WO2023006089A1 - Résonateur acoustique de volume à couches ayant de multiples couches d'électrode inférieure, filtre et dispositif électronique - Google Patents

Résonateur acoustique de volume à couches ayant de multiples couches d'électrode inférieure, filtre et dispositif électronique Download PDF

Info

Publication number
WO2023006089A1
WO2023006089A1 PCT/CN2022/109099 CN2022109099W WO2023006089A1 WO 2023006089 A1 WO2023006089 A1 WO 2023006089A1 CN 2022109099 W CN2022109099 W CN 2022109099W WO 2023006089 A1 WO2023006089 A1 WO 2023006089A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
electrode
barrier
electrode layer
material layer
Prior art date
Application number
PCT/CN2022/109099
Other languages
English (en)
Chinese (zh)
Inventor
徐洋
庞慰
郝龙
张巍
Original Assignee
诺思(天津)微系统有限责任公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 诺思(天津)微系统有限责任公司 filed Critical 诺思(天津)微系统有限责任公司
Publication of WO2023006089A1 publication Critical patent/WO2023006089A1/fr

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H3/00Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators
    • H03H3/007Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks
    • H03H3/02Apparatus or processes specially adapted for the manufacture of impedance networks, resonating circuits, resonators for the manufacture of electromechanical resonators or networks for the manufacture of piezoelectric or electrostrictive resonators or networks
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03HIMPEDANCE NETWORKS, e.g. RESONANT CIRCUITS; RESONATORS
    • H03H9/00Networks comprising electromechanical or electro-acoustic devices; Electromechanical resonators
    • H03H9/02Details

