WO2023005891A1 - 智能听诊器控制电路、智能听诊器及电子装置 - Google Patents

智能听诊器控制电路、智能听诊器及电子装置 Download PDF

Info

Publication number
WO2023005891A1
WO2023005891A1 PCT/CN2022/107683 CN2022107683W WO2023005891A1 WO 2023005891 A1 WO2023005891 A1 WO 2023005891A1 CN 2022107683 W CN2022107683 W CN 2022107683W WO 2023005891 A1 WO2023005891 A1 WO 2023005891A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
sound signal
control circuit
target
acquisition unit
Prior art date
Application number
PCT/CN2022/107683
Other languages
English (en)
French (fr)
Inventor
刘民
乐承筠
徐洪亮
梅志
Original Assignee
上海多闻医疗科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海多闻医疗科技有限公司 filed Critical 上海多闻医疗科技有限公司
Publication of WO2023005891A1 publication Critical patent/WO2023005891A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/30Input circuits therefor
    • A61B5/307Input circuits therefor specially adapted for particular uses
    • A61B5/308Input circuits therefor specially adapted for particular uses for electrocardiography [ECG]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/24Detecting, measuring or recording bioelectric or biomagnetic signals of the body or parts thereof
    • A61B5/316Modalities, i.e. specific diagnostic methods
    • A61B5/318Heart-related electrical modalities, e.g. electrocardiography [ECG]
    • A61B5/332Portable devices specially adapted therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B7/00Instruments for auscultation
    • A61B7/02Stethoscopes
    • A61B7/04Electric stethoscopes

Definitions

  • the disclosure relates to the technical field of medical equipment, in particular to an intelligent stethoscope control circuit, an intelligent stethoscope and an electronic device.
  • Stethoscopes are widely used in clinical applications. Through auscultation, medical staff can judge whether there are lesions in related organs according to the characteristics and changes of sounds, such as the frequency and intensity of sounds, the length of sound intervals, and whether there are noises.
  • the electronic stethoscope uses electronic technology to amplify the sound of human organs, converts the physical characteristics of the sound into electrical signals, and performs amplification processing to obtain better listening effects.
  • an intelligent stethoscope control circuit an intelligent stethoscope and an electronic device are provided.
  • the present disclosure provides an intelligent stethoscope control circuit on the one hand, including a heart-lung sound signal acquisition unit, an ECG signal acquisition unit and a processing module, and the heart-lung sound signal acquisition unit is used to acquire the initial heart-lung sound signal of the target object;
  • the electrical signal acquisition unit is used to collect the initial ECG signal of the target object;
  • the processing module is electrically connected to the heart-lung sound signal acquisition unit and the ECG signal acquisition unit, and is used to receive and process the initial heart-lung sound signal to generate the target heart-lung sound signal, and It is also used to receive and process initial ECG signals to generate target ECG signals.
  • the processing module includes a signal processing unit and a microprocessor
  • the signal processing unit is electrically connected to the heart-lung sound signal acquisition unit and the ECG signal acquisition unit, and is used to process and convert the received initial heart-lung sound signal to generate
  • the digital cardiopulmonary sound signal is also used to process and convert the received initial ECG signal to generate a digital cardiopulmonary sound signal
  • the microprocessor is electrically connected to the signal processing unit for generating the target cardiopulmonary sound signal according to the received digital cardiopulmonary sound signal signal, and is also used to generate a target ECG signal according to the received digital ECG signal.
  • the intelligent stethoscope control circuit also includes a display unit, the display unit is electrically connected to the microprocessor, and is used to display the waveform of the target cardiopulmonary sound signal and/or the waveform of the target ECG signal; wherein the microprocessor is configured to : Obtaining a mode operation signal; controlling the display unit to output a target cardiopulmonary sound signal and/or a target ECG signal according to the mode operation signal.
  • the display unit includes a touch screen or display screen electrically connected to the microprocessor.
  • the display unit further includes a sound output unit, the sound output unit is electrically connected to the microprocessor, and is used to output the sound of the target cardiopulmonary sound signal and/or the sound of the target ECG signal; wherein, the microprocessor is also configured To: obtain a volume adjustment signal; control the volume of the output sound of the sound output unit according to the volume adjustment signal.
  • the heart-lung sound signal collection unit includes a piezoelectric sensor module, which is electrically connected to the processing module, and is used for collecting initial heart-lung sound signals.
  • the piezoelectric sensor module includes a piezoelectric sensor and a noise reduction component, the piezoelectric sensor is used to collect the initial cardiopulmonary sound signal; the noise reduction component is arranged on the surface of the piezoelectric sensor close to and/or away from the processing module for Reduce the noise signal collected by the piezoelectric sensor.
  • the piezoelectric sensor includes a piezoelectric ceramic sheet and/or a piezoelectric quartz crystal.
  • the ECG signal acquisition unit includes a first electrode acquisition unit, a second electrode acquisition unit and a third electrode acquisition unit, the first electrode acquisition unit is electrically connected to the processing module; the second electrode acquisition unit is electrically connected to the processing module ; The third electrode acquisition unit is electrically connected to the processing module and is configured as a driving electrode for the right leg; wherein, the first electrode acquisition unit and the second electrode acquisition unit are used to acquire initial ECG signals.
  • the signal processing unit includes a filter unit, an amplification unit, and an analog-to-digital conversion unit
  • the filter unit is electrically connected to the cardiopulmonary sound signal acquisition unit and the ECG signal acquisition unit, and is used to perform filtering processing on the received initial cardiopulmonary sound signal , to generate a filtered cardiopulmonary sound signal, and also to filter the received initial ECG signal to generate a filtered ECG signal
  • the amplifying unit is electrically connected to the filtering unit, and is used to amplify and process the received filtered cardiopulmonary sound signal, To generate amplified cardiopulmonary sound signals, and also used to amplify and process the received filtered ECG signals to generate amplified ECG signals
  • the analog-to-digital conversion unit is electrically connected to the amplifying unit, and is used for analog-to-digital conversion of the received amplified cardiopulmonary sound signals Processing to generate digital cardiopulmonary sound signals, and also used for analog-to-digital conversion processing on the received amplified ECG signals to generate digital cardiopulmonary sound signals.
  • the processing module further includes a wireless communication unit, and the wireless communication unit is electrically connected to the microprocessor; wherein, the microprocessor is communicatively connected to the terminal device through the wireless communication unit, so as to transmit target cardiopulmonary sound signals and/or target ECG signal to the terminal equipment.
  • the wireless communication unit includes a Bluetooth module.
  • the processing module further includes a storage unit, which is electrically connected to the microprocessor, and is used for locally storing the target cardiopulmonary sound signal and/or the target ECG signal.
  • the intelligent stethoscope control circuit also includes a power module; the power module includes a battery module and a power control circuit; the power control circuit is electrically connected to the battery module, and is used to output electric energy according to the real-time power of the battery module; wherein
  • the power supply control circuit includes at least one of a charging chip, a power metering chip and a low-voltage linear regulator.
  • another aspect of the present disclosure provides an intelligent stethoscope, including the intelligent stethoscope control circuit in any embodiment of the present disclosure and a casing, where the casing is used to accommodate the intelligent stethoscope control circuit.
  • another aspect of the present disclosure provides an electronic device, including any intelligent stethoscope control circuit in any embodiment of the present disclosure.
  • Embodiments of the present disclosure may/at least have the following advantages:
  • the initial cardiopulmonary sound signal of the target object is collected by setting the heart lung sound signal acquisition unit, and the initial ECG signal of the target object is collected by the electrocardiographic signal acquisition unit ;
  • the smart stethoscope control circuit, smart stethoscope and electronic device provided by the embodiments of the present disclosure can not only capture the heart and lung sounds of the target object, but also measure the ECG signal of the target object, at least to assist the doctor to provide more diagnostic information.
  • FIG. 1 is a schematic diagram of a circuit principle of a smart stethoscope control circuit provided in the first embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of a circuit principle of a smart stethoscope control circuit provided in the second embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a circuit principle of an intelligent stethoscope control circuit provided in a third embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a circuit principle of an intelligent stethoscope control circuit provided in a fourth embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a circuit principle of an intelligent stethoscope control circuit provided in a fifth embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of a piezoelectric sensor module provided in a sixth embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a circuit principle of an intelligent stethoscope control circuit provided in the seventh embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of a circuit principle of an intelligent stethoscope control circuit provided in the eighth embodiment of the present disclosure.
  • FIG. 9 is a schematic diagram of a circuit principle of a smart stethoscope control circuit provided in the ninth embodiment of the present disclosure.
  • first, second, etc. may be used herein to describe various elements, these elements should not be limited by these terms. These terms are only used to distinguish one element from another. For example, a first element could be termed a second element, and, similarly, a second element could be termed a first element, without departing from the scope of the present disclosure.
  • the electronic stethoscope can provide the medical staff with the patient's heart and lung sounds, so that the medical staff can judge whether there is a lesion in the relevant organs.
  • Single-lead electrocardiogram equipment is widely used in health monitoring, early disease diagnosis and postoperative follow-up diagnosis because of its convenient and fast use, facing the public, and strong operability. It can provide useful information for arrhythmia risk judgment and is used for initial screening. Premature beats, atrial fibrillation and various arrhythmias and other diseases.
  • the present disclosure aims to provide an intelligent stethoscope control circuit, an intelligent stethoscope and an electronic device capable of capturing the cardiopulmonary sound of the target object and measuring the ECG signal of the target object, so as to assist doctors in providing more diagnostic information.
  • a smart stethoscope control circuit 100 including a heart-lung sound signal acquisition unit 10, an ECG signal acquisition unit 20, and a processing module 30.
  • the heart-lung sound signal acquisition unit 10 uses To collect the initial cardiopulmonary sound signal of the target object; the ECG signal acquisition unit 20 is used to collect the initial ECG signal of the target object; the processing module 30 is electrically connected with the cardiopulmonary sound signal acquisition unit 10 and the ECG signal acquisition unit 20, for receiving and processing the initial cardiopulmonary sound signal to generate a target cardiopulmonary sound signal, and receiving and processing the initial electrocardiographic signal to generate a target electrocardiographic signal.
  • Fig. 1 collect the initial cardiopulmonary sound signal of target object by arranging cardiopulmonary sound signal collection unit 10, and set ECG signal collection unit 20 to collect the initial electrocardiographic signal of target object;
  • the electrical signal acquisition unit 20 is electrically connected to the processing module 30, which receives and processes the initial cardiopulmonary sound signal to generate the target cardiopulmonary sound signal, and receives and processes the initial ECG signal to generate the target ECG signal. It can not only capture the heart and lung sounds of the target object, but also measure the ECG signal of the target object, so as to assist doctors to provide more diagnostic information.
  • the processing module 30 includes a signal processing unit 31 and a microprocessor 32, and the signal processing unit 31 is electrically connected with the heart and lung sound signal acquisition unit 10 and the electrocardiographic signal acquisition unit 20, and is used for initially receiving The cardiopulmonary sound signal is processed and converted to generate a digital cardiopulmonary sound signal, and is also used to process and convert the received initial ECG signal to generate a digital cardiopulmonary sound signal; the microprocessor 32 is electrically connected to the signal processing unit 31 for The target cardiopulmonary sound signal is generated according to the received digital cardiopulmonary sound signal, and the target electrocardiographic signal is also generated according to the received digital cardiopulmonary signal.
  • the signal processing unit 31 includes a filtering unit, an amplifying unit, and an analog-to-digital conversion unit, and the filtering unit is electrically connected to the cardiopulmonary sound signal acquisition unit 10 and the ECG signal acquisition unit 20, and is used to process the received initial cardiopulmonary sound signal Perform filtering processing to generate filtered cardiopulmonary sound signals, and also be used to perform filtering processing on the received initial ECG signals to generate filtered ECG signals;
  • the amplification unit is electrically connected to the filtering unit for receiving the received The filtered cardiopulmonary sound signal is amplified to generate an amplified cardiopulmonary sound signal, and is also used to amplify the received filtered ECG signal to generate an amplified ECG signal;
  • the analog-to-digital conversion unit is electrically connected to the amplifying unit , for analog-to-digital conversion processing of the received amplified cardiopulmonary sound signal to generate the digital cardiopulmonary sound signal, and also used for analog-to-digital conversion processing of the received amplified cardiopulmonary sound signal to generate the digital cardiopulmonary sound signal tone
  • the intelligent stethoscope control circuit 100 also includes a display unit 40, the display unit 40 is electrically connected to the microprocessor 32, and is used to display the waveform of the target cardiopulmonary sound signal and/or the waveform of the target ECG signal; , the microprocessor 32 is configured to: acquire the mode operation signal; and control the display unit 40 to output the target cardiopulmonary sound signal and/or the target ECG signal according to the mode operation signal.
  • the microprocessor 32 can be controlled to be in the cardiopulmonary sound working mode, and the waveform of the target cardiopulmonary sound signal can be observed through the display unit 40; if the user wants to monitor the cardiopulmonary signal , to initially detect whether there is an abnormality in the heart, the microprocessor 32 can be controlled to be in the electrocardiographic working mode, so as to observe the waveform of the target electrocardiographic signal through the display unit 40; 40 Observing the waveform of the target cardiopulmonary sound signal and the waveform of the target ECG signal at the same time.
  • the display unit 40 includes a touch screen 41 or a display screen (not shown) electrically connected to the microprocessor 32 .
  • the display unit 40 includes a touch screen 41 electrically connected to the microprocessor 32, and the user can input a mode operation signal through the touch screen 41 to control the microprocessor 32 to work in the cardiopulmonary sound mode and the ECG mode. , composite working mode or custom working mode.
  • the working mode can be switched through the touch screen 41 to adapt to different application scenarios.
  • the display unit 40 also includes a sound output unit 42, the sound output unit 42 is electrically connected to the microprocessor 32, and is used to output the sound of the target cardiopulmonary sound signal and/or the sound of the target ECG signal; Wherein, the microprocessor 32 is further configured to: acquire a volume adjustment signal; and control the volume of the sound output by the sound output unit 42 according to the volume adjustment signal.
  • the display unit 40 includes a touch screen 41 electrically connected to the microprocessor 32, the user can input a volume adjustment signal through the touch screen 41 to control the sound output unit 42 to output the sound. volume.
  • the heart and lung sound signal acquisition unit 10 includes a piezoelectric sensor module 11 , and the piezoelectric sensor module 11 is electrically connected to the processing module 30 for collecting initial heart and lung sound signals.
  • the piezoelectric sensor module 11 includes a piezoelectric sensor 111 and a noise reduction component 112, the piezoelectric sensor 111 is used to collect the initial cardiopulmonary sound signal; the noise reduction component 112 is arranged on the piezoelectric sensor 111 close to the microprocessor
  • the surface 111a of the device 32, the surface 111b away from the microprocessor 32, or both the surface 111a of the piezoelectric sensor 111 close to the microprocessor 32 and the surface 111b of the piezoelectric sensor 111 away from the microprocessor 32 are used to reduce the pressure.
  • the noise signal collected by the electric sensor 111 are used to reduce the pressure.
  • the piezoelectric sensor 11 may include a piezoelectric ceramic sheet and/or a piezoelectric quartz crystal.
  • one side of the piezoelectric ceramic sheet can be attached with noise-reducing foam, and the other side can be embedded on the gasket.
  • the lower surface of the gasket can continue to be attached with noise-reducing foam.
  • part of the noise reduction foam is closely attached to the bottom of the thermoplastic polyurethane elastomer rubber (Thermoplastic polyurethanes, TPU) film that is in full contact with the human body.
  • TPU thermoplastic polyurethanes
  • the electrocardiographic signal acquisition unit 20 includes a first electrode acquisition unit 21, a second electrode acquisition unit 22 and a third electrode acquisition unit 23, and the first electrode acquisition unit 21 is electrically connected to the processing module 30;
  • the two-electrode acquisition unit 22 is electrically connected to the processing module 30; wherein, the first electrode acquisition unit 21 and the second electrode acquisition unit 22 are used to acquire the initial ECG signal, and the third electrode acquisition unit 23 is electrically connected to the processing module 30, It is configured as the right leg driving electrode to eliminate external interference and increase the stability of the ECG signal obtained by measurement.
  • the measured body (usually the human body) is affected by the AC electric field formed by the grid, which will generate an AC potential on the human body.
  • This potential is the same on all parts of the body surface and is a common mode interference.
  • the driving electrode of the right leg is essentially a negative feedback, which eliminates the common mode by reversely amplifying the common mode signal and connecting it to the human body, thereby improving the Common Mode Rejection Ratio (CMRR).
  • CMRR Common Mode Rejection Ratio
  • the processing module 30 also includes a wireless communication unit 33, and the wireless communication unit 33 is electrically connected to the microprocessor 32;
  • the target cardiopulmonary sound signal and/or the target ECG signal are sent to the terminal device 200 .
  • the terminal device 200 may be at least one of a mobile phone, a tablet computer, a display panel, and a smart wearable device.
  • the wireless communication unit 33 can include a Bluetooth module 331 .
  • the user can communicate with the microprocessor 32 through the mobile phone via the Bluetooth module 331, and obtain the target cardiopulmonary sound signal and/or the target ECG signal via the mobile phone, so as to observe the waveform and/or target cardiopulmonary sound signal through the mobile phone display interface.
  • the waveform of the target ECG signal can be any other portable phone.
  • the processing module 30 also includes a storage unit 34, the storage unit 34 is electrically connected to the microprocessor 32, and is used for locally storing the target cardiopulmonary sound signal and/or the target ECG signal, while the microprocessor 32
  • the digital sound signal is transmitted to the decoding chip through the I2S interface, and the decoding chip converts the digital sound signal into an analog signal through digital-to-analog conversion, and outputs it to the human ear through the earpiece.
  • the target cardiopulmonary sound signal and/or target ECG signal needs to be stored, press and hold the recording button on the side of the host to store the target cardiopulmonary sound signal and/or target ECG signal in the storage unit 34 and the terminal device 200 .
  • the intelligent stethoscope control circuit 100 also includes a power module 50; the power module 50 includes a battery module 51 and a power control circuit 52; The real-time electric quantity of the group 51 outputs electric energy; wherein, the power control circuit 52 includes at least one of a charging chip 521 , a power metering chip 522 and a low-voltage linear regulator 523 .
  • the battery module 51 may include a lithium battery and/or a storage battery, and the charging chip 521 is electrically connected to the battery module 51.
  • the charging chip 521 may be a linear lithium battery charging chip SL1053, and the linear lithium battery charging The chip SL1053 integrates high-precision pre-charging, constant current charging, constant voltage charging, battery status detection, temperature monitoring, low leakage at the end of charging, charging status indication, etc., so as to comprehensively monitor the charging status of the battery module 51.
  • the power metering chip 522 is electrically connected to the battery module 51 and is used to measure the real-time power of the battery module 51 .
  • the low-voltage linear regulator 523 is electrically connected to the battery module 51 via the fuel gauge chip 522 for reducing power consumption of the power module 50 . When the use is finished, you can long press the power button, the screen goes out, and the device shuts down.
  • the USB Type-C interface can be set to charge the battery module 51 .
  • an intelligent stethoscope including the intelligent stethoscope control circuit 100 in any embodiment of the present disclosure and a casing, the casing is used to accommodate the intelligent stethoscope control circuit 100 .
  • This embodiment provides an intelligent stethoscope capable of capturing the heart and lung sounds of the target object and measuring the electrocardiographic signal of the target object, at least assisting the doctor to provide more diagnostic information.
  • an electronic device including the smart stethoscope control circuit 100 in any embodiment of the present disclosure, so as to capture the heart and lung sounds of the target object and measure the ECG signal of the target object, At least it can assist doctors to provide more diagnostic information.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Veterinary Medicine (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Acoustics & Sound (AREA)
  • Cardiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Measuring Pulse, Heart Rate, Blood Pressure Or Blood Flow (AREA)

Abstract

本公开涉及一种智能听诊器控制电路、智能听诊器及电子设备,智能听诊器控制电路包括心肺音信号采集单元、心电信号采集单元及处理模块,心肺音信号采集单元用于采集目标对象的初始心肺音信号;心电信号采集单元用于采集所述目标对象的初始心电信号;处理模块与所述心肺音信号采集单元及所述心电信号采集单元均电连接,用于接收并处理所述初始心肺音信号以生成目标心肺音信号,以及还用于接收并处理所述初始心电信号,以生成目标心电信号。

Description

智能听诊器控制电路、智能听诊器及电子装置
相关申请的交叉引用
本公开要求于2021年07月27日提交中国专利局、申请号为202121720325.9、申请名称为“智能听诊器控制电路、智能听诊器及电子装置”的中国专利申请的优先权,所述专利申请的全部内容通过引用结合在本公开中。
技术领域
本公开涉及医疗设备技术领域,特别是涉及一种智能听诊器控制电路、智能听诊器及电子装置。
背景技术
听诊器在临床应用中使用十分广泛,医护人员通过听诊可以根据声音的特性和变化,例如声音的频率及强度高低、声音间隔时间的长短及是否有杂音等,来判断相关器官是否存在病变。
电子听诊器利用电子技术放大人体器官的声音,通过将声音的物理特性转换成电信号,并进行放大处理以获取较佳的聆听效果。
然而,传统的电子听诊器仅具备听诊功能,给医生提供的参数较少,不具备协助医生全面查看患者心肺状态的功能。
实用新型内容
根据本公开的各种实施例,提供一种智能听诊器控制电路、智能听诊器及电子装置。
根据一些实施例,本公开一方面提供一种智能听诊器控制电路,包括心肺音信号采集单元、心电信号采集单元及处理模块,心肺音信号采集单元用于采集目标对象的初始心肺音信号;心电信号采集单元用于采集目标对象的初始心电信号;处理模块与心肺音信号采集单元及心电信号采集单元均电连接,用于接收并处理初始心肺音信号以生成目标心肺音信号,以及还用于接收并处理初始心电信号,以生成目标心电信号。
根据一些实施例,处理模块包括信号处理单元及微处理器,信号处理单元与心肺音信号采集单元及心电信号采集单元均电连接,用于对接收的初始心肺音信号进行处理转换,以生成数字心肺音信号,以及还用于对接收的初始心电信号进行处理转换,以生成数字心肺音信号;微处理器与信号处理单元电连接,用于根据接收的数字心肺音信号生成目标心肺音信号,以及还用于根据接收的数字心电信号,生成目标心电信号。
根据一些实施例,智能听诊器控制电路还包括显示单元,显示单元与微处理器电连接,用于显示目标心肺音信号的波形及/或目标心电信号的波形;其中,微处理器被配置为:获取模式操作信号;根据模式操作信号控制显示单元输出目标心肺音信号及/或目标心电信号。
根据一些实施例,显示单元包括与微处理器电连接的触控显示屏或显示屏。
根据一些实施例,显示单元还包括声音输出单元,声音输出单元与微处理器电连接,用于输出目标心肺音信号的声音及/或目标心电信号的声音;其中,微处理器还被配置为:获取音量调节信号;根据音量调节信号控制声音输出单元输出声音的音量大小。
根据一些实施例,心肺音信号采集单元包括压电传感器模组,压电传感器模组与处理模块电连接,用于采集初始心肺音信号。
根据一些实施例,压电传感器模组包括压电传感器及降噪部件,压电传感器用于采集初始心肺音信号;降噪部件设置于压电传感器靠近及/或远离处理模块的表面,用于减少压电传感器采集的噪声信号。
根据一些实施例,压电传感器包括压电陶瓷片及/或压电石英晶体。
根据一些实施例,心电信号采集单元包括第一电极采集单元、第二电极采集单元及第三电极采集单元,第一电极采集单元与处理模块电连接;第二电极采集单元与处理模块电连接;第三电极采集单元与处理模块电连接,被配置为右腿驱动电极;其中,第一电极采集单元与第二电极采集单元用于采集初始心电信号。
根据一些实施例,信号处理单元包括滤波单元、放大单元及模数转换单元,滤波单元与心肺音信号采集单元及心电信号采集单元均电连接,用于对接收的初始心肺音信号进行滤波处理,以生成滤波心肺音信号,以及还用于对接收的初始心电信号进行滤波处理,以生成滤波心电信号;放大单元与滤波单元电连接,用于对接收的滤波心肺音信号放大处理,以生成放大心肺音信号,以及还用于对接收的滤波心电信号放大处理,以生成放大心电信号;模数转换单元与放大单元电连接,用于对接收的放大心肺音信号模数转换处理,以生成数字心肺音信号,以及还用于对接收的放大心电信号模数转换处理,以生成数字心肺音信号。
根据一些实施例,处理模块还包括无线通讯单元,无线通讯单元与微处理器电连接;其中,微处理器经由无线通讯单元与终端设备通信连接,以传输目标心肺音信号及/或目标心电信号至终端设备。
根据一些实施例,无线通讯单元包括蓝牙模组。
根据一些实施例,处理模块还包括存储单元,存储单元与微处理器电连接,用于本地存储目标心肺音信号及/或目标心电信号。
根据一些实施例,智能听诊器控制电路还包括电源模块;电源模块包括电池模组及电源控制电路;电源控制电路与电池模组电连接,用于根据电池模组的实时电量向外输出电能;其中,电源控制电路包括充电芯片、电量计量芯片及低电压线性稳压器中至少一种。
根据一些实施例,本公开另一方面提供一种智能听诊器,包括任一本公开实施例中的智能听诊器控制电路及壳体,壳体用于容纳智能听诊器控制电路。
根据一些实施例,本公开又一方面提供一种电子装置,包括任一本公开实施例中的智能听诊器控制电路。
本公开实施例可以/至少具有以下优点:
在本公开实施例提供的智能听诊器控制电路、智能听诊器及电子装置中,通过设置心肺音信号采集单元采集目标对象的初始心肺音信号,并设置心电信号采集单元采集目标对象的初始心电信号;使得与心肺音信号采集单元及心电信号采集单元均电连接的处理模块,接收并处理初始心肺音信号以生成目标心肺音信号,以及接收并处理初始心电信号,以生成目标心电信号。实现既能够捕获目标对象的心肺声音又能够测量目标对象的心电信号,以辅助医生提供更多的诊断信息。
综上,本公开实施例提供的智能听诊器控制电路、智能听诊器及电子装置,既能够捕获目标对象的心肺声音,又能够测量目标对象的心电信号,至少能够辅助医生提供更多的诊断信息。
本公开的一个或多个实施例的细节在下面的附图和描述中提出。本公开的其他特征、目的和优点将从说明书、附图以及权利要求书变得明显。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他实施例的附图。
图1为本公开第一实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图2为本公开第二实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图3为本公开第三实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图4为本公开第四实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图5为本公开第五实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图6为本公开第六实施例中提供的一种压电传感器模组的结构示意图;
图7为本公开第七实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图8为本公开第八实施例中提供的一种智能听诊器控制电路的电路原理示意图;
图9为本公开第九实施例中提供的一种智能听诊器控制电路的电路原理示意图。
具体实施方式
为了便于理解本公开,下面将参照相关附图对本公开进行更全面的描述。附图中给出了本公开的较佳的实施例。但是,本公开可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本公开的公开内容的理解更加透彻全面。
除非另有定义,本文所使用的所有的技术和科学术语与属于本公开的技术领域的技术人员通常理解的含义相同。本文中在本公开的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本公开。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
在使用本文中描述的“包括”、“具有”、和“包含”的情况下,除非使用了明确的限定用语,例如“仅”、“由……组成”等,否则还可以添加另一部件。除非相反地提及,否则单数形式的术语可以包括复数形式,并不能理解为其数量为一个。
应当理解,尽管本文可以使用术语“第一”、“第二”等来描述各种元件,但是这些元件不应受这些术语的限制。这些术语仅用于将一个元件和另一个元件区分开。例如,在不脱离本公开的范围的情况下,第一元件可以被称为第二元件,并且类似地,第二元件可以被称为第一元件。
在本公开中,除非另有明确的规定和限定,术语“相连”、“连接”等术语应做广义理解,例如,可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本公开中的具体含义。
电子听诊器能够给医护人员提供患者的心肺声音,以便于医护人员来判断相关器官是否存在病变。单导联心电图设备因其使用便捷、快速,面向大众,可操作性强,广泛应用于健康监测、疾病初期诊断和术后随访诊断,能够提供心率失常风险判断的有用信息,用于初步筛查早搏、房颤及各种心律不齐等疾病。
然而,传统的电子听诊器仅具备听诊功能,给医生提供的参数较少,不具备协助医生全面查看患者心肺状态的功能。
本公开旨在提供一种既能够捕获目标对象的心肺声音,又能够测量目标对象的心电信号的智能听诊器控制电路、智能听诊器及电子装置,以辅助医生提供更多的诊断信息。
请参考图1,在本公开的一些实施例中,提供了一种智能听诊器控制电路100,包括心肺音信号采集单元10、心电信号采集单元20及处理模块30,心肺音信号采集单元10用于采集目标对象的初始心肺音信号;心电信号采集单元20用于采集目标对象的初始心电信号;处理模块30与心肺音信号采集单元10及心电信号采集单元20均电连接,用于接收并处理初始心肺音信号以生成目标心肺音信号,以及还用于接收并处理初始心电信号,以生成目标心电信号。
请继续参考图1,通过设置心肺音信号采集单元10采集目标对象的初始心肺音信号,并设置心电信号采集单元20采集目标对象的初始心电信号;使得与心肺音信号采集单元10及心电信号采集单元20均电连接的处理模块30,接收并处理初始心肺音信号以生成目标心肺音信号,以及接收并处理初始心电信号,以生成目标心电信号。实现既能够捕获目标对象的心肺声音又能够测量目标对象的心电信号,以辅助医生提供更多的诊断信息。
作为示例,请参考图2,处理模块30包括信号处理单元31及微处理器32,信号处理单元31与心肺音信号采集单元10及心电信号采集单元20均电连接,用于对接收的初始心肺音信号进行处理转换,以生成数字心肺音信号,以及还用于对接收的初始心电信号进行处理转换,以生成数字心肺音信号;微处理器32与信号处理单元31电连接,用于根据接收的数字心肺音信号生成目标心肺音信号,以及还用于根据接收的数字心电信号,生成目标心电信号。
作为示例,信号处理单元31包括滤波单元、放大单元及模数转换单元,滤波单元与心肺音信号采集单元10及心电信号采集单元20均电连接,用于对接收的所述初始心肺音信号进行滤波处理,以生成滤波心肺音信号,以及还用于对接收的所述初始心电信号进行滤波处理,以生成滤波心电信号;放大单元与所述滤波单元电连接,用于对接收的所述滤波心肺音信号放大处理,以生成放大心肺音信号,以及还用于对接收的所述滤波心电信号放大处理,以生成放大心电信号;模数转换单元与所述放大单元电连接,用于对接收的所述放大心肺音信号模数转换处理,以生成所述数字心肺音信号,以及还用于对接收的所述放大心电信号模数转换处理,以生成所述数字心肺音信号。
作为示例,请参考图3,智能听诊器控制电路100还包括显示单元40,显示单元40与微处理器32电连接,用于显示目标心肺音信号的波形及/或目标心电信号的波形;其中,微处理器32被配置为:获取模式操作信号;根据模式操作信号控制显示单元40输出目标心肺音信号及/或目标心电信号。
具体地,若用户想监测心肺音信号,以初步检测心肺是否存在异常,可以控制微处理器32处于心肺音工作模式,通过显示单元40观察目标心肺音信号的波形;若用户想监测心电信号,初步检测心脏是否存在异常,可以控制微处理器32处于心电工作模式,以通过显示单元40观察目标心电信号的波形;用户也可以控制微处理器32处于复合工作模式,以通过显示单元40同时观察目标心肺音信号的波形及目标心电信号的波形。
作为示例,请参考图4,显示单元40包括与微处理器32电连接的触控显示屏41或显示屏(未图示)。例如,显示单元40包括与微处理器32电连接的触控显示屏41,用户可以经由触控显示屏41输入模式操作信号,以控制微处理器32工作于心肺音工作模式、心电工作模式、复合工作模式或自定义工作模式。实现通过触控显示屏41切换工作模式,以适应不同的应用场景。
作为示例,请继续参考图4,显示单元40还包括声音输出单元42,声音输出单元42与微处理器32电连接,用于输出目标心肺音信号的声音及/或目标心电信号的声音;其中,微处理器32还被配置为:获取音量调节信号;根据音量调节信号控制声音输出单元42输出声音的音量大小。
作为示例,请继续参考图4,若显示单元40包括与微处理器32电连接的触控显示屏41,用户可以经由触控显示屏41输入音量调节信号,以控制声音输出单元42输出声音的音量大小。
作为示例,请参考图5,心肺音信号采集单元10包括压电传感器模组11,压电传感器模组11与处理模块30电连接,用于采集初始心肺音信号。
作为示例,请参考图6,压电传感器模组11包括压电传感器111及降噪部件112,压电传感器111用于采集初始心肺音信号;降噪部件112设置于压电传感器111靠近微处理器32的表面111a、远离微处理器32的表面111b或既设置于压电传感器111靠近微处理器32的表面111a又设置于压电传感器111远离微处理器32的表面111b,用于减少压电传感器111采集的噪声信号。压电传感器11可以包括压电陶瓷片及/或压电石英晶体。例如,可以设置压电陶瓷片一面贴附降噪泡棉,另一面嵌附在垫圈上,同时垫圈下表面可以继续贴附降噪泡棉,该降噪泡棉的另一面贴附在处理模块30所在的电路板上;部分降噪泡棉紧贴在与人体充分接触的热塑性聚氨酯弹性体橡胶(Thermoplastic polyurethanes, TPU)膜下方。
作为示例,请参考图7,心电信号采集单元20包括第一电极采集单元21、第二电极采集单元22及第三电极采集单元23,第一电极采集单元21与处理模块30电连接;第二电极采集单元22与处理模块30电连接;其中,第一电极采集单元21与第二电极采集单元22用于采集所述初始心电信号,第三电极采集单元23与处理模块30电连接,被配置为右腿驱动电极,消除外界干扰,增加测量获取的心电信号的稳定性。通过将第一电极采集单元21中的电极、第二电极采集单元22中的电极及第三电极采集单元23中的电极放置在目标对象的胸口处,充分与目标对象接触后,提取人体心电信号。
在进行生物电测量时,被测体(通常是人体)受到电网形成的交流电场的作用,会在人体上产生交流电位,这个电位在体表各部分是相同的,是一个共模干扰。右腿驱动电极本质上是一个负反馈,通过反向放大共模信号接到人体起到消除共模的作用,从而提高共模抑制比(Common Mode Rejection Ratio,CMRR)。
作为示例,请参考图8,处理模块30还包括无线通讯单元33,无线通讯单元33与微处理器32电连接;其中,微处理器32经由无线通讯单元33与终端设备200通信连接,以传输目标心肺音信号及/或目标心电信号至终端设备200。终端设备200可以是手机、平板电脑、显示面板及智能可穿戴设备中至少一种。无线通讯单元33可以包括蓝牙模组331。例如,用户可以通过手机经由蓝牙模组331与微处理器32通信连接,经由手机获取到目标心肺音信号及/或目标心电信号,以经由手机显示界面观察目标心肺音信号的波形及/或目标心电信号的波形。
作为示例,请继续参考图8,处理模块30还包括存储单元34,存储单元34与微处理器32电连接,用于本地存储目标心肺音信号及/或目标心电信号,同时微处理器32将数字声音信号经过I2S接口再传输至译码芯片,译码芯片将数字声音信号经过数模转换,转换成模拟信号,通过听筒输出到人耳。当需要存储目标心肺音信号及/或目标心电信号时,按住主机边上的录制按键,将目标心肺音信号及/或目标心电信号存储在存储单元34和终端设备200中。
作为示例,请参考图9,智能听诊器控制电路100还包括电源模块50;电源模块50包括电池模组51及电源控制电路52;电源控制电路52与电池模组51电连接,用于根据电池模组51的实时电量向外输出电能;其中,电源控制电路52包括充电芯片521、电量计量芯片522及低电压线性稳压器523中至少一种。
作为示例,请继续参考图9,电池模组51可以包括锂电池及/或蓄电池,充电芯片521与电池模组51电连接,例如充电芯片521可以为线性锂电池充电芯片SL1053,线性锂电池充电芯片SL1053集高精度预充电、恒定电流充电、恒定电压充电、电池状态检测、温度监控、充电结束低泄漏、充电状态指示等性能于一身,以便于全面监控电池模组51的充电状态。电量计量芯片522与电池模组51电连接,用于测量电池模组51的实时电量。低电压线性稳压器523经由电量计量芯片522与电池模组51电连接,用于降低电源模块50的功耗。当使用完成后,可以长按开关机键,屏幕熄灭,设备关机。
作为示例,请继续参考图9,可以设置USB Type-C接口为电池模组51充电。
在本公开的一些实施例中,提供了一种智能听诊器,包括任一本公开实施例中的智能听诊器控制电路100及壳体,壳体用于容纳智能听诊器控制电路100。本实施例提供了一种既能够捕获目标对象的心肺声音又能够测量目标对象的心电信号的智能听诊器,至少能够辅助医生提供更多的诊断信息。
在本公开的一些实施例中,提供了一种电子装置,包括任一本公开实施例中的智能听诊器控制电路100,实现既能够捕获目标对象的心肺声音又能够测量目标对象的心电信号,至少能够辅助医生提供更多的诊断信息。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例 中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本公开的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本公开构思的前提下,还可以做出若干变形和改进,这些都属于本公开的保护范围。因此,本公开专利的保护范围应以所附权利要求为准。

Claims (16)

  1. 一种智能听诊器控制电路,包括:
    心肺音信号采集单元,用于采集目标对象的初始心肺音信号;
    心电信号采集单元,用于采集所述目标对象的初始心电信号;
    处理模块,与所述心肺音信号采集单元及所述心电信号采集单元均电连接,用于接收并处理所述初始心肺音信号以生成目标心肺音信号,以及还用于接收并处理所述初始心电信号,以生成目标心电信号。
  2. 根据权利要求1所述的智能听诊器控制电路,其中,所述处理模块包括:
    信号处理单元,与所述心肺音信号采集单元及所述心电信号采集单元均电连接,用于对接收的所述初始心肺音信号进行处理转换,以生成数字心肺音信号,以及还用于对接收的所述初始心电信号进行处理转换,以生成数字心肺音信号;
    微处理器,与所述信号处理单元电连接,用于根据接收的所述数字心肺音信号生成所述目标心肺音信号,以及还用于根据接收的所述数字心电信号,生成所述目标心电信号。
  3. 根据权利要求2所述的智能听诊器控制电路,其中,还包括:
    显示单元,与所述微处理器电连接,用于显示所述目标心肺音信号的波形及/或所述目标心电信号的波形;
    所述微处理器被配置为:
    获取模式操作信号;
    根据所述模式操作信号控制所述显示单元输出所述目标心肺音信号及/或所述目标心电信号。
  4. 根据权利要求3所述的智能听诊器控制电路,其中,所述显示单元包括与所述微处理器电连接的触控显示屏或显示屏。
  5. 根据权利要求4所述的智能听诊器控制电路,其中,所述显示单元还包括:
    声音输出单元,与所述微处理器电连接,用于输出所述目标心肺音信号的声音及/或所述目标心电信号的声音;
    所述微处理器还被配置为:
    获取音量调节信号;
    根据所述音量调节信号控制所述声音输出单元输出声音的音量大小。
  6. 根据权利要求1-5任一项所述的智能听诊器控制电路,其中,所述心肺音信号采集单元包括:
    压电传感器模组,与所述处理模块电连接,用于采集所述初始心肺音信号。
  7. 根据权利要求6所述的智能听诊器控制电路,所述压电传感器模组包括:
    压电传感器,用于采集所述初始心肺音信号;以及
    降噪部件,设置于所述压电传感器靠近及/或远离所述处理模块的表面,用于减少压电传感器采集的噪声信号。
  8. 根据权利要求7所述的智能听诊器控制电路,其中,所述压电传感器包括压电陶瓷片及/或压电石英晶体。
  9. 根据权利要求1-5任一项所述的智能听诊器控制电路,其中,所述心电信号采集单元包括:
    第一电极采集单元,与所述处理模块电连接;
    第二电极采集单元,与所述处理模块电连接;以及
    第三电极采集单元,与所述处理模块电连接,被配置为右腿驱动电极;
    所述第一电极采集单元与所述第二电极采集单元用于采集所述初始心电信号。
  10. 根据权利要求2-5任一项所述的智能听诊器控制电路,其中,所述信号处理单元包括:
    滤波单元,与所述心肺音信号采集单元及所述心电信号采集单元均电连接,用于对接收的所述初始心肺音信号进行滤波处理,以生成滤波心肺音信号,以及还用于对接收的所述初始心电信号进行滤波处理,以生成滤波心电信号;
    放大单元,与所述滤波单元电连接,用于对接收的所述滤波心肺音信号放大处理,以生成放大心肺音信号,以及还用于对接收的所述滤波心电信号放大处理,以生成放大心电信号;
    模数转换单元,与所述放大单元电连接,用于对接收的所述放大心肺音信号模数转换处理,以生成所述数字心肺音信号,以及还用于对接收的所述放大心电信号模数转换处理,以生成所述数字心肺音信号。
  11. 根据权利要求2-5任一项所述的智能听诊器控制电路,其中,所述处理模块还包括:
    无线通讯单元,与所述微处理器电连接;
    所述微处理器经由所述无线通讯单元与终端设备通信连接,以传输所述目标心肺音信号及/或所述目标心电信号至所述终端设备。
  12. 根据权利要求11所述的智能听诊器控制电路,其中,所述无线通讯单元包括蓝牙模组。
  13. 根据权利要求2-5任一项所述的智能听诊器控制电路,其中,所述处理模块还包括:
    存储单元,与所述微处理器电连接,用于本地存储所述目标心肺音信号及/或所述目标心电信号。
  14. 根据权利要求1-5任一项所述的智能听诊器控制电路,其中,还包括电源模块;所述电源模块包括:
    电池模组;以及
    电源控制电路,与所述电池模组电连接,用于根据所述电池模组的实时电量向外输出电能;
    所述电源控制电路包括充电芯片、电量计量芯片及低电压线性稳压器中至少一种。
  15. 一种智能听诊器,包括:
    权利要求1-14任一项所述的智能听诊器控制电路;以及
    壳体,用于容纳所述智能听诊器控制电路。
  16. 一种电子装置,包括:
    权利要求1-14任一项所述的智能听诊器控制电路。
PCT/CN2022/107683 2021-07-27 2022-07-25 智能听诊器控制电路、智能听诊器及电子装置 WO2023005891A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202121720325.9U CN216135909U (zh) 2021-07-27 2021-07-27 智能听诊器控制电路、智能听诊器及电子装置
CN202121720325.9 2021-07-27

Publications (1)

Publication Number Publication Date
WO2023005891A1 true WO2023005891A1 (zh) 2023-02-02

Family

ID=80804271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/107683 WO2023005891A1 (zh) 2021-07-27 2022-07-25 智能听诊器控制电路、智能听诊器及电子装置

Country Status (2)

Country Link
CN (1) CN216135909U (zh)
WO (1) WO2023005891A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN216135909U (zh) * 2021-07-27 2022-03-29 上海微创数微医疗科技有限公司 智能听诊器控制电路、智能听诊器及电子装置
WO2024061037A1 (zh) * 2022-09-24 2024-03-28 江苏鹿得医疗电子股份有限公司 便携式多功能电子听诊器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201139577Y (zh) * 2007-12-11 2008-10-29 西安蓝港数字医疗科技股份有限公司 一种心电听诊仪
US20180028144A1 (en) * 2014-06-05 2018-02-01 Guangren CHEN Electronic Acoustic Stethoscope with ECG
CN110037662A (zh) * 2019-06-04 2019-07-23 苏州美糯爱医疗科技有限公司 一种基于蓝牙的心音心电信号同步采集及无线传输系统
CN211883846U (zh) * 2020-03-03 2020-11-10 成都九心爱科技有限公司 一种电子听诊器
CN111938693A (zh) * 2020-09-14 2020-11-17 长春市眼动力科技有限公司 一种智能听诊装置
CN216135909U (zh) * 2021-07-27 2022-03-29 上海微创数微医疗科技有限公司 智能听诊器控制电路、智能听诊器及电子装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201139577Y (zh) * 2007-12-11 2008-10-29 西安蓝港数字医疗科技股份有限公司 一种心电听诊仪
US20180028144A1 (en) * 2014-06-05 2018-02-01 Guangren CHEN Electronic Acoustic Stethoscope with ECG
CN110037662A (zh) * 2019-06-04 2019-07-23 苏州美糯爱医疗科技有限公司 一种基于蓝牙的心音心电信号同步采集及无线传输系统
CN211883846U (zh) * 2020-03-03 2020-11-10 成都九心爱科技有限公司 一种电子听诊器
CN111938693A (zh) * 2020-09-14 2020-11-17 长春市眼动力科技有限公司 一种智能听诊装置
CN216135909U (zh) * 2021-07-27 2022-03-29 上海微创数微医疗科技有限公司 智能听诊器控制电路、智能听诊器及电子装置

Also Published As

Publication number Publication date
CN216135909U (zh) 2022-03-29

Similar Documents

Publication Publication Date Title
WO2023005891A1 (zh) 智能听诊器控制电路、智能听诊器及电子装置
CN201127603Y (zh) 一种手持式心电检测仪
CN103027675B (zh) 新型便携式三导联实时无线心电监测系统及分析方法
CN201755228U (zh) 无线心电心音一体机
CN208582430U (zh) 多功能医疗护理听诊器
CN105496400A (zh) 便捷式多导联无线心电监测设备及方法
CN103845044A (zh) 无线腕式心血管系统监护仪设备
CN102860822A (zh) 腕式心电血压测量设备
JPH04501213A (ja) 結合ペースメーカパラメータおよび生命徴候モニタ
CN106725427B (zh) 多导心电电极连接装置
WO2018129718A1 (zh) 心电信号检测设备及方法
Yama et al. Development of a wireless capacitive sensor for ambulatory ECG monitoring over clothes
WO2018018570A1 (zh) 用于心电测量的装置和方法
CN111938693A (zh) 一种智能听诊装置
CN219613892U (zh) 便携式多功能电子听诊器
CN204863259U (zh) 一种多功能听诊器
CN217907789U (zh) 带无线网络的生理参数采集心电图机
CN211270704U (zh) 一种便携式动态心电血压呼吸波记录仪
CN215227799U (zh) 数字化听诊器
CN202211690U (zh) 快速心电图仪
CN203483410U (zh) 一种便携式同步动态心电血压记录仪
CN212326424U (zh) 一种心电信号记录装置
TWM499203U (zh) 生理訊號感測裝置
WO2024061037A1 (zh) 便携式多功能电子听诊器
CN217066407U (zh) 便携式无线心音心电同步采集装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848496

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22848496

Country of ref document: EP

Kind code of ref document: A1