WO2023006007A1 - 一种电力电子器件瞬态过程时间信息检测装置 - Google Patents

一种电力电子器件瞬态过程时间信息检测装置 Download PDF

Info

Publication number
WO2023006007A1
WO2023006007A1 PCT/CN2022/108417 CN2022108417W WO2023006007A1 WO 2023006007 A1 WO2023006007 A1 WO 2023006007A1 CN 2022108417 W CN2022108417 W CN 2022108417W WO 2023006007 A1 WO2023006007 A1 WO 2023006007A1
Authority
WO
WIPO (PCT)
Prior art keywords
isolation component
resistor
electronic device
digital isolation
power electronic
Prior art date
Application number
PCT/CN2022/108417
Other languages
English (en)
French (fr)
Inventor
张曦春
徐霄宇
Original Assignee
奇舍电子科技(上海)有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 奇舍电子科技(上海)有限公司 filed Critical 奇舍电子科技(上海)有限公司
Publication of WO2023006007A1 publication Critical patent/WO2023006007A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R19/00Arrangements for measuring currents or voltages or for indicating presence or sign thereof
    • G01R19/25Arrangements for measuring currents or voltages or for indicating presence or sign thereof using digital measurement techniques
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R15/00Details of measuring arrangements of the types provided for in groups G01R17/00 - G01R29/00, G01R33/00 - G01R33/26 or G01R35/00
    • G01R15/14Adaptations providing voltage or current isolation, e.g. for high-voltage or high-current networks