Definitions

  • Embodiments of the present invention relate to the field of semiconductors, and in particular to a bulk acoustic wave resonator and a manufacturing method thereof, a filter with the resonator, and an electronic device.
  • FBAR Film Bulk Acoustic Resonator
  • BAW Bulk Acoustic Resonator
  • SAW surface acoustic wave
  • the structural body of the film bulk acoustic resonator is a "sandwich" structure composed of electrodes-piezoelectric film-electrodes, that is, a layer of piezoelectric material is sandwiched between two layers of metal electrode layers.
  • FBAR uses the inverse piezoelectric effect to convert the input electrical signal into a mechanical resonance, and then uses the piezoelectric effect to convert the mechanical resonance into an electrical signal output.
  • the resonator For the bulk acoustic wave resonator, a form in which the bottom electrode is provided to include multilayer electrodes is employed. As shown in FIG. 1 , the resonator includes a substrate 101 , an acoustic mirror 102 , a bottom electrode layer 103 , a bottom electrode layer 104 , a piezoelectric layer 105 , a top electrode 106 , and a passivation or process layer 107 . For the formation of the bottom electrode, when a bottom electrode layer is etched or patterned, the surface structure of the film layer under the bottom electrode layer may be damaged.
  • the etching of the two bottom electrode layers will cause a certain degree of damage to the substrate 101 in the region without the bottom electrode (such as the A region in FIG.
  • the top electrode can form severe defects that can affect the performance of the resonator.
  • a bulk acoustic wave resonator includes a substrate, a bottom electrode, a top electrode and a piezoelectric layer.
  • the bottom electrode includes a plurality of electrode layers at least including a first electrode layer and a second electrode layer arranged in the thickness direction of the resonator, and the materials of the first electrode layer and the second electrode layer are different.
  • the resonator also includes a plurality of barrier layers including at least a first barrier layer and a second barrier layer. The first electrode layer covers at least a part of the upper side of the first barrier layer in surface contact, and the second electrode layer covers at least a part of the upper side of the second barrier layer in surface contact.
  • a method for manufacturing the above bulk acoustic wave resonator including: forming a first electrode material layer on the first barrier material layer, and patterning the first electrode material layer to form The first electrode layer, the first barrier material layer is formed as a protective layer of the surface below the first barrier material layer.
  • Embodiments of the present invention also relate to a filter, including the above bulk acoustic wave resonator.
  • Embodiments of the present invention also relate to an electronic device, including the above-mentioned filter or the above-mentioned resonator.
  • Fig. 1 is a schematic cross-sectional view of a known bulk acoustic wave resonator
  • FIG. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention
  • 3A-3D are cross-sectional schematic diagrams schematically showing the manufacturing process of the bulk acoustic wave resonator in FIG. 2 according to an exemplary embodiment of the present invention
  • FIG. 4 is a schematic cross-sectional view of a bulk acoustic wave resonator according to another exemplary embodiment of the present invention.
  • Fig. 5 is a schematic cross-sectional view of a bulk acoustic wave resonator according to yet another exemplary embodiment of the present invention.
  • the present invention proposes a technical scheme of etching multilayer electrodes separately, and adding corresponding barrier layers to each electrode layer under the electrode layer to pattern the multilayer electrodes respectively, so as to ensure the front and back of each electrode layer and subsequent film layers. Neither layer structure is destroyed by, for example, etching.
  • the optional material is single crystal silicon, gallium nitride, gallium arsenide, sapphire, quartz, silicon carbide, diamond, etc.
  • Acoustic mirror which can be a cavity, for example, Bragg reflection layer and other equivalent forms can also be used.
  • the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or composites of the above metals or alloys thereof.
  • the bottom electrode layer, the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the composite of the above metals or their alloys, etc., the bottom electrode layer 103 and the bottom electrode layer 104 Materials can vary.
  • the material can be aluminum nitride, gallium nitride, lithium niobate, lead zirconate titanate (PZT), potassium niobate, quartz film, zinc oxide, etc., or a certain atomic ratio of the above materials
  • the rare earth element doped material for example, can be doped aluminum nitride, which contains at least one rare earth element, such as scandium (Sc), yttrium (Y), magnesium (Mg), titanium (Ti), lanthanum ( La), cerium (Ce), praseodymium (Pr), neodymium (Nd), promethium (Pm), samarium (Sm), europium (Eu), gadolinium (Gd), terbium (Tb), dysprosium (Dy), holmium ( Ho), erbium (Er), thulium (Tm), ytterbium (Yb), lutetium (Lu), etc
  • Sc scandium
  • the top electrode the material of which can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or composites of the above metals or alloys thereof.
  • the top and bottom electrodes are typically of the same material, but can also be different.
  • a dielectric layer or a process layer the material of which is generally a dielectric material, such as aluminum nitride, silicon dioxide, silicon nitride, etc. As can be understood, no dielectric layer or process layer may be provided.
  • a seed layer or a barrier layer the material of which may be AlN, SiN or the like.
  • a seed layer or a barrier layer the material of which may be AlN, SiN, etc.
  • Acoustic impedance mismatching structure it can be air, SiO 2 , SiN, etc., as mentioned later, and the acoustic impedance mismatching structure may not be provided.
  • the acoustic impedance mismatch structure is one of the acoustic mismatch structures.
  • Protruding structure the material can be selected from molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the above metals or their alloys, etc., and the protruding structure may not be provided.
  • the raised structure is one of the acoustically mismatched structures.
  • acoustically mismatching structures such as recessed structures, bridge structures, cantilever structures, etc. may also be provided.
  • Bottom electrode layer the material can be molybdenum, ruthenium, gold, aluminum, magnesium, tungsten, copper, titanium, iridium, osmium, chromium or the above metals or their alloys.
  • the material may be AlN, SiN, SiO 2 and so on.
  • FIG. 2 is a schematic cross-sectional view of a bulk acoustic wave resonator according to an exemplary embodiment of the present invention.
  • the bulk acoustic wave resonator includes: a substrate 101; an acoustic mirror 102, which is in the form of a cavity in Figure 2; a bottom electrode, including a bottom electrode layer 103 and a bottom electrode layer arranged in the thickness direction of the resonator 104, the materials of the bottom electrode layer 103 and the bottom electrode layer 104 are different from each other, and here, the different materials of the two reflect that the bottom electrode includes two bottom electrode layers instead of the superposition of metal layers of the same material; the top electrode 106;
  • the electrical layer 105 is disposed between the bottom electrode and the top electrode 106 .
  • the resonator further includes a dielectric layer or process layer 107 .
  • the dielectric layer or process layer 107 may not be provided.
  • the resonator also includes a barrier layer 108 and a barrier layer 109, the bottom electrode layer 104 covers at least a part of the upper side of the barrier layer 109 in a surface-contact manner, and the bottom electrode layer 103 covers the barrier layer in a surface-contact manner At least a portion of the upper side of 108.
  • the bottom electrode layer above the barrier layer constitutes a protective layer or barrier layer when the barrier layer is removed.
  • the end surface of the bottom electrode layer 103 is in contact with the end surface of the barrier layer 108
  • the end surface of the bottom electrode layer 104 is in contact with the end surface of the barrier layer 109 .
  • the end surface of the barrier layer 108 is inside the end surface of the bottom electrode layer 103
  • the end surface of the barrier layer 109 is at the bottom The inner side of the end surface of the electrode layer 104 .
  • the bottom electrode may not only include the bottom electrode layer 103 and the bottom electrode layer 104 , but may also include more bottom electrode layers.
  • the barrier layer may not only include two barrier layers 108 and 109, but may also include more barrier layers when more bottom electrode layers are provided. layer.
  • the film layer below the electrode layer can be protected from damage when the electrode layer above the blocking layer is etched or patterned.
  • the role of barrier layer 108 and barrier layer 109 are readily understood in the steps described with reference to FIGS. 3A-3D .
  • the lower side of the barrier layer 109 is in contact with the upper side of the substrate 101 , and the piezoelectric layer 105 covers the end surface of the barrier layer 109 and the upper side of the substrate 101 at the non-electrode connection end of the bottom electrode.
  • the barrier on the outside of the bottom electrode layer 104 can be removed in a manner that does not damage the upper surface of the substrate 101, such as wet etching.
  • the layer 109 in this way, can overcome or at least alleviate the technical problem that the piezoelectric layer and the top electrode grown subsequently in the region A in FIG. 1 will form serious defects mentioned in the background art.
  • the manufacturing process of the resonator structure shown in FIG. 2 is exemplarily described below with reference to FIGS. 3A-3D .
  • a substrate 101 is provided and a cavity or groove is formed on the upper side of the substrate 101 , and the cavity or groove is filled with a sacrificial layer 115 .
  • the sacrificial layer 115 may be formed by a CMP (Chemical Mechanical Polishing, chemical mechanical polishing) process as shown in FIG. Structure.
  • the sacrificial layer 115 can be released in a subsequent step to form the acoustic mirror structure of the resonator.
  • a barrier material layer (corresponding to 109) and a barrier material layer (corresponding to 108) are sequentially deposited; then a bottom electrode is deposited on the barrier material layer (corresponding to 108) material layer (corresponding to the bottom electrode layer 103); then, the bottom electrode material layer (corresponding to the bottom electrode layer 103) is patterned to form the bottom electrode layer 103, and the barrier material layer (corresponding to 108) is used as a protective lower film layer
  • the barrier material layer (corresponding to 108) is an etching barrier layer;
  • the surface of the material layer (corresponding to 109) is, for example, wet-etched to remove the barrier material layer on the outside of the bottom electrode layer 103 (the outside of the non-electrode connection end) to form a layer as shown in FIG.
  • barrier layer 108 barrier layer 108 . It can be seen that in FIG. 3B , because the bottom electrode layer 103 is used as a protective layer when patterning the barrier material layer, the end surface of the bottom electrode layer 103 is finally in contact with the end surface of the barrier layer 108 . In an optional embodiment, the end surface of the barrier layer 108 is inside the end surface of the bottom electrode layer 103 .
  • the end surface of the bottom electrode layer 104 is finally in contact with the end surface of the barrier layer 109 .
  • the end surface of the barrier layer 109 is inside the end surface of the bottom electrode layer 104 .
  • a piezoelectric layer 105 is deposited. It can be seen that in FIG. 3D , at the non-electrode connection end of the bottom electrode, the piezoelectric layer 105 covers the end surface of the barrier layer 109 and the upper side of the substrate 101 .
  • the barrier material layer on the outside of the bottom electrode layer 104 (outside of the electrode connection end) is removed in a manner that does not damage the upper surface of the substrate 101, for example, by wet etching. While forming the barrier layer 109 as shown in FIG. 3C , the surface of the substrate 101 at the non-electrode connection end is not damaged so that the flatness is high enough, thus avoiding the problem in the area A in FIG. 1 .
  • the top electrode 106 and the process layer 107 can be formed on the basis of the structure shown in FIG. 3D , so as to obtain the resonator structure shown in FIG. 2 .
  • the acoustic impedance of the bottom electrode layer 104 in FIG. 2 may be higher than the acoustic impedance of the bottom electrode layer 103.
  • the conductivity of the bottom electrode layer 103 is higher than that of the bottom electrode layer 104 .
  • barrier layer 108 may be AlN and barrier layer 109 may be SiN.
  • the barrier layer 108 and the barrier layer 109 can be made of other materials, which are all within the protection scope of the present invention.
  • the acoustic mirror 102 is disposed in the substrate 101, and the barrier layer 109 covers the upper side of the acoustic mirror 102, the barrier layer 108 covers the upper side of the barrier layer 109, and the bottom electrode layer 103 covers the upper side of the barrier layer 109. side and between the barrier layer 108 and the bottom electrode layer 104 in the thickness direction of the resonator.
  • the bottom electrode layer 104 covers the end surface of the barrier layer 108 at the non-electrode connection end of the bottom electrode layer 103 .
  • the resonator may also be provided with an acoustically mismatched structure arranged along the active area of the resonator.
  • Figure 4 shows such an exemplary structure.
  • the top electrode is provided with an acoustic impedance mismatch structure 110 and a protruding structure 111 at both the non-electrode connection end and the electrode connection end. Both the acoustic impedance mismatch structure 110 and the protruding structure 111 belong to the acoustic mismatch structure.
  • acoustic impedance mismatching structure 110 or the protruding structure 111 may be provided, or other acoustic mismatching structures such as a concave structure may also be provided.
  • the position of the acoustically mismatched structure in the thickness direction of the resonator is not limited to being between the top electrode 106 and the piezoelectric layer 105 as shown in FIG. Layer and bottom electrode, etc., these are within the protection scope of the present invention.
  • the acoustic mirror 102 is disposed in the base 101 , but the present invention is not limited thereto.
  • the acoustic mirror can also be arranged in the bottom electrode, so that the bottom electrode is a gap electrode; the acoustic mirror can also be arranged between the bottom electrode and the substrate.
  • FIG. 5 is a schematic cross-sectional view of a BAW resonator according to yet another exemplary embodiment of the present invention.
  • the acoustic mirror of the resonator is disposed in the bottom electrode.
  • a gap layer 102 is defined between the bottom electrode layer 112 and the bottom electrode layer 103 .
  • the material of the bottom electrode layer 112 may be different from that of the bottom electrode layer 103 .
  • barrier layer 108 defines at least a portion of the upper boundary of void layer 102 .
  • the bottom electrode further includes a bottom electrode layer 104, and at the non-electrode connection end of the bottom electrode, the bottom electrode layer 104 covers the upper side of the bottom electrode layer 112, covers the bottom electrode layer 103 and On the end surface of the barrier layer 108 , the material of the bottom electrode layer 104 is different from that of the bottom electrode layer 103 .
  • the material of the bottom electrode layer 104 can be the same as that of the bottom electrode layer 112 , and further, at the non-electrode connection end of the bottom electrode, the end surface of the bottom electrode layer 104 can be flush with the end surface of the bottom electrode layer 112 .
  • the bottom electrode layer 104 is at the non-electrode connection end of the bottom electrode, covering the end face of the barrier layer 108 and the end face of the bottom electrode layer 103 at the same time, but as can be understood, at the end face of the barrier layer 108
  • the bottom electrode layer 104 covers the end surface of the bottom electrode layer 103 but not the end surface of the barrier layer 108 , which is also within the protection scope of the present invention.
  • the acoustic impedance of the bottom electrode layer 104 is higher than that of the bottom electrode layer 103, and the conductivity of the bottom electrode layer 103 is higher than that of the bottom electrode layer 104.
  • the bottom electrode layer 104 is provided.
  • the bottom electrode layer 104 may not be provided.
  • the piezoelectric layer 105 directly covers the upper surface of the bottom electrode layer 103 .
  • the manufacturing process of the resonator structure shown in FIG. 5 is illustrated as follows.
  • the left side of the barrier material layer (corresponding to 108) can be patterned (to facilitate subsequent electrode material layers corresponding to the bottom electrode layer 103 and electrode material layer (corresponding to 112) electrical contact) while leaving its right side.
  • an electrode material layer corresponding to the bottom electrode layer 103 is deposited, and the electrode material layer is patterned to form the bottom electrode layer 103 (at this time, the barrier material layer (corresponding to 108 ) serves as a protection layer).
  • the right side of the barrier material layer (corresponding to 108) is patterned by wet etching to form the barrier layer 108 as shown in FIG.
  • the electrode material layer corresponding to the bottom electrode layer 112 The end surface of the finally formed barrier layer 108 may be in contact with the end surface of the bottom electrode layer 103 , or may be located inside the end surface of the bottom electrode layer 103 .
  • a layer of electrode material corresponding to the bottom electrode layer 104 may be deposited to cover the bottom electrode layer 103 and a layer of electrode material corresponding to the bottom electrode layer 112 . Then pattern the electrode material layer corresponding to the bottom electrode layer 104 and the electrode material layer corresponding to the bottom electrode layer 112 to form the bottom electrode layer 104 and the bottom electrode layer 112 .
  • the barrier material layer corresponding to the barrier layer 109 acts as a protection layer for the surface of the substrate 101 .
  • the barrier layer 109 outside the non-electrode connection end of the bottom electrode layer 112 formed after patterning is removed without damaging the upper surface of the substrate 101 during removal.
  • a piezoelectric layer 105 is provided to cover the end surface of the barrier layer 109 at the non-electrode connection end of the bottom electrode layer 112 with the piezoelectric layer 105 and to cover at least a part of the exposed surface of the substrate 101 with the piezoelectric layer 105 .
  • the acoustic mirror 102 is formed after the sacrificial layer (the area corresponding to 102 ) is released.
  • an acoustically mismatched structure similar to that of FIG. 4 may also be provided.
  • the arrangement of the acoustically mismatched structure described above with reference to FIG. 4 is also applicable to the structure shown in FIG. 5 , and will not be repeated here.
  • wet etching is used as an example to illustrate the etching of the barrier material layer to form a barrier layer
  • the present invention is not limited to wet etching, as long as "only the barrier material layer is etched, But do not damage the film layer below this barrier material layer, make its thickness constant (in the present invention, the constant thickness not only includes the situation that the thickness keeps the original thickness, but also includes the situation that the thickness is basically constant, such as the loss of thickness in the process. The situation within the allowable range)" etching process is included in the scope of "wet etching" in the claims of the present invention.
  • up and down are relative to the bottom surface of the base of the resonator.
  • the side close to the bottom surface is the bottom side
  • the side away from the bottom surface is the top side.
  • inner and outer are relative to the center of the effective area of the resonator (the overlapping area of the piezoelectric layer, the top electrode, the bottom electrode and the acoustic mirror in the thickness direction of the resonator constitutes the effective area) (i.e. the center of the effective area )
  • the side or end of a component that is close to the center of the effective area is the inner or inner end, while the side or end of the component that is far from the center of the effective area is the outer or outer end.
  • the bulk acoustic wave resonator according to the present invention can be used to form filters or electronic devices.
  • a bulk acoustic wave resonator comprising:
  • the bottom electrode includes a plurality of electrode layers, the plurality of electrode layers at least include a first electrode layer and a second electrode layer arranged in the thickness direction of the resonator, and the materials of the first electrode layer and the second electrode layer different;
  • the resonator further includes a plurality of barrier layers, the plurality of barrier layers includes at least a first barrier layer and a second barrier layer, and the first electrode layer covers at least an upper side of the first barrier layer in a surface-contact manner.
  • the second electrode layer covers at least a part of the upper side of the second barrier layer in surface contact.
  • the end surface of the first electrode layer is in contact with the end surface of the first barrier layer
  • the end surface of the first barrier layer is inside the end surface of the first electrode layer.
  • the underside of the first barrier layer is in contact with the upper side of the substrate
  • the piezoelectric layer covers the end surface of the first barrier layer and the upper side of the substrate.
  • the acoustic mirror of the resonator is arranged in a substrate, and the first barrier layer is arranged to cover the acoustic mirror of the resonator;
  • the second barrier layer is in contact with the first barrier layer and disposed on the upper side of the first barrier layer, the second electrode layer is disposed between the first electrode layer and the second barrier layer, and the first barrier layer the material of the layer is different from the material of said second barrier layer;
  • the first electrode layer covers the end face of the second barrier layer.
  • the end surface of the second electrode layer is in contact with the end surface of the second barrier layer
  • the end surface of the second barrier layer is inside the end surface of the second electrode layer.
  • the acoustic impedance of the first electrode layer is higher than that of the second electrode layer, and the conductivity of the second electrode layer is higher than that of the first electrode layer.
  • a void layer is defined between the first electrode layer and the second electrode layer, and the second barrier layer defines at least a portion of an upper boundary of the void layer.
  • the piezoelectric layer covers the upper side of the second electrode layer.
  • the bottom electrode also includes a third electrode layer, and at the non-electrode connection end of the bottom electrode, the third electrode layer covers at least a part of the upper side of the second electrode layer, and covers a portion of the first electrode layer. At least a part of the upper side covers the end surface of the second electrode layer, and the material of the third electrode layer is different from that of the second electrode layer.
  • the material of the third electrode layer is the same as that of the first electrode layer, and at the non-electrode connection end of the bottom electrode, the end faces of the first electrode layer and the third electrode layer are flush.
  • the acoustic impedance of the third electrode layer is higher than that of the second electrode layer, and the conductivity of the second electrode layer is higher than that of the third electrode layer.
  • the end surface of the second electrode layer is in contact with the end surface of the second barrier layer
  • the end surface of the second barrier layer is inside the end surface of the second electrode layer.
  • the resonator is also provided with an acoustically mismatched structure disposed along the active area of the resonator.
  • first electrode material layer on the first barrier material layer, and patterning the first electrode material layer to form a first electrode layer, the first barrier material layer being formed as a surface of the substrate below the first barrier material layer
  • the protective layer
  • the second barrier material layer being formed as a protection for a surface below the second barrier material layer layer.
  • first electrode material layer covering at least a part of the first barrier material layer, and patterning the first electrode material layer to form the first electrode layer so as to be exposed outside the non-electrode connection end of the first electrode layer
  • the first layer of barrier material
  • the end surface of the first barrier layer at the non-electrode connection end of the first electrode layer is covered with a piezoelectric layer, and at least a part of the exposed surface of the substrate is covered with a piezoelectric layer.
  • the materials of the first barrier material layer and the second barrier material layer are different from each other;
  • a first electrode material layer covering the second electrode layer and the exposed first barrier material layer is provided, and the material of the second electrode material layer is different from the material of the first electrode material layer;
  • the step of patterning the second electrode material layer and the second barrier material layer includes: patterning the second electrode material layer to form a second electrode layer, and patterning the second barrier material layer to form a second barrier layer, patterning the second
  • the first barrier material layer is a protective layer for the surface of the lower side of the first barrier material layer.
  • the exposed first resist material layer is suitable for removal by wet etching.
  • a filter comprising the bulk acoustic wave resonator according to any one of 1-13.
  • An electronic device comprising the filter according to 20, or the bulk acoustic wave resonator according to any one of 1-13.
  • the electronic equipment here includes but is not limited to intermediate products such as RF front-ends, filter amplifier modules, and terminal products such as mobile phones, WIFI, and drones.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Acoustics & Sound (AREA)
  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

L'invention concerne un résonateur acoustique de volume à couches et son procédé de fabrication. Le résonateur comprend un substrat, une électrode inférieure, une électrode supérieure et une couche piézoélectrique. L'électrode inférieure comprend de multiples couches d'électrode, les multiples couches d'électrode comprennent au moins une première couche d'électrode et une deuxième couche d'électrode disposées dans une direction d'épaisseur du résonateur, et la première couche d'électrode et la deuxième couche d'électrode sont constituées de matériaux différents. Le résonateur comprend en outre de multiples couches barrières, qui comprennent au moins une première couche barrière et une deuxième couche barrière. La première couche d'électrode recouvre au moins une partie du côté supérieur de la première couche barrière d'une manière en contact avec la surface, et la deuxième couche d'électrode recouvre au moins une partie du côté supérieur de la deuxième couche barrière d'une manière en contact avec la surface. La présente invention concerne en outre un filtre et un dispositif électronique.
PCT/CN2022/109099 2021-07-29 2022-07-29 Résonateur acoustique de volume à couches ayant de multiples couches d'électrode inférieure, filtre et dispositif électronique WO2023006089A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110863363.8 2021-07-29
CN202110863363.8A CN115694399A (zh) 2021-07-29 2021-07-29 具有多个底电极层的体声波谐振器、滤波器及电子设备

Publications (1)

Publication Number Publication Date
WO2023006089A1 true WO2023006089A1 (fr) 2023-02-02

Family

ID=85058149

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/109099 WO2023006089A1 (fr) 2021-07-29 2022-07-29 Résonateur acoustique de volume à couches ayant de multiples couches d'électrode inférieure, filtre et dispositif électronique

Country Status (2)

Country Link
CN (1) CN115694399A (fr)
WO (1) WO2023006089A1 (fr)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899275A (zh) * 2015-12-18 2017-06-27 三星电机株式会社 声波谐振器及其制造方法
US20180034438A1 (en) * 2016-07-27 2018-02-01 Qorvo Us, Inc. Acoustic resonator devices and methods with noble metal layer for functionalization
US20190326880A1 (en) * 2018-04-19 2019-10-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonators having doped piezoelectric material and an adhesion and diffusion barrier layer
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106899275A (zh) * 2015-12-18 2017-06-27 三星电机株式会社 声波谐振器及其制造方法
US20180034438A1 (en) * 2016-07-27 2018-02-01 Qorvo Us, Inc. Acoustic resonator devices and methods with noble metal layer for functionalization
US20190326880A1 (en) * 2018-04-19 2019-10-24 Avago Technologies General Ip (Singapore) Pte. Ltd. Bulk acoustic wave resonators having doped piezoelectric material and an adhesion and diffusion barrier layer
CN111010133A (zh) * 2019-09-03 2020-04-14 天津大学 体声波谐振器及其制造方法、滤波器和电子设备

Also Published As

Publication number Publication date
CN115694399A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
CN113497596B (zh) 体声波谐振器、体声波谐振器组件、滤波器及电子设备
CN111245393B (zh) 体声波谐振器及其制造方法、滤波器及电子设备
JP2003505906A (ja) 共振子構造およびその共振子構造を備えるフィルタ
CN107317561B (zh) 体声波谐振器及其制造方法
JP2011120241A (ja) Fbarタイプのバルク波の音響共振器を製作する方法
WO2022083352A1 (fr) Ensemble et résonateur acoustique en volume, filtre et dispositif électronique
WO2022148387A1 (fr) Résonateur à ondes acoustiques de volume et son procédé de fabrication, filtre et dispositif électronique
WO2024152534A1 (fr) Ensemble résonateur à ondes acoustiques de volume avec électrodes inférieures creuses isolées l'une de l'autre
WO2022228385A1 (fr) Résonateur à ondes acoustiques de volume ayant une électrode épaissie, filtre et dispositif électronique
WO2022228384A1 (fr) Résonateur acoustique en volume, filtre et dispositif électronique
KR102473421B1 (ko) 음향 공진기 및 그 제조 방법
WO2022001860A1 (fr) Résonateur à ondes acoustiques de volume et son procédé de fabrication, filtre et dispositif électronique
WO2023207474A1 (fr) Filtre, multiplexeur, module frontal radiofréquence et procédé de préparation de filtre
WO2022037572A1 (fr) Résonateur acoustique de volume avec électrode supérieure ayant des espaces supérieur et inférieur, son procédé de fabrication, filtre et dispositif électronique
WO2023006089A1 (fr) Résonateur acoustique de volume à couches ayant de multiples couches d'électrode inférieure, filtre et dispositif électronique
KR102172638B1 (ko) 음향 공진기 및 그 제조 방법
WO2023030359A1 (fr) Résonateur acoustique en volume comprenant une électrode à fente, un filtre et un dispositif électronique
WO2022228486A1 (fr) Résonateur acoustique de volume et son procédé de fabrication, filtre et dispositif électronique
WO2022135252A1 (fr) Résonateur acoustique de volume à couche de compensation de température, filtre et dispositif électronique
WO2022218376A1 (fr) Résonateur acoustique de volume ayant une saillie et/ou un évidement sur le côté inférieur d'une couche piézoélectrique, et filtre et dispositif électronique
US8597531B2 (en) Method for manufacturing a device on a substrate
WO2022188779A1 (fr) Résonateur et son procédé de fabrication, filtre et dispositif électronique
WO2023005420A1 (fr) Résonateur à ondes acoustiques de volume ayant une pluralité de couches d'électrode inférieure, et filtre et dispositif électronique
WO2023005426A1 (fr) Résonateur à ondes acoustiques de volume ayant une pluralité de couches d'électrode inférieure, filtre et dispositif électronique
WO2023006092A1 (fr) Résonateur à ondes acoustiques de volume ayant une pluralité de couches d'électrode inférieure, filtre et appareil électronique

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848693

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848693

Country of ref document: EP

Kind code of ref document: A1