WO2023005932A1 - 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法 - Google Patents

一种共伴生资源矿区水与瓦斯综合利用系统及应用方法 Download PDF

Info

Publication number
WO2023005932A1
WO2023005932A1 PCT/CN2022/107944 CN2022107944W WO2023005932A1 WO 2023005932 A1 WO2023005932 A1 WO 2023005932A1 CN 2022107944 W CN2022107944 W CN 2022107944W WO 2023005932 A1 WO2023005932 A1 WO 2023005932A1
Authority
WO
WIPO (PCT)
Prior art keywords
gas
water
oil
reservoir
liquid
Prior art date
Application number
PCT/CN2022/107944
Other languages
English (en)
French (fr)
Inventor
张通
杨鑫
袁亮
李燕芳
谭辉
唐明
Original Assignee
安徽理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽理工大学 filed Critical 安徽理工大学
Publication of WO2023005932A1 publication Critical patent/WO2023005932A1/zh

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F17/00Methods or devices for use in mines or tunnels, not covered elsewhere
    • E21F17/16Modification of mine passages or chambers for storage purposes, especially for liquids or gases
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F13/00Transport specially adapted to underground conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21FSAFETY DEVICES, TRANSPORT, FILLING-UP, RESCUE, VENTILATION, OR DRAINING IN OR OF MINES OR TUNNELS
    • E21F7/00Methods or devices for drawing- off gases with or without subsequent use of the gas for any purpose

