WO2023006764A1 - Dispositif de ventilation d'un systeme de ventilation, de chauffage et/ou d'air conditionné. - Google Patents

Dispositif de ventilation d'un systeme de ventilation, de chauffage et/ou d'air conditionné. Download PDF

Info

Publication number
WO2023006764A1
WO2023006764A1 PCT/EP2022/070972 EP2022070972W WO2023006764A1 WO 2023006764 A1 WO2023006764 A1 WO 2023006764A1 EP 2022070972 W EP2022070972 W EP 2022070972W WO 2023006764 A1 WO2023006764 A1 WO 2023006764A1
Authority
WO
WIPO (PCT)
Prior art keywords
rotation
axis
ventilation device
plane
blade
Prior art date
Application number
PCT/EP2022/070972
Other languages
English (en)
Inventor
Fabrice Ailloud
Bruno Demory
Mohamed ALAOUI BENZAKROUM
Manuel Henner
Original Assignee
Valeo Systemes Thermiques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Valeo Systemes Thermiques filed Critical Valeo Systemes Thermiques
Priority to EP22748375.7A priority Critical patent/EP4377572A1/fr
Priority to CN202280052755.9A priority patent/CN117716136A/zh
Publication of WO2023006764A1 publication Critical patent/WO2023006764A1/fr

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/44Fluid-guiding means, e.g. diffusers
    • F04D29/441Fluid-guiding means, e.g. diffusers especially adapted for elastic fluid pumps
    • F04D29/444Bladed diffusers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00457Ventilation unit, e.g. combined with a radiator
    • B60H1/00471The ventilator being of the radial type, i.e. with radial expulsion of the air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • F04D29/4226Fan casings
    • F04D29/4253Fan casings with axial entry and discharge
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60HARRANGEMENTS OF HEATING, COOLING, VENTILATING OR OTHER AIR-TREATING DEVICES SPECIALLY ADAPTED FOR PASSENGER OR GOODS SPACES OF VEHICLES
    • B60H1/00Heating, cooling or ventilating [HVAC] devices
    • B60H1/00007Combined heating, ventilating, or cooling devices
    • B60H1/00021Air flow details of HVAC devices
    • B60H2001/00078Assembling, manufacturing or layout details
    • B60H2001/00092Assembling, manufacturing or layout details of air deflecting or air directing means inside the device

Definitions

  • the present invention relates to the field of ventilation, heating and/or air conditioning systems intended to be integrated into vehicles, and more particularly ventilation devices integrated into such systems.
  • Vehicles conventionally comprise a ventilation, heating and/or air conditioning system intended for the heat treatment of a flow of air sent into a passenger compartment of this vehicle.
  • These ventilation, heating and/or air conditioning systems comprise at least one casing in which are received at least one heat exchanger and at least one ventilation device.
  • a heat transfer fluid i.e. a fluid capable of capturing, transporting and releasing calories, circulates in this heat exchanger.
  • This heat exchanger is also crossed by a flow of air which, in doing so, sees its temperature modified before being sent into the passenger compartment so as to heat treat its volume.
  • the ventilation, heating and/or air conditioning system generally comprises at least one ventilation device which comprises at least one fan housed in a casing, this propeller being driven in rotation by a moving member which can also be housed in the housing.
  • the ventilation devices currently used comprise an axial air inlet, that is to say a mouth which allows the air flow to enter the ventilation device in a direction parallel, or substantially parallel, to a axis of rotation of the propeller of this ventilation device, and a radial air outlet where the air flow exits following a direction radial to the propeller.
  • a ventilation device is conventionally arranged in a volute so that the air flow enters the ventilation device in a first direction and leaves this housing in a second direction perpendicular to the first direction.
  • the propeller of such a ventilation device conventionally comprises a central body from which extends radially a plurality of blades.
  • the plurality of blades is rotatable around the direction of rotation and forces the circulation of the air flow through the ventilation device.
  • the air flow then passes through a member of guide configured to cause the circulation of the air flow towards an air outlet of the housing.
  • a disadvantage of these ventilation devices is that they are particularly bulky due to the radial character of the air flow at the outlet of the device. They cannot therefore be easily installed in particularly cramped ventilation systems. In addition, it is known that these ventilation devices are noisy and can inconvenience the driver and/or the passengers present in the passenger compartment of the vehicle.
  • the present invention proposes a new design of radial propeller ventilation device so that it takes up less space than the concepts of the prior art.
  • the invention also aims to improve on the one hand the energy efficiency necessary to set the propeller in rotation, and on the other hand, the acoustics produced by the ventilation device.
  • the main object of the present invention is a ventilation device for a ventilation, heating and/or air conditioning system of a vehicle, comprising at least one casing which comprises at least one wall participating in delimiting a volume internal in which are received at least one radial propeller and a guide member, the radial propeller being configured to be driven in rotation about an axis of rotation, the radial propeller comprising a plurality of blades each at least delimited by a first axial end and by a second axial end, the guide member comprising a plurality of vanes at least delimited by a leading edge and by a trailing edge, the radial propeller and the guide member being configured to forcing the circulation of an air flow through the casing along the axis of rotation between an air inlet mouth and an air outlet mouth of the ventilation device, characterized in that a organ height guide ne measured along a direction parallel to the axis of rotation between a first plane passing through the leading edge of the plurality of blades and a second plane passing through the trail
  • a first height is measured between the leading edge and the trailing edge of the plurality of blades along a direction parallel to the axis of rotation
  • a second height being measured between the end of the plurality of blades of the radial propeller closest to the guide member and the air outlet mouth along a direction parallel to the axis of rotation, the first height being at least 50% from the second height
  • the first plane, the second plane, the third plane and the fourth plane extend parallel to each other and perpendicular to the axis of rotation.
  • radial propeller means a propeller in which the air flow enters in a first direction, in this case parallel to the axis of rotation of this propeller, and leaves it in a second transverse direction, for example perpendicular , to the axis of rotation of this propeller.
  • the radial propeller within the meaning of the invention, comprises an axial air inlet and a radial air outlet.
  • the shape of the housing of this ventilation device and the shape of the airflow guide member received in this ventilation device make it possible, together, to channel the airflow generated by the rotation of the radial helix of so that the overall size of this ventilation device compared to the ventilation devices of the prior art is reduced.
  • the air outlet of the ventilation device according to the invention can thus be placed in the axial extension of the radial helix, which makes it possible to reduce the radial bulk of such a device.
  • the ventilation device according to the invention can be installed more easily in small-sized vehicles, such as for example vehicles powered at least in part by electricity.
  • the ventilation device makes it possible to obtain a homogeneous distribution of the flow of air over an entire surface of the outlet mouth formed in the wall of the housing, by tilting the flow of air so that it joins the part of the outlet mouth where the axis of rotation of the radial propeller passes.
  • the plurality of vanes is fixed and integral with the wall of the casing. It is understood that the plurality of blades is not driven in rotation around the axis of rotation and keeps the same position to guide the flow of air towards the air outlet mouth and towards the axis of rotation of the radial helix.
  • the height of the guide member is between 6o and 85 mm. Preferably, the height of the guide member is approximately 70 mm, plus or minus 1 mm.
  • the height of the guide member represents between 60 and 65% of the dimension measured between the third plane passing through the end of the plurality of blades closest to the guide and the fourth plane in which the air outlet is inscribed.
  • the height of the guide member represents approximately 63%, plus or minus 1%, of the dimension measured between the third plane passing through the end of the plurality of blades closest to the guide member and the fourth plane in which the air outlet mouth fits.
  • At least two successive blades overlap at least partially, along a direction parallel to the axis of rotation of the radial propeller. It is understood from this that a portion of a first vane at least partially covers a portion of the second vane successive to the first vane, and that the overlapping portions of the vanes are aligned along a direction parallel to the axis rotation.
  • the ventilation device comprises at least one air filter having an air inlet which is inscribed in an air flow inlet plane parallel to the plane in which the air outlet mouth of said ventilation device. It is understood that the plane of entry of the air flow into the air filter and the plane in which the air outlet is inscribed are substantially parallel, that is to say that the planes can be inclined relative to each other at an angle of no more than 2 0 .
  • the ventilation device comprises at least one air filter having an inlet which is inscribed in an inlet plane of the air flow coinciding with the plane in which the mouth of the air outlet of said ventilation device.
  • the ventilation device comprises at least one heat exchanger having an air inlet which is inscribed in an air flow inlet plane parallel to the plane in which the air outlet mouth of said ventilation device. It is understood that the entry plane of the heat exchanger in the air filter and the plane in which the mouth of the air outlet are substantially parallel, that is to say that the planes can be inclined relative to each other at an angle of at most 2°.
  • the ventilation device comprises at least one heat exchanger having an inlet which fits in an air flow inlet plane coinciding with the plane in which the outlet mouth fits of air from said ventilation device.
  • the guide member comprises a bowl around which the plurality of vanes is arranged in a regular manner, at least one vane of the plurality of vanes comprising a lower surface and an upper surface extending each between a proximal end of the vane in contact with the bowl and a distal end of the vane in contact with the wall of the housing.
  • the ventilation device comprises a drive motor for the radial propeller carried by the bowl of the guide member.
  • a dimension measured between the proximal end and the distal end of the blade increases in an increasing manner between the leading edge and the trailing edge.
  • a distance measured between the proximal end and the distal end of a blade at its leading edge is smaller than a distance measured between the proximal end and the tip distal of this blade at its trailing edge.
  • the blade has a first portion, a second portion and a third portion aligned in this order from the proximal end to the distal end, the blade comprising at least one cross section, view in a plane perpendicular to a radial direction of the axis of rotation, which falls along a line of camber between the leading edge and the trailing edge, this line of camber being different in each of the first , second and third portions of dawn.
  • a first radius measured between the axis of rotation and the first portion along a direction radial to the axis of rotation is between 75 and 85 mm
  • a second radius measured between the axis of rotation and the second portion measured along a direction radial to the axis of rotation is between 85 and 95 mm
  • a third radius measured between the axis of rotation and the third portion measured along a direction radial to the axis of rotation is between 100 and 110 mm.
  • the line of camber followed by the blade in each portion falls within a circle, a first angle being formed between a tangent to the circle passing through the leading edge and a direction passing by the leading edge and falling on the one hand in a plane perpendicular to the axis of rotation and on the other hand in a plane in which the circle is inscribed, the first angle having a value between 17 0 and 23 0 at the first portion, a value between 14 0 and 19 0 at the second portion and a value between 10 0 and 15 0 at the third portion.
  • a second angle being formed between a tangent to the circle passing through the trailing edge and a direction passing through the trailing edge and falling on the one hand in a plane perpendicular to the axis of rotation and on the other hand in a plane in which the circle is inscribed, the second angle having a value between 95 0 and 100° at the level of the first portion, a value comprised between 105° and 110 ° at the level of the second portion and a value comprised between 112 ° and 117 ° at the level of the third portion.
  • the invention also relates to a ventilation, heating and/or air conditioning system for a vehicle, comprising at least one ventilation device according to any one of the preceding characteristics.
  • FIG. 1 is a perspective representation of a ventilation device according to one embodiment of the invention.
  • FIG. 2 is an exploded view of the ventilation device shown in Figure 1;
  • FIG. 3 is a section of a radial propeller of the ventilation device represented in FIG. 1 produced in a plane perpendicular to an axis of rotation of the radial propeller;
  • FIG. 4 is a representation in perspective and side view of a radial propeller, a drive motor and the guide member of the ventilation device shown in Figure 1;
  • FIG. 5 is a representation in perspective and a top view of the guide member shown in Figure 4.
  • FIG. 6 is a perspective representation and a bottom view of the guide member shown in Figure 4.
  • FIG. 7 is a representation in perspective and a detail view of a blade of the guide member shown in Figure 4.
  • FIG. 8 is a section of the blade represented in figure 7.
  • variants of the invention may be associated with each other, in various combinations, insofar as they are not incompatible or exclusive with respect to each other.
  • variants of the invention may be imagined comprising only a selection of characteristics described below in isolation from the other characteristics described, if this selection of characteristics is sufficient to confer a technical advantage and/or to differentiate the invention. compared to the prior art.
  • upstream and downstream used in the rest of the description refer to the direction of circulation of an air flow through the ventilation device.
  • FIG. 1 and 2 is illustrated a ventilation device 1 according to one embodiment of the invention comprising at least one radial propeller 2, a guide member 4 and a housing 6 in which is housed the radial propeller 2 and the guide member
  • the housing 6 consists of at least one wall 8 delimiting an internal volume 10 in which is received at least the radial propeller 2.
  • This type of ventilation device 1 is configured to be integrated in a ventilation, heating and/or air conditioning system intended to be itself integrated into a vehicle, for example an electrically powered vehicle, so as to thermally treat a flow of air before it is sent in a vehicle cabin. In other words, this air flow is used to cool or heat the vehicle cabin.
  • the ventilation device i according to the invention is configured to circulate the flow of air through the ventilation, heating and/or air conditioning system.
  • the guide member 4 is arranged axially between an air outlet 12 and the radial propeller 2.
  • the ventilation device 1 is configured to drive the radial propeller 2 in rotation around an axis of rotation R so as to generate the flow of air and the guide member 4 participates for its part, together with at least a part of the wall 8 of the casing 6, in straightening the flow of air so that the latter presents a general direction of movement, between an air inlet mouth 14 of the ventilation device 1 and the air outlet mouth 12 of the ventilation device 1, parallel to the axis of rotation R of the radial propeller 2 .
  • the ventilation device 1 comprises a drive motor 16 for the radial propeller 2 around the axis of rotation R.
  • the drive motor 16 is positioned axially between the guide member 4 and the propeller radial 2.
  • the drive motor 16 may be an electric motor which comprises at least one stator and at least one rotor, the rotor being connected in rotation with a shaft received in a hub 18 of the radial propeller 2.
  • the axis of rotation R of the radial propeller 2 extends parallel to this hub 18 and passes through the center of the latter.
  • the ventilation device 1 comprises at least the casing 6 in which are formed at least the air inlet mouth 14 and the air outlet mouth 12. More particularly, the air inlet mouth 14 is inscribed in a plane and the air outlet mouth 12 is inscribed in a plane substantially parallel to the plane in which the air inlet mouth 14 is inscribed. More particularly, the air inlet mouth 14 and the air outlet 12 are respectively formed in the wall 8 of the casing 6.
  • the ventilation device 1 comprises an air filter and/or a heat exchanger 20 arranged at the level of the air outlet mouth 12 of the ventilation device 1 so that the flow of air passes at least partly through the air filter and/or the heat exchanger 20.
  • the air filter and/or the heat exchanger 20 can partially close the air outlet mouth 12, or advantageously completely close the air outlet mouth 12.
  • the air filter and/or the heat exchanger 20 comprises at least one air inlet in a plane substantially parallel to the plane in which the air outlet mouth 12 of the housing 6 is inscribed, the air inlet of the air filter and/or of the heat exchanger 20 being arranged facing the mouth air outlet 12. “Substantially” means that an angle formed between the two planes of 0 to 20 is tolerated.
  • the plane in which the air inlet of the air filter and/or of the heat exchanger 20 fits coincides with the plane in which the air outlet mouth 12 of the housing 6 fits, the air flow being guided directly through the air filter and/or the heat exchanger 20 downstream of the guide member 4 before circulating towards the passenger compartment of the vehicle.
  • the housing 6, and more specifically the wall 8 of this housing 6, has a generally bell-shaped shape, that is to say that this housing 6 has a section seen in a plane perpendicular to the axis of rotation R of the radial propeller 2, the dimensions of which increase from the air inlet mouth 14 towards the air outlet mouth 12.
  • the wall 8 of the casing 6 defines the internal volume 10 of the ventilation device 1 which houses at least the radial propeller 2 configured to generate the air flow and the guide member 4 configured to direct at least part of the air flow generated by the rotation of the radial propeller 2 in the direction of the axis of rotation R of this radial propeller 2, after it has passed through the guide member 4.
  • radial propeller 2 is adapted to be driven in rotation by the drive motor 16 received in the ventilation device 1.
  • the housing 6 comprises at least an upper part 19 which houses the radial propeller 2 and a lower part 21 which houses the guide member 4 of the air flow.
  • the upper part 20 and the lower part 21 of this casing 6 form two parts of the casing 6 cooperating with each other, that is to say that they are assembled with each other. to form the housing 6 in a plane close to the guide member 4.
  • radial propeller 2 means a propeller in which the air enters in a direction parallel to the axis of rotation R of this propeller and leaves it in a direction transverse to the axis of rotation R of the 'helix.
  • the axis of rotation R of the propeller radial 2 in the example shown is also parallel to a main extension axis of the housing 6.
  • the propeller 2 comprises a plurality of blades 22 each at least delimited by a first axial end 24 and by a second axial end 26.
  • the first axial end 24 of each blade 22 is oriented towards the axis of rotation R and the hub 18 of the propeller 2 while the second axial end 26 of each blade 22 is arranged opposite the first axial end 24 and participates in delimiting a radial outlet 25 of the air flow.
  • each blade 22 also includes an upper line 28 and a lower line 30, each of these lines 28, 30 extending between the first axial end 24 and the second axial end 26.
  • each blade 22 comprises a portion partially opposite the air inlet 14 of the ventilation device 1, in particular close to the first axial end 24, and another portion in contact with and integral with a covering wall 32 of the propeller 2 extending in a ring partially over the upper lines 28 of the plurality of blades 22.
  • the lower line 30 of each blade 22 is in contact and integral with a support 34 of the propeller 2 advantageously taking the form of a bowl .
  • at least one blade 22 of the radial propeller 2 comprises a concave face 31 and a convex face 33 each extending between along a direction parallel to the axis of rotation R between the lower line 30 and the upper line 28.
  • each blade 22 of the radial propeller 2 comprises these concave 31 and convex 33 faces so that a concave face 31 of a blade 22 faces a convex face 33 of a blade 22 successive to said blade 22.
  • the plurality of blades 22 force the circulation of the air flow from the air inlet mouth 14 of the ventilation device 1, advantageously disposed at the level of the upper part 19 of the housing 6, towards the radial outlet 25 of the air flow formed by the second axial ends 26 of the blades 22.
  • the air flow first circulates along 'a direction substantially parallel to the axis of rotation R, then in a direction extending substantially radially from the axis of rotation R towards the radial outlet 25 of the propeller 2.
  • a thickness Ai, A2 of at least one blade 22 of the radial propeller 2 measured along a direction perpendicular to the axis of rotation R is increasing from the first axial end 24 towards the second axial end 26 of this blade 22, a passage section 35 between at least two successive blades 22 of the radial propeller 2 being constant between two ends 24, 26.
  • a distance Di between the concave face 31 of a first blade 22a of the radial propeller 2 and the convex face 33 of a second blade 22b successive to this first blade 22a is constant between the first axial end 24 and the second axial end 26 of each of these two blades 22a, 22b. It is understood that the distance Di separating the concave face 31 of a blade 22 with the convex face 33 of the successive blade 22 is constant, that is to say that it does not vary, along a radial direction to the axis of rotation R and along which the two blades 22 substantially extend.
  • the distance Di measured between the upper lines 28 of two blades 22 adjacent to each other is identical to a dimension measured between the lower lines 30 of these two successive blades 22 . It is understood that the distance Di separating the concave face 31 of a blade 22 with the convex face 33 of the successive blade 22 is constant along a direction parallel to the axis of rotation R between the upper lines 28 and lower lines 30 of these two successive blades 22.
  • each passage section 35 of the air flow of the plurality of blades 22 of the radial propeller 2 has the same dimension.
  • the dimensions of the passage section 35 which separates the concave face 31 of the first blade 22a from the convex face 33 of the second blade 22b are similar to the dimensions of a passage section 35 between the concave face 31 of the second blade 22b and the convex face 33 of a third blade 22c which immediately succeeds the second blade 22b.
  • the blades 22 are thus distributed evenly around the hub 18.
  • the thickness Ai, A2 of each of these blades 22 tends to widen towards the second axial end 26 as one moves away from the first axial end 24.
  • This thickness Ai, A2 is measured, for each of the blades 22, along a direction perpendicular to a radius of the radial propeller 2 passing through the center of the blade 22, this direction also being perpendicular to the axis of rotation R of the radial propeller 2.
  • the thickness of at least one blade 22 of the radial propeller 2 increases from the first axial end 24 of the blade 22 towards the second axial end 26 of this blade. 22, the thickness being measured as a reminder along a direction perpendicular on the one hand to a radius of the radial propeller 2 passing through the center of the blade 22 and on the other hand to the axis of rotation R.
  • a first thickness Ai measured at the level of the first axial end 24 of the blade 22 has a dimension less than the dimension of a second thickness A2 of the blade 22 measured at the level of the second axial end 26 of the blade 22.
  • each of these thicknesses Ai, A2 is measured between the concave face 31 and the convex face 33 of the blade 22.
  • At least one blade 22 of the radial propeller 2 comprises a recess 37 at its second axial end 26, the recess 37 extending substantially over the entire thickness of the blade 22.
  • each blade 22 of the radial propeller 2 comprises this recess 37.
  • the recess 37 has a section in the shape of a "U" seen in a plane perpendicular to the axis of rotation R.
  • the blade 22 comprising a recess 37 thus comprises a first end 39 and a second end 41 constituting the second axial end 26 of the blade 2, the first end 39 being arranged at the level of the concave face 31 of said blade while the second end 41 is arranged at the level of the convex face 33 of said blade.
  • the airflow would not flow through the recess 37 of the blades 22.
  • each blade 22 includes the first end 39 and the second end 41.
  • the guide member 4 for its part comprises a plurality of vanes 36 at least delimited by a leading edge 38 and by a trailing edge 40 guiding the flow of air circulated by the propeller 2 through the ventilation device 1 towards the axis of rotation R. It is understood from this that the flow of air, circulated by the propeller 2, is guided towards the air outlet mouth 12 of the ventilation device 1 through the guide member 4 and that the plurality of blades 36 refocuses the circulation of the air flow towards the axis of rotation R, the air flow coming into contact with a blade 36 of the plurality of blades 36 at the level with its leading edge 38 and then circulates towards its trailing edge 40. For this, the leading edge 38 of a blade 36 faces the propeller 2 while its trailing edge 40 faces from the air outlet vent 12.
  • the plurality of vanes 36 comprises five vanes 36.
  • a plurality of vanes 36 comprising at least two vanes 36 would not depart from the scope of the invention.
  • a more detailed description of the blade 36 will be made in the following description.
  • a height Hi of the guide member 4 measured along a direction parallel to the axis of rotation R between a first plane Ai passing through the leading edge 38 of the plurality of blades 36 and a second plane A2 passing through the trailing edge 40 of the plurality of blades 36 represents at least 55% of a dimension H2 measured between a third plane A3 passing through the end of the plurality of blades 22 closest to the guide member 4 and a fourth plane A4 in which the air outlet mouth 12 fits.
  • a first height Hi is measured along a direction parallel to the axis of rotation R between the leading edge 38 and the trailing edge 40 of the plurality of blades 36, a second height H2 being measured along a direction parallel to the axis of rotation R between a corner formed between the lower line 30 and the second axial end 26 of the plurality of blades 22 and the air outlet mouth 12 of the device ventilation 1, the first height Hi representing at least 50% of the second height H2.
  • This ratio is necessary to optimize the guiding of the air flow by the guide member 4 from the propeller 2 towards the air outlet mouth 12 and towards the axis of rotation R.
  • the first height Hi thus corresponding to the height Hi of the guide member 4, represents between 60 and 65% of the dimension H2 measured between the third plane A3 passing through the end of the plurality of blades 22 furthest close of the guide member 4 and the fourth plane A4 in which the air outlet mouth 12 fits, the dimension H2 corresponding to the second height H2 defined above.
  • the height Hi of the guide member 4 is between 60 and 85 mm.
  • the second height H2, measured between the corner formed between the lower line 30 and the second axial end 26 of the plurality of blades 22 and the air outlet mouth 12 of the guide device is for its part between 90 and 135 mm. .
  • the plurality of vanes 36 is fixed and integral with the wall 8 of the housing 6. It is understood from the foregoing that the plurality of vanes 36 is not not driven in rotation around the axis of rotation R and remains in position to guide the flow of air towards the air outlet mouth 12 and towards the axis of rotation R.
  • the guide member 4 comprises a bowl 42 around which the plurality of vanes 36 are regularly arranged.
  • This bowl 42 as seen in FIG. 2, is centered with respect to the axis of rotation R , that is to say that the axis of rotation R passes through the center of the bowl 42. It is moreover in this bowl 42 that at least a part of the drive motor 16 of the propeller 2 is lodged.
  • At least one blade 36 of the plurality of blades 36 comprises an underside 44 and an upper surface 46 each extending between a proximal end 48 of the blade 36 in contact with the bowl 42 and a distal end 50 of the blade 36 in contact with the wall 8 of the housing 6. It is understood that the proximal end 48 is positioned closest to the axis of rotation R while the distal end 50 is arranged opposite, each of these two ends 48 , 50 extending between the leading edge 38 and the trailing edge 40 of the blade 36.
  • the lower surface 44 of a first blade 36a faces the upper surface 46 of a second successive blade 36b, the lower surface 44 of the second blade 36b being opposite the upper surface 46 of a third blade 36c successive to the second blade 36b.
  • each of the blades 36 comprises a leading edge 38, a trailing edge 40, an underside 44, an extrados 46, a proximal end 48 and a distal end 50 as described above.
  • the description of a characteristic of one of the blades 36 of the plurality of blades 36 in the following description is also valid for the other blades 36 of the plurality of blades 36 unless otherwise stated.
  • a dimension measured between the proximal end 48 and the distal end 50 of the blade 36 increases in an increasing manner between the leading edge 38 and the edge of the blade. leak 40.
  • the proximal end 48 and the distal end 50 of the vane 36 tend to move away from each other as one moves away from the edge. leading edge 38 and approaching the trailing edge 40 along a direction parallel to the axis of rotation R.
  • first width Li of the blade 36 measured the proximal end 48 and the distal end 50 of the blade 36 at the level of its leading edge 38
  • second width L2 measured between the end proximal 48 of the blade 36 and the distal end 50 of the blade 36 at its trailing edge 40
  • At least two successive blades 36 overlap at least partially, along a direction parallel to the axis of rotation R of the radial propeller. It is understood that at least a portion of the first blade 36a overlaps with a portion of the second blade 36b along a direction parallel to the axis of rotation R, one of the two portions hiding the other portion when the guide member 4 is observed from above or from below.
  • the portion of the second blade 36b superimposed on the first blade 36a has been represented by dashes in Figure 5.
  • the overlapping portions of the first vane 36a and the second vane 36b are located close to the proximal end 48 of each of the vanes 36.
  • the portion of the first vane 36a overlapping the portion of the second vane 36b is located at the level of the leading edge 38 of the first vane 36a, while the portion of the second vane 36b overlapping the portion of the first vane 36a is located at the level of the trailing edge 40 of the second dawn 36b.
  • Figures 7 and 8 is illustrated a cross section of a first portion Si of one of its blades 36, a cross section of a second portion S2 of the same vane 36 and a cross section of a third portion S3 of this vane 36, the S2 of the same vane 36 and one and a cross section of a third portion S3 of this vane 36.
  • the cross section of the first portion Si is made in a transverse plane Pi located at a first distance Ri from the axis of rotation R passing through the center of the guide member 4, the cross section of the second portion S2 being made in a transverse plane P2 located at a second distance R2 from the axis of rotation R passing through the center of the guide member 4, and the cross section of the third portion S3 being produced in a transverse plane P3 located at a third distance R3 from the axis of rotation R passing through the center of the guide member 4.
  • the first transverse plane Pi, the second transverse plane P2 and the third transverse plane P3 are each perpendicular with respect to a radial direction of the axis of rotation R. .
  • the first distance Ri measured between the first transverse plane Pi and the axis of rotation R is between 75 and 85 mm, this first distance Ri being the smallest distance measured between the first transverse plane Pi and the axis of rotation R.
  • this first distance Ri is about 78 mm.
  • the second distance R2 measured between the second transverse plane P2 and the axis of rotation R is between 85 and 95 mm, this second distance R2 being the smallest distance measured between the second transverse plane P2 and the axis of rotation R.
  • this second distance R2 is approximately 90 mm.
  • the third distance R3 measured between the third transverse plane P3 and the axis of rotation R is between 100 and 110 mm, this third distance R3 being the smallest distance measured between the third transverse plane P3 and the axis of rotation R.
  • this third distance R3 is approximately 105 mm.
  • the blade 36 extends along a line of camber CA between its leading edge 38 and its trailing edge 40, this line of camber CA being different in each first, second and third portions Si, S2, S3 of blade 36. It will be understood that in each of these portions Si, S2, S3, blade 36 does not extend in one plane.
  • the line of camber CA followed by the blade 36 in each portion Si, S2, S3 falls within a circle C. In other words, the blade 36 extends along a line of camber CA s inscribing in a different circle C in each portion Si, S2, S3.
  • a first angle bi is formed between a tangent to the circle passing through the leading edge 38 and a direction passing through the leading edge 38 and falling on the one hand in a plane perpendicular to the axis of rotation R and on the other hand in a plane in which the circle C is inscribed, the first angle bi having a value between 17 0 and 23 0 at the level of the first portion Si, a value between 14 0 and 19 0 at the level of the second portion S2 and a value comprised between 10° and 15 0 at the level of the third portion S3.
  • the first angle bi has a value of approximately 20° at the level of the first portion S1, of approximately 17 ° at the level of the second portion S2 and of approximately 13 ° at the level of the third portion S3.
  • a second angle b2 is formed between a tangent to the circle passing through the trailing edge 40 and a direction passing through the trailing edge 40 and falling on the one hand in a plane perpendicular to the axis of rotation R and on the other hand in a plane in which the circle C is inscribed, the second angle b2 having a value comprised between 95 ° and ioo° at the level of the first portion Si, a value comprised between 105° and 110 ° at the level of the second portion S2 and a value comprised between 112 0 and 117 0 at the level of the third portion S3.
  • the second angle b2 has a value of approximately 98° at the level of the first portion S1, of approximately 109° at the level of the second portion S2 and of approximately 115 ° at the level of the third portion S3.
  • the present invention cannot however be limited to the means and configurations described and illustrated here and it also extends to any equivalent means and configuration as well as to any technically effective combination of such means.
  • the number of blades 36 of the plurality of blades 36 can vary without departing from the scope of the invention, as long as the guide member 4 continues to guide the flow of air towards the outlet mouth of air 12 and the axis of rotation R.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

La présente invention a pour principal objet un dispositif de ventilation (1) pour un système de ventilation, de chauffage et/ ou d'air conditionné d'un véhicule, comprenant au moins un boîtier (6) qui comporte au moins une paroi (8) participant à délimiter un volume interne (10) dans lequel sont reçus au moins une hélice radiale (2) et un organe de guidage (4), l'hélice radiale (2) étant configurée pour être entraînée en rotation autour d'un axe de rotation (R), l'hélice radiale (2) comprenant une pluralité de pales (22) chacune au moins délimitée par une première extrémité axiale (24) et par une deuxième extrémité axiale (26), l'organe de guidage (4) comprenant une pluralité d'aubes (36) au moins délimitées par un bord d'attaque (38) et par un bord de fuite (40), l'hélice radiale (2) et l'organe de guidage (4) étant configurés pour forcer la circulation d'un flux d'air à travers le boîtier (6) le long de l'axe de rotation (R) entre une bouche d'entrée d'air (14) et une bouche de sortie d'air (12) du dispositif de ventilation (1), caractérisé en ce qu'une hauteur (H1) de l'organe de guidage (4) mesurée le long d'une direction parallèle à l'axe de rotation (R) entre un premier plan (A1) passant par le bord d'attaque (38) de la pluralité d'aubes (36) et un deuxième plan (A2) passant par le bord de fuite (40) de la pluralité d'aubes (36) représente au moins 50% d'une dimension (H2) mesurée entre un troisième plan (A3) perpendiculaire à l'axe de rotation (R) et passant par au moins une extrémité de la pluralité de pales (22) la plus proche de l'organe de guidage (4) et un quatrième plan (A4) perpendiculaire à l'axe de rotation (R) et dans lequel s'inscrit la bouche de sortie d'air (12).

Description

DISPOSITIF DE VENTILATION D’UN SYSTEME DE VENTILATION, DE CHAUFFAGE ET/OU D’AIR CONDITIONNÉ.
La présente invention concerne le domaine des systèmes de ventilation, chauffage et/ou climatisation destinés à être intégrés à des véhicules, et plus particulièrement les dispositifs de ventilation intégrés à de tels systèmes.
Les véhicules comprennent classiquement un système de ventilation, de chauffage et/ou d’air conditionné destiné au traitement thermique d’un flux d’air envoyé dans un habitacle de ce véhicule. Ces systèmes de ventilation, de chauffage et/ou d’air conditionné comprennent au moins un carter dans lequel sont reçus au moins un échangeur de chaleur et au moins un dispositif de ventilation. Par exemple, un fluide caloporteur, c’est-à-dire un fluide capable de capter, transporter et céder des calories, circule dans cet échangeur de chaleur. Cet échangeur de chaleur est par ailleurs traversé par un flux d’air qui, ce faisant, voit sa température modifiée avant d’être envoyé dans l’habitacle de manière à traiter thermiquement son volume.
Afin de générer le flux d’air apte à traverser l’échangeur de chaleur, le système de ventilation, de chauffage et/ou d’air conditionné comprend généralement au moins un dispositif de ventilation qui comprend au moins une hélice logée dans un boîtier, cette hélice étant entraînée en rotation par un organe de mise en mouvement qui peut également être logé dans le boîtier. Les dispositifs de ventilation actuellement mis en œuvre comprennent une entrée d’air axiale, c’est-à-dire une bouche qui permet une entrée du flux d’air dans le dispositif de ventilation selon une direction parallèle, ou sensiblement parallèle, à un axe de rotation de l’hélice de ce dispositif de ventilation, et une sortie d’air radiale où le flux d’air sort en suivant une direction radiale à l’hélice. Autrement dit, un tel dispositif de ventilation est classiquement agencé dans une volute de sorte que le flux d’air entre dans le dispositif de ventilation selon une première direction et quitte ce boîtier selon une deuxième direction perpendiculaire à la première direction.
L’hélice d’un tel dispositif de ventilation comprend classiquement un corps central duquel s’étend radialement une pluralité de pales. La pluralité de pales est mobile en rotation autour de la direction de rotation et force la mise en circulation du flux d’air à travers le dispositif de ventilation. Le flux d’air traverse ensuite un organe de guidage configuré pour entraîner la circulation du flux d’air vers une sortie d’air du boîtier.
Un inconvénient de ces dispositifs de ventilation est qu’ils sont particulièrement encombrants en raison du caractère radial du flux d’air en sortie de dispositif. Ils ne peuvent donc pas être installés facilement dans des systèmes de ventilation particulièrement exigus. De plus, il est connu que ces dispositifs de ventilation sont bruyants et peuvent incommoder le conducteur et/ ou les passagers présents dans l’habitacle du véhicule
Dans ce contexte, la présente invention propose une nouvelle conception de dispositif de ventilation à hélice radiale de manière que celui-ci prenne moins de place que les concepts de l’art antérieur. L’invention vise également à améliorer d’une part le rendement énergétique nécessaire pour mettre en rotation l’hélice, et d’autre part, l’acoustique produit par le dispositif de ventilation.
Pour cela, la présente invention a pour principal objet un dispositif de ventilation pour un système de ventilation, de chauffage et/ ou d’air conditionné d’un véhicule, comprenant au moins un boîtier qui comporte au moins une paroi participant à délimiter un volume interne dans lequel sont reçus au moins une hélice radiale et un organe de guidage, l’hélice radiale étant configurée pour être entraînée en rotation autour d’un axe de rotation, l’hélice radiale comprenant une pluralité de pales chacune au moins délimitée par une première extrémité axiale et par une deuxième extrémité axiale, l’organe de guidage comprenant une pluralité d’aubes au moins délimitées par un bord d’attaque et par un bord de fuite, l’hélice radiale et l’organe de guidage étant configurés pour forcer la circulation d’un flux d’air à travers le boîtier le long de l’axe de rotation entre une bouche d’entrée d’air et une bouche de sortie d’air du dispositif de ventilation, caractérisé en ce qu’une hauteur de l’organe de guidage mesurée le long d’une direction parallèle à l’axe de rotation entre un premier plan passant par le bord d’attaque de la pluralité d’aubes et un deuxième plan passant par le bord de fuite de la pluralité d’aubes représente au moins 50% d’une dimension mesurée entre un troisième plan perpendiculaire à l’axe de rotation et passant par au moins une extrémité de la pluralité de pales la plus proche de l’organe de guidage et un quatrième plan perpendiculaire à l’axe de rotation et dans lequel s’inscrit la bouche de sortie d’air. En d’autres termes, une première hauteur est mesurée entre le bord d’attaque et le bord de fuite de la pluralité d’aubes le long d’une direction parallèle à l’axe de rotation, une deuxième hauteur étant mesurée entre l’extrémité de la pluralité de pales de l’hélice radiale la plus proche de l’organe de guidage et la bouche de sortie d’air le long d’une direction parallèle à l’axe de rotation, la première hauteur représentant au moins 50% de la deuxième hauteur.
Le premier plan, le deuxième plan, le troisième plan et le quatrième plan s’étendent parallèlement entre eux et perpendiculairement par rapport à l’axe de rotation.
On entend par « hélice radiale », une hélice dans laquelle le flux d’air entre selon une première direction, en l’espèce parallèle à l’axe de rotation de cette hélice, et la quitte selon une deuxième direction transversale, par exemple perpendiculaire, à l’axe de rotation de cette hélice. En d’autres termes, l’hélice radiale, au sens de l’invention, comprend une entrée d’air axiale et une sortie d’air radiale.
La forme du boîtier de ce dispositif de ventilation et la forme de l’organe de guidage du flux d’air reçu dans ce dispositif de ventilation permettent, conjointement, de canaliser le flux d’air généré par la rotation de l’hélice radiale de sorte que l’encombrement général de ce dispositif de ventilation par rapport aux dispositifs de ventilation de l’art antérieur soit réduit. La sortie d’air du dispositif de ventilation selon l’invention peut ainsi être placée dans le prolongement axial de l’hélice radiale, ce qui permet de réduire l’encombrement radial d’un tel dispositif. Il en résulte que le dispositif de ventilation selon l’invention peut être installé plus facilement au sein de véhicules de petite taille, comme par exemple les véhicules à propulsion au moins en partie électrique.
Le dispositif de ventilation selon l’invention permet d’obtenir une répartition homogène du flux d’air sur toute une surface de la bouche de sortie formée dans la paroi du boîtier, en inclinant le flux d’air pour que celui-ci rejoigne la partie de la bouche de sortie où passe l’axe de rotation de l’hélice radiale.
Selon une caractéristique optionnelle de l’invention, la pluralité d’aubes est fixe et solidaire de la paroi du boîtier. On comprend que la pluralité d’aubes n’est pas entraînée en rotation autour de l’axe de rotation et garde une même position pour guider le flux d’air vers la bouche de sortie d’air et vers l’axe de rotation de l’hélice radiale. Selon une autre caractéristique optionnelle de l’invention, la hauteur de l’organe de guidage est comprise entre 6o et 85 mm. Préférentiellement, la hauteur de l’organe de guidage est d’environ 70 mm, plus ou moins 1 mm.
Selon une autre caractéristique optionnelle de l’invention, la hauteur de l’organe de guidage représente entre 60 et 65% de la dimension mesurée entre le troisième plan passant par l’extrémité de la pluralité de pales la plus proche de l’organe de guidage et le quatrième plan dans lequel s’inscrit la bouche de sortie d’air. Préférentiellement, la hauteur de l’organe de guidage représente environ 63%, plus ou moins 1%, de la dimension mesurée entre le troisième plan passant par l’extrémité de la pluralité de pales la plus proche de l’organe de guidage et le quatrième plan dans lequel s’inscrit la bouche de sortie d’air.
Selon une autre caractéristique optionnelle de l’invention, au moins deux aubes successives se superposent au moins partiellement, le long d’une direction parallèle à l’axe de rotation de l’hélice radiale. On comprend de cela qu’une portion d’une première aube recouvre au moins partiellement une portion de la deuxième aube successive à la première aube, et que les portions des aubes se recouvrant sont alignées le long d’une direction parallèle à l’axe de rotation.
Selon une autre caractéristique optionnelle de l’invention, le dispositif de ventilation comprend au moins un filtre à air présentant une entrée d’air qui s’inscrit dans un plan d’entrée du flux d’air parallèle au plan dans lequel s’inscrit la bouche de sortie d’air dudit dispositif de ventilation. On comprend que le plan d’entrée du flux d’air dans le filtre à air et le plan dans lequel s’inscrit la bouche de sortie d’air sont sensiblement parallèle, c’est-à-dire que les plans peuvent être inclinés l’un par rapport à l’autre selon un angle d’au plus 20.
Selon une autre caractéristique optionnelle de l’invention, le dispositif de ventilation comprend au moins un filtre à air présentant une entrée qui s’inscrit dans un plan d’entrée du flux d’air confondu au plan dans lequel s’inscrit la bouche de sortie d’air dudit dispositif de ventilation.
Selon une autre caractéristique optionnelle de l’invention, le dispositif de ventilation comprend au moins un échangeur thermique présentant une entrée d’air qui s’inscrit dans un plan d’entrée du flux d’air parallèle au plan dans lequel s’inscrit la bouche de sortie d’air dudit dispositif de ventilation. On comprend que le plan d’entrée de l’échangeur thermique dans le filtre à air et le plan dans lequel s’inscrit la bouche de sortie d’air sont sensiblement parallèles, c’est-à-dire que les plans peuvent être inclinés l’un par rapport à l’autre selon un angle d’au plus 2°.
Selon une autre caractéristique optionnelle de l’invention, le dispositif de ventilation comprend au moins un échangeur thermique présentant une entrée qui s’inscrit dans un plan d’entrée du flux d’air confondu au plan dans lequel s’inscrit la bouche de sortie d’air dudit dispositif de ventilation.
Selon une autre caractéristique optionnelle de l’invention, l’organe de guidage comprend un bol autour duquel est disposée de façon régulière la pluralité d’aubes, au moins une aube de la pluralité d’aubes comprenant un intrados et un extrados s’étendant chacun entre une extrémité proximale de l’aube en contact avec le bol et une extrémité distale de l’aube en contact avec la paroi du boîtier.
Selon une autre caractéristique optionnelle de l’invention, le dispositif de ventilation comprend un moteur d’entrainement de l’hélice radiale porté par le bol de l’organe de guidage.
Selon une autre caractéristique optionnelle de l’invention, une dimension mesurée entre l’extrémité proximale et l’extrémité distale de l’aube augmente de manière croissante entre le bord d’attaque et le bord de fuite.
Selon un exemple de l’invention, une distance mesurée entre l’extrémité proximale et l’extrémité distale d’une aube au niveau de son bord d’attaque est plus petite qu’une distance mesurée entre l’extrémité proximale et l’extrémité distale de cette aube au niveau de son bord de fuite.
Selon une autre caractéristique optionnelle de l’invention, l’aube présente une première portion, une deuxième portion et une troisième portion alignées dans cet ordre depuis l’extrémité proximale vers l’extrémité distale, l’aube comprenant au moins une section transversale, vue dans un plan perpendiculaire à une direction radiale de l’axe de rotation, qui s’inscrit le long d’une ligne de cambrure entre le bord d’attaque et le bord de fuite, cette ligne de cambrure étant différente dans chacune des première, deuxième et troisième portions de l’aube.
On comprend de ce qui précède que l’aube s’étend différentes lignes de cambrure selon la portion dans laquelle s’étend l’aube.
Selon une autre caractéristique optionnelle de l’invention, un premier rayon mesuré entre l’axe de rotation et la première portion le long d’une direction radiale à l’axe de rotation est compris entre 75 et 85 mm, un deuxième rayon mesuré entre l’axe de rotation et la deuxième portion mesurée le long d’une direction radiale à l’axe de rotation est compris entre 85 et 95 mm et un troisième rayon mesuré entre l’axe de rotation et la troisième portion mesurée le long d’une direction radiale à l’axe de rotation est compris entre 100 et 110 mm.
Selon une autre caractéristique optionnelle de l’invention, la ligne de cambrure suivie par l’aube dans chaque portion s’inscrit dans un cercle, un premier angle étant formé entre une tangente au cercle passant par le bord d’attaque et une direction passant par le bord d’attaque et s’inscrivant d’une part dans un plan perpendiculaire à l’axe de rotation et d’autre part dans un plan dans lequel s’inscrit le cercle, le premier angle ayant une valeur comprise entre 170 et 230 au niveau de la première portion, une valeur comprise entre 140 et 190 au niveau de la deuxième portion et une valeur comprise entre 100 et 150 au niveau de la troisième portion.
Selon une autre caractéristique optionnelle de l’invention, dans lequel la ligne de cambrure suivit par l’aube dans chaque portion s’inscrit dans un cercle, un deuxième angle étant formé entre une tangente au cercle passant par le bord de fuite et une direction passant par le bord de fuite et s’inscrivant d’une part dans un plan perpendiculaire à l’axe de rotation et d’autre part dans un plan dans lequel s’inscrit le cercle, le deuxième angle ayant une valeur comprise entre 950 et ioo° au niveau de la première portion, une valeur comprise entre 105° et 1100 au niveau de la deuxième portion et une valeur comprise entre 1120 et 1170 au niveau de la troisième portion.
L’invention a également pour objet un système de ventilation, de chauffage et/ ou d’air conditionné pour véhicule, comprenant au moins un dispositif de ventilation selon l’une quelconque des caractéristiques précédentes D’autres caractéristiques, détails et avantages de l’invention ressortiront plus clairement à la lecture de la description qui suit d’une part, et de plusieurs exemples de réalisation donnés à titre indicatif et non limitatif en référence aux dessins schématiques annexés d’autre part, sur lesquels :
[Fig. 1] est une représentation en perspective d’un dispositif de ventilation selon un mode de réalisation de l’invention ;
[Fig. 2] est une vue éclatée du dispositif de ventilation représenté sur la figure 1 ; [Fig. 3] est une coupe d’une hélice radiale du dispositif de ventilation représenté sur la figure 1 réalisée dans un plan perpendiculaire à un axe de rotation de l’hélice radiale ;
[Fig. 4] est une représentation en perspective et vue de côté d’une hélice radiale, d’un moteur d’entraînement et de l’organe de guidage du dispositif de ventilation représenté sur la figure 1 ;
[Fig. 5] est une représentation en perspective et une vue de dessus de l’organe de guidage représenté sur la figure 4 ;
[Fig. 6] est une représentation en perspective et une vue de dessous de l’organe de guidage représenté sur la figure 4 ;
[Fig. 7] est une représentation en perspective et une vue de détails d’une aube de l’organe de guidage représenté sur la figure 4 ;
[Fig. 8] est une coupe de l’aube représentée sur la figure 7.
Les caractéristiques, variantes et les différentes formes de réalisation de l’invention peuvent être associées les unes avec les autres, selon diverses combinaisons, dans la mesure où elles ne sont pas incompatibles ou exclusives les unes par rapport aux autres. On pourra notamment imaginer des variantes de l’invention ne comprenant qu’une sélection de caractéristiques décrites par la suite de manière isolée des autres caractéristiques décrites, si cette sélection de caractéristiques est suffisante pour conférer un avantage technique et/ ou pour différencier l’invention par rapport à l’état de la technique antérieur.
De plus, les termes « en amont » et « en aval » utilisés dans la suite de la description font référence au sens de circulation d’un flux d’air à travers le dispositif de ventilation.
Sur les figures 1 et 2 est illustré un dispositif de ventilation 1 selon un mode de réalisation de l’invention comportant au moins une hélice radiale 2, un organe de guidage 4 et un boîtier 6 dans lequel est logé l’hélice radiale 2 et l’organe de guidage
4
Comme plus particulièrement visible sur la figure 2, le boîtier 6 se compose au moins d’une paroi 8 délimitant un volume interne 10 dans lequel est au moins reçue l’hélice radiale 2. Ce type de dispositif de ventilation 1 est configuré pour être intégré dans un système de ventilation, de chauffage et/ ou d’air climatisé destiné à être lui -même intégré à un véhicule, par exemple un véhicule à propulsion électrique, de sorte à traiter thermiquement un flux d’air avant que celui-ci ne soit envoyé dans un habitacle du véhicule. En d’autres termes, ce flux d’air est utilisé pour refroidir ou réchauffer l’habitacle du véhicule. Le dispositif de ventilation i selon l’invention est configuré pour mettre en circulation le flux d’air à travers le système de ventilation, de chauffage et/ou d’air climatisé.
Avantageusement, l’organe de guidage 4 est agencé axialement entre une bouche de sortie d’air 12 et l’hélice radiale 2. Le dispositif de ventilation 1 est configuré pour entraîner l’hélice radiale 2 en rotation autour d’un axe de rotation R de sorte à générer le flux d’air et l’organe de guidage 4 participe quant à lui, conjointement avec au moins une partie de la paroi 8 du boîtier 6, à redresser le flux d’air de sorte que celui-ci présente une direction de déplacement générale, entre une bouche d’entrée d’air 14 du dispositif de ventilation 1 et la bouche de sortie d’air 12 du dispositif de ventilation 1, parallèle à l’axe de rotation R de l’hélice radiale 2.
Plus précisément, le dispositif de ventilation 1 comprend un moteur d’entraînement 16 de l’hélice radiale 2 autour de l’axe de rotation R. Le moteur d’entraînement 16 est positionné axialement entre l’organe de guidage 4 et l’hélice radiale 2. Par exemple, le moteur d’entraînement 16 peut être un moteur électrique qui comprend au moins un stator et au moins un rotor, le rotor étant lié en rotation avec un arbre reçu dans un moyeu 18 de l’hélice radiale 2. Autrement dit, l’axe de rotation R de l’hélice radiale 2 s’étend parallèlement à ce moyeu 18 et passe par le centre de celui-ci.
Le dispositif de ventilation 1 comprend au moins le boîtier 6 dans lequel sont formées au moins la bouche d’entrée d’air 14 et la bouche de sortie d’air 12. Plus particulièrement, la bouche d’entrée d’air 14 s’inscrit dans un plan et la bouche de sortie d’air 12 s’inscrit dans un plan sensiblement parallèle au plan dans lequel s’inscrit la bouche d’entrée d’air 14. Plus particulièrement, la bouche d’entrée d’air 14 et la bouche de sortie d’air 12 sont respectivement formées dans la paroi 8 du boîtier 6.
Tel qu’illustré sur les figures 1 et 2, le dispositif de ventilation 1 comprend un filtre à air et/ou un échangeur thermique 20 agencé au niveau de la bouche de sortie d’air 12 du dispositif de ventilation 1 de sorte que le flux d’air passe au moins en partie à travers le filtre à air et/ou l’échangeur thermique 20. Le filtre à air et/ou l’échangeur thermique 20 peut partiellement fermer la bouche de sortie d’air 12, ou avantageusement totalement fermer la bouche de sortie d’air 12. Le filtre à air et/ou l’échangeur thermique 20 comprend au moins une entrée d’air s’inscrivant dans un plan sensiblement parallèle au plan dans lequel s’inscrit la bouche de sortie d’air 12 du boîtier 6, l’entrée d’air du filtre à air et/ ou de l’échangeur thermique 20 étant disposé en regard de la bouche de sortie d’air 12. On comprend par « sensiblement » qu’on tolère un angle formé entre les deux plans de o à 20.
Préférentiellement, le plan dans lequel s’inscrit l’entrée d’air du filtre à air et/ ou de l’échangeur thermique 20 est confondue avec le plan dans lequel s’inscrit la bouche de sortie d’air 12 du boîtier 6, le flux d’air étant guidé directement à travers à le filtre à air et/ou l’échangeur thermique 20 en aval de l’organe de guidage 4 avant de circuler vers l’habitacle du véhicule.
Le boîtier 6, et plus spécifiquement la paroi 8 de ce boîtier 6, présente une forme générale en cloche, c’est-à-dire que ce boîtier 6 présente une section vue dans un plan perpendiculaire à l’axe de rotation R de l’hélice radiale 2, dont les dimensions augmentent de la bouche d’entrée d’air 14 vers la bouche de sortie d’air 12.
Tel qu’évoqué ci-dessus, la paroi 8 du boîtier 6 définit le volume interne 10 du dispositif de ventilation 1 qui loge au moins l’hélice radiale 2 configurée pour générer le flux d’air et l’organe de guidage 4 configuré pour diriger au moins une partie du flux d’air généré par la rotation de l’hélice radiale 2 en direction de l’axe de rotation R de cette hélice radiale 2, après son passage au travers de l’organe de guidage 4. L’hélice radiale 2 est adaptée pour être entraînée en rotation par le moteur d’entraînement 16 reçu dans le dispositif de ventilation 1.
Le boîtier 6 comprend au moins une partie supérieure 19 qui loge l’hélice radiale 2 et une partie inférieure 21 qui loge l’organe de guidage 4 du flux d’air. Par exemple, la partie supérieure 20 et la partie inférieure 21 de ce boîtier 6 forment deux pièces du boîtier 6 coopérant l’une avec l’autre, c’est-à-dire qu’elles sont assemblées l’une avec l’autre pour former le boîtier 6 dans un plan proche de l’organe de guidage 4.
Par ailleurs, on entend par « hélice radiale 2 », une hélice dans laquelle l’air entre selon une direction parallèle à l’axe de rotation R de cette hélice et la quitte selon une direction transversale à l’axe de rotation R de l’hélice. L’axe de rotation R de l’hélice radiale 2 dans l’exemple illustré est par ailleurs parallèle à un axe d’extension principal du boîtier 6.
Dans la suite de la description, les termes « hélice radiale 2 » et « hélice 2 » seront utilisés sans distinction. Tel que visible sur la figure 2, l’hélice 2 comprend une pluralité de pales 22 chacune au moins délimitée par une première extrémité axiale 24 et par une deuxième extrémité axiale 26. La première extrémité axiale 24 de chaque pale 22 est orientée vers l’axe de rotation R et le moyeu 18 de l’hélice 2 alors que la deuxième extrémité axiale 26 de chaque pale 22 est disposée à l’opposé de la première extrémité axiale 24 et participe à délimiter une sortie radiale 25 du flux d’air. De plus, chaque pale 22 comprend également une ligne supérieure 28 et une ligne inférieure 30, chacune de ces lignes 28, 30 s’étendant entre la première extrémité axiale 24 et la deuxième extrémité axiale 26. La ligne supérieure 28 de chaque pale 22 comprend une portion partiellement en regard de la bouche d’entrée d’air 14 du dispositif de ventilation 1, notamment à proximité de la première extrémité axiale 24, et une autre portion en contact et solidaire d’une paroi de recouvrement 32 de l’hélice 2 s’étendant en anneau partiellement sur les lignes supérieures 28 de la pluralité de pales 22. La ligne inférieure 30 de chaque pale 22 est en contact et solidaire d’un support 34 de l’hélice 2 prenant avantageusement la forme d’un bol. De plus, au moins une pale 22 de l’hélice radiale 2 comprend une face concave 31 et une face convexe 33 s’étendant chacune entre le long d’une direction parallèle à l’axe de rotation R entre la ligne inférieure 30 et la ligne supérieure 28. Avantageusement, chaque pale 22 de l’hélice radiale 2 comprend ces faces concave 31 et convexe 33 de sorte qu’une face concave 31 d’une pale 22 soit en regard d’une face convexe 33 d’une pale 22 successive à ladite pale 22.
Lorsque l’hélice 2 est entraînée en rotation autour de l’axe de rotation R, la pluralité de pales 22 force la mise en circulation du flux d’air depuis la bouche d’entrée d’air 14 du dispositif de ventilation 1, avantageusement disposée au niveau de la partie supérieure 19 du boîtier 6, vers la sortie radiale 25 du flux d’air formée par les deuxièmes extrémités axiales 26 des pales 22. Dans cette configuration, le flux d’air circule tout d’abord le long d’une direction sensiblement parallèle à l’axe de rotation R, puis dans une direction s’étendant sensiblement radialement depuis l’axe de rotation R vers la sortie radiale 25 de l’hélice 2.
Selon un mode de réalisation de l’invention, et tel que plus particulièrement visible sur la figure 3, une épaisseur Ai, A2 d’au moins une pale 22 de l’hélice radiale 2 mesurée le long d’une direction perpendiculaire à l’axe de rotation R est croissante depuis la première extrémité axiale 24 vers la deuxième extrémité axiales 26 de cette pale 22, une section de passage 35 entre au moins deux pales 22 successives de l’hélice radiale 2 étant constante entre deux extrémités 24, 26.
Plus précisément et tel qu’illustré sur la figure 3, une distance Di entre la face concave 31 d’une première pale 22a de l’hélice radiale 2 et la face convexe 33 d’une deuxième pale 22b successive à cette première pale 22a est constante entre la première extrémité axiale 24 et la deuxième extrémité axiale 26 de chacune de ces deux pales 22a, 22b. On comprend que la distance Di séparant la face concave 31 d’une pale 22 avec la face convexe 33 de la pale 22 successive est constante, c’est-à- dire qu’elle ne varie pas, le long d’une direction radiale à l’axe de rotation R et le long duquel s’étendent sensiblement les deux pales 22.
De plus, et selon un exemple de l’invention, la distance Di mesurée entre les lignes supérieures 28 de deux pales 22 adjacentes l’une de l’autre est identique à une dimension mesurée entre les lignes inférieures 30 de ces deux pales 22 successives. On comprend que la distance Di séparant la face concave 31 d’une pale 22 avec la face convexe 33 de la pale 22 successive est constante le long d’une direction parallèle à l’axe de rotation R entre les lignes supérieures 28 et inférieures 30 de ces deux pales 22 successives.
Avantageusement, chaque section de passage 35 du flux d’air de la pluralité de pales 22 de l’hélice radiale 2 présente la même dimension. De la sorte, les dimensions de la section de passage 35 qui sépare la face concave 31 de la première pale 22a de la face convexe 33 de la deuxième pale 22b sont similaires aux dimensions d’une section de passage 35 entre la face concave 31 de la deuxième pale 22b et la face convexe 33 d’une troisième pale 22c qui succède immédiatement à la deuxième pale 22b. Les pales 22 sont ainsi réparties de façon régulières autour du moyeu 18.
Pour permettre de garantir une section de passage 35 constante entre la face concave 31 d’une première pale 22 et la face convexe 33 d’une deuxième pale 22, l’épaisseur Ai, A2 de chacune de ces pales 22 tend à s’agrandir vers la deuxième extrémité axiale 26 au fur et à mesure que l’on s’éloigne de la première extrémité axiale 24. Cette épaisseur Ai, A2 est mesurée, pour chacune des pales 22, le long d’une direction perpendiculaire à un rayon de l’hélice radiale 2 passant par le centre de la pale 22, cette direction étant également perpendiculaire à l’axe de rotation R de l’hélice radiale 2.
Tel que plus particulièrement visible sur la figure 3, on comprend que l’épaisseur d’au moins une pale 22 de l’hélice radiale 2 est croissante depuis la première extrémité axiale 24 de la pale 22 vers la deuxième extrémité axiale 26 de cette pale 22, l’épaisseur étant mesurée pour rappel le long d’une direction perpendiculaire d’une part à un rayon de l’hélice radiale 2 passant par le centre de la pale 22 et d’autre part à l’axe de rotation R.
On comprend ainsi qu’une première épaisseur Ai mesurée au niveau de la première extrémité axiale 24 de la pale 22 présente une dimension inférieure à la dimension d’une deuxième épaisseur A2 de la pale 22 mesurée au niveau de la deuxième extrémité axiale 26 de la pale 22. De plus, chacune de ces épaisseur Ai, A2 est mesurée entre la face concave 31 et la face convexe 33 de la pale 22.
Tel que plus particulièrement visible sur la figure 3, au moins une pale 22 de l’hélice radiale 2 comprend un évidement 37 au niveau de sa deuxième extrémité axiale 26, l’évidement 37 s’étendant sensiblement sur toute l’épaisseur de la pale 22. Dans un mode de réalisation préféré de l’invention, chaque pale 22 de l’hélice radiale 2 comprend cet évidement 37.
Par ailleurs, l’évidement 37 présente une section en forme de « U » vu dans un plan perpendiculaire à l’axe de rotation R. La pale 22 comprenant un évidement 37 comporte ainsi une première extrémité 39 et une deuxième extrémité 41 constitutives de la deuxième extrémité axiale 26 de la pale 2, la première extrémité 39 étant disposée au niveau de la face concave 31 de ladite pale alors que la deuxième extrémité 41 est disposée au niveau de la face convexe 33 de ladite pale. Dans cette disposition, le flux d’air ne circulerait pas à travers l’évidement 37 des pales 22. Selon l’exemple illustré ici sur la figure 3, chaque pale 22 comprend la première extrémité 39 et la deuxième extrémité 41. L’organe de guidage 4 comprend quant à lui une pluralité d’aubes 36 au moins délimitées par un bord d’attaque 38 et par un bord de fuite 40 guidant le flux d’air mis en circulation par l’hélice 2 à travers le dispositif de ventilation 1 vers l’axe de rotation R. On comprend de cela que le flux d’air, mis en circulation par l’hélice 2, est guidé vers la bouche de sortie d’air 12 du dispositif de ventilation 1 à travers l’organe de guidage 4 et que la pluralité d’aubes 36 recentre la circulation du flux d’air vers l’axe de rotation R, le flux d’air entrant en contact avec une aube 36 de la pluralité d’aubes 36 au niveau de son bord d’attaque 38 et circule ensuite vers son bord de fuite 40. Pour cela, le bord d’attaque 38 d’une aube 36 est en regard de l’hélice 2 tandis que son bord de fuite 40 est en regard de la bouche de sortie d’air 12.
Selon l’exemple illustré ici sur la plupart des figures, la pluralité d’aubes 36 comprend cinq aubes 36. Cependant, une pluralité d’aubes 36 comprenant au moins deux aubes 36 ne sortirait pas du cadre de l’invention. Par ailleurs, une description plus détaillée de l’aube 36 sera réalisée dans la suite de la description.
Selon l’invention et tel que visible sur la figure 4, une hauteur Hi de l’organe de guidage 4 mesurée le long d’une direction parallèle à l’axe de rotation R entre un premier plan Ai passant par le bord d’attaque 38 de la pluralité d’aubes 36 et un deuxième plan A2 passant par le bord de fuite 40 de la pluralité d’aubes 36 représente au moins 55% d’une dimension H2 mesurée entre un troisième plan A3 passant par l’extrémité de la pluralité de pales 22 la plus proche de l’organe de guidage 4 et un quatrième plan A4 dans lequel s’inscrit la bouche de sortie d’air 12.
En d’autres termes, une première hauteur Hi est mesurée le long d’une direction parallèle à l’axe de rotation R entre le bord d’attaque 38 et le bord de fuite 40 de la pluralité d’aubes 36, une deuxième hauteur H2 étant mesurée le long d’une direction parallèle à l’axe de rotation R entre un coin formé entre la ligne inférieure 30 et la deuxième extrémité axiale 26 de la pluralité de pales 22 et la bouche de sortie d’air 12 du dispositif de ventilation 1, la première hauteur Hi représentant au moins 50% de la deuxième hauteur H2. Ce ratio est nécessaire pour optimiser le guidage du flux d’air par l’organe de guidage 4 depuis l’hélice 2 vers la bouche de sortie d’air 12 et vers l’axe de rotation R.
Préférentiellement, la première hauteur Hi, correspondant ainsi à la hauteur Hi de l’organe de guidage 4, représente entre 60 et 65% de la dimension H2 mesurée entre le troisième plan A3 passant par l’extrémité de la pluralité de pales 22 la plus proche de l’organe de guidage 4 et le quatrième plan A4 dans lequel s’inscrit la bouche de sortie d’air 12, la dimension H2 correspondant à la deuxième hauteur H2 définie ci- dessus.
Selon un exemple de réalisation de l’invention, la hauteur Hi de l’organe de guidage 4 est comprise entre 60 et 85 mm. La deuxième hauteur H2, mesurée entre le coin formé entre la ligne inférieure 30 et la deuxième extrémité axiale 26 de la pluralité de pales 22 et la bouche de sortie d’air 12 du dispositif de guidage est comprise quant à elle entre 90 et 135 mm.
Plus particulièrement et comme visible sur les figures 2, 5, 6 et 7, la pluralité d’aubes 36 est fixe et solidaire de la paroi 8 du boîtier 6. On comprend de ce qui précède que la pluralité d’aubes 36 n’est pas entraînée en rotation autour de l’axe de rotation R et reste en position pour guider le flux d’air vers la bouche de sortie d’air 12 et vers l’axe de rotation R.
Plus particulièrement, l’organe de guidage 4 comprend un bol 42 autour duquel est disposée de façon régulière la pluralité d’aubes 36. Ce bol 42, tel que visible sur la figure 2, est centré par rapport à l’axe de rotation R, c’est-à-dire que l’axe de rotation R passe par le centre du bol 42. C’est par ailleurs dans ce bol 42 qu’au moins une partie du moteur d’entraînement 16 de l’hélice 2 est logée.
Au moins une aube 36 de la pluralité d’aubes 36 comprend un intrados 44 et un extrados 46 s’étendant chacun entre une extrémité proximale 48 de l’aube 36 en contact avec le bol 42 et une extrémité distale 50 de l’aube 36 en contact avec la paroi 8 du boîtier 6. On comprend que l’extrémité proximale 48 est positionnée au plus proche de l’axe de rotation R tandis que l’extrémité distale 50 est disposée à l’opposé, chacune de ces deux extrémités 48, 50 s’étendant entre le bord d’attaque 38 et le bord de fuite 40 de l’aube 36.
Par ailleurs, l’intrados 44 d’une première aube 36a est en regard de l’extrados 46 d’une deuxième aube 36b successive, l’intrados 44 de la deuxième aube 36b étant en regard de l’extrados 46 d’une troisième aube 36c successive à la deuxième aube 36b.
Préférentiellement, chacune des aubes 36 comprend un bord d’attaque 38, un bord de fuite 40, un intrados 44, un extrados 46, une extrémité proximale 48 et une extrémité distale 50 tels que décrits ci-dessus. Par ailleurs, la description d’une caractéristique d’une des aubes 36 de la pluralité d’aubes 36 dans la suite de la description est également valable pour les autres aubes 36 de la pluralité d’aubes 36 sauf mention contraire.
Selon l’invention et tel que plus particulièrement visible sur la figure 6, une dimension mesurée entre l’extrémité proximale 48 et l’extrémité distale 50 de l’aube 36 augmente de manière croissante entre le bord d’attaque 38 et le bord de fuite 40. En d’autres termes, l’extrémité proximale 48 et l’extrémité distale 50 de l’aube 36 tendent à s’éloigner l’une de l’autre au fur et à mesure qu’on s’éloigne du bord d’attaque 38 et qu’on se rapproche du bord de fuite 40 le long d’une direction parallèle à l’axe de rotation R.
On peut également définir une première largeur Li de l’aube 36 mesurée l’extrémité proximale 48 et l’extrémité distale 50 de l’aube 36 au niveau de son bord d’attaque 38, et une deuxième largeur L2 mesurée entre l’extrémité proximale 48 de l’aube 36 et l’extrémité distale 50 de l’aube 36 au niveau de son bord de fuite 40, la première largeur Li étant inférieure à la deuxième largeur L2.
Selon une caractéristique de l’invention et tel que plus particulièrement visible sur la figure 5, au moins deux aubes 36 successives se superposent au moins partiellement, le long d’une direction parallèle à l’axe de rotation R de l’hélice radiale. On comprend qu’au moins une portion de la première aube 36a se superpose avec une portion de la deuxième aube 36b long d’une direction parallèle à l’axe de rotation R, l’une des deux portions cachant l’autre portion lorsqu’on observe l’organe de guidage 4 par-dessus ou par-dessous. Pour faciliter la compréhension de l’invention, la portion de la deuxième aube 36b de superposant à la première aube 36a a été représentée par des tirets sur la figure 5.
Plus précisément, les portions se superposant de la première aube 36a et de la deuxième aube 36b sont situées à proximité de l’extrémité proximale 48 de chacune des aubes 36. De plus, la portion de la première aube 36a se superposant à la portion de la deuxième aube 36b est située au niveau du bord d’attaque 38 de la première aube 36a, tandis que la portion de la deuxième aube 36b se superposant à la portion de la première aube 36a est située au niveau du bord de fuite 40 de la deuxième aube 36b.
Sur les figures 7 et 8 est illustrées une section transversale d’une première portion Si de l’une de ses aubes 36, une section transversale d’une deuxième portion S2 de la même aube 36 et une section transversale d’une troisième portion S3 de cette aube 36, la S2 de la même aube 36 et une et une section transversale d’une troisième portion S3 de cette aube 36. Par ailleurs, la section transversale de la première portion Si est réalisée dans un plan transversal Pi située à une première distance Ri de l’axe de rotation R passant par le centre de l’organe de guidage 4, la section transversale de la deuxième portion S2 étant réalisée dans un plan transversal P2 située à une deuxième distance R2 de l’axe de rotation R passant par le centre de l’organe de guidage 4, et la section transversale de la troisième portion S3 étant réalisée dans un plan transversal P3 située à une troisième distance R3 de l’axe de rotation R passant par le centre de l’organe de guidage 4. Le premier plan transversal Pi, le deuxième plan transversal P2 et le troisième plan transversal P3 sont, chacun, perpendiculaire par rapport à une direction radiale de l’axe de rotation R. .
Plus précisément, la première distance Ri mesurée entre le premier plan transversal Pi et l’axe de rotation R est comprise entre 75 et 85 mm, cette première distance Ri étant la plus petite distance mesurée entre le premier plan transversal Pi et l’axe de rotation R. Avantageusement, cette première distance Ri est d’environ 78 mm.
La deuxième distance R2 mesurée entre le deuxième plan transversal P2 et l’axe de rotation R est comprise entre 85 et 95 mm, cette deuxième distance R2 étant la plus petite distance mesurée entre le deuxième plan transversal P2 et l’axe de rotation R. Avantageusement, cette deuxième distance R2 est d’environ 90 mm.
La troisième distance R3 mesurée entre le troisième plan transversal P3 et l’axe de rotation R est comprise entre 100 et 110 mm, cette troisième distance R3 étant la plus petite distance mesurée entre le troisième plan transversal P3 et l’axe de rotation R. Avantageusement, cette troisième distance R3 est d’environ 105 mm.
Dans chacune de ces portions Si, S2, S3, l’aube 36 s’étend le long d’une ligne de cambrure CA entre son bord d’attaque 38 et son bord de fuite 40, cette ligne de cambrure CA étant différente dans chacune des première, deuxième et troisième portions Si, S2, S3 de l’aube 36. On comprend que dans chacune de ces portions Si, S2, S3, l’aube 36 ne s’étend pas dans un plan. La ligne de cambrure CA suivie par l’aube 36 dans chaque portion Si, S2, S3 s’inscrit dans un cercle C. En d’autres termes, l’aube 36 s’étend le long d’une ligne de cambrure CA s’inscrivant dans un cercle C différent dans chaque portion Si, S2, S3. Selon l’invention, un premier angle bi est formé entre une tangente au cercle passant par le bord d’attaque 38 et une direction passant par le bord d’attaque 38 et s’inscrivant d’une part dans un plan perpendiculaire à l’axe de rotation R et d’autre part dans un plan dans lequel s’inscrit le cercle C, le premier angle bi ayant une valeur comprise entre 170 et 230 au niveau de la première portion Si, une valeur comprise entre 140 et 190 au niveau de la deuxième portion S2 et une valeur comprise entre io° et 150 au niveau de la troisième portion S3. Préférentiellement, le premier angle bi a une valeur d’environ 20° au niveau de la première portion Si, d’environ 170 au niveau de la deuxième portion S2 et d’environ 130 au niveau de la troisième portion S3.
Selon l’invention, un deuxième angle b2 est formé entre une tangente au cercle passant par le bord de fuite 40 et une direction passant par le bord de fuite 40 et s’inscrivant d’une part dans un plan perpendiculaire à l’axe de rotation R et d’autre part dans un plan dans lequel s’inscrit le cercle C, le deuxième angle b2 ayant une valeur comprise entre 950 et ioo° au niveau de la première portion Si, une valeur comprise entre 105° et 1100 au niveau de la deuxième portion S2 et une valeur comprise entre 1120 et 1170 au niveau de la troisième portion S3. Préférentiellement, le deuxième angle b2 a une valeur d’environ 98° au niveau de la première portion Si, d’environ 109° au niveau de la deuxième portion S2 et d’environ 1150 au niveau de la troisième portion S3.
La présente invention ne saurait toutefois se limiter aux moyens et configurations décrits et illustrés ici et elle s’étend également à tout moyen et configuration équivalents ainsi qu’à toute combinaison techniquement opérante de tels moyens. En particulier, le nombre d’aubes 36 de la pluralité d’aubes 36 peut varier sans pour autant sortir du cadre de l’invention, tant que l’organe de guidage 4 continue à guider le flux d’air vers la bouche de sortie d’air 12 et l’axe de rotation R.

Claims

REVENDICATIONS
1. Dispositif de ventilation (i) pour un système de ventilation, de chauffage et/ ou d’air conditionné d’un véhicule, comprenant au moins un boîtier (6) qui comporte au moins une paroi (8) participant à délimiter un volume interne (io) dans lequel sont reçus au moins une hélice radiale (2) et un organe de guidage (4), l’hélice radiale (2) étant configurée pour être entraînée en rotation autour d’un axe de rotation (R), l’hélice radiale (2) comprenant une pluralité de pales (22) chacune au moins délimitée par une première extrémité axiale (24) et par une deuxième extrémité axiale (26), l’organe de guidage (4) comprenant une pluralité d’aubes (36) au moins délimitées par un bord d’attaque (38) et par un bord de fuite (40), l’hélice radiale (2) et l’organe de guidage (4) étant configurés pour forcer la circulation d’un flux d’air à travers le boîtier (6) le long de l’axe de rotation (R) entre une bouche d’entrée d’air (14) et une bouche de sortie d’air (12) du dispositif de ventilation (1), caractérisé en ce qu’une hauteur (Hi) de l’organe de guidage (4) mesurée le long d’une direction parallèle à l’axe de rotation (R) entre un premier plan (Ai) passant par le bord d’attaque (38) de la pluralité d’aubes (36) et un deuxième plan (A2) passant par le bord de fuite (40) de la pluralité d’aubes (36) représente au moins 50% d’une dimension (H2) mesurée entre un troisième plan (A3) perpendiculaire à l’axe de rotation (R) et passant par au moins une extrémité de la pluralité de pales (22) la plus proche de l’organe de guidage (4) et un quatrième plan (A4) perpendiculaire à l’axe de rotation (R) et dans lequel s’inscrit la bouche de sortie d’air (12).
2. Dispositif de ventilation (1) selon la revendication 1, dans lequel la pluralité d’aubes (36) est fixe et solidaire de la paroi (8) du boîtier (6).
3. Dispositif de ventilation (1) selon l’une quelconque des revendications précédentes, dans lequel la hauteur (Hi) de l’organe de guidage (4) est comprise entre 60 et 85 mm.
4. Dispositif de ventilation (1) selon l’une quelconque des revendications précédentes, dans lequel la hauteur (Hi) de l’organe de guidage (4) représente entre 60 et 65% de la dimension (H2) mesurée entre le troisième plan (A3) passant par l’extrémité de la pluralité de pales (22) la plus proche de l’organe de guidage (4) et le quatrième plan (A4) dans lequel s’inscrit la bouche de sortie d’air (12).
5. Dispositif de ventilation (1) selon l’une quelconque des revendications précédentes, dans lequel au moins deux aubes (36) successives se superposent au moins partiellement, le long d’une direction parallèle à l’axe de rotation (R) de l’hélice radiale (2).
6. Dispositif de ventilation (1) selon l’une quelconque des revendications précédentes, comprenant au moins un filtre à air (20) présentant une entrée d’air qui s’inscrit dans un plan d’entrée du flux d’air parallèle au plan dans lequel s’inscrit la bouche de sortie d’air (12) dudit dispositif de ventilation (1).
7. Dispositif de ventilation (1) selon l’une quelconque des revendications précédentes, comprenant au moins un échangeur thermique (20) présentant une entrée d’air qui s’inscrit dans un plan d’entrée du flux d’air parallèle au plan dans lequel s’inscrit la bouche de sortie d’air (12) dudit dispositif de ventilation (1).
8. Dispositif de ventilation (1) selon l’une quelconque des revendications précédentes, dans lequel l’organe de guidage (4) comprend un bol (42) autour duquel est disposée de façon régulière la pluralité d’aubes (36), au moins une aube (36) de la pluralité d’aubes (36) comprenant un intrados (44) et un extrados (46) s’étendant chacun entre une extrémité proximale (48) de l’aube (36) en contact avec le bol (42) et une extrémité distale (50) de l’aube (36) en contact avec la paroi (8) du boîtier (6).
9. Dispositif de ventilation (1) selon la revendication 8, comprenant un moteur d’entraînement (16) de l’hélice radiale (2) porté par le bol (42) de l’organe de guidage (4)·
10. Dispositif de ventilation (1) selon l’une quelconque des revendications 8 ou 9, dans lequel une dimension (Li, L2) mesurée entre l’extrémité proximale (48) et l’extrémité distale (50) de l’aube (36) augmente de manière croissante entre le bord d’attaque (38) et le bord de fuite (40).
11. Dispositif de ventilation (1) selon l’une quelconque des revendications 8 à 10, dans lequel l’aube (36) présente une première portion (Si), une deuxième portion (S2) et une troisième portion (S3) alignées dans cet ordre depuis l’extrémité proximale (48) vers l’extrémité distale (50), l’aube comprenant au moins une section transversale, vue dans un plan perpendiculaire à une direction radiale de l’axe de rotation (R), qui s’inscrit le long d’une ligne de cambrure (CA) entre le bord d’attaque (38) et le bord de fuite (40), cette ligne de cambrure (CA) étant différente dans chacune des première, deuxième et troisième portions (Si, S2, S3) de l’aube (36).
12. Dispositif de ventilation (1) selon la revendication 11, dans lequel un premier rayon (Ri) mesuré entre l’axe de rotation (R) et la première portion (Si) le long d’une direction radiale à l’axe de rotation (R) est compris entre 75 et 85 mm, un deuxième rayon (R2) mesuré entre l’axe de rotation (R) et la deuxième portion (S2) mesurée le long d’une direction radiale à l’axe de rotation (R) est compris entre 85 et 95 mm et un troisième rayon (R3) mesuré entre l’axe de rotation (R) et la troisième portion (S3) mesurée le long d’une direction radiale à l’axe de rotation (R) est compris entre 100 et 110 mm.
13. Dispositif de ventilation (1) selon l’une quelconque des revendications 11 ou 12, dans lequel la ligne de cambrure (CA) suivie par l’aube (36) dans chaque portion (Si, S2, S3) s’inscrit dans un cercle (C), un premier angle (bi) étant formé entre une tangente au cercle (C) passant par le bord d’attaque (38) et une direction passant par le bord d’attaque (38) et s’inscrivant d’une part dans un plan perpendiculaire à l’axe de rotation (R) et d’autre part dans un plan dans lequel s’inscrit le cercle (C), le premier angle (bi) ayant une valeur comprise entre 170 et 230 au niveau de la première portion (Si), une valeur comprise entre 140 et 190 au niveau de la deuxième portion (S2) et une valeur comprise entre io° et 150 au niveau de la troisième portion (S3).
14. Dispositif de ventilation 1 selon l’une quelconque des revendications 11 à 13, dans lequel dans lequel la ligne de cambrure (CA) suivit par l’aube 36 dans chaque portion (Si, S2, S3) s’inscrit dans un cercle (C), un deuxième angle (b2) étant formé entre une tangente au cercle (C) passant par le bord de fuite (40) et une direction passant par le bord de fuite (40) et s’inscrivant d’une part dans un plan perpendiculaire à l’axe de rotation (R) et d’autre part dans un plan dans lequel s’inscrit le cercle (C), le deuxième angle (b2) ayant une valeur comprise entre 950 et ioo° au niveau de la première portion (Si), une valeur comprise entre 105° et 1100 au niveau de la deuxième portion (S2) et une valeur comprise entre 1120 et 1170 au niveau de la troisième portion (S3).
15. Système de ventilation, de chauffage et/ ou d’air conditionné pour véhicule, comprenant au moins un dispositif de ventilation (1) selon l’une quelconque des revendications précédentes.
PCT/EP2022/070972 2021-07-26 2022-07-26 Dispositif de ventilation d'un systeme de ventilation, de chauffage et/ou d'air conditionné. WO2023006764A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP22748375.7A EP4377572A1 (fr) 2021-07-26 2022-07-26 Dispositif de ventilation d'un systeme de ventilation, de chauffage et/ou d'air conditionné
CN202280052755.9A CN117716136A (zh) 2021-07-26 2022-07-26 用于通风、供暖和/或空调系统的通风装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FRFR2108060 2021-07-26
FR2108060 2021-07-26

Publications (1)

Publication Number Publication Date
WO2023006764A1 true WO2023006764A1 (fr) 2023-02-02

Family

ID=77317171

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/070972 WO2023006764A1 (fr) 2021-07-26 2022-07-26 Dispositif de ventilation d'un systeme de ventilation, de chauffage et/ou d'air conditionné.

Country Status (3)

Country Link
EP (1) EP4377572A1 (fr)
CN (1) CN117716136A (fr)
WO (1) WO2023006764A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151083A (ja) * 2008-12-26 2010-07-08 Panasonic Corp 加熱調理器
US20200122546A1 (en) * 2018-10-18 2020-04-23 Denso International America, Inc. Vehicle hvac airflow system
US20200156433A1 (en) * 2017-07-25 2020-05-21 Denso Corporation Air-conditioning unit for vehicle
CN112644244A (zh) * 2020-12-15 2021-04-13 上海爱斯达克汽车空调系统有限公司 适用于后向曲线叶轮的压力回收装置及汽车空调

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010151083A (ja) * 2008-12-26 2010-07-08 Panasonic Corp 加熱調理器
US20200156433A1 (en) * 2017-07-25 2020-05-21 Denso Corporation Air-conditioning unit for vehicle
US20200122546A1 (en) * 2018-10-18 2020-04-23 Denso International America, Inc. Vehicle hvac airflow system
CN112644244A (zh) * 2020-12-15 2021-04-13 上海爱斯达克汽车空调系统有限公司 适用于后向曲线叶轮的压力回收装置及汽车空调

Also Published As

Publication number Publication date
CN117716136A (zh) 2024-03-15
EP4377572A1 (fr) 2024-06-05

Similar Documents

Publication Publication Date Title
EP0543694B1 (fr) Carénage perfectionné pour ventilateur et son application à un groupe motoventilateur d'automobile
EP2657531A1 (fr) Ventilateur axial avec redresseur à effet centripète ayant un moyeux de diamètre réduit
EP3759352A1 (fr) Ventilateur de vehicule automobile
CA2721423A1 (fr) Injection d'air dans la veine d'un compresseur de turbomachine
EP2438306B1 (fr) Rouet centrifuge de compresseur.
EP3271588B1 (fr) Ventilateur pour automobile amélioré aérodynamiquement et acoustiquement
FR3073580A1 (fr) Systeme de mise en mouvement d’air
EP2886384A1 (fr) Ventilateur pour automobile comportant un stator
FR2628154A1 (fr) Stator de ventilateur
EP4377572A1 (fr) Dispositif de ventilation d'un systeme de ventilation, de chauffage et/ou d'air conditionné
FR2487449A1 (fr) Ensemble de ventilateur destine a etre installe dans des tuyauteries, canaux ou enveloppes en forme de canal ou dans des appareils d'aeration et de climatisation
WO2021255063A1 (fr) Dispositif de ventilation pour un système de ventilation, chauffage et/ou climatisation d'un véhicule
EP3390839B1 (fr) Hélice pour un groupe moto-ventilateur d'un système de refroidissement d'un moteur de véhicule
EP0771060B1 (fr) Alternateur pourvu de moyens de ventilation interne perfectionnés
EP2050491B1 (fr) Dispositif de purification par centrifugation d'un fluide comportant un gaz et des particules d'huile
FR3121392A1 (fr) Dispositif de ventilation pour un système de ventilation, de chauffage et/ou d’air conditionné.
FR3065759A1 (fr) Rouet centrifuge pour turbomachine
FR2859251A1 (fr) Pulseur a haut rendement aeraulique pour appareil de ventilation, de chauffage et/ou de climatisation d'habitacle de vehicule automobile
EP1106837A1 (fr) Boítier d'un ventilateur
FR3067413B1 (fr) Helice sans moyeu pour ventilateur de vehicule automobile
EP3794223A1 (fr) Dispositif de ventilation pour vehicule automobile
WO2022268588A1 (fr) Dispositif de ventilation pour module de refroidissement de véhicule automobile
FR3028299B1 (fr) Ventilateur pour automobile a pales optimisees pour les forts debits
WO2012084499A1 (fr) Hélice de ventilateur et module de refroidissement associé
WO2013156257A1 (fr) Ventilateur pour automobile comportant un stator en amont de l'helice

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748375

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18292105

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280052755.9

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022748375

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022748375

Country of ref document: EP

Effective date: 20240226