Definitions

  • the invention relates to the technical field of power electronic device monitoring, in particular to a device for detecting time information of a transient process of a power electronic device.
  • the health status of power electronic devices is closely related to the turn-off transient process or turn-on transient process of power electronic devices.
  • the voltage rise time (from the start moment to the end moment) of the power electronic device in the turn-off transient process or the voltage fall time (from the start moment to the end moment) in the turn-on transient process can be used as the switching characteristic parameter, This is used to characterize the aging state of power electronic devices during operation.
  • the detection accuracy is very high.
  • high-precision high-voltage probes are used to detect the voltage rise time of power electronic devices during the turn-off transient process or the voltage drop time during the turn-on transient process.
  • this detection method has high cost and poor safety, and cannot be applied to the actual operation of the device.
  • the object of the present invention is to provide a time information detection device for the transient process of power electronic devices, so as to achieve the purposes of low cost, high precision and strong anti-interference ability.
  • the present invention provides the following scheme:
  • a power electronic device transient process time information detection device comprising:
  • An RC equivalent circuit is connected in parallel to an equivalent voltage source formed by a power electronic device;
  • the RC equivalent circuit is a resistor-capacitor network;
  • the resistor-capacitor network includes at least one resistor and one capacitor;
  • a digital isolation component connected to the resistor-capacitor network or to a branch circuit of the resistor-capacitor network, used for extracting the pulse current when the capacitor is charged during the turn-off transient process of the power electronic device
  • a power electronic device transient process time information detection device comprising:
  • the first sampling branch is connected in parallel to the equivalent voltage source formed by the power electronic device; the first sampling branch is an RC equivalent circuit; the RC equivalent circuit is a resistor-capacitor network, and the resistor-capacitor network includes at least A resistor and a capacitor; the second sampling branch is connected in parallel on the equivalent voltage source formed by the power electronic device; the second sampling branch is a resistor divider equivalent circuit or an RC equivalent circuit; the resistor divider
  • the equivalent circuit is a resistor network; the resistor network includes at least two resistors;
  • a digital isolation component the first input end of the digital isolation component is connected to the first sampling branch, the second input terminal of the digital isolation component is connected to the second sampling branch, and the digital isolation component is used In the turn-off and/or turn-on transient process of the power electronic device, extract the time point information corresponding to the absolute value of the current; the absolute value of the current is the current determined by the first sampling branch and the second The absolute value of the difference value of the current determined by the sampling branch; the current determined by the first sampling branch is the pulse current signal flowing through the capacitor charging or capacitor discharging of the RC equivalent circuit; the second sampling branch determines The current is determined according to the voltage signal output by the resistance voltage-dividing equivalent circuit or the RC equivalent circuit; wherein, the time point information includes a starting point moment and/or an ending moment;
  • a time measurement module connected to the output terminal of the digital isolation component, configured to: determine the voltage rise time information of the power electronic device during the turn-off transient process based on the time point information corresponding to the absolute value of the current; and /or, based on the time point information corresponding to the absolute value of the current, determine voltage drop time information of the power electronic device during a turn-on transient process.
  • a power electronic device transient process time information detection device comprising:
  • the first RC equivalent circuit is connected in parallel to the equivalent voltage source formed by the power electronic device;
  • the second RC equivalent circuit is connected in parallel to the equivalent voltage source formed by the power electronic device;
  • the first RC equivalent circuit and the second RC equivalent circuit are resistor-capacitor networks;
  • the resistor-capacitor networks include at least one resistor and a capacitor;
  • the first digital isolation component is connected in parallel to the first RC equivalent circuit; the first digital isolation component is used to extract the first The end time signal of the pulse current signal generated by the RC equivalent circuit; the second digital isolation component is connected in parallel on the second RC equivalent circuit; the second digital isolation component is used for turning off the power electronic device And/or during the turn-on transient process, extracting the start time signal of the pulse current signal generated by the second RC equivalent circuit;
  • a time measurement module connected to the output terminal of the first digital isolation component and the output terminal of the second digital isolation component, for: based on the start time signal and the end time signal, determine that the power electronic device is Voltage rise time information during the turn-off transient process and/or voltage fall time information of the power electronic device during the turn-on transient process.
  • a power electronic device transient process time information detection device comprising:
  • the equivalent circuit of resistance voltage division is connected in parallel on the equivalent voltage source formed by the power electronic device;
  • the equivalent circuit of resistance voltage division is a resistance network;
  • the resistance network includes at least two resistors;
  • the RC equivalent circuit is connected in parallel on the power On an equivalent voltage source formed by an electronic device;
  • the RC equivalent circuit is a resistor-capacitor network;
  • the resistor-capacitor network includes at least one resistor and a capacitor;
  • the first digital isolation component is connected in parallel on the RC equivalent circuit; the first digital isolation component is used to extract the RC equivalent circuit during the turn-off and/or turn-on transient process of the power electronic device The end time signal of the generated pulse current signal; the second digital isolation component is connected in parallel on the equivalent circuit of the resistance divider; the second digital isolation component is used to turn off and/or turn on the power electronic device During the transient process, extracting the initial moment signal of the current signal determined by the resistance voltage dividing equivalent circuit;
  • a time measurement module connected to the output ends of the first digital isolation component and the second digital isolation component, is used for: based on the start time signal and the end time signal, determine whether the power electronic device is turned off at the instant The voltage rise time information during the state process and/or the voltage fall time information of the power electronic device during the turn-on transient process.
  • the invention discloses the following technical effects:
  • the RC equivalent circuit is used as the sampling circuit, and the capacitor charging current waveform obtained by sampling is used for the detection of the key moment of the voltage rise stage of the power electronic device in the turn-off transient process or the capacitor discharge current waveform obtained by sampling It is used to detect the critical moment of the voltage drop phase of the power electronic device during the turn-on transient process;
  • the digital isolation technology is used to realize the capture of the critical moment, and the analog current signal obtained by sampling is conveniently converted into a digital signal through the digital isolation technology ( level signal), this digital signal can directly represent the critical moment of the voltage rising stage or the critical moment of the voltage falling stage, and has the advantages of low cost, high precision, and strong anti-interference ability.
  • FIG. 1 is a structural block diagram of a power electronic device transient process time information detection device according to an embodiment of the present invention
  • FIG. 2 is a schematic structural diagram of a time measurement module according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of electrical symbols of an IGBT device according to Embodiment 1 of the present invention.
  • FIG. 4 is a schematic diagram of the principle of the connection between an equivalent transient voltage source and an RC equivalent circuit according to Embodiment 1 of the present invention
  • FIG. 5 is a schematic diagram of the waveforms of the capacitor voltage and capacitor current during the turn-off transient process of an IGBT device according to Embodiment 1 of the present invention
  • FIG. 6 is a schematic diagram of the waveforms of the capacitor voltage and capacitor current during the turn-on transient process of an IGBT device according to Embodiment 1 of the present invention
  • FIG. 7 is a schematic diagram of the connection principle of an equivalent transient voltage source, an RC equivalent circuit and an isolation component according to an embodiment of the present invention
  • Fig. 8 is a second schematic diagram of the connection principle of an equivalent transient voltage source, an RC equivalent circuit and an isolation component in Embodiment 1 of the present invention
  • FIG. 9 is a schematic diagram of three connection principles of an equivalent transient voltage source, an RC equivalent circuit and an isolation component according to Embodiment 1 of the present invention.
  • FIG. 10 is a four schematic diagram of the connection principle of an equivalent transient voltage source, an RC equivalent circuit and an isolation component according to Embodiment 1 of the present invention.
  • FIG. 11 is a schematic diagram of an input signal of a digital isolation component according to an embodiment of the present invention.
  • FIG. 12 is a schematic diagram of an output signal of a digital isolation component according to an embodiment of the present invention.
  • FIG. 13 is a schematic diagram of the voltage rise time at both ends of the IGBT device CE when the device is turned off according to an embodiment of the present invention
  • FIG. 14 is a schematic diagram of an input signal of a digital isolation component connected to an IGBT device according to Embodiment 1 of the present invention.
  • FIG. 15 is a schematic diagram of an output signal of a digital isolation component connected to an IGBT device according to Embodiment 1 of the present invention.
  • FIG. 16 is a schematic structural diagram of a digital isolation component according to an embodiment of the present invention.
  • Fig. 17 is a partial structural schematic diagram of a power electronic device transient process time information detection device according to Embodiment 2 of the present invention.
  • FIG. 18 is a schematic diagram of the voltage rise time at both ends of the IGBT device CE of the second embodiment of the present invention when the device is turned off;
  • FIG. 19 is a schematic diagram of an input signal of a digital isolation component connected to an IGBT device according to Embodiment 2 of the present invention.
  • FIG. 20 is a schematic diagram of output signals of a digital isolation component connected to an IGBT device according to Embodiment 2 of the present invention.
  • FIG. 21 is a schematic structural diagram of a time information detection device for a power electronic device transient process according to Embodiment 3 of the present invention.
  • Fig. 22 is a schematic diagram of the voltage rise time at both ends of the IGBT device CE of the third embodiment of the present invention when the device is turned off;
  • FIG. 23 is a schematic diagram of a first input signal of a digital isolation component connected to an IGBT device according to Embodiment 3 of the present invention.
  • FIG. 24 is a schematic diagram of a second input signal of a digital isolation component connected to an IGBT device according to Embodiment 3 of the present invention.
  • 25 is a schematic diagram of output signals of a digital isolation component connected to an IGBT device according to Embodiment 3 of the present invention.
  • 26 is a schematic structural diagram of a time information detection device for a power electronic device transient process according to Embodiment 4 of the present invention.
  • 27 is a schematic diagram of the voltage rise time at both ends of the IGBT device CE of the fourth embodiment of the present invention when the device is turned off;
  • FIG. 28 is a schematic diagram of a first input signal of a digital isolation component connected to an IGBT device according to Embodiment 4 of the present invention.
  • FIG. 29 is a schematic diagram of a second input signal of a digital isolation component connected to an IGBT device according to Embodiment 4 of the present invention.
  • FIG. 30 is a schematic diagram of output signals of a digital isolation component connected to an IGBT device according to Embodiment 4 of the present invention.
  • This embodiment provides a detection technology based on a sampling circuit and digital isolation of a single RC series circuit.
  • the capacitance charging/discharging of the RC equivalent circuit connected in parallel to the equivalent transient voltage source formed by the power electronic device is obtained.
  • the pulse current signal, and then use the digital isolation component to detect the specific time point of the pulse current signal, and then obtain the voltage rise time information of the power electronic device during the turn-off transient process or the voltage drop time information during the turn-on transient process.
  • the transient process time information detection device includes:
  • the RC equivalent circuit is connected in parallel to the equivalent voltage source formed by the power electronic device; the RC equivalent circuit is a resistor-capacitor network; the resistor-capacitor network includes at least one resistor and one capacitor.
  • a digital isolation component connected to the resistor-capacitor network or to a branch circuit of the resistor-capacitor network, used for extracting the pulse current when the capacitor is charged during the turn-off transient process of the power electronic device
  • the digital isolation component is a digital isolation device or a digital isolation module.
  • the detection device described in this embodiment further includes: a time measurement module.
  • the time measurement module is connected to the output terminal of the digital isolation component, and is used for:
  • the time measurement module consists of a NOT gate and a high-precision time measurement chip TDC-GP1.
  • the first level change edge of the output of the digital isolation component after passing through the NOT gate is used as the START signal of the time measurement chip TDC-GP1, that is, the moment when the output of the digital isolation component flips from high level to zero, the time measurement chip TDC-GP1 is started.
  • the output signal of the digital isolation component is directly used as the STOP signal of the time measurement chip TDC-GP1, that is, the time measurement chip TDC-GP1 stops timing when the output signal of the digital isolation component is turned from low level to high level, In this way, the time measurement chip TDC-GP1 measures the output pulse width of the digital isolation component, that is, measures the time length of the IGBT turn-off transient process, and completes the measurement work.
  • the voltage rise time information of the power electronic device during the turn-off transient process and the voltage drop time information of the power electronic device during the turn-on transient process are illustrated.
  • Fig. 3 is a schematic diagram of electrical symbols of an IGBT device
  • C is a collector of the IGBT device
  • E is an emitter of the IGBT device.
  • the two ends of the RC equivalent circuit described in this embodiment are respectively connected to the two ends of CE of the IGBT device, as shown in FIG. 4 .
  • the digital isolation component can extract the time point information of the pulse current signal when the capacitor is charged, and finally based on The time point information of the pulse current signal determines the voltage rise time information of the IGBT device during the turn-off transient process.
  • the digital isolation component can extract the time point information of the pulse current signal when the capacitor is discharged, and finally based on the pulse current
  • the time point information of the signal determines the voltage drop time information of the IGBT device during the turn-on transient process.
  • FIG. 5 is a schematic diagram of the waveforms of the capacitor voltage and capacitor current during the turn-off transient process of the IGBT device
  • FIG. 6 is a schematic diagram of the waveforms of the capacitor voltage and capacitor current during the turn-on transient process of the IGBT device.
  • uc ( t ) or uc both represent the capacitor voltage
  • ic ( t ) or ic both represent capacitive current.
  • the resistor-capacitor network described in this embodiment may be composed of multiple resistors and multiple capacitors.
  • the left side of "Uin” (including capital letters R, R2, and C) is an RC equivalent circuit, which is connected in parallel at both ends of the equivalent transient voltage source formed by power electronic devices.
  • the RC equivalent circuit is a sampling circuit, and in various topological structures, it can be equivalent to a series connection of a resistor and a capacitor, and then the voltage on the resistor represents the charging current of the capacitor on the RC sampling circuit; (2)" The right side of Uin” is the processing part of the output signal of the sampling circuit, which is composed of matching resistor r and digital isolation components; (3) The charging current collected by the sampling circuit and the voltage at both ends of the equivalent transient voltage source formed by the power electronic device There is a corresponding relationship.
  • the current rising edge time is the voltage rising time at both ends of the equivalent transient voltage source, or the discharge current collected by the sampling circuit and the voltage at both ends of the equivalent transient voltage source formed by the power electronic device.
  • the voltage has a corresponding relationship.
  • the current falling edge time is the voltage rising time at both ends of the equivalent transient voltage source.
  • the output signal (Uin) enters the digital isolation component, and impedance matching is required to ensure that the input of the digital isolation component is within the specified current range.
  • the digital isolation component when the resistor-capacitor network includes a resistor and a capacitor, the digital isolation component is connected in series on a circuit in which one resistor and one capacitor are connected in series.
  • the digital isolation component is connected in series on a circuit in which one resistor and multiple capacitors are connected in series.
  • the resistor-capacitor network includes a plurality of resistors and a capacitor, the digital isolation component is connected in series on a circuit in which the resistors and capacitors are connected in series.
  • the digital isolation component is connected in series on a circuit in which multiple resistors and multiple capacitors are connected in series.
  • the digital isolation component is connected in series on the circuit in which the equivalent resistor and the equivalent capacitor are connected in series;
  • the resistance formed; the equivalent capacitance is a capacitance formed by connecting multiple capacitances in parallel.
  • the resistor-capacitor network includes a plurality of resistors and capacitors and the resistor-capacitor network includes N branch circuits
  • the first N-1 branch circuits are circuits in which a plurality of resistors are connected in series, and the first N-1 branches The circuits are all connected in parallel to the equivalent voltage source formed by the power electronic device
  • the Nth branch circuit is a circuit in which a resistor and a capacitor are connected in series, and the Nth branch circuit is connected in parallel to one or more of the N-1th branch circuits.
  • resistors, the digital isolation component is connected in series on the Nth branch circuit; the number of resistors in the Nth branch circuit is one or more, and the number of capacitors in the Nth branch circuit for one or more.
  • the resistor-capacitor network includes a plurality of resistors and capacitors and the resistor-capacitor network includes N branch circuits
  • the first N-1 branch circuits are all resistors and capacitors connected in series
  • the first N-1 The branch circuits are all connected in parallel to the equivalent voltage source formed by the power electronic device
  • the Nth branch circuit is a circuit in which one or more resistors are connected in series
  • the Nth branch circuit is connected in parallel to the N-1th branch circuit.
  • the digital isolation component is connected in series on the Nth branch circuit; the number of resistors in each branch circuit in the first N-1 branch circuits is one or more, and in the The number of capacitors in each branch circuit in the first N ⁇ 1 branch circuits is one or more; wherein, N is a positive integer greater than or equal to 2.
  • the current waveform collected by the RC equivalent circuit described in this embodiment has the same waveform characteristics as the capacitive current or resistance current on the RC equivalent circuit, and the current waveform includes a rising process and a falling process; for example , corresponding to the charging process of the capacitor, the moment when the charging current reaches the peak value corresponds to the moment when the voltage across the power electronic device reaches the maximum value, and the current waveform signal can also be obtained from a certain point on the circuit network of the RC equivalent circuit.
  • the current signal representing the RC equivalent circuit is matched with an appropriate matching resistor r and then input to the input terminal of a digital isolation component A.
  • the value range of the matching resistor r above is from 0 to 1000M ohms.
  • the device for detecting time information of a transient process of a power electronic device described in this embodiment further includes: a matching resistor.
  • the first input terminal of the digital isolation component is connected to the RC equivalent circuit, and the second input terminal of the digital isolation component is connected to the RC equivalent circuit through the matching resistor.
  • the moment when the first change edge of the switching signal output by the digital isolation component occurs is close to the moment when the power electronic device starts to rise in voltage during the turn-off process or the moment when the voltage drops in the turn-on process;
  • the moment when the second change edge of the switching signal output by the isolation component occurs can approximately correspond to the moment when the voltage rise ends during the turn-off transient process of the power electronic device or the moment when the voltage drop ends during the turn-on process.
  • the time difference between the above two time signals can obtain the voltage rise time width during the turn-off transient process of the power electronic device or the voltage drop time width during the turn-on transient process.
  • the voltage rise time of the turn-off transient process or the voltage fall time of the turn-on transient process of the power electronic device can be accurately calculated by fitting or calibration.
  • the input signal X of the digital isolation component is allowed to change continuously;
  • the output signal of the digital isolation component is two steady-state levels, which are low level Y0 and high level Y1; the input and output terminals of the digital isolation component are electrically isolated .
  • the first situation when the input signal of the digital isolation component is less than the first threshold X0, the output signal of the digital isolation component is high level Y1, and when the input signal of the digital isolation component is greater than the second threshold X1, the output signal of the digital isolation component is is low level Y0; when the input signal of the digital isolation component drops from a value higher than the second threshold X1 to lower than the first threshold X0, the output signal of the digital isolation component is high level Y1.
  • the first threshold X0 is less than or equal to the second threshold X1.
  • the relationship between input and output signals of the digital isolation component is shown in FIG. 11 and FIG. 12 .
  • the second situation when the input signal of the digital isolation component is less than the first threshold X0, the output signal of the digital isolation component is low level Y0, and when the input signal of the digital isolation component is greater than the second threshold X1, the output signal of the digital isolation component is is high level Y1; when the input signal of the digital isolation component drops from a value higher than the second threshold X1 to lower than the first threshold X0, the output signal of the digital isolation component is low level Y0.
  • the time constant of the RC equivalent circuit connected in parallel across CE of the IGBT device is denoted as ⁇ .
  • the voltage across CE rises at the rate of dv/dt until it reaches the cut-off voltage Ud of the IGBT device.
  • the current flowing through the above-mentioned RC equivalent circuit gradually increases as the voltage across CE rises.
  • the input terminal of the above-mentioned digital isolation component The signal also increases gradually.
  • the output signal of the digital isolation component When the signal is higher than the second threshold value X1 of the digital isolation component, the output signal of the digital isolation component is low level Y0; when the voltage across the CE reaches the highest value, the RC equivalent circuit The current reaches the maximum value at the same time, and then when the two ends of the CE are in the off period when the voltage remains constant, the current in the RC equivalent circuit decreases exponentially from the maximum value with ⁇ as the time constant.
  • the above digital isolation The input signal of the component also drops accordingly, and when it drops to the first threshold X0, the output of the digital isolation component is reversed to another value, that is, a low level Y1. Through the above solution, the output of the digital isolation component obtains a switching signal.
  • FIG. 14 shows the charging process of the digital isolation component corresponding to the entire capacitor.
  • the output of the isolation component consists of two changing edges (such as a falling edge and a rising edge), and the time width of the switching signal output by it is positively correlated with the transient time of the charging current waveform of the above-mentioned RC equivalent circuit, and is related to The turn-off (voltage rising process) time of the IGBT device is positively correlated.
  • the moment when the first change edge of the output switching signal of the isolation component occurs (the falling edge occurrence time T01 in the figure) is similar to the moment when the power electronic device is turned off; the second change edge of the output switch signal of the isolation component can be It approximately corresponds to the moment when the voltage rise ends during the turn-off transient process of the power electronic device (the time T11 when the rising edge occurs in the figure).
  • the voltage rise time width during the turn-off transient process of the power electronic device can be obtained by measuring the time difference between the above two time signals.
  • the current and voltage on a resistor are synchronous, and the current and voltage on a capacitor are asynchronous (phase).
  • the time constant of the RC equivalent circuit is to represent the characteristics of this circuit.
  • the time constant ⁇ of the above-mentioned resistor-capacitor network is appropriately designed, that is, the rate of change of the input signal of the digital isolation component is controlled, so that the time for the signal input to the input terminal of the above-mentioned digital isolation component to fall from the peak value to the first threshold X0 is less than or equal to the
  • the expected value of the error measured at the end of the turn-off transient process can ensure that the error obtained through the above scheme is within an acceptable range.
  • the error expectation value means that there must be an error in the detection method of this scheme, but this error can be controlled, and the error control is realized by optimizing the time constant ⁇ and the second threshold X0 in the design.
  • the digital isolation component of this embodiment can also be as shown in Figure 16, including an optical isolation module and a hysteresis comparison module; wherein, the light-emitting diode in the optical isolation module is the digital isolation component
  • the photosensitive element in the optical isolation module is the input terminal of the hysteresis comparison module, and the output terminal of the hysteresis comparison module is the output side of the digital isolation component.
  • the transient process time information detection device provided in this embodiment further includes: a clamping device; the digital isolation component is connected to an RC equivalent circuit through the clamping device.
  • This embodiment provides a detection method based on double-branch series circuit parallel sampling and digital isolation.
  • Two sampling circuits are connected in parallel at both ends of the power electronic device (such as both ends of the CE of the IGBT), which are sampling branch A and sampling branch B respectively.
  • the transient process time information detection device includes:
  • the first sampling branch (sampling branch B in the figure) is connected in parallel on the equivalent voltage source formed by the power electronic device; the first sampling branch is an RC equivalent circuit; the RC equivalent circuit is a resistor-capacitor network, and the resistor-capacitor network includes at least one resistor and one capacitor.
  • the second sampling branch (sampling branch A in the figure) is connected in parallel on the equivalent voltage source formed by the power electronic device; the second sampling branch is a resistor divider equivalent circuit or an RC equivalent circuit; the The equivalent circuit of the resistor voltage division is a resistor network; the resistor network includes at least two resistors.
  • a digital isolation component the first input end of the digital isolation component is connected to the first sampling branch, the second input terminal of the digital isolation component is connected to the second sampling branch, and the digital isolation component is used In the turn-off and/or turn-on transient process of the power electronic device, extract the time point information corresponding to the absolute value of the current; the absolute value of the current is the current determined by the first sampling branch and the second The absolute value of the difference value of the current determined by the sampling branch; the current determined by the first sampling branch is the pulse current signal flowing through the capacitor charging or capacitor discharging of the RC equivalent circuit; the second sampling branch determines The current is determined according to the voltage signal output by the resistor divider equivalent circuit or the RC equivalent circuit; wherein, the time point information includes a start point moment and/or an end moment.
  • a time measurement module connected to the output terminal of the digital isolation component, for:
