WO2023005568A1 - Process of preparing block or gradient copolymers and the copolymer prepared thereof - Google Patents

Process of preparing block or gradient copolymers and the copolymer prepared thereof Download PDF

Info

Publication number
WO2023005568A1
WO2023005568A1 PCT/CN2022/101880 CN2022101880W WO2023005568A1 WO 2023005568 A1 WO2023005568 A1 WO 2023005568A1 CN 2022101880 W CN2022101880 W CN 2022101880W WO 2023005568 A1 WO2023005568 A1 WO 2023005568A1
Authority
WO
WIPO (PCT)
Prior art keywords
monomer
iodide
meth
acrylate
weight
Prior art date
Application number
PCT/CN2022/101880
Other languages
French (fr)
Inventor
Bo Peng
Zhong Zeng
Atsushi Goto
Weijia MAO
Jit Sarkar
Xiu Ting TAY
Original Assignee
Basf Se
Nanyang Technological University
Basf (China) Company Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Basf Se, Nanyang Technological University, Basf (China) Company Limited filed Critical Basf Se
Priority to CN202280052976.6A priority Critical patent/CN117751098A/en
Publication of WO2023005568A1 publication Critical patent/WO2023005568A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/38Polymerisation using regulators, e.g. chain terminating agents, e.g. telomerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2/00Processes of polymerisation
    • C08F2/12Polymerisation in non-solvents
    • C08F2/16Aqueous medium
    • C08F2/22Emulsion polymerisation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F265/00Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00
    • C08F265/04Macromolecular compounds obtained by polymerising monomers on to polymers of unsaturated monocarboxylic acids or derivatives thereof as defined in group C08F20/00 on to polymers of esters
    • C08F265/06Polymerisation of acrylate or methacrylate esters on to polymers thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F293/00Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule
    • C08F293/005Macromolecular compounds obtained by polymerisation on to a macromolecule having groups capable of inducing the formation of new polymer chains bound exclusively at one or both ends of the starting macromolecule using free radical "living" or "controlled" polymerisation, e.g. using a complexing agent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2438/00Living radical polymerisation

Definitions

  • the present invention is related to a process of preparing block or gradient copolymers and the copolymer prepared thereof.
  • Free-radical polymerization technique has been widely used in emulsion polymerization. It is capable of accepting the least stringent experimental conditions and the widest range of monomers.
  • one major limitation of conventional free-radical polymerization originates in the decisive significance of the irreversible termination reactions via combination and/or dismutation of the free radicals assuring the growth of the chains. Due to such limitation, many of the polymers synthesized via the conventional free-radical polymerization have a wide polydisperse index (PDI) .
  • PDI polydisperse index
  • Emulsion polymerization has been combined with living radical polymerization (LRP) techniques to produce the block copolymers via a two-step synthesis; however, such process requires a purification step between the two steps, and such purification step is time-consuming and costly.
  • Emulsion polymerization can also be combined with living radical polymerization (LRP) techniques to produce the gradient copolymer; however, the monomer sequence in the obtained copolymer cannot be tuned during the process.
  • One objective of the present invention is to provide a process to prepare block copolymers in a one-pot system.
  • Another objective of the present invention is to provide a block copolymer obtained from the above process according to the present disclosure.
  • the third objective of the present invention is to provide a process to prepare gradient copolymer wherein the monomer sequence in the obtained copolymers can be tuned.
  • the fourth objective of the present invention is to provide gradient copolymers obtained from the above process according to the present disclosure.
  • polymer or “polymers” , as used herein, includes both homopolymer (s) , that is, polymers prepared from a single reactive compound, and copolymer (s) , that is, polymers prepared by reaction of at least two polymer forming reactive, monomeric compounds.
  • salt means a chemical compound consisting of an ionic assembly of cations and anions.
  • water-soluble means a compound has a water-solubility of at least 0.8 g/L in water at 22 °C and 1 atm.
  • organic-solvent-soluble means a compound has a solubility of at least 20 g/L in acetone at 22 °C and 1 atm.
  • derivative means compound that is derived from a similar compound with one or more hydrogen atoms been substituted with a function group, such as a halogen, a carboxylate group, an alkoxyl group, an ester group, and a thioester group, etc.
  • weight average molecular weight means a molecular weight measured by Gel Permeation Chromatography (GPC) against poly (methyl methacrylate) or polystyrene standard in dimethylformamide with the unit of g/mol.
  • One objective of the present invention is to provide a process to prepare block copolymers wherein, said process comprising:
  • step b) at least one monomer N is added into the reactor during and/or after the polymerization of step a) for polymerization;
  • composition Y comprising:
  • R 1 is -COOX or -CONR 4 R 5
  • X is a hydrogen atom, an alkali metal, an alkaline earth metal, an organic ammonium, (CH 2 CHR 4 O) n R 5 or (CH 2 CHR 4 O) n (CH 2 CHR 6 O) m
  • R 5 , n and m are independent of each a integer number in the range of 1 to 500
  • R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other a hydrogen, an alkoxyl group/alkoxyl derivative, an aromatic group/aromatic derivative, and an aliphatic group/aliphatic derivative, and R 4 and R 6 are different from each other.
  • R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other a hydrogen, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative.
  • Examples of an alkali metal include, but not limited to, Li, Na and K; examples of an alkaline earth metal include, but not limited to, Be, Mg and Ca; examples of an organic ammonium include, but not limited to, trimethylammonium, tetramethylammonium, triethylammonium, ethyltrimethylammonium, tetraethyl ammonium, etc.
  • Examples of (CH 2 CHR 4 O) n R 5 may include, but not limited to, (CH 2 CH 2 O) n H, (CH 2 CH 2 O) n CH 3 , (CH 2 CH (CH 3 ) O) n H and (CH 2 CH (CH 3 ) O) n CH 3 , wherein n is a integer number in the range of 1 to 500, preferably in the range of 1 to 200, more preferable 1 to 150, and most preferably 1 to 100.
  • Examples of (CH 2 CHR 4 O) n (CH 2 CHR 6 O) m R 5 may include, but not limited to, (CH 2 CH 2 O) n (CH 2 CH (CH 3 ) O) m H , (CH 2 CH (CH 3 ) O) n (CH 2 CH 2 O) m H, (CH 2 CH 2 O) n - (CH 2 CH (CH 3 ) O) m CH 3 , (CH 2 CH (CH3) O) n (CH 2 CH 2 O) m CH 3 , wherein n and m are independent of each a integer number in the range of 1 to 500, preferably in the range of 1 to 200, more preferably in the range of 1 to 150, and most preferably in the range of 20 to 100.
  • R 1 is selected from COOH, COOCH 2 CH 2 OH and COO (CH 2 CH 2 O) n CH 3 , wherein n is a integer number in the range of 30 to 60.
  • R 2 and R 3 are independently of each other a hydrogen, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative.
  • an "alkyl” refers to a monovalent group which is generated after a chain or cyclic aliphatic hydrocarbon (alkane) loses a hydrogen atom.
  • the alkyl group is generally represented by C k H 2k+1 (wherein, k is a positive integer) .
  • a chain alkyl group may be a straight chain or branched chain.
  • a cyclic alkyl group may be consisted of a cyclic structure.
  • a cyclic alkyl group may have a structure in which a chain alkyl group is linked to the cyclic structure.
  • An alkyl group may have an arbitrary natural number of carbon atoms. Preferably, an alkyl group has 1 to 30 carbon atoms. More preferably, an alkyl group has 1 to 20 carbon atoms.
  • a "lower alkyl” refers to an alkyl group having a relatively small number of carbon atoms.
  • a lower alkyl is a C 1-10 alkyl group. More preferably, a lower alkyl is a C 1-5 alkyl group. Further preferably, a lower alkyl is a C 1-3 alkyl group. For instance, specific examples include methyl, ethyl, propyl and isopropyl.
  • an "alkoxy” refers to a group in which an oxygen atom is bound to the aforementioned alkyl group. That is, when the alkyl group is represented by R-, the alkoxy refers to a group represented by RO-.
  • a chain alkoxy group may be a straight chain or branched chain. Cyclic alkoxy may be composed only of a cyclic structure or may have a structure formed from a cyclic structure further linked with chain alkyl.
  • the number of carbon atoms in the alkoxy may be any natural number. The number of carbon atoms is from 1 to 30, and preferably from 1 to 20, more preferably from 1 to 10.
  • a "lower alkoxy” refers to an alkoxy group having relatively fewer carbon atoms.
  • the lower alkoxy is preferably C 1-10 alkoxy, more preferably C 1-5 alkoxy, and even more preferably C 1-3 alkoxy. Specific examples thereof include methoxy, ethoxy, butoxy or isopropoxy.
  • an "aryl” refers to a group which is generated after a hydrogen atom, which is bound to a ring of an aromatic hydrocarbon, is removed.
  • an aryl includes a phenyl group, naphthyl group, or anthracenyl group.
  • a "substituted aryl” is preferred, which refers to a group which is generated after a substituent bind to an aryl group.
  • a "halogen” refers to a monovalent radical of an element, which belongs to the 7B group of the periodic table, such as a fluorine (F) , chlorine (Cl) , bromine (Br) and iodine (I) .
  • a “carboxylate” refers to a “alkylcarboxyl” or a “alkylcarbonyl” .
  • An “alkylcarboxyl” refers to a group in which a carboxyl group is bound to the aforementioned alkyl group. That is, when the alkyl group is represented by R-, the alkylcarboxyl refers to a group represented by RCOO-.
  • a chain alkylcarboxyl group may be a straight chain or branched chain.
  • a cyclic alkylcarboxyl group may be composed only of a cyclic structure or may have a structure formed from a cyclic structure further linked with chain alkyl.
  • the number of carbon atoms in the alkylcarboxyl may be any natural number.
  • the number of carbon atoms is preferably from 1 to 30, and more preferably from 1 to 20.
  • An "alkylcarbonyl” refers to a group in which a carbonyl group is bound to the aforementioned alkyl group. That is, when the alkyl group is represented by R-, the alkylcarbonyl refers to a group represented by RCO-.
  • a chain alkylcarbonyl group may be a straight chain or branched chain.
  • Cyclic alkylcarbonyl may be composed only of a cyclic structure, or may have a structure formed from a cyclic structure further linked with chain alkyl.
  • the number of carbon atoms in the alkylcarbonyl may be any natural number.
  • the number of carbon atoms is preferably from 1 to 30, and more preferably from 1 to 20.
  • a “lower alkylcarboxyl” and/or a “lower alkylcarbonyl” is preferred as the R 2 and/or R 3 .
  • a “lower alkylcarboxyl” refers to an alkylcarboxyl group having relatively fewer carbon atoms.
  • the lower alkylcarboxyl is preferably C 1-10 alkylcarboxyl, more preferably C 1-5 alkylcarboxyl, and even more preferably C 1-3 alkylcarboxyl.
  • a “lower alkylcarbonyl” refers to an alkylcarbonyl group having relatively fewer carbon atoms.
  • the lower alkylcarbonyl is preferably C 1-10 alkylcarbonyl, more preferably C 1-5 alkylcarbonyl, and even more preferably C 1-3 alkylcarbonyl.
  • R 1 is selected from COOH, COONa, COOK, COONH 4 , COO (Ca) 0.5 , CONH 2 , COCH 2 CH 2 OH and CO (CH 2 CH 2 O) n CH 3 , wherein n is an integer in the range of 30 to 60, while R 2 and R 3 are, independently of each other, selected from H, phenyl group, methyl group, ethyl group, propyl group and butyl group.
  • iodine compounds may have a solubility in water of at least 0.8 g/L at 22 °C and 1 atm, preferably a solubility in water of at least 1.5 g/L at 22 °C and 1 atm, more preferably a solubility in water of at least 2 g/L at 22 °C and 1 atm, and most preferably a solubility in water of at least 3 g/L at 22 °C and 1 atm.
  • Such compounds may include, but not limited to, 2-iodoacetic acid, 2-iodopropionic acid, 2-iodopropionic acid amide, 2-iodo-2-methylpropionic acid, poly (ethylene glycol) methyl ether 2-iodoisobutyrate, 2-iodo-2-methylpropionic acid amide, sodium 2-iodo-2-methylpropionate, calcium 2-iodo-2-methylpropionate, ammonium 2-iodo-2-methylpropionate, 2-hydroxyethyl 2-iodo-2- methylpropionate, 2-iodopentanoic acid, 2, 5-diiodoadipic acid, ⁇ -iodo- ⁇ -butyrolactone, sodium 2-iodo-2-phenylacetate, calcium 2-iodo-2-phenylacetate, ammonium 2-iodo-2-phenylacetate, and 2-hydroxyethyl 2-iodo-2-phenylacetate.
  • the above iodine compounds represented by the general formula (1) may be used singly or two or more species thereof may be used in combination.
  • the molecular weight controlling agent for radical polymerization of the present invention may use the above-mentioned iodine compound as it is, and may take the form of liquid, powder, solid or the like as required. Moreover, it may take the form of an aqueous solution, encapsulation etc. as necessary. In addition, various additives such as stabilizers and dispersing agents may be incorporated as necessary. Among these forms, it is preferable to take a liquid or powdery form from the viewpoint of handling, and more preferable to take an aqueous solution form.
  • the at least one organic-solvent-soluble iodide salt B) may be an iodide salt of an organic cation and iodide anion.
  • the organic cation may be a quaternary ammonium of the formula 2:
  • R a , R b , R c and R d are, independent of each other, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative.
  • alkyl group/alkyl derivative alkoxyl group/alkoxyl derivative
  • aryl group/aryl derivative may have the same meaning as described in the previous paragraph.
  • the exemplary compounds of quaternary ammonium of the formula 2 may include, but not limited to, acetylcholine iodide, acetylthiocholine iodide, benzoylcholine iodide, benzoylthiocholine iodide, benzyltriethylammonium iodide, n-butyrylcholine iodide, n-butyrylthiocholine iodide, decamethonium iodide, N, N-dimethylmethyleneammonium iodide, ethyltrimethylammonium iodide, ethyltri-n-propylammonium iodide, (ferrocenylmethyl) trimethylammonium iodide, (2-Hydroxyethyl) -triethylammonium iodide, Beta-methylcholine Iodide
  • the exemplary compounds of quaternary phosphonium of formula 3 may include, but not limited to, trimethyl-n-dodecyl phosphonium iodide, triethyl-n-decyl phosphonium iodide, tri-n-propyl-n-tetradecyl phosphonium iodide, trimethylol-n-hexadecyl phosphonium iodide, tributylmethyl phosphonium iodide, tri-n-butyl-n-decyl phosphonium iodide, tri-n-butyl-n-dodecyl phosphonium iodide, tri-n-butyl-n-tetradecyl phosphonium iodide, tri-n-butyl-n-hexadecyl phosphonium iodide, tri-n-hexyl-n-decyl phosphon
  • the least one organic-solvent-soluble iodide salt B) may have a solubility of at least 20 g/L in acetone at 22 °C and 1 atm, preferably a solubility of at least 30 g/L in acetone at 22 °C and 1 atm, more preferably a solubility of at least 40 g/L in acetone at 22 °C and 1 atm, and most preferably a solubility of at least 50 g/L in acetone at 22 °C and 1 atm.
  • the at least one organic-solvent-soluble iodide salt B) is selected from tetra-butylammonium iodide, tributylmethyl phosphonium iodide and tetra-n-octylammonium iodide.
  • At least one water-soluble iodide salt C) may be an iodide salt of an alkali metal/alkaline earth metal/ammonium (NH 4 ) cation and iodide anion.
  • the exemplary compounds of iodide salt of an inorganic cation and iodide anion may include, but not limited to, lithium iodide, sodium iodide, potassium iodide, calcium iodide and ammonium iodide.
  • the weight ratio of A) , B) and C) may be in the ratio of 1: (0.1 -40) : (0.1 -10) , preferably in the ratio of 1: (1 -20) : (0.4 -8) , more preferably in the ratio of 1: (1 -5) : (0.4 -2) .
  • the at least one organic water-soluble iodine compound A) is selected from 2-iodoacetic acid, 2-iodopropionic acid, 2-iodopropionic acid amide, 2-iodo-2-methylpropionic acid, poly (ethylene glycol) methyl ether 2-iodoisobutyrate, 2-hydroxyethyl 2-iodoisobutyrate, 2-Iodo-2-phenylacetate, 2-iodo-2-phenylacetic acid;
  • the at least one organic-solvent-soluble iodide salt B) is selected from tetra-butylammonium iodide, tributylmethyl phosphonium iodide and tetra-n-octylammonium iodide; and at least one water-soluble iodide salt C) may be selected from sodium iodide and potassium iodide.
  • the at least one organic water-soluble iodine compound A) is presented in an amount of 2%to 85%by weight
  • the at least one organic-solvent-soluble iodide salt B) is presented in an amount of 8%to 80%by weight
  • the at least one water-soluble iodide salt C) may be presented in an amount of 8%to 20%by weight, all based on the total weight of the composition X.
  • monomer M and monomer N may include, but not limited to, (meth) acrylate, (meth) acrylonitrile, styrene, vinyl alkanoate, monoethylenically unsaturated di-and tricarboxylic ester, a monoethylenically unsaturated monomers containing at least one functional group selected from a group consisting of carboxyl, carboxylic anhydride, sulfonic acid, phosphoric acid, hydroxyl and amide or a mixture thereof.
  • Monomer M and monomer N may each independently containing one or more polymerizable monomers. In one preferred embodiment, monomer M and monomer N each independently containing one polymerizable monomer different from each other.
  • the (meth) acrylate may be C 1 -C 19 -alkyl (meth) acrylates, for example, but not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, n-decyl (meth) acrylate, n-dodecyl (meth) acrylate (i.e.
  • lauryl (meth) acrylate) tetradecyl (meth) acrylate, oleyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate and a mixture thereof.
  • the styrene may be unsubstituted styrene or C 1 -C 6 -alkyl substituted styrenes, for example, but not limited to, styrene, ⁇ -methylstyrene, ortho-, meta-and para-methylstyrene, ortho-, meta-and para-ethylstyrene, o, p-dimethylstyrene, o, p-diethylstyrene, ispropylstyrene, o-methyl-p-isopropylstyrene or any mixture thereof.
  • the vinyl alkanoate may include, but not limited to, vinyl esters of C 2 -C 11 -alkanoic acids, for example, but not limited to, vinyl acetate, vinyl propionate, vinyl butanoate, vinyl valerate, vinyl hexanoate, vinyl versatate or a mixture thereof.
  • the monoethylenically unsaturated di-and tricarboxylic ester may include, but not limited to, be full esters of monoethylenically unsaturated di-and tricarboxylic acids, for example, but not limited to, diethyl maleate, dimethyl fumarate, ethyl methyl itaconate, dihexyl succinate, didecyl succinate or any mixture thereof.
  • the monoethylenically unsaturated monomers containing at least one functional group selected from a group consisting of carboxyl, carboxylic anhydride, sulfonic acid, phosphoric acid, hydroxyl and amide may include, but not limited to, monoethylenically unsaturated carboxylic acids, such as (meth) acrylic acid, itaconic acid, fumaric acid, citraconic acid, sorbic acid, cinnamic acid, glutaconic acid and maleic acid; monoethylenically unsaturated carboxylic anhydrides, such as itaconic acid anhydride, fumaric acid anhydride, citraconic acid anhydride, sorbic acid anhydride, cinnamic acid anhydride, glutaconic acid anhydride and maleic acid anhydride; monoethylenically unsaturated amides, such as (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylacrylamide (
  • monomer M and monomer N each independently could further include other suitable polymerizable compounds, which include, but not limited to, olefins, such as ethylene, propene, cloropropene, butene, 1-decene; dienes, such as butadiene, isoprene, cloroprene, norbornadiene; N-vinyl compounds, such as N-vinyl-2-pyrrolidone (NVP) , N-vinyl formamide, N-vinyl acetamide, N-vinyl isopropylamide, N-vinyl-N-methyl acetamide and N-vinyl caprolactam.
  • olefins such as ethylene, propene, cloropropene, butene, 1-decene
  • dienes such as butadiene, isoprene, cloroprene, norbornadiene
  • N-vinyl compounds such as N-vinyl-2-pyrrolidon
  • monomer M and/or monomer N each independently may containing crosslinking monomers
  • said crosslinking monomers can be chosen from di-or poly-isocyanates, polyaziridines, polycarbodiimide, polyoxazolines, glyoxals, malonates, triols, epoxy molecules, organic silanes, carbamates, diamines and triamines, hydrazides, carbodiimides and multi-ethylenically unsaturated monomers.
  • suitable crosslinking monomers include, but not limited to, glycidyl (meth) acrylate, N-methylol (meth) acrylamide, (isobutoxymethyl) acrylamide, vinyltrialkoxysilanes such as vinyltrimethoxysilane; alkylvinyldialkoxysilanes such as dimethoxymethylvinylsilane; (meth) acryloxyalkyltrialkoxysilanes such as (meth) acryloxyethyltrimethoxysilane, (3-acryloxypropyl) trimethoxysilane and (3-methacryloxypropyl) trimethoxysilane, allyl methacrylate, diallyl phthalate, 1, 4-butylene glycol dimethacrylate, 1, 2-ethylene glycol dimethacrylate, 1, 6-hexanediol diacrylate, divinyl benzene or any mixture thereof.
  • the at least one organic water-soluble iodine compound A) may be used alone or with two or more species thereof may be used in combination. And the at least one organic water-soluble iodine compound A) may be used in an amount, based on the total weight of monomer M and monomer N, 0.001%to 30%by weight, preferably 0.01%to 5%by weight, more preferably 0.1%to 3%by weight, and most preferably 0.3%to 3%by weight.
  • the at least one organic-solvent-soluble iodide salt B) may be used alone or with two or more species thereof may be used in combination. And the at least one organic-solvent-soluble iodide salt B may be presented in an amount of, based on the total weight of monomers M and monomer N, 0.01%to 40%by weight, preferably 0.1%to 15%by weight, more preferably 1%to 10%by weight, and most preferably 3%to 7%by weight.
  • the at least one water-soluble iodide salt C) may be used alone or with two or more species thereof may be used in combination. And the at least one water-soluble iodide salt C) may be presented in an amount of, based on the total weight of monomers M and monomer N, 0.01%to 40%by weight, preferably 0.01%to 10%by weight, more preferably 0.5%to 5%by weight, and most preferably 1%to 4%by weight.
  • monomer M could be added into the reactor in one batch or in several batches. In one particular embodiment, especially when monomer M containing more than one monomer, different monomers could be added into the reactor in several batches.
  • monomer N could be added into the reactor in one batch or in several batches. In one particular embodiment, especially when monomer N containing more than one monomer, different monomers could be added into the reactor in several batches.
  • surfactants known to the skilled person in the art may be used.
  • Surfactant to be used according to the present invention may be a non-reactive surfactant, a reactive surfactant or a combination thereof.
  • Surfactants may be formulated together with the monomers and fed into a reaction reactor. Alternatively, the surfactants may be added into the reaction medium first followed by the feeding of monomers.
  • Surfactants may be used in a suitable amount known to the skilled person in the art, for example, in a total amount of 0.1%to 6%by weight, based on the total weight of the monomers M and N.
  • Surfactants may be non-reactive anionic and/or nonionic surfactants.
  • Suitable non-reactive anionic surfactants include, but are not limited to, alkyl, aryl or alkylaryl sulfate salts, sulfonate salts or phosphate salts; alkyl sulfonic acids; sulfosuccinate salts; fatty alcohol ether sulfate salts and fatty acids.
  • Suitable non-reactive nonionic surfactants for example include alcohol or phenol ethoxylates such as polyoxyethylene alkylphenyl ether.
  • Surfactants may also be polymerizable surfactants, also called a reactive surfactant, containing at least one ethylenically unsaturated functional group.
  • Suitable polymerizable surfactants include, but are not limited to, allyl polyoxyalkylene ether sulfate salts such as sodium salts of allyl polyoxyethylene alkyl ether sulfate, allyl alkyl succinate sulfonate salts, allyl ether hydroxyl propanesulfonate salts such as sodium salts, polyoxyethylene styrenated phenyl ether sulfate salts such as ammonium salts, for example DKS AR 1025 and DKS AR 2020, polyoxyethylene alkylphenyl ether sulfate ammonium salts, polyoxyethylene allyloxy nonylphenoxypropyl ether, and phosphate acrylates such as PAM 100, phosphate acrylates such as PAM 200, etc.
  • the emulsion polymerization may be carried out in the presence of various common initiating systems, including but not limited to a thermal or redox initiator.
  • the initiator is usually used in an amount of no more than 10%by weight, preferably 0.02 to 5%by weight, more preferably 0.1 to 1.5 wt. %, based on the total weight of the two stage monomers.
  • Suitable initiators may be used include, but are not limited to, inorganic peroxides, such as hydrogen peroxide, or peroxodisulfates, or organic peroxides, such as tert-butyl, p-menthyl or cumyl hydroperoxide, tert-butyl perpivalate, and dialkyl or diaryl peroxides, such as di-tert-butyl or di-cumyl peroxide.
  • Azo compounds which may be used include, but not limited to, 2, 2′-azobis (isobutyronitrile) , 2, 2′-azobis (2, 4-dimethylvaleronitrile) .
  • SPS sodium persulfate
  • KPS potassium persulfate
  • APS ammonium persulfate
  • AIBA 2, 2′-azobis (amidinopropyl) dihydrochloride
  • ACVA 4, 4'-azobis (4-cyanovaleric acid)
  • a redox initiator usually comprises an oxidizing agent and a reducing agent.
  • Suitable oxidizing agents include the abovementioned peroxides.
  • Suitable reducing agents may be alkali metal sulfites, such as potassium and/or sodium sulfite, or alkali metal hydrogensulfites, such as potassium and/or sodium hydrogensulfite.
  • Preferable redox initiators include an oxidizing agent selected from the group consisting of t-butylhydroperoxide and hydrogen peroxide, and a reducing agent selected from ascorbic acid, sodium formaldehyde sulfoxylate, sodium acetone bisulfite and sodium metabisulfite (sodium disulfite) .
  • the polymerization may be carried out and maintained at a temperature between 40 to 100 °C throughout the course of the reaction.
  • the polymerization is carried out at a temperature between 50 °C and 95 °C in each step a) and b) .
  • the polymerization is carried out at a temperature between 50 °C and 80 °C in each step a) and b) .
  • the polymerization may be carried out for several hours, for example 0.5 to 10 hours, preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours in each step a) and b) .
  • An organic base and/or inorganic base may be added into the polymerization system as a neutralizer during the polymerization or after the completion of such process.
  • Suitable neutralizers include, but are not limited to, inorganic bases such as ammonia, sodium/potassium hydroxide, sodium/potassium carbonate or a combination.
  • Organic bases such as dimethyl amine, diethyl amine, triethyl amine, monoethanolamine, triethanolamine, or a mixture thereof can also be used as the neutralizer.
  • sodium hydroxide, ammonia, dimethylaminoethanol, 2-amino-2-methyl-1-propanol or any mixture thereof are preferable as the neutralizer useful for the polymerization process.
  • pH of the final polymer shall be in the range of 6.0 to 10.0, preferably in the range of 7.0 to 9.5, more preferably in the range of 7.0 to 9.0.
  • Another objective of the present invention is to provide a block copolymer obtained from the above process according to the present disclosure.
  • the block copolymer obtained from the above process having a PDI no more than 2, preferably no more than 1.5.
  • the block copolymer obtained from the above process having a degree of polymerization no more than 800, preferably no more than 200.
  • the block copolymer obtained from the above process having a number average molecular weight no more than 100,000, preferably no more than 25,000.
  • the third objective of the present disclosure is to provide a process to prepare gradient copolymer wherein the monomer sequence in the obtained copolymers could be tuned, wherein, said process comprising:
  • c) optionally increase the temperature of the mixture to T2 and maintained for a period of t2,
  • T2 is higher than T1, T1 and T2 each independently is 40 to 100 °C,
  • composition Y comp comprising:
  • R 1 is -COOX or -CONR 4 R 5
  • X is a hydrogen atom, an alkali metal, an alkaline earth metal, an organic ammonium, (CH 2 CHR 4 O) n R 5 or (CH 2 CHR 4 O) n (CH 2 CHR 6 O) m
  • R 5 , n and m are independent of each a integer number in the range of 1 to 500
  • R 2 , R 3 , R 4 , R 5 and R 6 are independently of each other a hydrogen, an alkoxyl group/alkoxyl derivative, an aromatic group/aromatic derivative, and an aliphatic group/aliphatic derivative, and R 4 and R 6 are different from each other.
  • t1 is 0.5 to 10 hours, preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours; t2 is 0.5 to 8 hours, preferably 0.5 to 6 hours, more preferably 0.5 to 4 hours.
  • T1 and T2 each independently is 50 to 95 °C, preferably 50 to 90°C, more preferably 50 to 80°C. In another preferred embodiment of the process to prepare gradient copolymer according to the present disclosure, T1 is 50 to 70°C and T2 is 50 to 80°C.
  • monomer M comprising at least one monomer has a water-solubility of at least 5.0 g/L in water at 22 °C and 1 atm
  • examples of such monomer include but not limited to methyl methacrylate
  • monomer N comprising at least one monomer has a water-solubility of lower than 5.0 g/L in water at 22 °C and 1 atm
  • examples of such monomer include but not limited to styrene, butyl acrylate and benzyl methacrylate.
  • monomer N comprising at least one monomer has a water-solubility of at least 5.0 g/L in water at 22 °C and 1 atm
  • examples of such monomer include but not limited to methyl methacrylate
  • monomer M comprising at least one monomer has a water-solubility of lower than 5.0 g/L in water at 22 °C and 1 atm
  • examples of such monomer include but not limited to styrene, butyl acrylate and benzyl methacrylate.
  • the fourth objective is to provide a gradient copolymer obtained from the above process according to the present disclosure.
  • the gradient copolymers obtained from the above process having a PDI no more than 2, preferably no more than 1.5.
  • the gradient copolymers obtained from the above process having a degree of polymerization no more than 800, preferably no more than 200.
  • the gradient copolymers obtained from the above process having a number average molecular weight no more than 100,000, preferably no more than 25,000.
  • the emulsion polymerization may be conducted either as a batch operation or in the form of a feed process (i.e., the reaction mixture is fed into the reactor in a staged or gradient procedure) .
  • Feed process is a preferred process.
  • a small portion of the reaction mixture of the monomers may be introduced as an initial charge and heated to the polymerization temperature which usually will result in polymer seeds.
  • the remainder the polymerization mixture of the monomers is supplied to the reactor.
  • the reaction is further carried out for another 10 to 30 min and, optionally, followed by complete or partial neutralization of the mixture.
  • polymerization mixture of the second polymer monomers is supplied to the reactor in the same manner as described above. Upon the completion of the feeding, the polymerization is kept for another 30 to 90 min. Afterwards, the reaction mixture may be subject to oxidants, neutralizing agents, etc.
  • MMA Methyl methacrylate (>99.8%, Tokyo Chemical Industry (TCI) , Japan)
  • butyl acrylate (BA) (>99.0%, TCI)
  • NaI Sodium iodide
  • Tetrabutylammonium iodide (BNI) (>98.0%, TCI)
  • Tween 80 (the ester group derived from oleic acid ( ⁇ 58.0%) and from primarily linoleic, palmitic, and stearic acids (balance) , Sigma-Aldrich)
  • the number average molecular weight (M n ) and polydispersity ( “PDI” ) determined by gel permeation chromatography (GPC) with DMF as an eluent.
  • the eluent (DMF) contained LiBr (10 mM) .
  • the flow rate was 0.34 mL/min (40 °C) .
  • the sample detection and quantification were conducted using a Shimadzu differential refractometer RID-20A.
  • the column system was calibrated with standard poly (methyl methacrylate) s (PMMAs) or standard polystyrenes (PSts) .
  • the average particle diameter as referred herein relates to the Z average particle diameter as determined by means dynamic light scattering (DLS) .
  • the measurement method is described in the ISO 13321 : 1996 standard.
  • a sample of the aqueous polymer latex will be diluted, and the dilution will be analyzed.
  • the aqueous dilution may have a polymer concentration in the range from 0.001 to 0.5 %by weight, depending on the particle size. For most purposes, a proper concentration will be 0.01 %by weight. However, higher or lower concentrations may be used to achieve an optimum signal/noise ratio.
  • the dilution can be achieved by addition of the polymer latex to water or an aqueous solution of a surfactant in order to avoid flocculation.
  • dilution is performed by using a 0.1 %by weight aqueous solution of a non-ionic emulsifier, e.g., an ethoxylated C 16 /C 18 alkanol (degree of ethoxylation of 18) , as a diluent.
  • a non-ionic emulsifier e.g., an ethoxylated C 16 /C 18 alkanol (degree of ethoxylation of 18)
  • measurement temperature 20.0°C measurement time 120 seconds (6 cycles each of 20 s) ; scattering angle 173°; wavelength laser 633 nm (HeNe) ; refractive index of medium 1.332 (aqueous) ; viscosity 0.9546 mPa-s.
  • the measurement gives an average value of the second order cumulant analysis (mean of fits) , i.e., Z average.
  • the "mean of fits" is an average, intensity-weighted hydrodynamic particle diameter in nm.
  • the monomer conversion percentage (conv (%) ) was determined with 1 H NMR.
  • the 1 H NMR spectra were recorded on Bruker (Germany) AV500 spectrometer (500 MHz) or AV300 (300 MHz) at ambient temperature.
  • CDCl 3 for purified polymers
  • acetone-d 6 for crude methacrylate polymers
  • tetrahydrofuran-d 8 for crude styrene polymers
  • Example 1 T/°C t/h conv (%) M n PDI Stage I 60 2 100/0 13000 1.28 Stage II 70 0.75 100/96 34000 1.47
  • a mixture of monomers M and monomer N, 2-HEI, BNI, V50 and NaI, 2.85 g Tween 80, 0.95 g FES77 and 49.4g water were added in to a glass reaction vessel and heated under continuous argon flow using mechanical stirring (1000 rpm) until T1 for a certain period of time t1; an aliquot (2 mL) of the solution was taken out by a syringe, cooled to room temperature, and analyzed with GPC (DMF as eluent) and 1 H NMR.

Abstract

The present invention is related to a process of preparing block copolymers in one-pot system and a process of preparing gradient copolymer wherein the monomer sequence in the obtained copolymers can be tuned. The present invention is also related to the block or gradient copolymers obtained from the processes according to the present invention.

Description

Process of preparing block or gradient copolymers and the copolymer prepared thereof
Field of Invention
The present invention is related to a process of preparing block or gradient copolymers and the copolymer prepared thereof.
Background of the Invention
Free-radical polymerization technique has been widely used in emulsion polymerization. It is capable of accepting the least stringent experimental conditions and the widest range of monomers. However, one major limitation of conventional free-radical polymerization originates in the decisive significance of the irreversible termination reactions via combination and/or dismutation of the free radicals assuring the growth of the chains. Due to such limitation, many of the polymers synthesized via the conventional free-radical polymerization have a wide polydisperse index (PDI) .
Recently, emulsion polymerization has been combined with living radical polymerization (LRP) techniques to produce the block copolymers via a two-step synthesis; however, such process requires a purification step between the two steps, and such purification step is time-consuming and costly. Emulsion polymerization can also be combined with living radical polymerization (LRP) techniques to produce the gradient copolymer; however, the monomer sequence in the obtained copolymer cannot be tuned during the process.
Therefore, there is still a need to develop the process to prepare block copolymers in a one-pot system and another process to prepare gradient copolymer wherein the monomer sequence in the obtained copolymers can be tuned during the process.
SUMMARY of the Invention
One objective of the present invention is to provide a process to prepare block copolymers in a one-pot system.
Another objective of the present invention is to provide a block copolymer obtained from the above process according to the present disclosure.
The third objective of the present invention is to provide a process to prepare gradient copolymer wherein the monomer sequence in the obtained copolymers can be tuned.
The fourth objective of the present invention is to provide gradient copolymers obtained from the above process according to the present disclosure.
DETAILED DESCRIPTION OF THE INVENTION
Unless otherwise specified, all terms/terminology/nomenclatures used herein have the same meaning as commonly understood by the skilled person in the art to which this invention belongs to.
Expressions “a” , “an” and “the” , when used to define a term, include both the plural and singular forms of the term.
The term “polymer” or “polymers” , as used herein, includes both homopolymer (s) , that is, polymers prepared from a single reactive compound, and copolymer (s) , that is, polymers prepared by reaction of at least two polymer forming reactive, monomeric compounds.
The term “salt” means a chemical compound consisting of an ionic assembly of cations and anions.
The term “water-soluble” means a compound has a water-solubility of at least 0.8 g/L in water at 22 ℃ and 1 atm. And the term “organic-solvent-soluble” means a compound has a solubility of at least 20 g/L in acetone at 22 ℃ and 1 atm.
The term “derivative” means compound that is derived from a similar compound with one or more hydrogen atoms been substituted with a function group, such as a halogen, a carboxylate group, an alkoxyl group, an ester group, and a thioester group, etc.
The designation (meth) acrylate and similar designations are used herein as an abbreviated notation for “acrylate and/or methacrylate” .
The term weight average molecular weight (Mw) means a molecular weight measured by Gel Permeation Chromatography (GPC) against poly (methyl methacrylate) or polystyrene standard in dimethylformamide with the unit of g/mol.
All percentages and ratios denote weight percentages and weight ratios unless otherwise specified.
One objective of the present invention is to provide a process to prepare block copolymers wherein, said process comprising:
a) at least one monomer M and composition Y is added into the reactor for polymerization,
b) at least one monomer N is added into the reactor during and/or after the polymerization of step a) for polymerization;
wherein the component of monomer M and N is not the same with each other,
wherein composition Y comprising:
A) at least one organic water-soluble iodine compound, optionally
B) at least one organic-solvent-soluble iodide salt, and/or optionally
C) at least one water-soluble iodide salt,
wherein the at least one organic water-soluble iodine compound A) is represented by formula (1)
Figure PCTCN2022101880-appb-000001
wherein R 1 is -COOX or -CONR 4R 5, and X is a hydrogen atom, an alkali metal, an alkaline earth metal, an organic ammonium, (CH 2CHR 4O)  nR 5 or (CH 2CHR 4O)  n (CH 2CHR 6O)  mR 5, n and m are independent of each a integer number in the range of 1 to 500, and R 2, R 3, R 4, R 5 and R 6 are independently of each other a hydrogen, an alkoxyl group/alkoxyl derivative, an aromatic group/aromatic derivative, and an aliphatic group/aliphatic derivative, and R 4 and R 6 are different from each other.
In another embodiment, R 2, R 3, R 4, R 5 and R 6 are independently of each other a hydrogen, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative.
Examples of an alkali metal include, but not limited to, Li, Na and K; examples of an alkaline earth metal include, but not limited to, Be, Mg and Ca; examples of an organic ammonium include, but not limited to, trimethylammonium, tetramethylammonium, triethylammonium, ethyltrimethylammonium, tetraethyl ammonium, etc.
Examples of (CH 2CHR 4O)  nR 5 may include, but not limited to, (CH 2CH 2O)  nH, (CH 2CH 2O)  nCH 3, (CH 2CH (CH 3) O)  nH and (CH 2CH (CH 3) O)  nCH 3, wherein n is a integer number in the range of 1 to 500, preferably in the range of 1 to 200, more preferable 1 to 150, and most preferably 1 to 100.
Examples of (CH 2CHR 4O)  n (CH 2CHR 6O)  mR 5 may include, but not limited to, (CH 2CH 2O)  n (CH 2CH (CH 3) O)  mH , (CH 2CH (CH 3) O)  n (CH 2CH 2O)  mH, (CH 2CH 2O)  n- (CH 2CH (CH 3) O)  mCH 3 , (CH 2CH (CH3) O)  n (CH 2CH 2O)  mCH 3, wherein n and m are independent of each a integer number in the range of 1 to 500, preferably in the range of 1 to 200, more preferably in the range of 1 to 150, and most preferably in the range of 20 to 100.
In a preferred embodiment, R 1 is selected from COOH, COOCH 2CH 2OH and  COO (CH 2CH 2O)  nCH 3, wherein n is a integer number in the range of 30 to 60.
R 2 and R 3 are independently of each other a hydrogen, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative.
In the present disclosure, an "alkyl" refers to a monovalent group which is generated after a chain or cyclic aliphatic hydrocarbon (alkane) loses a hydrogen atom. In the cases of a chain alkyl group, the alkyl group is generally represented by C kH 2k+1 (wherein, k is a positive integer) . A chain alkyl group may be a straight chain or branched chain. A cyclic alkyl group may be consisted of a cyclic structure. A cyclic alkyl group may have a structure in which a chain alkyl group is linked to the cyclic structure. An alkyl group may have an arbitrary natural number of carbon atoms. Preferably, an alkyl group has 1 to 30 carbon atoms. More preferably, an alkyl group has 1 to 20 carbon atoms.
In a preferred embodiment, a "lower alkyl" is preferred, which refers to an alkyl group having a relatively small number of carbon atoms. Preferably, a lower alkyl is a C 1-10 alkyl group. More preferably, a lower alkyl is a C 1-5 alkyl group. Further preferably, a lower alkyl is a C 1-3 alkyl group. For instance, specific examples include methyl, ethyl, propyl and isopropyl.
In the present disclosure, an "alkoxy" refers to a group in which an oxygen atom is bound to the aforementioned alkyl group. That is, when the alkyl group is represented by R-, the alkoxy refers to a group represented by RO-. A chain alkoxy group may be a straight chain or branched chain. Cyclic alkoxy may be composed only of a cyclic structure or may have a structure formed from a cyclic structure further linked with chain alkyl. The number of carbon atoms in the alkoxy may be any natural number. The number of carbon atoms is from 1 to 30, and preferably from 1 to 20, more preferably from 1 to 10.
In a preferred embodiment, a "lower alkoxy" is preferred, which refers to an alkoxy group having relatively fewer carbon atoms. The lower alkoxy is preferably C 1-10 alkoxy, more preferably C 1-5 alkoxy, and even more preferably C 1-3 alkoxy. Specific examples thereof include methoxy, ethoxy, butoxy or isopropoxy.
In the present invention, an "aryl" refers to a group which is generated after a hydrogen atom, which is bound to a ring of an aromatic hydrocarbon, is removed. Specifically, for example, an aryl includes a phenyl group, naphthyl group, or anthracenyl group.
In a preferred embodiment, a "substituted aryl" is preferred, which refers to a group which is generated after a substituent bind to an aryl group.
In the present invention, a "halogen" refers to a monovalent radical of an element, which belongs to the 7B group of the periodic table, such as a fluorine (F) , chlorine (Cl) , bromine (Br) and iodine (I) . A “carboxylate” refers to a “alkylcarboxyl” or a “alkylcarbonyl” . An "alkylcarboxyl" refers to a group in which a carboxyl group is bound to the aforementioned alkyl group. That is, when the alkyl group is represented by R-, the alkylcarboxyl refers to a group represented by RCOO-. A chain alkylcarboxyl group may be a straight chain or branched chain. A cyclic alkylcarboxyl group may be composed only of a cyclic structure or may have a structure formed from a cyclic structure further linked with chain alkyl. The number of carbon atoms in the alkylcarboxyl may be any natural number. The number of carbon atoms is preferably from 1 to 30, and more preferably from 1 to 20. An "alkylcarbonyl" refers to a group in which a carbonyl group is bound to the aforementioned alkyl group. That is, when the alkyl group is represented by R-, the alkylcarbonyl refers to a group represented by RCO-. A chain alkylcarbonyl group may be a straight chain or branched chain. Cyclic alkylcarbonyl may be composed only of a cyclic structure, or may have a structure formed from a cyclic structure further linked with chain alkyl. The number of carbon atoms in the alkylcarbonyl may be any natural number. The number of carbon atoms is preferably from 1 to 30, and more preferably from 1 to 20.
In a preferred embodiment, if a “carboxylate” is presented, a “lower alkylcarboxyl" and/or a “lower alkylcarbonyl” is preferred as the R 2 and/or R 3. A "lower alkylcarboxyl" refers to an alkylcarboxyl group having relatively fewer carbon atoms. The lower alkylcarboxyl is preferably C 1-10 alkylcarboxyl, more preferably C 1-5 alkylcarboxyl, and even more preferably C 1-3 alkylcarboxyl. A "lower alkylcarbonyl" refers to an alkylcarbonyl group having relatively fewer carbon atoms. The lower alkylcarbonyl is preferably C 1-10 alkylcarbonyl, more preferably C 1-5 alkylcarbonyl, and even more preferably C 1-3 alkylcarbonyl.
In a preferred embodiment, R 1 is selected from COOH, COONa, COOK, COONH 4, COO (Ca)  0.5, CONH 2, COCH 2CH 2OH and CO (CH 2CH 2O)  nCH 3, wherein n is an integer in the range of 30 to 60, while R 2 and R 3 are, independently of each other, selected from H, phenyl group, methyl group, ethyl group, propyl group and butyl group.
Among the iodine compounds represented by the general formula (1) , iodine compounds may have a solubility in water of at least 0.8 g/L at 22 ℃ and 1 atm, preferably a solubility in water of at least 1.5 g/L at 22 ℃ and 1 atm, more preferably a solubility in water of at least 2 g/L at 22 ℃ and 1 atm, and most preferably a solubility in water of at least 3 g/L at 22 ℃ and 1 atm. Such compounds may include, but not limited to, 2-iodoacetic acid, 2-iodopropionic acid, 2-iodopropionic acid amide, 2-iodo-2-methylpropionic acid, poly (ethylene glycol) methyl ether 2-iodoisobutyrate, 2-iodo-2-methylpropionic acid amide, sodium 2-iodo-2-methylpropionate, calcium 2-iodo-2-methylpropionate, ammonium 2-iodo-2-methylpropionate, 2-hydroxyethyl 2-iodo-2- methylpropionate, 2-iodopentanoic acid, 2, 5-diiodoadipic acid, α-iodo-β-butyrolactone, sodium 2-iodo-2-phenylacetate, calcium 2-iodo-2-phenylacetate, ammonium 2-iodo-2-phenylacetate, and 2-hydroxyethyl 2-iodo-2-phenylacetate.
The above iodine compounds represented by the general formula (1) may be used singly or two or more species thereof may be used in combination. The molecular weight controlling agent for radical polymerization of the present invention may use the above-mentioned iodine compound as it is, and may take the form of liquid, powder, solid or the like as required. Moreover, it may take the form of an aqueous solution, encapsulation etc. as necessary. In addition, various additives such as stabilizers and dispersing agents may be incorporated as necessary. Among these forms, it is preferable to take a liquid or powdery form from the viewpoint of handling, and more preferable to take an aqueous solution form.
The at least one organic-solvent-soluble iodide salt B) may be an iodide salt of an organic cation and iodide anion. In one embodiment, the organic cation may be a quaternary ammonium of the formula 2:
[N (R a) (R b) (R c) (R d) ]  +      (formula 2)
or a quaternary phosphonium of the formula 3:
[P(R a) (R b) (R c) (R d) ]  +      (formula 3) ,
wherein R a, R b, R c and R d are, independent of each other, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative. The definition of “alkyl group/alkyl derivative” , “alkoxyl group/alkoxyl derivative” , and “aryl group/aryl derivative” may have the same meaning as described in the previous paragraph.
In a preferred embodiment, the exemplary compounds of quaternary ammonium of the formula 2 may include, but not limited to, acetylcholine iodide, acetylthiocholine iodide, benzoylcholine iodide, benzoylthiocholine iodide, benzyltriethylammonium iodide, n-butyrylcholine iodide, n-butyrylthiocholine iodide, decamethonium iodide, N, N-dimethylmethyleneammonium iodide, ethyltrimethylammonium iodide, ethyltri-n-propylammonium iodide, (ferrocenylmethyl) trimethylammonium iodide, (2-Hydroxyethyl) -triethylammonium iodide, Beta-methylcholine Iodide, O-beta-Naphthyloxycarbonylcholine iodide, phenyltriethylammonium iodide, phenyltrimethylammonium iodide, tetra-n-amylammonium iodide, tetra-butylammonium iodide, tetraethylammonium iodide, tetra-n-heptylammonium iodide, tetra-n-hexylammonium iodide, tetramethylammonium iodide, tetra-n-octylammonium iodide, tetra-n-propylammonium Iodide, 3- (trifluoromethyl) -phenyltrimethylammonium iodide. The exemplary compounds of quaternary phosphonium of formula 3 may include, but not limited to, trimethyl-n-dodecyl phosphonium iodide, triethyl-n-decyl phosphonium iodide, tri-n-propyl-n-tetradecyl phosphonium iodide, trimethylol-n-hexadecyl phosphonium iodide,  tributylmethyl phosphonium iodide, tri-n-butyl-n-decyl phosphonium iodide, tri-n-butyl-n-dodecyl phosphonium iodide, tri-n-butyl-n-tetradecyl phosphonium iodide, tri-n-butyl-n-hexadecyl phosphonium iodide, tri-n-hexyl-n-decyl phosphonium iodide, triphenyl-n-dodecyl phosphonium iodide, triphenyl-n-tetradecyl phosphonium iodide and triphenyl-n-octadecyl phosphonium iodide.
The least one organic-solvent-soluble iodide salt B) may have a solubility of at least 20 g/L in acetone at 22 ℃ and 1 atm, preferably a solubility of at least 30 g/L in acetone at 22 ℃ and 1 atm, more preferably a solubility of at least 40 g/L in acetone at 22 ℃ and 1 atm, and most preferably a solubility of at least 50 g/L in acetone at 22 ℃ and 1 atm.
In a preferred embodiment, the at least one organic-solvent-soluble iodide salt B) is selected from tetra-butylammonium iodide, tributylmethyl phosphonium iodide and tetra-n-octylammonium iodide.
At least one water-soluble iodide salt C) may be an iodide salt of an alkali metal/alkaline earth metal/ammonium (NH 4) cation and iodide anion. In a preferred embodiment, the exemplary compounds of iodide salt of an inorganic cation and iodide anion may include, but not limited to, lithium iodide, sodium iodide, potassium iodide, calcium iodide and ammonium iodide.
The weight ratio of A) , B) and C) may be in the ratio of 1: (0.1 -40) : (0.1 -10) , preferably in the ratio of 1: (1 -20) : (0.4 -8) , more preferably in the ratio of 1: (1 -5) : (0.4 -2) .
In a preferred embodiment, the at least one organic water-soluble iodine compound A) is selected from 2-iodoacetic acid, 2-iodopropionic acid, 2-iodopropionic acid amide, 2-iodo-2-methylpropionic acid, poly (ethylene glycol) methyl ether 2-iodoisobutyrate, 2-hydroxyethyl 2-iodoisobutyrate, 2-Iodo-2-phenylacetate, 2-iodo-2-phenylacetic acid; the at least one organic-solvent-soluble iodide salt B) is selected from tetra-butylammonium iodide, tributylmethyl phosphonium iodide and tetra-n-octylammonium iodide; and at least one water-soluble iodide salt C) may be selected from sodium iodide and potassium iodide. In such an embodiment, the at least one organic water-soluble iodine compound A) is presented in an amount of 2%to 85%by weight, the at least one organic-solvent-soluble iodide salt B) is presented in an amount of 8%to 80%by weight and the at least one water-soluble iodide salt C) may be presented in an amount of 8%to 20%by weight, all based on the total weight of the composition X.
In one embodiment of the process to prepare block copolymers, monomer M and monomer N may include, but not limited to, (meth) acrylate, (meth) acrylonitrile, styrene, vinyl alkanoate, monoethylenically unsaturated di-and tricarboxylic ester, a  monoethylenically unsaturated monomers containing at least one functional group selected from a group consisting of carboxyl, carboxylic anhydride, sulfonic acid, phosphoric acid, hydroxyl and amide or a mixture thereof. Monomer M and monomer N may each independently containing one or more polymerizable monomers. In one preferred embodiment, monomer M and monomer N each independently containing one polymerizable monomer different from each other.
The (meth) acrylate, may be C 1-C 19-alkyl (meth) acrylates, for example, but not limited to, methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, n-decyl (meth) acrylate, n-dodecyl (meth) acrylate (i.e. lauryl (meth) acrylate) , tetradecyl (meth) acrylate, oleyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate and a mixture thereof.
The styrene may be unsubstituted styrene or C 1-C 6-alkyl substituted styrenes, for example, but not limited to, styrene, α-methylstyrene, ortho-, meta-and para-methylstyrene, ortho-, meta-and para-ethylstyrene, o, p-dimethylstyrene, o, p-diethylstyrene, ispropylstyrene, o-methyl-p-isopropylstyrene or any mixture thereof.
The vinyl alkanoate may include, but not limited to, vinyl esters of C 2-C 11-alkanoic acids, for example, but not limited to, vinyl acetate, vinyl propionate, vinyl butanoate, vinyl valerate, vinyl hexanoate, vinyl versatate or a mixture thereof.
The monoethylenically unsaturated di-and tricarboxylic ester may include, but not limited to, be full esters of monoethylenically unsaturated di-and tricarboxylic acids, for example, but not limited to, diethyl maleate, dimethyl fumarate, ethyl methyl itaconate, dihexyl succinate, didecyl succinate or any mixture thereof.
The monoethylenically unsaturated monomers containing at least one functional group selected from a group consisting of carboxyl, carboxylic anhydride, sulfonic acid, phosphoric acid, hydroxyl and amide may include, but not limited to, monoethylenically unsaturated carboxylic acids, such as (meth) acrylic acid, itaconic acid, fumaric acid, citraconic acid, sorbic acid, cinnamic acid, glutaconic acid and maleic acid; monoethylenically unsaturated carboxylic anhydrides, such as itaconic acid anhydride, fumaric acid anhydride, citraconic acid anhydride, sorbic acid anhydride, cinnamic acid anhydride, glutaconic acid anhydride and maleic acid anhydride; monoethylenically unsaturated amides, such as (meth) acrylamide, N-methylol (meth) acrylamide, N, N-dimethylacrylamide (DMA) , 2-hydroxyethyl (meth) acrylamide, dimethylaminoethylmethacrylamide; hydroxyalkyl esters of monoethylenically unsaturated carboxylic acids, such as hydroxyethyl (meth) acrylate and hydroxypropyl (meth) acrylate; and other monomers, such as glycerol (meth) acrylate, or a mixture  thereof.
In one embodiment of the process to prepare block copolymers, monomer M and monomer N each independently could further include other suitable polymerizable compounds, which include, but not limited to, olefins, such as ethylene, propene, cloropropene, butene, 1-decene; dienes, such as butadiene, isoprene, cloroprene, norbornadiene; N-vinyl compounds, such as N-vinyl-2-pyrrolidone (NVP) , N-vinyl formamide, N-vinyl acetamide, N-vinyl isopropylamide, N-vinyl-N-methyl acetamide and N-vinyl caprolactam.
In another embodiment of the process to prepare block copolymers, monomer M and/or monomer N each independently may containing crosslinking monomers, said crosslinking monomers can be chosen from di-or poly-isocyanates, polyaziridines, polycarbodiimide, polyoxazolines, glyoxals, malonates, triols, epoxy molecules, organic silanes, carbamates, diamines and triamines, hydrazides, carbodiimides and multi-ethylenically unsaturated monomers. In the present disclosure, suitable crosslinking monomers include, but not limited to, glycidyl (meth) acrylate, N-methylol (meth) acrylamide, (isobutoxymethyl) acrylamide, vinyltrialkoxysilanes such as vinyltrimethoxysilane; alkylvinyldialkoxysilanes such as dimethoxymethylvinylsilane; (meth) acryloxyalkyltrialkoxysilanes such as (meth) acryloxyethyltrimethoxysilane, (3-acryloxypropyl) trimethoxysilane and (3-methacryloxypropyl) trimethoxysilane, allyl methacrylate, diallyl phthalate, 1, 4-butylene glycol dimethacrylate, 1, 2-ethylene glycol dimethacrylate, 1, 6-hexanediol diacrylate, divinyl benzene or any mixture thereof.
The at least one organic water-soluble iodine compound A) may be used alone or with two or more species thereof may be used in combination. And the at least one organic water-soluble iodine compound A) may be used in an amount, based on the total weight of monomer M and monomer N, 0.001%to 30%by weight, preferably 0.01%to 5%by weight, more preferably 0.1%to 3%by weight, and most preferably 0.3%to 3%by weight.
The at least one organic-solvent-soluble iodide salt B) may be used alone or with two or more species thereof may be used in combination. And the at least one organic-solvent-soluble iodide salt B may be presented in an amount of, based on the total weight of monomers M and monomer N, 0.01%to 40%by weight, preferably 0.1%to 15%by weight, more preferably 1%to 10%by weight, and most preferably 3%to 7%by weight.
The at least one water-soluble iodide salt C) may be used alone or with two or more species thereof may be used in combination. And the at least one water-soluble iodide salt C) may be presented in an amount of, based on the total weight of monomers M and monomer N, 0.01%to 40%by weight, preferably 0.01%to 10%by weight, more  preferably 0.5%to 5%by weight, and most preferably 1%to 4%by weight.
In one embodiment of the process to prepare block copolymers, monomer M could be added into the reactor in one batch or in several batches. In one particular embodiment, especially when monomer M containing more than one monomer, different monomers could be added into the reactor in several batches.
In one embodiment of the process to prepare block copolymers, monomer N could be added into the reactor in one batch or in several batches. In one particular embodiment, especially when monomer N containing more than one monomer, different monomers could be added into the reactor in several batches.
During the polymerization process, most surfactants known to the skilled person in the art may be used. Surfactant to be used according to the present invention may be a non-reactive surfactant, a reactive surfactant or a combination thereof. Surfactants may be formulated together with the monomers and fed into a reaction reactor. Alternatively, the surfactants may be added into the reaction medium first followed by the feeding of monomers. Surfactants may be used in a suitable amount known to the skilled person in the art, for example, in a total amount of 0.1%to 6%by weight, based on the total weight of the monomers M and N.
Surfactants may be non-reactive anionic and/or nonionic surfactants. Suitable non-reactive anionic surfactants, for example, include, but are not limited to, alkyl, aryl or alkylaryl sulfate salts, sulfonate salts or phosphate salts; alkyl sulfonic acids; sulfosuccinate salts; fatty alcohol ether sulfate salts and fatty acids. Suitable non-reactive nonionic surfactants for example include alcohol or phenol ethoxylates such as polyoxyethylene alkylphenyl ether.
Surfactants may also be polymerizable surfactants, also called a reactive surfactant, containing at least one ethylenically unsaturated functional group. Suitable polymerizable surfactants include, but are not limited to, allyl polyoxyalkylene ether sulfate salts such as sodium salts of allyl polyoxyethylene alkyl ether sulfate, allyl alkyl succinate sulfonate salts, allyl ether hydroxyl propanesulfonate salts such as sodium salts, polyoxyethylene styrenated phenyl ether sulfate salts such as ammonium salts, for example DKS
Figure PCTCN2022101880-appb-000002
AR 1025 and DKS
Figure PCTCN2022101880-appb-000003
AR 2020, polyoxyethylene alkylphenyl ether sulfate ammonium salts, polyoxyethylene allyloxy nonylphenoxypropyl ether, and phosphate acrylates such as
Figure PCTCN2022101880-appb-000004
PAM 100, phosphate acrylates such as
Figure PCTCN2022101880-appb-000005
PAM 200, etc.
The emulsion polymerization may be carried out in the presence of various common initiating systems, including but not limited to a thermal or redox initiator. The initiator is usually used in an amount of no more than 10%by weight, preferably 0.02 to 5%by  weight, more preferably 0.1 to 1.5 wt. %, based on the total weight of the two stage monomers.
Suitable initiators may be used include, but are not limited to, inorganic peroxides, such as hydrogen peroxide, or peroxodisulfates, or organic peroxides, such as tert-butyl, p-menthyl or cumyl hydroperoxide, tert-butyl perpivalate, and dialkyl or diaryl peroxides, such as di-tert-butyl or di-cumyl peroxide. Azo compounds which may be used, include, but not limited to, 2, 2′-azobis (isobutyronitrile) , 2, 2′-azobis (2, 4-dimethylvaleronitrile) . Among others, sodium persulfate (SPS) , potassium persulfate (KPS) , ammonium persulfate (APS) , 2, 2′-azobis (amidinopropyl) dihydrochloride (AIBA, V-50 TM) , and 4, 4'-azobis (4-cyanovaleric acid) (ACVA , V501) are preferred as the thermal initiator.
A redox initiator usually comprises an oxidizing agent and a reducing agent. Suitable oxidizing agents include the abovementioned peroxides. Suitable reducing agents may be alkali metal sulfites, such as potassium and/or sodium sulfite, or alkali metal hydrogensulfites, such as potassium and/or sodium hydrogensulfite. Preferable redox initiators include an oxidizing agent selected from the group consisting of t-butylhydroperoxide and hydrogen peroxide, and a reducing agent selected from ascorbic acid, sodium formaldehyde sulfoxylate, sodium acetone bisulfite and sodium metabisulfite (sodium disulfite) .
The polymerization may be carried out and maintained at a temperature between 40 to 100 ℃ throughout the course of the reaction. Preferably, the polymerization is carried out at a temperature between 50 ℃ and 95 ℃ in each step a) and b) . More preferably, the polymerization is carried out at a temperature between 50 ℃ and 80 ℃ in each step a) and b) . Depending on various polymerization conditions, the polymerization may be carried out for several hours, for example 0.5 to 10 hours, preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours in each step a) and b) .
An organic base and/or inorganic base may be added into the polymerization system as a neutralizer during the polymerization or after the completion of such process. Suitable neutralizers include, but are not limited to, inorganic bases such as ammonia, sodium/potassium hydroxide, sodium/potassium carbonate or a combination. Organic bases such as dimethyl amine, diethyl amine, triethyl amine, monoethanolamine, triethanolamine, or a mixture thereof can also be used as the neutralizer. Among others, sodium hydroxide, ammonia, dimethylaminoethanol, 2-amino-2-methyl-1-propanol or any mixture thereof are preferable as the neutralizer useful for the polymerization process. Upon the addition of a neutralizer, pH of the final polymer shall be in the range of 6.0 to 10.0, preferably in the range of 7.0 to 9.5, more preferably in the range of 7.0 to 9.0.
Another objective of the present invention is to provide a block copolymer obtained from the above process according to the present disclosure.
In one embodiment, the block copolymer obtained from the above process having a PDI no more than 2, preferably no more than 1.5.
In another embodiment, the block copolymer obtained from the above process having a degree of polymerization no more than 800, preferably no more than 200.
In another embodiment, the block copolymer obtained from the above process having a number average molecular weight no more than 100,000, preferably no more than 25,000.
The third objective of the present disclosure is to provide a process to prepare gradient copolymer wherein the monomer sequence in the obtained copolymers could be tuned, wherein, said process comprising:
a) mixture of monomer M, monomer N and composition Y are added into the reactor,
b) the temperature of the mixture is heated to T1 for polymerization and maintained for a period of t1,
c) optionally increase the temperature of the mixture to T2 and maintained for a period of t2,
wherein T2 is higher than T1, T1 and T2 each independently is 40 to 100 ℃,
wherein the component of monomer M and monomer N is not the same with each other,
wherein composition Y comp comprising:
A) at least one organic water-soluble iodine compound, optionally
B) at least one organic-solvent-soluble iodide salt, and/or optionally
C) at least one water-soluble iodide salt,
wherein the at least one organic water-soluble iodine compound A) is represented by formula (1)
Figure PCTCN2022101880-appb-000006
wherein R 1 is -COOX or -CONR 4R 5, and X is a hydrogen atom, an alkali metal, an alkaline earth metal, an organic ammonium, (CH 2CHR 4O)  nR 5 or (CH 2CHR 4O)  n (CH 2CHR 6O)  mR 5, n and m are independent of each a integer number in the range of 1 to 500, and R 2, R 3, R 4, R 5 and R 6 are independently of each other a hydrogen, an alkoxyl group/alkoxyl derivative, an aromatic group/aromatic derivative,  and an aliphatic group/aliphatic derivative, and R 4 and R 6 are different from each other.
In one embodiment of the process to prepare gradient copolymer according to the present disclosure, t1 is 0.5 to 10 hours, preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours; t2 is 0.5 to 8 hours, preferably 0.5 to 6 hours, more preferably 0.5 to 4 hours.
In one preferred embodiment of the process to prepare gradient copolymer according to the present disclosure, T1 and T2 each independently is 50 to 95 ℃, preferably 50 to 90℃, more preferably 50 to 80℃. In another preferred embodiment of the process to prepare gradient copolymer according to the present disclosure, T1 is 50 to 70℃ and T2 is 50 to 80℃.
In one preferred embodiment, monomer M comprising at least one monomer has a water-solubility of at least 5.0 g/L in water at 22 ℃ and 1 atm, examples of such monomer include but not limited to methyl methacrylate; monomer N comprising at least one monomer has a water-solubility of lower than 5.0 g/L in water at 22 ℃ and 1 atm, examples of such monomer include but not limited to styrene, butyl acrylate and benzyl methacrylate.
In another preferred embodiment, monomer N comprising at least one monomer has a water-solubility of at least 5.0 g/L in water at 22 ℃ and 1 atm, examples of such monomer include but not limited to methyl methacrylate; monomer M comprising at least one monomer has a water-solubility of lower than 5.0 g/L in water at 22 ℃ and 1 atm, examples of such monomer include but not limited to styrene, butyl acrylate and benzyl methacrylate.
The fourth objective is to provide a gradient copolymer obtained from the above process according to the present disclosure.
In one embodiment, the gradient copolymers obtained from the above process having a PDI no more than 2, preferably no more than 1.5.
In another embodiment, the gradient copolymers obtained from the above process having a degree of polymerization no more than 800, preferably no more than 200.
In another embodiment, the gradient copolymers obtained from the above process having a number average molecular weight no more than 100,000, preferably no more than 25,000.
The emulsion polymerization may be conducted either as a batch operation or in the form of a feed process (i.e., the reaction mixture is fed into the reactor in a staged or gradient procedure) . Feed process is a preferred process. In such a process, optionally  a small portion of the reaction mixture of the monomers may be introduced as an initial charge and heated to the polymerization temperature which usually will result in polymer seeds. Then the remainder the polymerization mixture of the monomers is supplied to the reactor. After the completion of the feeding, the reaction is further carried out for another 10 to 30 min and, optionally, followed by complete or partial neutralization of the mixture. After the completion of the first polymerization process, polymerization mixture of the second polymer monomers is supplied to the reactor in the same manner as described above. Upon the completion of the feeding, the polymerization is kept for another 30 to 90 min. Afterwards, the reaction mixture may be subject to oxidants, neutralizing agents, etc.
The present invention is further demonstrated and exemplified in the Examples, however, without being limited to the embodiments described in the Examples.
Examples
Description of commercially available materials used in the following Examples:
Methyl methacrylate (MMA) (>99.8%, Tokyo Chemical Industry (TCI) , Japan)
Styrene (>99.0%, TCI)
Butyl acrylate (BA) (>99.0%, TCI)
Benzyl methacrylate (BzMA) (>98.0%, TCI)
Sodium iodide (NaI) (>99.0%, Sigma-Aldrich, USA)
Potassium iodide (KI) (>99.5%, TCI)
Tetrabutylammonium iodide (BNI) (>98.0%, TCI)
Tween 80 (the ester group derived from oleic acid (≥58.0%) and from primarily linoleic, palmitic, and stearic acids (balance) , Sigma-Aldrich)
FES-77 (33.0%of FES and 67.0%of water, BASF, Shanghai) , 2, 2’ -azobis (2-methylpropionamide) dihydrochloride (V50) (95%, Wako Pure Chemical, Japan)
2-Hydroxyethyl 2-iodoisobutyrate (2-HEI) (>90.0%, Godo Shigen Co., Ltd., Japan)
2-hydroxyethyl 2-iodo-2-phenylacetate (2-HEPhI) (>85.0%, Godo Shigen Co., Ltd. )
Measurement methods:
The number average molecular weight (M n) and polydispersity ( “PDI” ) determined by gel permeation chromatography (GPC) with DMF as an eluent. The GPC analysis using DMF as the eluent was performed on a Shimadzu (Kyoto, Japan) LC-2030C plus liquid chromatograph equipped with two Shodex LF-804 columns (300 × 8.0 mm; bead size = 6 μm; pore size = 3000
Figure PCTCN2022101880-appb-000007
) and one KD-802 column (300 × 8.0 mm; bead size = 6 μm; pore size = 150
Figure PCTCN2022101880-appb-000008
) . The eluent (DMF) contained LiBr (10 mM) . The flow rate was 0.34 mL/min (40 ℃) . The sample detection and quantification were conducted using a Shimadzu differential refractometer RID-20A. The column system was calibrated with  standard poly (methyl methacrylate) s (PMMAs) or standard polystyrenes (PSts) .
The average particle diameter as referred herein relates to the Z average particle diameter as determined by means dynamic light scattering (DLS) . The measurement method is described in the ISO 13321 : 1996 standard. For this purpose, a sample of the aqueous polymer latex will be diluted, and the dilution will be analyzed. In the context of DLS, the aqueous dilution may have a polymer concentration in the range from 0.001 to 0.5 %by weight, depending on the particle size. For most purposes, a proper concentration will be 0.01 %by weight. However, higher or lower concentrations may be used to achieve an optimum signal/noise ratio. The dilution can be achieved by addition of the polymer latex to water or an aqueous solution of a surfactant in order to avoid flocculation. Usually, dilution is performed by using a 0.1 %by weight aqueous solution of a non-ionic emulsifier, e.g., an ethoxylated C 16/C 18 alkanol (degree of ethoxylation of 18) , as a diluent. Measurement configuration: HPPS from Malvern, automated, with continuous-flow cuvette and Gilson autosampler.
Parameters: measurement temperature 20.0℃; measurement time 120 seconds (6 cycles each of 20 s) ; scattering angle 173°; wavelength laser 633 nm (HeNe) ; refractive index of medium 1.332 (aqueous) ; viscosity 0.9546 mPa-s. The measurement gives an average value of the second order cumulant analysis (mean of fits) , i.e., Z average. The "mean of fits" is an average, intensity-weighted hydrodynamic particle diameter in nm.
The monomer conversion percentage (conv (%) ) was determined with  1H NMR. The  1H NMR spectra were recorded on Bruker (Germany) AV500 spectrometer (500 MHz) or AV300 (300 MHz) at ambient temperature. CDCl 3 (for purified polymers) , acetone-d 6 (for crude methacrylate polymers) , and tetrahydrofuran-d 8 (for crude styrene polymers) (Cambridge Isotope Laboratories, USA) were used as the solvents for the NMR analysis, and the chemical shift was calibrated using residual undeuterated solvents or tetramethylsilane (TMS) as the internal standard.
Example 1
A mixture of 0.25 mol Methyl methacrylate (MMA, 25 g) , 1.25 mmol 2, 2'-azobis (2-methylpropionamidine) dihydrochloride (V50, 0.3 g) , 2.5 mmol 2-hydroxyethyl 2-Iodo-2-phenylacetate (2-HEPhI, 0.8 g) , 2.5 mmol sodium iodide (NaI, 0.4 g) , 2.5 mmol tetrabutyl ammonium iodide (BNI, 0.9 g) , 2.1 g Tween 80, 0.7 g FES77 and 54.9 g water were added in to a glass reaction vessel and heated under continuous argon flow using mechanical stirring (1000 rpm) at 60 ℃ for 2 h. An aliquot (1 mL) of the solution was taken out by a syringe, cooled to room temperature, and analyzed with  1H NMR. Without purification, mixture of 24.64 g butyl acrylate and 57.51 g water were added in the reaction vessel at 70℃ under argon atmosphere with mechanical stirring (1000 rpm) for 45 mins. Another aliquot (10 mL) of the mixture were taken out, cooled to room temperature, reprecipitated in methanol (200 mL) , and dried. The purified copolymer was analyzed  with GPC (DMF as eluent) . The test results thereof are listed in Table 1.
Table 1
Example 1 T/℃ t/h conv (%) M n PDI
Stage I 60 2 100/0 13000 1.28
Stage II 70 0.75 100/96 34000 1.47
Examples 2-4
A mixture of monomers M and monomer N, 2-HEI, BNI, V50 and NaI, 2.85 g Tween 80, 0.95 g FES77 and 49.4g water were added in to a glass reaction vessel and heated under continuous argon flow using mechanical stirring (1000 rpm) until T1 for a certain period of time t1; an aliquot (2 mL) of the solution was taken out by a syringe, cooled to room temperature, and analyzed with GPC (DMF as eluent) and  1H NMR. Then the mixtures were further maintained or heated to T2 for another period of time t2 under argon atmosphere with mechanical stirring (1000 rpm) ; an aliquot (2 mL) of the solution was taken out by a syringe, cooled to room temperature, and analyzed with GPC (DMF as eluent) and  1H NMR.
The detailed information regarding the catalyst, the monomers, initiators, reaction time and temperature as well as characterization of the polymer of Examples 2-4 have been summarized in the following tables.
Table 2
Figure PCTCN2022101880-appb-000009

Claims (19)

  1. A process to prepare block copolymers, wherein said process comprising:
    a) at least one monomer M and composition Y is added into the reactor for polymerization,
    b) at least one monomer N is added into the reactor during and/or after the polymerization of step a) for polymerization;
    wherein the component of monomer M and N is not the same with each other,
    wherein composition Y containing:
    A) at least one organic water-soluble iodine compound,
    optionally
    B) at least one organic-solvent-soluble iodide salt, and/or optionally
    C) at least one water-soluble iodide salt,
    wherein the at least one organic water-soluble iodine compound A) is represented by formula (1)
    Figure PCTCN2022101880-appb-100001
    wherein R 1 is -COOX or -CONR 4R 5, and X is a hydrogen atom, an alkali metal, an alkaline earth metal, an organic ammonium, an ammonium, (CH 2CHR 4O)  nR 5, (CH 2CHR 4O)  n (CH 2CHR 6O)  mR 5, n and m are independent of each a integer number in the range of 1 to 500, and R 2, R 3, R 4, R 5 and R 6 are independently of each other a hydrogen, an alkoxyl group/alkoxyl derivative, an aromatic group/aromatic derivative, and an aliphatic group/aliphatic derivative, R 4 and R 6 shall be different.
  2. A process according to claim 1, wherein monomer M and monomer N each independently are added into the reactor in one batch or in several batches; preferably, monomer M containing more than one monomer, different monomers contained in monomer M are added into reactor separately via several batches.
  3. A process according to claim 1 or 2, wherein there is no purification step contained between step a) and step b.
  4. A process according to any of claims 1 to 3, wherein the polymerization temperature under step a) and b) each independently is 40 to 100 ℃, preferably 50 ℃ and 95 ℃, more preferably 50 ℃ and 80 ℃.
  5. A process to prepare gradient copolymers, wherein said process comprising:
    a) mixture of monomer M, monomer N and composition Y are added into the reactor,
    b) the temperature of the mixture is heated to T1 for polymerization and  maintained for a period of t1,
    c) optionally increase the temperature of the mixture to T2 and maintained for a period of t2,
    wherein T2 is higher than T1, T1 and T2 each independently is 40 to 100 ℃,
    wherein the component of monomer M and monomer N is not the same with each other,
    wherein composition Y comprising:
    A) at least one organic water-soluble iodine compound,
    optionally
    B) at least one organic-solvent-soluble iodide salt, and/or optionally
    C) at least one water-soluble iodide salt,
    wherein the at least one organic water-soluble iodine compound A) is represented by formula (1)
    Figure PCTCN2022101880-appb-100002
    wherein R 1 is -COOX or -CONR 4R 5, and X is a hydrogen atom, an alkali metal, an alkaline earth metal, an organic ammonium, (CH 2CHR 4O)  nR 5 or (CH 2CHR 4O)  n (CH 2CHR 6O)  mR 5, n and m are independent of each a integer number in the range of 1 to 500, and R 2, R 3, R 4, R 5 and R 6 are independently of each other a hydrogen, an alkoxyl group/alkoxyl derivative, an aromatic group/aromatic derivative, and an aliphatic group/aliphatic derivative, and R 4 and R 6 are different from each other.
  6. A process according to claim 5, wherein t1 is 0.5 to 10 hours, preferably 0.5 to 8 hours, more preferably 0.5 to 6 hours; t2 is 0.5 to 8 hours, preferably 0.5 to 6 hours, more preferably 0.5 to 4 hours.
  7. A process according to claim 5 or 6, wherein T1 and T2 each independently is 50 to 95 ℃, preferably 50 to 90℃, more preferably 50 to 80℃.
  8. A process according to claim 5 or 6, wherein T1 is 50 to 70℃ and T2 is 50 to 80℃.
  9. A process according to any of claims 5 to 8, wherein monomer M comprising at least one monomer has a water-solubility of at least 5.0 g/L in water at 22 ℃ and 1 atm and monomer N comprising at least one monomer has a water-solubility of lower than 5.0 g/L in water at 22 ℃ and 1 atm.
  10. A process according to any of claims 1 to 9, wherein R 1 of formula (1) is selected from COOH, COOCH 2CH 2OH and COO (CH 2CH 2O)  nCH 3, wherein n is a integer  number in the range of 50 to 100; R 2 and R 3 of formula (1) are independently of each other a hydrogen, an alkyl group/alkyl derivative, an alkoxyl group/alkoxyl derivative, and an aryl group/aryl derivative.
  11. A process according to any of claims 1 to 10, wherein the at least one organic-solvent-soluble iodide salt B) is selected from tetra-butylammonium iodide, tributylmethyl phosphonium iodide and tetra-n-octylammonium iodide.
  12. A process according to any of claims 1 to 11, wherein the at least one water-soluble iodide salt C) is selected from lithium iodide, sodium iodide, potassium iodide, calcium iodide and ammonium iodide.
  13. A process according to any of claims 1 to 12, wherein the at least one organic water-soluble iodine compound A) is selected from 2-iodoacetic acid, 2-iodopropionic acid, 2-iodopropionic acid amide, 2-iodo-2-methylpropionic acid, poly (ethylene glycol) methyl ether 2-iodoisobutyrate, 2-hydroxyethyl 2-iodoisobutyrate, 2-Iodo-2-phenylacetate, 2-iodo-2-phenylacetic acid; the at least one organic-solvent-soluble iodide salt B) is selected from tetra-butylammonium iodide, tributylmethyl phosphonium iodide and tetra-n-octylammonium iodide; and at least one water-soluble iodide salt C) is selected from sodium iodide and potassium iodide.
  14. A process according to any of claims 1 to 13, wherein the weight ratio of A) , B) and C) may be in the ratio of 1: (0.1 -40) : (0.1 -10) , preferably in the ratio of 1: (1 -20) : (0.4 -8) , more preferably in the ratio of 1: (1 -5) : (0.4 -2) .
  15. A process according to any of claims 1 to 14, wherein the at least one organic water-soluble iodine compound A) is presented in an amount of 2%to 85%by weight, the at least one organic-solvent-soluble iodide salt B) is presented in an amount of 8%to 80%by weight and the at least one water-soluble iodide salt C) may be presented in an amount of 8%to 20%by weight, all based on the total weight of the composition X.
  16. A process according to any of claims 1 to 15, wherein monomer M and monomer N each independently are selected from the groups consisting of (meth) acrylate, (meth) acrylonitrile, styrene, vinyl alkanoate, monoethylenically unsaturated di-and tricarboxylic ester, a monoethylenically unsaturated monomers containing at least one functional group selected from a group consisting of carboxyl, carboxylic anhydride, sulfonic acid, phosphoric acid, hydroxyl and amide; preferably monomer M and monomer N each independently are selected from the groups consisting of methyl (meth) acrylate, ethyl (meth) acrylate, n-butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, cyclohexyl (meth) acrylate, n-octyl (meth) acrylate, n-decyl (meth) acrylate, n-dodecyl (meth) acrylate (i.e. lauryl (meth) acrylate) , tetradecyl  (meth) acrylate, oleyl (meth) acrylate, palmityl (meth) acrylate, stearyl (meth) acrylate, isobornyl (meth) acrylate, benzyl (meth) acrylate, phenyl (meth) acrylate, styrene, α-methylstyrene, ortho-, meta-and para-methylstyrene, ortho-, meta-and para-ethylstyrene, o, p-dimethylstyrene, o, p-diethylstyrene, ispropylstyrene and o-methyl-p-isopropylstyrene.
  17. A process according to any of claims 1 to 16, wherein compound A) is present in an amount of 0.001%to 30%by weight, salt B is present in an amount of 0.01%to 40%by weight and salt C) may be presented in an amount of 0.01%to 40%, based on the total weight of monomer M and monomer N; preferably compound A) is present in an amount of 0.01%to 5%by weight, salt B is present in an amount of 0.1%to 15%by weight and salt C) may be presented in an amount of 0.01%to 10%, based on the total weight of monomer M and monomer N; more preferably compound A) is present in an amount of 0.1%to 3%by weight, salt B is present in an amount of 1%to 10%by weight and salt C) may be presented in an amount of 0.5%to 5%, based on the total weight of monomer M and monomer N; most preferably compound A) is present in an amount of 0.3%to 3%by weight, salt B is present in an amount of 3%to 7%by weight and salt C) may be presented in an amount of 1%to 4%, based on the total weight of monomer M and monomer N.
  18. The copolymer obtained from the process according to any of claims 1 to 17.
  19. The copolymer according to claim 18, wherein the copolymer having a PDI no more than 2, degree of polymerization no more than 800 and number average molecular weight no more than 100,000; preferably the copolymer having a PDI no more than 1.5, degree of polymerization no more than 200 and number average molecular weight no more than 25,000.
PCT/CN2022/101880 2021-07-30 2022-06-28 Process of preparing block or gradient copolymers and the copolymer prepared thereof WO2023005568A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202280052976.6A CN117751098A (en) 2021-07-30 2022-06-28 Method for preparing block or gradient copolymer and copolymer prepared by same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CNPCT/CN2021/109623 2021-07-30
CN2021109623 2021-07-30
CNPCT/CN2022/095599 2022-05-27
CN2022095599 2022-05-27

Publications (1)

Publication Number Publication Date
WO2023005568A1 true WO2023005568A1 (en) 2023-02-02

Family

ID=82608375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101880 WO2023005568A1 (en) 2021-07-30 2022-06-28 Process of preparing block or gradient copolymers and the copolymer prepared thereof

Country Status (2)

Country Link
CN (1) CN117751098A (en)
WO (1) WO2023005568A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306995B1 (en) * 1999-11-18 2001-10-23 Eastman Kodak Company Polymerization process
EP3604352A1 (en) * 2017-03-30 2020-02-05 SDP Global Co., Ltd. Molecular-weight controlling agent for radical polymerization, method for producing polymer using same, and polymer

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6306995B1 (en) * 1999-11-18 2001-10-23 Eastman Kodak Company Polymerization process
EP3604352A1 (en) * 2017-03-30 2020-02-05 SDP Global Co., Ltd. Molecular-weight controlling agent for radical polymerization, method for producing polymer using same, and polymer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAO LONGQIANG ET AL: "Organocatalyzed Living Radical Polymerization via in Situ Halogen Exchange of Alkyl Bromides to Alkyl Iodides", MACROMOLECULES, vol. 50, no. 5, 28 February 2017 (2017-02-28), US, pages 1882 - 1891, XP055885537, ISSN: 0024-9297, DOI: 10.1021/acs.macromol.6b02813 *

Also Published As

Publication number Publication date
CN117751098A (en) 2024-03-22

Similar Documents

Publication Publication Date Title
US6150468A (en) Water soluble amphiphilic heteratom star polymers and their use as emulsion stabilizers in emulsion polymerization
EP1981920B1 (en) Process for preparing stabilized latices by emulsion polymerization
US11427747B2 (en) Sequenced polymers for monitoring the filtrate
CN111349190B (en) Aqueous polymer emulsion, method for the production thereof and use thereof
WO2023005568A1 (en) Process of preparing block or gradient copolymers and the copolymer prepared thereof
KR20070093069A (en) Use of copolymers with a composition gradient as stabilizers in emulsion free-radical polymerization
KR20160140757A (en) Secondary suspending agent for suspension polymerisation reaction
JPH07238203A (en) Aqueous emulsion composition and its production
CA2333926A1 (en) Method to control atom transfer radical polymerization
WO2023005567A1 (en) A composition and its application in controlled living water-based emulsion polymerization
US9410005B2 (en) Polymer, preparation method thereof, composition and film comprising the same
JP3688235B2 (en) Emulsion polymerization using polymer emulsifier
JP4671299B2 (en) Polymerization of monomers with different reactivity
WO2021023541A1 (en) Water-borne polymers polymerized by radical polymerization with azo initiators, a process for making such and the applications thereof
JP4145735B2 (en) Method for producing aqueous emulsion composition
JP3747249B2 (en) Polymer emulsifier, process for producing the same, and emulsion polymerization process using the same
WO2023052125A1 (en) Preparation raft-mediated seed in aqueous phase and emulsion polymerization by using raft-mediated seed
JP3655408B2 (en) Method for controlling the carboxyl group concentration of emulsion particles
US6479603B1 (en) Method for living free-radical polymerization
EP1290036A1 (en) Water soluble ampiphilic heteroarm star polymers and their use as emulsion stabilizers in emulsion polymerization
JP4199600B2 (en) Alkali-soluble thickener
WO2018078247A1 (en) Production of a polymer emulsion
US20230383043A1 (en) Process of producing polymer dispersions
KR20080112243A (en) Use of particular polymers or copolymers as surfactants for stabilizing latices
JP3313652B2 (en) Production method of water-soluble polymer

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22743718

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2022743718

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022743718

Country of ref document: EP

Effective date: 20240229