Definitions

  • the invention relates to a system and application method for comprehensive utilization of water and gas in mining areas of co-existing resources.
  • Coal is the country's leading energy source, oil and gas resources occupy an extremely important position in the national economy, and uranium mines are an important strategic resource for the country.
  • uranium mines are an important strategic resource for the country.
  • How to form a comprehensive utilization, safe and reliable mining pattern has become an important problem that needs to be solved urgently.
  • the coordinated development of coal and its associated resources has not yet formed a unified system, and there are many problems in mining.
  • Reasonable planning and layout while purifying the polluted water body and efficiently converting the gas left in the goaf of the coal reservoir, can effectively improve the recovery rate of oil and gas resources and reduce Containing uranium, radon and other radionuclides pose a threat to underground water bodies and coal deposits, and make full use of the space energy efficiency of coal deposit goafs.
  • the purpose of the embodiments of the present invention is to propose a system for comprehensive utilization of water and gas in mining areas with associated resources.
  • a repair mechanism and a conversion mechanism are constructed to carry out green and rational development of coal, uranium and oil and gas associated mining areas, and use the repair mechanism
  • the conversion mechanism plays the role of coal mine goaf, improves the recovery rate of oil, gas and uranium mines, reduces the cost of uranium mining, reduces the threat of radionuclide pollution to groundwater and coal pools, and at the same time restores the surface environment, and finally realizes coal, uranium and oil and gas Green coordinated mining of resources and efficient utilization of underground space in goafs.
  • the present invention adopts the following technical solutions:
  • a system for comprehensive utilization of water and gas in a mine area of co-existing resources including:
  • Geological institutions including surface layers, uranium pools, coal pools, and oil and gas pools; operating institutions, including oil and gas tanks, water storage lakes, uranium collection liquid tanks, leaching liquid preparation tanks, liquid pumps, liquid injection pumps, liquid pumping wells, injection Liquid wells, liquid injection pipes, pumps, pumping wells, water pipelines, oil extraction machines, oil and gas cluster wells, oil and gas pipelines; development institutions, including coal mining filling bodies, gob-side roadways, filling pipes, concrete bodies, and connecting valves; repair mechanism, including water purification pool, purifier, reservoir, water injection pump, and water injection well; conversion mechanism, including gas collection chamber, tail gas chamber, combustion chamber, filling pier, gas pipeline, heat conduction pipe, and the surface layer is located on the uranium The upper part of the reservoir, the uranium reservoir is located in the upper part of the coal reservoir, the coal reservoir is located in the upper part of the oil and gas reservoir, the oil and gas tank, water storage lake, uranium collection liquid tank, leaching liquid
  • the oil extraction machine is connected with the oil and gas tank by the oil and gas pipeline, the oil and gas cluster well is placed between the surface layer and the oil and gas reservoir, and the uranium collection tank is connected with the liquid pumping well through the liquid pump , the liquid pumping well is placed between the surface layer and the uranium pool, the leaching solution preparation tank is connected to the liquid injection well through the liquid injection pump and the liquid injection pipe, and the liquid injection well is placed Between the surface layer and the uranium deposit, the coal mining filling body is connected to the concrete body through the filling pipe, the concrete body and the clean water pool are located in the coal deposit, and the water storage pool is located in the clean water pool.
  • the purifier is located between the water purification pool and the reservoir, the water injection pump is located in the reservoir, the water injection well is located between the reservoir and the oil and gas reservoir, and the communication valve Placed in the concrete body, the air collection chamber is located on the side of the water purification pool and the reservoir and is connected to the water purification pool and the exhaust chamber respectively through the communication valve, and the exhaust chamber is connected to the air collection chamber
  • the chambers are adjacent to each other, connected to the immersion liquid preparation tank through the gas delivery pipe, the combustion chamber and the filling pier are located between the gas collection chamber and the exhaust chamber, and the heat pipe is placed between the combustion chamber and the
  • the gas pipeline is placed between the surface layer and the coal reservoir, the upper part is connected to the leaching liquid preparation tank, the lower part is connected to the tail gas chamber, and the gob-side roadway is located on the side of the concrete body.
  • the air collection chamber is located on the side of the water purification tank and the storage tank and is connected to the water purification tank and the exhaust gas chamber through the communication valve.
  • the tail gas chamber is adjacent to the gas collection chamber and connected to the immersion liquid preparation tank through the gas delivery pipe.
  • the combustion chamber is located between the gas collection chamber and the exhaust chamber, the left and right sides are connected to the filling pier, and the lower part is connected to the heat pipe.
  • the heat pipe is placed between the combustion chamber and the oil and gas reservoir.
  • the upper part of the oil-gas cluster well is connected to the oil recovery machine, the lower part is connected to the oil-gas reservoir, and the middle part passes through the filling pier.
  • the present invention also proposes an application method for a comprehensive utilization system of water and gas in a mining area of co-occurring resources.
  • the above-mentioned system is applied, which includes the following working steps:
  • oil and gas tanks uranium liquid collection tanks, leaching liquid preparation tanks, liquid pumps, liquid injection pumps, liquid pumping wells, liquid injection wells, liquid injection pipes, water storage lakes, oil extraction machines, Oil and gas cluster wells, oil and gas pipelines, pumps, pumping wells, water pipelines, gas pipelines, coal mining filling bodies, filling pipes;
  • the concrete body is constructed through the coal mining filling body, and the clean water pool, the water storage pool, the gas collection room, the exhaust gas room, and the gob-side roadway are left in turn;
  • the reservoir continuously collects clean water from the water purification tank, and displaces the oil and gas in the oil and gas reservoir through the water injection pump and the water injection well. At the same time, the excess clean water is transported to the surface water storage tank through the pumping well for the restoration of the surface environment Or used as domestic water in mining areas;
  • the gas collection chamber continuously collects the gas left in the goaf, and continuously converts the gas into high-temperature steam, CO 2 and O 2 gas through the combustion chamber.
  • the high-temperature steam is conducted to the oil and gas reservoir through the heat pipe to reduce the oil and gas viscosity and improve oil and gas recovery.
  • the CO 2 and O 2 gases stored in the tail gas chamber are transported to the surface leaching liquid preparation tank through the gas pipeline to prepare a neutral leaching liquid for uranium in-situ leaching mining;
  • the system for comprehensive utilization of water and gas in the mining area of co-occurring resources mentioned in the present invention has a geological mechanism, an operating mechanism, a development mechanism, a repair mechanism, and a transformation mechanism, wherein according to the characteristics of the geological mechanism, underground water, gas, surface oil and gas and uranium mining mechanisms are set.
  • the preparation tank makes the tail gas generated by the gas conversion mechanism into a neutral solution for uranium mining, and at the same time transports high-temperature steam to the oil and gas reservoir through the heat transfer tube to reduce the viscosity of oil and gas in the reservoir, improve oil and gas recovery and reduce the cost of uranium mining , and finally realize the green coordinated mining of coal, uranium and oil and gas resources and the efficient utilization of underground
  • Fig. 1 is an overall state diagram in an embodiment of the present invention.
  • a system for comprehensive utilization of water and gas in mining areas with associated resources includes a geological mechanism, an operating mechanism, a development mechanism, a restoration mechanism, and a transformation mechanism.
  • the surface layer 1 is located on the upper part of the uranium reservoir 2
  • the uranium reservoir 2 is located on the upper part of the coal reservoir 3
  • the coal reservoir 3 is located on the upper part of the oil and gas reservoir 4 .
  • the oil and gas tank 6, water storage lake 5, uranium collection liquid tank 27, leaching liquid preparation tank 32, water pump 10, oil extraction machine 14, liquid suction pump 28, and liquid injection pump 33 are placed on the surface 1, the storage lake 5 is connected to the pumping well 8 through the pump 10 and the water pipeline 9, and the pumping well 8 is placed between the surface layer 1 and the coal reservoir 3, the
  • the oil extraction machine 14 is connected to the oil and gas tank 6 by the oil and gas pipeline 20, the oil and gas cluster well 13 is placed between the surface layer 1 and the oil and gas reservoir 4, and the uranium collection tank 27 is connected to the pumping pump 28 through the liquid pump 28.
  • the liquid well 30 is connected, and the liquid pumping well 30 is placed between the surface layer 1 and the uranium reservoir 2, and the leaching liquid preparation tank 32 is connected with the injection liquid pump 33 and the liquid injection pipe 31.
  • the liquid wells 29 are connected, and the liquid injection wells 29 are placed between the surface layer 1 and the uranium reservoir 2 .
  • the coal mining filling body 7 is connected to the concrete body 18 through the filling pipe 35, the concrete body 18 is located in the coal pool 3, and the communication valve 22 is placed in the concrete body 18 Inside, the gob-side roadway 19 is located on the side of the concrete body 18 .
  • the water purification pool 15 is located in the coal pool 3
  • the water storage pool 16 is located at the rear of the water purification pool 15
  • the purifier 17 is located between the water purification pool 15 and the water storage pool 16
  • the water injection pump 11 is located in the water storage tank 16
  • the water injection well 12 is located between the water storage tank 16 and the oil and gas reservoir 4 .
  • the gas collection chamber 21 is located in the coal reservoir 3
  • the tail gas chamber 26 is adjacent to the gas collection chamber 21
  • the combustion chamber 24 and the filling pier 25 are located between the gas collection chamber 21 and
  • the heat pipe 23 is placed between the combustion chamber 24 and the oil and gas reservoir 4
  • the gas delivery pipe 34 is placed between the surface layer 1 and the coal reservoir 3, and the upper part is connected to the
  • the immersion solution preparation tank 32 is connected to the tail gas chamber 26 at the bottom.
  • Chamber 24 converts gas into CO2 and O2 gas and high-temperature steam, wherein CO2 and O2 gas are made into neutral leaching agent through leaching liquid preparation tank 32 for uranium mining, and high-temperature steam is transported to oil and gas reservoir 4 through heat pipe 23 In order to reduce the viscosity of oil and gas, and ultimately improve oil and gas recovery while reducing the cost of uranium mining.
  • the oil and gas tank 6, the uranium liquid collection tank 27, the leaching liquid preparation tank 32, the liquid pump 28, the liquid injection pump 33, the liquid pumping well 30, the liquid injection well 29, and the liquid injection pipe 31 are arranged in sequence , water storage lake 5, oil extraction machine 14, oil and gas cluster well 13, oil and gas pipeline 20, water pump 10, water well 8, water pipeline 9, gas pipeline 34, coal mining filling body 7, filling pipe 35;
  • Concrete body 18 is constructed by coal mining filling body 7 in the goaf of coal reservoir 3, and water purification pool 15, water storage pool 16, gas collection chamber 21, tail gas chamber 26, and gob-side roadway 19 are left in turn;
  • oil extraction machine 14 While oil extraction machine 14 is performing oil and gas extraction and liquid injection pump 33 is performing in-situ leaching extraction, water injection pump 11, water pump 10, and goaf water purification mechanism in coal reservoir 3 are operating synchronously, and oil and gas in oil and gas reservoir 4 pass through oil and gas cluster wells 13.
  • the oil extraction machine 14 and the oil and gas pipeline 20 are transported to the oil and gas tank 6 of the surface layer 1, and the water purification pool 15 collects seepage and gushing water from the overlying strata, and then the pollutants in the water body are treated by the purifier 17, and the treated clean water is transported to the water storage pool 16;
  • the water storage tank 16 continuously collects the clean water treated by the water purification tank 15, and displaces the oil and gas in the oil and gas reservoir 4 through the water injection pump 11 and the water injection well 12. At the same time, the excess clean water is transported to the surface 1 storage through the pumping well 8 Water tanks are used for surface environment restoration or as domestic water in mining areas;
  • the gas collection chamber 21 continuously collects the gas left in the goaf, and continuously converts the gas into high-temperature steam, CO 2 and O 2 gas through the combustion chamber 24, wherein the high-temperature steam is conducted to the oil and gas reservoir 4 through the heat pipe 23 to reduce the oil and gas viscosity,
  • the CO2 and O2 gases stored in the tail gas chamber 26 are transported to the surface layer 1 leaching solution preparation tank 32 through the gas pipeline 34 to prepare a neutral leaching solution for uranium in-situ leaching mining;