  • the output terminals of the sampling branch are all resistors, and the resistors r1 and r2 need to be connected as matching resistors, and the first input terminal of the digital isolation component is connected to the first sampling branch through the matching resistor r1 , the second input end of the digital isolation component is connected to the second sampling branch through a matching resistor r2.
  • the output signal of the digital isolation component When the input signal of the digital isolation component is less than the specified first threshold X0, the output signal of the digital isolation component is high level Y1, and when the input signal of the digital isolation component is greater than the specified second threshold X1, the output signal of the digital isolation component is The output signal is low level Y0, and when the input signal of the digital isolation component drops from a value higher than the second threshold X1 to lower than the first threshold X0, the output signal of the digital isolation component is a high voltage Y1.
  • the first threshold X0 is less than or equal to the same as the second threshold X1.
  • the digital isolation component when the input signal of the digital isolation component is less than the specified first threshold X0, the output signal of the digital isolation component is low level Y0, and when the input signal of the digital isolation component is greater than the specified second threshold X1, the digital isolation component The output signal of the component is high level Y1, and when the input signal of the digital isolation component drops from a value higher than the second threshold X1 to lower than the first threshold X0, the output signal of the digital isolation component is low level Y0.
  • t0 is the start time of the voltage rising phase of the IGBT device.
  • the voltage across CE rises at the rate of dv/dt until it reaches the cut-off voltage Ud of the IGBT device.
  • the voltage across CE rises, and the absolute value of the voltage or the absolute value of the current is always When it is less than the second threshold X1, the output signal of the digital isolation component is at a high level Y1; when the voltage across CE reaches the peak value, the output voltage UA and the output voltage UB decrease exponentially, and within the allowable time error, the absolute value of the voltage or The absolute value of the current exceeds the second threshold X1, the output signal of the digital isolation component is inverted to a low level Y0, and the change edge of the digital isolation component output from a high level Y1 to a low level Y0 can be approximated as an IGBT device turn-off instant The signal at the end of the voltage rise during the state process.
  • the voltage signal UA that is proportional to the current in the equivalent circuit is extracted from the sampling branch A; the design of the sampling branch B should meet the following requirements at the same time: (1) During the transient process of turning off the IGBT device, the sampling branch B should output The voltage signal UB that is positively correlated with the voltage across the CE of the IGBT, and at this stage, ensure that the UB-UA value does not exceed the second threshold X1; (2) The voltage across the CE of the IGBT device reaches the maximum value and maintains the cut-off voltage Ud stage, the voltage signal output by the sampling branch B should make UB-UA exceed the second threshold X1 within the allowable time error.
  • the transient process time information detection device includes:
  • the first RC equivalent circuit is connected in parallel to the equivalent voltage source formed by the power electronic device.
  • the second RC equivalent circuit is connected in parallel on the equivalent voltage source formed by the power electronic device; the first RC equivalent circuit and the second RC equivalent circuit are both resistor-capacitor networks; the resistor-capacitor network includes at least one resistor and a capacitor.
  • the first digital isolation component (represented by isolation device A in the figure) is connected in parallel on the first RC equivalent circuit, and is used to extract the The end time signal of the pulse current signal generated by the first RC equivalent circuit.
  • the second digital isolation component (represented by isolation device B in the figure) is connected in parallel on the second RC equivalent circuit, and is used to extract the The start time signal of the pulse current signal generated by the second RC equivalent circuit.
  • a time measurement module connected to the output terminal of the first digital isolation component and the output terminal of the second digital isolation component, for: based on the start time signal and the end time signal, determine that the power electronic device is Voltage rise time information during the turn-off transient process and/or voltage fall time information of the power electronic device during the turn-on transient process.
  • the obtained signal proportional to the current of R1 or C1 is input to the isolation component A or the isolation device A; when the input signal of the isolation component A is less than the first threshold X0, the isolation component A outputs a high level Y1, when the isolation component A When the input signal of the component A is higher than the second threshold X1 of the isolation component A, the output of the isolation component A is turned from a high level Y1 to a low level Y0.
  • the obtained signal proportional to the current of R2 or C2 is input to the isolation component B or the isolation device B; when the input signal of the isolation component B is less than the first threshold X0, the isolation component A outputs a high level Y1, when the isolation component B When the input signal of the component B is higher than the second threshold X1 of the isolation component B, the output of the isolation component B is turned from a high level Y1 to a low level Y0.
  • the obtained signal proportional to the current of R1 or C1 is input to the isolation component A or the isolation device A; when the input signal of the isolation component A is less than the first threshold X0, the isolation component A outputs a low level Y0, when When the input signal of the isolation component A is higher than the second threshold X1 of the isolation component A, the output of the isolation component A is turned from a low level Y0 to a high level Y1.
  • the obtained signal proportional to the current of R2 or C2 is input to the isolation component B or the isolation device B; when the input signal of the isolation component B is less than the first threshold X0, the isolation component A outputs a low level Y0, when the isolation When the input signal of the component B is higher than the second threshold X1 of the isolation component B, the output of the isolation component B is turned from a low level Y0 to a high level Y1.
  • the device provided in this embodiment further includes: a first clamping device and a second clamping device; the first digital isolation component is connected to the first RC equivalent circuit through the first clamping device; the The second digital isolation component is connected to the second RC equivalent circuit through the second clamping device.
  • the first RC equivalent circuit and the second RC equivalent circuit are sampling circuits, which convert the sampled voltage into the current ic1 of the R1C1 branch and the current ic2 of the R2C2 branch.
  • the peak value (or valley value) of a current is related to the resistance and capacitance parameters of the branch circuit. The larger the resistance, the smaller the peak value of the current.
  • Capacitor charging is divided into two stages. The first stage is that the CE voltage rises according to the approximate ramp function, and the capacitor is charged; the second stage is that the CE voltage reaches the maximum value Ud, and the capacitor voltage is lower than the CE voltage to continue charging. There are two branches A and B, the peak value of the current ic1 of the branch A is greater than the peak value of the current ic2 of the branch B.
  • the CE voltage across the IGBT device is a saturation voltage drop close to 0 (that is, before the device is turned off)
  • the current ic1 and current ic2 are both 0, and the signal input to the isolation component is 0, which are both smaller than the first threshold X0 and the second threshold X1
  • the output of both isolation components is Y1 (high level)
  • the voltage across the IGBT device changes (rises)
  • the output of isolation component B becomes Y0 (low level) , at this time can be used as the initial moment of the voltage rise in the turn-off process of the power electronic device.
  • the error can be made very small by designing the RC parameters; as the voltage across the CE of the power electronic device rises to the maximum Ud, The currents of the two branches reach the maximum value (peak value), at this time the outputs of the isolation components A and B are both Y0 (low level); then, the voltage across the CE remains unchanged, and the charging current of the two branches Decreases from the peak value until 0, completing the second stage of charging. During the second stage, the current ic2 of the selected branch B is observed.
  • the state of the isolation component B changes from Y0 (low level) to Y1 (high level), this moment can be approximated as the end moment of the voltage rising process.
  • the error can be made very small by designing the RC parameters.
  • the start time signal and the end time signal of the voltage rise process during the transient process of the power electronic device being turned off can be obtained.
  • This embodiment provides a detection method based on a parallel sampling circuit of an RC series circuit and a resistor divider circuit and digital isolation.
  • the detection device provided in this embodiment includes:
  • the resistance voltage dividing equivalent circuit is connected in parallel on the equivalent voltage source formed by the power electronic device; the resistance voltage dividing equivalent circuit is a resistance network; the resistance network includes at least two resistances.
  • the RC equivalent circuit is connected in parallel to the equivalent voltage source formed by the power electronic device; the RC equivalent circuit is a resistor-capacitor network; the resistor-capacitor network includes at least one resistor and one capacitor.
  • the first digital isolation component (isolation device A in the figure) is connected in parallel on the RC equivalent circuit, and is used to extract the RC equivalent circuit during the turn-off and/or turn-on transient process of the power electronic device The end time signal of the pulse current signal generated by the circuit.
  • the second digital isolation component (isolation device B in the figure) is connected in parallel on the equivalent circuit of the resistance divider, and is used to extract the resistance during the turn-off and/or turn-on transient process of the power electronic device The starting time signal of the current signal determined by the voltage division equivalent circuit.
  • a time measurement module connected to the output ends of the first digital isolation component and the second digital isolation component, is used for: based on the start time signal and the end time signal, determine whether the power electronic device is turned off at the instant The voltage rise time information during the state process and/or the voltage fall time information of the power electronic device during the turn-on transient process.
  • the obtained signal proportional to the current of R3 or C is input to the isolation component A or the isolation device A; when the input signal of the isolation component A is smaller than the first threshold X0, the isolation component A outputs a high level Y1, When the input signal of the isolation component A is higher than the second threshold X1 of the isolation component A, the output of the isolation component A is turned from a high level Y1 to a low level Y0.
  • the equivalent voltage formed by the power electronic device is divided by another pure resistance network (R1, R2), and a signal proportional to the equivalent voltage is obtained, which is sent to the isolation component B or the isolation device B; when the input signal of the isolation component B When it is less than the first threshold X0, the isolation component A outputs a high level Y1, and when the input signal of the isolation component B is higher than the second threshold X1 of the isolation component B, the output of the isolation component B is turned from high level Y1 to low Level Y0.
  • R1, R2 another pure resistance network
  • the obtained signal proportional to the current of R3 or C1 is input to the isolation component A or the isolation device A; when the input signal of the isolation component A is smaller than the first threshold X0, the isolation component A outputs a low level Y0, when When the input signal of the isolation component A is higher than the second threshold X1 of the isolation component A, the output of the isolation component A is turned from a low level Y0 to a high level Y1.
  • the equivalent voltage formed by the power electronic device is divided by another pure resistance network (R1, R2), and a signal proportional to the equivalent voltage is obtained, which is sent to the isolation component B or the isolation device B; when the input signal of the isolation component B When it is less than the first threshold X0, the isolation component A outputs a low level Y0, and when the input signal of the isolation component B is higher than the second threshold X1 of the isolation component B, the output of the isolation component B is turned from low level Y0 to high Level Y1.
  • the function of the clamping device or module is to protect the isolation component when the input signal of the "isolation component" is too large.
  • the R1R2 equivalent circuit and the R3C equivalent circuit are both sampling circuits, and the sampled voltage (CE voltage of the power electronic device rises from the saturation voltage drop close to 0 to the cut-off voltage during the shutdown process Ud) is transformed into the current iR of the R1R2 branch and the iC of the R3C branch.
  • the R1R2 branch is a pure resistance branch, and the current iR is in the same phase as the voltage change at both ends of CE.
  • the R3C branch is a resistor-capacitor branch, and the current is the capacitor charging current iC, which has two stages. The first stage is to increase according to the approximate ramp function of the CE voltage, and the capacitor is charged. The second stage is when the CE voltage reaches the maximum value Ud, and the capacitor voltage is lower than the CE voltage to continue charging.
  • the CE voltage across the power electronic device is a saturation voltage drop close to 0 (that is, before it is turned off)
  • the current iR and current iC are both 0, which are smaller than the first threshold X0 and the second threshold X1, and the outputs of the two isolation components are equal to is Y1 (high level);
  • the voltage across the power electronic device changes (rises) when the current iR of the R1R2 branch is greater than the first threshold X0, the output of the isolation component B becomes Y0 (low level), at this time It can be used as the initial moment of voltage rise during the shutdown process of power electronic devices.
  • the error can be made very small through design parameters; as the voltage at both ends of the power electronic device CE rises to the maximum value Ud, branch A The current of (R3C) reaches the maximum value (peak value). At this time, the output of isolation component A is Y0 (low level). Next, the voltage across CE remains unchanged, and the charging current of branch A decreases from the peak value to 0, the second stage of charging is completed. During the second stage, the current iC of the selected branch A is observed. When the current iC drops and the input of the isolation component A is less than the second threshold X1, the state of the isolation component A changes from Y0 (low level) to Y1 (high level), this moment can be approximated as the end moment of the voltage rising process. Similarly, although there is a certain error, the error can be made very small by designing the parameters of R3C.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Electronic Switches (AREA)

Abstract

一种电力电子器件瞬态过程时间信息检测装置,包括:RC等效电路,并联在电力电子器件形成的等效电压源上;RC等效电路为电阻电容网络;电阻电容网络至少包括一个电阻和一个电容;数字隔离组件,连接在电阻电容网络上或者连接在电阻电容网络的一个分支电路上,用于:在电力电子器件的关断瞬态过程中,提取电容充电时的脉冲电流信号的时间点信息;和/或,在电力电子器件的开通瞬态过程中,提取电容放电时的脉冲电流信号的时间点信息,其中,时间点信息包括起始点时刻和/或结束点时刻。本装置能够达到成本低、精度高、抗干扰能力强的目的。

Description

一种电力电子器件瞬态过程时间信息检测装置
本申请要求于2021年07月30日提交中国专利局、申请号为202110872183.6、发明名称为“一种电力电子器件瞬态过程时间信息检测装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及电力电子器件监测技术领域,具体涉及一种电力电子器件瞬态过程时间信息检测装置。
背景技术
电力电子器件的健康状态与电力电子器件的关断瞬态过程或开通瞬态过程有密切关系。现在可以将电力电子器件在关断瞬态过程中的电压上升时间(从起始时刻到结束时刻)或者开通瞬态过程中的电压下降时间(从起始时刻到结束时刻)作为开关特性参数,以此来表征电力电子器件在工作期间的老化状态。
由于电力电子器件在关断瞬态过程中的电压上升时间或者开通瞬态过程中的电压下降时间都非常短,所以对检测精度要求非常高。目前采用高精度高压探头来检测电力电子器件在关断瞬态过程中的电压上升时间或者开通瞬态过程中的电压下降时间。然而,这种检测手段成本高、安全性差,无法应用于实际运行的装置。
发明内容
本发明的目的是提供一种电力电子器件瞬态过程时间信息检测装置,以达到成本低、精度高、抗干扰能力强的目的。
为实现上述目的,本发明提供了如下方案:
一种电力电子器件瞬态过程时间信息检测装置,包括:
RC等效电路,并联在电力电子器件形成的等效电压源上;所述RC等效电路为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容;
数字隔离组件,连接在所述电阻电容网络上或者连接在所述电阻电容网络的一个分支电路上,用于:在所述电力电子器件的关断瞬态过程中,提取电容充电时的脉冲电流信号的时间点信息;和/或,在所述电力电子器件的开通瞬 态过程中,提取电容放电时的脉冲电流信号的时间点信息;其中,所述时间点信息包括起始点时刻和/或结束点时刻。
一种电力电子器件瞬态过程时间信息检测装置,包括:
第一采样支路,并联在电力电子器件形成的等效电压源上;所述第一采样支路为RC等效电路;所述RC等效电路为电阻电容网络,所述电阻电容网络至少包括一个电阻和一个电容;第二采样支路,并联在电力电子器件形成的等效电压源上;所述第二采样支路为电阻分压等效电路或者RC等效电路;所述电阻分压等效电路为电阻网络;所述电阻网络至少包括两个电阻;
数字隔离组件;所述数字隔离组件的第一输入端连接在所述第一采样支路上,所述数字隔离组件的第二输入端连接在所述第二采样支路上,所述数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取电流绝对值对应的时间点信息;所述电流绝对值为所述第一采样支路确定的电流与所述第二采样支路确定的电流的差值的绝对值;所述第一采样支路确定的电流为流经RC等效电路的电容充电或者电容放电时的脉冲电流信号;所述第二采样支路确定的电流是根据所述电阻分压等效电路或者所述RC等效电路输出的电压信号确定;其中,所述时间点信息包括起始点时刻和/或结束时刻;
时间测量模块,与所述数字隔离组件的输出端连接,用于:基于所述电流绝对值对应的时间点信息,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息;和/或,基于所述电流绝对值对应的时间点信息,确定所述电力电子器件在开通瞬态过程中的电压下降时间信息。
一种电力电子器件瞬态过程时间信息检测装置,包括:
第一RC等效电路,并联在电力电子器件形成的等效电压源上;第二RC等效电路,并联在电力电子器件形成的等效电压源上;所述第一RC等效电路和第二RC等效电路均为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容;
第一数字隔离组件,并联在所述第一RC等效电路上;所述第一数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述第一RC等效电路产生的脉冲电流信号的结束时刻信号;第二数字隔离组件,并联在所述第二RC等效电路上;所述第二数字隔离组件用于在所述电力电子器件的关 断和/或开通瞬态过程中,提取所述第二RC等效电路产生的脉冲电流信号的起始时刻信号;
时间测量模块,与所述第一数字隔离组件的输出端和第二数字隔离组件的输出端连接,用于:基于所述起始时刻信号和所述结束时刻信号,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息和/或所述电力电子器件在开通瞬态过程中的电压下降时间信息。
一种电力电子器件瞬态过程时间信息检测装置,包括:
电阻分压等效电路,并联在电力电子器件形成的等效电压源上;所述电阻分压等效电路为电阻网络;所述电阻网络至少包括两个电阻;RC等效电路,并联在电力电子器件形成的等效电压源上;所述RC等效电路均为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容;
第一数字隔离组件,并联在所述RC等效电路上;所述第一数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述RC等效电路产生的脉冲电流信号的结束时刻信号;第二数字隔离组件,并联在所述电阻分压等效电路上;所述第二数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述电阻分压等效电路确定的电流信号的起始时刻信号;
时间测量模块,与所述第一数字隔离组件和第二数字隔离组件的输出端连接,用于:基于所述起始时刻信号和所述结束时刻信号,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息和/或所述电力电子器件在开通瞬态过程中的电压下降时间信息。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
本实施例采用RC等效电路作为采样电路,将采样获得的电容充电电流波形用于电力电子器件在关断瞬态过程中的电压上升阶段的关键时刻的检测或者将采样获得的电容放电电流波形用于电力电子器件在开通瞬态过程中的电压下降阶段的关键时刻的检测;利用数字隔离技术实现关键时刻的捕获,方便地将采样得到的电流信号模拟量通过数字隔离技术转化为数字信号(电平信号),该数字信号可直接表征电压上升阶段的关键时刻或者电压下降阶段的关键时刻,具有成本低、精度高、抗干扰能力强的优点。
说明书附图
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一电力电子器件瞬态过程时间信息检测装置的结构框图;
图2为本发明实施例时间测量模块的结构示意图;
图3为本发明实施例一IGBT器件的电气符号示意图;
图4为本发明实施例一等效瞬变电压源与RC等效电路连接的原理示意图;
图5为本发明实施例一IGBT器件在关断瞬态过程中电容电压和电容电流的波形示意图;
图6为本发明实施例一IGBT器件在开通瞬态过程中电容电压和电容电流的波形示意图;
图7为本发明实施例一等效瞬变电压源、RC等效电路和隔离组件三者的连接原理示意一图;
图8为本发明实施例一等效瞬变电压源、RC等效电路和隔离组件三者的连接原理示意二图;
图9为本发明实施例一等效瞬变电压源、RC等效电路和隔离组件三者的连接原理示意三图;
图10为本发明实施例一等效瞬变电压源、RC等效电路和隔离组件三者的连接原理示意四图;
图11为本发明实施例一数字隔离组件的输入信号示意图;
图12为本发明实施例一数字隔离组件的输出信号示意图;
图13为本发明实施例一IGBT器件CE两端在关断器件电压上升时间示意图;
图14为本发明实施例一与IGBT器件连接的数字隔离组件的输入信号示意图;
图15为本发明实施例一与IGBT器件连接的数字隔离组件的输出信号示意图;
图16为本发明实施例一数字隔离组件的结构示意图;
图17为本发明实施例二电力电子器件瞬态过程时间信息检测装置的部分结构示意图;
图18为本发明实施例二IGBT器件CE两端在关断器件电压上升时间示意图;
图19为本发明实施例二与IGBT器件连接的数字隔离组件的输入信号示意图;
图20为本发明实施例二与IGBT器件连接的数字隔离组件的输出信号示意图;
图21为本发明实施例三电力电子器件瞬态过程时间信息检测装置的结构示意图;
图22为本发明实施例三IGBT器件CE两端在关断器件电压上升时间示意图;
图23为本发明实施例三与IGBT器件连接的数字隔离组件的第一输入信号示意图;
图24为本发明实施例三与IGBT器件连接的数字隔离组件的第二输入信号示意图;
图25为本发明实施例三与IGBT器件连接的数字隔离组件的输出信号示意图;
图26为本发明实施例四电力电子器件瞬态过程时间信息检测装置的结构示意图;
图27为本发明实施例四IGBT器件CE两端在关断器件电压上升时间示意图;
图28为本发明实施例四与IGBT器件连接的数字隔离组件的第一输入信号示意图;
图29为本发明实施例四与IGBT器件连接的数字隔离组件的第二输入信号示意图;
图30为本发明实施例四与IGBT器件连接的数字隔离组件的输出信号示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造 性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例一
本实施例提供了一种基于单路RC串联电路的采样电路和数字隔离的检测技术,首先获取并联在电力电子器件形成的等效瞬变电压源两端的RC等效电路的电容充/放电的脉冲电流信号,然后用数字隔离组件检测该脉冲电流信号的特定时间点,进而获得该电力电子器件在关断瞬态过程中的电压上升时间信息或者在开通瞬态过程中的电压下降时间信息。
请参见图1,本实施例提供的瞬态过程时间信息检测装置包括:
RC等效电路,并联在电力电子器件形成的等效电压源上;所述RC等效电路为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容。
数字隔离组件,连接在所述电阻电容网络上或者连接在所述电阻电容网络的一个分支电路上,用于:在所述电力电子器件的关断瞬态过程中,提取电容充电时的脉冲电流信号的时间点信息;和/或,在所述电力电子器件的开通瞬态过程中,提取电容放电时的脉冲电流信号的时间点信息;其中,所述时间点信息包括起始点时刻和/或结束点时刻;所述数字隔离组件为数字隔离器件或者数字隔离模块。
进一步地,请参见图2,本实施例所述的检测装置还包括:时间测量模块。
所述时间测量模块,与所述数字隔离组件的输出端连接,用于:
基于所述脉冲电流信号的时间点信息,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息;和/或,基于所述脉冲电流信号的时间点信息,确定所述电力电子器件在开通瞬态过程中的电压下降时间信息。
时间测量模块由一个非门和高精度时间测量芯片TDC-GP1构成。数字隔离组件的输出经过非门后的第一个电平变化沿作为时间测量芯片TDC-GP1的START信号,即数字隔离组件的输出由高电平翻转为零的时刻,启动时间测量芯片TDC-GP1并开始计时;数字隔离组件的输出信号直接作为时间测量芯片TDC-GP1的STOP信号,即数字隔离组件的输出信号由低电平翻转为高电平的时刻时间测量芯片TDC-GP1停止计时,这样时间测量芯片TDC-GP1测量出数字隔离组件的输出脉宽,即测得IGBT关断瞬变过程的时间长度,完成所述的测量工作。
以IGBT器件为例,来说明电力电子器件在关断瞬态过程的电压上升时间信息和电力电子器件在开通瞬态过程的电压下降时间信息。
图3为IGBT器件的电气符号示意图,C为IGBT器件的集电极,E为IGBT器件的发射极。本实施例所述的RC等效电路的两端分别接在IGBT器件的CE两端,如图4所示。当IGBT器件在关断期间,CE两端的电压上升,然后给并联在CE两端的RC等效电路上的电容充电,接着数字隔离组件能够提取到电容充电时脉冲电流信号的时间点信息,最后基于脉冲电流信号的时间点信息,确定IGBT器件在关断瞬态过程中的电压上升时间信息。当IGBT器件在开通期间,CE两端的电压下降,并联在CE两端的RC等效电路上的电容放电,接着数字隔离组件就能提取到电容放电时脉冲电流信号的时间点信息,最后基于脉冲电流信号的时间点信息,确定IGBT器件在开通瞬态过程的电压下降时间信息。
图5为IGBT器件在关断瞬态过程中电容电压和电容电流的波形示意图,图6为IGBT器件在开通瞬态过程中电容电压和电容电流的波形示意图。其中,u s(t)或u s均表示CE两端的电压,当u c(t=t 1)时,达到最大值u d;u c(t)或u c均表示电容电压,i c(t)或i c均表示电容电流。
本实施例所述的电阻电容网络可以由多个电阻和多个电容组成。请参见图7-10,(1)“Uin”的左侧(含有大写R、R2、C)为RC等效电路,并联在电力电子器件形成的等效瞬变电压源的两端。RC等效电路是采样电路,并在各种拓扑结构中,均可以等效为电阻与电容的串联,然后通过电阻上的电压,来代表这个RC采样电路上电容的充电电流;(2)“Uin”的右侧,是采样电路输出信号的处理部分,由匹配电阻r、数字隔离组件组成;(3)采样电路采集的充电电流和电力电子器件形成的等效瞬变电压源的两端的电压有对应关系,在电容的充电过程中,电流上升沿时间就是等效瞬变电压源两端电压上升时间,或者采样电路采集的放电电流和电力电子器件形成的等效瞬变电压源的两端的电压有对应关系,在电容的放电过程中,电流下降沿时间就是等效瞬变电压源两端电压上升时间。(4)在RC等效电路上,将电阻上的电压代表电容电流(电压=电阻*电流),电容电流最大值和等效瞬变电压源两端电压成正比。其中,输出信号(Uin)进入数字隔离组件,需要阻抗匹配,才能保证数字隔离 组件输入在规定的电流范围之内。
请参见图7至图10,当所述电阻电容网络包括一个电阻和一个电容时,所述数字隔离组件串联在一个所述电阻和一个所述电容串联的电路上。当所述电阻电容网络包括一个电阻和多个电容时,所述数字隔离组件串联在一个所述电阻和多个所述电容串联的电路上。当所述电阻电容网络包括多个电阻和一个电容时,所述数字隔离组件串联在多个所述电阻和多个所述电容串联的电路上。当所述电阻电容网络包括多个电阻和多个电容时,所述数字隔离组件串联在多个所述电阻和多个所述电容串联的电路上。当所述电阻电容网络包括多个电阻和多个电容时,所述数字隔离组件串联在所述等效电阻和所述等效电容串联的电路上;所述等效电阻为多个电阻并联后形成的电阻;所述等效电容为多个电容并联后形成的电容。当所述电阻电容网络包括多个电阻和多个电容且所述电阻电容网络包括N条分支电路时,前N-1条分支电路均为多个电阻串联的电路,且前N-1条分支电路均并联在电力电子器件形成的等效电压源上,第N条分支电路为电阻和电容串联的电路,所述第N条分支电路并联在所述第N-1条分支电路的一个或者多个电阻上,所述数字隔离组件串联在第N条分支电路上;所述第N条分支电路中的电阻的个数为一个或者多个,所述第N条分支电路中的电容的个数为一个或者多个。当所述电阻电容网络包括多个电阻和多个电容时且所述电阻电容网络包括N条分支电路时,前N-1条分支电路均为电阻和电容串联的电路,且前N-1条分支电路均并联在电力电子器件形成的等效电压源上,第N条分支电路为一个或者多个电阻串联的电路,所述第N条分支电路并联在所述第N-1条分支电路的一个或者多个电阻上,所述数字隔离组件串联在第N条分支电路上;在所述前N-1条分支电路中每条分支电路的电阻的个数为一个或者多个,在所述前N-1条分支电路中每条分支电路的电容的个数为一个或者多个;其中,N为大于或者等于2的正整数。
作为一种优选地实施方式,本实施例所述的RC等效电路采集的电流波形与RC等效电路上的电容电流或电阻电流具有相同的波形特征,电流波形包含上升过程和下降过程;例如,对应于电容的充电过程,充电电流达到峰值的时刻对应于电力电子器件两端电压达到最大值的时刻,该电流波形信号也可以从RC等效电路的电路网络上某个点获得。将代表RC等效电路的电流信号经适 当的匹配电阻r匹配后输入一数字隔离组件A的输入端。上述匹配电阻r取值范围从0到1000M欧姆。
故本实施例所述的一种电力电子器件瞬态过程时间信息检测装置还包括:匹配电阻。所述数字隔离组件的第一输入端连接在所述RC等效电路上,所述数字隔离组件的第二输入端通过所述匹配电阻连接在所述RC等效电路上。
作为一种优选地实施方式,数字隔离组件输出的开关信号的第1变化沿发生的时刻近似该电力电子器件在关断过程中电压上升开始的时刻或者在开通过程中电压下降开始的时刻;数字隔离组件输出的开关信号的第2个变化沿发生的时刻可近似对应该电力电子器件在关断瞬态过程中电压上升结束的时刻或者在开通过程中电压下降结束的时刻。上述两个时刻信号的时间差距即可获得该电力电子器件的关断瞬态过程中电压上升时间宽度或者在开通瞬态过程中电压下降时间宽度。最后还可以通过拟合或标定,精确计算出该电力电子器件的关断瞬态过程的电压上升时间或开通瞬态过程的电压下降时间。
故本实施例所述的电力电子器件在关断瞬态过程中或者开通瞬态过程中,数字隔离器件输出信号的变化过程。数字隔离组件的输入信号X允许连续变化;数字隔离组件输出信号为两个稳态电平,分别为低电平Y0和高电平Y1;数字隔离组件的输入端和输出端之间为电气隔离。
第一种情形:当数字隔离组件的输入信号小于第一阈值X0时,数字隔离组件输出信号为高电平Y1,并当数字隔离组件的输入信号大于第二阈值X1时,数字隔离组件输出信号为低电平Y0;当数字隔离组件的输入信号从高于第二阈值X1的值下降到低于第一阈值X0时,数字隔离组件输出信号为高电平Y1。其中第一阈值X0小于或等于第二阈值X1。该数字隔离组件的输入输出信号关系如图11和图12所示。
第二种情形:当数字隔离组件的输入信号小于第一阈值X0时,数字隔离组件输出信号为低电平Y0,并当数字隔离组件的输入信号大于第二阈值X1时,数字隔离组件输出信号为高电平Y1;当数字隔离组件的输入信号从高于第二阈值X1的值下降到低于第一阈值X0时,数字隔离组件输出信号为低电平Y0。
请参见图13,并联在IGBT器件CE两端的RC等效电路的时间常数记作 τ,在IGBT器件关断时,CE两端电压以dv/dt速率上升,直至到达IGBT器件的截止电压Ud,在这个关断瞬态过程中,CE两端电压上升,由理论分析可知,流经上述RC等效电路中的电流随着该CE两端电压升高而逐渐增大,上述数字隔离组件输入端的信号也随之逐渐升高,当该信号高于数字隔离组件第二阈值X1时,该数字隔离组件的输出信号为低电平Y0;当该CE两端电压到达最高值时,RC等效电路的电流同时达到最大值,随后当该CE两端在电压保持不变的关断周期内,该RC等效电路中的电流即从最大值开始以τ为时间常数按指数规律下降,上述数字隔离组件的输入信号也随之下降,降低到第一阈值X0时,数字隔离组件的输出翻转为另一值,即低电平Y1。通过上述方案,数字隔离组件的输出得到一个开关信号。
图14为所述数字隔离组件对应整个电容的充电过程。参见图15,所述隔离组件输出有两个变化沿(如一个下降沿和一个上升沿)组成,其输出的开关信号的时间宽度与上述RC等效电路充电电流波形瞬态时间成正相关,与所述IGBT器件关断(电压上升过程)时间成正相关。隔离组件输出开关信号的第1变化沿发生的时刻(图中下降沿发生时刻T01)近似该力电子器件关断过程开始的时刻;隔离组件输出开关信号的第2个变化沿,发生的时刻可近似对应该电力电子器件关断瞬态过程中电压上升结束的时刻(图中上升沿发生时刻T11)。对上述两个时刻信号测量时间差距即可获得该电力电子器件的关断瞬态过程中电压上升时间宽度。
τ是时间常数,τ=R*C,只要有电容,电路就会有时间常数。一个电阻上的电流和电压是同步的,电容上电流和电压是不同步(相位),RC等效电路的时间常数就是来表示此种电路的特性。
所以,适当设计上述电阻电容网络的时间常数τ,即控制数字隔离组件输入信号的变化速率,使得输入到上述数字隔离组件输入端的信号,从波峰值降落到第一阈值X0的时间小于等于对该关断瞬态过程结束时刻测量的误差期望值,即可确保通过上述方案获得的误差在可接受的范围内。
误差期望值,是指这个方案检测方法上,必定有误差,但这个误差可以控制,通过在设计上优化时间常数τ和第二阈值X0实现误差控制。
作为一种优选地实施方式,本实施例数字隔离组件也可以为如图16所示, 包括光隔离模块和滞环比较模块;其中,所述光隔离模块中的发光二极管为所述数字隔离组件的输入侧,所述光隔离模块中的感光元件为所述滞环比较模块的输入端,所述滞环比较模块的输出端为所述数字隔离组件的输出侧。
作为一种优选地实施方式,本实施例提供的瞬态过程时间信息检测装置还包括:箝位器件;数字隔离组件通过箝位器件与RC等效电路连接。
实施例二
本实施例提供了基于双支路串联电路并联采样和数字隔离的检测方法。在电力电子器件的两端(如IGBT的CE两端),并联两路采样电路,分别为采样支路A和采样支路B。其中,采样支路A可等效为R1和C1的串联电路,其时间常数为τ1=R1*C1,或者采样支路A可等效为R3和R4的串联电路。采样支路B可等效为R2和C2的串联电路,其时间常数为τ2=R2*C2;当采样支A为RC等效电路时,所述采样支路A的时间常数和所述采样支路B的时间常数不同。
请参见图17,本实施例提供的瞬态过程时间信息检测装置,包括:
第一采样支路(图中的采样支路B),并联在电力电子器件形成的等效电压源上;所述第一采样支路为RC等效电路;所述RC等效电路为电阻电容网络,所述电阻电容网络至少包括一个电阻和一个电容。
第二采样支路(图中的采样支路A),并联在电力电子器件形成的等效电压源上;所述第二采样支路为电阻分压等效电路或者RC等效电路;所述电阻分压等效电路为电阻网络;所述电阻网络至少包括两个电阻。
数字隔离组件;所述数字隔离组件的第一输入端连接在所述第一采样支路上,所述数字隔离组件的第二输入端连接在所述第二采样支路上,所述数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取电流绝对值对应的时间点信息;所述电流绝对值为所述第一采样支路确定的电流与所述第二采样支路确定的电流的差值的绝对值;所述第一采样支路确定的电流为流经RC等效电路的电容充电或者电容放电时的脉冲电流信号;所述第二采样支路确定的电流是根据所述电阻分压等效电路或者所述RC等效电路输出的电压信号确定;其中,所述时间点信息包括起始点时刻和/或结束时刻。
时间测量模块,与所述数字隔离组件的输出端连接,用于:
基于所述电流绝对值对应的时间点信息,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息;和/或,基于所述电流绝对值对应的时间点信息,确定所述电力电子器件在开通瞬态过程中的电压下降时间信息。
与实施例一相似,采样支路的输出端均为电阻,需要接入电阻r1、r2为匹配电阻,所述数字隔离组件的第一输入端通过匹配电阻r1连接在所述第一采样支路上,所述数字隔离组件的第二输入端通过匹配电阻r2连接在所述第二采样支路上。
当数字隔离组件的输入信号小于规定的第一阈值X0时,该数字隔离组件的输出信号为高电平Y1,当数字隔离组件的输入信号大于规定的第二阈值X1时,该数字隔离组件的输出信号为低电平Y0,当数字隔离组件的输入信号从高于第二阈值X1的值下降到低于第一阈值X0时,该数字隔离组件的输出信号为高电压Y1。其中第一阈值X0小于或等于第二阈值X1相同。
或者,当数字隔离组件的输入信号小于规定的第一阈值X0时,该数字隔离组件的输出信号为低电平Y0,当数字隔离组件的输入信号大于规定的第二阈值X1时,该数字隔离组件的输出信号为高电平Y1,当数字隔离组件的输入信号从高于第二阈值X1的值下降到低于第一阈值X0时,该数字隔离组件的输出信号为低电平Y0。
以IGBT器件为例子,请参见图18-20,t0是IGBT器件电压上升阶段的起始时间。在IGBT器件关断时,CE两端电压以dv/dt速率上升,直至到达IGBT器件的截止电压Ud,在这个关断瞬态过程中,CE两端电压上升,电压绝对值或者电流绝对值始终小于第二阈值X1时,数字隔离组件的输出信号高电平Y1;当CE两端电压到达峰值后,输出电压UA和输出电压UB以指数规律下降,在允许的时间误差内,电压绝对值或者电流绝对值即超过第二阈值X1,数字隔离组件的输出信号翻转为低电平Y0,将数字隔离组件输出从高电平Y1翻转到低电平Y0的变化沿可以近似为IGBT器件关断瞬态过程中电压上升结束时刻的信号。
从采样支路A提取与等效电路中电流成正比的电压信号UA;采样支路B的设计应同时满足如下要求:(1)在IGBT器件关断瞬态过程中,采样支路B应输出与IGBT的CE两端电压正相关的电压信号UB,且在该阶段保证 UB-UA值不超过第二阈值X1;(2)在IGBT器件的CE两端电压到达最大值并保持截止电压Ud的阶段,采样支路B输出的电压信号应使得UB-UA在允许的时间误差内超过第二阈值X1。
实施例三
本实施例提供了即基于双支路RC串联电路并联采样和数字隔离的检测方法。请参见图21,本实施例提供的瞬态过程时间信息检测装置,包括:
第一RC等效电路,并联在电力电子器件形成的等效电压源上。
第二RC等效电路,并联在电力电子器件形成的等效电压源上;所述第一RC等效电路和第二RC等效电路均为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容。
第一数字隔离组件(图中以隔离器件A表示),并联在所述第一RC等效电路上,用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述第一RC等效电路产生的脉冲电流信号的结束时刻信号。
第二数字隔离组件(图中以隔离器件B表示),并联在所述第二RC等效电路上,用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述第二RC等效电路产生的脉冲电流信号的起始时刻信号。
时间测量模块,与所述第一数字隔离组件的输出端和第二数字隔离组件的输出端连接,用于:基于所述起始时刻信号和所述结束时刻信号,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息和/或所述电力电子器件在开通瞬态过程中的电压下降时间信息。
将获得的与R1或C1电流等比例的信号,输至隔离组件A或者隔离器件A;当隔离组件A的输入信号小于第一阈值X0时,该隔离组件A输出高电平Y1,当该隔离组件A的输入信号高于隔离组件A的第二阈值X1时,隔离组件A的输出由高电平Y1翻转为低电平Y0。将获得的与R2或C2电流等比例的信号,输至隔离组件B或者隔离器件B;当隔离组件B的输入信号小于第一阈值X0时,该隔离组件A输出高电平Y1,当该隔离组件B的输入信号高于隔离组件B的第二阈值X1时,隔离组件B的输出由高电平Y1翻转为低电平Y0。
或者,将获得的与R1或C1电流等比例的信号,输至隔离组件A或者隔 离器件A;当隔离组件A的输入信号小于第一阈值X0时,该隔离组件A输出低电平Y0,当该隔离组件A的输入信号高于隔离组件A的第二阈值X1时,隔离组件A的输出由低电平Y0翻转为高电平Y1。将获得的与R2或C2电流等比例的信号,输至隔离组件B或者隔离器件B;当隔离组件B的输入信号小于第一阈值X0时,该隔离组件A输出低电平Y0,当该隔离组件B的输入信号高于隔离组件B的第二阈值X1时,隔离组件B的输出由低电平Y0翻转为高电平Y1。
箝位器件或箝位器件模块的作用是在“隔离组件”输入信号过大时保护隔离组件。因此,在隔离组件的前段设置“箝位器件”,将过高的输入信号(大于第二阈值X1)加以限幅,可以保护隔离组件。故本实施例提供的装置还包括:第一箝位器件和第二箝位器件;所述第一数字隔离组件通过所述第一箝位器件与所述第一RC等效电路连接;所述第二数字隔离组件通过所述第二箝位器件与所述第二RC等效电路连接。
第一RC等效电路和第二RC等效电路(两路完全对称的电路),均为采样电路,将采样的电压转化为R1C1支路的电流ic1,和R2C2支路的电流ic2,这两个电流的波峰值(或者波谷值)和所在支路的电阻、电容参数有关,电阻越大,电流峰值越小。把R1C1支路和R2C2支路的电阻、电容进行适当设计,使得电流ic1和电流ic2达到峰值(电容充电第一阶段完成)或者波谷值(电容放电的第一阶段完成)时间两者是一样的。
请参见图22至图25,电容充电分为两个阶段,第一阶段是按照CE电压近似斜坡函数上升,电容充电;第二阶段是CE电压达到最大值Ud,电容电压小于CE电压继续充电。两个支路A和支路B,支路A的电流ic1峰值大于支路B的电流ic2的峰值。在IGBT器件两端的CE电压为接近0的饱和压降时(即器件关断前),电流ic1和电流ic2均为0,输入隔离组件的信号为0,均小于第一阈值X0和第二阈值X1,两个隔离组件的输出均为Y1(高电平),IGBT器件两端电压发生变化(上升),当电流ic2大于第一阈值X0,隔离组件B的输出变为Y0(低电平),此时可以作为电力电子器件关断过程电压上升的起始时刻,虽然有一定误差,通过设计RC参数,误差可以做到很小;随着电力电子器件CE两端电压上升达到最大值Ud,两个支路的电流均达到最 大值(峰值),此时隔离组件A和B的输出均为Y0(低电平);接下来,CE两端电压维持不变,两个支路的充电电流从峰值开始变小直到0,完成第二阶段的充电。在第二阶段的过程中,选择支路B的电流ic2观察,当电流ic2的下降时,隔离组件B的输入小于第二阈值X1时,隔离组件B的状态从Y0(低电平)变为Y1(高电平),该时刻可以近似作为电压上升过程的结束时刻,同样,虽然有一定误差,通过设计RC参数,误差可以做到很小。
利用上述隔离组件的特性,可获得电力电子器件关断瞬态过程电压上升过程的起始时刻信号和结束时刻信号。
实施例四
本实施例提供了一种基于RC串联电路与电阻分压电路的并联采样电路和数字隔离的检测方法。请参见图26,本实施例提供的检测装置,包括:
电阻分压等效电路,并联在电力电子器件形成的等效电压源上;所述电阻分压等效电路为电阻网络;所述电阻网络至少包括两个电阻。
RC等效电路,并联在电力电子器件形成的等效电压源上;所述RC等效电路均为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容。
第一数字隔离组件(图中的隔离器件A),并联在所述RC等效电路上,用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述RC等效电路产生的脉冲电流信号的结束时刻信号。
第二数字隔离组件(图中的隔离器件B),并联在所述电阻分压等效电路上,用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述电阻分压等效电路确定的电流信号的起始时刻信号。
时间测量模块,与所述第一数字隔离组件和第二数字隔离组件的输出端连接,用于:基于所述起始时刻信号和所述结束时刻信号,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息和/或所述电力电子器件在开通瞬态过程中的电压下降时间信息。
本实施例将获得的与R3或C电流等比例的信号,输至隔离组件A或者隔离器件A;当隔离组件A的输入信号小于第一阈值X0时,该隔离组件A输出高电平Y1,当该隔离组件A的输入信号高于隔离组件A的第二阈值X1时,隔离组件A的输出由高电平Y1翻转为低电平Y0。电力电子器件形成的等效 电压经另一纯电阻网络(R1、R2)分压后,获得与等效电压成正比的信号,输至隔离组件B或者隔离器件B;当隔离组件B的输入信号小于第一阈值X0时,该隔离组件A输出高电平Y1,当该隔离组件B的输入信号高于隔离组件B的第二阈值X1时,隔离组件B的输出由高电平Y1翻转为低电平Y0。
或者,将获得的与R3或C1电流等比例的信号,输至隔离组件A或者隔离器件A;当隔离组件A的输入信号小于第一阈值X0时,该隔离组件A输出低电平Y0,当该隔离组件A的输入信号高于隔离组件A的第二阈值X1时,隔离组件A的输出由低电平Y0翻转为高电平Y1。电力电子器件形成的等效电压经另一纯电阻网络(R1、R2)分压后,获得与等效电压成正比的信号,输至隔离组件B或者隔离器件B;当隔离组件B的输入信号小于第一阈值X0时,该隔离组件A输出低电平Y0,当该隔离组件B的输入信号高于隔离组件B的第二阈值X1时,隔离组件B的输出由低电平Y0翻转为高电平Y1。
箝位器件或模块的作用是在“隔离组件”入信号过大时保护隔离组件。
请参见图27至图30,R1R2等效电路和R3C等效电路均为采样电路,将采样的电压(电力电子器件的CE电压,在关断过程中由接近0的饱和压降上升为截至电压Ud)转化为R1R2支路的电流iR和R3C支路的iC。R1R2支路为纯电阻支路,电流iR与CE两端电压变化同相位。R3C支路为电阻电容支路,电流为电容充电电流iC为两个阶段。第一阶段是按照CE电压近似斜坡函数上升,电容充电,第二阶段是CE电压达到最大值Ud,电容电压小于CE电压继续充电。
在电力电子器件两端的CE电压为接近0的饱和压降时(即关断前),电流iR和电流iC均为0,小于第一阈值X0和第二阈值X1,两个隔离组件的输出均为Y1(高电平);当电力电子器件两端电压发生变化(上升),当R1R2支路的电流iR大于第一阈值X0,隔离组件B的输出变为Y0(低电平),此时可以作为电力电子器件关断过程中电压上升的起始时刻,虽然有一定误差,通过设计参数,误差可以做到很小;随着电力电子器件CE两端电压上升达到最大值Ud,支路A(R3C)的电流达到最大值(峰值),此时隔离组件A的输出为Y0(低电平),接下来,CE两端电压维持不变,支路A的充电电流从峰值开始变小直到0,完成第二阶段的充电。在第二阶段的过程中,选择支路 A的电流iC观察,当电流iC的下降时,隔离组件A的输入小于第二阈值X1时,隔离组件A的状态从Y0(低电平)变为Y1(高电平),该时刻可以近似作为电压上升过程的结束时刻,同样,虽然有一定误差,通过设计R3C的参数,误差可以做到很小。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种电力电子器件瞬态过程时间信息检测装置,其特征在于,包括:
    RC等效电路,并联在电力电子器件形成的等效电压源上;所述RC等效电路为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容;
    数字隔离组件,连接在所述电阻电容网络上或者连接在所述电阻电容网络的一个分支电路上,用于:
    在所述电力电子器件的关断瞬态过程中,提取电容充电时的脉冲电流信号的时间点信息;
    和/或,在所述电力电子器件的开通瞬态过程中,提取电容放电时的脉冲电流信号的时间点信息;
    其中,所述时间点信息包括起始点时刻和/或结束点时刻。
  2. 根据权利要求1所述的一种电力电子器件瞬态过程时间信息检测装置,其特征在于,还包括:时间测量模块;
    所述时间测量模块,与所述数字隔离组件的输出端连接,用于:
    基于所述脉冲电流信号的时间点信息,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息;
    和/或,基于所述脉冲电流信号的时间点信息,确定所述电力电子器件在开通瞬态过程中的电压下降时间信息。
  3. 根据权利要求1所述的一种电力电子器件瞬态过程时间信息检测装置,其特征在于,当所述电阻电容网络包括一个电阻和一个电容时,所述数字隔离组件串联在一个所述电阻和一个所述电容串联的电路上;
    当所述电阻电容网络包括一个电阻和多个电容时,所述数字隔离组件串联在一个所述电阻和多个所述电容串联的电路上;
    当所述电阻电容网络包括多个电阻和一个电容时,所述数字隔离组件串联在多个所述电阻和多个所述电容串联的电路上;
    当所述电阻电容网络包括多个电阻和多个电容时,所述数字隔离组件串联在多个所述电阻和多个所述电容串联的电路上;
    当所述电阻电容网络包括多个电阻和多个电容时,所述数字隔离组件串联在所述等效电阻和所述等效电容串联的电路上;所述等效电阻为多个电阻并联后形成的电阻;所述等效电容为多个电容并联后形成的电容;
    当所述电阻电容网络包括多个电阻和多个电容且所述电阻电容网络包括N条分支电路时,前N-1条分支电路均为为多个电阻串联的电路,且前N-1条分支电路均并联在电力电子器件形成的等效电压源上,第N条分支电路为电阻和电容串联的电路,所述第N条分支电路并联在所述第N-1条分支电路的一个或者多个电阻上,所述数字隔离组件串联在第N条分支电路上;所述第N条分支电路中的电阻的个数为一个或者多个,所述第N条分支电路中的电容的个数为一个或者多个;
    当所述电阻电容网络包括多个电阻和多个电容时且所述电阻电容网络包括N条分支电路时,前N-1条分支电路均为电阻和电容串联的电路,且前N-1条分支电路均并联在电力电子器件形成的等效电压源上,第N条分支电路为一个或者多个电阻串联的电路,所述第N条分支电路并联在所述第N-1条分支电路的一个或者多个电阻上,所述数字隔离组件串联在第N条分支电路上;在所述前N-1条分支电路中每条分支电路的电阻的个数为一个或者多个,在所述前N-1条分支电路中每条分支电路的电容的个数为一个或者多个;
    其中,N为大于或者等于2的正整数。
  4. 根据权利要求1所述的一种电力电子器件瞬态过程时间信息检测装置,其特征在于,所述数字隔离组件的输入信号为连续变化的,所述数字隔离组件的输出信号为低电平或高电平;所述数字隔离组件的输入端和输出端之间为电气隔离;
    当所述数字隔离组件的输入信号小于第一阈值时,所述数字隔离组件的输出信号为高电平信号,并当所述数字隔离组件的输入信号大于第二阈值时,所述数字隔离组件的输出信号为低电平信号,且当所述数字隔离组件的输入信号从高于所述第二阈值的值下降到低于所述第一阈值时,所述数字隔离组件的输出信号为高电平信号;其中,所述第一阈值小于或者等于所述第二阈值;
    当所述数字隔离组件的输入信号小于所述第一阈值时,所述数字隔离组件的输出信号为低电平信号,并当所述数字隔离组件的输入信号大于所述第二阈值时,所述数字隔离组件的输出信号为高电平信号,且当所述数字隔离组件的输入信号从高于所述第二阈值的值下降到低于所述第一阈值时,所述数字隔离组件的输出信号为低电平信号。
  5. 根据权利要求1所述的一种电力电子器件瞬态过程时间信息检测装置,其特征在于,所述数字隔离组件包括光隔离模块和滞环比较模块;其中,所述光隔离模块中的发光二极管为所述数字隔离组件的输入侧,所述光隔离模块中的感光元件为所述滞环比较模块的输入端,所述滞环比较模块的输出端为所述数字隔离组件的输出侧。
  6. 根据权利要求1所述的一种电力电子器件瞬态过程时间信息检测装置,其特征在于,还包括:箝位器件;
    所述数字隔离组件通过所述箝位器件与所述RC等效电路连接。
  7. 一种电力电子器件瞬态过程时间信息检测装置,其特征在于,包括:
    第一采样支路,并联在电力电子器件形成的等效电压源上;所述第一采样支路为RC等效电路;所述RC等效电路为电阻电容网络,所述电阻电容网络至少包括一个电阻和一个电容;
    第二采样支路,并联在电力电子器件形成的等效电压源上;所述第二采样支路为电阻分压等效电路或者RC等效电路;所述电阻分压等效电路为电阻网络;所述电阻网络至少包括两个电阻;
    数字隔离组件;所述数字隔离组件的第一输入端连接在所述第一采样支路上,所述数字隔离组件的第二输入端连接在所述第二采样支路上,所述数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取电流绝对值对应的时间点信息;所述电流绝对值为所述第一采样支路确定的电流与所述第二采样支路确定的电流的差值的绝对值;所述第一采样支路确定的电流为流经RC等效电路的电容充电或者电容放电时的脉冲电流信号;所述第二采样支路确定的电流是根据所述电阻分压等效电路或者所述RC等效电路输出的电压信号确定;其中,所述时间点信息包括起始点时刻和/或结束时刻;
    时间测量模块,与所述数字隔离组件的输出端连接,用于:
    基于所述电流绝对值对应的时间点信息,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息;
    和/或,基于所述电流绝对值对应的时间点信息,确定所述电力电子器件在开通瞬态过程中的电压下降时间信息。
  8. 根据权利要求7所述的一种电力电子器件瞬态过程时间信息检测装置, 其特征在于,当所述第二采样支路为RC等效电路时,所述第一采样支路的时间常数和所述第二采样支路的时间常数不同。
  9. 一种电力电子器件瞬态过程时间信息检测装置,其特征在于,包括:
    第一RC等效电路,并联在电力电子器件形成的等效电压源上;
    第二RC等效电路,并联在电力电子器件形成的等效电压源上;所述第一RC等效电路和第二RC等效电路均为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容;
    第一数字隔离组件,并联在所述第一RC等效电路上;所述第一数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述第一RC等效电路产生的脉冲电流信号的结束时刻信号;
    第二数字隔离组件,并联在所述第二RC等效电路上;所述第二数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述第二RC等效电路产生的脉冲电流信号的起始时刻信号;
    时间测量模块,与所述第一数字隔离组件的输出端和第二数字隔离组件的输出端连接,用于:基于所述起始时刻信号和所述结束时刻信号,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息和/或所述电力电子器件在开通瞬态过程中的电压下降时间信息。
  10. 一种电力电子器件瞬态过程时间信息检测装置,其特征在于,包括:
    电阻分压等效电路,并联在电力电子器件形成的等效电压源上;所述电阻分压等效电路为电阻网络;所述电阻网络至少包括两个电阻;
    RC等效电路,并联在电力电子器件形成的等效电压源上;所述RC等效电路均为电阻电容网络;所述电阻电容网络至少包括一个电阻和一个电容;
    第一数字隔离组件,并联在所述RC等效电路上;所述第一数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述RC等效电路产生的脉冲电流信号的结束时刻信号;
    第二数字隔离组件,并联在所述电阻分压等效电路上;所述第二数字隔离组件用于在所述电力电子器件的关断和/或开通瞬态过程中,提取所述电阻分压等效电路确定的电流信号的起始时刻信号;
    时间测量模块,与所述第一数字隔离组件和第二数字隔离组件的输出端连 接,用于:基于所述起始时刻信号和所述结束时刻信号,确定所述电力电子器件在关断瞬态过程中的电压上升时间信息和/或所述电力电子器件在开通瞬态过程中的电压下降时间信息。
PCT/CN2022/108417 2021-07-30 2022-07-28 一种电力电子器件瞬态过程时间信息检测装置 WO2023006007A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110872183.6A CN113589027B (zh) 2021-07-30 2021-07-30 一种电力电子器件瞬态过程时间信息检测装置
CN202110872183.6 2021-07-30

Publications (1)

Publication Number Publication Date
WO2023006007A1 true WO2023006007A1 (zh) 2023-02-02

Family

ID=78252718

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/108417 WO2023006007A1 (zh) 2021-07-30 2022-07-28 一种电力电子器件瞬态过程时间信息检测装置

Country Status (2)

Country Link
CN (1) CN113589027B (zh)
WO (1) WO2023006007A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113589027B (zh) * 2021-07-30 2022-06-03 奇舍电子科技(上海)有限公司 一种电力电子器件瞬态过程时间信息检测装置

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656177A (en) * 1979-10-12 1981-05-18 Jeol Ltd Turn-off time detecting circuit for inverter
US5500834A (en) * 1993-09-03 1996-03-19 Canon Kabushiki Kaisha Device for measuring time lapse after turn off of power source and method thereof
CN101419271A (zh) * 2008-11-28 2009-04-29 华中科技大学 一种半导体脉冲功率开关关断时间的检测电路
CN202171639U (zh) * 2011-08-11 2012-03-21 哈尔滨九洲电气股份有限公司 检测高压可控硅触发导通延时时间的测试装置
CN102843059A (zh) * 2011-07-19 2012-12-26 合康变频科技(武汉)有限公司 电压型逆变器死区补偿方法及装置
CN106199367A (zh) * 2016-07-06 2016-12-07 中国科学院电工研究所 一种igbt结温测量装置
CN112769314A (zh) * 2020-12-31 2021-05-07 臻驱科技(上海)有限公司 一种逆变器pwm电压采样前处理装置
CN112858866A (zh) * 2021-01-20 2021-05-28 合肥工业大学 一种基于米勒平台持续时间的igbt结温监测系统和方法
CN113589027A (zh) * 2021-07-30 2021-11-02 奇舍电子科技(上海)有限公司 一种电力电子器件瞬态过程时间信息检测装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859031B2 (en) * 2002-02-01 2005-02-22 Credence Systems Corporation Apparatus and method for dynamic diagnostic testing of integrated circuits
CN101458307B (zh) * 2008-12-26 2011-05-04 中国西电电气股份有限公司 一种高压断路器合成试验中电压引入用同步控制装置
CN104849644B (zh) * 2014-12-10 2018-02-23 北汽福田汽车股份有限公司 Igbt状态检测电路以及igbt状态检测方法
CN105910730B (zh) * 2016-05-10 2019-03-05 浙江大学 一种大功率igbt模块运行结温的在线检测系统及其检测方法
CN106569007B (zh) * 2016-11-11 2019-05-03 中国人民解放军海军工程大学 Igbt关断电压和导通电压集成的测量电路
CN106571794A (zh) * 2016-11-15 2017-04-19 华中科技大学 一种功率开关器件的闭环控制电路及方法
CN106841967A (zh) * 2016-12-29 2017-06-13 江苏中科君芯科技有限公司 高压大电流igbt的动态测试平台及测试方法
CN108627753A (zh) * 2018-05-11 2018-10-09 西安交通大学 一种基于米勒平台时延的igbt在线状态监测方法与测量系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5656177A (en) * 1979-10-12 1981-05-18 Jeol Ltd Turn-off time detecting circuit for inverter
US5500834A (en) * 1993-09-03 1996-03-19 Canon Kabushiki Kaisha Device for measuring time lapse after turn off of power source and method thereof
CN101419271A (zh) * 2008-11-28 2009-04-29 华中科技大学 一种半导体脉冲功率开关关断时间的检测电路
CN102843059A (zh) * 2011-07-19 2012-12-26 合康变频科技(武汉)有限公司 电压型逆变器死区补偿方法及装置
CN202171639U (zh) * 2011-08-11 2012-03-21 哈尔滨九洲电气股份有限公司 检测高压可控硅触发导通延时时间的测试装置
CN106199367A (zh) * 2016-07-06 2016-12-07 中国科学院电工研究所 一种igbt结温测量装置
CN112769314A (zh) * 2020-12-31 2021-05-07 臻驱科技(上海)有限公司 一种逆变器pwm电压采样前处理装置
CN112858866A (zh) * 2021-01-20 2021-05-28 合肥工业大学 一种基于米勒平台持续时间的igbt结温监测系统和方法
CN113589027A (zh) * 2021-07-30 2021-11-02 奇舍电子科技(上海)有限公司 一种电力电子器件瞬态过程时间信息检测装置

Also Published As

Publication number Publication date
CN113589027A (zh) 2021-11-02
CN113589027B (zh) 2022-06-03

Similar Documents

Publication Publication Date Title
EP3068022B1 (en) Discharging an input capacitor of a switch mode power supply
CN108508342A (zh) 一种igbt短路过流检测电路
WO2023006007A1 (zh) 一种电力电子器件瞬态过程时间信息检测装置
JPS5916470A (ja) パルス検出回路
CN114167771A (zh) 用于ac-dc控制器的输出驱动控制电路
CN112103920A (zh) 一种dc/dc转换器过流保护电路
WO2024179079A1 (zh) 一种保护控制电路及开关电源
CN108153366A (zh) 一种过压保护电路
CN113433375A (zh) 一种膝点检测和采样保持电路
CN115663763A (zh) SiC MOSFET高精度短路保护电路
CN112448370A (zh) 原边控制电路及控制方法以及隔离式电源变换电路
CN109818328B (zh) 一种开关电源过压保护电路
CN211603327U (zh) 一种适用于桥式电路的管压降快速响应检测电路
US4264879A (en) Interval timer circuit relaxation oscillator
CN113589126A (zh) 电力电子器件的瞬态时间测量装置、结温测量系统及方法
CN209820646U (zh) Igbt模块测温电路
CN207965714U (zh) 一种过压保护电路
CN209929951U (zh) 基于短路保护的功率芯片
CN113721039A (zh) 一种高精度i/f转换电路
CN217931906U (zh) 一种防雷元件的电压峰值保持电路
CN220913230U (zh) 一种交流相位检测装置
CN218352157U (zh) 用于hplc通信故障诊断设备的过流保护电路
CN210431214U (zh) 一种实现pwm最大脉宽限制的电路
CN218003547U (zh) 一种数字量信号检测电路
CN110726867B (zh) 一种适用于桥式电路的管压降快速响应检测电路

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848612

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE