WO2023006092A1 - 具有多个底电极层的体声波谐振器、滤波器及电子设备 - Google Patents

具有多个底电极层的体声波谐振器、滤波器及电子设备 Download PDF

Info

Publication number
WO2023006092A1
WO2023006092A1 PCT/CN2022/109111 CN2022109111W WO2023006092A1 WO 2023006092 A1 WO2023006092 A1 WO 2023006092A1 CN 2022109111 W CN2022109111 W CN 2022109111W WO 2023006092 A1 WO2023006092 A1 WO 2023006092A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
electrode layer
resonator
bottom electrode
Prior art date
Application number
PCT/CN2022/109111
Other languages
English (en)
French (fr)
Inventor
徐洋
庞慰
张巍
郝龙
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2023006092A1 publication Critical patent/WO2023006092A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details
    • H03H9/125Driving means, e.g. electrodes, coils
    • H03H9/13Driving means, e.g. electrodes, coils for networks consisting of piezoelectric or electrostrictive materials
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/15Constructional features of resonators consisting of piezoelectric or electrostrictive material
    • H03H9/17Constructional features of resonators consisting of piezoelectric or electrostrictive material having a single resonator
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/46Filters
    • H03H9/54Filters comprising resonators of piezoelectric or electrostrictive material

Definitions

  • Embodiments of the present invention relate to the field of semiconductors, and in particular to a bulk acoustic wave resonator and a manufacturing method thereof, a filter with the resonator, and an electronic device.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Resonator
  • SAW surface acoustic wave
  • the structural body of the film bulk acoustic resonator is a "sandwich" structure composed of electrodes-piezoelectric film-electrodes, that is, a layer of piezoelectric material is sandwiched between two layers of metal electrode layers.
  • FBAR uses the inverse piezoelectric effect to convert the input electrical signal into a mechanical resonance, and then uses the piezoelectric effect to convert the mechanical resonance into an electrical signal output.
  • the resonator includes a substrate 101 , an acoustic mirror or cavity 102 , a bottom electrode layer 103 , a bottom electrode layer 104 , a piezoelectric layer 105 , a top electrode 106 , and a passivation layer or process layer 107 .
  • metal Al is usually used in the electrode layer far away from the piezoelectric layer in the multilayer electrode of the bottom electrode, that is, the bottom electrode layer 103 in FIG. 1 .
  • the acoustic mirror cavity 102 is usually formed by using HF to corrode the sacrificial material SiO2.
  • the surface B of the bottom electrode layer 103 on the upper side of the cavity 102 is in contact with, and also easily corrodes the bottom electrode layer 103 through the unevenness shown by A in FIG. 1 , thereby causing damage to the resonator structure.
  • a bulk acoustic wave resonator includes a substrate, a bottom electrode, a top electrode and a piezoelectric layer.
  • the bottom electrode includes a plurality of electrode layers, the plurality of electrode layers includes at least a first electrode layer and a second electrode layer arranged in the thickness direction of the resonator, the first electrode layer is closer to the substrate than the second electrode layer,
  • the first electrode layer is a metal layer including aluminum. At the non-electrode connection end of the bottom electrode, the end surface of the first electrode layer is covered by the second electrode layer.
  • the acoustic mirror of the resonator is an acoustic mirror cavity.
  • the resonator also includes a barrier layer overlying the first electrode layer and defining an upper boundary of the acoustic mirror cavity.
  • a method for manufacturing a bulk acoustic wave resonator includes a bottom electrode and a piezoelectric layer, the bottom electrode includes a plurality of electrode layers, and the plurality of electrode layers are at least It includes a first electrode layer and a second electrode layer arranged in the thickness direction of the resonator, the first electrode layer is closer to the base than the second electrode layer, and the first electrode layer is a metal layer including aluminum.
  • the method includes: covering the end face of the first electrode layer which is not the electrode connection end with the second electrode layer.
  • Embodiments of the present invention also relate to a filter, including the above bulk acoustic wave resonator.
  • Embodiments of the present invention also relate to an electronic device, including the above-mentioned filter or the above-mentioned resonator.
  • Fig. 1 is a schematic cross-sectional view of a known bulk acoustic wave resonator
  • FIG. 2A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • FIG. 2B is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • 3A-3D are cross-sectional schematic diagrams schematically showing the manufacturing process of the bulk acoustic wave resonator in FIG. 2B according to an exemplary embodiment of the present invention.
  • FIGS. 4-10 are schematic cross-sectional views of bulk acoustic wave resonators according to different exemplary embodiments of the present invention.
  • the present invention proposes to reduce or prevent the electrode layer from interfering with the cavity of the acoustic mirror of the resonator.
  • the scheme is etched during cavity formation.
  • the optional material is single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • Acoustic mirror which can be a cavity, for example, Bragg reflection layer and other equivalent forms can also be used.
  • the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or composites of the above metals or alloys thereof.
  • the bottom electrode layer, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc., the bottom electrode layer 103 and the bottom electrode layer 104 Materials can vary.
  • the material can be aluminum nitride, gallium nitride, lithium niobate, lead zirconate titanate (PZT), potassium niobate, quartz film, zinc oxide, etc., or a certain atomic ratio of the above materials
  • the rare earth element doped material for example, can be doped aluminum nitride, which contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum ( La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc
  • Sc scandium
  • Top electrode or top electrode layer the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite or alloys of the above metals.
  • the top and bottom electrodes are typically of the same material, but can also be different.
  • a dielectric layer or a process layer the material of which is generally a dielectric material, such as aluminum nitride, silicon dioxide, silicon nitride, etc. As can be understood, no dielectric layer or process layer may be provided.
  • a seed layer or a barrier layer the material of which may be AlN, SiN, etc.
  • Acoustic impedance mismatching structure it can be air, SiO 2 , SiN, etc., as mentioned later, and the acoustic impedance mismatching structure may not be provided.
  • the acoustic impedance mismatch structure is one of the acoustic mismatch structures.
  • Protruding structure the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the above metals or their alloys, etc., and the protruding structure may not be provided.
  • the raised structure is one of the acoustically mismatched structures.
  • acoustically mismatching structures such as recessed structures, bridge structures, cantilever structures, etc. may also be provided.
  • the bottom electrode layer the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc.
  • the material of the bottom electrode layer 112 can be the same as that of the bottom electrode Layers 104 may be the same or different.
  • the material may be AlN, SiN, SiO 2 and so on.
  • Barrier layer the material of which can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or composites or alloys of the above metals, or non-metal.
  • the top electrode layer is an electrode layer including metal Al.
  • the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or composites or alloys of the above metals, or non-metal.
  • FIG. 2A is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the BAW resonator includes: a substrate 101; an acoustic mirror 102, which is in the form of a cavity in Figure 2; a bottom electrode, including a bottom electrode layer 103 and a bottom electrode layer arranged in the thickness direction of the resonator 104 , the materials of the bottom electrode layer 103 and the bottom electrode layer 104 are different from each other, the bottom electrode layer 103 is a metal layer including aluminum; the top electrode 106 ; and the piezoelectric layer 105 is disposed between the bottom electrode and the top electrode 106 .
  • the resonator further includes a dielectric layer or process layer 107 .
  • the dielectric layer or process layer 107 may not be provided.
  • the bottom electrode may not only include the bottom electrode layer 103 and the bottom electrode layer 104 , but may also include more bottom electrode layers.
  • the acoustic mirror 102 is disposed in the substrate 101, while the bottom electrode layer 103 covers the upper side of the acoustic mirror 102, and the bottom electrode layer 104 covers the upper side of the bottom electrode layer 103 and is in the thickness direction of the resonator. between the piezoelectric layer 105 and the bottom electrode layer 103 .
  • the end surface of the bottom electrode layer 103 is covered by the bottom electrode layer 104 at the non-electrode connection end of the bottom electrode.
  • the non-electrode connection end surface of the bottom electrode layer 104 replaces the uneven portion at the region A in FIG. 1 , which is beneficial to avoid or reduce the release agent from corroding the bottom electrode layer 103 through the uneven portion.
  • area A shows a cornered end face.
  • Fig. 2B is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • the difference between it and Fig. 2A is that, in Fig. 2B, a barrier layer 109 is added, as shown in Fig. 2B, the bottom electrode layer 103 covers a barrier layer 109 and the barrier layer 109 defines the upper boundary of the acoustic mirror cavity 102 .
  • the barrier layer 109 is additionally provided with respect to the structure shown in Figure 2A, in addition to the advantages or technical effects of the structure shown in Figure 2A can be obtained, the barrier layer 109 in the structure shown in Figure 2B can also be designed to release, for example, HF The agent has a resistive effect, so that the corrosion of the bottom electrode layer 103 from the B side shown in FIG. 1 can be avoided or reduced.
  • the barrier layer 109 may also extend inside the non-electrode connection end of the bottom electrode layer 103 at the non-electrode connection end.
  • the barrier layer 109 may extend outside the non-electrode connection end of the bottom electrode layer 103 at the non-electrode connection end. At this time, the non-electrode connection end of the bottom electrode layer 104 may cover the barrier layer 109. At least a portion of the upper side of layer 109 .
  • the manufacturing process of the resonator structure shown in FIG. 2B is exemplarily described below with reference to FIGS. 3A-3D .
  • a substrate 101 is provided and a cavity or groove is formed on the upper side of the substrate 101 , and the cavity or groove is filled with a sacrificial layer 115 .
  • the sacrificial layer 115 may be formed by a CMP (Chemical Mechanical Polishing, chemical mechanical polishing) process as shown in FIG. Structure.
  • the sacrificial layer 115 can be released in a subsequent step to form the acoustic mirror structure of the resonator.
  • a barrier material layer (corresponding to the barrier layer 109 ) is deposited and a bottom electrode aluminum layer (corresponding to the bottom electrode layer 103 ) is deposited thereon.
  • the bottom electrode aluminum layer (corresponding to the bottom electrode layer 103 ) is patterned to form the bottom electrode layer 103
  • the barrier material layer is patterned to form the barrier layer 109 .
  • the barrier layer 109 can be selected from AlN, SiN, etc., and can also be other material layers that can prevent the release agent mentioned later from corroding the metal aluminum bottom electrode layer 103 .
  • the non-electrode connection end of the barrier layer 109 may also be located outside or inside the non-electrode connection end of the bottom electrode layer 103 .
  • a bottom electrode material layer (corresponding to 104) is deposited, which covers the bottom electrode layer 103 and the upper surface of the substrate 101.
  • the bottom electrode layer The electrode material layer (corresponding to 104 ) covers the end surface of the non-electrode connection end of the bottom electrode layer 103 and the end surface of the barrier layer 109 .
  • the bottom electrode material layer (corresponding to 104 ) is patterned to form the bottom electrode layer 104 .
  • a piezoelectric layer 105 is deposited.
  • the top electrode 106 and the process layer 107 can be formed on the basis of the structure shown in FIG. 3D , so as to obtain the resonator structure shown in FIG. 2B .
  • the acoustic impedance of the bottom electrode layer 104 in FIGS. 2A and 2B may be higher than the acoustic impedance of the bottom electrode layer 103, FIG.
  • the conductivity of the bottom electrode layer 103 in FIG. 2A and FIG. 2B is higher than that of the bottom electrode layer 104 .
  • FIG. 4 is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • a barrier layer 116 is disposed between the lower side of the bottom electrode layer 103 and the upper side of the barrier layer 109 .
  • the material of the barrier layer 116 can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, or non-metal. This can further improve the protection of the bottom electrode layer 103 .
  • the barrier layer 116 is a metal layer, it serves as a part of the bottom electrode.
  • the bottom electrode layer 104 also covers the end surfaces of the barrier layer 109 and the barrier layer 116 .
  • the top electrode may also include an electrode layer of metal Al, and in this case, a barrier layer or cladding layer for protecting it from corrosion may be provided.
  • the top electrode of the resonator includes a top electrode layer 106 and a top electrode layer 117, the top electrode layer 117 is a metal layer including aluminum, and the top electrode layer 117 covers the top electrode layer. At least a portion of the upper side of the electrode layer 106 .
  • the end faces of the non-electrode connection ends of the top electrode layer 117 and the top electrode layer 106 are flush, and the process layer 107 covers the upper side of the top electrode layer 117 as a top electrode cladding layer or barrier layer, and covers the top electrode layer 117 On the end face of the non-electrode connection end.
  • the top electrode of the resonator includes a top electrode layer 106 and a top electrode layer 117, the top electrode layer 117 is a metal layer including aluminum, and the top electrode layer 117 covers the top electrode layer 106. At least a portion of the upper side of the electrode layer 106 .
  • a top electrode cladding or barrier layer 118 covers at least a portion of the upper side of the top electrode layer 117 and covers the end face of the top electrode layer 117 at the non-electrode connection end.
  • the top electrode coating layer or barrier layer 118 is specially set; Not flush, the end surface of the top electrode layer 117 is inside the end surface of the top electrode layer 106 .
  • the resonator may also be provided with an acoustically mismatched structure arranged along the active area of the resonator.
  • Fig. 7 shows such an exemplary structure.
  • the top electrode is provided with an acoustic impedance mismatch structure 110 and a protruding structure 111 at both the non-electrode connection end and the electrode connection end. Both the acoustic impedance mismatch structure 110 and the protruding structure 111 belong to the acoustic mismatch structure.
  • acoustic impedance mismatching structure 110 or the protruding structure 111 may be provided, or other acoustic mismatching structures such as a concave structure may also be provided.
  • the position of the acoustically mismatched structure in the thickness direction of the resonator is not limited to being between the top electrode 106 and the piezoelectric layer 105 as shown in FIG. Layer and bottom electrode, etc., these are within the protection scope of the present invention.
  • the acoustic mirror 102 is disposed in the base 101 , but the present invention is not limited thereto.
  • the acoustic mirror can also be arranged in the bottom electrode, so that the bottom electrode is a gap electrode; the acoustic mirror can also be arranged between the bottom electrode and the substrate.
  • FIG. 8 is a schematic cross-sectional view of a BAW resonator according to still another exemplary embodiment of the present invention.
  • the acoustic mirror of the resonator is disposed in the bottom electrode.
  • a gap layer 102 is defined between the bottom electrode layer 112 and the bottom electrode layer 103 including metal Al.
  • the material of the bottom electrode layer 112 may be different from that of the bottom electrode layer 103 .
  • a barrier layer 116 is provided between the lower side of the bottom electrode layer 103 and the upper side of the barrier layer 109 .
  • the material of the barrier layer 116 can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or a combination of the above metals or their alloys, or non-metal. This can further improve the protection of the bottom electrode layer 103 . Additionally, where barrier layer 116 is a metal layer, it acts as part of the bottom electrode.
  • the bottom electrode layer 104 covers the end surface of the bottom electrode layer 103 and the end surfaces of the barrier layers 116 and 109 , and the end of the bottom electrode layer 112 is outside the end of the bottom electrode layer 103 .
  • the end surface of the bottom electrode layer 104 is flush with the end surface of the bottom electrode layer 112 .
  • the material of the bottom electrode layer 104 and the material of the bottom electrode layer 112 may be the same. In this way, in the subsequent patterning process, it is beneficial to make the end surface of the bottom electrode layer 104 flush with the end surface of the bottom electrode layer 112 .
  • the end face of the bottom electrode layer 103 comprising metal Al in Figure 8 and the end face of the bottom electrode layer 112 can be flush, and the bottom electrode
  • the non-electrode connection end of layer 104 covers the end faces of bottom electrode layers 103 and 112 .
  • the end surfaces of the bottom electrode layers 103 and 112 in FIG. 8 may not be flush, but the non-electrode connection end of the bottom electrode layer 104 at least covers the end surface of the bottom electrode layer 103 .
  • a barrier layer 116 is provided between the lower side of the bottom electrode layer 103 and the upper side of the barrier layer 109, which defines the upper side of the acoustic mirror cavity 102. side border.
  • the gap layer 102 is disposed between the bottom electrode layer 104 and the bottom electrode layer 103 comprising metal Al, and at the same time, at the non-electrode connection end of the bottom electrode, the end of the bottom electrode layer 104 covers the end surface of the bottom electrode layer 103 .
  • a barrier layer 109 is provided between the upper side of the bottom electrode layer 103 and the lower side of the barrier layer 116 that defines the lower side boundary of the acoustic mirror cavity 102 .
  • the barrier layer 116 may not be provided in FIGS. 8-10 , which is also within the protection scope of the present invention.
  • the barrier layer can be designed to resist the release agent, such as HF, so that it can avoid or reduce Corrosion of layer 103.
  • the barrier layer 116 and the barrier layer 109 may not be provided in FIGS. 8-10 , which is also within the protection scope of the present invention.
  • up and down are relative to the bottom surface of the base of the resonator.
  • the side close to the bottom surface is the bottom side
  • the side away from the bottom surface is the top side.
  • inner and outer are relative to the center of the effective area of the resonator (the overlapping area of the piezoelectric layer, the top electrode, the bottom electrode and the acoustic mirror in the thickness direction of the resonator constitutes the effective area) (i.e. the center of the effective area )
  • the side or end of a component that is close to the center of the effective area is the inner or inner end, while the side or end of the component that is far from the center of the effective area is the outer or outer end.
  • the bulk acoustic wave resonator according to the present invention can be used to form filters or electronic devices.
  • a bulk acoustic wave resonator comprising:
  • the bottom electrode includes a plurality of electrode layers, the plurality of electrode layers at least includes a first electrode layer and a second electrode layer arranged in the thickness direction of the resonator, the first electrode layer is closer to the second electrode layer than the second electrode layer
  • the substrate, the first electrode layer is a metal layer including aluminum
  • the end surface of the first electrode layer is covered by the second electrode layer.
  • the acoustic mirror of the resonator is an acoustic mirror cavity
  • the resonator also includes a barrier layer overlying the first electrode layer and defining an upper boundary of the acoustic mirror cavity.
  • the acoustic mirror cavity is disposed in the substrate, and the non-electrode connection end of the first electrode layer is outside the boundary of the acoustic mirror cavity.
  • the second electrode layer covers the end surface of the barrier layer, or the second electrode layer covers at least a part of the upper surface of the barrier layer.
  • the barrier layer includes stacked multiple layers.
  • the barrier layer includes a first barrier layer and a second barrier layer, the material of the first barrier layer is one of aluminum nitride and silicon nitride, and the second barrier layer is arranged between the first barrier layer and the second barrier layer. between one electrode layer.
  • a gap layer is arranged in the bottom electrode, and the gap layer defines an acoustic mirror cavity of the resonator, and the resonator also includes a third electrode layer, and a gap is arranged between the third electrode layer and the first electrode layer. the interstitial layer;
  • the end of the third electrode layer is outside the end of the first electrode layer.
  • the material of the third electrode layer is the same as the material of the second electrode layer.
  • the end surface of the third electrode layer is flush with the end surface of the second electrode layer.
  • a gap layer is arranged in the bottom electrode, and the gap layer defines an acoustic mirror cavity of the resonator, and the resonator also includes a third electrode layer, and a gap is arranged between the third electrode layer and the first electrode layer. the interstitial layer;
  • the end of the second electrode layer is outside the end of the first electrode layer and the end of the third electrode layer to cover at least the end surface of the first electrode layer.
  • the gap layer is arranged between the second electrode layer and the first electrode layer.
  • the material of the barrier layer is one of aluminum nitride and silicon nitride.
  • the top electrode includes a first top electrode layer and a second top electrode layer, the second top electrode layer is a metal layer including aluminum, the second top electrode layer covers the upper side of the first top electrode layer at least in part;
  • the resonator further includes a top electrode coating layer covering an upper side of the second top electrode layer and an end face of the second top electrode layer at a non-electrode connection end.
  • the cladding layer includes a third top electrode layer, the top electrode includes the first top electrode layer, the second top electrode layer, and the third top electrode layer; or
  • the cladding layer includes a process layer or a dielectric layer, and the process layer or dielectric layer covers the top electrode.
  • the resonator is also provided with an acoustically mismatched structure disposed along the active area of the resonator.
  • a method of manufacturing a bulk acoustic wave resonator comprising a bottom electrode and a piezoelectric layer, the bottom electrode comprising a plurality of electrode layers, the plurality of electrode layers including at least one layer arranged in the thickness direction of the resonator
  • the first electrode layer and the second electrode layer, the first electrode layer is closer to the substrate than the second electrode layer, the first electrode layer is a metal layer including aluminum, and the method includes the steps of:
  • the end surface of the non-electrode connection end of the first electrode layer is covered with the second electrode layer.
  • the acoustic mirror of the resonator is an acoustic mirror cavity
  • the method further comprises the step of providing a barrier layer on the underside of the first electrode layer, the barrier layer defining an upper boundary of the acoustic mirror cavity.
  • the top electrode comprises a top electrode layer which is a metal layer comprising aluminum;
  • the method further includes the step of providing a top electrode coating layer covering an upper side of the top electrode layer and an end surface of the top electrode layer at a non-electrode connection end.
  • the cladding layer is a part of the top electrode, or a dielectric layer or a process layer.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-14.
  • An electronic device comprising the filter according to 19, or the bulk acoustic wave resonator according to any one of 1-14.
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-ends, filter amplifier modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

本发明涉及一种体声波谐振器及其制造方法。该谐振器包括基底、底电极、顶电极和压电层。底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基底,第一电极层为包括铝的金属层。在底电极的非电极连接端,第一电极层的端面被第二电极层所覆盖。谐振器的声学镜可为声学镜空腔。谐振器还可包括阻挡层,第一电极层覆盖阻挡层且阻挡层限定声学镜空腔的上侧边界。本发明还涉及一种滤波器以及一种电子设备。

Description

具有多个底电极层的体声波谐振器、滤波器及电子设备 技术领域
本发明的实施例涉及半导体领域,尤其涉及一种体声波谐振器及其制造方法、一种具有该谐振器的滤波器以及一种电子设备。
背景技术
电子器件作为电子设备的基本元素,已经被广泛应用,其应用范围包括移动电话、汽车、家电设备等。此外,未来即将改变世界的人工智能、物联网、5G通讯等技术仍然需要依靠电子器件作为基础。
薄膜体声波谐振器(Film Bulk Acoustic Resonator,简称FBAR,又称为体声波谐振器,也称BAW)作为压电器件的重要成员正在通信领域发挥着重要作用,特别是FBAR滤波器在射频滤波器领域市场占有份额越来越大,FBAR具有尺寸小、谐振频率高、品质因数高、功率容量大、滚降效应好等优良特性,其滤波器正在逐步取代传统的声表面波(SAW)滤波器和陶瓷滤波器,在无线通信射频领域发挥巨大作用,其高灵敏度的优势也能应用到生物、物理、医学等传感领域。
薄膜体声波谐振器的结构主体为由电极-压电薄膜-电极组成的“三明治”结构,即两层金属电极层之间夹一层压电材料。通过在两电极间输入正弦信号,FBAR利用逆压电效应将输入电信号转换为机械谐振,并且再利用压电效应将机械谐振转换为电信号输出。
对于体声波谐振器,采用了将底电极设置为包括多层电极的形式。如图1所示,该谐振器包括基底101、声学镜或声学镜空腔102、底电极层103、底电极层104、压电层105、顶电极106、钝化层或工艺层107。
因为金属Al的声阻抗较低,所以底电极的多层电极中的远离压电层的电极层,即图1中的底电极层103,常常采用金属Al。但是,在如图1所示的谐振器结构中,声学镜空腔102通常是使用HF来腐蚀牺牲材料SiO2形成,在利用HF释放牺牲材料的过程中,HF容易与图1中的位于声学镜空腔102的上侧的底电极层103的表面B接触,而且也容易通过在图1中A所示的不平整部分腐蚀底电极层103,从而导致谐振器结构的破坏。
发明内容
为缓解或解决现有技术中的上述问题的至少一个方面,提出本发明。
根据本发明的实施例的一个方面,提出了一种体声波谐振器。所述体声波谐振器包括基底、底电极、顶电极和压电层。底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基底,第一电极层为包括铝的金属层。在底电极的非电极连接端,第一电极层的端面被第二电极层所覆盖。
可选的,所述谐振器的声学镜为声学镜空腔。所述谐振器还包括阻挡层,第一电极层覆盖阻挡层且阻挡层限定声学镜空腔的上侧边界。
根据本发明的实施例的另一方面,提出了一种体声波谐振器的制造方法,所述谐振器包括底电极和压电层,底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基底,第一电极层为包括铝的金属层。所述方法包括:以第二电极层覆盖第一电极层的非电极连接端的端面。
本发明的实施例还涉及一种滤波器,包括上述的体声波谐振器。
本发明的实施例也涉及一种电子设备,包括上述的滤波器或者上述的谐振器。
附图说明
以下描述与附图可以更好地帮助理解本发明所公布的各种实施例中的这些和其他特点、优点,图中相同的附图标记始终表示相同的部件,其中:
图1为已知的体声波谐振器的截面示意图;
图2A为根据本发明的一个示例性实施例的体声波谐振器的截面示意图;
图2B为根据本发明的另一个示例性实施例的体声波谐振器的截面示意图;
图3A-3D为根据本发明的一个示例性实施例的示意性示出图2B中的体声波谐振器的制造过程的截面示意图;以及
图4-10为根据本发明的不同示例性实施例的体声波谐振器的截面示意图。
具体实施方式
下面通过实施例,并结合附图,对本发明的技术方案作进一步具体的说明。在说明书中,相同或相似的附图标号指示相同或相似的部件。下述参照附图对本发明实施方式的说明旨在对本发明的总体发明构思进行解释,而不应当理解为对本发明的一种限制。发明的一部分实施例,而并不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
对于底电极包括多层底电极层的体声波谐振器,在底电极的靠近声学镜空腔的电极层包括金属铝的情况下,本发明提出减少或者防止该电极层在谐振器的声学镜空腔形成过程中被腐蚀的方案。
本发明中的附图标记说明如下:
101:基底,可选材料为单晶硅、氮化镓、砷化镓、蓝宝石、石英、碳化硅、金刚石等。
102:声学镜,可为空腔,例也可采用布拉格反射层及其他等效形式。
103:底电极层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等。
104:底电极层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,底电极层103与底电极层104的材料可以不同。
105:压电层,材料可以为氮化铝、氮化镓、铌酸锂、锆钛酸铅(PZT)、铌酸钾、石英薄膜、氧化锌等,还可是包含上述材料的一定原子比的稀土元素掺杂材料,例如可以是掺杂氮化铝,掺杂氮化铝至少含一种稀土元素,如钪(Sc)、钇(Y)、镁(Mg)、钛(Ti)、镧(La)、铈(Ce)、镨(Pr)、钕(Nd)、钷(Pm)、钐(Sm)、铕(Eu)、钆(Gd)、铽(Tb)、镝(Dy)、钬(Ho)、铒(Er)、铥(Tm)、镱(Yb)、镥(Lu)等。
106:顶电极或顶电极层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等。顶电极和底电极材料一般相同,但也可以不同。
107:介质层或工艺层,其材料一般为介质材料,例如可以为氮化铝、二氧化硅、氮化硅等。如能够理解的,也可以不设置介质层或工艺层。
109:种子层或者阻挡层,材料可选AlN、SiN等。
110:声阻抗不匹配结构:可以是空气、SiO 2、SiN等,如后面提及的,也可以不设置声阻抗不匹配结构。声阻抗不匹配结构是声学不匹配结构中的一种。
111:凸起结构,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的符合或其合金等,也可以不设置凸起结构。凸起结构是声学不匹配结构中的一种。虽然在图中没有示出,也可以设置例如凹陷结构、桥结构、悬翼结构等声学不匹配结构。
112:底电极层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,底电极层112的材料可以与底电极层104相同或不同。
115:牺牲层,材料可以是AlN、SiN、SiO 2等。
116:阻挡层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,也可以是非金属。
117:顶电极层,为包括金属Al的电极层。
118:阻挡层或包覆层,材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,也可以是非金属。
图2A为根据本发明的一个示例性实施例的体声波谐振器的截面示意图。如图2A所示,体声波谐振器包括:基底101;声学镜102,在图2中其为空腔形式;底电极,包括在谐振器的厚度方向上设置的底电极层103和底电极层104,底电极层103和底电极层104的材料彼此不同,底电极层103为包括铝的金属层;顶电极106;和压电层105,设置在底电极与顶电极106之间。
在图2A中,谐振器还包括介质层或工艺层107,如前所述的,也可以不设置介质层或工艺层107。
在图2A所示的实施例中,如能够理解的,底电极可以不是仅仅包括底电极层103和底电极层104,还可以包括更多的底电极层。
如图2A所示,声学镜102设置在基底101中,而底电极层103则覆盖在声学镜102的上侧,底电极层104覆盖底电极层103的上侧且在谐振 器的厚度方向上处于压电层105与底电极层103之间。
从图2A可以看出,在底电极的非电极连接端,底电极层103的端面被底电极层104所覆盖。如此,以底电极层104的非电极连接端的端面替代了图1中的区域A处的不平整部分,这有利于避免或降低释放剂经由该不平整部分腐蚀底电极层103。此外,在图1中,区域A显示了带转角的端面,采用如图2A所示的结构,就以底电极层104的非电极连接端的端面替代了图1中的区域A处的带转角的端面,有利于后续的压电层105、顶电极106的沉积,从而也可以避免或降低图1中的A处的转角结构导致的缺陷。
图2B为根据本发明的另一个示例性实施例的体声波谐振器的截面示意图,其与图2A的区别在于,在图2B中,增加了阻挡层109,如图2B所示,底电极层103覆盖阻挡层109且阻挡层109限定声学镜空腔102的上侧边界。
因为相对于图2A所示结构另外设置了阻挡层109,除了可以获得图2A所示结构的优点或者技术效果之外,图2B所示结构中的阻挡层109还可设计为对例如HF的释放剂有阻抗作用,从而可以避免或减少从图1所示的B面对底电极层103的腐蚀。
在可选的实施例中,虽然没有示出,阻挡层109在非电极连接端也可以延伸到底电极层103的非电极连接端的内侧。
在可选的实施例中,虽然没有示出,阻挡层109在非电极连接端也可以延伸到底电极层103的非电极连接端的外侧,此时,底电极层104的非电极连接端可以覆盖阻挡层109的上侧的至少一部分。
下面参照图3A-3D示例性说明图2B所示的谐振器结构的制造过程。
如图3A所示,提供基底101以及在基底101的上侧形成空腔或凹槽,空腔或凹槽中填充了牺牲层115。如能够理解的,牺牲层115可以是在基底101的上侧设置牺牲材料层(其会填充基底上侧的空腔)后,采用CMP(Chemical Mechanical Polishing,化学机械抛光)工艺形成图3A所示的结构。牺牲层115在后续的步骤中可以被释放以形成谐振器的声学镜结构。
如图3B所示,在图3A所示结构的基础上,沉积阻挡材料层(对应于阻挡层109)以及在其上沉积底电极铝层(对应于底电极层103)。接着,对底电极铝层(对应于底电极层103)图形化以形成底电极层103,对阻 挡材料层图形化以形成阻挡层109。阻挡层109可选AlN、SiN等,也可以是其他能阻挡对后面提及的释放剂对金属铝的底电极层103的腐蚀的其他材料层。虽然没有示出,阻挡层109的非电极连接端也可以处于底电极层103的非电极连接端的外侧或内侧。
如图3C所示,在图3B所示结构的基础上,沉积底电极材料层(对应于104),其覆盖底电极层103、基底101的上表面,明显的,如图3C所示,底电极材料层(对应于104)覆盖了底电极层103的非电极连接端的端面以及阻挡层109的端面。然后,对底电极材料层(对应于104)图形化以形成底电极层104。
如图3D所示,在图3C所示结构的基础上,沉积压电层105。
虽然没有示出,如本领域技术人员能够理解的,可以在图3D所示结构的基础上形成顶电极106以及工艺层107,从而得到图2B所示的谐振器结构。
在进一步可选的实施例中,对于底电极层103和底电极层104的材料不同,可以是图2A和图2B中的底电极层104的声阻抗高于底电极层103的声阻抗,图2A和图2B中的底电极层103的导电率高于底电极层104的导电率。
图4为根据本发明的另一个示例性实施例的体声波谐振器的截面示意图。图4所示结构与图2B所示结构的不同在于,在图4中,在底电极层103的下侧与阻挡层109的上侧之间设置有阻挡层116。阻挡层116的材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,也可以是非金属。这可以进一步提高对底电极层103的保护。此外,在阻挡层116为金属层的情况下,其作为底电极的一部分。
在图4中,在底电极的非电极连接端,底电极层104还覆盖阻挡层109、阻挡层116的端面。
在本发明的示例性实施例中,顶电极也可以包括金属Al的电极层,此时,可以设置用于保护其免受腐蚀的阻挡层或包覆层。
在本发明的一个示例性实施例中,如图5所示,谐振器的顶电极包括顶电极层106和顶电极层117,顶电极层117为包括铝的金属层,顶电极层117覆盖顶电极层106的上侧的至少一部分。在图5中,顶电极层117和顶电极层106的非电极连接端的端面齐平,工艺层107作为顶电极包覆 层或阻挡层覆盖顶电极层117的上侧,且覆盖顶电极层117在非电极连接端的端面。
在本发明的一个示例性实施例中,如图6所示,谐振器的顶电极包括顶电极层106和顶电极层117,顶电极层117为包括铝的金属层,顶电极层117覆盖顶电极层106的上侧的至少一部分。在图6中,顶电极包覆层或阻挡层118覆盖顶电极层117的上侧的至少一部分,且覆盖顶电极层117在非电极连接端的端面。图6所示结构与图5所示结构的不同在于,在图6中,专门设置了顶电极包覆层或阻挡层118;此外,顶电极层117和顶电极层106的非电极连接端的端面并未齐平,顶电极层117的端面处于顶电极层106的端面的内侧。
在本发明的一个实施例中,谐振器还可设置有沿谐振器的有效区域设置的声学不匹配结构。图7示出了这样的示例性结构。图7中,顶电极在非电极连接端以及电极连接端均设置有声阻抗不匹配结构110和凸起结构111。声阻抗不匹配结构110和凸起结构111均属于声学不匹配结构。在另外具体的实施例中,可以仅设置声阻抗不匹配结构110或凸起结构111,或者,还可以设置凹陷结构等其他的声学不匹配结构。此外,声学不匹配结构在谐振器的厚度方向上的位置也不限于图7中所示的处于顶电极106与压电层105之间,也可以设置在压电层中,或者设置在压电层与底电极之间等,这些均在本发明的保护范围之内。
在图2-图7所示的实施例中,声学镜102设置在基底101中,但是本发明不限于此。声学镜也可以设置在底电极中,从而底电极为间隙电极;声学镜也可以设置在底电极与基底之间。这些均在本发明的保护范围之内。
图8为根据本发明的又一个示例性实施例的体声波谐振器的截面示意图,在图8所示的结构中,谐振器的声学镜设置在底电极中。如图8所示,底电极层112与包括金属Al的底电极层103之间限定有空隙层102。可选的,底电极层112的材料可以不同于底电极层103的材料。
在图8中,在底电极层103的下侧与阻挡层109的上侧之间设置有阻挡层116。阻挡层116的材料可选钼、钌、金、铝、镁、钨、铜、钛、铱、锇、铬或以上金属的复合或其合金等,也可以是非金属。这可以进一步提高对底电极层103的保护。此外,在阻挡层116为金属层的情况下,其作 为底电极的一部分。
如图8所示,在非电极连接端,底电极层104覆盖底电极层103的端面以及阻挡层116和109的端面,底电极层112的端部处于底电极层103的端部的外侧。
在可选的实施例中,如图8所示,底电极层104的端面与底电极层112的端面齐平。底电极层104的材料与底电极层112的材料可以相同,这样,在后续的图形化过程中,有利于使得底电极层104的端面与底电极层112的端面齐平。
如图9所示,在另外的实施例中,在底电极的非电极连接端,在图8中的包括金属Al的底电极层103的端面和底电极层112的端面可以齐平,底电极层104的非电极连接端覆盖底电极层103和112的端面。在另外可选的实施例中,图8中的底电极层103和112的端面可以不齐平,但底电极层104的非电极连接端至少覆盖底电极层103的端面。
在图9中,如图所示,与图8相似的,在底电极层103的下侧与阻挡层109的上侧之间设置有阻挡层116,阻挡层109限定声学镜空腔102的上侧边界。
也可以不另外设置底电极层112,而是在底电极层103和底电极层104之间形成间隙层,图10中示出了这样的示例性实施例。参见图10,空隙层102设置在底电极层104和包括金属Al的底电极层103之间,同时,在底电极的非电极连接端,底电极层104的端部覆盖底电极层103的端面。
在图10中,如图所示,在底电极层103的上侧与阻挡层116的下侧之间设置阻挡层109,阻挡层116的上侧限定声学镜空腔102的下侧边界。
如能够理解的,在本发明的另外的实施例中,图8-10中也可以不设置阻挡层116,这也在本发明的保护范围之内。
在本发明中,在阻挡层限定声学镜空腔的边界的情况下,阻挡层可设计为对例如HF的释放剂有阻抗作用,从而可以避免或减少从图1所示的B面对底电极层103的腐蚀。
如能够理解的,在本发明的另外的实施例中,图8-10中也可以不设置阻挡层116和阻挡层109,这也在本发明的保护范围之内。
在本发明中,上和下是相对于谐振器的基底的底面而言的,对于一个部件,其靠近该底面的一侧为下侧,远离该底面的一侧为上侧。
在本发明中,内和外是相对于谐振器的有效区域(压电层、顶电极、底电极和声学镜在谐振器的厚度方向上的重叠区域构成有效区域)的中心(即有效区域中心)在横向方向或者径向方向上而言的,一个部件的靠近有效区域中心的一侧或一端为内侧或内端,而该部件的远离有效区域中心的一侧或一端为外侧或外端。对于一个参照位置而言,位于该位置的内侧表示在横向方向或径向方向上处于该位置与有效区域中心之间,位于该位置的外侧表示在横向方向或径向方向上比该位置更远离有效区域中心。
如本领域技术人员能够理解的,根据本发明的体声波谐振器可以用于形成滤波器或电子设备。
基于以上,本发明提出了如下技术方案:
1、一种体声波谐振器,包括:
基底;
底电极;
顶电极;和
压电层,
其中:
所述底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基底,第一电极层为包括铝的金属层;
在底电极的非电极连接端,所述第一电极层的端面被所述第二电极层所覆盖。
2、根据1所述的谐振器,其中:
所述谐振器的声学镜为声学镜空腔;
所述谐振器还包括阻挡层,所述第一电极层覆盖所述阻挡层且所述阻挡层限定所述声学镜空腔的上侧边界。
3、根据2所述的谐振器,其中:
所述声学镜空腔设置在基底中,所述第一电极层的非电极连接端处于所述声学镜空腔的边界的外侧。
4、根据3所述的谐振器,其中:
在底电极的非电极连接端,所述第二电极层覆盖所述阻挡层的端面,或者所述第二电极层覆盖所述阻挡层的上表面的至少一部分。
5、根据2所述的谐振器,其中:
所述阻挡层包括叠置的多层。
6、根据5所述的谐振器,其中:
所述阻挡层包括第一阻挡层和第二阻挡层,所述第一阻挡层的材料为氮化铝、氮化硅中的一种,所述第二阻挡层设置在第一阻挡层与第一电极层之间。
7、根据2所述的谐振器,其中:
所述底电极中设置有空隙层,所述空隙层限定谐振器的声学镜空腔,所述谐振器还包括第三电极层,所述第三电极层与第一电极层之间设置有所述空隙层;
在底电极的非电极连接端,所述第三电极层的端部处于所述第一电极层的端部的外侧。
8、根据7所述的谐振器,其中:
所述第三电极层的材料与所述第二电极层的材料相同;且
在底电极的非电极连接端,所述第三电极层的端面与所述第二电极层的端面齐平。
9、根据2所述的谐振器,其中:
所述底电极中设置有空隙层,所述空隙层限定谐振器的声学镜空腔,所述谐振器还包括第三电极层,所述第三电极层与第一电极层之间设置有所述空隙层;
在底电极的非电极连接端,所述第二电极层的端部处于所述第一电极层的端部和第三电极层的端部的外侧以至少覆盖第一电极层的端面。
10、根据2所述的谐振器,其中:
所述第二电极层与第一电极层之间设置有所述空隙层。
11、根据2所述的谐振器,其中:
所述阻挡层的材料为氮化铝、氮化硅中的一种。
12、根据1所述的谐振器,其中:
所述顶电极包括第一顶电极层和第二顶电极层,所述第二顶电极层为包括铝的金属层,所述第二顶电极层覆盖所述第一顶电极层的上侧的至少一部分;且
所述谐振器还包括顶电极包覆层,其覆盖所述第二顶电极层的上侧以 及所述第二顶电极层在非电极连接端的端面。
13、根据12所述的谐振器,其中:
所述包覆层包括第三顶电极层,所述顶电极包括所述第一顶电极层、第二顶电极层和第三顶电极层;或者
所述包覆层包括工艺层或介质层,所述工艺层或介质层覆盖所述顶电极。
14、根据1-13中任一项所述的谐振器,其中:
所述谐振器还设置有沿所述谐振器的有效区域设置的声学不匹配结构。
15、一种体声波谐振器的制造方法,所述谐振器包括底电极和压电层,所述底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基底,第一电极层为包括铝的金属层,所述方法包括步骤:
以第二电极层覆盖所述第一电极层的非电极连接端的端面。
16、根据15所述的方法,其中:
所述谐振器的声学镜为声学镜空腔;
所述方法还包括步骤:设置处于第一电极层下侧的阻挡层,所述阻挡层限定所述声学镜空腔的上侧边界。
17、根据15所述的方法,其中:
所述顶电极包括顶电极层,所述顶电极层为包括铝的金属层;且
所述方法还包括步骤:设置顶电极包覆层,其覆盖所述顶电极层的上侧以及所述顶电极层在非电极连接端的端面。
18、根据17所述的方法,其中:
所述包覆层为顶电极的一部分,或者为介质层或工艺层。
19、一种滤波器,包括根据1-14中任一项所述的体声波谐振器。
20、一种电子设备,包括根据19所述的滤波器,或者根据1-14中任一项所述的体声波谐振器。
这里的电子设备,包括但不限于射频前端、滤波放大模块等中间产品,以及手机、WIFI、无人机等终端产品。
尽管已经示出和描述了本发明的实施例,对于本领域技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行 变化,本发明的范围由所附权利要求及其等同物限定。

Claims (20)

  1. 一种体声波谐振器,包括:
    基底;
    底电极;
    顶电极;和
    压电层,
    其中:
    所述底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基底,第一电极层为包括铝的金属层;以及
    在底电极的非电极连接端,所述第一电极层的端面被所述第二电极层所覆盖。
  2. 根据权利要求1所述的谐振器,其中:
    所述谐振器的声学镜为声学镜空腔;以及
    所述谐振器还包括阻挡层,所述第一电极层覆盖所述阻挡层且所述阻挡层限定所述声学镜空腔的上侧边界。
  3. 根据权利要求2所述的谐振器,其中,所述声学镜空腔设置在基底中,所述第一电极层的非电极连接端处于所述声学镜空腔的边界的外侧。
  4. 根据权利要求3所述的谐振器,其中,在底电极的非电极连接端,所述第二电极层覆盖所述阻挡层的端面,或者所述第二电极层覆盖所述阻挡层的上表面的至少一部分。
  5. 根据权利要求2所述的谐振器,其中,所述阻挡层包括叠置的多层。
  6. 根据权利要求5所述的谐振器,其中,所述阻挡层包括第一阻挡层和第二阻挡层,所述第一阻挡层的材料为氮化铝、氮化硅中的一种,所述第二阻挡层设置在第一阻挡层与第一电极层之间。
  7. 根据权利要求2所述的谐振器,其中:
    所述底电极中设置有空隙层,所述空隙层限定谐振器的声学镜空腔,所述谐振器还包括第三电极层,所述第三电极层与第一电极层之间设置有所述空隙层;以及
    在底电极的非电极连接端,所述第三电极层的端部处于所述第一电极层 的端部的外侧。
  8. 根据权利要求7所述的谐振器,其中:
    所述第三电极层的材料与所述第二电极层的材料相同;以及
    在底电极的非电极连接端,所述第三电极层的端面与所述第二电极层的端面齐平。
  9. 根据权利要求2所述的谐振器,其中:
    所述底电极中设置有空隙层,所述空隙层限定谐振器的声学镜空腔,所述谐振器还包括第三电极层,所述第三电极层与第一电极层之间设置有所述空隙层;以及
    在底电极的非电极连接端,所述第二电极层的端部处于所述第一电极层的端部和第三电极层的端部的外侧以至少覆盖第一电极层的端面。
  10. 根据权利要求2所述的谐振器,其中,所述第二电极层与第一电极层之间设置有所述空隙层。
  11. 根据权利要求2所述的谐振器,其中,所述阻挡层的材料为氮化铝、氮化硅中的一种。
  12. 根据权利要求1所述的谐振器,其中:
    所述顶电极包括第一顶电极层和第二顶电极层,所述第二顶电极层为包括铝的金属层,所述第二顶电极层覆盖所述第一顶电极层的上侧的至少一部分;以及
    所述谐振器还包括顶电极包覆层,其覆盖所述第二顶电极层的上侧以及所述第二顶电极层在非电极连接端的端面。
  13. 根据权利要求12所述的谐振器,其中:
    所述包覆层包括第三顶电极层,所述顶电极包括所述第一顶电极层、第二顶电极层和第三顶电极层;或者
    所述包覆层包括工艺层或介质层,所述工艺层或介质层覆盖所述顶电极。
  14. 根据权利要求1-13中任一项所述的谐振器,其中,所述谐振器还设置有沿所述谐振器的有效区域设置的声学不匹配结构。
  15. 一种体声波谐振器的制造方法,所述谐振器包括底电极和压电层,所述底电极包括多个电极层,所述多个电极层至少包括在谐振器的厚度方向上设置的第一电极层和第二电极层,第一电极层相比于第二电极层更靠近基 底,第一电极层为包括铝的金属层,所述方法包括:
    以第二电极层覆盖所述第一电极层的非电极连接端的端面。
  16. 根据权利要求15所述的方法,其中,所述谐振器的声学镜为声学镜空腔,所述方法还包括:
    设置处于第一电极层下侧的阻挡层,所述阻挡层限定所述声学镜空腔的上侧边界。
  17. 根据权利要求15所述的方法,其中,所述顶电极包括顶电极层,所述顶电极层为包括铝的金属层,所述方法还包括:
    设置顶电极包覆层,其覆盖所述顶电极层的上侧以及所述顶电极层在非电极连接端的端面。
  18. 根据权利要求17所述的方法,其中,所述包覆层为顶电极的一部分,或者为介质层或工艺层。
  19. 一种滤波器,包括根据权利要求1-14中任一项所述的体声波谐振器。
  20. 一种电子设备,包括根据权利要求19所述的滤波器,或者根据权利要求1-14中任一项所述的体声波谐振器。
PCT/CN2022/109111 2021-07-29 2022-07-29 具有多个底电极层的体声波谐振器、滤波器及电子设备 WO2023006092A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110863351.5 2021-07-29
CN202110863351.5A CN115694410A (zh) 2021-07-29 2021-07-29 具有多个底电极层的体声波谐振器、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2023006092A1 true WO2023006092A1 (zh) 2023-02-02

Family

ID=85057655

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109111 WO2023006092A1 (zh) 2021-07-29 2022-07-29 具有多个底电极层的体声波谐振器、滤波器及电子设备

Country Status (2)

Country Link
CN (1) CN115694410A (zh)
WO (1) WO2023006092A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111049490A (zh) * 2019-12-31 2020-04-21 诺思(天津)微系统有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN111082774A (zh) * 2019-10-23 2020-04-28 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111245394A (zh) * 2019-12-16 2020-06-05 诺思(天津)微系统有限责任公司 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
CN111600566A (zh) * 2020-04-21 2020-08-28 诺思(天津)微系统有限责任公司 滤波器、体声波谐振器组件及其制造方法、电子设备
CN111934643A (zh) * 2020-07-13 2020-11-13 诺思(天津)微系统有限责任公司 压电层双侧设置质量负载的体声波谐振器、滤波器及电子设备
WO2021073022A1 (zh) * 2019-10-18 2021-04-22 天津大学 带不导电插入层的体声波谐振器、滤波器和电子设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073022A1 (zh) * 2019-10-18 2021-04-22 天津大学 带不导电插入层的体声波谐振器、滤波器和电子设备
CN111082774A (zh) * 2019-10-23 2020-04-28 诺思(天津)微系统有限责任公司 电极具有空隙层的体声波谐振器、滤波器及电子设备
CN111245394A (zh) * 2019-12-16 2020-06-05 诺思(天津)微系统有限责任公司 电极具有空隙层与温补层的体声波谐振器、滤波器及电子设备
CN111049490A (zh) * 2019-12-31 2020-04-21 诺思(天津)微系统有限责任公司 带电学隔离层的体声波谐振器及其制造方法、滤波器及电子设备
CN111600566A (zh) * 2020-04-21 2020-08-28 诺思(天津)微系统有限责任公司 滤波器、体声波谐振器组件及其制造方法、电子设备
CN111934643A (zh) * 2020-07-13 2020-11-13 诺思(天津)微系统有限责任公司 压电层双侧设置质量负载的体声波谐振器、滤波器及电子设备

Also Published As

Publication number Publication date
CN115694410A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US10284173B2 (en) Acoustic resonator device with at least one air-ring and frame
US9444426B2 (en) Accoustic resonator having integrated lateral feature and temperature compensation feature
CN113497596B (zh) 体声波谐振器、体声波谐振器组件、滤波器及电子设备
US10367472B2 (en) Acoustic resonator having integrated lateral feature and temperature compensation feature
JPH08148968A (ja) 薄膜圧電素子
CN107317561B (zh) 体声波谐振器及其制造方法
CN114070233A (zh) 降低寄生模式的体声波谐振器、滤波器及电子设备
WO2022037572A1 (zh) 顶电极具有上下空隙的体声波谐振器及制造方法、滤波器及电子设备
WO2022228385A1 (zh) 具有加厚电极的体声波谐振器、滤波器及电子设备
WO2022228384A1 (zh) 体声波谐振器、滤波器及电子设备
WO2023006092A1 (zh) 具有多个底电极层的体声波谐振器、滤波器及电子设备
JP2005033379A (ja) 薄膜バルク波振動子およびその製造方法
JP2001168674A (ja) 圧電共振子及び電子機器
WO2023030359A1 (zh) 包括间隙电极的体声波谐振器、滤波器及电子设备
WO2022218376A1 (zh) 压电层下侧设置凸起和/或凹陷的体声波谐振器、滤波器及电子设备
WO2023207474A1 (zh) 滤波器、多工器、射频前端模组及滤波器的制备方法
WO2022188777A1 (zh) 体声波谐振器及其制造方法、滤波器及电子设备
WO2022161142A1 (zh) 体声波谐振器、滤波器及电子设备
WO2022135252A1 (zh) 带温补层的体声波谐振器、滤波器及电子设备
WO2023005420A1 (zh) 具有多个底电极层的体声波谐振器、滤波器及电子设备
WO2023006089A1 (zh) 具有多个底电极层的体声波谐振器、滤波器及电子设备
WO2023005426A1 (zh) 具有多个底电极层的体声波谐振器、滤波器及电子设备
WO2022188779A1 (zh) 谐振器及其制造方法、滤波器及电子设备
WO2022228486A1 (zh) 体声波谐振器及制造方法、滤波器及电子设备
JP2001156582A (ja) 圧電共振子

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848696

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848696

Country of ref document: EP

Kind code of ref document: A1