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Mechanical Engineering (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

公开了一种共伴生资源矿区水与瓦斯综合利用系统及应用方法。共伴生资源矿区水与瓦斯综合利用系统,包括地质机构、运行机构、开发机构、修复机构、转化机构,地质机构设置表层(1)、铀藏(2)、煤藏(3)、油气藏(4),运行机构设置油气罐(6)、蓄水湖(5)、集铀液罐(27)、溶浸液制备罐(32)、抽液泵(28)、注液泵(33)、抽液井(30)、注液井(29)、注液管(31)、抽水泵(10)、抽水井(8)、输水管道(9)、采油机(14)、油气丛井(13)、油气管道(20),开发机构设置采煤充填体(7)、沿空巷道(19)、充填管(35)、混凝土体(18)、连通阀(22),修复机构设置净水池(15)、净化器(17)、蓄水池(16)、注水泵(11)、注水井(12),转化机构设置集气室(21)、尾气室(26)、燃烧室(24)、充填墩(25)、输气管(34)、导热管(23)。该系统通过五大机构配合,实现共伴生资源矿区全生命周期能源化与功能化高效开发利用。

Description

一种共伴生资源矿区水与瓦斯综合利用系统及应用方法 技术领域
本发明涉及一种共伴生资源矿区水与瓦斯综合利用系统及应用方法。
背景技术
煤炭为国家主导能源,油气资源在国民经济中占有极其重要的地位,而铀矿更是国家重要的战略资源,针对鄂尔多斯盆地内煤、铀及油气资源平面上相互叠加、垂向上互相重叠,而且开发利用方式、特点互不相同,相互影响的现状,如何形成综合利用、安全可靠的开采格局成为当前急需解决的重要难题。现阶段煤及其共伴生资源协调开发尚未形成统一体系,开采时面临诸多问题,合理规划布局同时净化受污染水体并高效转化煤藏采空区遗留瓦斯,可以有效提高油气资源采收率,降低含铀、氡等放射性核素对地下水体与煤藏污染威胁,并充分利用煤藏采空区的空间能效。基于上述情况,迫切需要一种共伴生资源矿区水与瓦斯综合利用系统及应用方法,以达到实现煤、铀及油气资源绿色协调开采与采空区地下空间高效利用的目的。
技术问题
本发明实施例的目的在于提出一种共伴生资源矿区水与瓦斯综合利用系统,基于规划运行机构,构建修复机构和转化机构,进行煤、铀及油气共伴生矿区的绿色合理开发,利用修复机构和转化机构发挥煤藏采空区功能,提高油气及铀矿采收率并减少铀矿开采成本,降低放射性核素对地下水体与煤藏污染威胁同时修复表层环境,最终实现煤、铀及油气资源绿色协调开采与采空区地下空间的高效利用。
技术解决方案
为实现上述目的,本发明采用如下技术方案:
一种共伴生资源矿区水与瓦斯综合利用系统,包括:
地质机构,包括表层、铀藏、煤藏、油气藏;运行机构,包括油气罐、蓄水湖、集铀液罐、溶浸液制备罐、抽液泵、注液泵、抽液井、注液井、注液管、抽水泵、抽水井、输水管道、采油机、油气丛井、油气管道;开发机构,包括采煤充填体、沿空巷道、充填管、混凝土体、连通阀;修复机构,包括净水池、净化器、蓄水池、注水泵、注水井;转化机构,包括集气室、尾气室、燃烧室、充填墩、输气管、导热管,所述表层位于所述铀藏上部,所述铀藏位于所述煤藏上部,所述煤藏位于所述油气藏上部,所述油气罐、蓄水湖、集铀液罐、溶浸液制备罐、抽水泵、采油机、抽液泵、注液泵置于所述表层上部,所述蓄水湖通过所述抽水泵和输水管道与所述抽水井相连,所述抽水井置于所述表层与所述煤藏之间,所述采油机由油气管道与油气罐连接,所述油气丛井置于所述表层与油气藏之间,所述集铀液罐通过所述抽液泵与所述抽液井连接,所述抽液井置于所述表层与所述铀藏之间,所述溶浸液制备罐通过所述注液泵和注液管与所述注液井相连,所述注液井置于表层与铀藏之间,所述采煤充填体通过所述充填管与所述混凝土体连接,所述混凝土体、净水池位于所述煤藏内,所述蓄水池位于所述净水池后部,所述净化器位于净水池与蓄水池中间,所述注水泵位于所述蓄水池内,所述注水井位于所述蓄水池与油气藏之间,所述连通阀置于所述混凝土体内,所述集气室位于所述净水池和蓄水池侧面并通过所述连通阀分别于所述净水池和尾气室相连,所述尾气室与所述集气室相邻,通过所述输气管与所述溶浸液制备罐相连,所述燃烧室和充填墩位于所述集气室和尾气室之间,所述导热管置于所述燃烧室与所述油气藏之间,所述输气管置于所述表层与所述煤藏之间,上部连接所述溶浸液制备罐,下部连接所述尾气室,所述沿空巷道位于混凝土体侧面。
优选地,所述集气室位于所述净水池和蓄水池侧面并通过所述连通阀分别于所述净水池和尾气室相连。
优选地,所述尾气室与所述集气室相邻,通过所述输气管与所述溶浸液制备罐相连。
优选地,所述燃烧室位于所述集气室和尾气室之间,左右两侧与所述充填墩相连,下部连接所述导热管。
优选地,所述导热管置于所述燃烧室与所述油气藏之间。
优选地,所述油气丛井上部连接所述采油机,下部与所述油气藏相连,中间从所述充填墩穿过。
本发明还提出了一种共伴生资源矿区水与瓦斯综合利用系统应用方法,应用上述系统,其包括如下工作步骤:
a、根据工程勘探情况,依次布置油气罐、集铀液罐、溶浸液制备罐、抽液泵、注液泵、抽液井、注液井、注液管、蓄水湖、采油机、油气丛井、油气管道、抽水泵、抽水井、输水管道、输气管、采煤充填体、充填管;
b、煤藏采空区内通过采煤充填体构筑混凝土体,依次形成净水池、蓄水池,集气室、尾气室、并留设沿空巷道;
c、通过沿空巷道,依次构筑净化器、注水泵、注水井、连通阀、燃烧室、充填墩、导热管;
d、采油机进行油气开采和注液泵进行地浸开采的同时,注水泵、抽水泵、煤藏采空区净水机构同步运行工作,油气藏中油气通过油气丛井、采油机及油气管道输送至表层油气罐,净水池收集上覆岩层渗、涌水,再通过净化器处理水体中的污染物,处理后的洁净水输送至蓄水池;
e、蓄水池不断收集来自净水池处理后的洁净水,通过注水泵和注水井驱替油气藏中油气,同时通过抽水井将过剩的洁净水输送至表层储水罐用于地表环境修复或者用作矿区生活用水;
f、集气室不断收集采空区遗留瓦斯,通过燃烧室不断将瓦斯转化成高温蒸汽以及CO 2和O 2气体,其中高温蒸汽通过导热管传导至油气藏从而降低油气黏度,提高油气采收率,储存在尾气室CO 2和O 2气体通过输气管输送至表层溶浸液制备罐制备成中性溶浸液用以铀矿地浸开采;
g、煤、铀及油气不同开采工序下,重复d-f步骤。
有益效果
本发明具有如下优点:
本发明述及的共伴生资源矿区水与瓦斯综合利用系统,具有地质机构、运行机构、开发机构、修复机构、转化机构,其中根据地质机构特征,设置地下水、瓦斯及地面油气和铀矿开采机构,将地下净化后的洁净水、油气资源、富铀溶液分别贮存至蓄水湖、油气罐和集铀液罐;构筑混凝土体并形成修复机构、转化机构和沿空巷道,同时支撑煤藏上覆岩层、减小覆岩裂隙发育;利用净水池承接上覆岩层渗、涌水并通过净化器净化后流入蓄水池,在蓄水池中通过注水井来驱替油气资源;利用溶浸液制备罐将瓦斯转化机构生成的尾气制成中性溶浸液用以铀矿开采,同时通过导热管输送高温蒸汽至油气藏,降低储层油气黏度,提高油气采收率同时降低铀矿开采成本,最终实现煤、铀及油气资源绿色协调开采与采空区地下空间的高效利用。
附图说明
图1为本发明实施例中整体状态图。
图中:1-表层;2-铀藏;3-煤藏;4-油气藏;5-蓄水湖;6-油气罐;7-采煤充填体;8-抽水井;9-输水管道;10-抽水泵;11-注水泵;12-注水井;13-油气丛井;14-采油机;15-净水池;16-蓄水池;17-净化器;18-混凝土体;19-沿空巷道;20-油气管道;21-集气室;22-连通阀;23-导热管;24-燃烧室;25-充填墩;26-尾气室;27-集铀液罐;28-抽液泵;29-注液井;30-抽液井;31-注液管;32-溶浸液制备罐;33-注液泵;34-输气管;35-充填管。
本发明的最佳实施方式
面结合附图以及具体实施方式对本发明作进一步详细说明:
如图1所示,一种共伴生资源矿区水与瓦斯综合利用系统,包括地质机构、运行机构、开发机构、修复机构、转化机构,基于地质机构特征,通过规划运行机构,构建修复机构和转化机构,进行煤、铀、油气共伴生矿区的绿色合理开发,利用修复机构和转化机构发挥煤层采空区功能,提高油气开采率并减少铀矿开采成本,降低放射性核素对地下水体与煤层污染威胁并修复地表环境,最终实现煤、铀及油气资源绿色协调开采与采空区地下空间的高效利用。
地质机构中,所述表层1位于所述铀藏2上部,所述铀藏2位于所述煤藏3上部,所述煤藏3位于所述油气藏4上部。
运行机构中,所述油气罐6、蓄水湖5、集铀液罐27、溶浸液制备罐32、抽水泵10、采油机14、抽液泵28、注液泵33置于所述表层1上部,所述蓄水湖5通过所述抽水泵10和输水管道9与所述抽水井8相连,所述抽水井8置于所述表层1与所述煤藏3之间,所述采油机14由油气管道20与油气罐6连接,所述油气丛井13置于所述表层1与油气藏4之间,所述集铀液罐27通过所述抽液泵28与所述抽液井30连接,所述抽液井30置于所述表层1与所述铀藏2之间,所述溶浸液制备罐32通过所述注液泵33和注液管31与所述注液井29相连,所述注液井29置于表层1与铀藏2之间。
开发机构中,所述采煤充填体7通过所述充填管35与所述混凝土体18连接,所述混凝土体18位于所述煤藏3内,所述连通阀22置于所述混凝土体18内,所述沿空巷道19位于混凝土体18侧面。
修复机构中,所述净水池15位于所述煤藏3内,所述蓄水池16位于所述净水池15后部,所述净化器17位于净水池15与蓄水池16中间,所述注水泵11位于所述蓄水池16内,所述注水井12位于所述蓄水池16与油气藏4之间。
转化机构中,所述集气室21位于所述煤藏3内,所述尾气室26与所述集气室21相邻,所述燃烧室24和充填墩25位于所述集气室21和尾气室26之间,所述导热管23置于所述燃烧室24与所述油气藏4之间,所述输气管34置于所述表层1与所述煤藏3之间,上部连接所述溶浸液制备罐32,下部连接所述尾气室26。
结合图1所示,根据要求首先确定综合利用机构方位尺寸及相应水体净化和瓦斯转化工艺,利用净化器17处理受污染水体,处理得到的洁净水用以驱替油气及修复地表生态,利用燃烧室24将瓦斯转化成CO2和O2气体及高温蒸汽,其中CO2和O2气体通过溶浸液制备罐32制成中性浸出剂用以铀矿开采,高温蒸汽通过导热管23输送至油气藏4用以降低油气黏度,最终提高油气采收率同时降低铀矿开采成本。
其具体步骤大致如下:
a、根据工程勘探情况,依次布置油气罐6、集铀液罐27、溶浸液制备罐32、抽液泵28、注液泵33、抽液井30、注液井29、注液管31、蓄水湖5、采油机14、油气丛井13、油气管道20、抽水泵10、抽水井8、输水管道9、输气管34、采煤充填体7、充填管35;
b、煤藏3采空区内通过采煤充填体7构筑混凝土体18,依次形成净水池15、蓄水池16,集气室21、尾气室26、并留设沿空巷道19;
c、通过沿空巷道19,依次构筑净化器17、注水泵11、注水井12、连通阀22、燃烧室24、充填墩25、导热管23;
d、采油机14进行油气开采和注液泵33进行地浸开采的同时,注水泵11、抽水泵10、煤藏3采空区净水机构同步运行工作,油气藏4中油气通过油气丛井13、采油机14及油气管道20输送至表层1油气罐6,净水池15收集上覆岩层渗、涌水,再通过净化器17处理水体中的污染物,处理后的洁净水输送至蓄水池16;
e、蓄水池16不断收集来自净水池15处理后的洁净水,通过注水泵11和注水井12驱替油气藏4中油气,同时通过抽水井8将过剩的洁净水输送至表层1储水罐用于地表环境修复或者用作矿区生活用水;
f、集气室21不断收集采空区遗留瓦斯,通过燃烧室24不断将瓦斯转化成高温蒸汽以及CO 2和O 2气体,其中高温蒸汽通过导热管23传导至油气藏4从而降低油气黏度,提高油气采收率,储存在尾气室26的CO 2和O 2气体通过输气管34输送至表层1溶浸液制备罐32制备成中性溶浸液用以铀矿地浸开采;
g、煤、铀及油气不同开采工序下,重复d-f步骤。

Claims (7)

  1. 一种共伴生资源矿区水与瓦斯综合利用系统,其特征在于:所述共伴生资源矿区水与瓦斯综合利用系统包括:
    地质机构,包括表层、铀藏、煤藏、油气藏;运行机构,包括油气罐、蓄水湖、集铀液罐、溶浸液制备罐、抽液泵、注液泵、抽液井、注液井、注液管、抽水泵、抽水井、输水管道、采油机、油气丛井、油气管道;开发机构,包括采煤充填体、沿空巷道、充填管、混凝土体、连通阀;修复机构,包括净水池、净化器、蓄水池、注水泵、注水井;转化机构,包括集气室、尾气室、燃烧室、充填墩、输气管、导热管,所述表层位于所述铀藏上部,所述铀藏位于所述煤藏上部,所述煤藏位于所述油气藏上部,所述油气罐、蓄水湖、集铀液罐、溶浸液制备罐、抽水泵、采油机、抽液泵、注液泵置于所述表层上部,所述蓄水湖通过所述抽水泵和输水管道与所述抽水井相连,所述抽水井置于所述表层与所述煤藏之间,所述采油机由油气管道与油气罐连接,所述油气丛井置于所述表层与油气藏之间,所述集铀液罐通过所述抽液泵与所述抽液井连接,所述抽液井置于所述表层与所述铀藏之间,所述溶浸液制备罐通过所述注液泵和注液管与所述注液井相连,所述注液井置于表层与铀藏之间,所述采煤充填体通过所述充填管与所述混凝土体连接,所述混凝土体、净水池位于所述煤藏内,所述蓄水池位于所述净水池后部,所述净化器位于净水池与蓄水池中间,所述注水泵位于所述蓄水池内,所述注水井位于所述蓄水池与油气藏之间,所述连通阀置于所述混凝土体内,所述集气室位于所述净水池和蓄水池侧面并通过所述连通阀分别与 所述净水池和尾气室相连,所述尾气室与所述集气室相邻,通过所述输气管与所述溶浸液制备罐相连,所述燃烧室和充填墩位于所述集气室和尾气室之间,所述导热管置于所述燃烧室与所述油气藏之间,所述输气管置于所述表层与所述煤藏之间,上部连接所述溶浸液制备罐,下部连接所述尾气室,所述沿空巷道位于混凝土体侧面。
  2. 根据权利要求1所述的共伴生资源矿区水与瓦斯综合利用系统,其特征在于:所述集气室位于所述净水池和蓄水池侧面并通过所述连通阀分别与所述净水池和尾气室相连。
  3. 根据权利要求1所述的共伴生资源矿区水与瓦斯综合利用系统,其特征在于:所述尾气室与所述集气室相邻,通过所述输气管与所述溶浸液制备罐相连。
  4. 根据权利要求1所述的共伴生资源矿区水与瓦斯综合利用系统,其特征在于:所述燃烧室位于所述集气室和尾气室之间,左右两侧与所述充填墩相连,下部连接所述导热管。
  5. 根据权利要求1所述的共伴生资源矿区水与瓦斯综合利用系统,其特征在于:所述导热管置于所述燃烧室与所述油气藏之间。
  6. 根据权利要求1所述的共伴生资源矿区水与瓦斯综合利用系统,其特征在于:所述油气丛井上部连接所述采油机,下部与所述油气藏相连,中间从所述充填墩穿过。
  7. 一种共伴生资源矿区水与瓦斯综合利用系统应用方法,其特征在于,采用如权利要求1至6任一项所述的共伴生资源矿区水与瓦斯综合利用系统,包括如下步骤:
    a、根据工程勘探情况,依次布置油气罐、集铀液罐、溶浸液制备罐、抽液泵、注液泵、抽液井、注液井、注液管、蓄水湖、采油机、油气丛井、油气管道、抽水泵、抽水井、输水管道、输气管、采煤充填体、充填管;
    b、煤藏采空区内通过采煤充填体构筑混凝土体,依次形成净水池、蓄水池,集气室、尾气室、并留设沿空巷道;
    c、通过沿空巷道,依次构筑净化器、注水泵、注水井、连通阀、燃烧室、充填墩、导热管;
    d、采油机进行油气开采和注液泵进行地浸开采的同时,注水泵、抽水泵、煤藏采空区净水机构同步运行工作,油气藏中油气通过油气丛井、采油机及油气管道输送至表层油气罐,净水池收集上覆岩层渗、涌水,再通过净化器处理水体中的污染物,处理后的洁净水输送至蓄水池;
    e、蓄水池不断收集来自净水池处理后的洁净水,通过注水泵和注水井驱替油气藏中油气,同时通过抽水井将过剩的洁净水输送至表层储水罐用于地表环境修复或者用作矿区生活用水;
    f、集气室不断收集采空区遗留瓦斯,通过燃烧室不断将瓦斯转化成高温蒸汽以及CO 2和O 2气体,其中高温蒸汽通过导热管传导至油气藏从而降低油气黏度,提高油气采收率,储存在尾气室CO 2和O 2气体通过输气管输送至表层溶浸液制备罐制备成中性溶浸液用以铀矿地浸开采;
    g、煤、铀及油气不同开采工序下,重复d-f步骤。
PCT/CN2022/107944 2021-07-29 2022-07-26 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法 WO2023005932A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110863740.8 2021-07-29
CN202110863740.8A CN113404539B (zh) 2021-07-29 2021-07-29 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法

Publications (1)

Publication Number Publication Date
WO2023005932A1 true WO2023005932A1 (zh) 2023-02-02

Family

ID=77687998

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107944 WO2023005932A1 (zh) 2021-07-29 2022-07-26 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法

Country Status (2)

Country Link
CN (1) CN113404539B (zh)
WO (1) WO2023005932A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113404539B (zh) * 2021-07-29 2022-06-10 安徽理工大学 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法
CN114837708A (zh) * 2022-06-02 2022-08-02 安徽理工大学 一种矿井开采用多资源互补收集装置

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105370285A (zh) * 2015-12-15 2016-03-02 中核第四研究设计工程有限公司 一种防止地浸方式铀矿开采中地下水位下降的方法
CN106014344A (zh) * 2016-06-07 2016-10-12 中国矿业大学(北京) 一种绿色保水煤铀协调开采系统及其应用方法
CN106930738A (zh) * 2015-12-30 2017-07-07 新疆中核天山铀业有限公司 盐酸改良砂层渗透性地浸采铀溶浸工艺
CN107448178A (zh) * 2017-08-25 2017-12-08 平安煤炭开采工程技术研究院有限责任公司 含煤地层煤与油气资源开采方法和装置
CN110043261A (zh) * 2019-05-21 2019-07-23 安徽理工大学 一种煤铀协调开采透视化物理模拟装置及应用方法
US20190367385A1 (en) * 2015-09-18 2019-12-05 Maher Isaac Kelada Ecologically sustainable hydraulic fracturing system and method
CN110738915A (zh) * 2019-10-30 2020-01-31 安徽理工大学 一种煤铀共采多场耦合实验台及应用方法
CN113404539A (zh) * 2021-07-29 2021-09-17 安徽理工大学 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2132467C1 (ru) * 1997-08-12 1999-06-27 Акционерное общество "Уральский научно-исследовательский и проектный институт галургии" (АО "Галургия") Способ изоляции подземного хранилища токсичных отходов в соленосных породах

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20190367385A1 (en) * 2015-09-18 2019-12-05 Maher Isaac Kelada Ecologically sustainable hydraulic fracturing system and method
CN105370285A (zh) * 2015-12-15 2016-03-02 中核第四研究设计工程有限公司 一种防止地浸方式铀矿开采中地下水位下降的方法
CN106930738A (zh) * 2015-12-30 2017-07-07 新疆中核天山铀业有限公司 盐酸改良砂层渗透性地浸采铀溶浸工艺
CN106014344A (zh) * 2016-06-07 2016-10-12 中国矿业大学(北京) 一种绿色保水煤铀协调开采系统及其应用方法
CN107448178A (zh) * 2017-08-25 2017-12-08 平安煤炭开采工程技术研究院有限责任公司 含煤地层煤与油气资源开采方法和装置
CN110043261A (zh) * 2019-05-21 2019-07-23 安徽理工大学 一种煤铀协调开采透视化物理模拟装置及应用方法
CN110738915A (zh) * 2019-10-30 2020-01-31 安徽理工大学 一种煤铀共采多场耦合实验台及应用方法
CN113404539A (zh) * 2021-07-29 2021-09-17 安徽理工大学 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法

Also Published As

Publication number Publication date
CN113404539B (zh) 2022-06-10
CN113404539A (zh) 2021-09-17

Similar Documents

Publication Publication Date Title
WO2023005932A1 (zh) 一种共伴生资源矿区水与瓦斯综合利用系统及应用方法
WO2017219792A1 (zh) 土壤及地下水原位注入——高压旋喷注射原位修复系统及方法
CN109505565B (zh) 一种注水与注气交变驱替抽采煤层瓦斯的方法
US20080078552A1 (en) Method of heating hydrocarbons
CN110695071A (zh) 复合有机污染场地原位热注入系统及工艺
CN107227975B (zh) 矿床与地热协同开采及毗邻采场协同降温方法及系统
CN206747264U (zh) 一种土壤及地下水高压旋喷与浅层搅拌联合原位修复系统
CN111360052A (zh) 用于土壤及地下水修复的多层循环井系统
WO2024041668A1 (zh) 一种基于废弃矿井采空区的co2区块化封存方法
CN105399245B (zh) 六价铬污染地下水的修复装置及其修复方法
CN104533368B (zh) 一种火烧油层烟道气在油藏开采中的应用及系统
CN212238608U (zh) 用于土壤及地下水修复的可调节修复井系统
CN106006771B (zh) 用于污染水土修复的多路连通井群抽灌循环水处理方法
CN111804717A (zh) 用于土壤及地下水修复的可调节修复井系统
CN109654581B (zh) 一种基于承压含水层的跨季节蓄热的复合供暖系统
CN212121196U (zh) 用于土壤及地下水修复的多层循环井系统
CN114273411A (zh) 一种用于有机污染场地的联合修复系统以及修复方法
CN113172084A (zh) 一种强化热脱附效果的土壤修复系统及方法
RU2547847C1 (ru) Способ разработки сланцевых нефтегазоносных залежей и технологический комплекс оборудования для его осуществления
CN210816696U (zh) 复合有机污染场地原位热注入系统
CN210595595U (zh) 一种污染土壤及地下水修复装置
CN112429864B (zh) 修复有机污染地下水的系统和方法
CN216429623U (zh) 一种用于暗挖隧道开挖前固结沙层的注浆装置
CN105672252A (zh) 一种用于含气土层中预制桩施工的可控排气装置及其施工方法
CN207013441U (zh) 一种污染场地的综合修复系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848537

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE