WO2023006434A1 - Dispositif de détection de fuites pour pack batterie de véhicule automobile - Google Patents

Dispositif de détection de fuites pour pack batterie de véhicule automobile Download PDF

Info

Publication number
WO2023006434A1
WO2023006434A1 PCT/EP2022/069683 EP2022069683W WO2023006434A1 WO 2023006434 A1 WO2023006434 A1 WO 2023006434A1 EP 2022069683 W EP2022069683 W EP 2022069683W WO 2023006434 A1 WO2023006434 A1 WO 2023006434A1
Authority
WO
WIPO (PCT)
Prior art keywords
battery pack
pressure
leak detection
pneumatic circuit
tested
Prior art date
Application number
PCT/EP2022/069683
Other languages
English (en)
Inventor
Patrick SERRA
Jean-Luc Regef
Original Assignee
Ateq
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ateq filed Critical Ateq
Priority to EP22748362.5A priority Critical patent/EP4378015A1/fr
Priority to CN202280052013.6A priority patent/CN117769780A/zh
Priority to US18/292,265 priority patent/US20240347779A1/en
Publication of WO2023006434A1 publication Critical patent/WO2023006434A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4228Leak testing of cells or batteries
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3209Details, e.g. container closure devices
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/3236Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers
    • G01M3/3272Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by monitoring the interior space of the containers for verifying the internal pressure of closed containers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M3/00Investigating fluid-tightness of structures
    • G01M3/02Investigating fluid-tightness of structures by using fluid or vacuum
    • G01M3/26Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors
    • G01M3/32Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators
    • G01M3/34Investigating fluid-tightness of structures by using fluid or vacuum by measuring rate of loss or gain of fluid, e.g. by pressure-responsive devices, by flow detectors for containers, e.g. radiators by testing the possibility of maintaining the vacuum in containers, e.g. in can-testing machines
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/36Arrangements for testing, measuring or monitoring the electrical condition of accumulators or electric batteries, e.g. capacity or state of charge [SoC]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/50Testing of electric apparatus, lines, cables or components for short-circuits, continuity, leakage current or incorrect line connections
    • G01R31/52Testing for short-circuits, leakage current or ground faults
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4285Testing apparatus
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2200/00Safety devices for primary or secondary batteries
    • H01M2200/20Pressure-sensitive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/20Batteries in motive systems, e.g. vehicle, ship, plane
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/20Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders
    • H01M50/249Mountings; Secondary casings or frames; Racks, modules or packs; Suspension devices; Shock absorbers; Transport or carrying devices; Holders specially adapted for aircraft or vehicles, e.g. cars or trains

Definitions

  • the present invention relates to the field of leak detection (or sealing measurement) devices for motor vehicle battery packs.
  • battery pack means traction and/or function batteries, generally accompanied by a thermal management system for said battery, which are intended to be embedded in electric and hybrid vehicles.
  • the thermal management system is, for example, a network of fluid ducts making it possible to cool or heat the battery as needed.
  • These batteries generally of the Lithium-Ion type, are arranged in specific casings (such as a rigid envelope), these casings generally integrating the thermal management system, the assembly thus forming a battery pack for a motor vehicle.
  • the invention is thus a leak detection device for a motor vehicle battery pack, said device comprising:
  • a pneumatic circuit comprising a plurality of valves and a pressure sensor
  • At least one connector for connecting said pneumatic circuit to at least one element of the battery pack; said device being configured to operate at least one leak detection procedure on at least one element of the battery pack via the pneumatic circuit and the connector.
  • the invention is thus a leak detection device for a motor vehicle battery pack, said device comprising:
  • a pneumatic circuit comprising a plurality of valves, a pressure sensor and a pump;
  • At least one connector for connecting said circuit to at least one element of the battery pack; said device being configured to operate at least one leak detection procedure on at least one element of the battery pack via the pneumatic circuit and the connector.
  • the device according to the invention can thus test the presence of leaks on one or more elements of a battery pack, more particularly the tightness of the housing of the battery and/or of the thermal management system of the battery.
  • the pneumatic circuit comprises a pump (or a compressor), said pneumatic circuit being configured to operate pressure and/or vacuum leak detection procedures.
  • said pneumatic circuit is configured to operate pressure and/or vacuum leak detection procedures.
  • Said device according to the invention is thus configured to carry out tests under pressure or under vacuum, that is to say by varying positively or negatively the pressure in the volume whose tightness is to be tested.
  • said device is configured to generate a relative pressure ranging from ⁇ 1 to 3 bars (in particular thanks to the pump).
  • said pump has a flow rate of between 10 to 100 L/min (liters per minute), and preferably between 15 and 30 L/min.
  • the device comprises a database relating to procedures for detecting leaks on motor vehicle battery packs.
  • the database on board the device allows the operator to select a detection procedure adapted to the element of the battery pack whose tightness is to be tested.
  • said database comprises one or more of the following data: vehicle model(s) and/or battery model(s) associated with at least one leak detection procedure.
  • the device database advantageously includes a list of motor vehicle models and/or battery pack models to allow the operator to quickly find the most suitable leak detection procedure and to avoid the need to have to configure the various parameters of a leak detection procedure.
  • the leak procedures include in particular the leak rate values (generally expressed in cc/min or in pressure variation per unit of time) acceptable for the tested element(s) of the battery pack, these values are generally communicated by the car manufacturer or battery pack manufacturer.
  • said at least one leak detection procedure comprises one or more of the following parameters: volume(s) of the battery and/or of the thermal management system, duration of the various stages of the leak test , test pressure, battery filling and/or emptying speed, leakage threshold, flexibility coefficient of a battery pack element.
  • One or more of these parameters are preset depending on the model of the vehicle and/or battery, thus avoiding the operator having to make any settings before carrying out a leak detection procedure.
  • the device comprises a man-machine interface.
  • Said man-machine interface is the set of elements allowing the user to interact with the device, and more particularly to control the device and/or to exchange information with it.
  • the human-machine interface includes, for example, one or more of the following elements: button(s), keyboard, screen, touch screen, dial(s), indicator lights, etc.
  • said device is configured to present an inclination with respect to the surface (generally the horizontal) on which the device is placed so that the man-machine interface is oriented upwards.
  • the inclination of the man-machine interface may be due either to the inclination of the front face of the device incorporating the man-machine interface or the inclination of the case of the device (in particular by means of tabs supports of different lengths).
  • the angle of inclination of said device is between 5 and 30 degrees, preferably between 10 and 30 degrees.
  • This angle range is advantageous, because it is adapted to the working conditions of the user of said device.
  • said device comprises a plurality of magnetic support feet.
  • Magnetic support feet make it possible in particular to secure the device according to the invention to a ferromagnetic surface, thus preventing it from moving, for example following a shock or collision.
  • said device comprises at least one winding support.
  • Said winding support makes it possible in particular to wind a power cable and/or a test conduit (said conduit making it possible to connect the device to the battery pack to be tested).
  • said device comprises a gripping handle.
  • the handle makes it easy to transport and position the device in the most suitable location for performing leak detection.
  • the device comprises a communication module (otherwise called means of communication) with a remote server, said device being configured to download to a remote server one or more of the following data: result of the leak tests , identifier of the operator who carried out the leak test, identifier of said device, identifier of the battery tested, date, measurement signals of the leak tests.
  • a communication module otherwise called means of communication
  • the device being configured to download to a remote server one or more of the following data: result of the leak tests , identifier of the operator who carried out the leak test, identifier of said device, identifier of the battery tested, date, measurement signals of the leak tests.
  • the downloaded data is also used to optimize the detection procedures, for example by means of machine learning, by generating for example sets of modified parameters based on leak detection procedures carried out by devices according to the invention.
  • said device is configured to download, for example from a remote server, an update of the sets of parameters of one or more leak detection procedures stored in the database of the device .
  • said parameters downloaded by the device are parameters modified following machine learning.
  • said device comprises a barcode reader, in particular for reading and storing the identification barcode affixed to a battery pack.
  • said device comprises a printer.
  • Said printer makes it possible in particular to print a maintenance ticket after using the device on a battery pack.
  • the now ticket includes, for example, one or more of the following information: result of the leak tests, identifier of the operator who performed the leak test, identifier of said device, identifier of the battery tested, date and/or measurement signals of the leak tests.
  • the device is configured to measure and take into account the value of the back pressure during a leak detection procedure on a battery pack element.
  • Back pressure can distort the measurement of pressures and pressure variations, invalidating the measurement of a relevant leak rate.
  • the back pressure value is determined, at the start of the test detection procedure for the tested element of the battery pack, by pressure measurements, before and after activation of the pump. of the pneumatic circuit, the difference of these pressure measurements giving the value of the counter-pressure.
  • the back-pressure value is determined when the tested element of the battery pack is still empty or being filled.
  • the device comprises one or more environment sensors to correct the measurement signals when detecting leaks.
  • Said environment sensors are for example one or more temperature, atmospheric pressure, hygrometry, etc. sensors.
  • the pressure sensor is an absolute or relative pressure sensor.
  • Said sensor is for example a piezoelectric pressure sensor.
  • FIG. 3 is a very schematic view of the pneumatic circuit of the device of FIGS. 1 and 2;
  • FIG. 4 is a schematic view of the circuit configuration of Figure 3 during a device start-up step
  • FIG. 5 is a graph illustrating an example of pressure variation during a leak detection procedure carried out by the device of FIGS. 1 and 2;
  • FIG. 6 illustrates the different configurations of the circuit of FIG. 4 during the different stages of leak detection, in pressure, carried out by means of said device of FIGS. 1 and 2;
  • FIG. 7 illustrates the different configurations of the circuit of FIG. 4 during the different stages of leak detection, in vacuum, carried out by means of said device of FIGS. 1 and 2;
  • FIG. 8 referenced [Fig. 8], is a very schematic representation of a control module of the pneumatic circuit of figure 4.
  • FIGs. 1] and [Fig. 2] are very schematic representations in perspective, respectively from the front and from behind, of a leak detection device 1 for a motor vehicle battery pack.
  • the leak detection device 1 is a device for testing the tightness of at least one battery pack element by pressure variation. That is to say that the device is configured to carry out a leak detection procedure in which there is a variation of the pressure in the element tested (either by increasing it or by decreasing it) up to a predetermined pressure value, then after a set time there is a pressure measurement. A pressure variation between this predetermined value and the final pressure value then indicates that the element tested has a leak, the device 1 being configured to determine a leak rate as a function of this pressure change over time.
  • battery pack means the traction and/or function batteries generally arranged in a casing and accompanied by a thermal management system, this assembly forming a battery pack intended to be embarked in electric vehicles and and hybrids.
  • Said thermal management system for its part, comprises for example a network of fluid conduits making it possible to cool or heat the battery.
  • detecting leaks on a battery pack is equivalent to testing the tightness (or the level of leaks) of the casing and/or of the thermal management system of the battery.
  • the volume of the battery casing generally has a volume of between 50 and 300 liters, while the volume of the thermal management system generally has a volume of between 10 and 50 liters.
  • Said device 1 comprises in particular a housing 3 and a man-machine interface 5 (also referred to as the “HMI” below).
  • HMI man-machine interface 5
  • Said man-machine interface 5 allows, among other things, to start the device 1, and the user to select the operating mode in which the device 1 must be used, for example for a test leaks from the battery case or a battery thermal management system.
  • Interface 5 can thus make it possible to select a leak detection procedure (or tightness test procedure) depending on the battery pack to be tested.
  • man-machine interface 5 means all the elements allowing the user to interact with the device 1, and more particularly to control the device 1 and to exchange information with that -this.
  • the man-machine interface 5 comprises for example one or more of the following elements: button(s), keyboard, screen, touch screen, dial(s), indicator lights, etc.
  • the man-machine interface 5 comprises a touch screen 5a, as well as a communication port 5b, for example of the USB type.
  • the communication port 5b makes it possible in particular to be able to connect to said device 1 via a third-party device (for example to retrieve data, update the device, etc.).
  • Said housing 3, meanwhile, has for example a substantially parallelepipedic shape, as well as a front face 3a, a rear face 3b, a lower face 3c, an upper face 3d and 3rd side faces.
  • Said case 3 also comprises support feet 31, at least one winding support 33 and a handle 35 for gripping.
  • Each of the support feet 31 comprises magnets (not shown), the latter in particular making it possible to secure the device 1 to a surface (ferromagnetic) during its use and to avoid its inadvertent displacement, for example following a collision or any other external cause.
  • Said support feet 31 here each comprise two parts, a tab 31a (for example metal) connected to the housing 3 (at its underside 3c) and a pad 31b disposed on the distal end of said tab 31a.
  • Said pads 31b thus comprise one or more magnets, for example overmolded, said pads 31b generally being made of plastic, polymer or a similar material. Said magnetic pads 31b therefore make it possible to secure the device 1 to a metal surface, in particular during a leak detection procedure.
  • the support feet 31 are advantageously configured so that the device 1 has an inclination, for example between 10 and 30 degrees with respect to the surface (generally the horizontal) on which the device 1 is placed.
  • the front of the device 1 is raised relative to the rear, thus facilitating access for the operator to the man-machine interface 5 and more generally simplifying the use of the device 1.
  • only the man-machine interface 5, more particularly the screen 5a has an inclination, for example between 10 and 30 degrees.
  • the winding support 33 is configured to allow the winding of a power cable and / or a test duct, such as a flexible air duct.
  • Said winding support 33 comprises for example two projections 33a (or tubes, protrusions, etc.) at a distance from each other, preferably arranged on one of the 3rd side faces of said device 1.
  • the gripping handle 35 is preferably arranged on the upper face 3d of the housing 3 and in particular facilitates the movement of the device 1 to the place of its use and/or the separation of the support feet 31 from the surface on which the feet 31 are magnetized.
  • Said casing 3 may also comprise one or more shockproof protections 37, for example arranged on the corners of casing 3 (in particular at the level of the front 3a and rear 3b faces), to protect the device and/or the operator in the event of of shocks.
  • Said protections 37 are for example made of plastic material, rubber, etc., and are in the form of bands surrounding the perimeter (or contour) of the box 3 (covering said corners of the box).
  • Said device 1 also comprises a test connector 7 intended to be connected (for example by the test conduit) to the battery pack to be tested.
  • Said test connector is for example arranged on the rear face 3b of said device 1.
  • the test conduit which makes it possible to connect the device 1 to the battery pack (that is to say to the battery casing and/or thermal management system) includes a suitable connector.
  • Said device 1 further comprises a power socket 39 enabling the device 1 to be connected to the electrical network, as well as an On/Off button 41 enabling the device 1 to be switched on or off.
  • power supply 39 and button 41 are advantageously arranged on the third rear face of device 1.
  • the device 1 also comprises a pneumatic circuit 100, circuit more particularly illustrated in [Fig. 3], said circuit 100 is configured to pressurize or depressurize (or "vacuum") the element of the battery pack whose tightness is to be tested.
  • Said pneumatic circuit 100 thus comprises:
  • a pump 102 (or a compressor), for example of the volumetric type, configured to pressurize or vacuum the object whose tightness is to be tested (and therefore connected to the pump 102 via the connector 7 and said circuit 100);
  • a pressure sensor 104 for example an absolute pressure sensor. Said elements of said circuit being connected to each other via suitable conduits.
  • valves Vi and V2, respectively first and second valve are for example 2/2 distributors (or one-way valve), while valve V3, or third valve, is for example a 3/2 distributor (or two-way valve).
  • valves V1 and V2 thus have two positions, passing or not passing, that is to say two orifices and the fact of authorizing or not the circulation of fluid between the two orifices of the said valves.
  • valve V3 comprises three orifices and two positions, in the present case the first and second orifices are connected to said circuit 100 and the third orifice is to the atmosphere.
  • the first or second port is connected to the third, while the remaining port is closed (not through).
  • the pump 102 includes a suction inlet or orifice 102a, as well as an outlet or discharge orifice 102b.
  • Input 102a of pump 102 is directly connected to valves V 2 and V3, while output 102b is directly connected to valves V 1 and V3.
  • the input 102a is connected to a first node Ni which is itself connected to a first orifice of the valve V3 and to a first orifice of the valve V 2 .
  • Output 102b is connected to a second node N 2 which is itself connected to a second orifice of valve V3 and to the first orifice of valve V 2 (valve V3 is therefore arranged in parallel with valves V 1 and V 2 ).
  • the second orifices of valves V 2 and V3 are for their part connected to a third node N3.
  • Node N3 is connected to connector 7 and pressure sensor 104 is placed on the conduit between node N3 and said connector 7.
  • Said circuit 100 also comprises at least one control module 106 configured, among other things, to control the elements of the pneumatic circuit 100 (the pump 102, the valves V1-3, etc.).
  • Said control module 106 comprises for example one or more electronic cards.
  • the device 1 is also configured to carry out a zeroing procedure (or auto-zero) of the pressure prevailing at the level of the pressure sensor 104 during the start-up of said device 1.
  • the pump 102 thus draws in air via the valve V3 (therefore generating the creation of a vacuum) and generates an overpressure at the level of the outlet 102b which spreads to the connector 7. This allows to check that the pressure sensor 104 is functional and that the device 1 is not yet connected to an element of a battery pack. This also makes it possible to purge part of the circuit 100, more particularly the part to which said pressure sensor 104 is connected.
  • Said device 1 is also configured to include a self-test procedure.
  • Said self-test procedure makes it possible to verify the presence of leaks in the device 1, in particular at the level of the circuit 100 and in a test conduit.
  • the test output of circuit 100 (with or without a test lead connected to connector 7) is blocked by a plug.
  • a leak detection procedure is then initiated, in pressure and/or in vacuum, to check that there are no leaks in the circuit and/or in the test pipe which could falsify the detection of leaks on a part of a battery pack.
  • the leak detection device 1 is a device for testing the tightness of at least one battery pack element by pressure variation. That is to say that the device is configured to carry out a leak detection procedure in which there is a variation in the pressure in the element tested (either increasing or decreasing it) up to a predetermined pressure value, then after a set time there is a pressure measurement. A variation in pressure between this predetermined value and the final pressure value then indicates that the element tested has a leak, the device 1 being configured to determine a rate of leaks as a function of this change in pressure over time.
  • the [Fig. 5] is a graph illustrating the different steps of a leak detection procedure (in pressure) carried out by the device 1 according to the invention.
  • stage I is the filling stage, i.e. the pressure is increased in the tested element of the battery pack, until a determined pressure value is reached.
  • Stage II is the stabilization stage, in fact the increase in pressure in the element leads to temperature variations, heat exchanges, etc. which can disturb the measurement, it is therefore necessary to wait a predetermined time t s tab for the transient phenomena which can disturb the measurement to fade.
  • Stage III is the measurement stage, the pressure variation measurement during this stage allows the device 1 to calculate a leak rate (for example in cubic centimeters per minute) and to determine whether the element tested has a leak.
  • a leak rate for example in cubic centimeters per minute
  • Stage IV is the emptying stage, the device 1 is configured so that the pressure of the tested element returns to a pressure value substantially close to atmospheric pressure, this so that the device 1 can be disconnected without risk by the operator.
  • the leak detection procedure can also be carried out in vacuum (or under depression), that is to say that instead of increasing the pressure during the first stage, the pressure prevailing in the element to be tested is reduced to a predetermined value. Steps II and III remain unchanged. While the fourth step consists in increasing the pressure prevailing in the tested element up to a pressure value corresponding to the atmospheric pressure. There is therefore an “inversion” of steps I and IV of filling and emptying between the procedures for detecting leaks in pressure and in vacuum.
  • the device 1 is configured to perform leak detection procedures according to two different modes, a first mode under pressure (or overpressure) and a second mode under vacuum (or underpressure).
  • the [Fig. 6] represents the equivalent configuration of the pneumatic circuit 100 according to the steps of a detection procedure according to the first mode.
  • the leak detection procedure comprises the steps described below, with the configurations of the circuit 100 described below.
  • valve V3 connects the inlet of the pump 102 to the atmosphere.
  • valve V1 connects the output of pump 102 to object PB, via connector 7.
  • Device 1 increases the pressure prevailing inside object PB to a predetermined value, the sensor 104 making it possible to measure the value of the pressure and to control the stopping of the pump 102 when the desired pressure value is reached.
  • the stabilization and test steps II and III, in which the pump 102 is switched off, while the valves V1 and V2 are closed.
  • the stabilization and test steps each respectively have a predetermined duration depending on the element and the battery pack tested, respectively tsta b and .
  • the pressure variations measured by the sensor 104 during the test step allow the device 1 to determine a leak rate relating to the object PB tested.
  • the leak detection procedure according to a first mode ends with an emptying step IV, step during which the device 1 is configured to bring the pressure prevailing in the object PB down to a pressure value close to atmospheric pressure (or a pressure value compatible with the disconnection, without danger for the operator, of the test conduit to the battery pack).
  • Valve V1 is closed and valve V2 connects the tested PB object to the inlet of pump 102. While the outlet of pump 102 is connected to the atmosphere via valve V3. In this configuration, the activation of the pump 102 makes it possible to evacuate the air (generating an overpressure) contained in the object PB tested.
  • the [Fig. 7] represents the equivalent configuration of the pneumatic circuit 100 according to the steps of a detection procedure according to the second mode.
  • the leak detection procedure comprises the steps described below with the configurations of the circuit 100 described below -After.
  • the valve V3 connects the outlet of the pump 102 to the atmosphere.
  • valve V 2 connects the outlet of pump 102 to element PB, via connector 7.
  • Device 1 decreases the pressure prevailing inside element PB to a predetermined value, the sensor 104 making it possible to measure the value of the pressure and to control the stopping of the pump 102 when the desired pressure value is reached.
  • the stabilization and test steps II and III, in which the pump 102 is off, while the valves V 1 and V 2 have closed.
  • the stabilization and test steps each respectively have a predetermined duration, respectively tsta b and .
  • the pressure variations measured by the sensor 104 during the test step allow the device 1 to determine a leak rate relating to the object PB tested.
  • the leak detection procedure according to a second mode ends with a filling step I, step during which the device 1 is configured to increase the pressure prevailing in the object PB up to a pressure value close to atmospheric pressure.
  • the device 1 is therefore configured to operate leak detection procedures according to different modes, this is in particular achieved thanks to the control module 106.
  • Said control module 106 includes:
  • a communication module 204 to communicate with remote entities, computers, servers, etc. ;
  • control module 206 connected to the valves V 1 to V3, to the pump 102 and to the pressure sensor 104, said module 206 being configured to control the valves and the pump, but also to recover the values of the measurements carried out by various sensors , in particular of the pressure sensor 104 or of environmental sensors (temperature, hygrometry, atmospheric pressure, etc.).
  • Said module 106 can also comprise a power supply 206 either autonomous or connected to the mains (in particular via the electrical socket 39) and configured to convert the current and the input voltage into values compatible with the different elements of module 106 and/or device 1.
  • a power supply 206 either autonomous or connected to the mains (in particular via the electrical socket 39) and configured to convert the current and the input voltage into values compatible with the different elements of module 106 and/or device 1.
  • Said module 106 is also connected to the man-machine interface 5 (link not shown) and embeds in the memory 202, an operating system managing in particular the interface displayed on the screen 5a.
  • said device 1 comprises a database 210, in particular stored in the memory 202, relating to the battery packs and to the various relevant parameters for carrying out a leak detection procedure adapted to the battery pack to be tested (for example under vacuum or under pressure).
  • Said database 210 thus comprises a list of motor vehicle models and/or battery pack models in which each model (of battery pack and/or motor vehicle) is associated with a leak detection procedure.
  • the database 210 includes for example for each battery pack listed at least one leak detection procedure specific to each of the elements of a battery pack.
  • Each of the specific leak detection procedures thus comprises leak thresholds enabling the device 1 to determine whether the battery pack has a leak or not.
  • Each of the leak detection procedures can thus include one or more of the following parameters: volume of the battery and/or of the thermal management system of the battery pack, duration t s tab and of the various stages of the leak test, pressure of test, rate of filling and/or emptying of the tested element of the battery pack, threshold of leakage.
  • said database comprises a coefficient of flexibility or elasticity associated with at least one element of the battery pack (housing and/or thermal management system).
  • the flexibility coefficient is for example a function V (P, t) linking the variation of the volume V of the tested element as a function of time t and/or pressure P, this reflects the element's tendency to vary in volume during a leak detection procedure.
  • This function is all the more relevant to memorize (and to determine) as it is specific to each battery model and as it may present a non-linear character (due for example to the geometry and/or particular components of the battery pack).
  • the variation of the volume can have consequences on the duration of the test, complicate the measurement of the leak and reduce the sensitivity, the volume, the pressure and the quantity of material in the tested object being brought to vary (these different quantities being linked together by the ideal gas law), and moreover the starting volume of the object also depends on the atmospheric pressure.
  • one or more devices 1 can be connected to a computer network, for example the local network of a repair center.
  • a device according to the invention can in particular clone and/or broadcast the parameters of its database to other devices connected to the same computer network.
  • the pneumatic circuit of the device according to the invention comprises at least one flow limiter.
  • said at least one flow limiter is arranged between the node N3 and the pressure sensor 104.
  • a single flow limiter is sufficient to limit the flow in the pneumatic circuit, regardless of the leak detection procedure performed. by the device 1.
  • each of the branches of the pneumatic circuit comprising a 1-way valve V1 or V2 comprises a flow limiter.
  • the flow limiter notably allows the device according to the invention to vary the pressure in the tested object more finely, and therefore to have an actual pressure close to the desired pressure.
  • the flow limiter is for example configured to have a maximum flow of 24 standard. litre/min, i.e. 0.4 standard. litre/ sec. However, it is advantageous for the maximum flow rate of the flow limiter to be lower than the maximum flow rate of the pneumatic circuit pump (the flow rate of the limiter must therefore be chosen according to the capability of the pump).
  • Said device 1 can also be configured to measure the back pressure value relating to the battery pack tested.
  • the measurement of the back pressure value is carried out at the start of filling (or emptying) of the part tested, therefore at the start of the leak detection procedure.
  • the pressure is measured when the part is still empty, or during filling.
  • backpressure is meant the resistance or the force opposing the desired flow of a fluid in conduits or a circuit, which leads to a loss by friction and a pressure drop.
  • Said device 1 is in particular configured so that the measured counter-pressure value is taken into account during the filling/emptying of the parts tested.
  • the pressure value displayed by I ⁇ HM 5 (and measured by the sensor 104) is thus the corrected value of the counter-pressure value, the corrected value therefore corresponding to the real pressure value.
  • Said device 1 is also configured to communicate, for example via the communication module 204, with a remote server, in particular to download to a remote server one or more of the following data: the results of the leak tests and /or the leak test measurement signals.
  • All of the data downloaded from the remote server can in particular be used to monitor the quality of the measurements and/or of the battery packs tested.
  • Said downloaded data can also be used in the context of "machine learning” (or “machine learning” in English), in particular to optimize leak detection procedures (for example by reducing or optimizing stabilization times and/ or test, test pressure values, filling speeds, etc.).
  • the parameters thus modified can then be downloaded by the device according to the invention so that the database relating to the leak detection procedures is updated.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Examining Or Testing Airtightness (AREA)
  • Secondary Cells (AREA)

Abstract

La présente invention se rapporte à un dispositif (1) de détection de fuites pour pack batterie de véhicule automobile, ledit dispositif (1) comprenant : - un circuit pneumatique (100) comprenant une pluralité de vannes (V1, V2, V3) et un capteur de pression (106); - au moins un connecteur (7) permettant de relier ledit circuit pneumatique (100) à au moins un élément du pack batterie; ledit dispositif (1) étant configuré pour opérer au moins une procédure de détection de fuites sur au moins un élément du pack batterie par l'intermédiaire dudit circuit pneumatique (100) et dudit connecteur (7).

Description

Description
Titre de l’invention :[ DISPOSITIF DE DETECTION DE FUITES POUR PACK BATTERIE DE VÉHICULE
AUTOMOBILE
[0001] [La présente invention se rapporte au domaine des dispositifs de détection de fuites (ou de mesure d’étanchéité) pour des packs batteries de véhicule automobile.
[0002] On notera qu’on entend par « pack batterie », les batteries de traction et/ou de fonction, généralement accompagnées d’un système de gestion thermique de ladite batterie, qui sont destinées à être embarquées dans des véhicules électriques et hybrides. Le système de gestion thermique est par exemple un réseau de conduits de fluide permettant de refroidir ou de réchauffer la batterie selon les besoins.
[0003] Ces batteries, généralement du type Lithium-Ion, sont disposées dans des carters spécifiques (tels qu’une enveloppe rigide), ces carters intégrant généralement le système de gestion thermique, l’ensemble formant ainsi un pack batterie pour véhicule automobile.
[0004] Avec la généralisation des véhicules hybrides et électriques, et le fait que ces packs batteries nécessitent d’être testées, diagnostiquées et entretenues au fil du temps et de l’usage qui en a été fait, il devient nécessaire d’avoir des équipements adaptés à l’entretien et à la réparation desdits packs batteries, notamment dans les garages et les ateliers de réparation.
[0005] Plus particulièrement, il y a une demande de la part des industriels et des garagistes pour avoir un dispositif de détection de fuites, simple, ergonomique et efficace qui permette de tester l’étanchéité d’un pack batterie après que celle-ci ait été réparée ou servicée/entretenue (notamment tester l’étanchéité du carter dans lequel sont logés des composants de la batterie et/ou du système de gestion thermique de ladite batterie).
[0006] La présence de fuites au niveau du carter de la batterie et/ou du système de gestion thermique peut avoir des conséquences dramatiques, ou tout du moins diminuer l’efficacité et/ou la durée de vie de la batterie. De plus, ce type de dispositif, destiné à un environnement garage ou industriel, doit donc être robuste, ergonomique, peu coûteux, facile à transporter et à utiliser par n’importe quel opérateur, formé ou non.
[0007] L’invention est ainsi un dispositif de détection de fuites pour pack batterie de véhicule automobile, ledit dispositif comprenant :
- un circuit pneumatique comprenant une pluralité de vannes et un capteur de pression ;
- au moins un connecteur permettant de relier ledit circuit pneumatique à au moins un élément du pack batterie ; ledit dispositif étant configuré pour opérer au moins une procédure de détection de fuites sur au moins un élément du pack batterie par l’intermédiaire du circuit pneumatique et du connecteur.
[0008] L’invention est ainsi un dispositif de détection de fuites pour pack batterie de véhicule automobile, ledit dispositif comprenant :
- un circuit pneumatique comprenant une pluralité de vannes, un capteur de pression et une pompe ;
- au moins un connecteur permettant de relier ledit circuit à au moins un élément du pack batterie ; ledit dispositif étant configurée pour opérer au moins une procédure de détection de fuites sur au moins un élément du pack batterie par l’intermédiaire du circuit pneumatique et du connecteur.
[0009] On notera que le dispositif selon l’invention peut ainsi tester la présence de fuites sur un ou plusieurs éléments d’un pack batterie, plus particulièrement l’étanchéité du carter de la batterie et/ou du système de gestion thermique de la batterie.
[0010] Selon une caractéristique possible, le circuit pneumatique comprend une pompe (ou un compresseur), ledit circuit pneumatique étant configuré pour opérer des procédures de détection de fuites en pression et/ou en vide.
Selon une caractéristique possible, ledit circuit pneumatique est configuré pour opérer des procédures de détection de fuites en pression et/ou en vide.
Ledit dispositif selon l’invention est ainsi configuré pour réaliser des tests en pression ou en vide, c’est-à-dire en faisant varier positivement ou négativement la pression dans le volume dont on cherche à tester l’étanchéité. Avantageusement, il n’y a qu’une seule pompe ou compresseur, le circuit pneumatique étant configuré, pour remplir ou vider l’élément du pack batterie à tester.
[0011] Selon une autre caractéristique possible, ledit dispositif est configuré pour générer une pression relative allant de -1 à 3 bars (notamment grâce à la pompe).
[0012] Selon une autre caractéristique possible, ladite pompe présente un débit compris entre 10 à 100 L/min (litres par minute), et de préférence entre 15 et 30 L/min.
[0013] Selon une autre caractéristique possible, le dispositif comprend une base de données relative à des procédures de détection de fuites sur des packs batterie de véhicule automobile.
Avantageusement, la base de données embarquée par le dispositif permet à l’opérateur de sélectionner une procédure de détection adaptée à l’élément du pack batterie dont on cherche à tester l’étanchéité.
[0014] Selon une autre caractéristique possible, ladite base de données comprend une ou plusieurs des données suivantes : modèle(s) de véhicule et/ou modèle(s) de batterie associé(s) à au moins une procédure de détection de fuites.
La base de données du dispositif comporte avantageusement une liste des modèles de véhicule automobile et/ou des modèles de packs batterie pour permettre à l’opérateur de trouver rapidement la procédure de détection de fuites la plus adaptée et d’éviter la nécessité d’avoir à configurer les différents paramètres d’une procédure de détection de fuites. Les procédures de fuites comportent notamment les valeurs de taux de fuite (généralement exprimé en cc/min ou en variation de pression par unité de temps) acceptables pour le ou les éléments testés du pack batterie, ces valeurs sont généralement communiquées par le constructeur automobile ou le fabricant de packs batteries.
[0015] Selon une autre caractéristique possible, ladite au moins une procédure de détection de fuites comprend un ou plusieurs des paramètres suivants : volume(s) de la batterie et/ou du système de gestion thermique, durée des différentes étapes du test de fuites, pression de test, vitesse de remplissage et/ou de vidage de la batterie, seuil de fuites, coefficient de flexibilité d’un élément du pack batterie.
Un ou plusieurs de ces paramètres sont préréglés en fonction du modèle du véhicule et/ou de batterie, évitant ainsi à l’opérateur tout paramétrage avant la réalisation d’une procédure de détection de fuites.
[0016] Selon une autre caractéristique possible, le dispositif comprend une interface homme-machine.
Ladite interface homme-machine (ou interface utilisateur) est l’ensemble des éléments permettant à l’utilisateur d’interagir avec le dispositif, et plus particulièrement de contrôler le dispositif et/ou d’échanger des informations avec celui-ci. L’interface homme-machine comprend par exemple un ou plusieurs des éléments suivants : bouton(s), clavier, écran, écran tactile, molette(s), voyants lumineux, etc.
[0017] Selon une autre caractéristique possible, ledit dispositif est configuré pour présenter une inclinaison par rapport à la surface (généralement l’horizontale) sur laquelle le dispositif est posé de sorte que l’interface homme-machine soit orientée vers le haut.
Cette configuration facilite la lecture des données sur IΊHM, ainsi que l’utilisation du dispositif selon l’invention par l’opérateur. On notera que l’inclinaison de l’interface homme-machine peut être dû soit à l’inclinaison de la face avant du dispositif incorporant l’interface homme-machine soit l’inclinaison du boîtier du dispositif (notamment par l’intermédiaire de pattes de support de longueurs différentes).
[0018] Selon une caractéristique possible, l’angle d’inclinaison dudit dispositif est compris entre 5 et 30 degrés, préférentiellement entre 10 et 30 degrés.
Cette plage d’angle est avantageuse, car adaptée aux conditions de travail de l’utilisateur dudit dispositif.
[0019] Selon une autre caractéristique possible, ledit dispositif comprend une pluralité de pieds de support aimantés.
Des pieds de support aimantés permettent notamment de solidariser le dispositif selon l’invention à une surface ferromagnétique, évitant ainsi que celui-ci ne se déplace par exemple suite à un choc ou une collision.
[0020] Selon une autre caractéristique possible, ledit dispositif comprend au moins un support d’enroulement.
Ledit support d’enroulement permet notamment d’enrouler un câble d’alimentation et/ou un conduit de test (ledit conduit permettant de relier le dispositif au pack batterie à tester).
[0021] Selon une autre caractéristique possible, ledit dispositif comprend une poignée de préhension.
La poignée facilite le transport et le positionnement du dispositif à l’endroit le plus adapté pour réaliser une détection de fuites.
[0022] Selon une autre caractéristique possible, le dispositif comprend un module de communication (autrement appelé moyen de communication) avec un serveur distant, ledit dispositif étant configuré pour télécharger sur un serveur distant une ou plusieurs des données suivantes : résultat des tests de fuites, identifiant de l’opérateur ayant effectué le test de fuites, identifiant dudit dispositif, identifiant de la batterie testé, date, signaux de mesure des tests de fuites.
Ces données permettent aux garages, fabricants de batteries et/ou aux constructeurs automobiles de réaliser un suivi qualité des packs batteries tout au long de leur durée d’utilisation.
Les données téléchargées sont également utilisées pour optimiser les procédures de détection, par exemple au moyen d’apprentissage machine, en générant par exemple des jeux de paramètres modifiés basés sur des procédures de détection de fuites réalisées par des dispositifs selon l’invention.
[0023] Selon une autre caractéristique possible, ledit dispositif est configuré pour télécharger, par exemple d’un serveur distant, une mise à jour des jeux de paramètres d’une ou plusieurs procédures de détection de fuites stockées dans la base de données du dispositif.
[0024] Selon une autre caractéristique possible, lesdits paramètres téléchargés par le dispositif sont des paramètres modifiés suite à un apprentissage machine.
[0025] Selon une autre caractéristique possible, ledit dispositif comprend un lecteur de code-barre, notamment pour lire et mémoriser le code-barre d’identification apposé sur un pack batterie.
[0026] Selon une autre caractéristique possible, ledit dispositif comprend une imprimante.
Ladite imprimante permet notamment d’imprimer un ticket de maintenance après l’utilisation du dispositif sur un pack batterie. Le ticket de maintenant comprend par exemple un ou plusieurs des informations suivantes : résultat des tests de fuites, identifiant de l’opérateur ayant effectué le test de fuites, identifiant dudit dispositif, identifiant de la batterie testé, date et/ou signaux de mesure des tests de fuites.
[0027] Selon une autre caractéristique possible, le dispositif est configuré pour mesurer et prendre en compte la valeur de la contre-pression lors d’une procédure de détection de fuites sur un élément de pack batterie.
La contre-pression peut fausser la mesure des pressions et des variations de pression, invalidant la mesure d’un taux de fuites pertinent.
[0028] Selon une autre caractéristique possible, la valeur de contre-pression est déterminée, au début de la procédure de détection de test de l’élément testé du pack batterie, par des mesures de la pression, avant et après activation de la pompe du circuit pneumatique, la différence de ces mesures de pression donnant la valeur de la contre-pression.
[0029] En d’autres termes, la valeur de contre-pression est déterminée au moment où l’élément testé du pack batterie est encore vide ou en cours de remplissage.
[0030] Il est à noter que ces mesures de pression sont faites par le capteur de pression.
[0031] Selon une autre caractéristique possible, le dispositif comprend un ou plusieurs capteurs d’environnement pour corriger les signaux de mesure lors de détections de fuites.
Lesdits capteurs d’environnement sont par exemple un ou plusieurs capteurs de température, de pression atmosphérique, d’hygrométrie, etc.
[0032] Selon une autre caractéristique possible, le capteur de pression est un capteur de pression absolue ou relative.
Ledit capteur est par exemple un capteur de pression piézoélectrique.
[0033] L’invention sera mieux comprise, et d’autres buts, détails, caractéristiques et avantages de celles-ci apparaîtront plus clairement au cours de la description suivante de modes de réalisation particuliers de l’invention, donnée uniquement à titre illustratif et non limitatif, en référence aux dessins annexés, sur lesquels : - Les figures 1 et 2, référencées respectivement [Fig. 1] et [Fig. 2], sont des représentations très schématiques d’un dispositif de détection de fuites selon l’invention ;
- la figure 3, référencée [Fig. 3], est une vue très schématique du circuit pneumatique du dispositif des figures 1 et 2 ;
- la figure 4, référencée [Fig. 4], est une vue schématique de la configuration du circuit de la figure 3 lors d’une étape de démarrage du dispositif;
- la figure 5, référencée [Fig. 5], est un graphique illustrant un exemple de variation de la pression au cours d’une procédure de détection de fuite réalisée par le dispositif des figures 1 et 2 ;
- la figure 6, référencée [Fig. 6] illustre les différentes configurations du circuit de la figure 4 lors des différentes étapes d’une détection de fuites, en pression, réalisée au moyen dudit dispositif des figures 1 et 2 ;
- la figure 7, référencée [Fig. 7] illustre les différentes configurations du circuit de la figure 4 lors des différentes étapes d’une détection de fuites, en vide, réalisée au moyen dudit dispositif des figures 1 et 2 ;
- La figure 8, référencée [Fig. 8], est une représentation très schématique d’un module de commande du circuit pneumatique de la figure 4.
[0034] Les [Fig. 1] et [Fig. 2] sont des représentations très schématiques en perspective, respectivement de face et de derrière, d’un dispositif 1 de détection de fuites pour pack batterie de véhicules automobiles.
[0035] Le dispositif 1 de détection de fuites est un dispositif permettant de tester l’étanchéité d’au moins un élément de pack batterie par variation de pression. C’est-à-dire que le dispositif est configuré pour réaliser une procédure de détection de fuites dans laquelle il y a variation de la pression dans l’élément testé (soit en l’augmentant, soit en la diminuant) jusqu’à une valeur de pression prédéterminée, puis après un temps défini, il y a une mesure de la pression. Une variation de pression entre cette valeur prédéterminée et la valeur de pression finale indique alors que l’élément testé présente une fuite, le dispositif 1 étant configuré pour déterminer un taux de fuites en fonction de cette évolution de pression au cours du temps. [0036] On entend par « pack batterie », les batteries de traction et/ou de fonction généralement disposées dans un carter et accompagnées d’un système de gestion thermique, cet ensemble formant un pack batterie destiné à être embarqué dans des véhicules et électriques et hybrides. Ledit système de gestion thermique, quant à lui, comprend par exemple réseau de conduits de fluides permettant de refroidir ou de réchauffer la batterie.
[0037] On notera que détecter des fuites sur un pack batterie est équivalent à tester l’étanchéité (ou le niveau de fuites) du carter et/ou du système de gestion thermique de la batterie.
[0038] Le volume du carter batterie présente généralement un volume compris entre 50 et 300 litres, tandis que le volume du système de gestion thermique présente généralement un volume compris entre 10 et 50 litres.
[0039] Ledit dispositif 1 comprend notamment un boîtier 3 et une interface homme- machine 5 (également désigné sous le terme « IHM » ci-après).
[0040] Ladite interface homme-machine 5 (ou interface utilisateur) permet, entre autres, de démarrer le dispositif 1, et à l’utilisateur de sélectionner le mode de fonctionnement dans lequel le dispositif 1 doit être utilisé, par exemple pour un test de fuites du carter batterie ou d’un système de gestion thermique de batterie. L’interface 5 peut ainsi permettre de sélectionner une procédure de détection de fuites (ou procédure de test d’étanchéité) en fonction du pack batterie à tester.
[0041] On notera qu’on entend par interface homme-machine 5, l’ensemble des éléments permettant à l’utilisateur d’interagir avec le dispositif 1, et plus particulièrement de contrôler le dispositif 1 et d’échanger des informations avec celui-ci. L’interface homme-machine 5 comprend par exemple un ou plusieurs des éléments suivants : bouton(s), clavier, écran, écran tactile, molette(s), voyants lumineux, etc.
[0042] Cependant, dans le mode de réalisation illustré aux [Fig. 1] et [Fig .2], l’interface homme-machine 5 comporte un écran tactile 5a, ainsi qu’un port de communication 5b, par exemple du type USB. Le porte de communication 5b permet notamment de pouvoir se connecter audit dispositif 1 par l’intermédiaire d’un appareil tiers (par exemple pour récupérer des données, mettre à jour le dispositif, etc.). [0043] Ledit boîtier 3, quant à lui, présente par exemple une forme sensiblement parallélépipédique, ainsi qu’une face avant 3a, une face arrière 3b, une face inférieure 3c, une face supérieure 3d et des faces latérales 3e.
Ledit boîtier 3 comporte également des pieds de support 31, au moins un support d’enroulement 33 et une poignée 35 de préhension.
[0044] Chacun des pieds de support 31 comporte des aimants (non représentés), ces derniers permettent notamment de solidariser le dispositif 1 à une surface (ferromagnétique) lors de son utilisation et éviter son déplacement par inadvertance par exemple suite à une collision ou tout autre cause externe.
[0045] Lesdits pieds de support 31 comportent ici chacun deux parties, une patte 31a (par exemple métallique) reliée au boîtier 3 (au niveau de sa face inférieure 3c) et un patin 31b disposé sur l’extrémité distale de ladite patte 31a. Lesdits patins 31b comprennent ainsi un ou plusieurs aimants par exemple surmoulés, lesdits patins 31b étant généralement en matière plastique, en polymère ou un matériau analogue. Lesdits patins 31b aimantés permettent donc de solidariser le dispositif 1 sur une surface métallique, notamment lors d’une procédure de détection de fuites.
[0046] Les pieds de support 31 sont avantageusement configurés pour que le dispositif 1 présente une inclinaison, par exemple comprise entre 10 et 30 degrés par rapport à la surface (généralement l’horizontale) sur laquelle le dispositif 1 est posé. Ainsi, l’avant du dispositif 1 est surélevé par rapport à l’arrière, facilitant ainsi l’accès pour l’opérateur à l’interface homme-machine 5 et simplifiant plus généralement l’utilisation du dispositif 1.
[0047] Dans une variante de réalisation non représentée, seul l’interface homme- machine 5, plus particulièrement l’écran 5a, présente une inclinaison, par exemple comprise entre 10 et 30 degrés.
[0048] Le support d’enroulement 33, quant à lui, est configuré pour permettre l’enroulement d’un câble d’alimentation et/ou d’un conduit test, tel qu’un conduit d’air souple. Ledit support d’enroulement 33 comprend par exemple deux saillies 33a (ou tubes, protubérances, etc.) à distance l’une de l’autre, préférentiellement disposées sur l’une des faces latérales 3e dudit dispositif 1. [0049] La poignée de préhension 35 est préférentiellement disposée sur la face supérieure 3d du boîtier 3 et facilite notamment le déplacement du dispositif 1 jusqu’à l’endroit de son utilisation et/ou la désolidarisation des pieds de support 31 de la surface sur laquelle les pieds 31 sont aimantés.
[0050] Ledit boîtier 3 peut également comprendre une ou plusieurs protections antichocs 37, par exemple disposées sur les coins du boîtier 3 (notamment au niveau des faces avant 3a et arrière 3b), pour protéger le dispositif et/ou l’opérateur en cas de chocs. Lesdites protections 37 sont par exemple en matière plastique, en caoutchouc, etc., et se présentent sous de forme de bandes entourant le périmètre (ou contour) du boîtier 3 (en recouvrant lesdits coins du boîtier).
[0051] Ledit dispositif 1 comprend également un connecteur de test 7 destiné à être relié (par exemple par le conduit de test) au pack batterie à tester. Ledit connecteur de test est par exemple disposé sur la face arrière 3b dudit dispositif 1. Le conduit de test qui permet de relier le dispositif 1 au pack batterie (c’est à dire au carter de la batterie et/ou système de gestion thermique) comprend un connecteur adapté.
[0052] Ledit dispositif 1 comprend en outre une prise d’alimentation 39 permettant de relier le dispositif 1 au réseau électrique, ainsi qu’un bouton On/Off 41 permettant d’allumer ou d’éteindre le dispositif 1. La prise d’alimentation 39 et le bouton 41 sont avantageusement disposés sur la face arrière 3e du dispositif 1.
[0053] Le dispositif 1 selon l’invention comprend également un circuit pneumatique 100, circuit plus particulièrement illustré à la [Fig. 3], ledit circuit 100 est configuré pour mettre en pression ou en dépression (ou « en vide ») l’élément du pack batterie dont l’étanchéité doit être testée.
[0054] Ledit circuit pneumatique 100 comprend ainsi :
- une pompe 102 (ou un compresseur), par exemple de type volumétrique, configurée pour mettre en pression ou en vide l’objet dont on cherche à tester l’étanchéité (et donc connecté à la pompe 102 par l’intermédiaire du connecteur 7 et dudit circuit 100) ;
- une pluralité de vannes Vi, V2 et V3, lesdites vannes étant configurées pour permettre notamment le remplissage et/ou le vidage d’au moins un élément du pack batterie ;
- un capteur de pression 104, par exemple un capteur de pression absolu. Lesdits éléments dudit circuit étant reliés les uns aux autres par l’intermédiaire de conduits adaptés.
[0055] Lesdites vannes Vi et V2, respectivement première et deuxième vanne, sont par exemple des distributeurs 2/2 (ou vanne une voie), tandis que la vanne V3, ou troisième vanne, est par exemple un distributeur 3/2 (ou vanne deux voies).
Les vannes V1 et V2 présentent ainsi deux positions, passante ou non-passante, c’est-à-dire deux orifices et le fait d’autoriser ou non la circulation de fluide entre les deux orifices desdites vannes.
Tandis que la vanne V3 comprend trois orifices et deux positions, dans le cas présent les premier et deuxième orifices sont reliés audit circuit 100 et le troisième orifice est à l’atmosphère. Ainsi en fonction de la position de la vanne le premier ou deuxième orifice est connecté au troisième, alors que l’orifice restant est fermé (non-passant).
[0056] La pompe 102 comprend une entrée ou orifice d’aspiration 102a, ainsi qu’une sortie ou orifice de refoulement 102b. L’entrée 102a de la pompe 102 est reliée directement aux vannes V2 et V3, tandis que la sortie 102b est reliée directement aux vannes V1 et V3.
[0057] Plus particulièrement, l’entrée 102a est connectée à un premier nœud Ni qui est lui-même relié à un premier orifice de la vanne V3 et à un premier orifice de la vanne V2. La sortie 102b est connectée à un deuxième nœud N2 qui est lui-même relié à un deuxième orifice de la vanne V3 et au premier orifice de la vanne V2 (la vanne V3 est donc disposée en parallèle des vannes V1 et V2). Les deuxièmes orifices des vannes V2 et V3 sont quant à eux connectés à un troisième nœud N3. Le nœud N3 est relié au connecteur 7 et le capteur de pression 104 est disposé sur le conduit entre le nœud N3 et ledit connecteur 7.
[0058] Ledit circuit 100 comprend également au moins un module de commande 106 configuré, entre autres, pour commander les éléments du circuit pneumatique 100 (la pompe 102, les vannes V1-3, etc.). Ledit module de commande 106 comprend par exemple une ou plusieurs cartes électroniques.
[0059] Les différentes étapes d’un test d’étanchéité sont détaillées ci-après, mais le dispositif 1 est également configuré pour réaliser une procédure de mise à zéro (ou auto-zéro) de la pression régnant au niveau du capteur de pression 104 lors du démarrage dudit dispositif 1.
[0060] Ainsi, lors de la procédure de mise à zéro, il y a activation de la pompe 102 et ouverture de la vanne Vi, tandis que le premier nœud Ni est à l’atmosphère, et que la connexion du deuxième nœud N2 à la vanne V3 est fermée. Le schéma équivalent du circuit 100 lors de cette procédure est plus particulièrement illustré à la [Fig. 4]
[0061] La pompe 102 aspire ainsi de l’air par l’intermédiaire de la vanne V3 (générant donc création d’une dépression) et engendre une surpression au niveau de la sortie 102b qui se propage jusqu’au connecteur 7. Cela permet de vérifier que le capteur de pression 104 est fonctionnel et que le dispositif 1 n’est pas encore relié à un élément d’un pack batterie. Cela permet également de purger une partie du circuit 100, plus particulièrement la partie à laquelle est connecté ledit capteur de pression 104.
[0062] Ledit dispositif 1 est également configuré pour comporte une procédure d’autotest. Ladite procédure d’autotest permet de vérifier la présence de fuites dans le dispositif 1 , notamment au niveau du circuit 100 et dans un conduit de test. Lors d’une procédure d’autotest, la sortie de test du circuit 100 (avec ou sans conduit de test relié au connecteur 7) est obturée par un bouchon. Une procédure de détection de fuites est alors enclenchée, en pression et/ou en vide, pour vérifier qu’il n’y a pas de fuites dans le circuit et/ou dans le conduit de test qui pourraient fausser la détection de fuites sur un élément d’un pack batterie.
[0063] Le dispositif 1 de détection de fuites est un dispositif permettant de tester l’étanchéité d’au moins un élément de pack batterie par variation de pression. C’est-à-dire que le dispositif est configuré pour réaliser une procédure de détection de fuites dans laquelle il y a variation de la pression dans l’élément testé (soit en l’augmentation, soit en la diminuant) jusqu’à une valeur de pression prédéterminée, puis après un temps défini il y a une mesure la pression. Une variation de pression entre cette valeur prédéterminée et la valeur de pression finale indique alors que l’élément testé présente une fuite, le dispositif 1 étant configuré pour déterminer un taux de fuites en fonction de cette évolution de la pression au cours du temps. [0064] La [Fig. 5] est un graphique illustre les différentes étapes d’une procédure de détection de fuites (en pression) réalisée par le dispositif 1 selon l’invention.
[0065] Il y a ainsi 4 étapes référencées respectivement I, II, III et IV :
- l’étape I est l’étape de remplissage, c’est-à-dire qu’on augmente la pression dans l’élément testé du pack batterie, jusqu’à atteindre une valeur de pression déterminée.
- L’étape II est l’étape de stabilisation, en effet l’augmentation de la pression dans l’élément entraîne des variations de température, des échanges thermiques, etc. qui peuvent perturber la mesure, il est donc nécessaire d’attendre un temps prédéterminé tstab que les phénomènes transitoires pouvant perturber la mesure s’estompent.
- L’étape III est l’étape de mesure, la mesure de variation de la pression lors de cette étape permet au dispositif 1 de calculer un taux de fuites (par exemple en centimètre cube par minute) et de déterminer si l’élément testé présente une fuite.
- L’étape IV est l’étape de vidage, le dispositif 1 est configuré pour que la pression de l’élément testé revienne à une valeur de pression sensiblement proche de la pression atmosphérique, ceci afin que le dispositif 1 puisse être déconnecté sans risque par l’opérateur.
[0066] On notera que la procédure de détection de fuites peut également être réalisée en vide (ou en dépression), c’est-à-dire qu’au lieu d’augmenter la pression lors de première étape, la pression régnant dans l’élément à tester est diminuée jusqu’au une valeur prédéterminée. Les étapes II et III restent inchangées. Tandis que la quatrième étape consiste à augmenter la pression régnant dans l’élément testé jusqu’à une valeur de pression correspondant à la pression atmosphérique. Il y a donc « interversion » des étapes I et IV de remplissage et de vidage entre les procédures de détection de fuites en pression et en vide.
[0067] Ainsi, le dispositif 1 est configuré pour réaliser des procédures de détection de fuites selon deux modes différentes, un premier mode en pression (ou surpression) et un deuxième mode en vide (ou dépression).
[0068] La [Fig. 6] représente la configuration équivalente du circuit pneumatique 100 en fonction des étapes d’une procédure de détection selon le premier mode. [0069] Ainsi, lorsque le dispositif 1 teste l’étanchéité d’un objet PB, tel qu’un pack batterie, en pression, la procédure de détection de fuites comporte les étapes décrites ci-dessous, avec les configurations du circuit 100 décrites ci-après.
[0070] Il y a une étape de remplissage I de l’objet PB par la pompe 102. Pour cela, la vanne V3 relie l’entrée de la pompe 102 à l’atmosphère. Tandis que la vanne V1 connecte la sortie de la pompe 102 à l’objet PB, par l’intermédiaire du connecteur 7. Le dispositif 1 augmente la pression régnant à l’intérieur de l’objet PB jusqu’à une valeur prédéterminée, le capteur 104 permettant de mesurer la valeur de la pression et de commander l’arrêt de la pompe 102 lorsque la valeur de pression souhaitée est atteinte.
[0071] Il y a ensuite les étapes de stabilisation et de test, Il et III, dans lesquelles la pompe 102 est éteinte, tandis que les vannes V1 et V2 sont fermées. Les étapes de stabilisation et de test présentent chacun respectivement une durée prédéterminée dépendant de l’élément et du pack batterie testé, respectivement tstab et . Les variations de pression mesurées par le capteur 104 lors de l’étape de test permettent au dispositif 1 de déterminer un taux de fuite relatif à l’objet PB testé.
[0072] Puis, la procédure de détection de fuites selon un premier mode se termine par une étape de vidage IV, étape lors de laquelle le dispositif 1 est configuré pour ramener la pression régnant dans l’objet PB jusqu’à une valeur de pression proche de la pression atmosphérique (ou une valeur de pression compatible avec la déconnexion, sans danger pour l’opérateur, du conduit de test au pack batterie). La vanne V1 est fermée et la vanne V2 relie l’objet PB testé à l’entrée de la pompe 102. Tandis que la sortie de la pompe 102 est reliée à l’atmosphère par l’intermédiaire de la vanne V3. Dans cette configuration, l’activation de la pompe 102 permet d’évacuer l’air (générant une surpression) contenu dans l’objet PB testé.
[0073] La [Fig. 7] représente la configuration équivalente du circuit pneumatique 100 en fonction des étapes d’une procédure de détection selon le deuxième mode.
[0074] Ainsi, lorsque le dispositif 1 teste l’étanchéité d’un objet PB, tel qu’un pack batterie, en vide, la procédure de détection de fuites comporte les étapes décrites ci-dessous avec les configurations du circuit 100 décrites ci-après. [0075] Il y a une étape de vidage IV de l’objet PB par la pompe 102. Pour cela, la vanne V3 relie la sortie de la pompe 102 à l’atmosphère. Tandis que la vanne V2 connecte la sortie de la pompe 102 à l’élément PB, par l’intermédiaire du connecteur 7. Le dispositif 1 diminue la pression régnant à l’intérieur de l’élément PB jusqu’à une valeur prédéterminée, le capteur 104 permettant de mesurer la valeur de la pression et de commander l’arrêt de la pompe 102 lorsque la valeur de pression souhaitée est atteinte.
[0076] Il y a ensuite les étapes de stabilisation et de test, Il et III, dans lesquelles la pompe 102 est éteinte, tandis que les vannes V1 et V2 ont fermées. Les étapes de stabilisation et de test présentent chacun respectivement une durée prédéterminée, respectivement tstabet . Les variations de pression mesurées par le capteur 104 lors de l’étape de test permettent au dispositif 1 de déterminer un taux de fuites relatif à l’objet PB testé.
[0077] Puis, la procédure de détection de fuites selon un deuxième mode se termine par une étape de remplissage I, étape lors de laquelle le dispositif 1 est configuré pour augmenter la pression régnant dans l’objet PB jusqu’à une valeur de pression proche à la pression atmosphérique.
[0078] Le dispositif 1 est donc configuré pour opérer des procédures de détection de fuites selon différents modes, ceci est notamment réalisé grâce au module de commande 106.
[0079] Ledit module de commande 106, plus particulièrement illustré à la [Fig. 8] comprend :
- un microprocesseur 200 ;
- une mémoire 202 pour stocker des données, telle qu’une mémoire vive et une mémoire non volatile ;
- un module de communication 204 pour communiquer avec des entités distantes, ordinateurs, serveurs, etc. ;
- un module de commande 206 relié aux vannes V1 à V3, à la pompe 102 et au capteur de pression 104, ledit module 206 étant configuré pour commander les vannes et la pompe, mais également pour récupérer les valeurs des mesures effectuées par différents capteurs, notamment du capteur de pression 104 ou de capteurs d’environnement (température, hygrométrie, pression atmosphérique, etc.).
[0080] Ledit module 106 peut également comprendre une alimentation électrique 206 soit autonome, soit reliée au secteur (notamment par l’intermédiaire de la prise électrique 39) et configurée pour convertir le courant et la tension d’entrée en des valeurs compatibles avec les différents éléments du module 106 et/ou du dispositif 1.
[0081] Ledit module 106 est aussi relié à l’interface homme-machine 5 (liaison non représentée) et embarque dans la mémoire 202, un système d’exploitation gérant notamment l’interface affichée sur l’écran 5a.
[0082] Par ailleurs, ledit dispositif 1 comprend une base de données 210, notamment stockée dans la mémoire 202, relative aux packs batteries et aux différents paramètres pertinents pour la réalisation d’une procédure de détection de fuites adaptée au pack batterie à tester (par exemple en vide ou en pression).
[0083] Ladite base de données 210 comprend ainsi une liste de modèles de véhicule automobile et/ou de modèles de pack batterie dans laquelle chaque modèle (de pack batterie et/ou de véhicule automobile) est associé une procédure de détection de fuites. La base de données 210 comprend par exemple pour chaque pack batterie listé au moins une procédure de détection de fuites spécifique à chacun des éléments d’un pack batterie.
[0084] Chacune des procédures de détection de fuites spécifique comprend ainsi des seuils de fuites permettant au dispositif 1 de déterminer si le pack batterie présente une fuite ou non.
[0085] Chacune des procédures de détection de fuites peut ainsi comprendre un ou plusieurs des paramètres suivants : volume de la batterie et/ou du système de gestion thermique du pack batterie, durée tstab et des différentes étapes du test de fuites, pression de test, vitesse de remplissage et/ou de vidage de l’élément testé du pack batterie, seuil de fuite.
[0086] Dans une variation de réalisation, ladite base de données comprend un coefficient de flexibilité ou d’élasticité associé à au moins un élément du pack batterie (carter et/ou système de gestion thermique). Le coefficient de flexibilité est par exemple une fonction V (P, t) reliant la variation du volume V de l’élément testé en fonction du temps t et/ou de la pression P, cela reflète la tendance de l’élément à varier de volume pendant une procédure de détection de fuites. Cette fonction est d’autant plus pertinente à mémoriser (et à déterminer) qu’elle est spécifique à chaque modèle de batterie et qu’elle peut présenter un caractère non linéaire (dû par exemple à la géométrie et/ou à des composants particuliers du pack batterie).
[0087] En effet, lors d’une détection de fuites sur un objet dont le volume est amené à varier lors du test (sous l’effet d’une variation de pression), cela entraîne des difficultés pour obtenir une mesure correcte du niveau de fuite.
En effet, la variation du volume peut avoir des conséquences sur la durée du test, compliquer la mesure de la fuite et diminuer la sensibilité, le volume, la pression et la quantité de matière dans l’objet testé étant amenés à varier (ces différentes grandeurs étant reliées entre elles par la loi des gaz parfaits), et de plus le volume de départ de l’objet dépend également de la pression atmosphérique.
[0088] On notera par ailleurs que dans une variante de réalisation, un ou plusieurs dispositifs 1 peuvent être connectés à un réseau informatique, par exemple le réseau local d’un centre de réparation. Un dispositif selon l’invention peut notamment cloner et/ou diffuser les paramètres de sa base de données aux autres dispositifs connectés au même réseau informatique.
[0089] Dans une autre variante de réalisation non illustrée, le circuit pneumatique du dispositif selon l’invention comprend au moins un limiteur de débit. Avantageusement, ledit au moins un limiteur de débit est disposé entre le nœud N3 et le capteur de pression 104. Ainsi, un seul limiteur de débit suffit pour limiter le débit dans le circuit pneumatique, ceci quelle que soit la procédure de détection de fuites opérée par le dispositif 1. Dans une variante de réalisation, chacune des branches du circuit pneumatique comportant une vanne 1 voie V1 ou V2 comprend un limiteur de débit.
[0090] Le limiteur de débit permet notamment au dispositif selon l’invention de faire varier la pression dans l’objet testé plus finement, et donc d’avoir une pression réelle proche de la pression souhaitée.
[0091] Le limiteur de débit est par exemple configuré pour présenter un débit maximal de 24 standard. litre/min, soit 0,4 standard. litre/ sec. Cependant il est avantageux que le débit maximal du limiteur de débit soit inférieur au débit maximum de la pompe du circuit pneumatique (le débit du limiteur doit donc être choisi en fonction de la capabilité de la pompe).
[0092] Ledit dispositif 1 peut être également configuré pour mesurer la valeur de contre-pression (ou « back pressure » en langue anglaise) relative au pack batterie testé. La mesure de la valeur de contre-pression est réalisée au début du remplissage (ou le vidage) de la pièce testée, donc au début de la procédure de détection de fuites.
[0093] Plus particulièrement il y a mesure de la pression avant et après activation de la pompe (mais après la commande adéquate des vannes V1-3), la différence de ces mesures de pression donnant la valeur de la contrepression.
[0094] En d’autres termes, il y a mesure de la pression au moment où la pièce est encore vide, ou pendant le remplissage.
[0095] On notera qu’on entend par contrepression, la résistance ou la force s’opposant à l’écoulement souhaité d’un fluide dans des conduits ou un circuit, ce qui entraîne une perte par frottement et une chute de pression.
[0096] Ledit dispositif 1 est notamment configuré pour que la valeur de contre-pression mesurée soit prise en compte lors du remplissage/vidage des pièces testées. La valeur de pression affichée par IΊHM 5 (et mesurée par le capteur 104) est ainsi la valeur corrigée de la valeur de contre-pression, valeur corrigée correspondant donc à la valeur réelle de pression.
[0097] Ledit dispositif 1 est également configuré pour communiquer, par exemple par l’intermédiaire du module de communication 204, avec un serveur distant, notamment pour télécharger sur un serveur distant une ou plusieurs des données suivantes : les résultats des tests de fuites et/ou les signaux de mesure des tests de fuites.
[0098] L’ensemble des données téléchargées sur le serveur distant peuvent notamment servir au suivi qualité des mesures et/ou des packs batterie testés. Lesdites données téléchargées peuvent également être utilisées dans le cadre d’un « apprentissage machine » (ou « machine learning » en langue anglaise), notamment pour optimiser les procédures de détections de fuites (par exemple en diminuant ou optimisant les temps de stabilisation et/ou de test, les valeurs de pression de test, les vitesses de remplissage, etc.). [0099] Les paramètres ainsi modifiés peuvent ensuite être téléchargés par le dispositif selon l’invention pour que la base de données relative aux procédures de détection de fuites soit mise à jour.

Claims

Revendications
[Revendications 1] Dispositif (1) de détection de fuites pour pack batterie de véhicule automobile, ledit dispositif comprenant
- un circuit pneumatique (100) comprenant une pluralité de vannes (Vi, V2, V3), un capteur de pression (104) et une pompe (102) ;
- au moins un connecteur (7) permettant de relier ledit circuit pneumatique (100) à au moins un élément du pack batterie ; ledit circuit pneumatique (100) étant configuré pour opérer au moins une procédure de détection de fuites en pression et/ou en vide sur au moins un élément dudit pack batterie.
[Revendications 2] Dispositif (1) selon lia revendication 1, caractérisé en ce qu’il est configuré pour générer une pression relative allant de -1 à 3 bars.
[Revendications 3] Dispositif (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que le dispositif (1) comprend une interface homme-machine (5).
[Revendications 4] Dispositif (1) selon la revendication précédente, caractérisé en ce que ledit dispositif (1) est configuré pour présenter une inclinaison par rapport à la surface sur laquelle le dispositif est posé de sorte que l’interface homme-machine (5) soit orientée vers le haut.
[Revendications 5] Dispositif (1) selon la revendication précédente, caractérisé en ce que l’angle d’inclinaison est compris entre 10 et 30 degrés.
[Revendications 6] Dispositif (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit dispositif (1) comprend au moins un pied de support (31) aimanté.
[Revendications 7] Dispositif (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit dispositif (1) comprend au moins un support d’enroulement (33).
[Revendications 8] Dispositif (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que ledit circuit pneumatique (100) comprend deux vannes une voie (V1 et V2), ainsi qu’une vanne deux voies (V3).
[Revendications 9] Dispositif (1) selon l’une quelconque des revendications précédentes, caractérisé en ce que le circuit pneumatique (100) comprend au moins un limiteur de débit.
[Revendications 10] Dispositif (1) selon l’une quelconque des revendications précédentes, caractérisé en ce qu’il est configuré pour mesurer et prendre en compte la valeur de la contrepression lors d’une procédure de détection de fuites sur au moins un élément dudit pack batterie.
PCT/EP2022/069683 2021-07-27 2022-07-13 Dispositif de détection de fuites pour pack batterie de véhicule automobile WO2023006434A1 (fr)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP22748362.5A EP4378015A1 (fr) 2021-07-27 2022-07-13 Dispositif de détection de fuites pour pack batterie de véhicule automobile
CN202280052013.6A CN117769780A (zh) 2021-07-27 2022-07-13 用于检测机动车辆电池组的泄漏的装置
US18/292,265 US20240347779A1 (en) 2021-07-27 2022-07-13 Device for detecting leaks for motor vehicle battery pack

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR2108139A FR3125881B1 (fr) 2021-07-27 2021-07-27 Dispositif de détection de fuites pour pack batterie de véhicule automobile
FRFR2108139 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023006434A1 true WO2023006434A1 (fr) 2023-02-02

Family

ID=78770690

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/069683 WO2023006434A1 (fr) 2021-07-27 2022-07-13 Dispositif de détection de fuites pour pack batterie de véhicule automobile

Country Status (5)

Country Link
US (1) US20240347779A1 (fr)
EP (1) EP4378015A1 (fr)
CN (1) CN117769780A (fr)
FR (1) FR3125881B1 (fr)
WO (1) WO2023006434A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628529A1 (fr) * 1988-03-09 1989-09-15 Commissariat Energie Atomique Procede et systeme de controle de l'etancheite d'une enceinte
US20120247189A1 (en) * 2011-03-30 2012-10-04 Eutectic Solutions Inc. Method of measuring the size of a leak in a pneumatic air circuit and a related device
KR20200083692A (ko) * 2018-12-28 2020-07-09 주식회사 동희산업 차량용 고전압배터리케이스 리크테스트 시스템
WO2021058738A1 (fr) * 2019-09-26 2021-04-01 Ateq Capteur de pression differentielle et dispositif de detection comprenant un tel capteur

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2628529A1 (fr) * 1988-03-09 1989-09-15 Commissariat Energie Atomique Procede et systeme de controle de l'etancheite d'une enceinte
US20120247189A1 (en) * 2011-03-30 2012-10-04 Eutectic Solutions Inc. Method of measuring the size of a leak in a pneumatic air circuit and a related device
KR20200083692A (ko) * 2018-12-28 2020-07-09 주식회사 동희산업 차량용 고전압배터리케이스 리크테스트 시스템
WO2021058738A1 (fr) * 2019-09-26 2021-04-01 Ateq Capteur de pression differentielle et dispositif de detection comprenant un tel capteur

Also Published As

Publication number Publication date
FR3125881B1 (fr) 2023-09-08
EP4378015A1 (fr) 2024-06-05
CN117769780A (zh) 2024-03-26
US20240347779A1 (en) 2024-10-17
FR3125881A1 (fr) 2023-02-03

Similar Documents

Publication Publication Date Title
US7168297B2 (en) System and method for testing fuel tank integrity
JP5712279B2 (ja) 圧力計
EP3607279B1 (fr) Procédé pour mesurer la quantité de gaz introduite dans un réservoir et station de remplissage
US20080178660A1 (en) Evaporative emission system test apparatus and method of testing an evaporative emission system
EP3405763B1 (fr) Dispositif d'aspersion et module de détection de fuites
FR3067066B1 (fr) Systeme de maintenance
EP1643230B1 (fr) Procédé et dispositif de contrôle d'étanchéité d'une enceinte contenant un gaz sous pression
EP0238861B1 (fr) Procédé et dispositif pour le contrôle d'étanchéité sur des emballages
EP3237788B1 (fr) Adaptateur de test ou de remplissage
EP4378015A1 (fr) Dispositif de détection de fuites pour pack batterie de véhicule automobile
EP4378017A1 (fr) Dispositif de détection de fuites pour pack batterie de véhicule automobile
JP2024529571A (ja) 車両バッテリ環境のための漏れ検出システム及び関連する方法
WO2022161660A1 (fr) Procédé de vérification du fonctionnement d'un dispositif de nettoyage de surface de véhicule
EP3241008B1 (fr) Dispositif de vérification de l' étanchéité
FR2899673A3 (fr) Dispositif d'avertissement et de mesure de refrigerant, et element de detection associe audit dispositif
WO2022002890A1 (fr) Methode et systeme de detection de fuites
FR2896229A1 (fr) Systeme de conditionnement en fluide de reservoirs reutilisables
FR2867855A1 (fr) Dispositif de mesure de la pression regnant dans un endroit pneumatique
EP0540396B1 (fr) Banc d'essais anemometriques
FR3082915A1 (fr) Regulateur d’alimentation en gaz
FR2894026A3 (fr) Dispositif de controle de l'etancheite d'une enceinte par depression
FR2901091A1 (fr) Systeme destine a prevenir les entrees d'eau dans des composants electriques ou electroniques de vehicules
FR3120701A1 (fr) Procédé de fabrication d’un boîtier électronique à capteur de fluide et boîtier électronique obtenu.
BE1027195A1 (fr) Appareil de mesure de pression
EP4403818A1 (fr) Récipient de fluide muni d'un robinet de distribution équipé d'un dispositif électronique et d'un capteur de pression indépendant

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22748362

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202280052013.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2022748362

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022748362

Country of ref document: EP

Effective date: 20240227