WO2023005537A1 - 一种信息发送方法、接收方法及通信装置 - Google Patents

一种信息发送方法、接收方法及通信装置 Download PDF

Info

Publication number
WO2023005537A1
WO2023005537A1 PCT/CN2022/101214 CN2022101214W WO2023005537A1 WO 2023005537 A1 WO2023005537 A1 WO 2023005537A1 CN 2022101214 W CN2022101214 W CN 2022101214W WO 2023005537 A1 WO2023005537 A1 WO 2023005537A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
information
frequency
terminal device
resources
Prior art date
Application number
PCT/CN2022/101214
Other languages
English (en)
French (fr)
Inventor
焦春旭
向铮铮
卢磊
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023005537A1 publication Critical patent/WO2023005537A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W4/00Services specially adapted for wireless communication networks; Facilities therefor
    • H04W4/70Services for machine-to-machine communication [M2M] or machine type communication [MTC]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference

Definitions

  • the present application relates to the technical field of information transmission, and in particular to an information sending method, receiving method and communication device in sidelink (SL) transmission.
  • SL sidelink
  • hybrid automatic repeat request hybrid automatic repeat request
  • the transmitting end determines whether to retransmit information to the receiving end according to the HARQ feedback information from the receiving end. If the HARQ feedback information received by the sending end is an acknowledgment (acknowledgment, ACK) message, it means that the information transmission is successful. If the HARQ feedback information received by the sending end is a negative acknowledgment (negative acknowledgment, NACK) message, the sending end retransmits the information to the receiving end, thereby improving transmission reliability.
  • HARQ hybrid automatic repeat request
  • interference may occur between sidelinks.
  • severe interference even if the retransmission of information at the sending end can be triggered through HARQ, the retransmission may still fail, that is, the reliability of data transmission is low.
  • the present application provides an information sending method, a receiving method and a communication device, which are used to improve the reliability of information transmission in the sidelink.
  • an information sending method can be executed by a first communication device, and the first communication device can be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the description below takes the communication device as the first terminal device as an example.
  • the method includes:
  • the first terminal device determines the first time-frequency resource, and sends X pieces of first information to the second terminal device on the first time-frequency resource.
  • the first time-frequency resource includes X time-frequency resources, and one time-frequency resource among the X time-frequency resources is used to send a piece of first information.
  • the time-domain resources corresponding to the X time-frequency resources are the same, any two adjacent frequency-domain resources among the X frequency-domain resources corresponding to the X time-frequency resources do not overlap, and X is an integer greater than or equal to 2.
  • the first terminal device sends the first information to the second terminal device respectively on the X time-frequency resources included in the first time-frequency resource, that is, the first terminal device sends X shares of the first information on the first time-frequency resource. information. Compared with sending X pieces of first information on the first time-frequency resource by the first terminal device, the reliability of the transmission of the first information can be improved.
  • the first time-frequency resource partially overlaps the second time-frequency resource
  • the second time-frequency resource is a resource used by the third terminal device to send the second information to the fourth terminal device. If the first time-frequency resources overlap with the second time-frequency resources, some of the first time-frequency resources may be interfered, for example, Y time-frequency resources among the X time-frequency resources are interfered. Since the first terminal device sends X pieces of first information on the first time-frequency resources, that is, the first information is still sent on X-Y time-frequency resources with no or less interference, so as to ensure that the first information is successfully transmitted by the second Received by the terminal device.
  • X is related to a proportion of the interfered time-frequency resource in the first time-frequency resource.
  • the time-frequency resources that are interfered in the first time-frequency resources have a larger proportion in the first time-frequency resources, and X is also larger; the time-frequency resources that are interfered in the first time-frequency resources are in the first time-frequency
  • the proportion in the resource is smaller, and X is also smaller. That is, X can be determined according to the degree of interference of the first time-frequency resources, so as to ensure that the probability of the first information being successfully received by the second terminal device in the X time-frequency resources is as high as possible.
  • a larger X can be selected to divide the first time-frequency resource into more shares, and each share uses a smaller resource granularity to maximize the number of undisturbed resources. The probability that a message is sent successfully.
  • X is related to the number of terminal devices occupying the first time-frequency resource.
  • X may be determined according to the number of terminal devices occupying the first time-frequency resource. For example, the number of terminal devices occupying the first time-frequency resources is relatively large, and the degree of interference to the first time-frequency resources may be relatively large. A larger value can be selected as X to ensure that the first information is distributed within the X time-frequency resources as much as possible. The probability of being successfully received by the second terminal device is relatively high.
  • the frequency domain resources corresponding to the X time-frequency resources belong to the same sidelink bandwidth part (bandwidth part, BWP). Since the X frequency domain resources corresponding to the X time-frequency resources belong to the same sidelink BWP, when the first terminal device sends the first information, it does not need to activate multiple sidelink BWPs, nor does it need to Each frequency domain resource used for sending the first information is respectively determined on the sidelink BWP, so that the complexity of the first terminal device can be reduced.
  • BWP bandwidth part
  • the X frequency domain resources are X*K continuous subchannels, K is an integer greater than or equal to 1, and each frequency domain resource includes K continuous subchannels. Since any frequency domain resource among the X frequency domain resources corresponding to the X time frequency resources includes K subchannels, that is, there is no situation that different frequency domain resources include different numbers of subchannels. In this way, the mapping information on each of the X frequency domain resources is the same, and the second terminal device can decode the information on each frequency domain resource according to the same mapping information method, which can reduce the cost of the second terminal device. the complexity.
  • the number of the k-th sub-channel among the K consecutive sub-channels included in the y-th frequency-domain resource among the X frequency-domain resources is (y-1)*K+k-1. Numbers of subchannels included in each of the X frequency domain resources may be agreed upon. In this way, the first terminal device and the second terminal device have the same understanding of the positions of the subchannels included in each frequency domain resource, so as to ensure that the second terminal device successfully decodes with a higher probability as much as possible.
  • the X pieces of first information sent on the X time-frequency resources correspond to different redundancy versions (redundant versions, RVs).
  • X pieces of first information correspond to different RVs, so as to increase the probability that the first information is successfully received.
  • the RV corresponding to the first information sent on the time-frequency resource that is not interfered with among the X time-frequency resources is RV0 or RV3, and the RV corresponding to the first information sent on the time-frequency resource that is interfered with among the X time-frequency resources
  • the RV corresponding to the first information is RV1 or RV2.
  • the first information corresponding to RV0 is sent on the uninterferenced time-frequency resource, that is, the first information containing more systematic bits is sent;
  • the first information corresponding to RV2 is sent on the time-frequency resource that is interfered, that is, the first information containing more The first information of multiple parity bits. In this way, the probability that the information content concerned by the second terminal device is successfully received by the second terminal device can be improved.
  • the method further includes: the first terminal device sends indication information to the second terminal device, where the indication information is used to indicate the value of X.
  • the first terminal device notifies the second terminal device to send X copies of the first information through the instruction information, which can ensure that the second terminal device receives the first information reasonably according to the instruction information, and successfully obtains the content of the first information.
  • the indication information is also used to indicate the modulation order and coding rate corresponding to the X. It is relatively flexible to inform the second terminal device through the indication information of the modulation order and/or coding rate used when the first terminal device sends X pieces of first information.
  • the modulation order corresponding to sending a piece of first information on the first time-frequency resource is Q m
  • the corresponding coding rate is R
  • the modulation order corresponding to sending X pieces of first information on the first time-frequency resource is k1 ⁇ Q m
  • the corresponding coding rate is k2 ⁇ R.
  • the product of k1 and k2 is equal to X, and X, k1, and k2 satisfy the following relationship:
  • the product of k1 and k2 is equal to X.
  • the spectral efficiency (spectral efficiency, SE) loss when transmitting X pieces of first information on the first time-frequency resource can be reduced.
  • the indication information is carried in a first-level SCI in sidelink control information (SCI).
  • SCI sidelink control information
  • k1 and/or k2 corresponding to each piece of first information can be stipulated, and it is sufficient to instruct the first terminal device to send X pieces of first information through the first-level SCI. Since the values of k1 and/or k2 do not need to be notified through the SCI, the overhead of the SCI can be reduced.
  • the indication information is carried in the first-level SCI and the second-level SCI in the SCI, the first-level SCI is used to indicate X, and the second-level SCI is used to indicate k1 and/or k2.
  • the first terminal device By instructing the first terminal device to send X pieces of first information through the first-level SCI, the number of bits in the first-level SCI can be reduced, and the complexity of detecting the first-level SCI by the second terminal device can be controlled.
  • indicating k1 and/or k2 through the second-level SCI it can be ensured that the second terminal device receives the first information reasonably according to the indication information, and successfully acquires the content of the first information.
  • an information receiving method which can be executed by a second communication device, and the second communication device can be a communication device or a communication device capable of supporting the communication device to implement the functions required by the method, such as a chip system.
  • the description below takes the communication device as the second terminal device as an example.
  • the method includes:
  • the second terminal device determines the first time-frequency resource, receives X pieces of first information from the first terminal device on the first time-frequency resource, and determines the content of the first information.
  • the first time-frequency resource is used for the second terminal device to receive the first information from the first terminal device
  • the first time-frequency resource includes X time-frequency resources
  • one time-frequency resource among the X time-frequency resources is used to send a copy of the first message.
  • the time-domain resources corresponding to the X time-frequency resources are the same, any two adjacent frequency-domain resources among the X frequency-domain resources corresponding to the X time-frequency resources do not overlap, and X is an integer greater than or equal to 2.
  • the first time-frequency resource partially overlaps the second time-frequency resource
  • the second time-frequency resource is a resource used by the third terminal device to send the second information to the fourth terminal device.
  • X is related to the proportion of the interfered time-frequency resource in the first time-frequency resource; and/or, X is related to the ratio of the terminal device occupying the first time-frequency resource Quantity related.
  • the frequency domain resources corresponding to the X time-frequency resources belong to the same sidelink BWP.
  • the X frequency domain resources are X*K continuous subchannels, K is an integer greater than or equal to 1, and each frequency domain resource includes K continuous subchannels.
  • X pieces of first information sent on X time-frequency resources correspond to different RVs.
  • the RV corresponding to the first information sent on the time-frequency resource that is not interfered with among the X time-frequency resources is RV0 or RV3
  • the RV corresponding to the first information sent on the time-frequency resource that is interfered with among the X time-frequency resources is RV1 or RV2.
  • the second terminal device receives indication information from the first terminal device, where the indication information is used to indicate the value of X.
  • the indication information is also used to indicate a modulation order and a coding rate corresponding to X.
  • the modulation order corresponding to sending a piece of first information on the first time-frequency resource is Q m
  • the corresponding coding rate is R
  • the modulation order corresponding to sending X pieces of first information on the first time-frequency resource is k1 ⁇ Q m
  • the corresponding coding rate is k2 ⁇ R.
  • the product of k1 and k2 is equal to X, and X, k1, and k2 satisfy the following relationship:
  • the indication information is carried in the first-level SCI in the SCI.
  • the indication information is carried in the first-level SCI and the second-level SCI in the SCI, the first-level SCI is used to indicate X, and the second-level SCI is used for k1 and/or k2.
  • the embodiment of the present application provides a communication device, the communication device has the function of implementing the behavior in the method example of the first aspect above, and the beneficial effects can be referred to the description of the first aspect, which will not be repeated here.
  • the communication device may be the first terminal device in the first aspect, or the communication device may be a device capable of supporting the first terminal device in the first aspect to implement the functions required by the method provided in the first aspect, such as a chip or chip system.
  • the communication device includes corresponding means or modules for performing the method of the first aspect.
  • the communication device includes a processing unit (sometimes also called a processing module) and/or a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module.
  • the embodiment of the present application provides a communication device, the communication device has the function of implementing the behavior in the method example of the second aspect above, and the beneficial effects can be referred to the description of the second aspect, which will not be repeated here.
  • the communication device may be the second terminal device in the second aspect, or the communication device may be a device capable of supporting the second terminal device in the second aspect to implement the functions required by the method provided in the second aspect, such as a chip or chip system.
  • the communication device includes corresponding means or modules for performing the method of the second aspect.
  • the communication device includes a processing unit (sometimes also called a processing module) and/or a transceiver unit (sometimes also called a transceiver module).
  • a processing unit sometimes also called a processing module
  • a transceiver unit sometimes also called a transceiver module
  • the embodiment of the present application provides a communication device, which may be the communication device in the third aspect or the fourth aspect in the above embodiments, or the communication device set in the third aspect or the fourth aspect chip or system-on-a-chip.
  • the communication device includes a communication interface, a processor, and optionally, a memory.
  • the memory is used to store computer programs or instructions or data
  • the processor is coupled with the memory and the communication interface.
  • the communication device is made to execute the first method in the above method embodiment. A method performed by a terminal device or a second terminal device.
  • the embodiment of the present application provides a communication device, where the communication device includes an input and output interface and a logic circuit.
  • the input and output interfaces are used to input and/or output information.
  • the logic circuit is used to perform the method described in the first aspect, or the logic circuit is used to perform the method described in the second aspect.
  • an embodiment of the present application provides a chip system, the chip system includes a processor, and may further include a memory and/or a communication interface, for implementing the method described in the first aspect or the second aspect.
  • the chip system further includes a memory, configured to store program instructions and/or data.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the embodiment of the present application provides a communication system, the communication system includes the communication device described in the third aspect and the communication device described in the fourth aspect; or the communication system includes the communication device described in the third aspect The communication device and the communication device of the fifth aspect for performing the method of the second aspect; or the communication system includes the communication device of the fourth aspect and the communication device of the fifth aspect for performing the method of the first aspect.
  • the present application provides a computer-readable storage medium, where a computer program is stored in the computer-readable storage medium, and when the computer program is executed, the method in the above-mentioned first aspect or the second aspect is realized.
  • a computer program product comprising: computer program code, when the computer program code is executed, the method in the first aspect or the second aspect above is executed.
  • FIG. 1 is a schematic diagram of a network architecture applicable to an embodiment of the present application
  • FIG. 2 is a schematic diagram of the corresponding relationship between each transmission at the sending end and the RV identifier
  • FIG. 3 is a schematic diagram of interference in the multipoint-to-multipoint transmission information of the sidelink
  • FIG. 4 is a schematic flowchart of an information sending method and a receiving method provided by an embodiment of the present application
  • FIG. 5 is a schematic diagram of information transmission in a multipoint-to-multipoint transmission scenario
  • Fig. 7 is a schematic diagram of sending a piece of information on the first time-frequency resource
  • FIG. 8 is a schematic diagram of sending two pieces of first information on a first time-frequency resource according to an embodiment of the present application.
  • FIG. 9 is a schematic diagram of RVs corresponding to the X time-frequency resources included in the first time-frequency resource provided by the embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 11 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 12 is another schematic structural diagram of a communication device provided by an embodiment of the present application.
  • the technical solution provided by the embodiment of the present application can be applied to the fifth generation (the fifth generation, 5G) mobile communication system, such as a new radio (new radio, NR) system, or to a long term evolution (long term evolution, LTE) system , or may also be applied to a next-generation mobile communication system or other similar communication systems, which are not specifically limited.
  • 5G fifth generation
  • NR new radio
  • LTE long term evolution
  • the technical solution provided by the embodiment of the present application may be applied to a link between a network device and a terminal device, and may also be applied to a link between devices, such as a device to device (device to device, D2D) link.
  • the D2D link may also be called a side link, where the side link may also be called a side link or a secondary link.
  • a D2D link, or a side link or a secondary link all refer to links established between devices of the same type, and have the same meaning.
  • the so-called devices of the same type may be links between terminal devices, or links between network devices, or links between relay nodes, etc. This embodiment of the present application does not limit it.
  • V2X vehicle to everything
  • V2X specifically includes vehicle-to-vehicle (V2V), vehicle-to-roadside infrastructure (vehicle-to-infrastructure, V2I), and vehicle-to-pedestrian (V2P) direct communication. Communication, and vehicle-to-network (V2N) or vehicle-to-any entity V2X links, including Rel-14/15.
  • 3GPP 3rd generation partnership project
  • V2X also includes Rel-16 and subsequent versions of V2X links based on NR systems currently being studied by 3GPP.
  • V2V refers to communication between vehicles;
  • V2P refers to communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers);
  • V2I refers to communication between vehicles and infrastructure, such as roadside units (road side unit, RSU) or network equipment, and there is another V2N that can be included in V2I.
  • V2N refers to the communication between vehicles and network equipment.
  • RSU includes two types: terminal type RSU, because it is deployed on the roadside, the terminal type RSU is in a non-mobile state, and there is no need to consider mobility; base station type RSU can provide timing synchronization for vehicles communicating with it and resource scheduling.
  • FIG. 1 is a network architecture applied in the embodiment of this application.
  • Figure 1 includes 4 terminal devices and 1 network device.
  • the network device is an access device for a terminal device to access the mobile communication system in a wireless manner, for example, it includes an access network (access network, AN) device, such as a base station.
  • AN access network
  • a network device may also refer to a device that communicates with a terminal device over an air interface.
  • the network equipment may include an evolved base station (evolved Node B) (also referred to as eNB or e-NodeB) in the LTE system or long term evolution-advanced (LTE-A); the network equipment may also include a 5G NR system
  • PLMN Public Land Mobile Network
  • M2M machine to machine
  • IoT Internet of things
  • the base station in this embodiment of the present application may include a centralized unit (centralized unit, CU) and a distributed unit (distributed unit, DU), and multiple DUs may be centrally controlled by one CU.
  • CU and DU can be divided according to the protocol layer functions of the wireless network they have. For example, the functions of the packet data convergence protocol (packet data convergence protocol, PDCP) layer and the protocol layer above are set in the protocol layer below the CU and PDCP, such as the wireless link Functions such as the radio link control (radio link control, RLC) layer and the medium access control (medium access control, MAC) layer are set in the DU.
  • packet data convergence protocol packet data convergence protocol
  • RLC radio link control
  • MAC medium access control
  • the radio frequency device can be remote, not placed in the DU, or integrated in the DU, or partially remote and partially integrated in the DU, which is not limited in this embodiment of the present application.
  • the control plane (control plan, CP) and the user plane (user plan, UP) of the CU can also be separated and divided into different entities for implementation, respectively being the control plane CU entity (CU-CP entity) And user plane CU entity (CU-UP entity).
  • the signaling generated by the CU can be sent to the terminal device through the DU, or the signaling generated by the UE can be sent to the CU through the DU.
  • the DU can directly transmit the signaling to the UE or CU through protocol layer encapsulation without parsing the signaling.
  • the CU is divided into network devices on the radio access network (radio access network, RAN) side.
  • the CU can also be divided into network devices on the core network (core network, CN) side. This is not limited.
  • a terminal device is a device with wireless transceiver function, which can send signals to network devices or receive signals from network devices.
  • the terminal equipment may include user equipment (user equipment, UE), sometimes also referred to as a terminal, an access station, a UE station, a remote station, a wireless communication device, or a user device, etc.
  • UE user equipment
  • the terminal device is used to connect people, objects, machines, etc., and can be widely used in various scenarios, including but not limited to the following scenarios: cellular communication, D2D, V2X, machine-to-machine/machine-type communication (machine-to-machine /machine-type communications, M2M/MTC), Internet of things (Internet of things, IoT), virtual reality (virtual reality, VR), augmented reality (augmented reality, AR), industrial control (industrial control), unmanned driving ( Self driving), remote medical, smart grid, smart furniture, smart office, smart wear, smart transportation, smart city, drones, robots and other scenarios of terminal equipment.
  • cellular communication D2D, V2X
  • machine-to-machine/machine-type communication machine-to-machine /machine-type communications
  • M2M/MTC machine-to-machine/machine-type communications
  • Internet of things Internet of things, IoT
  • virtual reality virtual reality
  • AR augmented reality
  • industrial control industrial control
  • Self driving Self driving
  • the terminal device may be a mobile phone, a tablet computer (Pad), a computer with a wireless transceiver function, a VR terminal, an AR terminal, a wireless terminal in industrial control, a wireless terminal in unmanned driving, or an IoT network Smart speakers in China, wireless terminal devices in telemedicine, wireless terminal devices in smart grids, wireless terminal devices in transportation security, wireless terminal devices in smart cities, or wireless terminal devices in smart homes, etc.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc., which is a general term for the application of wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes wait.
  • the terminal device of the present application can also be a vehicle-mounted module, a vehicle-mounted module, a vehicle-mounted component, a vehicle-mounted chip, or a vehicle-mounted unit built into the vehicle as one or more components or units.
  • the on-board components, on-board chips, or on-board units can implement the method of the present application.
  • PC5 interface communication is supported between terminal devices, that is, transmission through a sidelink is supported.
  • Terminal devices may also include relays. Or it can be understood that all devices capable of performing data communication with the base station can be regarded as terminal devices.
  • the technical solution provided by the embodiment of the present application can be applied to the communication between the network device and the terminal device shown in FIG. 1 , and can also be applied to the communication between the terminal device and the terminal device in FIG. 1 .
  • the terminal devices in FIG. 1 can communicate with or without network infrastructure.
  • this article takes the terminal device in FIG. 1 as an example of a vehicle-mounted terminal device, that is, takes the embodiment of the present application applied to a V2X scenario as an example.
  • the embodiment of the present application does not limit the specific form of the terminal device, for example, the terminal device may also be a mobile phone or the like.
  • the four terminal devices in FIG. 1 are terminal device 1, terminal device 2, terminal device 3, and terminal device 4, respectively.
  • Any one of the four terminal devices can send some of its own information, such as position, speed or intention (turning, merging, or reversing), to the other three around in a periodic or non-periodic triggered manner.
  • a terminal device likewise, receives information from other terminal devices.
  • the number of terminal devices in FIG. 1 is just an example, and in practical applications, a network device may provide services for multiple terminal devices.
  • the sidelink Before sending information, each terminal device needs to determine resources for sending the information.
  • the sidelink can communicate through licensed spectrum, unlicensed spectrum, or both licensed spectrum and unlicensed spectrum.
  • Sidelink-related protocol technologies of unlicensed spectrum may be collectively referred to as unlicensed spectrum sidelink (SL-unlicensed, SL-U).
  • SL-unlicensed SL-U
  • Mode-1 is mainly applied to V2X communication in the case of network coverage.
  • the base station centrally allocates resources according to the BSR report status of the terminal equipment.
  • mode-2 the transmission resource of the terminal device does not depend on the network device, and this mode is not limited by network coverage. Regardless of whether there is network coverage, the terminal device can use this mode to communicate.
  • Resource allocation in mode-1 can be allocated in a dynamic mode or a pre-configured mode.
  • the network device will allocate resources to terminal device 1 through downlink control information (DCI), and terminal device 1 will send data to terminal device 2 on the resources after receiving the DCI.
  • the terminal device 2 After decoding the data from the terminal device 1, the terminal device 2 sends feedback information corresponding to the data to the terminal device 1, for example, the feedback information is an ACK message or a NACK message.
  • the network device will configure related time-frequency resources for sidelink transmission through high-layer signaling.
  • Terminal device 1 can directly send data on the resources configured by high-level signaling; or, the network device will send DCI to activate the configured resources, and after receiving the DCI, terminal device 1 can transmit data on the resources configured by high-level signaling Send data on.
  • the terminal device 2 After receiving the data from the terminal device 1, the terminal device 2 decodes the data, and then sends feedback information of the data to the terminal device 1, for example, the feedback information is an ACK message or a NACK message.
  • the transmission resource of the terminal device 1 does not depend on the network device.
  • the network device can allocate a resource pool in advance, and the terminal device 1 independently selects available resources in the resource pool.
  • terminal device 1 senses (senses) sidelink control information (sidelink control information, SCI) sent by other terminal devices in the resource pool within the resource listening window.
  • the interception may include the process of detecting the SCI, or may include the process of detecting the SCI, decoding the SCI, and measuring the reference signal receiving power (reference signal receiving power, RSRP) of the resource according to the indication of the SCI.
  • the terminal device 1 selects a resource by itself in the resource selection window to send data according to the result of the resource interception. Assuming that terminal device 1 triggers resource selection at time slot n, the resource listening window can be defined as T time slots before resource selection is triggered.
  • terminal device 1 If the SCI intercepted by terminal device 1 includes resources reserved by other terminal devices, and the reserved resource is located in the resource selection window [n+Q1, n+Q2], then terminal device 1 is within the resource listening window for the reserved resource The corresponding resource is measured, and the RSRP of the resource can be obtained through the measurement. If the measured RSRP is greater than the preset RSRP threshold, it can be considered that the resource has been occupied, and the terminal device 1 excludes the candidate resource from the resource selection window. If the measured RSRP is smaller than the preset RSRP threshold, it can be considered that the resource is not currently occupied, and the terminal device 1 can select the resource from the resource selection window as a candidate resource for sending data.
  • SCI decoding means that a certain terminal device receives the SCI sent by other terminal devices in the resource pool, and decodes the received SCI. Since the resources occupied by the data sent by the terminal device in the resource pool can be indicated by the SCI, any terminal device can know the resources occupied by other terminal devices in the resource pool by decoding the SCI of other terminal devices. If the decoding of the SCI is successful, it means that the resources corresponding to the SCI are occupied; if the decoding of the SCI is unsuccessful, it is considered that other terminal devices do not occupy the resources in the resource pool. By decoding the SCIs of other terminal devices, the terminal device 1 can exclude occupied resources in the resource pool, and determine resources for sending data from unoccupied resources.
  • each terminal device Similar to the terminal device 1, after each terminal device determines a resource for sending data, it sends data to other terminal devices on the resource. For example, the four terminal devices in FIG. 1 can send information such as their positions and speeds to each other. Each terminal device determines the road conditions according to its own position, speed and other information, as well as the position and speed of other terminal devices, so as to obtain a series of traffic information such as real-time road conditions, road information, pedestrian information, etc., which can improve the safety of automatic driving. Reduce congestion etc. If the reliability of information transmission on the determined resources is low, then there may be differences between the position, speed and other information obtained by the four terminal devices, which will lead to differences in the traffic information determined by each terminal device, which cannot be better.
  • Hybrid automatic repeat request (hybrid automatic repeat request, HARQ) transmission is a common way to improve transmission reliability.
  • HARQ transmission that is, after the sending end transmits information to the receiving end for the first time, the receiving end may send HARQ feedback information to the sending end.
  • the sending end determines whether to retransmit the information to the receiving end according to the received HARQ feedback information, and improves the transmission reliability of the information based on the forward error correction (forward error correction, FEC) code.
  • HARQ feedback information includes ACK message or NACK message. After the sending end receives the NACK message from the receiving end, the sending end retransmits the information to the receiving end.
  • the receiving end receives information from the sending end, and when the receiving end fails to decode the information, that is, fails to receive the information, the receiving end sends a NACK message to the sending end.
  • the sending end confirms the NACK message from the receiving end, and sends the information to the receiving end again.
  • the receiving end combines the information that was not successfully received in the initial transmission with the information that was received again in the retransmission, and decodes it together. Compared with only using the information received again in the retransmission for decoding, it can improve The probability of successfully receiving the message.
  • sending the information from the sending end to the receiving end means that the sending end sends information bits included in the information to the receiving end.
  • the NR system uses a low density parity check (LDPC) code to encode the aforementioned information bits to obtain multiple coded bits. Since the resources allocated by the sender for each transmission are limited, the number of coded bits that can be sent by the sender for each send is also limited. Assuming that the resources allocated by the sender can be used to transmit E coded bits, then the sender needs to select E coded bits from all coded bits for transmission in each transmission. This process is called rate matching. . A set of E coded bits generated after rate matching is called a transport block (TB) at the physical layer. It should be understood that the different E coded bits selected by the sender in multiple transmissions are all generated based on the same information bits, so it can be considered that the information bits represented by the multiple TBs sent by the sender in multiple transmissions Are the same.
  • TB transport block
  • the communication protocol of the NR system stipulates how the sender selects E coded bits in each transmission, and defines its redundancy version for the set of E coded bits selected each time, that is, TB. RV). It should be understood that the communication protocol of the NR system defines four types of RVs, and their RV identifiers rv id are respectively ⁇ 0, 1, 2, 3 ⁇ . For a specific rv id , both the sending end and the receiving end can specify the positions of the corresponding E coded bits among all the coded bits. In order to further improve the reliability of transmission, it is generally stipulated that in multiple transmissions of the same information bit by the sending end, the sets of E coded bits sent each time have different RVs.
  • the sender sends a set of E coded bits corresponding to different RVs in multiple transmissions, which can be described as sending TBs with different RVs applied to them in multiple transmissions .
  • one of the multiple transmissions by the sender may also be represented as a transmission occasion of 1 TB (transmission occasion of the TB).
  • the transmission opportunity of the TB is applied to a certain RV, which is equivalent to that the TB transmitted at the transmission opportunity of the TB is applied to a certain RV.
  • the transmission timing of TBs with different RVs applied is simply described as TBs with different RVs applied.
  • the TB to which RV0 is applied and the TB to which RV3 is applied include most of the information bits and a small portion of parity bits.
  • a TB to which RV0 is applied and a TB to which RV3 is applied are generally called self-decodable (self-decodable).
  • the TB applied with RV1 and the TB applied with RV2 mainly include most of the parity bits, and the receiving end needs to combine with the TB applied with RV0 and/or the TB applied with RV3 to obtain all the information bit.
  • the above combined decoding process is also called soft combining. For example, the sender sends a TB to which RV0 is applied in the initial transmission.
  • the receiving end receives the TB to which RV0 is applied, and when the receiving end fails to successfully decode and obtain all information bits, the receiving end stores the TB to which RV0 is applied, and sends a NACK message to the sending end.
  • the transmitting end receives the NACK message from the receiving end, and retransmits the TB to which RV2 is applied to the receiving end.
  • the receiving end receives the TB to which RV2 is applied, and decodes the TB to which RV2 is applied in combination with the previously stored TB to which RV0 is applied, so as to increase the probability of successfully obtaining all information bits.
  • FIG. 2 is a diagram of the corresponding relationship between each transmission at the sending end and the RV identifier.
  • Fig. 2 shows a circular buffer (circular buffer) used in the rate matching process, in which all information bits and parity bits are included. The starting point of the information bit is used as the starting point of the ring buffer.
  • the communication protocol of the NR system also defines the starting point (starting position) of the encoded bits to which different RVs are applied.
  • the starting point of RV0 is The starting point of the ring buffer
  • the starting point of RV1 is about the position of the ring buffer slightly more than 25% (that is, a quarter, quarter)
  • the starting point of RV2 is about 50% (that is, one-half, half )
  • the starting point of RV3 is about 85% of the ring buffer position.
  • the communication protocol of the NR system does not define the end points of coded bits with different RVs applied, but since the sender can determine the size of the TB that can be transmitted during the rate matching process (TB size, TBS), the sender can use a certain The start point of the coded bits of an RV and the size of the aforementioned TB determine the end point of the coded bits to which a certain RV is applied. As shown in FIG. 2 , in the initial transmission at the sending end, the sending end sends a TB to which RV0 is applied, and the TB to which RV0 is applied includes a large number of information bits.
  • the sending end sends the TB to which RV2 is applied in the first retransmission (ie, the second transmission).
  • the TB to which RV2 is applied includes a large number of parity bit.
  • the receiving end may combine and decode based on the received TB to which RV0 is applied and the TB to which RV2 is applied. If the receiver cannot obtain all the information bits based on the decoding of the TB with RV0 applied and the TB with RV2 applied, then the sender sends the TB with RV3 applied in the second retransmission (i.e., the third transmission), applying the The TB of RV3 includes a large number of information bits.
  • the receiving end may combine and decode based on the received TBs to which RV0 is applied, TBs to which RV2 is applied, and TBs to which RV3 is applied. If the receiving end cannot obtain all the information bits based on the RV0-applied TB, RV2-applied TB, and RV3-applied TB decoding, then the sender sends the applied A TB of RV1, a TB to which RV1 is applied includes a large number of parity bits. The receiving end merges and decodes based on the received TBs to which RV0 is applied, TBs to which RV2 is applied, TBs to which RV3 is applied, and TBs to which RV1 is applied. If the receiving end still cannot obtain all information bits, the sending end can perform more retransmissions according to the above rules to ensure that all information bits are successfully received by the receiving end.
  • the sender In the sidelink, if the sender needs to transmit 1 TB, the sender transmits the TB to which a certain RV is applied through 1 time-frequency resource, and the 1 time-frequency resource is divided into slots in the time domain
  • a resource block (resource block, RB) is used as a unit.
  • one time-frequency resource may be 40 RBs in one time slot.
  • HARQ transmission technology can be used.
  • the transmitting end has a MAC entity dedicated to processing the sidelink HARQ process at the media access control layer (media access control, MAC).
  • the MAC entity can control HARQ-related control signaling fields in the physical layer SCI, for example, including sidelink HARQ process number (HARQ process number) and new data indicator (new data indicator, NDI) information, etc.
  • HARQ process number sidelink HARQ process number
  • NDI new data indicator
  • the receiving end will feed back an ACK message or a NACK message to inform the sending end whether the TB corresponding to a sidelink HARQ process number is received correctly. If the sending end receives a NACK message from the receiving end, the sending end sends a TB representing the same information bits to the receiving end, so as to improve the reliability of information transmission.
  • FIG. 3 is a schematic diagram of interference in the multipoint-to-multipoint transmission information of the sidelink.
  • FIG. 3 takes two pairs of transceiver devices as an example, wherein one pair of transceiver devices includes a terminal device 1 and a terminal device 2 , and the other pair of transceiver devices includes a terminal device 3 and a terminal device 4 .
  • the time-frequency resource used by terminal device 1 to send the first information to terminal device 2 is time-frequency resource 1
  • the time-frequency resource used by terminal device 3 to send the second information to terminal device 4 is time-frequency resource 2 .
  • the terminal device 1 and the terminal device 3 can determine the time-frequency resource to be used.
  • terminal device 1 may try to find time-frequency resources that are not used by other terminal devices through sensing (sensing), so as to reduce the probability of transmission failure.
  • sensing sensing
  • terminal device 1 may also choose to send information on the time-frequency resources used by other terminal devices. That is, the time-frequency resource to be used by the terminal device 1 overlaps (partially or fully overlaps) the time-frequency resource used by other terminal devices. As shown in FIG. 3 , it is assumed that the time-frequency resource 1 to be used by the terminal device 1 and the time-frequency resource 2 to be used by the terminal device 3 overlap.
  • time-frequency resource 3 the time-frequency resource in which time-frequency resource 1 and time-frequency resource 2 overlap. If time-frequency resource 1 and time-frequency resource 3 cannot be implemented in an orthogonal manner, then terminal device 1 sends the first information on time-frequency resource 1, terminal device 3 sends the second information on time-frequency resource 2, and time-frequency resource 3 sends the second information. Disturbances may occur. It should be understood that the time-frequency resource 1 and the time-frequency resource 2 cannot be implemented in an orthogonal manner, which means that the time-frequency resource 1 and the time-frequency resource 2 overlap in dimensions such as time domain, frequency domain, and air domain.
  • the time-frequency resource 1 and the time-frequency resource 2 can be implemented in an orthogonal manner, it means that the time-frequency resource 1 and the time-frequency resource 2 do not overlap in at least one dimension among time domain, frequency domain and space domain.
  • the terminal device 2 may fail to receive the first information from the terminal device 1 with a high probability, and similarly, the terminal device 4 may fail to receive the second information from the terminal device 3 with a high probability. In this case, the terminal device 2 will trigger the terminal device 1 to resend the first information, and the terminal device 4 will trigger the terminal device 3 to resend the second information.
  • the HARQ transmission method cannot guarantee the reliability of the transmission, and may increase the system load.
  • the terminal device 4 will constantly trigger the terminal device 3 to resend the second information, the interference between the communication links will be more serious, and the utilization rate of resources will also be reduced.
  • the communication link may be selectively fading. Fading of the channel may manifest itself as a dynamic change in the strength of the signal received at the terminal device.
  • the main reasons for this dynamic change are: the dynamic movement of the terminal device itself; the dynamic changes of various related reflectors (reflectors) and scatterers (scatterers) of the wireless signal in the wireless transmission environment that affect signal transmission.
  • channel fading can also be divided into time-selective fading in the time domain and frequency-selective fading in the frequency domain.
  • the embodiments of the present application are mainly aimed at the frequency selective fading of the channel, that is, the strength of the signal received by the terminal device on a part of the frequency domain resources of the channel is low, while the intensity of the signal received by the terminal device on another part of the frequency domain resources of the channel is low.
  • the strength of the signal is normal or high. That is, the fading condition of a part of frequency domain resources on the channel is not serious. In this case, the gain is normal for that part of the channel.
  • another part of the frequency domain resources on the channel has a relatively low channel gain due to severe fading. In this case, it can be considered that this part of the channel is in a deep fading state.
  • the receiving end can successfully receive signals on some frequency domain resources with normal channel gain, but the receiving end cannot receive channels on some or all frequency domain resources with low channel gain, which makes the receiving end unable to receive complete information. Even if the receiving end triggers the sending end to resend information through HARQ, due to the selective fading of the channel, the receiving end still cannot receive channels on some or all frequency domain resources with low channel gain. This will cause the receiving end to continuously trigger the sending end to resend information, reducing resource utilization.
  • an embodiment of the present application provides a method for sending information.
  • the sending end can send X shares of the information on the time-frequency resource used to send the information. For example, X time-frequency resources are determined on the time-frequency resource, the time-domain resources corresponding to the X time-frequency resources are the same, and any two adjacent frequency domain resources among the X frequency-domain resources corresponding to the X time-frequency resources Domain resources do not overlap.
  • the sending end sends a copy of the information on the X time-frequency resources, that is, sends the same X pieces of information on the time-frequency resources used to send the information.
  • any two adjacent frequency domain resources do not overlap, which may mean that the two adjacent frequency domain resources are continuous two frequency domain resources, or may refer to two discontinuous frequency domain resources.
  • FIG. 4 shows the information sending method provided by the embodiment of the present application.
  • This method is applicable to multipoint-to-multipoint transmission scenarios, and is also applicable to single-point-to-single-point transmission scenarios.
  • this method is applied to the network architecture shown in FIG. 1 , and the sidelink is a link between terminal devices as an example.
  • the method may be performed by two communication devices, such as a first communication device and a second communication device.
  • the first communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course may also be other communication devices, such as a chip system.
  • the second communication device may be a terminal device or a communication device capable of supporting the terminal device to implement the functions required by the method, and of course it may also be other communication devices, such as a chip system. And there is no limitation on the implementation manners of the first communication device and the second communication device.
  • the first communication device may be a terminal device, and the second communication device may be a terminal device; or the first communication device may be a terminal device, and the second communication device may be a communication device capable of supporting the terminal device to implement the functions required by the method, etc. .
  • the method is executed by the first terminal device and the second terminal device as an example, that is, the first communication device is the first terminal device and the second communication device is the second terminal device as an example.
  • both the first terminal device and the second terminal device described below may be terminal devices in the network architecture shown in FIG. 1 .
  • the embodiment of the present application is only performed by the first terminal device and the second terminal device as an example, and is not limited to these two terminal devices.
  • the information exchanged between the first terminal device and the second terminal device may be data, control information, or data and control information.
  • the following uses an example in which the first terminal device sends the first information to the second terminal device.
  • the first terminal device determines a first time-frequency resource, where the first time-frequency resource is used for the first terminal device to send first information to the second terminal device.
  • the first time-frequency resource is a resource used by the first terminal device to send the first information to the second terminal device.
  • the first terminal device may determine the first time-frequency resource. For example, a network device may allocate a resource pool in advance, and each terminal device independently selects available resources in the resource pool for information transmission. When any terminal device selects available resources, it senses the resources in the resource pool and obtains the sensing results. Sensing can be regarded as the situation that different time-frequency resources in the listening resource pool are occupied.
  • the first terminal device may determine the first time-frequency resource by sensing the time-frequency resource in the resource pool. Sensing may include energy detection. Energy detection refers to performing energy detection on the resources in the resource pool, for example, performing reference signal received power (RSRP) detection on the resources in the resource pool. If the energy detection result of a resource exceeds a certain threshold, the resource can be considered to be occupied; on the contrary, if the energy detection result of a resource is lower than a certain threshold, it can be considered that the resource is not currently occupied, and the resource can be as a candidate resource for sending information. The first terminal device selects a resource that is not currently occupied in the resource pool to transmit information according to the energy detection result.
  • RSRP reference signal received power
  • the first terminal device determines the first time-frequency resource from the unoccupied resources. If the first terminal device finds that all resources in the resource pool are occupied according to the energy detection result, the first terminal device may select a resource with less interference as the first time-frequency resource.
  • the first terminal device sends X shares of first information to the second terminal device on the first time-frequency resource, and correspondingly, the second terminal device receives the X shares of first information.
  • the first time-frequency resource includes X time-frequency resources, the time-domain resources corresponding to the X time-frequency resources are the same, and any adjacent two frequency-domain resources among the X frequency-domain resources corresponding to the X time-frequency resources do not overlap , one of the X time-frequency resources is used to send a piece of first information, and X is an integer greater than or equal to 2.
  • the first terminal device selects time-frequency resources that are not occupied to send the first information based on perception, if the resources in the resource pool are all occupied, the first terminal device may also select time-frequency resources with less interference to send the first information. information. That is, the first terminal device selects a time-frequency resource with a small degree of interference as the first time-frequency resource. Since there may be interference in the first time-frequency resource, for example, there is a second time-frequency resource, and the second time-frequency resource is a resource used by the third terminal device to send the second information to the fourth terminal device. If the first time-frequency resource partially overlaps with the second time-frequency resource, then there is interference in the first time-frequency resource.
  • the first terminal device may send multiple pieces of first information on the first time-frequency resource.
  • the first terminal device may respectively send the first information to the second terminal device on X time-frequency resources included in the first time-frequency resource. That is, the first terminal device sends X pieces of first information to the second terminal device on the first time-frequency resources, where the X time-frequency resources are in one-to-one correspondence with the X pieces of first information.
  • the probability of the second terminal device successfully receiving the information can be improved, that is, the reliability of information transmission can be improved.
  • the first terminal device sends the first information on the X time-frequency resources respectively, and the information bits included in the first information sent on different time-frequency resources are the same. It can also be understood that the data content carried in the first information sent on different time-frequency resources is the same. It should be understood that sending the first information on the X time-frequency resources respectively is actually sending a TB on the X time-frequency resources respectively, and the TB is generated according to information bits corresponding to the first information. From this point of view, the first information sent on different time-frequency resources is actually TBs with the same RV applied or different RVs applied, generated according to the information bits corresponding to the first information. The RV used to send the first information is also referred to as the RV corresponding to the first information in the text.
  • the first terminal device may send the first information on each of the X1 time-frequency resources included in the first time-frequency resource.
  • the second information is sent on each of the X2 time-frequency resources included in the two time-frequency resources.
  • both X1 and X2 are integers greater than or equal to 2, and X1 and X2 may or may not be the same.
  • the first terminal device does not The first information is also sent on the remaining X1-Y time-frequency resources other than the time-frequency resources, and there is no interference on the X1-Y time-frequency resources, then the first information transmitted on the X1-Y time-frequency resources The probability that the information is successfully obtained by the second terminal device is relatively high. It can be seen that, compared with FIG. 3 , in FIG. 5 , the first terminal device sends X1 copies of the first information to the second terminal device in the first time-frequency resource, which improves the reliability of the transmission of the first information.
  • the third terminal device sends the second information respectively on the X2 time-frequency resources, which can also improve the reliability of the transmission of the second information.
  • the probability that the first information is successfully transmitted to the second terminal device is increased, the probability that the second terminal device triggers the first terminal device to resend the first information is reduced, that is, the first terminal device does not need to repeatedly send the first information .
  • the third terminal device does not need to repeatedly send the second information due to the trigger of the fourth terminal device. Therefore, the increase of the system load caused by multiple repeated transmissions can be avoided as far as possible, the probability that the terminal device is interfered by other terminal devices is reduced, and the utilization rate of resources is improved.
  • the probability can be approximated as 1-(1-0.3)*(1-0.5)*(1-0.3)*(1-0.1), ie about 78%.
  • "*" means multiplication. Therefore, before sending the first information, the first terminal device may determine a specific value of X, so that the probability of successful transmission of X pieces of first information on X time-frequency resources is relatively high.
  • the first time-frequency resource is a resource not occupied by any terminal device, and X may be equal to 2.
  • the first terminal device determines according to perception that the first time-frequency resource is a resource not occupied by any terminal device, actually the first time-frequency resource may still be occupied by other terminal devices. For example, if the fifth terminal device and the first terminal device jointly perform sensing and simultaneously find that the first time-frequency resource is a resource not occupied by any other terminal device, then the fifth terminal device and the first terminal device may just determine that both use the first time-frequency resource. A time-frequency resource sends information. In this case, interference may still exist in the first time-frequency resource.
  • the first terminal device determines that the first time-frequency resource is a resource not occupied by any terminal device, the first terminal device X copies of the first information can still be sent on the resource, and X can be greater than or equal to 2.
  • the degree to which the first time-frequency resource is interfered may be characterized by a proportion of the interfered time-frequency resource in the first time-frequency resource.
  • the larger the ratio the larger the value of X.
  • X is equal to 2.
  • X is equal to 3.
  • the embodiment of the present application does not limit specific values of the first threshold, the second threshold, and the third threshold.
  • the first threshold may be 20%
  • the second threshold may be 40%
  • the third threshold may be 60%.
  • FIG. 6A is a schematic diagram of dividing the first time-frequency resource into X1 time-frequency resources.
  • Figure 6A follows the example in Figure 5, that is, the first terminal device sends the first information to the second terminal device on the first time-frequency resource, and the third terminal device sends the second information to the fourth terminal device on the second time-frequency resource , the first time-frequency resource and the second time-frequency resource partially overlap, and the overlapped resource is called a third time-frequency resource.
  • FIG. 6A is a schematic diagram of dividing the first time-frequency resource into X1 time-frequency resources.
  • FIG. 6B which is another schematic diagram of dividing the first time-frequency resource into X1 time-frequency resources.
  • FIG. 6C which is another schematic diagram of dividing the first time-frequency resource into X1 time-frequency resources.
  • the degree to which the first time-frequency resource is interfered may also be characterized by the number of terminal devices occupying the first time-frequency resource.
  • the first time-frequency resource may be a resource not occupied by any terminal device.
  • the first time-frequency resource may be a resource occupied by one or some terminal devices. If the first time-frequency resource is a resource not occupied by any terminal device, then the value of X is smaller; on the contrary, if the first time-frequency resource is a resource occupied by one or some terminal devices, then the value of X larger. For example, the greater the number of terminal devices occupying the first time-frequency resource, the greater the value of X.
  • X is equal to 2.
  • X is equal to 3.
  • X is equal to 4.
  • X is equal to 4. It should be noted that in the embodiment of the present application, X is equal to the number of terminal devices occupying the first time-frequency resource as an example, but the specific correspondence between X and the number of terminal devices occupying the first time-frequency resource is not limited.
  • the embodiment of the present application does not limit the specific manner of the X time-frequency resources included in the first time-frequency resource, and several possible implementation forms of the X time-frequency resources are introduced below.
  • the network device configures one or more sidelink BWPs for the terminal device.
  • a terminal device may activate one or more sidelink BWPs configured to transmit information on the activated sidelink BWPs.
  • the X frequency domain resources corresponding to the X time frequency resources belong to the same sidelink BWP. That is, the first terminal device may determine the first time-frequency resource according to the configured sidelink BWP.
  • the X frequency domain resources corresponding to the X time-frequency resources belong to the same sidelink BWP, when the first terminal device sends the first information, there is no need to activate multiple BWPs, and naturally there is no need to Each frequency domain resource used for sending the first information is respectively determined on the BWP, so that the complexity of the first terminal device can be reduced.
  • X frequency domain resources corresponding to X time frequency resources are X*K consecutive subchannels (subchannels), that is, each frequency domain resource includes K consecutive subchannels, and K is an integer greater than or equal to 1 . It should be understood that "*" means multiplication.
  • a subchannel is a set of several consecutive RBs in the sidelink BWP. The number of RBs included in one subchannel is, for example, 10, 12 or 15. In this implementation form, since any frequency domain resource among the X frequency domain resources corresponding to the X time frequency resources includes K subchannels, that is, different frequency domain resources do not include different numbers of subchannels.
  • mapping information on each frequency domain resource among the X frequency domain resources is the same, so that the second terminal device can decode the information on each frequency domain resource according to the same mapping information method, thereby ensuring that the second terminal device The first information from the first terminal device is successfully decoded with a higher probability on each frequency domain resource.
  • X pieces of first information sent by the first terminal device on X time-frequency resources may correspond to the same RV, or may correspond to different RVs.
  • the RV of the TB corresponding to the first information sent by the first terminal device on a certain time-frequency resource among the X time-frequency resources is RV0
  • the RV of the TB corresponding to the first information sent above may be RV0, or RV2, or RV3, or RV4.
  • FIG. 7 is a schematic diagram of sending a piece of information on a time-frequency resource (for example, a fourth time-frequency resource).
  • the first terminal device may inform the second terminal device of the number of subchannels included in the frequency domain resource corresponding to the fourth time-frequency resource, and the RV applied to the information sent on the fourth time-frequency resource, so that the second terminal device can correctly Decoding information from the first terminal device.
  • FIG. 7 takes an example in which the frequency domain resource corresponding to the fourth time-frequency resource includes 4 subchannels.
  • the first terminal device can send an SCI to the second terminal device, and the first-level SCI (1st-stage SCI ) in the SCI can indicate the subchannels included in the frequency domain resource corresponding to the fourth time-frequency resource number, the second-stage SCI (2 nd -stage SCI) in the SCI may indicate the RV applied to the information sent on the fourth time-frequency resource.
  • the first-level SCI is carried on a physical sidelink control channel (physical sidelink control channel, PSCCH)
  • the second-level SCI and data are carried on a physical sidelink shared channel (physical sidelink shared channel, PSSCH).
  • PSCCH physical sidelink control channel
  • PSSCH physical sidelink shared channel
  • the second terminal device analyzes the first-level SCI, and determines the number of subchannels included in the frequency domain resource corresponding to the fourth time-frequency resource.
  • the second terminal device decodes the PSSCH to obtain the second-level SCI.
  • the second terminal device parses the second-level SCI to obtain the RV used by the first terminal device. Therefore, the second terminal device decodes the first information from the first terminal device according to the obtained number of subchannels and RV.
  • the time domain position of the second-level SCI is taken as an example after the time domain position of the first-level SCI.
  • the embodiment of the present application does not specifically limit the positions of the time-frequency resources occupied by the first-level SCI and the second-level SCI.
  • the first terminal device sends X pieces of first information on X time-frequency resources included in the first time-frequency resources.
  • the second terminal device does not know the frequency domain resource corresponding to each time-frequency resource Which sub-channels are included, which makes it impossible for the second terminal device to determine which sub-channel signals correspond to a piece of first information.
  • FIG. 8 takes an example in which the frequency domain resource corresponding to the first time-frequency resource includes 4 subchannels.
  • the first terminal device sends a copy of the first information to the second terminal device on the time-frequency resource 1 and the time-frequency resource 2 respectively.
  • the first terminal device sends the first SCI on time-frequency resource 1, and the first-level SCI in the first SCI can indicate the number of subchannels included in the frequency domain resource corresponding to the first time-frequency resource, that is, 4 channels. If the second terminal device knows that the first time-frequency resource includes 2 time-frequency resources, then the second terminal device may know that the frequency domain resource corresponding to each time-frequency resource included in the first time-frequency resource includes 2 subchannels. The second-level SCI included in the first SCI may also indicate the RV corresponding to the first information sent on the time-frequency resource 1 .
  • the first terminal device sends the second SCI in the time-frequency resource 2
  • the first-level SCI in the second SCI can indicate the number of subchannels included in the frequency domain resource corresponding to the first time-frequency resource, that is, 4 channels .
  • the second-level SCI of the second SCI may indicate the RV corresponding to the first information sent on the time-frequency resource 2 . If the second terminal device knows that the first time-frequency resource includes 2 time-frequency resources, then the second terminal device may know that the frequency domain resource corresponding to each time-frequency resource included in the first time-frequency resource includes 2 subchannels.
  • the second-level SCI included in the second SCI may also indicate the RV corresponding to the first information sent on the time-frequency resource 2 .
  • the second terminal device knows that the time-frequency resource 1 includes 2 subchannels, and the time-frequency resource 2 also includes 2 subchannels.
  • the second terminal device can know the RV0 corresponding to the first information sent by the first terminal device in time-frequency resource 1.
  • the first terminal device can know RV2 corresponding to the first information sent by frequency resource 2.
  • the time domain position of the second-level SCI is after the time domain position of the first-level SCI.
  • the embodiment of the present application does not specifically limit the positions of the time-frequency resources occupied by the first-level SCI and the second-level SCI.
  • the second terminal device does not know which subchannels correspond to a piece of first information. For example, the second terminal device may think that channel 1 and channel 2 correspond to the first piece of information, and cannot correctly decode the first information from each time-frequency resource. At the same time, the second terminal device cannot determine the subchannels used by the first terminal device to send X pieces of first information by successfully decoding one SCI in the X time-frequency resources.
  • the first terminal device and the second terminal device may agree on the subchannels included in each of the X frequency domain resources corresponding to the X time-frequency resources, for example, agree on the subchannels included in each of the X frequency domain resources The number of the subchannel included in each frequency domain resource. In this way, the first terminal device and the second terminal device have the same understanding of the subchannels included in each frequency domain resource, so as to ensure that the second terminal device successfully decodes the first information with a higher probability.
  • the sequence of the frequency domain resources corresponding to the X time-frequency resources in the frequency domain may be stipulated, for example, the numbers of the X time-frequency resources in the frequency domain are sequenced from low to high.
  • the number of the k-th sub-channel among the K consecutive sub-channels included in the y-th frequency-domain resource of the X frequency-domain resources is (y-1)*K+k-1, where "*" means multiplication,
  • the value range of y is ⁇ 1,2,...,X ⁇
  • the value range of k is ⁇ 1,2,...,K ⁇ .
  • the first time-frequency resource includes 2 time-frequency resources
  • the frequency domain resource corresponding to time-frequency resource 2 includes 4 consecutive subchannel numbers is the subchannel of ⁇ 2,3 ⁇ .
  • the first terminal device and the second terminal device since the first terminal device and the second terminal device agree that the number of the kth subchannel among the K consecutive subchannels included in the yth frequency domain resource among the X frequency domain resources is (y-1 )*K+k-1.
  • the first terminal device sends the first information on time-frequency resource 1 and time-frequency resource 2 respectively, and the second terminal device knows that the frequency domain resources corresponding to time-frequency resource 1 include subchannel 0 and subchannel 1, and the frequency domain resources corresponding to time-frequency resource 2 Domain resources include subchannel 2 and subchannel 3.
  • the second terminal device can determine that the signals corresponding to sub-channel 0 and sub-channel 1 belong to one piece of information, and the signals corresponding to sub-channel 2 and sub-channel 3 can be determined according to the corresponding relationship between the number of each sub-channel and the X time-frequency resources included in the first time-frequency resource.
  • the signal belongs to one piece of information, so as to ensure that the second terminal device correctly decodes the first information from each time-frequency resource. Further, considering that there is an interfered time-frequency resource among the X time-frequency resources included in the first time-frequency resource, the second terminal device may not be able to successfully decode the time-frequency resource on the interfered time-frequency resource due to interference. SCI.
  • time-frequency resource 1 is not interfered, but time-frequency resource 2 is interfered.
  • the second terminal device may determine according to the first SCI that the frequency domain resource corresponding to time-frequency resource 1 includes 2 subchannels. At the same time, it is also determined that the numbers of the two subchannels included in the frequency domain resource corresponding to the time-frequency resource 1 are ⁇ 0, 1 ⁇ .
  • the second terminal device determines that the first terminal device has also sent the first information corresponding to RV2 on the time-frequency resource 2, and the numbers of the two subchannels included in the frequency domain resource corresponding to the time-frequency resource 2 are ⁇ 2, 3 ⁇ . In this way, even if the second terminal device fails to decode the second SCI due to the interference of the time-frequency resource 2, the second terminal device can still determine according to the first SCI that the first terminal device has transmitted the first information on sub-channel 2 and sub-channel 3, Therefore, the first information received on sub-channel 0 and sub-channel 1 is soft-combined with the first information received on sub-channel 2 and sub-channel 3 to increase the probability of successfully decoding the first information.
  • the second terminal device can still determine according to the second SCI that the first terminal device has transmitted the first information on sub-channel 0 and sub-channel 1, so as to combine the signals received on sub-channel 0 and sub-channel 1 with sub-channel 2 .
  • the signals received on the sub-channel 3 are soft-combined to increase the probability of successfully decoding the first information.
  • the same RV may be used for the first terminal device to send X pieces of first information on X time-frequency resources, or different RVs may be used.
  • the RV corresponding to the p-th time-frequency resource among the X time-frequency resources satisfies the following rules:
  • the first terminal device determines the RV corresponding to the i-th time-frequency resource among the X time-frequency resources according to the fact that the first time-frequency resource is interfered. For example, the first terminal device transmits the first information corresponding to RV0 or RV3 on a non-interferenced time-frequency resource among the X time-frequency resources. For another example, the first terminal device transmits the first information corresponding to RV1 or RV2 on the interfered time-frequency resource among the X time-frequency resources.
  • FIG. 9 is a schematic diagram of RVs corresponding to X time-frequency resources included in the first time-frequency resource.
  • the first terminal device determines through sensing that the time-frequency resource in the first time-frequency resource is not interfered with, and at the same time determines that the time-frequency resource 2 in the first time-frequency resource is interfered with.
  • the first terminal device may send first information corresponding to RV0 on time-frequency resource 1, and may send first information corresponding to RV2 on time-frequency resource 2.
  • Send the first information corresponding to RV0 on the uninterferenced time-frequency resource that is, send the first information containing more systematic bits.
  • the first information corresponding to RV2 is sent on the interfered time-frequency resource, that is, the first information including more parity bits is sent. In this way, the probability that the data information included in the first information is successfully received by the second terminal device can be improved.
  • the first terminal device can send the first information corresponding to RV2 on time-frequency resource 1, and send the first information corresponding to RV0 on time-frequency resource 2. information.
  • the first terminal device respectively sends the first information to the second terminal device in X time-frequency resources, that is, redundantly sends X copies of the first information. If the modulation order (modulation order) and coding rate (code rate) used by the first terminal device to send X copies of the first information in the first time-frequency resource, and the first terminal device to send a copy of the first information in the first time-frequency resource
  • the modulation order and the coding rate of the information are the same, which will cause the spectrum efficiency of the first time-frequency resource to be compromised.
  • the first terminal device may use a modulation and coding scheme (modulation and coding scheme, MCS). For example, the first terminal device can adjust the modulation order and coding rate.
  • MCS modulation and coding scheme
  • the modulation orders and/or coding rates used by the first terminal device to respectively send the first information on the X time-frequency resources are also different.
  • the modulation order used by the first terminal device to send a copy of the first information to the second terminal device in the first time-frequency resource is referred to as the first modulation order
  • the coding rate used is referred to as the first modulation order.
  • encoding rate The modulation order used by the first terminal device to send X pieces of first information to the second terminal device on the first time-frequency resource (that is, X time-frequency resources) is called the second modulation order
  • the coding rate used is called is the second encoding rate.
  • the first modulation order is Q m and the first encoding rate is R.
  • the second modulation order is k1 ⁇ Q m
  • the first terminal device sends the first information on X time-frequency resources respectively, that is, sending X copies of the first information redundantly causes SE to be damaged by 1/X times of the original, so that finally the SE on the first time-frequency resource constant.
  • the resistance to in-band interference brought about by redundant transmission can be obtained, thereby improving the reliability of information transmission.
  • the second modulation order used by the first terminal device to send the first information may be that the first terminal device sends the first 2 times the first modulation order used by the information.
  • the second modulation order used by the first terminal device to send the first information is different from the second modulation order used by the first terminal device to send the first information
  • the first modulation order of is the same.
  • the second modulation order used by the first terminal device to send the first information may be the second modulation order used by the first terminal device to send the first information 2 times the first modulation order.
  • the second modulation order used by the first terminal device to send the first information is different from the second modulation order used by the first terminal device to send the first information
  • the first modulation order of is the same.
  • the second modulation order used by the first terminal device to send the first information may be the one used by the first terminal device to send the first information 2 times the first modulation order.
  • sending one piece of first information on the first time-frequency resource may be referred to as the first transmission manner
  • sending X pieces of first information on the first time-frequency resource may be collectively referred to as the second transmission manner.
  • Table 1 shows X possible transmission modes used by the first terminal device to send the first information. That is, if the first terminal device divides the first time-frequency resource into X time-frequency resources in the frequency domain, then there are X transmission modes, that is, the first transmission mode and X-1 second transmission modes.
  • Table 2 shows various transmission modes that may be used by the first terminal device to send the first information. It should be noted that the transmission modes in Table 2 are only examples.
  • multiple transmission modes may be defined as two or more transmission modes in Table 1, or multiple transmission modes may be defined as two or more transmission modes in Table 2. It should be noted that here, the multiple transmission modes include a first transmission mode and at least one second transmission mode.
  • the second terminal device it is unknown whether the first terminal device uses the first transmission mode or the second transmission mode to send the first information. Or the second terminal device knows a certain second transmission mode adopted by the first terminal device, but does not know the modulation order and coding rate corresponding to the second transmission. This will cause the second terminal device to fail to correctly receive the first information from the first terminal device. For this reason, the first terminal device needs to inform the second terminal device which transmission mode the first terminal device uses to send the first information.
  • the first terminal device sends indication information to the second terminal device, where the indication information is used to indicate a target transmission mode among multiple transmission modes.
  • the terminal device may notify the second terminal device of the target transmission mode.
  • the first terminal device sends indication information for the indicated target transmission mode to the second terminal device.
  • the first terminal device may send the first information and the SCI on each of the X time-frequency resources, and the indication information may be carried in the SCI.
  • the indication information may be carried in the first-level SCI included in the SCI, or in the first-level SCI and the second-level SCI included in the SCI.
  • the first-level SCI may only instruct the first terminal device to use the first transmission mode or the second transmission mode.
  • the first terminal device may also inform the second terminal device through the second-level SCI.
  • the first terminal device indicates the second transmission mode adopted by the first terminal device through the first-level SCI, and the first terminal device and the second terminal device may additionally agree on the modulation order corresponding to the second transmission mode indicated by the first-level SCI. number and/or encoding rate.
  • the first-level SCI is used to indicate X
  • the second terminal device may determine k1 and/or k2 corresponding to X according to a preset rule or an agreement with the first terminal device.
  • the first-level SCI is used to indicate X
  • the second-level SCI is used to indicate k1 and/or k2 corresponding to X. In this way, the specific second transmission mode can be indicated through the first-level SCI and the second-level SCI, which is simple and direct.
  • the first field occupies part or all of the bits in the reserved field. If the first terminal device does not support sending X pieces of first information on the first time-frequency resource, each bit of the reserved field can be Both are set to 0. Using the reserved field to indicate the specific transmission mode of the information sent by the first terminal device is compatible with the transmission mechanism of the NR sidelink.
  • the second SCI may also be used to indicate whether the X pieces of first information transmitted by the X time-frequency resources correspond to the same RV.
  • the second SCI includes a second field, and 1 bit in the second field indicates whether X pieces of first information sent by X time-frequency resources correspond to the same RV.
  • the value of this 1 bit is 0, indicating that the X pieces of first information transmitted by X time-frequency resources correspond to different RVs, and the value of this 1 bit is 1, indicating that the X pieces of first information transmitted by X time-frequency resources correspond to different RVs.
  • One message corresponds to the same RV.
  • this 1 bit is 0, indicating that X shares of first information transmitted by X time-frequency resources correspond to the same RV, and the value of this 1 bit is 1, indicating that X shares of first information transmitted by X time-frequency resources The first information corresponds to different RVs.
  • the first terminal device also sends the SCI to the second terminal device when the X time-frequency resources respectively send the first information to the second terminal device.
  • the first terminal device may send the first information and the SCI on each of the X time-frequency resources.
  • the first-level SCI among the SCIs sent on each time-frequency resource may be used to indicate the location of the frequency domain resource corresponding to each time-frequency resource.
  • the second-level SCI among the SCIs sent on each time-frequency resource is used to indicate the RV corresponding to the first information sent on the corresponding time-frequency resource. If the foregoing indication information is carried on the first-level SCI, the first-level SCI may also be used to indicate a transmission manner for the first terminal device to send the first information.
  • the first-level SCI and the second-level SCI jointly indicate the transmission mode for the first terminal device to send the first information.
  • the second terminal device receives the SCI on each time-frequency resource, and decodes the received SCI, so as to determine the transmission mode of the first information sent by the first terminal device, and the corresponding information of the first information sent on each time-frequency resource RV.
  • the second terminal device acquires the content of the first information according to the RV of the first information sent by each time-frequency resource.
  • the first terminal device may send the first information on each of the X time-frequency resources, and send the SCI on one of the X time-frequency resources. In this manner, the first terminal device only needs to send the SCI once, which can save resource overhead.
  • S403 is not a mandatory step, which is illustrated by a dotted line in FIG. 4 .
  • the first terminal device and the second terminal device may agree to send X shares of the first information on the first time-frequency resource, and agree that the modulation order used is X*Q m , and the coding rate R remains unchanged; or the coding rate For X*R, the modulation order remains unchanged.
  • the first terminal device does not need to send indication information to the second terminal device to indicate X, or indicate X and the modulation order and coding rate corresponding to X.
  • the second terminal device determines content of the first information according to the received information.
  • the second terminal device may determine the content of the first information according to the received information.
  • the second terminal device receives the first information from the first terminal device in the agreed transmission mode.
  • the first terminal device decodes the received first information to determine the content of the first information.
  • the second terminal device receives the indication information from the first terminal device, may determine which transmission mode the first terminal device uses to send the first information, and receives the first information in a manner corresponding to sending the first information, and translates code the received information to determine the content of the first information.
  • the first terminal device notifies the second terminal device of the transmission mode used by the first terminal device to send the first information through indication information.
  • the second terminal device may determine RVs respectively corresponding to X pieces of first information sent by the first terminal device in X time-frequency resources.
  • the second terminal device may determine the content of the first information according to the RV corresponding to each piece of first information sent by the first terminal device. It is considered that the second terminal device may not be able to successfully determine the content of the first information, that is, be unable to successfully decode the first information.
  • the second terminal device may send a NACK message to the first terminal device.
  • the first terminal device After receiving the NACK message from the second terminal device, the first terminal device resends the first information to the second terminal device.
  • the RV used by the first terminal device to send X copies of the first information to the second terminal device again may be the same as or different from the RV used to send X copies of the first information to the second terminal device before.
  • the RV corresponding to the first information sent by the first terminal device to the second terminal device on time-frequency resource 1 is RV0
  • the first terminal device The RV corresponding to the first information sent to the second terminal device on resource 2 is RV2.
  • the RV corresponding to the first information sent by the first terminal device to the second terminal device on time-frequency resource 1 is RV2, and the first terminal device is on time-frequency resource 2
  • the RV corresponding to the first information sent to the second terminal device is RV3.
  • the RV corresponding to the first information sent by the first terminal device to the second terminal device on time-frequency resource 1 is RV3, and the first terminal device is on time-frequency resource 2
  • the RV corresponding to the first information sent to the second terminal device is RV1.
  • the RV corresponding to the first information sent by the first terminal device to the second terminal device on time-frequency resource 1 is RV1
  • the first terminal device is on time-frequency resource 2
  • the RV corresponding to the first information sent to the second terminal device is RV0, and so on.
  • the sending end may send a copy of the first information on X time-frequency resources included in the time-frequency resources used to send the first information.
  • Time-domain resources corresponding to the X time-frequency resources are the same, and any two adjacent frequency-domain resources among the X frequency-domain resources corresponding to the X time-frequency resources do not overlap.
  • Even if there are some resources with serious interference in the time-frequency resources used to send the first information for example, Y time-frequency resources among the X time-frequency resources have interference, since there is no interference or the X-Y time-frequency resources with less interference
  • the first information is still sent, so the probability that the receiving end successfully receives the first information can be increased, that is, the reliability of information transmission can be improved.
  • the methods provided in the embodiments of the present application are introduced from the perspective of interaction between the first terminal device and the second terminal device.
  • the first terminal device and the second terminal device may include a hardware structure and/or a software module in the form of a hardware structure, a software module, or a hardware structure plus a software module. Realize the above functions. Whether one of the above-mentioned functions is executed in the form of a hardware structure, a software module, or a hardware structure plus a software module depends on the specific application and design constraints of the technical solution.
  • this embodiment of the present application provides a communication device.
  • the following describes the communication device used to implement the above method in the embodiment of the present application with reference to the accompanying drawings.
  • FIG. 10 is a schematic block diagram of a communication device 1000 provided by an embodiment of the present application.
  • the communications apparatus 1000 may be the terminal device in FIG. 1 , and is configured to implement the method for the first terminal device or the second terminal device in the foregoing method embodiments.
  • the communication device 1000 may include a processing module 1010 and a transceiver module 1020 .
  • a storage unit may also be included, and the storage unit may be used to store instructions (code or program) and/or data.
  • the processing module 1010 and the transceiver module 1020 may be coupled with the storage unit, for example, the processing module 1010 may read instructions (code or program) and/or data in the storage unit to implement a corresponding method.
  • Each of the above units can be set independently, or can be partially or fully integrated.
  • the communication apparatus 1000 can correspondingly implement the behaviors and functions of the terminal device in the foregoing method embodiments, for example, implement the method executed by the first terminal device in the embodiment in FIG. 4 .
  • the communication device 1000 may be a first terminal device, or a component (such as a chip or a circuit) applied in the first terminal device, or may be a chip or a chipset in the first terminal device or a chip used to execute related methods part of the function.
  • the transceiver module 1020 may be configured to perform all receiving or sending operations performed by the first terminal device in the embodiment shown in FIG. 4 . For example, S402 and S403 in the embodiment shown in FIG.
  • the processing module 1010 may be configured to perform all operations performed by the first terminal device in the embodiment as shown in FIG. 4 except the transceiving operation. For example, S401 in the embodiment shown in FIG. 4 , and/or other processes for supporting the technology described herein.
  • the processing module 1010 is configured to determine a first time-frequency resource, where the first time-frequency resource is used for the first terminal device to send the first information to the second terminal device.
  • the transceiver module 1020 is configured to send X pieces of first information to the second terminal device in the first time-frequency resource.
  • the first time-frequency resource includes X time-frequency resources, and one time-frequency resource among the X time-frequency resources is used to send a piece of first information.
  • the time-domain resources corresponding to the X time-frequency resources are the same, and any two adjacent frequency-domain resources among the X frequency-domain resources corresponding to the X time-frequency resources do not overlap.
  • X is an integer greater than or equal to 2.
  • the first time-frequency resource partially overlaps with the second time-frequency resource.
  • the second time-frequency resource is a resource used by the third terminal device to send the second information to the fourth terminal device.
  • X is related to a proportion of the interfered time-frequency resource in the first time-frequency resource. And/or, X is related to the number of terminal devices occupying the first time-frequency resource.
  • the frequency domain resources corresponding to the X time-frequency resources belong to the same sidelink BWP.
  • the X frequency domain resources are X*K continuous subchannels, and each frequency domain resource includes K continuous subchannels.
  • K is an integer greater than or equal to 1.
  • X pieces of first information sent on X time-frequency resources use different RVs.
  • the RV corresponding to the first information sent on the time-frequency resource that is not interfered with among the X time-frequency resources is RV0 or RV3, and the time-frequency resource that is interfered with among the X time-frequency resources
  • the RV corresponding to the first information sent above is RV1 or RV2.
  • the transceiver module 1020 is further configured to send indication information to the second terminal device, where the indication information is used to indicate the value of X.
  • the indication information is also used to indicate the modulation order and coding rate corresponding to X.
  • the modulation order corresponding to sending a copy of the first information on the first time-frequency resource is Q m
  • the corresponding coding rate is R
  • sending X copies of the first information on the first time-frequency resource corresponds to
  • the modulation order of is k1 ⁇ Q m
  • the corresponding coding rate is k2 ⁇ R.
  • the product of k1 and k2 is equal to X
  • X, k1 and k2 satisfy the following relationship:
  • the indication information is carried in the first-level SCI in the SCI.
  • the indication information is carried in the first-level SCI and the second-level SCI in the SCI.
  • the first-level SCI is used to indicate X
  • the second-level SCI is used to indicate k1 and/or k2.
  • the communication apparatus 1000 can correspondingly implement the behavior and function of the second terminal device in the foregoing method embodiments, for example, implement the method performed by the second terminal device in the embodiment in FIG. 4 .
  • the communication device 1000 may be a second terminal device, or a component (such as a chip or a circuit) applied in a second terminal device, or a chip or a chipset in a second terminal device, or a chip used to perform correlation part of the method function.
  • the transceiver module 1020 may be configured to perform all receiving or sending operations performed by the second terminal device in the embodiment shown in FIG. 4 . For example, S402 and S403 in the embodiment shown in FIG. 4 , and/or other processes for supporting the technology described herein.
  • the processing module 1010 is configured to execute all operations performed by the base station in the embodiment shown in FIG. 4 except the transceiving operation, and/or other processes for supporting the technology described herein. For example, S404 in the embodiment shown in FIG. 4 , and/or other processes for supporting the technology described herein.
  • the processing module 1010 is configured to determine a first time-frequency resource, and the first time-frequency resource is used for the second terminal device to receive the first information from the first terminal device.
  • the transceiver module 1020 is used for the second terminal device to receive X pieces of first information from the first terminal device on the first time-frequency resource.
  • the first time-frequency resource includes X time-frequency resources, and one of the X time-frequency resources is used to send a piece of first information.
  • the time-domain resources corresponding to the X time-frequency resources are the same, and any two adjacent frequency-domain resources among the X frequency-domain resources corresponding to the X time-frequency resources do not overlap.
  • X is an integer greater than or equal to 2.
  • the processing module 1010 is also configured to determine the content of the first information.
  • the first time-frequency resource partially overlaps with the second time-frequency resource.
  • the second time-frequency resource is a resource used by the third terminal device to send the second information to the fourth terminal device.
  • X is related to a proportion of the interfered time-frequency resource in the first time-frequency resource. And/or, X is related to the number of terminal devices occupying the first time-frequency resource.
  • the frequency domain resources corresponding to the X time-frequency resources belong to the same sidelink BWP.
  • the X frequency domain resources are X*K continuous subchannels, and each frequency domain resource includes K continuous subchannels.
  • K is an integer greater than or equal to 1.
  • X pieces of first information sent on X time-frequency resources use different RVs.
  • the RV corresponding to the first information sent on the uninterferenced time-frequency resource is RV0 or RV3.
  • the RV corresponding to the first information sent on the interfered time-frequency resource among the X time-frequency resources is RV1 or RV2.
  • the transceiver module 1020 is further configured to receive indication information from the first terminal device, where the indication information is used to indicate the value of X.
  • the indication information is also used to indicate the modulation order and coding rate corresponding to X.
  • the modulation order corresponding to sending a piece of first information on the first time-frequency resource is Q m
  • the corresponding coding rate is R
  • the modulation order corresponding to sending X pieces of first information on the first time-frequency resource is k1 ⁇ Q m
  • the corresponding coding rate is k2 ⁇ R.
  • the product of k1 and k2 is equal to X.
  • X, k1 and k2 satisfy the following relationship:
  • the indication information is carried in the first-level SCI in the SCI.
  • the indication information is carried in the first-level SCI and the second-level SCI in the SCI.
  • the first-level SCI is used to indicate X
  • the second-level SCI is used to indicate k1 and/or k2.
  • processing module 1010 in the embodiment of the present application may be implemented by a processor or a processor-related circuit component
  • transceiver module 1020 may be implemented by a transceiver or a transceiver-related circuit component or a communication interface.
  • the communication device 1100 may be a first terminal device, which can realize the function of the first terminal device in the method provided by the embodiment of the present application.
  • the communication device 1100 may be a second terminal device capable of realizing the functions of the second terminal device in the method provided by the embodiment of the present application; the communication device 1100 may also be capable of supporting the first terminal device in implementing the method provided in the embodiment of the present application An apparatus with a corresponding function, or an apparatus capable of supporting the second terminal device to implement the corresponding function in the method provided in this embodiment of the present application.
  • the communication device 1100 may be a system on a chip.
  • the system-on-a-chip may be composed of chips, or may include chips and other discrete devices.
  • the above-mentioned transceiver module 1020 may be a transceiver, and the transceiver is integrated in the communication device 1100 to form the communication interface 1110 .
  • the communication apparatus 1100 includes at least one processor 1120, configured to implement or support the communication apparatus 1100 to implement the functions of the first terminal device or the second terminal device in the method provided by the embodiment of the present application. For details, refer to the detailed description in the method example, and details are not repeated here.
  • the communication device 1100 may also include at least one memory 1130 for storing program instructions and/or data.
  • the memory 1130 is coupled to the processor 1120 .
  • the coupling in the embodiments of the present application is an indirect coupling or a communication connection between devices, units or modules, which may be in electrical, mechanical or other forms, and is used for information exchange between devices, units or modules.
  • Processor 1120 may cooperate with memory 1130 .
  • the processor 1120 may execute program instructions and/or data stored in the memory 1130, so that the communication device 1100 implements a corresponding method. At least one of the at least one memory may be included in the processor. It should be noted that the memory 1130 is not necessary, so it is shown with a dotted line in FIG. 11 .
  • the communication device 1100 may also include a communication interface 1110 for communicating with other devices through a transmission medium, so that devices used in the communication device 1100 can communicate with other devices.
  • a communication interface 1110 for communicating with other devices through a transmission medium, so that devices used in the communication device 1100 can communicate with other devices.
  • the other device is the second terminal device; or, when the communication device is the second terminal device, the other device is the first terminal device.
  • the processor 1120 can utilize the communication interface 1110 to send and receive data.
  • the communication interface 1110 may specifically be a transceiver.
  • a specific connection medium among the communication interface 1110, the processor 1120, and the memory 1130 is not limited.
  • the memory 1130, the processor 1120, and the communication interface 1110 are connected through the bus 1140.
  • the bus is represented by a thick line in FIG. 11, and the connection between other components is only for schematic illustration. , is not limited.
  • the bus can be divided into address bus, data bus, control bus and so on. For ease of representation, only one thick line is used in FIG. 11 , but it does not mean that there is only one bus or one type of bus.
  • the processor 1120 may be a general-purpose processor, a digital signal processor, an application-specific integrated circuit, a field programmable gate array or other programmable logic device, a discrete gate or transistor logic device, or a discrete hardware component, and may implement Or execute the methods, steps and logic block diagrams disclosed in the embodiments of the present application.
  • a general purpose processor may be a microprocessor or any conventional processor or the like. The steps of the methods disclosed in connection with the embodiments of the present application may be directly implemented by a hardware processor, or implemented by a combination of hardware and software modules in the processor.
  • the memory 1130 may be a non-volatile memory, such as a hard disk (hard disk drive, HDD) or a solid-state drive (solid-state drive, SSD), etc., and may also be a volatile memory (volatile memory), For example random-access memory (random-access memory, RAM).
  • a memory is, but is not limited to, any other medium that can be used to carry or store desired program code in the form of instructions or data structures and that can be accessed by a computer.
  • the memory in the embodiment of the present application may also be a circuit or any other device capable of implementing a storage function, and is used for storing program instructions and/or data.
  • the communication device in the above-mentioned embodiments may be a terminal or a circuit, or a chip applied in a terminal or other combined devices or components having the functions of the above-mentioned terminal.
  • the transceiver module may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing module may be a processor, such as a central processing unit (CPU).
  • the transceiver module may be a radio frequency unit
  • the processing module may be a processor.
  • the communication device When the communication device is a chip system, the communication device may be a field programmable gate array (field programmable gate array, FPGA), an application specific integrated circuit (ASIC), or a system on chip (system on chip).
  • SoC field programmable gate array
  • FPGA field programmable gate array
  • ASIC application specific integrated circuit
  • SoC SoC
  • CPU central processing unit
  • NP network processor
  • DSP digital signal processing circuit
  • MCU microcontroller
  • PLD programmable logic device
  • the processing module may be a processor of the chip system.
  • the transceiver module or the communication interface may be an input/output interface or an interface circuit of the chip system.
  • the interface circuit may be a code/data read/write interface circuit.
  • the interface circuit can be used to receive code instructions (the code instructions are stored in the memory, can be read directly from the memory, or can also be read from the memory through other devices) and transmitted to the processor; the processor can be used to run all The above-mentioned code instructions are used to execute the methods in the above-mentioned method embodiments.
  • the interface circuit may also be a signal transmission interface circuit between the communication processor and the transceiver.
  • the processor is used to execute XX to obtain Y data (XX is a non-air interface operation, including but not limited to determining, judging, processing, calculating, searching, comparing and other operations); the interface circuit can be used To send the Y data to the transmitter (the transmitter is used to perform the sending operation on the air interface).
  • the interface circuit may be used to receive Z data from a receiver (the receiver is used to perform a receiving operation on an air interface), and send the Z data to the processor; the processing The device is used to perform XX processing on the Z data (XX is a non-air interface operation, including but not limited to determining, judging, processing, calculating, searching, comparing and other operations).
  • Fig. 12 shows a schematic structural diagram of a simplified terminal device.
  • the terminal device takes a mobile phone as an example.
  • the terminal device includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used for processing the communication protocol and communication data, controlling the on-board unit, executing software programs, and processing data of the software programs.
  • Memory is primarily used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of the baseband signal and the radio frequency signal and the processing of the radio frequency signal.
  • Antennas are mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, and keyboards, are mainly used to receive data input by users and output data to users. It should be noted that some types of equipment may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • FIG. 12 only one memory and processor are shown in FIG. 12 . In an actual device product, there may be one or more processors and one or more memories.
  • a memory may also be called a storage medium or a storage device. The memory may be set independently of the processor, or may be integrated with the processor, which is not limited in this embodiment of the present application.
  • the antenna and the radio frequency circuit having the function of transmitting and receiving can be regarded as the transmitting and receiving unit of the device
  • the processor having the function of processing can be regarded as the processing unit of the device.
  • the device includes a transceiver unit 1210 and a processing unit 1220 .
  • the transceiver unit 1210 may also be called a transceiver, a transceiver, a transceiver device, and the like.
  • the processing unit 1220 may also be called a processor, a processing board, a processing module, a processing device, and the like.
  • the device in the transceiver unit 1210 for realizing the receiving function may be regarded as a receiving unit
  • the device in the transceiver unit 1210 for realizing the sending function may be regarded as a sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit 1210 may also be called a transceiver, a transceiver, or a transceiver circuit, etc. sometimes.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit, etc.
  • the sending unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit, etc.
  • transceiver unit 1210 is used to perform the sending operation and the receiving operation of the first terminal device or the second terminal device in the above method embodiments
  • processing unit 1220 is used to perform the operation of the first terminal device or the second terminal device in the above method embodiments other operations besides sending and receiving operations.
  • the transceiver unit 1210 may be configured to execute S402 and S403 in the embodiment shown in FIG. 4 , and/or other processes for supporting the technology described herein.
  • the processing unit 1220 may be used to execute S401 in the embodiment shown in FIG. 4 , and/or to support other processes of the technology described herein.
  • the transceiver unit 1210 may be configured to execute S402 and S403 in the embodiment shown in FIG. 4 , and/or other processes for supporting the technology described herein.
  • the processing unit 1220 may be used to execute S404 in the embodiment shown in FIG. 4 , and/or to support other processes of the technology described herein.
  • the device may include a transceiver unit and a processing unit.
  • the transceiver unit may be an input-output circuit and/or a communication interface;
  • the processing unit is an integrated processor or a microprocessor or an integrated circuit.
  • An embodiment of the present application further provides a communication system.
  • the communication system includes multiple terminal devices, or may further include network devices, or may further include more network devices and multiple terminal devices.
  • the communication system includes a plurality of terminal devices, such as a first terminal device and a second terminal device, for realizing the related functions in FIG. 4 above.
  • the terminal devices are respectively configured to implement the functions of the first terminal device or the second terminal device related to FIG. 4 above.
  • An embodiment of the present application also provides a computer-readable storage medium, including instructions, which, when run on a computer, cause the computer to execute the method performed by the first terminal device or the second terminal device in FIG. 4 .
  • An embodiment of the present application further provides a computer program product, including instructions, which, when run on a computer, cause the computer to execute the method performed by the first terminal device or the second terminal device in FIG. 4 .
  • An embodiment of the present application provides a chip system, where the chip system includes a processor and may further include a memory, configured to implement functions of the first terminal device or the second terminal device in the foregoing method.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • system and “network” in the embodiments of the present application may be used interchangeably.
  • Multiple means two or more, and “multiple” in the embodiments of the present application can be understood as “at least two”.
  • At least one can be understood as one or more, such as one, two or more. For example, including at least one means including one, two or more, and does not limit which ones are included, for example, including at least one of A, B and C, then what is included can be A, B, C, A and B, A and C, B and C, or A and B and C.
  • ordinal numerals such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority or importance of multiple objects.
  • first device and the second device are only used to distinguish different devices, but not to limit the functions, priorities, or importance of the two devices.
  • sequence numbers of the above-mentioned processes do not mean the order of execution, and the execution order of the processes should be determined by their functions and internal logic, and should not be used in the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed systems, devices and methods may be implemented in other ways.
  • the device embodiments described above are only illustrative.
  • the division of the units is only a logical function division. In actual implementation, there may be other division methods.
  • multiple units or components can be combined or May be integrated into another system, or some features may be ignored, or not implemented.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be through some interfaces, and the indirect coupling or communication connection of devices or units may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components shown as units may or may not be physical units, that is, they may be located in one place, or may be distributed to multiple network units. Part or all of the units can be selected according to actual needs to achieve the purpose of the solution of this embodiment.
  • the functions described above are realized in the form of software function units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of the present application is essentially or the part that contributes to the prior art or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the methods described in the various embodiments of the present application.
  • the aforementioned storage medium includes: U disk, mobile hard disk, read-only memory (read-only memory, ROM), random access memory (random access memory, RAM), magnetic disk or optical disc and other media that can store program codes. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种信息发送方法、接收方法及通信装置。其中的发送方法包括:第一终端设备确定第一时频资源,并在第一时频资源包括的X个时频资源中的每个时频资源上分别向第二终端设备发送一份第一信息。即第一终端设备在第一时频资源上总共发送X份第一信息。这X个时频资源对应的时域资源相同,可以有效避免增加第一信息传输的时延。X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠。即使第一时频资源中的部分资源被干扰,例如,X个时频资源中的Y个时频资源存在干扰,由于没有干扰的X-Y个时频资源上仍然发送了第一信息,相较于第一终端设备在第一时频资源上发送一份第一信息来说,提升了第一信息传输的可靠性。

Description

一种信息发送方法、接收方法及通信装置
相关申请的交叉引用
本申请要求在2021年07月29日提交中华人民共和国知识产权局、申请号为202110864952.8、申请名称为“一种信息发送方法、接收方法及通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及信息传输技术领域,尤其涉及一种侧行链路(sidelink,SL)传输中信息发送方法、接收方法及通信装置。
背景技术
在通信过程中,信息传输的可靠性非常重要,混合自动重传请求(hybrid automatic repeat request,HARQ)传输技术可以用于提高传输过程中的可靠性。即发送端根据来自接收端的HARQ反馈信息确定是否向接收端重新传输信息。如果发送端接收到的HARQ反馈信息为肯定应答(acknowledgement,ACK)消息,则说明传输信息成功。如果发送端接收到的HARQ反馈信息为否定应答(negative acknowledgement,NACK)消息,发送端向接收端重新传输信息,从而提高传输的可靠性。
在一些传输场景中,例如在侧行链路的多点到多点的传输场景中,侧行链路间可能产生干扰。在干扰较为严重的情况下,即使能够通过HARQ触发发送端对于信息的重传,但重传可能仍然失败,即数据传输的可靠性较低。
发明内容
本申请提供一种信息发送方法、接收方法及通信装置,用于提升侧行链路中信息传输的可靠性。
第一方面,提供了一种信息发送方法,该方法可由第一通信装置执行,第一通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第一终端设备为例进行描述。该方法包括:
第一终端设备确定第一时频资源,以及在第一时频资源上向第二终端设备发送X份第一信息。第一时频资源包括X个时频资源,该X个时频资源中一个时频资源用于发送一份第一信息。X个时频资源对应的时域资源相同,X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,X为大于或等于2的整数。该方案中,第一终端设备在第一时频资源包括的X个时频资源上分别向第二终端设备发送第一信息,即第一终端设备在第一时频资源上发送X份第一信息。相较于第一终端设备在第一时频资源上发送一份X份第一信息来说,可提高第一信息传输的可靠性。
在一种可能的实现方式中,第一时频资源与第二时频资源部分重叠,该第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。如果第一时频资源与第二时频资源有重叠,那么第一时频资源中的部分资源可能会被干扰,例如,X个时频资源中的Y 个时频资源存在干扰。由于第一终端设备在第一时频资源上发送X份第一信息,即没有干扰或者干扰较小的X-Y个时频资源上仍然发送了第一信息,从而尽量保证第一信息成功被第二终端设备接收。
在一种可能的实现方式中,X与第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关。该方案中,第一时频资源中受到干扰的时频资源在第一时频资源中的比例较大,X也较大;第一时频资源中受到干扰的时频资源在第一时频资源中的比例较小,X也较小。即X可根据第一时频资源被干扰的程度确定,以尽量保证第一信息在X个时频资源被第二终端设备成功接收的概率较大。当第一时频资源受干扰程度较大时,可选取更大的X即将第一时频资源划分为更多份,每份采用更小的资源粒度,以尽量增加未被干扰的资源中第一信息发送成功的概率。
在一种可能的实现方式中,X与占用第一时频资源的终端设备的数量相关。该方案中,X可根据占用第一时频资源的终端设备的数量确定。例如,占用第一时频资源的终端设备的数量较大,第一时频资源被干扰的程度可能较大,可选取更大的值作为X,以尽量保证第一信息在X个时频资源被第二终端设备成功接收的概率较大。
在一种可能的实现方式中,X个时频资源对应的频域资源属于同一个侧行链路带宽部分(bandwidth part,BWP)。由于X个时频资源对应的X个频域资源属于同一个侧行链路BWP,那么第一终端设备发送第一信息时,无需激活多个侧行链路BWP,也无需在激活的多个侧行链路BWP上分别确定用于发送第一信息的各个频域资源,从而可降低第一终端设备的复杂度。
在一种可能的实现方式中,X个频域资源为X*K个连续的子信道,K为大于或等于1的整数,每一个频域资源包括K个连续的子信道。由于X个时频资源对应的X个频域资源中的任一频域资源均包括K个子信道,即不会出现不同的频域资源包括的子信道的数量不同的情况。这样X个频域资源中的每个频域资源上映射信息的方式相同,第二终端设备根据同一种映射信息的方式即可译码各个频域资源上的信息,可以降低第二终端设备的复杂度。
在一种可能的实现方式中,X个频域资源中的第y个频域资源包括的K个连续的子信道中第k个子信道的编号为(y-1)*K+k-1。可约定X个频域资源中各个频域资源包括的子信道的编号。这样第一终端设备和第二终端设备对各个频域资源包括的子信道的位置理解一致,以尽量保证第二终端设备以更高的概率成功译码。
在一种可能的实现方式中,X个时频资源上发送的X份第一信息对应不同的冗余版本(redundant version,RV)。该方案中,X份第一信息对应不同的RV,以提升第一信息被成功接收的概率。
在一种可能的实现方式中,X个时频资源中未受到干扰的时频资源上发送的第一信息对应的RV为RV0或RV3,X个时频资源中受到干扰的时频资源上发送的第一信息对应的RV为RV1或RV2。例如,在未受到干扰的时频资源上发送对应RV0的第一信息,即发送含有更多系统比特的第一信息;在受到干扰的时频资源发送对应RV2的第一信息,即发送含有更多校验比特的第一信息。这样可提升第二终端设备关注的信息内容被第二终端设备成功接收的概率。
在一种可能的实现方式中,所述方法还包括:第一终端设备向所述第二终端设备发送指示信息,该指示信息用于指示X的取值。第一终端设备通过指示信息告知第二终端设备 发送X份第一信息,可以保证第二终端设备根据指示信息合理地接收第一信息,成功获取第一信息的内容。
在一种可能的实现方式中,指示信息还用于指示与述X对应的调制阶数以及编码速率。通过指示信息告知第二终端设备,第一终端设备发送X份第一信息时使用的调制阶数和/或编码速率,较为灵活。
在一种可能的实现方式中,第一时频资源上发送一份第一信息对应的调制阶数为Q m,对应的编码速率为R。第一时频资源上发送X份第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R。k1与k2的乘积等于X,X、k1以及k2满足如下关系:
X=2,k1=2,k2=1;或者,X=2,k1=1,k2=2;或者,X=3,k1=2,k2=1.5;或者,X=3,k1=1,k2=3;或者,X=4,k1=2,k2=2。该方案中,k1与k2的乘积等于X。可降低在第一时频资源传输X份第一信息时的频谱效率(spectral efficiency,SE)折损。
在一种可能的实现方式中,指示信息承载于侧行链路控制信息(sidelink control information,SCI)中的第一级SCI。该方案可约定每份第一信息对应的k1和/或k2,通过第一级SCI指示第一终端设备发送X份第一信息即可。由于无需通过SCI来告知k1和/或k2的取值,所以可减少SCI的开销。
在一种可能的实现方式中,指示信息承载于SCI中的第一级SCI以及第二级SCI,第一级SCI用于指示X,第二级SCI用于指示k1和/或k2。通过第一级SCI指示第一终端设备发送X份第一信息,可以降低第一级SCI中的比特数,控制第二终端设备对于第一级SCI的检测复杂度。同时通过第二级SCI指示k1和/或k2,可以保证第二终端设备根据指示信息合理地接收第一信息,成功获取第一信息的内容。
第二方面,提供了一种信息接收方法,该方法可由第二通信装置执行,第二通信装置可以是通信设备或能够支持通信设备实现该方法所需的功能的通信装置,例如芯片系统。下面以所述通信设备为第二终端设备为例进行描述。该方法包括:
第二终端设备确定第一时频资源,并在第一时频资源上接收来自第一终端设备的X份第一信息,以及确定第一信息的内容。其中,第一时频资源用于第二终端设备接收来自第一终端设备的第一信息,第一时频资源包括X个时频资源,X个时频资源中一个时频资源用于发送一份第一信息。X个时频资源对应的时域资源相同,X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,X为大于或等于2的整数。
在一种可能的实现方式中,第一时频资源与第二时频资源部分重叠,第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
在一种可能的实现方式中,X与第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关;和/或,X与占用第一时频资源的终端设备的数量相关。
在一种可能的实现方式中,X个时频资源对应的频域资源属于同一个侧行链路BWP。
在一种可能的实现方式中,X个频域资源为X*K个连续的子信道,K为大于或等于1的整数,每一个频域资源包括K个连续的子信道。
在一种可能的实现方式中,X个时频资源上发送的X份第一信息对应不同的RV。
在一种可能的实现方式中,X个时频资源中未受到干扰的时频资源上发送的第一信息对应的RV为RV0或RV3,X个时频资源中受到干扰的时频资源上发送的第一信息对应的RV为RV1或RV2。
在一种可能的实现方式中,第二终端设备接收来自第一终端设备的指示信息,该指示 信息用于指示X的取值。
在一种可能的实现方式中,指示信息还用于指示与X对应的调制阶数以及编码速率。
在一种可能的实现方式中,第一时频资源上发送一份第一信息对应的调制阶数为Q m,对应的编码速率为R。第一时频资源上发送X份第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R。k1与k2的乘积等于X,X、k1以及k2满足如下关系:
X=2,k1=2,k2=1;或者,X=2,k1=1,k2=2;或者,X=3,k1=2,k2=1.5;或者,X=3,k1=1,k2=3;或者,X=4,k1=2,k2=2。
在一种可能的实现方式中,指示信息承载于SCI中的第一级SCI。
在一种可能的实现方式中,指示信息承载于SCI中的第一级SCI以及第二级SCI,第一级SCI用于指示X,第二级SCI用于k1和/或k2。
关于第二方面或第二方面的各种可能实现方式的技术效果,可参考上述关于第一方面或第一方面的各种可能实现方式的技术效果的介绍。
第三方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第一方面的方法实例中行为的功能,有益效果可以参见第一方面的描述此处不再赘述。该通信装置可以是第一方面中的第一终端设备,或者该通信装置可以是能够支持第一方面中的第一终端设备实现第一方面提供的方法所需的功能的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第一方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块)和/或收发单元(有时也称为收发模块)。这些单元(模块)可以执行上述第一方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第四方面,本申请实施例提供了一种通信装置,所述通信装置具有实现上述第二方面的方法实例中行为的功能,有益效果可以参见第二方面的描述此处不再赘述。该通信装置可以是第二方面中的第二终端设备,或者该通信装置可以是能够支持第二方面中的第二终端设备实现第二方面提供的方法所需的功能的装置,例如芯片或芯片系统。
在一个可能的设计中,该通信装置包括用于执行第二方面的方法的相应手段(means)或模块。例如,所述通信装置:包括处理单元(有时也称为处理模块)和/或收发单元(有时也称为收发模块)。这些单元(模块)可以执行上述第二方面方法示例中的相应功能,具体参见方法示例中的详细描述,此处不做赘述。
第五方面,本申请实施例提供一种通信装置,该通信装置可以为上述实施例中第三方面或第四方面中的通信装置,或者为设置在第三方面或第四方面中的通信装置中的芯片或芯片系统。该通信装置包括通信接口以及处理器,可选的,还包括存储器。其中,该存储器用于存储计算机程序或指令或者数据,处理器与存储器、通信接口耦合,当处理器读取所述计算机程序或指令或数据时,使通信装置执行上述方法实施例中由第一终端设备或第二终端设备所执行的方法。
第六方面,本申请实施例提供了一种通信装置,该通信装置包括输入输出接口和逻辑电路。输入输出接口用于输入和/或输出信息。逻辑电路用于执行第一方面中所述的方法,或者逻辑电路用于执行第二方面中所述的方法。
第七方面,本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器和/或通信接口,用于实现第一方面或第二方面中所述的方法。在一种可能的实现方式中,所述芯片系统还包括存储器,用于保存程序指令和/或数据。该芯片系统可以由芯片 构成,也可以包含芯片和其他分立器件。
第八方面,本申请实施例提供了一种通信系统,所述通信系统包括第三方面所述的通信装置和第四方面所述的通信装置;或者所述通信系统包括第三方面所述的通信装置和第五方面中用于执行第二方面方法的通信装置;或者所述通信系统包括第四方面所述的通信装置和第五方面中用于执行第一方面方法的通信装置。
第九方面,本申请提供了一种计算机可读存储介质,该计算机可读存储介质存储有计算机程序,当该计算机程序被运行时,实现上述第一方面或第二方面中的方法。
第十方面,提供了一种计算机程序产品,所述计算机程序产品包括:计算机程序代码,当所述计算机程序代码被运行时,使得上述第一方面或第二方面中的方法被执行。
上述第五方面至第十方面及其实现方式的有益效果可以参考对各个方面或各个方面及其实现方式的有益效果的描述。
附图说明
图1为本申请实施例适用的一种网络架构示意图;
图2为发送端各次传输与RV标识的对应关系示意图;
图3为侧行链路的多点到多点传输信息存在干扰的示意图;
图4为本申请实施例提供的信息发送方法以及接收方法的流程示意图;
图5为多点到多点传输场景中信息传输的示意图;
图6A为本申请实施例提供的一种资源划分(X=2)的示意图;
图6B为本申请实施例提供的一种资源划分(X=3)的示意图;
图6C为本申请实施例提供的一种资源划分(X=4)的示意图;
图7为在第一时频资源上发送一份信息的示意图;
图8为本申请实施例提供的在第一时频资源上发送两份第一信息的示意图;
图9为本申请实施例提供的第一时频资源包括的X个时频资源分别对应的RV的示意图;
图10为本申请实施例提供的通信装置的一种结构示意图;
图11为本申请实施例提供的通信装置的另一种结构示意图;
图12为本申请实施例提供的通信装置的又一种结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例提供的技术方案可以应用于第五代(the fifth generation,5G)移动通信系统,例如新无线(new radio,NR)系统,或者应用于长期演进(long term evolution,LTE)系统中,或者还可以应用于下一代移动通信系统或其他类似的通信系统,具体的不做限制。
另外,本申请实施例提供的技术方案可以应用于网络设备到终端设备之间的链路,也可以应用于设备间的链路,例如设备到设备(device to device,D2D)链路。D2D链路,也可以称为侧行链路,其中侧行链路也可以称为边链路或副链路等。在本申请实施例中,D2D链路,或边链路或副链路都是指相同类型的设备之间建立的链路,其含义相同。所谓 相同类型的设备,可以是终端设备到终端设备之间的链路,也可以是网络设备到网络设备之间的链路,还可以是中继节点到中继节点之间的链路等,本申请实施例对此不做限定。对于终端设备和终端设备之间的链路,有第三代合作伙伴计划(3 rd generation partnership project,3GPP)的版本(release,Rel)-12/13定义的D2D链路,也有3GPP为车联网定义的车联万物(vehicle to everything,V2X)链路。应理解,V2X具体又包括车与车(vehicle-to-vehicle,V2V)、车与路侧基础设施(vehicle-to-infrastructure,V2I)、车与行人(vehicle-to-pedestrian,V2P)的直接通信,以及车与网络(vehicle-to-network,V2N)或车到任何实体的V2X链路,包括Rel-14/15。V2X还包括目前3GPP正在研究的Rel-16及后续版本的基于NR系统的V2X链路等。V2V指的是车辆间的通信;V2P指的是车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是车辆与基础设施的通信,基础设施例如路侧单元(road side unit,RSU)或者网络设备,另外还有一种V2N可以包括在V2I中,V2N指的是车辆与网络设备的通信。其中,RSU包括两种类型:终端类型的RSU,由于布在路边,该终端类型的RSU处于非移动状态,不需要考虑移动性;基站类型的RSU,可以给与之通信的车辆提供定时同步及资源调度。
示例性的,请参考图1,为本申请实施例所应用的一种网络架构。图1中包括4个终端设备和1个网络设备。其中,网络设备是终端设备通过无线方式接入到移动通信系统中的接入设备,例如包括接入网(access network,AN)设备,例如基站。网络设备也可以是指在空口与终端设备通信的设备。网络设备可以包括LTE系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(evolved Node B)(也简称为eNB或e-NodeB);网络设备也可以包括5G NR系统中的下一代节点B(next generation node B,gNB);或者,网络设备也可以包括无线保真(wireless-fidelity,Wi-Fi)系统中的接入节点等;或者网络设备可以为中继站、车载设备以及未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)设备、D2D网络中的设备、机器到机器(machine to machine,M2M)网络中的设备、物联网(internet of things,IoT)网络中的设备或者PLMN网络中的网络设备等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。
另外,本申请实施例中的基站可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),多个DU可以由一个CU集中控制。CU和DU可以根据其具备的无线网络的协议层功能进行划分,例如分组数据汇聚协议(packet data convergence protocol,PDCP)层及以上协议层的功能设置在CU,PDCP以下的协议层,例如无线链路控制(radio link control,RLC)层和介质访问控制(medium access control,MAC)层等的功能设置在DU。需要说明的是,这种协议层的划分仅仅是一种举例,还可以在其它协议层划分。射频装置可以拉远,不放在DU中,也可以集成在DU中,或者部分拉远部分集成在DU中,本申请实施例不作任何限制。另外,在一些实施例中,还可以将CU的控制面(control plan,CP)和用户面(user plan,UP)分离,分成不同实体来实现,分别为控制面CU实体(CU-CP实体)和用户面CU实体(CU-UP实体)。在该网络架构中,CU产生的信令可以通过DU发送给终端设备,或者UE产生的信令可以通过DU发送给CU。DU可以不对该信令进行解析而直接通过协议层封装而透传给UE或CU。在该网络架构中,将CU划分为无线接入网(radio access network,RAN)侧的网络设备,此外,也可以将CU划分作为核心网(core network,CN)侧的网络设备,本申请对此不做限制。
终端设备,是一种具有无线收发功能的设备,可以向网络设备发送信号,或接收来自 网络设备的信号。终端设备可包括用户设备(user equipment,UE),有时也称为终端、接入站、UE站、远方站、无线通信设备、或用户装置等等。所述终端设备用于连接人,物,机器等,可广泛用于各种场景,例如包括但不限于以下场景:蜂窝通信、D2D、V2X、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)、物联网(internet of things,IoT)、虚拟现实(virtual reality,VR)、增强现实(augmented reality,AR)、工业控制(industrial control)、无人驾驶(self driving)、远程医疗(remote medical)、智能电网(smart grid)、智能家具、智能办公、智能穿戴、智能交通、智慧城市(smart city)、无人机、机器人等场景的终端设备。例如,所述终端设备可以是手机(mobile phone)、平板电脑(Pad)、带无线收发功能的电脑、VR终端、AR终端、工业控制中的无线终端、无人驾驶中的无线终端、IoT网络中智能音箱、远程医疗中的无线终端设备、智能电网中的无线终端设备、运输安全中的无线终端设备、智慧城市中的无线终端设备,或智慧家庭中的无线终端设备等等。作为示例而非限定,在本申请的实施例中,该终端设备还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。而如上介绍的各种终端设备,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端设备,车载终端设备例如也称为车载单元(on-board unit,OBU)。本申请的终端设备还可以是作为一个或多个部件或者单元而内置于车辆的车载模块、车载模组、车载部件、车载芯片或者车载单元,车辆通过内置的所述车载模块、车载模组、车载部件、车载芯片或者车载单元可以实施本申请的方法。
本申请实施例中,终端设备之间支持直接通信(PC5)接口通信,即支持通过侧行链路进行传输。终端设备还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端设备。
本申请实施例提供的技术方案可应用于图1所示的网络设备与终端设备之间的通信,也可以应用于图1中终端设备与终端设备之间的通信。换句话说,图1中的终端设备可以在有网络基础设施或者无网络基础设施的情况下进行通信。为方便描述,本文以图1中的终端设备是车载终端设备为例,即以本申请实施例应用于V2X场景为例。本申请实施例对终端设备的具体形态不作限制,例如,终端设备也可以是手机等。图1中4个终端设备分别为终端设备1、终端设备2、终端设备3和终端设备4。这4个终端设备中的任意一个终端设备可将自身的一些信息,例如位置、速度或意图(转弯、并线、或倒车)等信息以周期或非周期触发的方式发送给周围的其余3个终端设备,同样地,该终端设备也会接收来自其他终端设备的信息。图1中的终端设备的数量只是举例,在实际应用中,网络设备可以为多个终端设备提供服务。
各个终端设备在发送信息之前,需要确定用于发送该信息的资源。在V2X中,侧行链路可通过授权频谱(licensed spectrum)进行通信,也可以通过免授权频谱(unlicensed spectrum)进行通信,也可以同时通过授权频谱和免授权频谱进行通信。免授权频谱的侧行链路相关协议技术可以统称为免授权频谱侧行链路(SL-unlicensed,SL-U)。侧行链路的资源分配主要有两种模式,一种为网络设备分配资源模式(mode-1),一种为终端设备自选资源模式(mode-2)。mode-1主要应用于有网络覆盖的情形下的V2X通信,基站统一根据终端设备的BSR上报情况,集中进行资源分配。在mode-2下,终端设备的传输资源不依赖于网络设备,该模式不受限于网络覆盖,无论是否有网络覆盖,终端设备都可以用 该模式进行通信。
以图1中终端设备1和终端设备2之间的侧行链路为例,介绍基于mode-1和mode-2下,终端设备1和终端设备2之间如何进行通信。以终端设备1向终端设备2发送数据为例。
mode-1下资源的分配可以按照动态模式或预配置模式来分配。在mode-1的动态模式下,网络设备会通过下行控制信息(downlink control information,DCI)向终端设备1分配资源,终端设备1接收该DCI后,在该资源上向终端设备2发送数据。终端设备2对来自终端设备1的数据进行译码后,向终端设备1发送对应于该数据的反馈信息,例如反馈信息为ACK消息或NACK消息。在mode-1的预配置模式下,网络设备会通过高层信令配置相关的用于侧行链路发送的时频资源。终端设备1可以直接在高层信令所配置的资源上发送数据;或者,网络设备会发送DCI,以激活所配置的资源,终端设备1在接收该DCI后,可以在高层信令所配置的资源上发送数据。终端设备2接收来自终端设备1的数据后,对该数据进行译码,再向终端设备1发送该数据的反馈信息,例如反馈信息为ACK消息或NACK消息。
在mode-2下,终端设备1的传输资源不依赖于网络设备。网络设备事先可分配资源池(resource pool),终端设备1在该资源池中自主选择可用资源。例如,终端设备1在资源侦听窗口内对资源池内其他终端设备发送的侧行链路控制信息(sidelink control information,SCI)进行侦听(sense)。其中,侦听可以包括检测SCI的过程,或者,可以包括检测SCI、对SCI译码、以及根据SCI的指示测量资源的参考信号接收功率(reference signal receiving power,RSRP)的过程。终端设备1根据资源侦听的结果,在资源选择窗口内自行选择资源以发送数据。假设终端设备1在时隙n触发资源选择,资源侦听窗口可定义为资源选择触发之前的T个时隙。
若终端设备1侦听的SCI包括其他终端设备已经预约的资源,且该预约资源位于资源选择窗口[n+Q1,n+Q2]内,则终端设备1对该预约资源在资源侦听窗内对应的资源进行测量,通过测量可以得到资源的RSRP。如果测量的RSRP大于预先设定的RSRP门限,可认为该资源已经被占用,则终端设备1从资源选择窗口中排除该候选资源。如果测量的RSRP小于预先设定的RSRP门限,可认为该资源当前没有被占用,终端设备1可以从资源选择窗口中选择该资源作为用于发送数据的候选资源。
SCI译码指某个终端设备在资源池中接收其他终端设备发送的SCI,并对所接收的SCI进行译码。由于终端设备发送的数据在资源池中所占用的资源可通过SCI来指示,所以任意终端设备通过译码其他终端设备的SCI,可知道其他终端设备在资源池中占用的资源。如果SCI译码成功表示SCI对应的资源被占用,如果SCI译码不成功,则认为其他终端设备没有占用资源池中的资源。终端设备1利用译码其他终端设备的SCI,可排除资源池中已经被占用的资源,从没有被占用的资源中确定用于发送数据的资源。
与终端设备1类似,各个终端设备确定用于发送数据的资源之后,在该资源上向其他终端设备发送数据。例如,图1中的4个终端设备可互相发送各自的位置、速度等信息。各个终端设备根据自己的位置、速度等信息,以及其他终端设备的位置、速度等信息,确定道路状况,从而获得实时路况、道路信息、行人信息等一系列交通信息,可提高自动驾驶安全性,减少拥堵等。如果在所确定的资源上传输信息的可靠性较低,那么这4个终端设备分别获取的位置、速度等信息之间可能存在差异,从而导致各个终端设备确定的交通 信息也有差异,不能较好地辅助自动驾驶,自动驾驶安全性较低。可见,信息传输的可靠性尤为重要。尤其是侧行链路通过免授权频谱进行通信,由于免授权频谱可以被任意终端设备使用,所以免授权频谱的干扰情况的可控性较弱,更为迫切需要提升传输的可靠性。
混合自动重传请求(hybrid automatic repeat re quest,HARQ)传输是一种常用的提高传输的可靠性的方式。HARQ传输,也就是发送端向接收端初次传输信息后,接收端可向发送端发送HARQ反馈信息。发送端根据接收的HARQ反馈信息确定是否向接收端重新传输信息,并基于前向纠错(forward error correction,FEC)码提升信息的传输可靠性。HARQ反馈信息包括ACK消息或NACK消息。发送端接收到来自接收端的NACK消息后,发送端向接收端重新传输信息。例如,接收端接收来自发送端的信息,当接收端未能成功译码该信息,即未能成功接收该信息时,接收端向发送端发送NACK消息。发送端确定来自接收端的NACK消息,再次向接收端发送该信息。接收端将初次传输中未能成功接收的该信息与重新传输中再次接收到的该信息结合,共同进行译码,相比于仅使用重新传输中再次接收到的该信息进行译码,可以提高成功接收该信息的概率。
需要说明的是,发送端向接收端发送该信息,指的是发送端向接收端发送该信息所包括的信息比特(information bits)。为了提升传输的可靠性,NR系统使用低密度奇偶校验(low density parity check,LDPC)码对前述信息比特进行编码,得到多个编码比特(coded bits)。由于发送端每次发送被分配的资源有限,因此发送端每次发送中可以发送的编码比特的数目也有限。假设发送端被分配的资源可以用于传输E个编码比特,那么发送端需要在每次发送中在所有的编码比特中选出E个编码比特进行传输,这个过程称为速率匹配(rate matching)。经过速率匹配后产生的E个编码比特的集合,在物理层称为一个传输块(transport block,TB)。应理解,发送端在多次发送中选出的不同的E个编码比特,均是根据相同的信息比特生成的,因此可以认为发送端在多次发送中发送的多个TB所表征的信息比特是相同的。
NR系统的通信协议规定了发送端在每次发送中选出E个编码比特的方式,并为每次选出的E个编码比特的集合,即TB,定义了其冗余版本(redundancy version,RV)。应理解,NR系统的通信协议定义了四种RV,其RV标识rv id分别为{0,1,2,3}。对于特定的rv id,发送端和接收端都可以明确其对应的E个编码比特在所有编码比特中的位置。为了进一步提升传输的可靠性,一般规定发送端在针对相同信息比特的多次发送中,每次发送的E个编码比特的集合具有不同的RV。例如,发送端在初次传输中发送rv id=0对应的E个编码比特的集合,在第一次重新传输中发送rv id=2对应的E个编码比特的集合,在第二次重新传输中发送rv id=3对应的E个编码比特的集合,在第三次重新传输中发送rv id=1对应的E个编码比特的集合,以此类推。结合前述编码比特与TB间的关系,发送端在多出发送中发送不同RV对应的E个编码比特的集合,可以描述为发送端在多次发送中发送被应用(apply)了不同RV的TB。还应理解,发送端的多次发送中的一次发送,还可以表征为1个TB的传输时机(transmission occasion of the TB)。TB的传输时机被应用于某一RV,其含义等价于,在该TB的传输时机中传输的TB被应用于某一RV。为描述方便,在本申请实施例中,将应用了不同RV的TB的传输时机,简述为,应用了不同RV的TB。下文中将rv id=0的RV称为RV0,rv id=1的RV称为RV1,rv id=2的RV称为RV2,rv id=3的RV称为RV3。
对于前述四种RV,在典型场景下,应用了RV0的TB和应用了RV3的TB包括了大 部分的信息比特和小部分的校验比特(parity bits)。对于接收端而言,当成功接收应用了RV0的TB或应用了RV3的TB后,可以获取全部的信息比特。因此,一般将应用了RV0的TB和应用了RV3的TB称为可自译码的(self-decodable)。应用了RV1的TB和应用了RV2的TB主要包括了大部分的校验比特,接收端需要与应用了RV0的TB和/或应用了RV3的TB结合来一起进行合并译码,以获得所有信息比特。为了更为高效地使用通信资源、降低通信时延,一般采用rv id={0,2,3,1}的顺序发送应用了各个RV的TB。应理解,发送端在初次传输和第二次重新传输中,发送的TB包括了更多信息比特;发送端在第一次重新传输和第三次重新传输中,发送的TB包括了更多校验比特。上述合并译码过程也称为软合并。例如,发送端在初次传输中发送应用了RV0的TB。接收端接收该应用了RV0的TB,当接收端未能成功译码并获取所有信息比特时,接收端存储该应用了RV0的TB,并向发送端发送NACK消息。发送端接收来自接收端的NACK消息,向接收端重新传输应用了RV2的TB。接收端接收该应用了RV2的TB,将该应用了RV2的TB结合之前存储的应用了RV0的TB共同进行译码,以提升成功获取所有信息比特的概率。
为了便于理解,请参见图2,为发送端各次传输与RV标识的对应关系图。在典型场景中,发送端将以rv id={0,2,3,1}的顺序传输应用了各个RV的TB,也即,发送端依次发送应用了RV0的TB、应用了RV2的TB、应用了RV3的TB和应用了RV1的TB。图2示出了在速率匹配过程中使用的环形缓冲器(circular buffer),在该环形缓冲器中包括了所有的信息比特和校验比特。以信息比特的起始点为环形缓冲器的起始点,在该环形缓冲器上,NR系统的通信协议还定义了应用了不同RV的编码比特的起始点(starting position),例如,RV0起始点为环形缓冲器的起始点,RV1起始点约为稍多于25%(即,四分之一,quarter)的环形缓冲器的位置,RV2起始点约为50%(即,二分之一,half)的环形缓冲器的位置,RV3起始点约为85%的环形缓冲器的位置。NR系统的通信协议并未定义应用了不同RV的编码比特的结束点,但由于发送端可以确定速率匹配过程中能传输的TB的大小(TB size,TBS),因此发送端可以根据应用了某一RV的编码比特的起始点以及前述TB的大小,确定该应用了某一RV的编码比特的结束点。如图2所示,在发送端的初次传输中,发送端发送应用了RV0的TB,应用了RV0的TB包括了大量信息比特。如果接收端根据应用了RV0的TB不能译码获得所有信息比特,那么发送端在第一次重新传输(即,第二次发送)中发送应用了RV2的TB,应用了RV2的TB包括了大量校验比特。接收端可基于接收到的应用了RV0的TB和应用了RV2的TB来合并译码。如果接收端基于应用了RV0的TB和应用了RV2的TB译码不能获得所有信息比特,那么发送端在第二次重新传输(即,第三次发送)中发送应用了RV3的TB,应用了RV3的TB包括了大量信息比特。接收端可基于接收到的应用了RV0的TB、应用了RV2的TB以及应用了RV3的TB来合并译码。如果接收端基于应用了RV0的TB、应用了RV2的TB以及应用了RV3的TB译码不能获得所有信息比特,那么发送端在第三次重新传输(即,第四次发送)中发送应用了RV1的TB,应用了RV1的TB包括大量校验比特。接收端基于接收到的应用了RV0的TB、应用了RV2的TB、应用了RV3的TB以及应用了RV1的TB合并译码。如果接收端仍不能获得所有信息比特,发送端可以按以上规律进行更多次的重新传输,保证所有信息比特被接收端成功接收。
在侧行链路中,如果发送端需要传输1个TB,发送端通过1个时频资源传输该应用了某一RV的TB,该1个时频资源在时域上以时隙(slot)为单位,在频域上以资源块 (resource block,RB)为单位,例如,1个时频资源可以为1个时隙上的40个RB。为了提高侧行链路中信息传输的可靠性,可使用HARQ传输技术。示例性的,发送端在媒体接入控制层(media access control,MAC)具有专用于处理侧行链路HARQ流程的MAC实体。MAC实体可控制物理层SCI中与HARQ相关的控制信令字段,例如包括侧行链路HARQ进程号(HARQ process number)和新数据指示(new data indicator,NDI)信息等。接收端在接收到TB后,将通过反馈ACK消息或NACK消息,告知发送端对应于某一侧行链路HARQ进程号的TB是否正确接收。发送端如果接收到来自接收端的NACK消息,那么发送端向接收端发送表征相同信息比特的TB,以提高信息传输的可靠性。
在侧行链路的多点到多点传输场景中,存在多条通信链路。由于多条通信链路间可能无法完全地使用正交的资源,通信链路间可能产生干扰。在干扰较为严重的情况下,即使接收端能够通过HARQ触发发送端重新发送信息,接收端接收失败的概率仍然较大,这会导致接收端不断触发发送端重新发送信息。
例如,请参见图3,为侧行链路的多点到多点传输信息存在干扰的示意图。图3以包括两对收发设备为例,其中一对收发设备包括终端设备1和终端设备2,另一对收发设备包括终端设备3和终端设备4。假设终端设备1向终端设备2发送第一信息使用的时频资源为时频资源1,终端设备3向终端设备4发送第二信息使用的时频资源为时频资源2。通常来说,终端设备1和终端设备3在发送信息之前,可确定要使用的时频资源。例如,终端设备1可通过感知(sensing),尽量查找其他终端设备没有使用的时频资源,以降低传输失败的概率。然而多点到多点传输中,终端设备可能较多,终端设备1能够使用的时频资源有限,这种情况下,终端设备1也可以选择在其他终端设备使用的时频资源上发送信息。即终端设备1要使用的时频资源与其他终端设备使用的时频资源发生重叠(部分或者全部重叠)。如图3所示,假设终端设备1要使用的时频资源1和终端设备3要使用的时频资源2发生重叠。为方便描述,时频资源1和时频资源2重叠的时频资源称为时频资源3。如果时频资源1和时频资源3无法以正交方式实现,那么终端设备1在时频资源1发送第一信息,终端设备3在时频资源2上发送第二信息,时频资源3上可能会产生干扰。应理解,时频资源1和时频资源2无法以正交方式实现,指时频资源1和时频资源2在时域、频域和空域等维度上存在重叠。相反,时频资源1和时频资源2能够以正交方式实现,则指时频资源1和时频资源2在时域、频域和空域等维度中的至少一个维度上不存在重叠。在时频资源3存在干扰的情况下,终端设备2较大概率无法成功接收来自终端设备1的第一信息,同样,终端设备4也较大概率无法成功接收来自终端设备3的第二信息。这种情况下,终端设备2会触发终端设备1重新发送第一信息,终端设备4会触发终端设备3重新发送第二信息。可见,在侧行链路的多点到多点传输场景中,HARQ传输方式无法保证传输的可靠性,可能还会增加系统负载。同理,由于终端设备4也会不断触发终端设备3重新发送第二信息,还会导致通信链路间的干扰更为严重,同时也降低了资源的利用率。
另外,由于信道的衰落,在侧行链路的单点到单点的场景中,通信链路可能会选择性衰落。信道的衰落可表现为终端设备处接收到的信号的强度的动态变化。这种动态变化的主要原因是:终端设备本身的动态运动;无线信号在无线传输环境中各个影响信号传输的相关反射体(reflector)和散射体(scatterer)等的动态变化。从类型上,信道上的衰落还可以分为时域上的时间选择性衰落和频域上的频率选择性衰落。本申请实施例主要针对信 道的频率选择性衰落,也就是,在信道的一部分频域资源上终端设备处接收到的信号的强度低,而在信道的另一部分频域资源上终端设备处接收到的信号的强度正常或较高。即信道上的一部分频域资源衰落情况并不严重。这种情况下,信道的该部分增益正常。相对而言,信道上的另一部分频域资源因较为严重的衰落,导致信道增益较低,这种情况可认为信道的该部分处于深衰落状态。接收端可以成功接收到信道增益正常的部分频域资源上的信号,但是接收端无法接收信道增益较低的部分或全部频域资源上的信道,这就导致接收端无法接收完整的信息。即使接收端通过HARQ触发发送端重新发送信息,由于信道的选择性衰落,接收端还是无法接收信道增益较低的部分或全部频域资源上的信道。这就会导致接收端不断触发发送端重新发送信息,降低了资源的利用率。
鉴于此,本申请实施例提供了一种信息发送方法。该方法中,发送端可在用于发送该信息的时频资源上发送X份该信息。例如,在该时频资源上确定X个时频资源,这X个时频资源分别对应的时域资源相同,这X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠。发送端向接收端发送信息时,在这X份时频资源上分别发送一份该信息,即在用于发送该信息的时频资源上发送相同的X份信息。即使用于发送该信息的时频资源中存在部分干扰较为严重的资源,例如X个时频资源中的Y个时频资源存在干扰,由于没有干扰或者干扰较小的X-Y个时频资源上仍然发送了信息,所以可提高接收端成功接收信息的概率,即提高信息传输的可靠性。需要说明的是,任意相邻的两个频域资源没有重叠,可指相邻的两个频域资源是连续的两个频域资源,也可以指不连续的两个频域资源。
下面结合附图详细介绍本申请实施例提供的技术方案。
下面请参见图4,示出了本申请实施例提供的信息发送方法。该方法适用于多点到多点传输场景中,也适用于单点到单点传输场景中。在下文的介绍过程中,以该方法应用于图1所示的网络架构,侧行链路为终端设备间的链路为例。另外,该方法可由两个通信装置执行,这两个通信装置例如为第一通信装置和第二通信装置。其中,第一通信装置可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。对于第二通信装置同样,可以是终端设备或能够支持终端设备实现该方法所需的功能的通信装置,当然还可以是其他通信装置,例如芯片系统。且对于第一通信装置和第二通信装置的实现方式均不做限制。例如,第一通信装置可以是终端设备,第二通信装置是终端设备;或者第一通信装置是终端设备,第二通信装置是能够支持终端设备实现该方法所需的功能的通信装置,等等。
为了便于介绍,在下文中,以该方法由第一终端设备、第二终端设备执行为例,也就是,以第一通信装置是第一终端设备、第二通信装置是第二终端设备为例。如果将本实施例应用在图1所示的网络架构,则下文中所述的第一终端设备和第二终端设备均可以是图1所示的网络架构中的终端设备。需要说明的是,本申请实施例只是以通过第一终端设备和第二终端设备执行为例,并不限制于这两个终端设备。下文中,第一终端设备和第二终端设备之间所交互的信息可以是数据,也可以是控制信息,或者为数据和控制信息。为方便描述,下文以第一终端设备向第二终端设备发送第一信息为例。
S401、第一终端设备确定第一时频资源,该第一时频资源用于第一终端设备向第二终端设备发送第一信息。
第一时频资源为第一终端设备向第二终端设备发送第一信息使用的资源。第一终端设 备在向第二终端设备发送第一信息之前,可确定第一时频资源。例如,网络设备事先可分配资源池(resource pool),各个终端设备在该资源池中自主选择可用资源,用于传输信息。任意终端设备在选择可用资源时,会对资源池中的资源进行感知(sensing),并获取感知结果。感知可认为是侦听资源池内不同的时频资源被占用的情况。
第一终端设备可通过感知资源池内的时频资源来确定第一时频资源。感知可包括能量检测。能量检测指对资源池中的资源进行能量检测,例如对资源池中的资源进行参考信号接收功率(reference signal received power,RSRP)检测。如果某个资源的能量检测结果超过某一阈值,可认为该资源已经被占用;相反,如果某个资源的能量检测结果低于某一阈值,那么可认为该资源当前没有被占用,该资源可作为用于发送信息的候选资源。第一终端设备根据能量检测结果来选择资源池内当前没有被占用的资源来传输信息。如果第一终端设备根据能量检测结果发现资源池内的有没有被占用的资源,那么第一终端设备从没有被占用的资源中确定第一时频资源。如果第一终端设备根据能量检测结果发现资源池内的资源都被占用,第一终端设备可选择干扰较小的资源作为第一时频资源。
S402、第一终端设备在第一时频资源上向第二终端设备发送X份第一信息,相应的,第二终端设备接收该X份第一信息。其中,第一时频资源包括X个时频资源,X个时频资源对应的时域资源相同,X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,X个时频资源中的一个时频资源用于发送一份第一信息,X为大于或等于2的整数。
尽管第一终端设备通过感知优先选择没有被占用的时频资源发送第一信息,但是如果资源池内的资源都被占用,第一终端设备也可能会选择干扰程度较小的时频资源发送第一信息。即第一终端设备选择干扰程度较小的时频资源作为第一时频资源。由于第一时频资源可能存在干扰,例如,存在第二时频资源,该第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。如果第一时频资源与第二时频资源部分重叠,那么第一时频资源存在干扰。
为了提高第一信息传输的可靠性,第一终端设备可在第一时频资源上发送多份第一信息。例如,第一终端设备在第一时频资源包括的X个时频资源上可分别向第二终端设备发送第一信息。即第一终端设备在第一时频资源上向第二终端设备发送了X份第一信息,其中X个时频资源与X份第一信息一一对应。这样即使第一时频资源中存在部分干扰较为严重的资源,例如X个时频资源中的Y个时频资源存在干扰,由于没有干扰或者干扰较小的X-Y个时频资源上仍然发送了第一信息,所以可提高第二终端设备成功接收信息的概率,即提高信息传输的可靠性。
需要说明的是,第一终端设备在X个时频资源上分别发送第一信息,不同时频资源上发送的第一信息所包括的信息比特是相同的。也可以理解为,不同时频资源上发送的第一信息携带的数据内容是相同的。应理解,在X个时频资源上分别发送第一信息,实际上是在X个时频资源上分别发送一份TB,该TB是根据第一信息对应的信息比特生成的。从这个角度来说,不同时频资源上发送的第一信息,实际上是根据第一信息对应的信息比特生成的应用了相同RV或者应用了不同RV的TB。发送第一信息所应用的RV在文本中也称为第一信息对应的RV。
为便于理解,请参见图5,第一终端设备可在第一时频资源包括的X1个时频资源中的每个时频资源上发送第一信息,同理,第三终端设备可在第二时频资源包括的X2个时频 资源中的每个时频资源上发送第二信息。其中,X1和X2均为大于或等于2的整数,X1与X2可以相同,也可以不相同。假设X1个时频资源和X2个时频资源中有Y个时频资源发生重叠,图5以Y=2为例。尽管由于第三时频资源存在干扰,导致在第三时频资源上发送的第一信息被第二终端设备成功接收的概率较低,但是第一终端设备在第一时频资源中除了第三时频资源之外剩余的X1-Y个时频资源上也分别发送了第一信息,而该X1-Y个时频资源上无干扰,那么在X1-Y个时频资源上传输的第一信息被第二终端设备成功的概率较高。可见,相较于图3,图5中第一终端设备在第一时频资源向第二终端设备发送X1份第一信息,提高了第一信息传输的可靠性。同理,第三终端设备在X2个时频资源上分别发送第二信息,也可提高第二信息传输的可靠性。另外,由于第一信息成功传输给第二终端设备的概率提高,从而降低了第二终端设备触发第一终端设备重新发送第一信息的概率,即第一终端设备无需多次重复发送第一信息。第三终端设备也无需由于第四终端设备的触发,多次重复发送第二信息。从而可以尽量避免因多次重复发送导致的系统负载的提升,降低了终端设备受到其他终端设备干扰的概率,提高资源的利用率。
X取值较大的时候,发送一份第一信息的时频资源相对较小,每一份第一信息传输成功的概率与X的取值相关。例如,X=2,两份第一信息成功传输的概率分别为80%和60%。相同信道质量状态下,X=4,四份第一信息成功传输的概率相对来说较低,例如分别为30%、50%、30%、10%。总的来说,X=2时,第一信息成功传输的概率可以近似为1-(1-0.8)*(1-0.6),即约为92%;X=4时,第一信息最终成功概率可以近似为1-(1-0.3)*(1-0.5)*(1-0.3)*(1-0.1),即约为78%。其中,“*”表示相乘。因此,第一终端设备发送第一信息之前,可确定X的具体取值,以使得X个时频资源上X份第一信息传输成功的概率较高。
在一些实施例中,X的取值可根据第一时频资源被干扰的程度来确定。如果第一时频资源不存在干扰,那么第一终端设备可以在第一时频资源向第二终端设备发送一份第一信息,即X=2。例如,第一时频资源是未被任何终端设备占用的资源,X可等于2。
考虑到第一终端设备根据感知确定第一时频资源是未被任何终端设备占用的资源,实际上第一时频资源仍然可能会被其他终端设备占用。例如,第五终端设备与第一终端设备共同进行感知,并同时发现第一时频资源是未被任何其他终端设备占用的资源,那么第五终端设备和第一终端设备恰好可能确定均使用第一时频资源发送信息。这种情况下,第一时频资源还是可能存在干扰。因此,为了尽量保证第一信息传输的可靠性,在可能的实现方式中,即使第一终端设备确定第一时频资源是未被任何终端设备占用的资源,第一终端设备在第一时频资源上可以仍然发送X份第一信息,X可大于或等于2。
在一些实施例中,第一时频资源被干扰的程度可以通过第一时频资源中受到干扰的时频资源在第一时频资源中的比例来表征。该比例越大,X的取值越大。例如,当第一时频资源中受到干扰的时频资源在第一时频资源中的比例大于或等于第一阈值且小于第二阈值时,X等于2。又例如,第一时频资源中受到干扰的时频资源在第一时频资源中的比例大于或等于第二阈值且小于第三阈值时,X等于3。又例如,一时频资源中受到干扰的时频资源在第一时频资源中的比例大于或等于第三阈值时,X等于4。需要说明的是,本申请实施例对第一阈值、第二阈值以及第三阈值的具体取值不作限制。例如,第一阈值可为20%,第二阈值可为40%,第三阈值可为60%。
为方便理解,请参见图6A,为第一时频资源划分为X1个时频资源的一种示意图。图6A沿用图5的例子,即第一终端设备在第一时频资源上向第二终端设备发送第一信息,第 三终端设备在第二时频资源上向第四终端设备发送第二信息,第一时频资源和第二时频资源部分重叠,重叠的资源称为第三时频资源。在图6A中,第一时频资源中受到干扰的时频资源在第一时频资源中的比例大于或等于第一阈值且小于第二阈值,即X1=2。同理,请参见图6B,为第一时频资源划分为X1个时频资源的另一种示意图。图6B与图6A的不同之处在于,第一时频资源中受到干扰的时频资源在第一时频资源中的比例大于或等于第二阈值且小于第三阈值,即X1=3。类似的,请参见图6C,为第一时频资源划分为X1个时频资源的又一种示意图。图6C与图6A的不同之处在于,第一时频资源中受到干扰的时频资源在第一时频资源中的比例大于第三阈值,即X1=4。
在另一些实施例中,第一时频资源被干扰的程度也可以通过占用第一时频资源的终端设备的数量来表征。当终端设备数量较少的情况下,第一时频资源可能是未被任何终端设备占用的资源。当终端设备数量较多的情况下,第一时频资源可能是被某个或某些终端设备占用的资源。如果第一时频资源是未被任何终端设备占用的资源,那么X的取值较小;相反,如果第一时频资源是被某个或某些终端设备占用的资源,那么X的取值较大。例如,占用第一时频资源的终端设备的数量越大,X的取值越大。例如,当占用第一时频资源的终端设备的数量为2时,X等于2。当占用第一时频资源的终端设备的数量为3时,X等于3。当占用第一时频资源的终端设备的数量为4时,X等于4。需要说明的是,本申请实施例以X等于占用第一时频资源的终端设备的数量为例,但是对X与占用第一时频资源的终端设备的数量的具体对应关系不作限制。
本申请实施例对将第一时频资源包括的X个时频资源的具体方式不作限制,下面介绍几种X个时频资源的可能实现形式。
实现形式一,X个时频资源对应的X个频域资源属于同一个侧行链路BWP。
在侧行链路传输场景中,网络设备会为终端设备配置一个或多个侧行链路BWP。终端设备可激活被配置的一个或多个侧行链路BWP,以在激活的侧行链路BWP上发送信息。在一些实施例中,X个时频资源对应的X个频域资源属于同一个侧行链路BWP。即第一终端设备可根据被配置的侧行链路BWP来确定第一时频资源。由于X个时频资源对应的X个频域资源属于同一个侧行链路BWP,那么第一终端设备发送第一信息时,无需激活多个BWP,自然无需在激活的多个侧行链路BWP上分别确定用于发送第一信息的各个频域资源,从而可降低第一终端设备的复杂度。
实现形式二,X个时频资源对应的X个频域资源为X*K个连续的子信道(subchannel),即每个频域资源包括连续的K个子信道,K为大于或等于1的整数。应理解,“*”表示相乘。子信道是侧行链路BWP中的若干连续RB的集合。一个子信道包括的RB数目例如为10、12或15等。该实现形式中,由于X个时频资源对应的X个频域资源中的任一频域资源均包括K个子信道,即不会出现不同的频域资源包括的子信道的数量不同的情况。这样X个频域资源中的每个频域资源上映射信息的方式相同,这样第二终端设备根据同一种映射信息的方式即可译码各个频域资源上的信息,从而保证第二终端设备在各个频域资源上以更高的概率成功译码来自第一终端设备的第一信息。
在本申请实施例中,第一终端设备在X个时频资源上发送的X份第一信息可对应相同的RV,也可对应不同的RV。例如,第一终端设备在X个时频资源中的某个时频资源上发送的第一信息对应的TB的RV为RV0,第一终端设备在X个时频资源中的另一个时频资源上发送的第一信息对应的TB的RV可为RV0,也可也为RV2,或RV3或RV4。
为便于理解,下面首先介绍在一个时频资源上如何发送信息。请参见图7,为在一个时频资源(例如第四时频资源)上发送一份信息的示意图。图7以该信息对应的RV为RV0,即rv id=0的RV为例。第一终端设备可告知第二终端设备,第四时频资源对应的频域资源包括的子信道个数,以及在第四时频资源上发送的信息应用的RV,以使第二终端设备正确译码来自第一终端设备的信息。图7以第四时频资源对应的频域资源包括4个子信道为例。如图7所示,第一终端设备可向第二终端设备发送SCI,该SCI中的第一级SCI(1 st-stage SCI)可指示第四时频资源对应的频域资源包括的子信道个数,该SCI中的第二级SCI(2 nd-stage SCI)可指示在第四时频资源上发送的信息应用的RV。其中,第一级SCI承载于物理侧行链路控制信道(physical sidelink control channel,PSCCH),第二级SCI和数据承载于物理侧行链路共享信道(physical sidelink shared channel,PSSCH)。第二终端设备监听并译码PSCCH,可获得第一级SCI。第二终端设备解析第一级SCI,确定第四时频资源对应的频域资源包括的子信道个数。第二终端设备译码PSSCH,获得第二级SCI。第二终端设备解析第二级SCI,获得第一终端设备所使用的RV。从而第二终端设备根据获得的子信道个数以及RV来译码来自第一终端设备的第一信息。需要说明的是,图7以第二级SCI的时域位置在第一级SCI的时域位置之后为例。本申请实施例对第一级SCI和第二级SCI所占用的时频资源的位置不作具体限定。
在本申请实施例中,第一终端设备在第一时频资源包括的X个时频资源上发送X份第一信息。当第一终端设备和第二终端设备未针对各个时频资源对应的频域资源与各个子信道间的对应关系达成共识时,第二终端设备并不知道每个时频资源对应的频域资源包括哪些子信道,这就导致第二终端设备无法确定哪些子信道的信号对应一份第一信息。
请参见图8,为在一个时频资源(例如第一时频资源)上发送X=2份第一信息的示意图。第一时频资源包括X=2个时频资源,这2个时频资源可称为时频资源1和时频资源2。图8以第一时频资源对应的频域资源包括4个子信道为例。第一终端设备在时频资源1和时频资源2上分别向第二终端设备发送一份第一信息。类似图7,第一终端设备在时频资源1上发送第一SCI,该第一SCI中的第一级SCI可指示第一时频资源对应的频域资源包括的子信道个数,即4个信道。如果第二终端设备知道第一时频资源包括2个时频资源,那么第二终端设备可知道第一时频资源包括的每个时频资源对应的频域资源包括2个子信道。第一SCI包括的第二级SCI也可指示时频资源1上发送的第一信息所对应的RV。同理,第一终端设备在时频资源2发送第二SCI,该第二SCI中的第一级SCI可指示第一时频资源对应的频域资源包括的子信道个数,即4个信道。该第二SCI的第二级SCI可指示时频资源2上发送的第一信息所对应的RV。如果第二终端设备知道第一时频资源包括2个时频资源,那么第二终端设备可知道第一时频资源包括的每个时频资源对应的频域资源包括2个子信道。该第二SCI包括的第二级SCI也可指示时频资源2上发送的第一信息对应的RV。假设第一终端设备在时频资源1发送的第一信息对应RV0,第一终端设备在时频资源2发送的第一信息对应RV2。第二终端设备根据第一SCI和/或第二SCI可知时频资源1包括2个子信道,时频资源2也包括2个子信道。第二终端设备根据第一SCI中的第二级SCI可知第一终端设备在时频资源1发送的第一信息对应的RV0,根据第二SCI中的第二级SCI可知第一终端设备在时频资源2发送的第一信息对应的RV2。需要说明的是,图8以第二级SCI的时域位置在第一级SCI的时域位置之后为例。本申请实施例对第一级SCI和第二级SCI所占用的时频资源的位置不作具体限定。
需要说明的是,如果第一终端设备和第二终端设备没有约定各个时频资源对应的频域资源包括的子信道,那么第二终端设备并不知道哪些子信道对应一份第一信息。例如,第二终端设备可能认为信道1和信道2对应第一份信息,无法正确译码来自各个时频资源的第一信息。与此同时,第二终端设备也无法通过成功译码X个时频资源中的一个SCI,确定第一终端设备发送X份第一信息所使用的各个子信道。
因此,在本申请实施例中,第一终端设备和第二终端设备可约定X个时频资源对应的X个频域资源中各个频域资源包括的子信道,例如约定X个频域资源中各个频域资源包括的子信道的编号。这样第一终端设备和第二终端设备对各个频域资源包括的子信道理解一致,以尽量保证第二终端设备以更高的概率成功译码第一信息。
作为一种示例,可约定X个时频资源对应的频域资源在频域上的排序,例如X个时频资源在频域上的编号从低到高依次排序。X个频域资源中的第y个频域资源包括的K个连续的子信道中第k个子信道的编号为(y-1)*K+k-1,其中,“*”表示相乘,y的取值范围为{1,2,…,X},k的取值范围为{1,2,…,K}。假设X=2,K=2,也就是,第一时频资源包括2个时频资源,这2个时频资源对应的2个频域资源分别包括K=2个连续的子信道。2个时频资源中第y=1个时频资源,即时频资源1,对应的频域资源包括的2个子信道中,第k=1个子信道的编号为(y-1)*K+k-1=0,第k=2个子信道的编号为(y-1)*K+k-1=1,因此时频资源1对应的频域资源包括4个连续的子信道中编号为{0,1}的子信道。同理,2个时频资源中第y=2个时频资源,即时频资源2,对应的频域资源包括的2个子信道中,第k=1个子信道的编号为(y-1)*K+k-1=2,第k=2个子信道的编号为(y-1)*K+k-1=3,因此时频资源2对应的频域资源包括4个连续的子信道中编号为{2,3}的子信道。
沿用图8的例子,由于第一终端设备和第二终端设备约定X个频域资源中的第y个频域资源包括的K个连续的子信道中第k个子信道的编号为(y-1)*K+k-1。第一终端设备在时频资源1和时频资源2上分别发送第一信息,第二终端设备知道时频资源1对应的频域资源包括子信道0和子信道1,时频资源2对应的频域资源包括子信道2和子信道3。第二终端设备可根据各个子信道的编号和第一时频资源包括的X个时频资源的对应关系,确定子信道0和子信道1对应的信号属于一份信息,子信道2和子信道3对应的信号属于一份信息,以尽量保证第二终端设备正确译码来自各个时频资源的第一信息。进一步的,考虑到第一时频资源包括的X个时频资源中有存在受到干扰的时频资源,由于干扰的原因,第二终端设备可能无法成功译码在受到干扰的时频资源上的SCI。假设时频资源1未受到干扰,而时频资源2受到干扰。当第二终端设备成功译码第一终端设备在时频资源1发送的第一SCI后,第二终端设备可以根据第一SCI确定时频资源1对应的频域资源包括2个子信道。同时也确定时频资源1对应的频域资源包括的2个子信道的编号为{0,1}。另外,第二终端设备还可以根据第一SCI指示的RV,即RV0确定时频资源1为2个时频资源中的第y=1个时频资源。进一步的,第二终端设备确定第一终端设备还在时频资源2上发送了对应于RV2的第一信息,该时频资源2对应的频域资源包括的2个子信道的编号为{2,3}。这样即使第二终端设备因时频资源2受到干扰而译码第二SCI失败,第二终端设备仍然可以根据第一SCI确定第一终端设备在子信道2和子信道3上传输了第一信息,从而将子信道0、子信道1上接收到的第一信息与子信道2、子信道3上接收到的第一信息进行软合并,提升成功译码第一信息的概率。同理,假设时频资源2未受到干扰,而时频资源1受到干扰,当第二终端设备成功译码第二SCI后,即使第二终端设备因时频资源1受到干扰 而译码第一SCI失败,第二终端设备仍然可以根据第二SCI确定第一终端设备在子信道0和子信道1上传输了第一信息,从而将子信道0、子信道1上接收到的信号与子信道2、子信道3上接收到的信号进行软合并,提升成功译码第一信息的概率。
在本申请实施例中,第一终端设备在X个时频资源上发送X份第一信息可应用相同的RV,也可应用不同的RV。
作为一种示例,X个时频资源中的第p个时频资源对应的RV满足如下规则:
如果p mod 4=0,那么rv id,p={0,2,3,1},如果p mod 4=1,那么rv id,p={2,3,1,0},如果p mod 4=2,那么rv id,p={3,1,0,2},如果p mod 4=3,那么rv id,p={1,0,2,3}。其中,p的取值范围为{1,2,…,X}。其中,“mod”是取模的意思。
作为一种示例,第一终端设备根据第一时频资源被干扰的情况,确定X个时频资源中的第i个时频资源对应的RV。例如,第一终端设备在X个时频资源中未受到干扰的时频资源上传输RV0或RV3对应的第一信息。又例如第一终端设备在X个时频资源中受到干扰的时频资源上传输RV1或RV2对应的第一信息。
请参见图9,为第一时频资源包括的X个时频资源分别对应的RV的示意图。图9以X=2为例,即第一终端设备在X=2个时频资源上向第二终端设备发送X=2份第一信息。第一终端设备通过感知确定第一时频资源中的时频资源未受到干扰,同时确定第一时频资源中的时频资源2受到干扰。第一终端设备在时频资源1上可发送对应RV0的第一信息,在时频资源2上可发送对应RV2的第一信息。在未受到干扰的时频资源上发送对应RV0的第一信息,即发送含有更多系统比特的第一信息。在受到干扰的时频资源发送对应RV2的第一信息,即发送含有更多校验比特的第一信息。这样可提升第一信息包括的数据信息被第二终端设备成功接收的概率。同理,当时频资源1受到干扰而时频资源2未受到干扰时,第一终端设备可在时频资源1上发送对应RV2的第一信息,在时频资源2上发送对应RV0的第一信息。
第一终端设备在X个时频资源分别向第二终端设备发送第一信息,即冗余发送X份第一信息。如果第一终端设备在第一时频资源发送X份第一信息使用的调制阶数(modulation order)和编码速率(code rate),与第一终端设备在第一时频资源发送一份第一信息时的调制阶数和编码速率相同,会使得第一时频资源的频谱效率折损。为了尽量降低第一时频资源的SE的折损,第一终端设备在X个时频资源分别向第二终端设备发送第一信息之前,可根据实际情况调制和编码方案(modulation and coding scheme,MCS)。例如,第一终端设备可调整调制阶数和编码速率。
根据X的不同,第一终端设备在X个时频资源上分别发送第一信息使用的调制阶数和/或编码速率也有所不同。为方便描述,下文将第一终端设备在第一时频资源向第二终端设备发送一份第一信息所使用的调制阶数称为第一调制阶数,所使用的编码速率称为第一编码速率。将第一终端设备在第一时频资源(即X个时频资源)向第二终端设备发送X份第一信息所使用的调制阶数称为第二调制阶数,所使用的编码速率称为第二编码速率。假设第一调制阶数为Q m,第一编码速率为R。
在可能的实现方式中,第二调制阶数为k1×Q m,第二编码速率为k2×R,其中,k1与k2的乘积等于X。由于第二调制阶数为第一调制阶数的k1倍,第二编码速率为第一编码速率的k2倍,所以X个时频资源中任一时频资源上的频谱效率为第一时频资源发送一份第一信息时的频谱效率的X=k1*k2倍。然而第一终端设备在X个时频资源上分别发送第 一信息,即冗余发送X份第一信息使得SE受损为原来的1/X倍,这样最终在第一时频资源上的SE保持不变。同时,由于在第一时频资源共发送X份第一信息,可以获取冗余传输带来的对频带内干扰的抗性,从而提升信息传输的可靠性。
举例来说,在第一时频资源在频域上划分为2个时频资源的情况下,第一终端设备发送第一信息所使用的第二调制阶数可为第一终端设备发送第一信息所使用的第一调制阶数的2倍。第一终端设备发送第一信息所使用的第二编码速率与第一终端设备发送第一信息所使用的第一编码速率相同。即X=2,k1=2,k2=1。
或者,在第一时频资源在频域上划分为2个时频资源的情况下,第一终端设备发送第一信息所使用的第二调制阶数与第一终端设备发送第一信息所使用的第一调制阶数相同。第一终端设备发送第一信息所使用的第二编码速率为第一终端设备发送第一信息所使用的第一编码速率的2倍。即X=2,k1=1,k2=2。
在第一时频资源在频域上划分为3个时频资源的情况下,第一终端设备发送第一信息所使用的第二调制阶数可为第一终端设备发送第一信息所使用的第一调制阶数的2倍。第一终端设备发送第一信息所使用的第二编码速率为第一终端设备发送第一信息所使用的第一编码速率的1.5倍。即X=3,k1=2,k2=1.5。
或者,在第一时频资源在频域上划分为3个时频资源的情况下,第一终端设备发送第一信息所使用的第二调制阶数与第一终端设备发送第一信息所使用的第一调制阶数相同。第一终端设备发送第一信息所使用的第二编码速率为第一终端设备发送第一信息所使用的第一编码速率的3倍。即X=3,k1=1,k2=3。
在第一时频资源在频域上划分为4个时频资源的情况下,第一终端设备发送第一信息所使用的第二调制阶数可为第一终端设备发送第一信息所使用的第一调制阶数的2倍。第一终端设备发送第一信息所使用的第二编码速率为第一终端设备发送第一信息所使用的第一编码速率的2倍。即X=4,k1=2,k2=2。
第一终端设备在第一时频资源上发送X份第一信息,可认为,在第一终端设备在第一时频资源上发送一份第一信息的基础上,新引入了一种发送第一信息的方式。为方便描述,本申请实施例可将在第一时频资源发送一份第一信息称为第一传输方式,将在第一时频资源发送X份第一信息统称为第二传输方式。X的取值不同,可认为对应的传输方式也不同。例如,X=2,可认为是一种第二传输方式,X=3,可认为是另一种第二传输方式。
例如,请参见表1,示出了第一终端设备发送第一信息可能使用的X种传输方式。也就是,如果第一终端设备将第一时频资源在频域上划分为X份时频资源,那么存在X种传输方式,即第一传输方式和X-1种第二传输方式。
表1
传输方式 X
1 1
2 2
3 3
4 4
对于任意一种第二传输方式来说,根据调制阶数和/或编码速率可进一步划分为不同的传输方式。例如,X=2,k1=2,k2=1时,可看作是一种第二传输方式,X=2,k1=1,k2=2时,也可看作是一种第二传输方式。举例来说,请参见表2,示出了第一终端设备发送第 一信息可能使用的多种传输方式。需要说明的是,表2中的传输方式仅是举例示意。
表2
传输方式 X 调制阶数 编码速率
1 1 Q m R
2-A 2 Q m×2 R
2-B 2 Q m R×2
3-A 3 Q m×2 R×1.5
3-B 3 Q m R×3
4 4 Q m×2 R×2
本申请实施例对多种传输方式的具体定义不作限制。例如可定义多种传输方式为表1中的二种或者多种传输方式,也可以定义多种传输方式为表2中的两种或者多种传输方式。需要说明的是,这里多种传输方式包括第一传输方式和至少一种第二传输方式。
对于第二终端设备来说,并不知道第一终端设备发送第一信息采用的是第一传输方式,还是第二传输方式。或者第二终端设备知道第一终端设备采用的某种第二传输方式,但是不知道该第二种传输对应的调制阶数和编码速率。这会导致第二终端设备无法正确接收来自第一终端设备的第一信息。为此,第一终端设备需告知第二终端设备,第一终端设备究竟使用何种传输方式发送第一信息。
S403、第一终端设备向第二终端设备发送指示信息,该指示信息用于指示多种传输方式中的目标传输方式。
终端设备确定目标传输方式之后,可将目标传输方式告知第二终端设备。例如,第一终端设备向第二终端设备发送用于指示的目标传输方式的指示信息。例如,第一终端设备可在X个时频资源中的每一个时频资源上发送第一信息以及SCI,该指示信息可承载于SCI。例如,该指示信息可承载于SCI包括的第一级SCI,也可以承载于SCI包括的第一级SCI和第二级SCI。
作为一种示例,该指示信息承载于SCI中的第一级SCI。假设第一级SCI包括第一字段,该第一字段包括M个比特,该指示信息可承载于M个比特中的部分比特或全部比特。例如,M个比特的不同比特状态对应不同的传输方式。例如,M=2,那么M个比特的各个比特状态指示的内容具体可参考表3或表4。
表3
M个比特的比特状态 传输方式(X)
00 1
01 2
10 3
11 4
表4
M个比特的比特状态 传输方式
00 1
01 2-A
10 2-B
11 预留
又例如,M=3,那么M个比特的各个比特状态指示的内容具体可参考表5。
表5
M个比特的比特状态 传输方式
000 1
001 2-A
010 2-B
011 3-A
100 3-B
101 4
111 预留
针对表3来说,也可认为第一级SCI包括的比特数有限,那么第一级SCI可以只指示第一终端设备使用第一传输方式或第二传输方式。至于第一终端设备使用何种第二传输方式,第一终端设备还可以通过第二级SCI来告知第二终端设备。或者,第一终端设备通过第一级SCI指示第一终端设备采用的第二传输方式,第一终端设备和第二终端设备可另外约定与第一级SCI指示的第二传输方式对应的调制阶数和/或编码速率。
在一些实施例中,第一级SCI用于指示X,第二终端设备可根据预设规则或者与第一终端设备的约定来确定与X对应的k1和/或k2。
预设规则可以是k1=X,或者,k2=X。或者第一终端设备和第二终端设备可约定k1=X,或者,k2=X。这种情况下,第二终端设备根据第一级SCI确定X,且根据X确定与X对应的k1和k2,当k1=X,那么k2=1;当k1=1,那么k2=X。由于无需通过SCI来告知k1和/或k2的取值,所以可减少SCI的开销。
在另一些实施例中,第一级SCI用于指示X,第二级SCI用于指示与X对应的k1和/或k2。这种方式,通过第一级SCI和第二级SCI可指示具体的第二传输方式,简单直接。
可选的,第一字段占用预留(reserved)字段中的部分或者全部比特,如果第一终端设备不支持在第一时频资源发送X份第一信息,那么可将预留字段的各个比特均置为0。使用预留字段指示第一终端设备发送信息的具体传输方式,可兼容NR侧行链路的传输机制。
另外,本申请实施例还可以通过第二SCI来指示X个时频资源发送的X份第一信息是否对应相同的RV。例如,第二SCI包括第二字段,该第二字段中的1个比特来指示X个时频资源发送的X份第一信息是否对应相同的RV。例如,这1个比特的取值为0,表示X个时频资源发送的X份第一信息对应不同的RV,这1个比特的取值为1,表示X个时频资源发送的X第一信息对应相同的RV。或者,这1个比特的取值为0,表示X个时频资源发送的X份第一信息对应相同的RV,这1个比特的取值为1,表示X个时频资源发送的X份第一信息对应不同的RV。
第一终端设备在X个时频资源分别向第二终端设备发送第一信息时,还向第二终端设备发送SCI。在一些实施例中,第一终端设备可在X个时频资源中的每一个时频资源上发送第一信息以及SCI。各个时频资源上发送的SCI中的第一级SCI可用于指示各个时频资源对应的频域资源的位置。各个时频资源上发送的SCI中的第二级SCI用于指示对应时频资源上发送的第一信息对应的RV。如果前述的指示信息承载于第一级SCI,第一级SCI还可以用于指示第一终端设备发送第一信息的传输方式。如果前述的指示信息承载于第一 级SCI和第二级SCI,那么第一级SCI和第二级SCI共同指示第一终端设备发送第一信息的传输方式。第二终端设备在各个时频资源上接收SCI,并对所接收的SCI进行译码,从而确定第一终端设备发送第一信息的传输方式,以及各个时频资源上发送的第一信息对应的RV。第二终端设备根据各个时频资源发送的第一信息的RV来获取第一信息的内容。
在另一些实施例中,第一终端设备可在X个时频资源中的各个时频资源上发送第一信息,以及在X个时频资源中的一个时频资源上发送SCI。该方式下,第一终端设备只需要发送一次SCI,可节约资源开销。这种情况下,第二级SCI中的第二字段可包括2X个比特。这2X个比特用于指示X个时频资源中各个时频资源上发送的第一信息对应的RV。例如,X=2,X个时频资源上发送的第一信息对应的RV为RV0和RV2,2X个比特可以为“0010”,其中,“0010”中的“00”表示RV0,“0010”中的“10”表示RV2。
需要说明的是,S403不是必须执行的步骤,在图4中以虚线进行示意。例如,第一终端设备和第二终端设备可约定在第一时频资源上发送X份第一信息,且约定采用的调制阶数为X*Q m,编码速率R不变;或者约定编码速率为X*R,调制阶数不变。这种情况下,第一终端设备无需向第二终端设备发送指示信息,以指示X,或者指示X以及与X对应的调制阶数以及编码速率。
S404、第二终端设备根据所接收的信息确定第一信息的内容。
第二终端设备接收来自第一终端设备的信息之后,可根据所接收的信息来确定第一信息的内容。
在可能的实现方式中,如果第一终端设备和第二终端设备之间约定第一终端设备发送第一信息的传输方式,即约定在第一时频资源上发送X份第一信息,以及约定与X对应的调制阶数和编码速率,那么第二终端设备以约定的传输方式接收来自第一终端设备的第一信息。第一终端设备译码所接收的第一信息,以确定第一信息的内容。或者,第二终端设备接收来自第一终端设备的指示信息,可确定第一终端设备以何种传输方式发送第一信息,并采用与发送第一信息对应的方式接收该第一信息,并译码所接收的信息,以确定第一信息的内容。
在可能的实现方式中,第一终端设备通过指示信息告知第二终端设备,第一终端设备发送第一信息使用的传输方式。第二终端设备根据来自第一终端设备的SCI,可确定第一终端设备在X个时频资源发送的X份第一信息分别对应的RV。第二终端设备可根据第一终端设备发送每份第一信息对应的RV来确定第一信息的内容。考虑到第二终端设备可能无法成功确定第一信息的内容,即无法成功译码第一信息。这种情况下,第二终端设备可向第一终端设备发送NACK消息。第一终端设备接收到来自第二终端设备的NACK消息之后,重新向第二终端设备发送第一信息。第一终端设备再次向第二终端设备发送X份第一信息所应用的RV与之前向第二终端设备发送X份第一信息所应用的RV可相同,也可以不同。沿用图8的例子,在初次传输(第一次发送)中,第一终端设备在时频资源1上向第二终端设备发送的第一信息对应的RV为RV0,第一终端设备在时频资源2上向第二终端设备发送的第一信息对应的RV为RV2。在第一次重新传输(第二次发送)中,第一终端设备在时频资源1上向第二终端设备发送的第一信息对应的RV为RV2,第一终端设备在时频资源2上向第二终端设备发送的第一信息对应的RV为RV3。在第二次重新传输(第三次发送)中,第一终端设备在时频资源1上向第二终端设备发送的第一信息对应的RV为RV3,第一终端设备在时频资源2上向第二终端设备发送的第一信息对应的RV为 RV1。在第三次重新传输(第四次发送)中,第一终端设备在时频资源1上向第二终端设备发送的第一信息对应的RV为RV1,第一终端设备在时频资源2上向第二终端设备发送的第一信息对应的RV为RV0,以此类推。
本申请实施例提供的信息发送方法中,发送端可在用于发送第一信息的时频资源包括的X个时频资源上分别发送一份第一信息。这X个时频资源分别对应的时域资源相同,这X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠。即使用于发送第一信息的时频资源中存在部分干扰较为严重的资源,例如X个时频资源中的Y个时频资源存在干扰,由于没有干扰或者干扰较小的X-Y个时频资源上仍然发送了第一信息,所以可提高接收端成功接收第一信息的概率,即提高信息传输的可靠性。
所述本申请提供的实施例中,分别从第一终端设备和第二终端设备之间交互的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,第一终端设备和第二终端设备可以包括硬件结构和/或软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能以硬件结构、软件模块、还是硬件结构加软件模块的方式来执行,取决于技术方案的特定应用和设计约束条件。
基于与方法实施例的同一发明构思,本申请实施例提供一种通信装置。下面结合附图介绍本申请实施例中用来实现上述方法的通信装置。
图10为本申请实施例提供的通信装置1000的示意性框图。该通信装置1000可以是图1中的终端设备,用于实现上述方法实施例中对于第一终端设备或第二终端设备的方法。该通信装置1000可以包括处理模块1010和收发模块1020。可选的,还可以包括存储单元,该存储单元可以用于存储指令(代码或者程序)和/或数据。处理模块1010和收发模块1020可以与该存储单元耦合,例如,处理模块1010可以读取存储单元中的指令(代码或者程序)和/或数据,以实现相应的方法。上述各个单元可以独立设置,也可以部分或者全部集成。
一些可能的实施方式中,通信装置1000能够对应实现上述方法实施例中终端设备的行为和功能,例如实现图4的实施例中第一终端设备执行的方法。通信装置1000可以为第一终端设备,也可以为应用于第一终端设备中的部件(例如芯片或者电路),也可以是第一终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。收发模块1020可以用于执行图4所示的实施例中由第一终端设备所执行的全部接收或发送操作。例如图4所示的实施例中的S402、S403,和/或用于支持本文所描述的技术的其它过程,和/或用于支持本文所描述的技术的其它过程。处理模块1010可用于执行如图4所示的实施例中由第一终端设备所执行的除了收发操作之外的全部操作。例如图4所示的实施例中的S401,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,处理模块1010用于确定第一时频资源,该第一时频资源用于第一终端设备向第二终端设备发送第一信息。收发模块1020用于在第一时频资源向第二终端设备发送X份第一信息。其中,第一时频资源包括X个时频资源,这X个时频资源中一个时频资源用于发送一份第一信息。这X个时频资源对应的时域资源相同,X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠。X为大于或等于2的整数。
作为一种可选的实现方式,第一时频资源与第二时频资源部分重叠。第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
作为一种可选的实现方式,X与第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关。和/或,X与占用第一时频资源的终端设备的数量相关。
作为一种可选的实现方式,X个时频资源对应的频域资源属于同一个侧行链路BWP。
作为一种可选的实现方式,X个频域资源为X*K个连续的子信道,每一个频域资源包括K个连续的子信道。K为大于或等于1的整数。
作为一种可选的实现方式,X个时频资源上发送的X份第一信息应用不同的RV。
作为一种可选的实现方式,X个时频资源中未受到干扰的时频资源上发送的第一信息对应的RV为RV0或RV3,所述X个时频资源中受到干扰的时频资源上发送的所述第一信息对应的RV为RV1或RV2。
作为一种可选的实现方式,收发模块1020还用于向第二终端设备发送指示信息,该指示信息用于指示X的取值。
作为一种可选的实现方式,指示信息还用于指示与X对应的调制阶数以及编码速率。
作为一种可选的实现方式,第一时频资源上发送一份第一信息对应的调制阶数为Q m,对应的编码速率为R,第一时频资源上发送X份第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R。其中,k1与k2的乘积等于X,X、k1以及k2满足如下关系:
X=2,k1=2,k2=1;或者,X=2,k1=1,k2=2;或者,X=3,k1=2,k2=1.5;或者,
X=3,k1=1,k2=3;或者,X=4,k1=2,k2=2。
作为一种可选的实现方式,指示信息承载于SCI中的第一级SCI。
作为一种可选的实现方式,指示信息承载于SCI中的第一级SCI以及第二级SCI。第一级SCI用于指示X,第二级SCI用于指示k1和/或k2。
一些可能的实施方式中,通信装置1000能够对应实现上述方法实施例中第二终端设备的行为和功能,例如,实现图4的实施例中第二终端设备执行的方法。例如通信装置1000可以为第二终端设备,也可以为应用于第二终端设备中的部件(例如芯片或者电路),也可以是第二终端设备中的芯片或芯片组或芯片中用于执行相关方法功能的一部分。收发模块1020可以用于执行图4所示的实施例中由第二终端设备所执行的全部接收或发送操作。例如图4所示的实施例中的S402,S403,和/或用于支持本文所描述的技术的其它过程。处理模块1010用于执行如图4所示的实施例中由基站所执行的除了收发操作之外的全部操作,和/或用于支持本文所描述的技术的其它过程。例如图4所示的实施例中的S404,和/或用于支持本文所描述的技术的其它过程。
在一些实施例中,处理模块1010用于确定第一时频资源,该第一时频资源用于第二终端设备接收来自第一终端设备的第一信息。收发模块1020用于第二终端设备在第一时频资源上接收来自第一终端设备的X份第一信息。第一时频资源包括X个时频资源,这X个时频资源中一个时频资源用于发送一份第一信息。这X个时频资源对应的时域资源相同,X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠。X为大于或等于2的整数。处理模块1010还用于确定第一信息的内容。
作为一种可选的实现方式,第一时频资源与第二时频资源部分重叠。第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
作为一种可选的实现方式,X与第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关。和/或,X与占用第一时频资源的终端设备的数量相关。
作为一种可选的实现方式,X个时频资源对应的频域资源属于同一个侧行链路BWP。
作为一种可选的实现方式,X个频域资源为X*K个连续的子信道,每一个频域资源包括K个连续的子信道。K为大于或等于1的整数。
作为一种可选的实现方式,X个时频资源上发送的X份第一信息应用不同的RV。
作为一种可选的实现方式,X个时频资源中未受到干扰的时频资源上发送的第一信息对应的RV为RV0或RV3。X个时频资源中受到干扰的时频资源上发送的第一信息对应的RV为RV1或RV2。
作为一种可选的实现方式,收发模块1020还用于接收来自第一终端设备的指示信息,该指示信息用于指示X的取值。
作为一种可选的实现方式,指示信息还用于指示与X对应的调制阶数以及编码速率。
作为一种可选的实现方式,第一时频资源上发送一份第一信息对应的调制阶数为Q m,对应的编码速率为R。第一时频资源上发送X份第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R。其中,k1与k2的乘积等于X。X、k1以及k2满足如下关系:
X=2,k1=2,k2=1;或者,X=2,k1=1,k2=2;或者,X=3,k1=2,k2=1.5;或者,X=3,k1=1,k2=3;或者,X=4,k1=2,k2=2。
作为一种可选的实现方式,指示信息承载于SCI中的第一级SCI。
作为一种可选的实现方式,指示信息承载于SCI中的第一级SCI以及第二级SCI。第一级SCI用于指示X,第二级SCI用于指示k1和/或k2。
应理解,本申请实施例中的处理模块1010可以由处理器或处理器相关电路组件实现,收发模块1020可以由收发器或收发器相关电路组件或者通信接口实现。
如图11所示为本申请实施例提供的通信装置1100,其中,通信装置1100可以是第一终端设备,能够实现本申请实施例提供的方法中第一终端设备的功能。或者,通信装置1100可以是第二终端设备,能够实现本申请实施例提供的方法中第二终端设备的功能;通信装置1100也可以是能够支持第一终端设备实现本申请实施例提供的方法中对应的功能的装置,或者能够支持第二终端设备实现本申请实施例提供的方法中对应的功能的装置。其中,该通信装置1100可以为芯片系统。本申请实施例中,芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
在硬件实现上,上述收发模块1020可以为收发器,收发器集成在通信装置1100中构成通信接口1110。
通信装置1100包括至少一个处理器1120,用于实现或用于支持通信装置1100实现本申请实施例提供的方法中第一终端设备或第二终端设备的功能。具体参见方法示例中的详细描述,此处不做赘述。
通信装置1100还可以包括至少一个存储器1130,用于存储程序指令和/或数据。存储器1130和处理器1120耦合。本申请实施例中的耦合是装置、单元或模块之间的间接耦合或通信连接,可以是电性,机械或其它的形式,用于装置、单元或模块之间的信息交互。处理器1120可能和存储器1130协同操作。处理器1120可能执行存储器1130中存储的程序指令和/或数据,以使得通信装置1100实现相应的方法。所述至少一个存储器中的至少一个可以包括于处理器中。需要说明的是,存储器1130不是必须的,所以在图11中以虚线进行示意。
通信装置1100还可以包括通信接口1110,用于通过传输介质和其它设备进行通信,从而用于通信装置1100中的装置可以和其它设备进行通信。示例性地,当该通信装置为第 一终端设备时,该其它设备为第二终端设备;或者,当该通信装置为第二终端设备时,该其它设备为第一终端设备。处理器1120可以利用通信接口1110收发数据。通信接口1110具体可以是收发器。
本申请实施例中不限定上述通信接口1110、处理器1120以及存储器1130之间的具体连接介质。本申请实施例在图11中以存储器1130、处理器1120以及通信接口1110之间通过总线1140连接,总线在图11中以粗线表示,其它部件之间的连接方式,仅是进行示意性说明,并不引以为限。所述总线可以分为地址总线、数据总线、控制总线等。为便于表示,图11中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。
在本申请实施例中,处理器1120可以是通用处理器、数字信号处理器、专用集成电路、现场可编程门阵列或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件,可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。
在本申请实施例中,存储器1130可以是非易失性存储器,比如硬盘(hard disk drive,HDD)或固态硬盘(solid-state drive,SSD)等,还可以是易失性存储器(volatile memory),例如随机存取存储器(random-access memory,RAM)。存储器是能够用于携带或存储具有指令或数据结构形式的期望的程序代码并能够由计算机存取的任何其他介质,但不限于此。本申请实施例中的存储器还可以是电路或者其它任意能够实现存储功能的装置,用于存储程序指令和/或数据。
需要说明的是,上述实施例中的通信装置可以是终端也可以是电路,也可以是应用于终端中的芯片或者其他具有上述终端功能的组合器件、部件等。当通信装置是终端时,收发模块可以是收发器,可以包括天线和射频电路等,处理模块可以是处理器,例如:中央处理模块(central processing unit,CPU)。当通信装置是具有上述终端功能的部件时,收发模块可以是射频单元,处理模块可以是处理器。当通信装置是芯片系统时,该通信装置可以是现场可编程门阵列(field programmable gate array,FPGA),可以是专用集成芯片(application specific integrated circuit,ASIC),还可以是系统芯片(system on chip,SoC),还可以是CPU,还可以是网络处理器(network processor,NP),还可以是数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU),还可以是可编程控制器(programmable logic device,PLD)或其他集成芯片。处理模块可以是芯片系统的处理器。收发模块或通信接口可以是芯片系统的输入输出接口或接口电路。例如,接口电路可以为代码/数据读写接口电路。所述接口电路,可以用于接收代码指令(代码指令存储在存储器中,可以直接从存储器读取,或也可以经过其他器件从存储器读取)并传输至处理器;处理器可以用于运行所述代码指令以执行上述方法实施例中的方法。又例如,接口电路也可以为通信处理器与收发机之间的信号传输接口电路。例如,在发送场景中,所述处理器用于执行XX以得到Y数据(XX为非空口操作,包括但不限于确定,判断、处理、计算、查找、比较等操作);所述接口电路可以用于将Y数据发送至发射机(发射机用于执行空口上的发送操作)。又例如,在接收场景中,所述接口电路可以用于从接收机接收Z数据(接收机用于执行空口上的接收操作),并将所述Z数据发送至所述处理器;所述处理器用于对所述Z数据做XX处理(XX为非空口操作,包括但不限于确定,判断、处理、计算、查找、比较等操作)。
图12示出了一种简化的终端设备的结构示意图。为了便于理解和图示方便,图12中,该终端设备以手机作为例子。如图12所示,终端设备包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对该车载单元进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的设备可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到该设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的设备产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为该装置的收发单元,将具有处理功能的处理器视为该装置的处理单元。如图12所示,该装置包括收发单元1210和处理单元1220。收发单元1210也可以称为收发器、收发机、收发装置等。处理单元1220也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元1210有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中第一终端设备或第二终端设备的发送操作和接收操作,处理单元1220用于执行上述方法实施例中第一终端设备或第二终端设备上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210可以用于执行图4所示的实施例中的S402,S403,和/或用于支持本文所描述的技术的其它过程。处理单元1220可以用于执行如图4所示的实施例中的S401,和/或用于支持本文所描述的技术的其它过程。又例如,在一种实现方式中,收发单元1210可以用于执行图4所示的实施例中的S402,S403,和/或用于支持本文所描述的技术的其它过程。处理单元1220可以用于执行如图4所示的实施例中的S404,和/或用于支持本文所描述的技术的其它过程。
当该通信装置为芯片类的装置或者电路时,该装置可以包括收发单元和处理单元。其中,所述收发单元可以是输入输出电路和/或通信接口;处理单元为集成的处理器或者微处理器或者集成电路。
本申请实施例还提供一种通信系统,具体的,通信系统包括多个终端设备,或者还可以包括网络设备,或者还可以包括更多个网络设备和多个终端设备。示例性的,通信系统包括用于实现上述图4的相关功能的多个终端设备,例如第一终端设备和第二终端设备。终端设备分别用于实现上述图4相关第一终端设备或第二终端设备的功能。具体请参考上述方法实施例中的相关描述,这里不再赘述。
本申请实施例中还提供一种计算机可读存储介质,包括指令,当其在计算机上运行时,使得计算机执行图4中第一终端设备或第二终端设备执行的方法。
本申请实施例中还提供一种计算机程序产品,包括指令,当其在计算机上运行时,使得计算机执行图4中第一终端设备或第二终端设备执行的方法。
本申请实施例提供了一种芯片系统,该芯片系统包括处理器,还可以包括存储器,用于实现前述方法中第一终端设备或第二终端设备的功能。该芯片系统可以由芯片构成,也可以包含芯片和其他分立器件。
本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,本申请实施例中“多个”可理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个,例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C、A和B、A和C、B和C、或A和B和C。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一设备和第二设备,只是为了区分不同的设备,而并不是限制两个设备的功能、优先级或重要程度等。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计 算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(read-only memory,ROM)、随机存取存储器(random access memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (52)

  1. 一种信息发送方法,其特征在于,包括:
    第一终端设备确定第一时频资源,所述第一时频资源用于所述第一终端设备向第二终端设备发送第一信息;
    所述第一终端设备在所述第一时频资源向所述第二终端设备发送X份第一信息,所述第一时频资源包括X个时频资源,所述X个时频资源中一个时频资源用于发送一份第一信息,所述X个时频资源对应的时域资源相同,所述X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,所述X为大于或等于2的整数。
  2. 如权利要求1所述的方法,其特征在于,所述第一时频资源与第二时频资源部分重叠,所述第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
  3. 如权利要求1或2所述的方法,其特征在于,所述X与所述第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关;和/或,
    所述X与占用所述第一时频资源的终端设备的数量相关。
  4. 如权利要求1-3任一项所述的方法,其特征在于,所述X个时频资源对应的频域资源属于同一个侧行链路带宽部分BWP。
  5. 如权利要求4所述的方法,其特征在于,所述X个频域资源为X*K个连续的子信道,所述K为大于或等于1的整数,每一个频域资源包括K个连续的子信道。
  6. 如权利要求1-5任一项所述的方法,其特征在于,所述X个时频资源上发送的X份所述第一信息对应不同的冗余版本RV。
  7. 如权利要求6所述的方法,其特征在于,所述X个时频资源中未受到干扰的时频资源上发送的所述第一信息对应的RV为RV0或RV3,所述X个时频资源中受到干扰的时频资源上发送的所述第一信息对应的RV为RV1或RV2。
  8. 如权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    所述第一终端设备向所述第二终端设备发送指示信息,所述指示信息用于指示所述X的取值。
  9. 如权利要求8所述的方法,其特征在于,所述指示信息还用于指示与所述X对应的调制阶数以及编码速率。
  10. 如权利要求9所述的方法,其特征在于,所述第一时频资源上发送一份所述第一信息对应的调制阶数为Q m,对应的编码速率为R,所述第一时频资源上发送X份所述第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R,其中,所述k1与所述k2的乘积等于所述X,所述X、所述k1以及所述k2满足如下关系:
    X=2,k1=2,k2=1;或者,
    X=2,k1=1,k2=2;或者,
    X=3,k1=2,k2=1.5;或者,
    X=3,k1=1,k2=3;或者,
    X=4,k1=2,k2=2。
  11. 如权利要求9或10所述的方法,其特征在于,所述指示信息承载于侧行链路控制信息SCI中的第一级SCI。
  12. 如权利要求9或10所述的方法,其特征在于,所述指示信息承载于侧行链路控制 信息SCI中的第一级SCI以及第二级SCI,所述第一级SCI用于指示所述X,所述第二级SCI用于指示所述k1和/或所述k2。
  13. 一种信息接收方法,其特征在于,包括:
    第二终端设备确定第一时频资源,所述第一时频资源用于所述第二终端设备接收来自第一终端设备的第一信息;
    所述第二终端设备在所述第一时频资源上接收来自所述第一终端设备的X份第一信息,所述第一时频资源包括X个时频资源,所述X个时频资源中一个时频资源用于发送一份第一信息,所述X个时频资源对应的时域资源相同,所述X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,所述X为大于或等于2的整数;
    所述第二终端设备确定所述第一信息的内容。
  14. 如权利要求13所述的方法,其特征在于,所述第一时频资源与第二时频资源部分重叠,所述第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
  15. 如权利要求13或14所述的方法,其特征在于,所述X与所述第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关;和/或,
    所述X与占用所述第一时频资源的终端设备的数量相关。
  16. 如权利要求13-15任一项所述的方法,其特征在于,所述X个时频资源对应的频域资源属于同一个侧行链路带宽部分BWP。
  17. 如权利要求16所述的方法,其特征在于,所述X个频域资源为X*K个连续的子信道,所述K为大于或等于1的整数,每一个频域资源包括K个连续的子信道。
  18. 如权利要求13-17任一项所述的方法,其特征在于,所述X个时频资源上发送的X份所述第一信息对应不同的冗余版本RV。
  19. 如权利要求18所述的方法,其特征在于,所述X个时频资源中未受到干扰的时频资源上发送的所述第一信息对应的RV为RV0或RV3,所述X个时频资源中受到干扰的时频资源上发送的所述第一信息对应的RV为RV1或RV2。
  20. 如权利要求13-19任一项所述的方法,其特征在于,所述第二终端设备接收来自所述第一终端设备的指示信息,所述指示信息用于指示所述X的取值。
  21. 如权利要求20所述的方法,其特征在于,所述指示信息还用于指示与所述X对应的调制阶数以及编码速率。
  22. 如权利要求21所述的方法,其特征在于,所述第一时频资源上发送一份所述第一信息对应的调制阶数为Q m,对应的编码速率为R,所述第一时频资源上发送X份所述第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R,其中,所述k1与所述k2的乘积等于所述X,所述X、所述k1以及所述k2满足如下关系:
    X=2,k1=2,k2=1;或者,
    X=2,k1=1,k2=2;或者,
    X=3,k1=2,k2=1.5;或者,
    X=3,k1=1,k2=3;或者,
    X=4,k1=2,k2=2。
  23. 如权利要求21或22所述的方法,其特征在于,所述指示信息承载于侧行链路控制信息SCI中的第一级SCI。
  24. 如权利要求21或22所述的方法,其特征在于,所述指示信息承载于侧行链路控制 信息SCI中的第一级SCI以及第二级SCI,所述第一级SCI用于指示所述X,所述第二级SCI用于指示所述k1和/或所述k2。
  25. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述处理模块用于设备确定第一时频资源,所述第一时频资源用于所述通信装置向第二终端设备发送第一信息;
    所述收发模块,用于在所述第一时频资源向所述第二终端设备发送X份第一信息,所述第一时频资源包括X个时频资源,所述X个时频资源中一个时频资源用于发送一份第一信息,所述X个时频资源对应的时域资源相同,所述X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,所述X为大于或等于2的整数。
  26. 如权利要求25所述的装置,其特征在于,所述第一时频资源与第二时频资源部分重叠,所述第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
  27. 如权利要求25或26所述的装置,其特征在于,所述X与所述第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关;和/或,
    所述X与占用所述第一时频资源的终端设备的数量相关。
  28. 如权利要求25-27任一项所述的装置,其特征在于,所述X个时频资源对应的频域资源属于同一个侧行链路带宽部分BWP。
  29. 如权利要求28所述的装置,其特征在于,所述X个频域资源为X*K个连续的子信道,所述K为大于或等于1的整数,每一个频域资源包括K个连续的子信道。
  30. 如权利要求25-29任一项所述的装置,其特征在于,所述X个时频资源上发送的X份所述第一信息对应不同的冗余版本RV。
  31. 如权利要求30所述的装置,其特征在于,所述X个时频资源中未受到干扰的时频资源上发送的所述第一信息对应的RV为RV0或RV3,所述X个时频资源中受到干扰的时频资源上发送的所述第一信息对应的RV为RV1或RV2。
  32. 如权利要求25-31任一项所述的装置,其特征在于,所述收发模块还用于:向所述第二终端设备发送指示信息,所述指示信息用于指示所述X的取值。
  33. 如权利要求32所述的装置,其特征在于,所述指示信息还用于指示与所述X对应的调制阶数以及编码速率。
  34. 如权利要求33所述的装置,其特征在于,所述第一时频资源上发送一份所述第一信息对应的调制阶数为Q m,对应的编码速率为R,所述第一时频资源上发送X份所述第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R,其中,所述k1与所述k2的乘积等于所述X,所述X、所述k1以及所述k2满足如下关系:
    X=2,k1=2,k2=1;或者,
    X=2,k1=1,k2=2;或者,
    X=3,k1=2,k2=1.5;或者,
    X=3,k1=1,k2=3;或者,
    X=4,k1=2,k2=2。
  35. 如权利要求33或34所述的装置,其特征在于,所述指示信息承载于侧行链路控制信息SCI中的第一级SCI。
  36. 如权利要求33或34所述的装置,其特征在于,所述指示信息承载于侧行链路控制信息SCI中的第一级SCI以及第二级SCI,所述第一级SCI用于指示所述X,所述第二级 SCI用于指示所述k1和/或所述k2。
  37. 一种通信装置,其特征在于,包括处理模块和收发模块;
    其中,所述处理模块,用于确定第一时频资源,所述第一时频资源用于所述通信装置接收来自第一终端设备的第一信息;
    所述收发模块,用于在所述第一时频资源上接收来自所述第一终端设备的X份第一信息,所述第一时频资源包括X个时频资源,所述X个时频资源中一个时频资源用于发送一份第一信息,所述X个时频资源对应的时域资源相同,所述X个时频资源对应的X个频域资源中任意相邻的两个频域资源没有重叠,所述X为大于或等于2的整数;
    所述处理模块还用于确定所述第一信息的内容。
  38. 如权利要求37所述的装置,其特征在于,所述第一时频资源与第二时频资源部分重叠,所述第二时频资源为第三终端设备向第四终端设备发送第二信息使用的资源。
  39. 如权利要求37或38所述的装置,其特征在于,所述X与所述第一时频资源中受到干扰的时频资源在第一时频资源中的比例相关;和/或,
    所述X与占用所述第一时频资源的终端设备的数量相关。
  40. 如权利要求37-39任一项所述的装置,其特征在于,所述X个时频资源对应的频域资源属于同一个侧行链路带宽部分BWP。
  41. 如权利要求40所述的装置,其特征在于,所述X个频域资源为X*K个连续的子信道,所述K为大于或等于1的整数,每一个频域资源包括K个连续的子信道。
  42. 如权利要求37-41任一项所述的装置,其特征在于,所述X个时频资源上发送的X份所述第一信息对应不同的冗余版本RV。
  43. 如权利要求42所述的装置,其特征在于,所述X个时频资源中未受到干扰的时频资源上发送的所述第一信息对应的RV为RV0或RV3,所述X个时频资源中受到干扰的时频资源上发送的所述第一信息对应的RV为RV1或RV2。
  44. 如权利要求37-43任一项所述的装置,其特征在于,所述收发模块还用于接收来自所述第一终端设备的指示信息,所述指示信息用于指示所述X的取值。
  45. 如权利要求44所述的装置,其特征在于,所述指示信息还用于指示与所述X对应的调制阶数以及编码速率。
  46. 如权利要求45所述的装置,其特征在于,所述第一时频资源上发送一份所述第一信息对应的调制阶数为Q m,对应的编码速率为R,所述第一时频资源上发送X份所述第一信息对应的调制阶数为k1×Q m,对应的编码速率为k2×R,其中,所述k1与所述k2的乘积等于所述X,所述X、所述k1以及所述k2满足如下关系:
    X=2,k1=2,k2=1;或者,
    X=2,k1=1,k2=2;或者,
    X=3,k1=2,k2=1.5;或者,
    X=3,k1=1,k2=3;或者,
    X=4,k1=2,k2=2。
  47. 如权利要求45或46所述的装置,其特征在于,所述指示信息承载于侧行链路控制信息SCI中的第一级SCI。
  48. 如权利要求45或46所述的装置,其特征在于,所述指示信息承载于侧行链路控制信息SCI中的第一级SCI以及第二级SCI,所述第一级SCI用于指示所述X,所述第二级 SCI用于指示所述k1和/或所述k2。
  49. 一种通信装置,其特征在于,包括处理器和接口,所述接口用于发送和/或接收信息,所述处理器用于执行如权利要求1~12中任一项所述的方法,或执行如权利要求13~24中任一项所述的方法。
  50. 一种通信装置,其特征在于,包括用于执行如权利要求1~12中任一项所述的方法的模块,或包括用于执行如权利要求13~24中任一项所述的方法的模块。
  51. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质用于存储计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1~12中任一项所述的方法,或使得所述计算机执行如权利要求13~24中任一项所述的方法。
  52. 一种计算机程序产品,其特征在于,包括指令,当所述指令被执行时,使得如权利要求1~12中任一项所述的方法被执行,或使得如权利要求13~24中任一项所述的方法被执行。
PCT/CN2022/101214 2021-07-29 2022-06-24 一种信息发送方法、接收方法及通信装置 WO2023005537A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110864952.8A CN115696272A (zh) 2021-07-29 2021-07-29 一种信息发送方法、接收方法及通信装置
CN202110864952.8 2021-07-29

Publications (1)

Publication Number Publication Date
WO2023005537A1 true WO2023005537A1 (zh) 2023-02-02

Family

ID=85058172

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/101214 WO2023005537A1 (zh) 2021-07-29 2022-06-24 一种信息发送方法、接收方法及通信装置

Country Status (2)

Country Link
CN (1) CN115696272A (zh)
WO (1) WO2023005537A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024347A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 下行信息传输方法、装置和设备
CN109219015A (zh) * 2017-07-06 2019-01-15 电信科学技术研究院 一种资源选择方法及装置
CN109429334A (zh) * 2017-07-06 2019-03-05 电信科学技术研究院 一种数据传输方法及装置
US20200037343A1 (en) * 2018-07-24 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for network controlled resource allocation in nr v2x
CN112314006A (zh) * 2019-04-03 2021-02-02 联发科技(新加坡)私人有限公司 用于侧链路通信的两级侧链路控制信息

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108024347A (zh) * 2016-11-04 2018-05-11 华为技术有限公司 下行信息传输方法、装置和设备
CN109219015A (zh) * 2017-07-06 2019-01-15 电信科学技术研究院 一种资源选择方法及装置
CN109429334A (zh) * 2017-07-06 2019-03-05 电信科学技术研究院 一种数据传输方法及装置
US20200037343A1 (en) * 2018-07-24 2020-01-30 Samsung Electronics Co., Ltd. Method and apparatus for network controlled resource allocation in nr v2x
CN112314006A (zh) * 2019-04-03 2021-02-02 联发科技(新加坡)私人有限公司 用于侧链路通信的两级侧链路控制信息

Also Published As

Publication number Publication date
CN115696272A (zh) 2023-02-03

Similar Documents

Publication Publication Date Title
US20220330261A1 (en) Sidelink resource determination and sidelink signal transmission and reception method and device in wireless communication system
CN112005515B (zh) 用于无线网络的基于cbg的noma传输
WO2018090861A1 (en) Systems and methods for grant-free uplink transmissions
WO2018059173A1 (zh) 免授权的传输上行信息的方法、网络设备和终端设备
CN113796038A (zh) 无线通信系统中发送/接收信道状态信息的方法和装置
WO2021027518A1 (zh) 处理数据的方法和通信装置
TWI725160B (zh) 用於設備間通信的方法和裝置
US20220417976A1 (en) Processing time determination method and device of terminal in wireless vehicle communication system
WO2021057805A1 (zh) 一种通信方法及装置
US20230057836A1 (en) Apparatus and method for transmitting or receiving signal in wireless communication system
CN111464953B (zh) 一种资源、载波重选方法及装置
US11743883B2 (en) Apparatus and method for transmitting/receiving of data in a wireless communication system providing different services
WO2021017792A1 (zh) 一种反馈信息的传输方法及终端装置
US20210153173A1 (en) Method and apparatus of retransmission using adjacent configured grant resource in wireless communications systems
WO2020259611A1 (zh) 一种通信方法、装置及存储介质
WO2021065153A1 (ja) 端末及び通信方法
WO2022143195A1 (zh) 确定终端的特性的方法和通信装置
WO2021032003A1 (zh) 上行控制信息传输方法及通信装置
US20240014978A1 (en) Data Communication with Adaptable Feedback Mode
JP7352647B2 (ja) リソース割り当て方法ならびにデバイス、記憶媒体および端末
US20230137234A1 (en) Method and apparatus for periodic data transmission and reception in wireless communication system
US20220368505A1 (en) Data feedback method and apparatus
WO2023005537A1 (zh) 一种信息发送方法、接收方法及通信装置
WO2022028268A1 (zh) 通信方法及装置
WO2019219017A1 (zh) 对信息进行反馈及通过反馈确定信息接收的方法、设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22848144

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE