressure of the fluid 1100 is dispersed and relieved, which can prevent the concentration of stress on the second lining 130 . As a result, deterioration of the second lining 130 can be prevented.
  • the behavior of the structure 200 has been described so far, the structure 100 shown in FIG. 1 also exhibits the same behavior.
  • the flowmeter 270 measures the flow rate of the fluid 1100 flowing through the through hole 140 .
  • the channel 260 then flows in the direction of extension of the structure 200, ie, in the axial direction of the structure 200, and flows into the reservoir.
  • the state of deterioration and soundness of the first lining 110 can be confirmed. Specifically, when the flow meter 270 detects that the fluid 1100 has flowed through the through hole 140, it can be estimated that the first lining 110 has deteriorated. Also, when the flow meter 270 measures a large flow rate, it can be assumed that the first lining 110 is severely deteriorated. Also, a water level gauge may be provided in the flow path 260 instead of or together with the flow meter 270 to make a similar estimation.
  • a worker can visually check the through-hole 140 and the flow path 260 to confirm the state of deterioration and soundness of the first lining 110 .
  • An energization meter may be provided at the exit of the through-hole 140 or the like to detect the flow of the fluid 1100 by energization.
  • the water quality such as turbidity of the fluid 1100 flowing through the through-hole 140
  • polluted water can be identified by providing a colorimeter or a turbidity meter at the outlet of the through-hole 140 or the like.
  • a water quality meter for analyzing the concentration of dissolved ions can also be provided at the outlet of the through-hole 140 or the like.
  • partitions 310 that block permeation of fluid 1100 through porous body 120 are spaced apart in the axial direction of structure 100 .
  • the partition 310 can be formed, for example, by plugging the ends of the porous bodies 120 adjacent to each other in the axial direction of the structure 200 before connecting the porous bodies 120 to each other.
  • the partition 310 By providing the partition 310, the range in which the fluid 1100 permeates the porous body 120 can be limited. As a result, when the fluid 1100 flows through a portion of the through-hole 140, it can be identified that the first lining 110 has deteriorated in the vicinity of the portion. Furthermore, by providing the flow meter 270 for each area partitioned by the partition 310, it is possible to more easily identify the deteriorated portion.
  • FIG. 4 is a flow chart showing an example of a diagnostic method for the structure 200 shown in FIG.
  • step S41 referring to FIG. 2, the flow rate of fluid 1100 flowing through through-hole 140 is measured by flow meter 270 as a sensor.
  • step S42 it is determined whether the fluid 1100 has flowed through the through hole 140. For example, it is determined that the fluid 1100 has flowed through the through-hole 140 when the measured value of the flow meter 270 or water level meter is equal to or greater than a certain threshold. In this case, go to step 43 . On the other hand, if it is determined that the fluid 1100 is not flowing through the through hole 140, the process returns to step 41.
  • step S43 an alarm is issued that the structure 200 needs to be repaired.
  • an alarm can be notified by sounding a buzzer or lighting a lamp.
  • step S44 the worker receives the warning and repairs the structure 200.
  • the operator exposes the vicinity of the deteriorated portion of the first lining 110 by removing the second lining 130 and the porous body 120 covering the inner side thereof. The worker can then repair the deteriorated portion.
  • the purpose of the structure according to the second embodiment is to provide a structure that can discharge water at an appropriate flow rate before the water level reaches the dangerous water level.
  • a structure 500 such as a dam includes a wall 510 that blocks water 1200 and a porous wall that extends from a water intake portion 520i to a water outlet portion 530 through the wall 510 and permeates the water 1200.
  • the wall 510 is, for example, concrete.
  • the height of the wall 510 is higher than the danger water level.
  • the porous body 520 has a water intake portion 520i extending in the width direction of the structure 500 facing the water 1200, communicates with the water intake portion 520i near both ends in the width direction of the structure 500, and is inclined downward with respect to the horizontal direction. and an intermediate portion 520m extending along the The intermediate portion 520m opens on the opposite side of the water 1200 and communicates with the water outlet portion 530 which is a cavity.
  • the water intake portion 520i of the porous body 520 is arranged at a position higher than the normal water level (hereinafter referred to as "normal water level").
  • the water outlet 530 is arranged at a position lower than the normal water level.
  • the water 1200 When the water level of the water 1200 is below the lower edge of the water intake portion 520i (this water level is hereinafter referred to as the "caution water level"), the water 1200 does not flow into the porous body 520.
  • the water 1200 inside the structure 500 flows into the porous body 520 from the water intake section 520i.
  • the water 1200 that has flowed in penetrates widely into the porous body 520 and is discharged to the outside of the structure 500 from the water outlet 530 .
  • the water 1200 can flow from the water intake section 520i to the water discharge section 530 without applying a large water pressure to the wall 510 .
  • the permeation speed of water 1200 into porous body 520 is limited to a predetermined range, water 1200 can be prevented from being suddenly discharged from water outlet 530 .
  • the upper edge of the water intake portion 520i is arranged at the same height as the dangerous water level.
  • the amount of water 1200 flowing into the water intake portion 520i is constant regardless of the water level. This prevents excessive water pressure from being applied to the wall 510 when the water 1200 flows from the water intake portion 520i to the water discharge portion 530 .
  • Structure 600 has a configuration similar to structure 500 . Therefore, the configuration of the structure 500 that is different from that of the structure 500 will be described, and the description of the configuration of the structure 500 will be omitted.
  • a structure 600 such as a weir includes a cavity 620 arranged below the porous body 520 .
  • the hollow portion 620 includes a water intake portion 620i that faces the water 1200 and extends in the width direction of the structure 600, and an intermediate portion that communicates with the water intake portion 620i near both ends in the width direction of the structure 600 and extends obliquely downward from the horizontal direction. It includes a portion 620m and a water outlet portion 620?, which is a hollow portion that communicates with the intermediate portion 620m and faces away from the water 1200.
  • a water intake portion 620i of the hollow portion 620 is normally arranged at a position below the water level. In this embodiment, the upper edge of water intake 620i is substantially level with the normal water level. The water outlet 620? is arranged at a position lower than the normal water level.
  • the water outlet portion 520' of the porous body 520 is connected to the water outlet portion 620' of the hollow portion 620.
  • the water 1200 When the water level of the water 1200 is below the lower edge of the water intake section 620i (this water level is hereinafter referred to as the "low water level"), the water 1200 does not flow into the hollow section 620.
  • the water 1200 inside the structure 600 flows into the hollow section 620 from the water intake section 620i.
  • the water 1200 that has flowed in is discharged out of the cavity 620 from the water outlet 620'.
  • the water level is higher than the low water level and below the upper edge of the water intake section 620i, the amount of water 1200 flowing into the water intake section 620i increases as the water level increases. Therefore, the water level of the water 1200 can be quickly lowered.
  • the amount of water 1200 flowing into the water intake section 620i is constant regardless of the water level. As a result, it is possible to prevent excessive water pressure from being applied to the wall 510 when the water 1200 flows from the water intake portion 620i to the water discharge portion 620'.
  • the water 1200 inside the structure 600 flows into the porous body 520 from the water intake section 520i.
  • the water 1200 that has flowed in penetrates widely into the porous body 520 and is discharged to the outside of the structure 600 from the water outlet 620'.
  • ballast 200 structure 110 first lining 120 porous body 1200 water 130 second lining 140 through hole 150 ballast 200 structure 260 channel 310 partition 500 structure 510 wall 520 porous body 520i water intake section 520o water outlet section 530 water outlet section 600 structure 620 water outlet 620 cavity 620i water intake 1000 soil 1100 fluid

Abstract

Provided is a structure (100; 200) comprising: a tubular first lining (110); a porous body (120) which extends along at least a section of the inside of the first lining (110), and into which a liquid (1100) permeates; and a tubular second lining (130) that is disposed on the inner side of the porous body (120).

Description

構造物及び構造物の診断方法Structures and diagnostic methods for structures
 本開示は、構造物及び構造物の診断方法に関するものである。 The present disclosure relates to a structure and a method of diagnosing the structure.
 一方側から他方側へ流体が移動することを少なくとも部分的に妨げる構造物が知られている。例えば特許文献1に例示するトンネルは、トンネル外部の水がトンネル内部に流入することを防ぐ。また、ダムは、内側に存在する水が外側に流出することを防ぐ。 Structures are known that at least partially impede the movement of fluid from one side to the other. For example, the tunnel illustrated in Patent Document 1 prevents water outside the tunnel from flowing into the tunnel. The dam also prevents the water that resides inside from flowing out to the outside.
 しかしながら、構造物が劣化した場合、流体の内部への流入又は外側への流出を完全に防ぐことができず、流体の圧力が構造物の局所に集中することにより構造物が破壊するおそれがある。 However, if the structure deteriorates, it is not possible to completely prevent the inflow of the fluid into the interior or the outflow of the fluid to the outside, and there is a risk that the structure will be destroyed due to the local concentration of the fluid pressure. .
 本開示は、構造物が劣化した場合に流体の圧力が構造物の局所に集中することを抑制し、構造物の破壊を未然に防ぐことが可能な構造物及び構造物の診断方法を提供することを目的とする。 The present disclosure provides a structure and a method of diagnosing the structure that can prevent the structure from being destroyed by suppressing the local concentration of fluid pressure when the structure deteriorates. for the purpose.
 一実施形態に係る構造物は、管状の第1覆工と、前記第1覆工の内側の少なくとも一部に沿って延在し、流体が浸透する多孔質体と、前記多孔質体の内側に配置される管状の第2覆工と、を含む。 A structure according to one embodiment includes a tubular first lining, a porous body extending along at least a portion of the inside of the first lining and permeable with a fluid, and an inner side of the porous body. a tubular second lining disposed in the .
 一実施形態に係る構造物は、水を遮る壁と、開口部から前記壁を通って出水口まで延在するとともに、前記水が浸透する多孔質体と、を備える構造物であり、前記多孔質体の前記開口部が通常の水位よりも高い位置に配置される。 A structure according to one embodiment is a structure comprising a wall that blocks water and a porous body that extends from an opening through the wall to a water outlet and through which the water permeates, wherein the porous The opening of the mass is positioned above the normal water level.
 一実施形態に係る構造物の診断方法は、管状の第1覆工と、前記第1覆工の内側の少なくとも一部に沿って延在し、流体が浸透する多孔質体と、前記多孔質体の内側に配置される管状の第2覆工と、前記流体が、前記第2覆工を貫通して前記多孔質に達する貫通孔を流れたことを検出するセンサと、を含む構造物の診断方法であり、前記センサを用いて、前記流体が前記貫通孔を流れたか判定するステップを含む。 A method for diagnosing a structure according to one embodiment includes a tubular first lining, a porous body extending along at least a portion of the inner side of the first lining and permeable with a fluid, and A structure comprising: a tubular second lining disposed inside a body; and a sensor for detecting that the fluid has passed through the second lining and through a through-hole reaching the porous body. A method of diagnosis comprising using the sensor to determine if the fluid has flowed through the through-hole.
 本開示によれば、構造物が劣化した場合に流体の圧力が構造物の局所に集中することを抑制し、構造物の破壊を未然に防ぐことが可能な構造物及び構造物の診断方法を提供することができる。 According to the present disclosure, there is provided a structure and a structure diagnostic method that can prevent the structure from being destroyed by suppressing the local concentration of fluid pressure when the structure deteriorates. can provide.
第1実施形態に係る構造物の断面図を示す。1 shows a sectional view of a structure according to a first embodiment; FIG. 第1実施形態に係る構造物の変形例の断面図を示す。Fig. 4 shows a sectional view of a modification of the structure according to the first embodiment; 図2の構造物の側面透視図を示す。Figure 3 shows a side perspective view of the structure of Figure 2; 図2に示す構造体200の診断方法の一例を示すフローチャートである。3 is a flow chart showing an example of a diagnostic method for the structure 200 shown in FIG. 2; 第2実施形態に係る構造物の横断面図を示す。Fig. 4 shows a cross-sectional view of a structure according to a second embodiment; 第2実施形態に係る構造物の正面図を示す。The front view of the structure which concerns on 2nd Embodiment is shown. 第2実施形態に係る構造物の上方からの透視図を示す。Fig. 4 shows a perspective view from above of a structure according to a second embodiment; 第3実施形態に係る構造物の横断面図を示す。Fig. 4 shows a cross-sectional view of a structure according to a third embodiment; 第3実施形態に係る構造物の正面図を示す。The front view of the structure which concerns on 3rd Embodiment is shown. 第3実施形態に係る構造物の上方からの透視図を示す。Fig. 3 shows a perspective view from above of a structure according to a third embodiment; 従来のトンネルを示す。Shows a conventional tunnel. 従来のトンネルを示す。Shows a conventional tunnel. 従来のトンネルを示す。Shows a conventional tunnel. 従来のトンネルを示す。Shows a conventional tunnel.
(トンネル)
 非特許文献1に記載され図7Aに示す従来のトンネル700では、土壌1000側の覆工材(一次覆工材)710に、腐食等で劣化する可能性のある金属等の材料を使用している。また、トンネル内空間側の覆工材(二次覆工材)730は一般にコンクリート等の材料を使用している。土壌1000側の覆工材710は、流体1100がトンネル700の内部に流入することを妨げる。
(tunnel)
In the conventional tunnel 700 described in Non-Patent Document 1 and shown in FIG. there is Also, the lining material (secondary lining material) 730 on the tunnel inner space side is generally made of a material such as concrete. The lining material 710 on the soil 1000 side prevents the fluid 1100 from flowing into the tunnel 700 .
 このような構造物の場合、図7Bに示すように、土壌1000側の覆工材710が腐食等で劣化すると、土壌1000側の覆工材710の内側に地下水等の流体1100や土砂が流入する。 In the case of such a structure, as shown in FIG. 7B, when the lining material 710 on the side of the soil 1000 deteriorates due to corrosion or the like, a fluid 1100 such as groundwater or earth and sand flow into the inside of the lining material 710 on the side of the soil 1000. do.
 トンネル内空間側の覆工材730の劣化が進行すると、滞留水等の影響をトンネル内空間側の覆工材730が直接受けることになる。これにより、下記の参考文献1に記載されるように、トンネル内空間側の覆工材730にひび割れが生じたり、図7Cに示すように、覆工材710及び730の間の継ぎ目等の隙間に水が流入したりする。ひび割れや水の流入がさらに進行すると、図7Dに示すように、トンネル内空間側の覆工材730が崩落し崩落片740が落下したり、大規模出水及び土砂流入により道路が陥没したりするなどのおそれがある。
[参考文献1]「トンネル・ライブラリー 第30号」、土木学会、平成31年1月15日第1版・第1刷発行、p126 表-3.3.5 トンネル補修・補強技術の種類と変遷 1山岳トンネル(鉄道・道路)/矢板工法 NATM(その3)の漏水対策の欄
As the deterioration of the lining material 730 on the inner space side of the tunnel progresses, the lining material 730 on the inner space side of the tunnel is directly affected by stagnant water and the like. This causes cracks in the lining material 730 on the tunnel inner space side, as described in Reference 1 below, and gaps such as seams between the lining materials 710 and 730 as shown in FIG. 7C. water flows into the As cracks and water inflow progress further, as shown in FIG. 7D, the lining material 730 on the side of the inner space of the tunnel collapses and the collapsed pieces 740 fall, or the road collapses due to large-scale flooding and sediment inflow. etc.
[Reference 1] "Tunnel Library No. 30", Japan Society of Civil Engineers, January 15, 2019, 1st edition, 1st printing, p126 Table-3.3.5 Types and transitions of tunnel repair and reinforcement technologies 1 Mountain Tunnel (Railway/Road)/ Sheet pile method NATM (Part 3) Leakage countermeasure column
 トンネル内空間側の覆工材730は一般的に不透明であるため、外観を目視する等の遠隔診断によって、土壌1000側の覆工材710の劣化状況や健全性を、速やか且つ簡便に確認することが難しかった。 Since the lining material 730 on the inner space side of the tunnel is generally opaque, the state of deterioration and soundness of the lining material 710 on the side of the soil 1000 can be quickly and easily confirmed by remote diagnosis such as visual inspection of the exterior. It was difficult.
 第1実施形態に係る構造物は、覆工材の劣化状況や健全性を、速やか且つ簡便に確認することが可能な構造物を提供することを目的とする。 The purpose of the structure according to the first embodiment is to provide a structure that allows quick and easy confirmation of the state of deterioration and soundness of the lining material.
 以下、本開示の一実施形態に係る構造物について説明する。 A structure according to an embodiment of the present disclosure will be described below.
 図1に示すように、トンネル、地下道等の構造物100は、管状の第1覆工110と、第1覆工110の内側全体に沿って延在し、流体が浸透する多孔質体120と、多孔質体120の内側に配置される管状の第2覆工130と、を含む。また、第1覆工110を貫通して多孔質体120に達するとともに、構造物100の軸方向(図1の紙面に直交する方向)に延びる貫通孔140が形成されている。 As shown in FIG. 1, a structure 100 such as a tunnel, underpass, or the like, includes a tubular first lining 110 and a porous body 120 extending along the entire inside of the first lining 110 and permeable by a fluid. , a tubular second lining 130 disposed inside the porous body 120 . A through-hole 140 is also formed that penetrates through the first lining 110 to reach the porous body 120 and extends in the axial direction of the structure 100 (the direction orthogonal to the plane of FIG. 1).
 図1に示す第1覆工110は円筒形である。第1覆工110の形状を矩形状、楕円形状等とすることもできる。以下述べる多孔質体120及び第2覆工130の形状も同様である。第1覆工110は流体1100が構造物100の内部に流入することを妨げる。第1覆工110を金属とすることができる。 The first lining 110 shown in FIG. 1 is cylindrical. The shape of the first lining 110 can also be rectangular, elliptical, or the like. The same applies to the shapes of the porous body 120 and the second lining 130 described below. First lining 110 prevents fluid 1100 from flowing into structure 100 . The first lining 110 can be metal.
 本実施形態では、シールドマシンで土壌1000を掘りながら、掘った部分が崩れないように第1覆工110が設けられる。また第1覆工110をセグメントから組み立てることができる。 In this embodiment, the first lining 110 is provided to prevent the excavated portion from collapsing while the shield machine is digging the soil 1000 . Also, the first lining 110 can be assembled from segments.
 多孔質体120には気泡や空孔が存在する。多孔質体120は第1覆工110の内側の少なくとも一部に沿って延在していればよい。例えば他の実施形態では、多孔質体120は、構造物100の貫通孔140が設けられている側(図1の右側)に、構造物100の上部から下部まで延在する。多孔質体120は、ポーラスコンクリート、軽石等とすることが、強度の点から好ましい。多孔質体120をスポンジ、ゼオライト、多孔質セラミックス、多孔質ガラス、多孔質繊維、発泡体、ウレタンゴム、プラスチックフォーム等としてもよい。多孔質体120の厚さは例えば数mmから数cmであるが、この範囲に限定されるものではない。 Bubbles and voids exist in the porous body 120 . The porous body 120 may extend along at least part of the inside of the first lining 110 . For example, in another embodiment, the porous body 120 extends from the top to the bottom of the structure 100 on the side of the structure 100 where the through holes 140 are provided (the right side in FIG. 1). The porous body 120 is preferably made of porous concrete, pumice stone, or the like from the viewpoint of strength. The porous body 120 may be sponge, zeolite, porous ceramics, porous glass, porous fiber, foam, urethane rubber, plastic foam, or the like. The thickness of the porous body 120 is, for example, several mm to several cm, but is not limited to this range.
 多孔質体120が、第1覆工110の内側に吹き付けられる。多孔質体120をパネルとして第1覆工110の内側に取り付けることもできる。 The porous body 120 is sprayed inside the first lining 110 . The porous body 120 can also be attached inside the first lining 110 as a panel.
 第2覆工130はコンクリートとすることができる。第1覆工110と第2覆工130とを同じ材料で構成することもできる。 The second lining 130 can be concrete. The first lining 110 and the second lining 130 can also be constructed of the same material.
 貫通孔140が、構造物100の下部の、図1の右側に形成されている。貫通孔の他の配置も可能であり、例えば貫通孔140を図1の左右両側それぞれに形成することもできる。貫通孔140の断面形状は例えば円形状とすることができる。貫通孔140を、ドリル等で形成することができる。 A through hole 140 is formed in the lower part of the structure 100, on the right side of FIG. Other arrangements of through-holes are possible, for example through-holes 140 can be formed on each of the left and right sides of FIG. The cross-sectional shape of the through hole 140 can be circular, for example. The through hole 140 can be formed by a drill or the like.
 構造物100は道床150を含む。作業者は道床150の上を歩くことができる。物資等を道床150上で運搬することもできる。道床150はコンクリートとすることができる。 The structure 100 includes a trackbed 150. A worker can walk on the track bed 150 . Goods and the like can also be transported on the track bed 150 . Track bed 150 may be concrete.
 図2は、第1実施形態に係る構造物100の変形例である構造物200の断面図を示す。構造物200は、構造物100に類似する構成を有する。そのため、構造物200における、構造物100とは異なる構成について説明し、構造物100について説明した構成の説明は省略する。 FIG. 2 shows a cross-sectional view of a structure 200 that is a modification of the structure 100 according to the first embodiment. Structure 200 has a configuration similar to structure 100 . Therefore, the configuration of the structure 200 that is different from that of the structure 100 will be described, and the description of the configuration of the structure 100 will be omitted.
 構造物200は、貫通孔140から流出する、地下水等の流体1100を受けて貯水槽等に流す流路260を更に備える。また、図2に示すように、貫通孔140の出口には、例えばセンサとしての流量計270が設けられる。 The structure 200 further includes a channel 260 for receiving a fluid 1100 such as groundwater flowing out from the through hole 140 and flowing it to a water tank or the like. Further, as shown in FIG. 2, the outlet of the through hole 140 is provided with a flowmeter 270 as a sensor, for example.
 本実施形態では、流路260は、二次覆工130の下部の内面上の、道床150の両側に形成される。貫通孔140は、図3に示すように構造物100の軸方向(図2の紙面に直交する方向)に延びて、貯水槽に連通する。 In this embodiment, the flow paths 260 are formed on both sides of the track bed 150 on the inner surface of the lower portion of the secondary lining 130 . As shown in FIG. 3, the through-hole 140 extends in the axial direction of the structure 100 (the direction perpendicular to the paper surface of FIG. 2) and communicates with the water tank.
 以下、図2及び3を参照して、構造物200の第1覆工110が劣化した場合の挙動について説明する。 Behavior when the first lining 110 of the structure 200 deteriorates will be described below with reference to FIGS.
 第1覆工110が劣化(ひび割れ等)すると、劣化箇所から、構造物200の外側に存在する地下水等の流体1100が第1覆工110に流入し始める。 When the first lining 110 deteriorates (cracks, etc.), a fluid 1100 such as groundwater existing outside the structure 200 begins to flow into the first lining 110 from the deteriorated location.
 劣化が多孔質体120まで進展すると、流体1100は多孔質体120に流入する。この際に、多孔質体120には気泡や空孔が存在するため、流体1100は多孔質体120の広範囲に浸透する。そのため、流体1100の水圧が分散緩和され、第2覆工130で応力が集中することを妨げ得る。その結果、第2覆工130が劣化することを防止できる。なお、ここまで構造物200の挙動について説明したが、図1に示す構造物100でも同様の挙動を示す。 When deterioration progresses to the porous body 120 , the fluid 1100 flows into the porous body 120 . At this time, the fluid 1100 permeates a wide range of the porous body 120 because the porous body 120 has air bubbles and pores. Therefore, the hydraulic pressure of the fluid 1100 is dispersed and relieved, which can prevent the concentration of stress on the second lining 130 . As a result, deterioration of the second lining 130 can be prevented. Although the behavior of the structure 200 has been described so far, the structure 100 shown in FIG. 1 also exhibits the same behavior.
 流体1100が多孔質体120に更に流入すると、図2及び図3に示すように、流体1100は、多孔質体120を通って貫通孔140に達し、その後流路260まで流れる。この際に、流量計270は、貫通孔140を流れる流体1100の流量を測定する。流路260はその後、構造物200の延在方向、すなわち構造物200の軸方向に流れ、貯水槽に流入する。 When the fluid 1100 further flows into the porous body 120, as shown in FIGS. At this time, the flowmeter 270 measures the flow rate of the fluid 1100 flowing through the through hole 140 . The channel 260 then flows in the direction of extension of the structure 200, ie, in the axial direction of the structure 200, and flows into the reservoir.
 このように流体1100が貯水槽まで流れることで、流体1100が、構造物200の第1覆工110、多孔質体120又は第2覆工130に留まることを防止できる。その結果、これら部材に大きな負荷が加わることを防止できる。 By allowing the fluid 1100 to flow to the water tank in this way, it is possible to prevent the fluid 1100 from remaining on the first lining 110, the porous body 120, or the second lining 130 of the structure 200. As a result, it is possible to prevent a large load from being applied to these members.
 また、流量計270が貫通孔140を流れる流体1100の流量を測定することで、第1覆工110の劣化状況や健全性を確認することができる。具体的には、流体1100が貫通孔140を流れたことを、流量計270が検出することで、第1覆工110が劣化していると推測できる。また、流量計270が大きな流量を測定した場合には、第1覆工110の劣化が激しいと推測できる。また、流量計270に代えて又はこれとともに、流路260に水位計を設けて同様の推測を行ってもよい。作業者が貫通孔140や流路260を目視して、第1覆工110の劣化状況や健全性を確認することもできる。なお、貫通孔140の出口等に、流体1100が流れたことを通電により感知する通電計を設けることもできる。 Further, by measuring the flow rate of the fluid 1100 flowing through the through-hole 140 with the flow meter 270, the state of deterioration and soundness of the first lining 110 can be confirmed. Specifically, when the flow meter 270 detects that the fluid 1100 has flowed through the through hole 140, it can be estimated that the first lining 110 has deteriorated. Also, when the flow meter 270 measures a large flow rate, it can be assumed that the first lining 110 is severely deteriorated. Also, a water level gauge may be provided in the flow path 260 instead of or together with the flow meter 270 to make a similar estimation. A worker can visually check the through-hole 140 and the flow path 260 to confirm the state of deterioration and soundness of the first lining 110 . An energization meter may be provided at the exit of the through-hole 140 or the like to detect the flow of the fluid 1100 by energization.
 貫通孔140を流れる流体1100の濁度等の水質を測定することで、流体1100に土砂が混入しているか確認することができる。例えば、貫通孔140の出口等に、測色計又は濁度計を設けることで、汚濁した水を識別できる。流体1100の濁度が大きい場合、貫通孔140まで大量の土砂が流入しており、第1覆工110の劣化が激しいと推測できる。また、貫通孔140の出口等に、溶存イオンの濃度を分析する水質計を設けることもできる。 By measuring the water quality such as turbidity of the fluid 1100 flowing through the through-hole 140, it is possible to confirm whether the fluid 1100 is contaminated with earth and sand. For example, polluted water can be identified by providing a colorimeter or a turbidity meter at the outlet of the through-hole 140 or the like. When the turbidity of the fluid 1100 is high, it can be inferred that a large amount of earth and sand has flowed into the through-hole 140 and the first lining 110 has deteriorated severely. A water quality meter for analyzing the concentration of dissolved ions can also be provided at the outlet of the through-hole 140 or the like.
 図3を参照して、多孔質体120における流体1100の浸透を遮る仕切り310が、構造物100の軸方向に離間して設けられている。 Referring to FIG. 3 , partitions 310 that block permeation of fluid 1100 through porous body 120 are spaced apart in the axial direction of structure 100 .
 仕切り310は、例えば構造物200の軸方向に隣接する多孔質体120同士を接続する前に、多孔質体120同士の端部を塞ぐことで形成できる。 The partition 310 can be formed, for example, by plugging the ends of the porous bodies 120 adjacent to each other in the axial direction of the structure 200 before connecting the porous bodies 120 to each other.
 仕切り310を設けることで、流体1100が多孔質体120に浸透する範囲を限定できる。これにより、貫通孔140のある部分に流体1100が流れた場合、当該部分付近で第1覆工110が劣化していると特定できる。さらに、流量計270を仕切り310で区画された領域ごとに設けることで、劣化部分の特定をより容易にすることができる。 By providing the partition 310, the range in which the fluid 1100 permeates the porous body 120 can be limited. As a result, when the fluid 1100 flows through a portion of the through-hole 140, it can be identified that the first lining 110 has deteriorated in the vicinity of the portion. Furthermore, by providing the flow meter 270 for each area partitioned by the partition 310, it is possible to more easily identify the deteriorated portion.
(診断方法)
 次に、一実施形態に係る構造物の診断方法について説明する。図4は、図2に示す構造物200の診断方法の一例を示すフローチャートである。
(Diagnostic method)
Next, a method for diagnosing a structure according to one embodiment will be described. FIG. 4 is a flow chart showing an example of a diagnostic method for the structure 200 shown in FIG.
 ステップS41において、図2を参照して、センサとしての流量計270により、貫通孔140を流れる流体1100の流量を測定する。 In step S41, referring to FIG. 2, the flow rate of fluid 1100 flowing through through-hole 140 is measured by flow meter 270 as a sensor.
 ステップS42において、流体1100が貫通孔140を流れたか判定する。例えば、流量計270や水位計の測定値が、ある閾値以上であるときに、流体1100が貫通孔140を流れたと判定する。この場合に、ステップ43に進む。一方、流体1100が貫通孔140を流れていないと判定した場合、ステップ41に戻る。 In step S42, it is determined whether the fluid 1100 has flowed through the through hole 140. For example, it is determined that the fluid 1100 has flowed through the through-hole 140 when the measured value of the flow meter 270 or water level meter is equal to or greater than a certain threshold. In this case, go to step 43 . On the other hand, if it is determined that the fluid 1100 is not flowing through the through hole 140, the process returns to step 41.
 流体1100が貫通孔140を流れている場合、第1覆工110が劣化していると推測できる。そのため、ステップS43において、構造物200の補修が必要であるとの警報を通知する。例えば、ブザーを鳴らしたり、ランプを点灯させたりすることで、警報を通知できる。 When the fluid 1100 flows through the through-hole 140, it can be assumed that the first lining 110 has deteriorated. Therefore, in step S43, an alarm is issued that the structure 200 needs to be repaired. For example, an alarm can be notified by sounding a buzzer or lighting a lamp.
 ここで、センサが複数設けられている場合には、どのセンサを用いて流体1100が貫通孔140を流れたと判定したか通知することもできる。これにより、第1覆工110の劣化箇所の特定を容易にすることができる。 Here, if a plurality of sensors are provided, it is also possible to notify which sensor was used to determine that the fluid 1100 flowed through the through hole 140 . This makes it easier to identify the deteriorated location of the first lining 110 .
 ステップS44において、作業者は、警報を受けて、構造物200を補修する。例えば作業者は、第1覆工110の劣化箇所付近を、その内側を覆う第2覆工130及び多孔質体120を除去することで露出させる。その後作業者は、劣化箇所を補修できる。 In step S44, the worker receives the warning and repairs the structure 200. For example, the operator exposes the vicinity of the deteriorated portion of the first lining 110 by removing the second lining 130 and the porous body 120 covering the inner side thereof. The worker can then repair the deteriorated portion.
 以上の方法によって、構造物200の保全管理を容易に行うことができる。 With the above method, maintenance management of the structure 200 can be easily performed.
(ダム及び堰)
 例えば大雨が降り、ダムや堰への流入量が、放流量を上回り、水位が危険水位(最大水位)に到達することが予測される場合に、放流量を流入量相当に増加させる緊急放流が行われる。この操作を行うと、下流河川の水位が高くなる恐れがある。
(dams and weirs)
For example, when it rains heavily and the amount of inflow to a dam or weir exceeds the amount of discharge, and the water level is predicted to reach the dangerous water level (maximum water level), an emergency discharge that increases the amount of discharge equivalent to the amount of inflow is performed. done. If this operation is performed, there is a risk that the water level of the downstream river will rise.
 第2実施形態に係る構造物は、水位が危険水位に到達する前に、適切な流量で放流することが可能な構造物を提供することを目的とする。 The purpose of the structure according to the second embodiment is to provide a structure that can discharge water at an appropriate flow rate before the water level reaches the dangerous water level.
 以下、本開示の第2実施形態に係る構造物について説明する。 A structure according to the second embodiment of the present disclosure will be described below.
 図5A~5Cに示すように、ダム等の構造物500は、水1200を遮る壁510と、取水部520iから壁510を通って出水部530まで延在するとともに、水1200が浸透する多孔質体520と、を備える。 As shown in FIGS. 5A-5C, a structure 500 such as a dam includes a wall 510 that blocks water 1200 and a porous wall that extends from a water intake portion 520i to a water outlet portion 530 through the wall 510 and permeates the water 1200. a body 520;
 壁510は、例えばコンクリートである。壁510の高さは、危険水位よりも高い。 The wall 510 is, for example, concrete. The height of the wall 510 is higher than the danger water level.
 多孔質体520は、水1200に対向して構造物500の幅方向に延びる取水部520iと、構造物500の幅方向両端付近で取水部520iに連通し、水平方向に対して下向きに傾斜して延びる中間部520mと、を含む。中間部520mは、水1200の反対側に開口し空洞である出水部530に連通する。多孔質体520の取水部520iは、通常時の水位(以下、「通常水位」と呼ぶ)よりも高い位置に配置される。出水部530は、通常水位よりも低い位置に配置される。 The porous body 520 has a water intake portion 520i extending in the width direction of the structure 500 facing the water 1200, communicates with the water intake portion 520i near both ends in the width direction of the structure 500, and is inclined downward with respect to the horizontal direction. and an intermediate portion 520m extending along the The intermediate portion 520m opens on the opposite side of the water 1200 and communicates with the water outlet portion 530 which is a cavity. The water intake portion 520i of the porous body 520 is arranged at a position higher than the normal water level (hereinafter referred to as "normal water level"). The water outlet 530 is arranged at a position lower than the normal water level.
 水1200の水位が取水部520iの下縁(この水位を以下「注意水位」という)以下の場合は、水1200は多孔質体520に流入しない。 When the water level of the water 1200 is below the lower edge of the water intake portion 520i (this water level is hereinafter referred to as the "caution water level"), the water 1200 does not flow into the porous body 520.
 水位が注意水位を越えると、構造物500内の水1200が取水部520iから多孔質体520に流入する。流入した水1200は、多孔質体520内に広く浸透し、出水部530から構造物500の外に放出される。 When the water level exceeds the caution water level, the water 1200 inside the structure 500 flows into the porous body 520 from the water intake section 520i. The water 1200 that has flowed in penetrates widely into the porous body 520 and is discharged to the outside of the structure 500 from the water outlet 530 .
 水1200が多孔質体520内に広く浸透することで、水1200は、壁510に大きな水圧をかけることなく取水部520iから出水部530まで流れることができる。また、水1200の多孔質体520への浸透速度は所定の範囲に制限されるため、水1200が急激に出水部530から放出されることを妨げ得る。 As the water 1200 permeates widely into the porous body 520 , the water 1200 can flow from the water intake section 520i to the water discharge section 530 without applying a large water pressure to the wall 510 . In addition, since the permeation speed of water 1200 into porous body 520 is limited to a predetermined range, water 1200 can be prevented from being suddenly discharged from water outlet 530 .
 水位が、注意水位よりも高く、かつ取水部520iの上縁よりも低い間は、水位が高くなるにつれて、水1200の取水部520iへの流入量が増加する。そのため、早急に水1200の水位を下げることができる。なお、本実施形態では、取水部520iの上縁は、危険水位と同じ高さに配置される。 While the water level is higher than the caution water level and lower than the upper edge of the water intake section 520i, the amount of water 1200 flowing into the water intake section 520i increases as the water level increases. Therefore, the water level of the water 1200 can be quickly lowered. In addition, in this embodiment, the upper edge of the water intake portion 520i is arranged at the same height as the dangerous water level.
 水位が、取水部520iの上縁よりも高い場合には、水1200の取水部520iへの流入量は水位に関わらず一定となる。これにより、水1200が取水部520iから出水部530まで流れる際に、壁510に過大な水圧がかかることを防止できる。 When the water level is higher than the upper edge of the water intake portion 520i, the amount of water 1200 flowing into the water intake portion 520i is constant regardless of the water level. This prevents excessive water pressure from being applied to the wall 510 when the water 1200 flows from the water intake portion 520i to the water discharge portion 530 .
 以下、本開示の第3実施形態に係る構造物について説明する。 A structure according to the third embodiment of the present disclosure will be described below.
 図6A~6Cに、第3実施形態に係る構造物600の断面図を示す。構造物600は、構造物500に類似する構成を有する。そのため、構造物500における、構造物500とは異なる構成について説明し、構造物500について説明した構成の説明は省略する。 6A-6C show cross-sectional views of a structure 600 according to the third embodiment. Structure 600 has a configuration similar to structure 500 . Therefore, the configuration of the structure 500 that is different from that of the structure 500 will be described, and the description of the configuration of the structure 500 will be omitted.
 堰等の構造物600は、多孔質体520の下側に配置される空洞部620を含む。空洞部620は、水1200に対向するとともに構造物600の幅方向に延びる取水部620iと、構造物600の幅方向両端付近で取水部620iに連通し、水平方向から下向きに傾斜して延びる中間部620mと、中間部620mに連通して水1200の反対側を向く空洞部である出水部620оと、を含む。空洞部620の取水部620iは通常水位以下の位置に配置される。本実施形態では、取水部620iの上縁は通常水位と実質的に同じ高さである。出水部620оは、通常水位よりも低い位置に配置される。 A structure 600 such as a weir includes a cavity 620 arranged below the porous body 520 . The hollow portion 620 includes a water intake portion 620i that faces the water 1200 and extends in the width direction of the structure 600, and an intermediate portion that communicates with the water intake portion 620i near both ends in the width direction of the structure 600 and extends obliquely downward from the horizontal direction. It includes a portion 620m and a water outlet portion 620?, which is a hollow portion that communicates with the intermediate portion 620m and faces away from the water 1200. As shown in FIG. A water intake portion 620i of the hollow portion 620 is normally arranged at a position below the water level. In this embodiment, the upper edge of water intake 620i is substantially level with the normal water level. The water outlet 620? is arranged at a position lower than the normal water level.
 多孔質体520の出水部520оは、空洞部620の出水部620оに接続する。 The water outlet portion 520' of the porous body 520 is connected to the water outlet portion 620' of the hollow portion 620.
 水1200の水位が取水部620iの下縁(この水位を以下「低水位」という)以下の場合は、水1200は空洞部620に流入しない。 When the water level of the water 1200 is below the lower edge of the water intake section 620i (this water level is hereinafter referred to as the "low water level"), the water 1200 does not flow into the hollow section 620.
 水位が低水位を越えると、構造物600内の水1200が取水部620iから空洞部620に流入する。流入した水1200は、出水部620оから空洞部620の外に放出される。 When the water level exceeds the low water level, the water 1200 inside the structure 600 flows into the hollow section 620 from the water intake section 620i. The water 1200 that has flowed in is discharged out of the cavity 620 from the water outlet 620'.
 水位が、低水位よりも高く、かつ取水部620iの上縁以下である間は、水位が高くなるにつれて、取水部620iへの水1200の流入量が増加する。そのため、早急に水1200の水位を下げることができる。 While the water level is higher than the low water level and below the upper edge of the water intake section 620i, the amount of water 1200 flowing into the water intake section 620i increases as the water level increases. Therefore, the water level of the water 1200 can be quickly lowered.
 水位が、通常水位よりも高い場合には、水1200の取水部620iへの流入量は水位に関わらず一定となる。これにより、水1200が取水部620iから出水部620оまで流れる際に、壁510に過大な水圧がかかることを防止できる。 When the water level is higher than the normal water level, the amount of water 1200 flowing into the water intake section 620i is constant regardless of the water level. As a result, it is possible to prevent excessive water pressure from being applied to the wall 510 when the water 1200 flows from the water intake portion 620i to the water discharge portion 620'.
 水位が注意水位を越えると、構造物600内の水1200が取水部520iから多孔質体520に流入する。流入した水1200は、多孔質体520内に広く浸透し、出水部620оから構造物600の外に放出される。 When the water level exceeds the caution water level, the water 1200 inside the structure 600 flows into the porous body 520 from the water intake section 520i. The water 1200 that has flowed in penetrates widely into the porous body 520 and is discharged to the outside of the structure 600 from the water outlet 620'.
 100  構造物
 110  第1覆工
 120  多孔質体
 1200 水
 130  第2覆工
 140  貫通孔
 150  道床
 200  構造物
 260  流路
 310  仕切り
 500  構造物
 510  壁
 520  多孔質体
 520i 取水部
 520о 出水部
 530  出水部
 600  構造物
 620  出水部
 620  空洞部
 620i 取水部
 1000 土壌
 1100 流体
 
100 structure 110 first lining 120 porous body 1200 water 130 second lining 140 through hole 150 ballast 200 structure 260 channel 310 partition 500 structure 510 wall 520 porous body 520i water intake section 520o water outlet section 530 water outlet section 600 structure 620 water outlet 620 cavity 620i water intake 1000 soil 1100 fluid

Claims (8)

  1.  管状の第1覆工と、
     前記第1覆工の内側の少なくとも一部に沿って延在し、流体が浸透する多孔質体と、
     前記多孔質体の内側に配置される管状の第2覆工と、
    を含む構造物。
    a tubular first lining;
    a fluid-permeable porous body extending along at least a portion of the inner side of the first lining;
    a tubular second lining disposed inside the porous body;
    structures containing
  2.  前記第2覆工を貫通して前記多孔質に達するともに、前記構造物の軸方向に延びる貫通孔が形成されている、請求項1に記載の構造物。 The structure according to claim 1, wherein a through-hole extending in the axial direction of the structure is formed through the second lining to reach the porous material.
  3.  前記貫通孔から流出する前記流体を受けて流す流路を更に備える、請求項2に記載の構造物。 The structure according to claim 2, further comprising a channel for receiving and flowing the fluid flowing out from the through hole.
  4.  前記多孔質体における前記流体の浸透を遮る仕切りが、前記構造物の軸方向に離間して設けられている、請求項2又は3に記載の構造物。 4. The structure according to claim 2 or 3, wherein a partition that blocks permeation of said fluid in said porous body is provided at a distance in the axial direction of said structure.
  5.  前記流体が前記貫通孔を流れたことを検出するセンサを備える、請求項2~4のいずれか一項に記載の構造物。 The structure according to any one of claims 2 to 4, comprising a sensor that detects that the fluid has flowed through the through hole.
  6.  前記多孔質体がポーラスコンクリートである、請求項1~5のいずれか一項に記載の構造物。 The structure according to any one of claims 1 to 5, wherein the porous body is porous concrete.
  7.  水を遮る壁と、
     取水部から前記壁を通って出水部まで延在するとともに、前記水が浸透する多孔質体と、
    を備える構造物であり、
     前記多孔質体の前記取水部が通常の水位よりも高い位置に配置される、構造物。
    a wall blocking water,
    a porous body extending from the water intake portion through the wall to the water outlet portion and through which the water permeates;
    A structure comprising
    A structure in which the water intake portion of the porous body is arranged at a position higher than a normal water level.
  8.  管状の第1覆工と、
     前記第1覆工の内側の少なくとも一部に沿って延在し、流体が浸透する多孔質体と、
     前記多孔質体の内側に配置される管状の第2覆工と、
     前記流体が、前記第2覆工を貫通して前記多孔質に達する貫通孔を流れたことを検出するセンサと、
    を含む構造物の診断方法であり、
     前記センサを用いて、前記流体が前記貫通孔を流れたか判定するステップを含む、構造物の診断方法。
     
    a tubular first lining;
    a fluid-permeable porous body extending along at least a portion of the inner side of the first lining;
    a tubular second lining disposed inside the porous body;
    a sensor for detecting that the fluid has flowed through a through-hole that penetrates the second lining and reaches the porous body;
    A method for diagnosing a structure comprising
    A method of diagnosing a structure, comprising using the sensor to determine whether the fluid has flowed through the through hole.
PCT/JP2021/027761 2021-07-27 2021-07-27 Structure and structure diagnosis method WO2023007589A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/027761 WO2023007589A1 (en) 2021-07-27 2021-07-27 Structure and structure diagnosis method
JP2023537792A JPWO2023007589A1 (en) 2021-07-27 2021-07-27

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/027761 WO2023007589A1 (en) 2021-07-27 2021-07-27 Structure and structure diagnosis method

Publications (1)

Publication Number Publication Date
WO2023007589A1 true WO2023007589A1 (en) 2023-02-02

Family

ID=85086386

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/027761 WO2023007589A1 (en) 2021-07-27 2021-07-27 Structure and structure diagnosis method

Country Status (2)

Country Link
JP (1) JPWO2023007589A1 (en)
WO (1) WO2023007589A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121799U (en) * 1980-02-20 1981-09-17
JPS57140500A (en) * 1981-02-25 1982-08-31 Nippon Sogo Bosui Kk Water proofing of tunnel structure
JPH03180699A (en) * 1989-12-11 1991-08-06 Asahi Chem Ind Co Ltd Spring water processing material
JP2007146492A (en) * 2005-11-28 2007-06-14 Akio Nakaya Bank, and method of manufacturing bank

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56121799U (en) * 1980-02-20 1981-09-17
JPS57140500A (en) * 1981-02-25 1982-08-31 Nippon Sogo Bosui Kk Water proofing of tunnel structure
JPH03180699A (en) * 1989-12-11 1991-08-06 Asahi Chem Ind Co Ltd Spring water processing material
JP2007146492A (en) * 2005-11-28 2007-06-14 Akio Nakaya Bank, and method of manufacturing bank

Also Published As

Publication number Publication date
JPWO2023007589A1 (en) 2023-02-02

Similar Documents

Publication Publication Date Title
KR101554668B1 (en) Underground water circulator of Geohill open type geothermal system and method for constructing the same
KR20130114904A (en) Drainage structure in tunnel and method constructing thereof
Brandl Vertical barriers for municipal and hazardous waste containment
KR20140055639A (en) A execution method of architecture beam
WO2023007589A1 (en) Structure and structure diagnosis method
JP2009180019A (en) Water permeable segment and tunnel using the water permeable segment
US20110116868A1 (en) Method for constructing an underground tunnel or hole to create an impervious plug for the storage of hazardous, particularly radioactive, waste
JP2014114600A (en) Foundation pile construction method
KR100741883B1 (en) Apparatus and method for obturating a tubular well
CN111622216A (en) Construction method of pile foundation joist weighing type retaining wall
JP4285593B2 (en) Impermeable revetment structure with leaching detection function of retained water and its repair method
KR20040038844A (en) Steel wall and manufacturing method thereof
JP6441692B2 (en) Underground structure with flood control function and its construction method
KR100741884B1 (en) Apparatus and method for obturating a tubular well
CN113006706B (en) Steel-mixed rotary drilling rig operation platform and construction method thereof
CN109707397B (en) Pipe curtain construction method
JP4451357B2 (en) Reservoir pond equipment
DE10031663A1 (en) Filter pipe made of concrete and/or plastic and optionally glass fibers used for micro-tunneling with the aid of an advance working machine has openings in its casing with filter bodies
JP2021130942A (en) Ground injection method and ground structure
CN112832690A (en) Rotary drilling rig operation platform for stratum with upper soft layer and lower hard layer and construction method thereof
JP4274898B2 (en) Groundwater flow conservation method
JP2005193176A (en) Impervious wall, and system and method for managing impervious state of impervious wall
CN114703830B (en) Karst development site engineering filling pile water burst prevention construction method
JP2013167054A (en) Method for constructing steel pipe sheet pile water cutoff wall
KR102591430B1 (en) Apparatus for reducing water pressure on tunnel and installation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21951799

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023537792

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE